

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/129413/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Moore, Andy, Yudovskaya, Marina, Proyer, Alexander and Blenkinsop, Thomas 2020. Evidence for olivine deformation in kimberlites and other mantle-derived magmas during crustal emplacement. Contributions to Mineralogy and Petrology 175 (2), 15. 10.1007/s00410-020-1653-8

Publishers page: http://dx.doi.org/10.1007/s00410-020-1653-8

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

lick here to view linked References

1	EVIDENCE FOR OLIVINE DEFORMATION IN KIMBERLITES AND OTHER MANTLE-DERIVED MAGMAS
1 2 2	DURING CRUSTAL EMPLACEMENT
3 3 4	Version: Revised
5 4 6	Andy Moore ^{1*} , Marina Yudovskaya ^{2,3} , Alexander Proyer ⁴ Thomas Blenkinsop ⁵
7 5 8	¹ Dept. of Geology, Rhodes University, Artillery Road, Grahamstown, South Africa.
9 6	² Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, RAS, 35
10 7 11	Staromonetny, Moscow 119017, Russia
12 8 13	³ EGRI, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
14 9 15	⁴ Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
16 10 17	⁵ School of Earth and Ocean Sciences, Cardiff University, Cardiff, Wales, U.K. CF10 3XQ
18 11 19	
20 12 21	* <u>andy.moore.bots@gmail.com</u> (Corresponding author).
22 13 23 24	
25 14 26	Abstract
27 15 (crust	This paper highlights published and new field and petrographic observations for late-stage al
28 16	level) deformation associated with the emplacement of kimberlites and other mantle-derived 29
30 17 31	magmas. Thus, radial and tangential joint sets in the competent 183 Ma Karoo basalt wall rocks to
32 18 33	the 5 ha. Lemphane kimberlite blow in northern Lesotho have been ascribed to stresses linked to
55 56 57 58 59 60 61	
62 63 64	1

19 eruption of the kimberlite magma. Further examples of emplacement-related stresses in kimberlites are brittle fractures and close-spaced parallel shears which disrupt olivine macrocrysts. In each of these examples, there is no evidence of post-kimberlite regional tectonism which might explain these features, indicating that they reflect auto-deformation in the kimberlite during or 39 22 **23** immediately post-emplacement. On a microscopic scale, these inferred late-stage stresses are reflected by fractures and domains of undulose extinction which traverse core and margins of some euhedral and anhedral olivines in kimberlites and olivine melilitites. Undulose extinction and kink bands have also been documented in olivines in cumulates from layered igneous intrusions. Our **26 27** observations thus indicate that these deformation features can form at shallow levels (crustal **28** pressures), which is supported by experimental evidence. Undulose extinction and kink bands have previously been presented as conclusive evidence for a mantle provenance of the olivines – i.e. that they are xenocrysts. The observation that these deformation textures can form in both mantle and crustal environments implies that they do not provide reliable constraints on the provenance of the olivines. An understanding of the processes responsible for crustal deformation of kimberlites could 33 potentially refine our understanding of kimberlite emplacement processes.

35 Introduction

Olivine is always the dominant phase in kimberlites, comprising an average of 50% of the total rock
volume (Skinner, 1989). Skinner divided kimberlitic olivines on the basis of size into small, often

1 2 3 4 5 6 7 8		
9 10 11	39	euhedral micro-phenocrysts and phenocrysts, <0.5mm in length, and larger (>0.5mm), often
12	40	anhedral and rounded macrocrysts, often considered to be xenocrysts. Scott-Smith et al (2013)
13 15 16	41 s 42	ubsequently suggested that the term macrocryst be restricted to olivines > 1.0 mm, but noted that 14 it should be used with a non-genetic connotation. It should be stressed, however, that these sub-
17 18	43	divisions are artificial constraints, as kimberlitic olivines typically show a size continuum rather than
19	44	a bimodal distribution (Moore, 1988; Moss et al., 2010).
20 21 22 23	45	
24	46	There are strongly divergent views on the origin of kimberlitic olivines. Several recent publications
25	47 26	have concluded that the cores of all kimberlitic olivines are xenocrysts, derived from disaggregated
27 29 30	48 ma 49	antle peridotites, and that only the outer rims crystallized from the host magma (e.g. Kamenetsky 28 et al, 2008; Brett et al., 2009; Arndt et al., 2010; Lim et al., 2018). In contrast, Moore (1988; 2012;
31 32	50	2017) argued that the majority of kimberlitic olivines are cognate phenocrysts. Skinner (1989) took
33	51	an intermediate view, concluding that the euhedral olivine phenocrysts and microphenocrysts are
34 35 36 37	52 53	cognate to the kimberlite, but that the majority of macrocrysts are xenocrysts.
38		
39 41 42	54 Th 55	ese contrasting interpretations have important implications for the composition and generation of 40 kimberlite magmas. If a majority of olivines are cognate, this would point to a highly Mg-rich
43 44	56	primitive kimberlitic liquid, whereas the xenocrystal model implies a carbonatitic, relatively Mg-poor
45	57	primary magma. It is therefore clearly critical to determine the origin of kimberlite olivines in order
55 56 57 58 59 60 61 62		3
63 64 65		

1 2 3 4 5 6 7 8 9		
46 47 48	58	to understand the processes responsible for producing kimberlite magmas.
49 50	59	
51 52	60	Various criteria have been proposed to distinguish between a xenocrystal or cognate origin for
53 54	61	kimberlitic olivines. Thus, several authors (e.g. Arndt et al., 2010; Bussweiler et al., 2015) note that
	62	compositions of the most refractory olivines in kimberlites overlap the range typical of mantle
	63	peridotite xenoliths. However, this does not preclude a cognate origin, as the first olivine to
	64	crystallize from a magma generated in equilibrium with mantle olivines would be expected to be
	65 66	closely similar in composition to those in the mantle source. Subsequent crystallization would result in decreasing Mg# of the liquidus olivine, but would result in limited initial change in Ni content, as
	67	decreasing Mg concentration in the magma would be accompanied by an increase in the Ni partition
	68	coefficient (Hart and Davis, 1978; Moore, 2017). The consequence is that olivines produced by 69
		fractional crystallization of a magma could, at least in principle, overlap the range of Mg # and Ni 70
		concentrations typical of mantle peridotites.
10 11	71	
12 13	72	Sharp compositional gradients that are typical of rims of kimberlitic olivines have also been used to
14 15	73	argue that the olivine cores are mantle-derived xenocrysts (Bussweiler et al., 2015). However,
16	74	kimberlites experience complex late-stage P-T-X paths, with rapidly decreasing temperature
17	75 18	associated with initiation of fluidization of the magma. Rapidly decreasing temperature would, in
19 20	76	turn, result in a sharp increase in K_{Ni} (olivine-liquid) (Matzen et al., 2013), which could account for
21	77	the steep decrease in Ni which is characteristic of olivine rims (Moore, 2017).
55 56 57 58 59 60 61		
62 63 64		4

1 2 3 4 5 6		
7 8 9 22		
23 24 25	78	
26 27	79	Some (though not all) olivines in mantle peridotites are characterized by internal deformation
28	80 been	features, including undulose extinction, kink banding and mosaic recrystallization, which have
29	81	ascribed to dynamic stresses in the mantle. Such deformation textures have accordingly been 30
31 32	82	considered to be diagnostic criteria for recognizing mantle-derived olivine xenocrysts (e.g. Skinner,
33 34	83	1989; Scott-Smith et al., 1989; Cordier et al. 2017). Brett et al. (2015) have reported that fractures
35 36	84	traversing some olivines terminate at the marginal rind, which they infer to be reflect a late,
37	85	magmatic overgrowth to a mantle-derived xenocryst.
38 39 40 41	86	
42	87	The purpose of this paper is to highlight published and new field and petrographic observations for
43 45	88 lat 89	e-stage (crustal level) deformation associated with the emplacement of kimberlites. Evidence is 44 presented to demonstrate that olivine deformation textures, which have previously been used to
47	90	argue for a mantle provenance, can also form in kimberlites and some other mantle-derived
49	91	magmas in response to stresses associated with emplacement and solidification at crustal depths.
50 51 52 53	92	
54	93	It should be stressed, at the outset, that we are not disputing the existence of olivine xenocrysts in
	94	general or a mantle origin for some olivine deformation textures. Rather, if similar textures can
55 56 57 58 59 60 61 62 63		5
64		

1			
2			
3			
4			
5			
6			
7			
8			

101

form at shallow (crustal) depths, they do not, on their own, provide reliable evidence for distinguishing whether the olivines have a mantle provenance – i.e. are xenocrysts – or are cognate

97 phenocrysts.

Previous studies

99 Field evidence for deformation associated with crustal kimberlite 100 emplacement

102 103 A study of the Lemphane kimberlite dykes and blows in the northern Lesotho highlands (Kreston, 1973) highlighted exceptionally important, and perhaps overlooked evidence of late-stage (crustal) **104** 20 105 deformation affecting kimberlite wall rocks. Kreston measured joints in the rigid Karoo basalt wall rocks to the 5.7 ha Lemphane kimberlite blow, and showed that they defined sets that were both **106** tangential (Fig. 1) and radial to the kimberlite margin. The width of the wall rocks affected by these **107 108** joint sets was not specified, but Kreston observed that they did not persist over any appreciable 28 109 distance from the Lemphane blow, and were absent in the basalts 25m from the kimberlite contact. **110** As the Karoo basalts of the Lesotho highlands, dated at ~183 Ma. (Marsh et al., 1997), do not show **111** evidence of regional tectonic deformation, Kreston (1973) concluded that the joint sets marginal to **112** the Lemphane blow were linked to stresses that "are obviously caused by the kimberlite".

1		
2		
4 5		
6		
7 8		
9		
35 36	113	
37 38	114	Kreston and Dempster (1973) documented a hardebank kimberlite dominated by olivine crystals,
39 40	115	with very minor amounts of interstitial serpentine and perovskite, from the Malibamatso dyke
41	116	swarm (northern Lesotho highlands) (Fig. 2). The kimberlite is traversed by parallel incipient shear
42	117 zor	nes, and these authors noted that there is a tendency for some of the olivines to show "cleavages" 43
44 45	118	parallel to these lineaments. However, they did not present evidence to show that these partings
46 47	119	were crystallographically controlled, and they may be fractures. In view of the absence of evidence
48 49	120	for regional deformation post-dating eruption of the Karoo basalt wall rocks, Kreston and Dempster
50	121	(1973) concluded that both the incipient shears and the cleavages (or fractures) in the olivines
51	122	developed during the later stages of intrusion of the kimberlite dyke – in other words at crustal 52
53 54	123	levels.
	124	
	125 126	Supporting observations
	127	Figs 3a & 3b illustrate a hand specimen from a kimberlite dyke associated with the Cambrian age
	128	(~530 Ma) economic 3 ha Murowa kimberlite pipe, located to the southwest of Masvingo in south-
	129	central Zimbabwe (Smith et al., 2004). A majority of olivine macrocrysts in this specimen are 130
		characterized by pronounced closely spaced fractures with a sub-parallel alignment, with some
10	131	showing a second parting set with an oblique orientation.
11 12 13	132	
55 56 57 58 59 60 61		7
62 63 64		/

1		
23		
4		
5		
6		
/		
9		
14 15	133	Micro-faults associated with slickenslides and development of chlorite on the fault plane, were
16 17	134	observed in a number of core sections, drilled from surface into the BK16 kimberlite of the Orapa
18 19	135	cluster. Fig. 3c illustrates one of these micro-faults. The wall rocks are ~183 Ma Karoo basalts,
20 21	136	which do not appear to have been affected by post-eruption deformation.
22 23 24	137	
25 26	138	Fig. 3d illustrates a section of core (hole DTP 12N, 78.3m) from the mid-Cretaceous du Toitspan
27	139 some	kimberlite (Kimberley cluster, South Africa), which is traversed by calcite-filled brittle fractures,
28 29 30	140	of which have disrupted olivine macrocrysts.
31 32 33	141	
34	142	Microscopic evidence for late-stage deformation of olivines in kimberlites, 36 143
	oliviı	ne melilitites and lavered intrusions
35	0	
37		
38		
39	144	Kimberlites
40		
41	145	
42 43		
44	146	Deformation textures in kimberlitic olivine, when present, are more common in the larger.
-	anhedr	al

- 56 57 58 59 60 61

1		
3		
4 5		
6		
8		
9 45	147 46	olivines (Skinner, 1989). However, Moore (1988) reported undulose extinction in small euhedral
47	148	olivines in some kimberlites. This is illustrated by the euhedral olivine from the De Beers kimberlite
48 49 50	149	(Kimberley cluster) in Fig. 4 a & b. The grain exhibits non-uniform extinction domains, some of
51	150 extinct	which extend to the edge of the olivine. Skinner (1989) expressed the view that undulose ion
52	151 53	in euhedral kimberlite olivines is very uncommon, but further in-depth investigation is required to
54	152	confirm this generalization.
	153	
	154 No	te that fluid inclusions are present both within the core and margin of the crystal illustrated in Fig.
	155 4a	&b, and that fractures traversing the mineral extend to the margins. In Fig. 4c, the core and rim of
	156	the largest olivine (top centre) are distinguished by light and dark grey interference colours
	157	respectively. Some of the fractures in this olivine also traverse both core and rim. Several of the
		smaller olivines are also characterized by fractures traversing the whole crystal (e.g. the
		olivine in
	159	the lower right of this image).
10	160	
12	100	
13 14	161	The proportions of olivines displaying undulose extinction and other deformation textures seem to
15	101	
16	162	vary considerably between kimberlites, but such differences have not been systematically
17	163 18	quantified. Thus, Scott-Smith et al (1989) noted that in the Kapamba lamproites (Luangwa Valley,
19 20	164	Zambia), undulose extinction was common in both the large anhedral and small euhedral olivines.
21	165	They observed that this made it difficult to distinguish cognate phenocrysts from exotic xenocrysts.
55 56		
57		
58 59		
60 61		
62		9
63 64		

1 2 3 4 5 6 7 8 9		
23	166 some	In contrast, undulose extinction in olivines, including macrocrysts, is absent, subdued or rare in
24	167	kimberlites. Examples of kimberlites dominated by relatively undeformed macrocrysts are 25
26 27	168	illustrated by Mitchell (1997) for the Kimberley cluster (Plates 74, 76, 78 & 80); Pipe 200, Lesotho
28 29	169	(Plate 84); Vtorogodnitsa, Russia (Plate 86); Lac de Gras, Canada (Plate 90) and Somerset Island,
30 31	170	Canada (Plates 94 & 96). However, virtually all of the olivines shown in the flagged images from
32	171	Mitchell (1997) are characterized by fractures which traverse grain interiors and rims.
33 34 35 36	172	
37	173	Olivine melilitites
38 39 40 41	174	
42	175	Olivine is the dominant phenocryst phase in olivine melilitites from the Namaqualand-Bushmanland
43 45 46	176 are 177	a of north-western South Africa. Some crystals are euhedral, with bipyramid terminations and a 44 roughly 2:1 aspect ratio (Fig. 4d). However, many are characterized by re-entrants typical of hopper
47 48	178	olivines (Moore and Erlank, 1979), comparable to the magmatic growth forms observed in
49	179 2003)	experimental studies involving a small degree of under-cooling (Donaldson, 1976; Faure et al.,
50	180 An	example of a "hopper" olivine phenocryst, from the Dikdoorn pipe (Namaqualand) is illustrated in 51
52 53	181	Fig. 4e (PPL) and 4f (XPL).
Г	182	
55 56 57 58 59 60 61 62		10
63 64		

1	_
2	2
3	3
4	ł
5	5
6	5
7	7
0	5

8	
9	

Figure 5 (data from Moore and Erlank, 1979) illustrates a representative pattern of olivine
compositional variation from an olivine melilitite sample from a pipe on the farm Biesiesfontein, in
the Namaqualand cluster (Moore & Erlank, 1979). A majority of the olivine cores define a trend of
decreasing Mg#, with a relatively small decrease in Ni, and normal outward zonation from the core,
except at the very edges, which define a trend of marked reverse zonation. A very subordinate 188
group of olivines with relatively Fe-rich olivine cores are characterized by inverse zonation.

10 11	190	The zonation trend shown by the majority of olivine cores was interpreted by Moore and Erlank
12 13	191	(1979) to reflect Raleigh-type crystallization of olivine phenocrysts from the melilitite parental liquid.
14 15	192	The reverse zoning defined by the rims was ascribed to late-stage co-precipitation with Fe-oxides,
16	193 probab	present as intergrowths at the olivine margins. The rare olivines showing inverse zoning are ly
17 18 19 20	194 195	related to the Cr-poor megacryst suite (Moore and Costin, 2016).
21 22 23 24	196	Layered igneous complexes
25 26	197	
27 28	198	Olivines with undulose extinction, kink bands and occasionally granular textures, reflecting
29 30	199	recrystallization, have been reported from cumulates from the Lower Zone of the Northern Limb of
31 32	200	the Bushveld Igneous Complex (BIC) (Yudovskaya et al, 2013). Examples, taken from this study are
55 56 57 58 59 60 61		11
62 63 64 65		11

55	219	
		crustal levels.
	210	developed during the late stages of emplacement of the kimberlite magma – in other words, at 218
	215	kimperiite. The same argument was used by Kreston and Dempster (1973) to conclude that the
	214	joint sets associated with the Lemphane blow are "obviously" caused by emplacement of the
	213	tectonic deformation. Kreston (1973) therefore concluded that the tangential (Fig. 1) and radial
	212	The Lesotho Karoo basalts, dated at ~183 Ma (Marsh et al., 1997), do not show evidence of regional
53 54	211	Discussion
51 52	210	
49 50	205	
46 48	208	2012). Yudovskaya et al. (2018) have also reported philogopite, clinopyroxene, chromite and 47
40	207	
44	207	(Wilson 1082) the Davi ultramatic intrusion (Vac at al. 2017) and Duke Island complex (Li at al.
40 41 42 43	205	Kink-banded olivines have also been described in other crustal complexes such as the Great Dyke
38 39	204	from a harzburgite cumulate, Zone of the northern limb of the BIC.
36 37	203	90.02; Ni = 0.147 – 0.152, n = 5; (Yudovskaya et al., 2013). Fig. 6h illustrates kink bands in olivines
34	202 35	undulose extinction. They are characterized by a very restricted compositional range (Mg # 89.85 –
33	201	illustrated in Figs. 6g & h. In sample UMT6-1449 (Fig. 6g), the majority of the olivines show
7 8 9		
5 6		
3 4		
1 2		

- 57 58 59 60

1 2		
3		
4 5		
6 7		
8		
9 10 11	220	Similar considerations are relevant to account for the close-spaced joint sets traversing the
12	221	kimberlitic olivines in the Murowa kimberlite dyke, illustrated in Fig. 3 a&b. There is no evidence of
13 14 15	222	regional penetrative deformation of this portion of the Zimbabwe craton subsequent to kimberlite
16	223	emplacement. It further seems most unlikely that this strong preferred orientation of the olivine
17 19	224	joint sets is mantle-derived, as disaggregation of sheared olivines from a mantle xenolith during 18
20	225	
21 22	226	observations thus provide evidence that development of the close-spaced fracture sets was a
23	227	response to late-stage stresses within the near solidified kimberlite magma – in other words at
24	228 25	crustal levels. Similarly, the absence of post-eruption deformation in the \sim 183 Ma Karoo basalts
26 27	229	forming the wall-rocks to the BK-16 kimberlite in the Orapa cluster (Botswana) indicates that the
28 29	230	micro-faults illustrated in Fig. 3c reflect late-stage deformation related to stresses associated with
30	231	emplacement and cooling of the kimberlite.
31 32	232	
33		
34 35	233	The fractures in the Du Toitspan kimberlite , which may disrupt olivine macrocrysts (Fig. 3d), provide
36 27	224	evidence for solid state, syn- to post-emplacement deformation of kimberlites, thus procluding
57	their	evidence for solid state, syn- to post-emplacement deformation of kinibernites, thus precidening
38	235 39	formation as decompression fractures formed within the mantle, such as those reported in some
40	236	olivines by Brett et al. (2015). The absence of deformation events in the cratonic host country rocks
41 42	237	suggests that the latest possible timing of the (auto-)deformation within the kimberlite was
55 56 57 58 59 60		
61 62		13
63		
64 65		

1		
2 3		
4		
5		
6		
7		
9		
43		
44	238	immediately post-emplacement.
45		
46	239	
47		
48		
49	240	Collectively, the field evidence documented show that emplacement of kimberlites is associated
50	241 51	with internal stresses that exist over the period of cooling and consolidation of the magma. These
52 54	242 s [.] 243	tresses must have been of sufficient magnitude to impose the radial and tangential fracture sets on 53 the rigid basalt wall rocks to the Lemphane kimberlite blow, documented by Kreston (1973).
	244	Incipient shearing of kimberlites (Fig. 2), development of closely-spaced fracture sets (Fig. 3a&b),
	245	minor faults with slickensides (Fig. 3c) and brittle fractures (Fig 3d) are interpreted to reflect a range
	246	of responses to internal stresses during and immediately following kimberlite emplacement.
	247	
	2	248 The evidence presented also demonstrates that some kimberlitic olivines experienced fracturing
	and	
	2	249 deformation subsequent to the development of the euhedral crystal margins, and thus during the
	2	250 late stages of kimberlite emplacement (Figs 2 & 3; 4a-c). Thus, undulose extinction and fractures
	2	251 extending from the core to the margin of the euhedral olivine from the de Beers kimberlite (Fig. 4
	10 2	52 a&b) point to deformation during the late stages of emplacement and crystallization of the
11	253	kimberlite magma.
12		
11	254	
14 15	254	
10	255 4	
16 10	255 1	100 read Erlank (1979) concluded from the study of olivines in the Namaqualand olivine mellilities $1/$
18 19	250	that the presence of hopper growth forms, indicative of magnatic crystallization, coupled with the
ТĴ		
55		
56		
57		
50 59		
60		
61		
62		14
63		
64 65		

1 2		
3		
4 5		
6 7		
8		
9 20 21	257	zonation pattern defined by the majority of cores, which is compatible with Raleigh-type
22	258	crystallization, indicate that the overwhelming majority of olivines in the Namaqualand melilitites
23 24	259	have a magmatic origin – i.e. are cognate phenocrysts and not xenocrysts. This interpretation is
25 26	260	supported by the absence of olivines with compositions typical of mantle peridotites (Mg $\#$ > 89)
27 28	261	(Fig. 5). The euhedral olivine from the WAT pipe (Namaqualand Cluster) is characterized by
29	262	domains of contrasting extinction traversing core and rim of this crystal (Fig. 4d). Similarly, the
31	263	hopper olivine crystal illustrated in Fig. 4 e & f is characterized by undulose extinction and
	fractur	es,
32	264 33	both extending from the interior to the margin. The deformation textures illustrated in Figs. 4d-f
34 35	265	must therefore reflect post-crystallization deformation at crustal levels.
36		
37 38	266	
39 40	267	Collectively, the evidence presented demonstrates that at least some olivines in kimberlites, olivine
41 42	268	melilitites and layered complexes have experienced post-crystallization stresses at crustal pressures
43	269	and temperatures, which have produced strain features similar to those which characterize olivine
	IN	
44	270	some mantle peridotite xenoliths. Thus, we argue that while strain features in olivines, such as 45
46 47	271	undulose extinction, may be inherited from a mantle source, they do not provide unambiguous
48 49	272	evidence for a mantle provenance. This view is in line with conclusions previously drawn by
50	273	Yudovskaya et al. (2013) and Yao et al. (2017).
51		
55 56		
57		
58 59		
60		
७⊥ 62		15
63		19
64 65		

9 52 53 54	274	
51	275	Understanding the detailed origin of the various crustal stress features which we have identified
	in 276	kimberlites and their wall rocks could potentially provide further insights to the later stages of
	277	kimberlite eruption and emplacement. While this is beyond the scope of our primarily
	descrip	otive 278 study, we suggest a number of potential processes which should be considered:
	279	
	280	A. Kimberlitic wall-rock breccias provide compelling evidence for high energy explosive activity
	281	linked to emplacement (Barnett et al., 2011), while Sparks et al. (2006) suggest that
	282	kimberlite eruptions may have been Plinian in character. Deformation textures may be
	283	linked to stresses transmitted through the magma related to explosive eruption. The radial
10	284	and concentric structures reported by Kreston may be the result of explosive overpressure
11 13 14	285 286	and post-explosive underpressure on the pipe walls, as proposed by Nicolaysen and 12 Ferguson (1990). Explosive kimberlite eruption offers a potential explanation for the
15 16	287	observation that both small euhedral olivines and large macrocrysts show deformation
17	288	textures in the Kapamba lamproites (Scott-Smith et al., 1989). However, this may not
18	289	necessarily always be the case, as olivines with different crystallographic orientations may 19
20	290 res	pond differently to the shock stresses. Also, in individual large macrocrysts, the domains 21
22 23	291	of undulose extinction often have relatively large areas, greater than those of smaller
24	292	euhedral olivine crystals. This might, in part, account for the rarity of deformation features
25 26	293	in smaller olivines.
27	201 B	Kreston (1973) suggested that internal kimberlite stresses might be linked to nost-evolosive 28
29 55 56 57 58 59 60 61	295	torsional forces linked to emplacement of the kimberlite in a plastic or near-solid state.
62 63		16

1 2 3 4 5 6 7 8 9		
30 31 32	296	C. Differential stresses in largely solidified magmas may result from chemical reactions, e.g. a
33	297	partial serpentinization or carbonation.
34 36 38 39 40 41	298 299 300 301	D. Stresses may be linked to pressure exerted on solidified kimberlite by the magma from a 35 later pulse of eruption. In general, dynamic conditions in a magmatic plumbing system 37 should result in deformation and brecciation.
42	302	Kimberlite deformation linked to one or more of the suggested stresses provides a potential
44	303	explanation for crustal deformation of olivines. It is noted in this regard that experimental evidence
46	304	demonstrates that undulose extinction and kink bands can develop in olivines down to very low
47	°C), de 600	pending on the pressure applied. (Druiventak, et al., 2011). Further, 48 305 temperatures (20 –
49 so 5	306 0	low-Ca olivine tends to be more readily deformed, as high Ca contents in olivine creates the
51 52	307	called "solute drag" effect, preventing deformations (Yao et al., 2017). The high Ca-contents of
53 54	308	kimberlitic micro-phenocryst olivines, and olivine rims would therefore be expected to inhibit plastic
	309	deformation.
	310 311	In addition to the possible mechanisms discussed above. Welsch et al. (2012) have demonstrated
	312	that undulose extinction can result directly from crystal growth processes during magmatic
	313	crystallization. These authors present evidence that olivine phenocrysts in lava flows associated
	314	with the Piton de la Fournaise volcano on Reunion island are composite crystals, formed by parallel
	315	dendritic growth with smaller sub-units coalescing to form macrocrysts. However, branch
55 56 57 58 59 60 61 62 63 64 65		17

1		
2 3		
4		
5		
7		
8		
9	316	misorientations and lattice mismatches can sometimes produce sub-grain boundaries, dislocation
11	317	lamellae and undulose extinction, which they noted have formerly been interpreted in terms of
12	318	plastic intracrystalline deformation. The undulose extinction in the hopper olivine from the 13
14 15	319	Namaqualand olivine melilitite illustrated in Fig. 3e&f closely matches some of the growth textures
16	320	documented by Welsch et al. (2012).
17	224	
18 19	321	
20		
21 22	322	Subsolidus deformation in layered igneous complexes may reflect solid state reactions accompanied
23	323	by increase in volume. This may be linked to exsolution and the formation of sympectites that occur
24 25	324	in olivine and pyroxenes. The origin of the exsolutions is controversial (Fleet et al., 1980; Khisina et
26 27	325	al., 2013), and their link with deformation is not resolved. Nevertheless, a sub-solidus origin of
28 29	326	exsolutions, which are particularly common in grains exhibiting kink bands and undulose extinction,
30 31	327	is generally accepted (Yudovskaya et al., 2013, 2018, Yao et al., 2017).
32	328	
33		
34	220	Conclusions
35 36	329	Conclusions
37 38	330	
39		
40	331	Field and petrographic evidence demonstrate that kimberlites experience a range of stresses during
41 42	332	crustal emplacement, extending to early post-solidification of the magma. The processes
55 56		
57		
58		
59 60		
61		
62		18
63 61		
65		

1		
2		
4		
5		
7		
8		
9 13	222	responsible for these stresses remain speculative, and an understanding of their origin could 44
4.5	334	potentially refine models for kimberlite emplacement. However, irrespective of their origin, such
46		
47	335	stresses, possibly coupled with direct crystallization processes, such as those reported by Welsch et
48	226	
49	336	al. (2012), provide a potential explanation for late-stage deformation features such as undulose
50 51 52	337	extinction, kink banding and fracturing which we have documented in some olivines.
53	338	
54		
	339	We stress, once again, that we do not dispute the existence of olivine xenocrysts in general, or a
	340	mantle origin for some olivine deformation textures. Nevertheless, our study demonstrates that
	341	deformation textures in olivine cannot be used as a reliable indicator of a mantle provenence – i.e.
	342	that olivines showing these deformation textures are invariably xenocrysts.
	343	
	344	Acknowledgements
10	345	Peter Kreston is thanked for permission to publish the images presented in Figs. 1 & 2, and Dr.
11 12		
	346	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample
13	346 347	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample illustrated in Fig. 3d was kindly provided by Petra Diamonds Ltd. Tsodilo Resources (a
13	346 347 Canadia	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample illustrated in Fig. 3d was kindly provided by Petra Diamonds Ltd. Tsodilo Resources (a an-
13	346 347 Canadia	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample illustrated in Fig. 3d was kindly provided by Petra Diamonds Ltd. Tsodilo Resources (a an-
13 14	346 347 Canadia 348	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample illustrated in Fig. 3d was kindly provided by Petra Diamonds Ltd. Tsodilo Resources (a an- listed diamond exploration company), kindly facilitated a field visit to the company's BK16 15
13 14 16	346 347 Canadia 348 349 kim	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample illustrated in Fig. 3d was kindly provided by Petra Diamonds Ltd. Tsodilo Resources (a an- listed diamond exploration company), kindly facilitated a field visit to the company's BK16 15 aberlite, located in the mid-Cretaceous (~90 Ma) Orapa pipe cluster in central Botswana. Susan 17 Abraham is thanked for beln in producing the diagrams
13 14 16 18 19	346 347 Canadia 348 349 kim 350	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample illustrated in Fig. 3d was kindly provided by Petra Diamonds Ltd. Tsodilo Resources (a an- listed diamond exploration company), kindly facilitated a field visit to the company's BK16 15 aberlite, located in the mid-Cretaceous (~90 Ma) Orapa pipe cluster in central Botswana. Susan 17 Abraham is thanked for help in producing the diagrams.
13 14 16 18 19 20	346 347 Canadia 348 349 kim 350	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample illustrated in Fig. 3d was kindly provided by Petra Diamonds Ltd. Tsodilo Resources (a an- listed diamond exploration company), kindly facilitated a field visit to the company's BK16 15 aberlite, located in the mid-Cretaceous (~90 Ma) Orapa pipe cluster in central Botswana. Susan 17 Abraham is thanked for help in producing the diagrams.
13 14 16 18 19 20 21	346 347 Canadia 348 349 kim 350 351	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample illustrated in Fig. 3d was kindly provided by Petra Diamonds Ltd. Tsodilo Resources (a an- listed diamond exploration company), kindly facilitated a field visit to the company's BK16 15 aberlite, located in the mid-Cretaceous (~90 Ma) Orapa pipe cluster in central Botswana. Susan 17 Abraham is thanked for help in producing the diagrams.
13 14 16 18 19 20 21 22	346 347 Canadia 348 349 kim 350 351	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample illustrated in Fig. 3d was kindly provided by Petra Diamonds Ltd. Tsodilo Resources (a an- listed diamond exploration company), kindly facilitated a field visit to the company's BK16 15 aberlite, located in the mid-Cretaceous (~90 Ma) Orapa pipe cluster in central Botswana. Susan 17 Abraham is thanked for help in producing the diagrams.
13 14 16 18 19 20 21 22 55	346 347 Canadia 348 349 kim 350 351	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample illustrated in Fig. 3d was kindly provided by Petra Diamonds Ltd. Tsodilo Resources (a an- listed diamond exploration company), kindly facilitated a field visit to the company's BK16 15 aberlite, located in the mid-Cretaceous (~90 Ma) Orapa pipe cluster in central Botswana. Susan 17 Abraham is thanked for help in producing the diagrams.
13 14 16 18 19 20 21 22 55 56 57	346 347 Canadia 348 349 kim 350 351	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample illustrated in Fig. 3d was kindly provided by Petra Diamonds Ltd. Tsodilo Resources (a an- listed diamond exploration company), kindly facilitated a field visit to the company's BK16 15 aberlite, located in the mid-Cretaceous (~90 Ma) Orapa pipe cluster in central Botswana. Susan 17 Abraham is thanked for help in producing the diagrams.
13 14 16 19 20 21 22 55 56 57 58	346 347 Canadia 348 349 kim 350 351	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample illustrated in Fig. 3d was kindly provided by Petra Diamonds Ltd. Tsodilo Resources (a an- listed diamond exploration company), kindly facilitated a field visit to the company's BK16 15 oberlite, located in the mid-Cretaceous (~90 Ma) Orapa pipe cluster in central Botswana. Susan 17 Abraham is thanked for help in producing the diagrams.
13 14 16 18 19 20 21 22 55 56 57 58 59 60	346 347 Canadia 348 349 kim 350 351	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample illustrated in Fig. 3d was kindly provided by Petra Diamonds Ltd. Tsodilo Resources (a an- listed diamond exploration company), kindly facilitated a field visit to the company's BK16 15 aberlite, located in the mid-Cretaceous (~90 Ma) Orapa pipe cluster in central Botswana. Susan 17 Abraham is thanked for help in producing the diagrams.
13 14 16 18 19 20 21 22 55 56 57 58 59 60 61	346 347 Canadia 348 349 kim 350 351	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample illustrated in Fig. 3d was kindly provided by Petra Diamonds Ltd. Tsodilo Resources (a an- listed diamond exploration company), kindly facilitated a field visit to the company's BK16 15 oberlite, located in the mid-Cretaceous (~90 Ma) Orapa pipe cluster in central Botswana. Susan 17 Abraham is thanked for help in producing the diagrams.
13 14 16 18 19 20 21 22 55 56 57 58 59 60 61 62	346 347 Canadia 348 349 kim 350 351	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample illustrated in Fig. 3d was kindly provided by Petra Diamonds Ltd. Tsodilo Resources (a an- listed diamond exploration company), kindly facilitated a field visit to the company's BK16 15 oberlite, located in the mid-Cretaceous (~90 Ma) Orapa pipe cluster in central Botswana. Susan 17 Abraham is thanked for help in producing the diagrams.
13 14 16 18 20 21 22 55 56 57 58 59 60 61 62 63	346 347 Canadia 348 349 kim 350 351	Frieder Reichardt for providing the Murowa dyke sample illustrated in Fig. 3a&b. The core sample illustrated in Fig. 3d was kindly provided by Petra Diamonds Ltd. Tsodilo Resources (a an- listed diamond exploration company), kindly facilitated a field visit to the company's BK16 15 aberlite, located in the mid-Cretaceous (~90 Ma) Orapa pipe cluster in central Botswana. Susan 17 Abraham is thanked for help in producing the diagrams.

1	
2 3	
4	
5	
6 7	
8	
9	
23	352
24 25	
26	353
27	
28	354
29	
30	355
31	
32	250
33 २४	356
54	255
35 36	357
37	
38	358
39	
40	359
41	
42	360
43	300
45	361
46	501
47	
48	362
49	
50 51	363
51	
53	364
54	
	365
	366
55	
56	
57	
58 59	
60	
61	
62	
63	
6/	

1 2 3 4 5 6 7 8 9		
2	367	
	368	References
	369	
	370	Arndt NT, Guitreau M, Boullier A-M, Le Roex A. Tomassi A, Cordier P. Sobolev A (2010) Olivine and
	371	the origin of kimberlite. J Petrol 51: 573-602
	372	Barnett WP, Kurszlaukis S, Tait M, Dirks P (2011) Kimberlite wall-rock fragmentation processes:
10 11	373	Venetia K08 pipe development. Bull Volcanol 73: 941-958
12 13	374	Brett RC, Russell, JK, Andrews GDM, Jones TJ (2015) The ascent of kimberlites: insights from olivine.
14 15	375	Earth Planet Sci Let 424: 119-131
16 17	376	Brett RC, Russell JK, Moss S (2009) Origin of olivine in kimberlite: phenocryst or imposter. Lithos
18 19 20	377	112S: 201-212
21	378	Bussweiler Y, Foley SF, Prelević D, Jacob DE (2015) The olivine macrocryst problem: new insights
22 23	379	from minor and trace element compositions of olivine from the Lac de Gras kimberlites, Canada.
24 25 26	380	Lithos 220-223: 238-252
27	381 the	Cordier C, Sauzeat , Arndt NT, Boullier A-M, Batanova V, Barou F (2017) Quantitative modelling of
28	382 ap	parent decoupling of Mg# and Ni in kimberlitic olivine margins: a reply to the comment on Cordier 29
30 31	383	<i>et al.</i> (2015) by A. Moore. J Petrol 58: 391-393
32 33	384	Donaldson CH (1976) An experimental investigation of olivine morphology. Contrib Mineral Petrol
55 56 57 58 59 60 61		
62 63 64		21

1 2 3 4 5 6 7 8		
9 34		
35	385	57: 187-213
36 37 38	386	Druiventak A, Trepmann CA, Renner J, Hanke K (2011). Low-temperature plasticity of olivine during
39 40	387	high stress deformation of peridotite at lithospheric conditions – an experimental study. Earth
41	388	Planet Sci Lett 311: 199-211.
43 44	389	Faure F, Trolliard G, Nicollet C, Montel J-M (2003) A developmental model of olivine morphology as a
45 46	390	function of the cooling rate and the degree of undercooling. Contrib Mineral Petrol 145: 251-263
47	391	Fleet ME, Bilcox GA, Barnett R L (1980) Oriented magnetite inclusions in pyroxenes from the
48 49	392	Grenville province. Canad Mineral18: 89-99
50 51	393 394	Hart SR and Davis KE (1978) Nickel partitioning between olivine and silicate melt. Earth Planet Sci
53 54	395	Lett 40: 203-219
01	396	Kamenetsky VS, Kamenetsky MB, Sobolev AB, Golovin A, Demouchy S, Faure K, Sharygin VV, Kuzmin
	397	DV (2008) Olivine in the Udachnaya-east kimberlite (Yakutia, Russia): Types, compositions and 398
		origins. J Petrol 49: 823-839
	399	Khisina, NR, Wirth R, Abart R, Rhede D, Heinrich W (2013) Oriented chromite-diopside symplectic
	400	104. 84_98
	401	104. 64-36.
	403	Kreston P. (1973) The geology of Lemphane pipes and neighbouring intrusions. In: Nixon, PH (ed.).
10 55 56 57 58 59 60 61	404	Lesotho Kimberlites, Cape and Transvaal Printers, pp159-167.
62 63 64 65		22

1		
2		
3		
45		
6		
7		
8		
9		
11		
12	405	Kreston P, Dempster AN (1973) The geology of Pipe 200 and the Malibamatso dyke swarm. In: Nixon,
13		
14	406	PH (ed.). Lesotho Kimberlites, Cape and Transvaal Printers, pp172-179.
15		
16	407	Li C. Thakurta J. Ripley FM (2012) Low-Ca contents and kink-banded textures are not unique to
17	18 408	B mantle olivine: evidence from the Duke Island complex, Alaska. Mineralogy and Petrology
104	:147– 1	9
20	409	153.
21		
22	410	
23	411	Lim E, Giuliani A, Phillips D, and Goemann K (2018) Origin of complex olivine zoning in olivine from
24		
25	412	diverse, diamondiferous kimberlites and tectonic settings: Ekati (Canada), Alto Paranaiba (Brazil)
	and	
26	413	Kaalvallei (South Africa). Mineralogy and Petrology S112 suppl. 2: S549 – S554.
27		
28		
29	414	Marsh JS, Hooper PR, Rehacek J, Duncan RA Duncan AR (1997) Stratigraphy and age of Karoo basalts
30		
31	415	of Lesotho and implictions for correlations within the Karoo igneous Province. American
~ ~	44.6	
32	416	Geophysical Union, Monograph 100, Large Igneous provinces: continental, oceanic and planetary
	33	
34	417	flood basalts, pp247-272
35		
36	410	Matron AK, Dakar DNA, Daakatt JD, Stalaar ENA (2012) The termoverture and pressure dependence of
31	418	Matzen AK, Baker BM, Beckett JK, Stolper EM (2013) The temperature and pressure dependence of
20	410	nickel partitioning between eliving and cilicate melt I Detrol 54: 2521 2545
30 20	419	The partitioning between onvine and sincate ment. J Petrol 54, 2521-2545
40		
41	420	Mitchell RH (1997) Kimberlites, orangeites lamproites, melilitites and minettes – a petrographic
42	720	whether Ar (1997) Ambernes, orangeres amprores, mennines and mineres - a periographie
43	421	atlas, Almaz Press, Thunder Bay, 243pp
44		
Γ		
55		
56		
57		
50 59		
60		
61		
62		23
63		
64		
65		

1 2 3 4 5 6 7		
8 9		
45	422	Moore AE (1988) Olivine: a monitor of magma evolutionary paths in kimberlites and olivine
46 47	423	melilitites. Contrib Mineral Petrol 99: 238-248.
48	424	
49		
50 51	425	Moore AE (2012). The case for a cognate, polybaric origin for kimberlitic olivines. Lithos 128: 1-
52 53	426	10.
54	427	Moore, AE (2017) Quantitative modelling of the apparent decoupling of Mg# and Ni in kimberlitic
	428	olivine margins: Comment on "Cordier et al., Metasomatism of the Lithospheric mantle" (Journal
	429	of Petrology, 56, 1775-1796, 2015). J Petrol 58: 385-390
	430	
	431	
	432	Moore AE Costin, G (2016) Kimberlitic olivines derived from the Cr-poor and Cr-rich megacryst
	433	suites. Lithos 258-259: 215-227
	434	Moore AE, Erlank AJ (1979). Unusual olivine zoning: evidence for complex physico-chemical changes
10 11 12	435	during the evolution of olivine melilitite and kimberlite magmas. Contrib Mineral Petrol 70: 391-405
	436	Moss S, Russell JK, Scott-Smith BH, Brett R (2010) Olivine crystal size distribution in kimberlites. Am
13 14	437	Mineral 95: 527-536
15 16	438	Nicolaysen LO, Ferguson J (1990) Cryptoexplosion structures, shock deformation and siderophile
17 18	439	concentration related to explosive venting of fluids associated with alkaline ultramavfic magmas.
19 20	440	Tectonophysics 171: 303-335
21 22 55 56 57 58 59 60 61	441	Scott-Smith BH, Skinner, EMW, Loney PE (1989) The Kapamba lamproites of the Luangwa Valley,
62 63 64		24

117	eastern Zamhia III: Poss II et al (eds) Proceedings of the 4 th International Kimberlite Conference
44Z	eastern Zampia. In. Ross, J. et al. (eus) Proceedings of the 4° international Kimpernite Conference,
443	vol. 1, Geological Society of Australia Special Publication 14: 189-205
444 Skir	ner EMW (1989) Contrasting Group I and Group II kimberlite petrology: towards a genetic model 28
445	for kimberlites. In: Ross. J. et al. (eds) Proceedings of the 4 th International Kimberlite Conference, vol.
116	àl Geological Society of Australia Special Publication 14: 528-544
440	er, Geological Society of Australia Special Publication 14. 528-544
447	Smith CB. Sims K. Chimuka L. Duffin A. Beard AD. Townsend R. (2004). Kimberlite metasomatism at
110	Muraua and Saca pinas. Zimbabua, Lithes 76, 210, 222
448	wurowa and Sese pipes, zimbabwe. Lithos 76: 219-232
449	Sparks RSJ, Baker L, Brown RJ, Field M, Schumacher J, Stripp G, Walters A (2006) J Volcanol
450	Geothermal Res 155: 18-48
151	Welsch B. Faure F. Famin V. Baronnet A. Bachèlery P. (2012) Dendritic crystallization: a single process
431	weisch b, radier, rahmin v, baronnet A, bacheler v r (2012) bendritte er vstamzation. a single process
452	for all the textures of olivine in basalts. J Petrol 54: 539-574
153	Wilson AH (1982) The geology of the Great Dyke Zimbabwe: the ultramafic rocks: Journal of
455	wison, Air, (1962) The geology of the Great Dyke, Zimbabwe. the ditramatic rocks. Journal of
454	Petrology 23: 240–292
455	Vac 7. Oin K. Vac C. (2017). Constitute ship between defense tion and low. Constant in all vice
455	Yao Z, Qin K, Xue S (2017) Genetic relationship between deformation and low-Ca content in olivine
52 456	from magmatic systems: evidence from the Poyl ultramatic intrusion, NW China Mineralogy and 54
Petrolo	ogy 111: 909–919
450	
458	
459	Yudovskaya MA, Kinniard JA, Sobolev A., Kuzmin DV, McDonals I, Wilson AH (2013) Petrogenesis
	of
	442 443 444 Skir 445 446 447 448 449 450 451 452 453 454 453 454 455 52 456 7 Petrolo

- 57 58 59 60

4 5 6 7 8 9		
-	460	the Lower Zone, olivine-rich cumulates beneath the Platreef and their correlation with the 461
		recognized occurrences in the Bushveld Complex. Economic Geology, 108: 1923-1952.
	462	Yudovskaya M, McCreesh M, Costin G Kinnaird JA (2018) Spinel symplectites and associated reactive
	463	textures throughout the Bushveld magmatic section. Abstracts of the 13 th International Platinum
10	464	Symposium, 30 June -7 July 2019, Polokwane, South Africa.
11 12 13	465	
14 15 16	466	
17 18	467	
19 20 21	468	
22 23	469	
24 25 26	470	
27 28	471	
29 30 31	472	
32 33	473	
34 35 36	474	
37 38	475	
55 56 57 58 59 60 61		
62 63		26

1 2 3 4 5 6 7 8		
9 39 40 41	476	
42 43	477	
44 45 46	478	
47 48	479	
49 50 51	480	
52 53	481	
54	482	
	483	
	484 485	
	485	FIGURE CAPTIONS
	486	Fig. 1. Jointing in Karoo basalt parallel to the contact with the Lemphane blow (Northern Lesotho).
	487	Arrow marks the actual contact (From Kreston and Dempster, 1973, Plate 44b, and included with
		488 permission of Peter Kreston, 2018).
10	489	
11 12	490	Fig. 2 Incipient shearing in the olivine-rich Rabele Dyke 166, Malibamatso Dyke swarm, northern
13	491	Lesotho highlands. Note the partings (cleavages or fractures), sub-parallel to the incipient shear
14	492 15	zones in some, though not all, of the olivine macrocrysts. (From Kreston and Demster, 1973, Plate
16 55 56 57 58 59 60 61	493	45B, included with permission of the first author.)
62 63 64 65		27

1 2 4 5 6 7 8		
9 17 18 19	494	
20 21	495	Fig 3a. Inferred fractures with a strong preferred orientation in olivines from a dyke in the Murowa
22	406	kimbarlita dustar, control Zimbabuva, Diamator of coin – 25 mm . Sampla kindly provided by Dr
23 24	490	kimberiite cluster, central zimbabwe. Diameter of com = 25 mm. Sample kindly provided by Dr.
25 26	497	Frieder Reichardt.
27 28 29	498	Fig. 3b. Detail of the sample illustrated in Fig. 3a
30 31	499	Fig. 3c. Slickensides associated with chlorite development on a micro-fault cutting a section of core
32	500	from the Tsodilo Resources BK16 kimberlite, Orapa Cluster, Central Botswana. Diameter of coin:
33 34 35	501	18mm.
36 37	502	Fig. 3d Brittle fractures in a core section from the Du Toitspan kimberlite, kindly provided by Petra
38	503	Diamonds. Note disruption of two olivine macrocrysts by the left-hand vein. The fractures are
39	504 40	calcite-filled, except where they disrupt the olivine macrocrysts, and contain serpentine. Diameter
41 42 43 44	505	of coin: 20mm
45	500	
46 47 48	507	Fig. 4a. Equant, euhedral olivine from the de Beers Kimberlite, Kimberley pipe cluster (PPL).
49	508 interior	Fig. 4b illustrates the same olivine in XPL. Note the abundance of fluid inclusions in both the
55 56 57 58 60 61 62 63 64 65		28

1 2 3		
4 5		
6		
/ 8		
9 50	509 :	and margins of the crystal, the fractures, which traverse the oliving interior to margin, and the $non51$
52	510	uniform extinction.
53		
54	511	Fig. 4c. Euhedral olivine phenocryst (upper centre) from the de Beers Kimberlite (Kimberley cluster,
	512	South Africa) with the contrasting grey tone interference colours reflecting sharp compositional
	513 514	differences between core and rim (XPL). The shape of the core is slightly rounded, with minor embayments at the bottom. Note the equant shapes of the associated euhedral micro-phenocrysts,
		515 and fractures traversing grain interiors and margins of a majority of the olivines.
	516	Fig. 4d. Euhedral olivine phenocryst from the WAT olivine melilitite, Namaqualand cluster, South
5	17	Africa, with domains of contrasting extinction which traverse the core and rim of this crystal (XPL).
10	518	Fig. 4e. Hopper olivine in the Dikdoring olivine melilitite, Namaqualand, NW South Africa (PPL).
11 12	519	Fig. 4f (XPL) illustrates the domains of non-uniform extinction traversing core to rims of this olivine.
13	520 F	ig. 4g . Olivines showing undulose extinction in dunite cumulate (UMT6-1449) from the northern 14
15 16	521	limb of the BIC (from Yudovskaya et al., 2013).
17 18	522	Fig. 4h. Kink –banding in olivine from a harzburgite cumulate, northern limb of the BIC (image by M.
19	523	Yudovskaya).
20 21		
22	524	
23		
24	525 F	Fig. 5 (Data from Moore & Erlank, 1979). Olivines from the olivine melilitite designated BIES, from 25
26 27	526	the farm Bleslesfontein, Namaqualand pipe cluster, north-western South Africa. Circles: Olivine
28	527	cores; squares: olivine rims. Diamond and star reflect a very subordinate population which show
29		
55 56		
57		
58 59		
60 61		
62		29
63 64		
04		

1 2 3 4	
5	
0 7	
8	
9	
30 528	inverse core-to-margin zonation.
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
4Z 13	
43	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	

- 56 57 58 59 60 61

- 63

Click here to access/download;Figure;Fig. 1-

Click here to access/downloa kimberlite.tif

Click here to access/dow paper.jp

Click here to access/download;Figure;Fig. 4 Olivine paper.jpg

Click here to access/downlo Olivines.jp

