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Particle Swarm Optimization for Cooperative Multi-Robot Task
Allocation: A Multi-Objective Approach

Changyun Wei1, Ze Ji2 and Boliang Cai1

Abstract— This paper presents a new Multi-Objective Parti-
cle Swarm Optimization (MOPSO) approach to a Cooperative
Multi-Robot Task Allocation (CMRTA) problem, where the
robots have to minimize the total team cost and, additionally,
balance their workloads. We formulate the CMRTA problem
as a more complex variant of multiple Travelling Salesman
Problems (mTSP) and, in particular, address how to minimize
the total travel distance of the entire robot team, as well as
how to minimize the highest travel distance of an individual
robot. The proposed approach extends the standard single-
objective Particle Swarm Optimization (PSO) to cope with the
multiple objectives, and its novel feature lies in a Pareto front
refinement strategy and a probability-based leader selection
strategy. To validate the proposed approach, we first use three
benchmark functions to evaluate the performance of finding
the true Pareto fronts in comparison with four existing well-
known algorithms in continuous spaces. Afterwards, we use six
datasets to investigate the task allocation mechanisms in dealing
with the CMRTA problem in discrete spaces.

Index Terms— Multi-robot Systems; Optimization and Opti-
mal Control; Cooperating Robots.

I. INTRODUCTION

In many practical applications, robots are seldom stand-
alone systems, but they need to coexist and coordinate with
each other so as to achieve a team goal more efficiently [1].
In order to obtain teamwork benefit, multiple robots require
more variables to be considered in a cohesive manner [2].
Multi-robot task allocation addresses how to assign a set
of tasks to a set of robots with various objectives. This
paper studies a Cooperative Multi-Robot Task Allocation
(CMRTA) problem, where the robots are required to balance
their workloads when completing the overall task as a team
in an efficient manner. To be specific, the robots have to
minimize the total cost over the team and the highest cost
of any individual robot.

In this work, the CMRTA problem is modelled as a more
complex variant of multiple Travelling Salesman Problem
(mTSP), where a team of robots has to collect a set of targets
dispersed in the environment, and then retrieve them back
to a nest base. Such a scenario can be motivated by many
practical applications, e.g., package collection and transport
in intelligent warehouses [3], and search and rescue after an
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earthquake [4]. This paper aims at providing a novel task
allocation approach to the CMRTA problem with multiple
objectives. Thus, we do not focus on low-level of action
execution, e.g., how to navigate to a target or to avoid
collisions among each other in a cluster situation.

The main contributions of this work include:
1) a novel task allocation approach to the CMRTA prob-

lem, taking into account both the overall team cost and
any individual workload,

2) an alternative multi-objective PSO algorithm, with the
feature of Pareto front refinement and probability-
based leader selection strategies, and

3) a competitive and generic solution to Multi-Objective
Optimization problems in finding the true Pareto fronts
in continuous spaces.

We organize the paper as follows. In the next section,
we discuss the state of the art to typical multi-robot task
allocation problems, and Section III formulates the CMRTA
problem as a more complex variant of mTSP. Section IV
details the proposed approach, and Section V evaluates the
proposed approach in both continuous and discrete spaces.
Finally, we conclude this work in Section VI.

II. RELATED WORK

Multi-robot task allocation addresses the problem of find-
ing the optimal task-to-robot assignment so as to achieve a
good team performance [5]. It has been extensively studied
in the agent/robot domain, and usually formulated as an
optimization problem, where a set of robots has to complete
a set of goals in such a way that optimizes the overall team
performance.

A. Multiple Travelling Salesman Problem

If there is only one robot involved in the environment, the
task allocation can be modelled as a Travelling Salesman
Problem (TSP), where the salesman has to visit all the
nodes with minimal travel cost. If there are multiple robots
working in a shared space, the problem can be considered
as a multiple Travelling Salesman Problem (mTSP) [6],
where multiple salesmen have to visit all the nodes and each
node has to be visited exactly once, with the objective of
minimizing the total travel cost. A considerable literature has
studied the mTSP but mainly focused on how to minimize
the total travel distance [7], [8]. Thus, as in [9], [10], [11],
this work seeks to minimize the cost of an individual robot,
additionally.

Recent advances in evolutionary optimization have also
attempted to find the solutions to the mTSP, e.g., genetic



optimizer [12], [13], ant colony and decomposition opti-
mizer [14], [15], ant lion optimizer [16], grey wolf opti-
mizer [17], physarum optimizer [18], and particle swarm
optimizer [19], [20]. In the standard mTSP, the salesmen are
required to visit all the nodes exactly once from a starting
node and return back to it after a round trip. The typical
objective function is to minimize the total travel distance.
As mentioned previously, this work focuses on a cooperative
robot team, where the robots are expected to balance their
workloads as well as to maintain good team performance in
allocating the nodes to be visited.

B. Multi-Objective Optimization

Multi-Objective Optimization (MOO) techniques are pop-
ular for solving the task allocation problems. The work [21]
presents an auction-based approach, in which the robots
calculate the bids for each task by means of MOO. In
order to improve the performance of a scheduling problem,
three aspects (i.e., task execution time, task transferring time
and task execution cost) have been considered in [22]. The
non-dominated sorting genetic algorithm (NSGA-II) [23]
has shown its advantage in solving many MOO tasks, e.g.,
optimizing the beam structures [24] and optimizing the
laser welding process [25]. In NSGA-II, an elitist strategy
is employed in each generation to avoid the loss of non-
dominated solutions. The work [26] introduces four mutation
operations to improve the search ability. To ensure diversity
and convergence, the work [27] presents a strategy to select
the leader for each particle. Several metrics are combined
into a single fuzzy metric to convert multiple objectives into
a single objective in [28].

Among the above evolutionary algorithms, PSO is popular
and can ensure fast convergence, but the standard PSO is
originally designed for handing single objective optimiza-
tion problems. Moreover, existing extensions for multiple
objectives are usually ad hoc, and a few of them can be
used to solve a generic MOO problem in both discrete and
continuous spaces [29].

III. PROBLEM FORMULATION

In this work, we relate the CMRTA problem with multiple
objectives to a more complex variant of the mTSP. We use
a complete graph G(V,E) to define the problem, where
V denotes the set of nodes (e.g., targets dispersed in the
environment), and E represents the set of edges linking the
nodes. Each edge ei,j ∈ E is associated with a weight
di,j ≥ 0 that defines the travel distance from node i to j,
and the travel distance between two nodes is assumed to be
symmetric, i.e., di,j = dj,i.

A. Cooperative Multi-Robot Task Allocation (CMRTA)

In the CMRTA problem, each robot should be allocated
with a set of subtasks to complete. We use m to denote the
number of robots, and Tk to represent the set of subtasks
allocated to the k-th robot, k ∈ [1,m]. Here a subtask
indicates a sequence of nodes that forms a round trip for
a robot to visit. Thus, the robot team needs to complete

the overall task T = [T1,T2 . . . ,Tm]. We use Cost(Tk)
to represent the tour cost of k-th robot to visit its allocated
subtasks,

Cost(Tk) =
∑
ei,j∈E

wijkdi,j , (1)

where the binary variable wijk indicates whether the tour of
the k-th robot includes the edge ei,j or not. To perform such
a task allocation problem, we need to find m Hamiltonian
tours that should satisfy two objectives, i.e., minimizing the
total tour cost for the overall robot team and the longest tour
for any individual robot. In order to find Hamiltonian tours,
each node in the graph has to be visited exactly once by only
one robot. Thus, the goal of the cooperative MRTA problem
is to minimize the following function:

f(T ) = (Σmk=1Cost(Tk), max
k∈[1,m]

Cost(Tk)), (2)

subject to : 
⋂

k∈[1,m]

{Tk\{o}} = φ⋃
k∈[1,m]

Tk = V,
(3)

where o denotes the nest node. According to the above
objective function, the robots are expected to minimize the
entire team cost and the longest individual travel cost.

B. Multi-Objective Optimization Model
The CMRTA problem formulated above can be abstracted

into a Multi-Objective Optimization (MOO) problem, where
several objectives are required to be achieved, and each
objective depends on a vector of decision variables. Without
loss of generality, a MOO problem can be defined as

minimize f(x) = {f1(x), f2(x), . . . fl(x)}, (4)

subject to: {
gi(x) ≤ 0, for i ∈ [1, r]
hi(x) = 0, for i ∈ [1, s],

where x is the vector of decision variables, fi(x) represents
the i-th objective function, and gi(x), hi(x) are the con-
straint functions.

In a MOO problem, we can evaluate a solution with
respect to different objectives. Let u and v be two solutions
of the problem defined in Equation 4. We say that v is
dominated by u (denoted by v � u ), if the following
conditions are satisfied

∀i : fi(u) ≤ fi(v) and ∃j : fj(u) < fj(v), (5)

where i, j ∈ [1, l]. If a solution is not dominated by any other
ones, it is called a Pareto optimal solution. The Pareto front
represents the set of all Pareto optimal solutions. Thus, an
algorithm to a MOO problem seeks to search for a set of
non-dominated solutions.

IV. MULTI-OBJECTIVE PSO APPROACH

In this section, we will first discuss the standard PSO
algorithm, and then an extended novel algorithm will be
proposed to address multiple objectives. Afterwards, an
adapted version for discrete spaces is presented to deal with
the CMRTA problem.



A. Standard Particle Swarm Optimization

PSO is originally inspired by collective behaviours of
birds, fishes or insects. With regard to a MOO, a solution to
such a problem can be represented by a vector of particles
xi = (xi1, xi2, . . . , xiD), where D is the dimension of the
search space. Thus, each particle is endowed with a position
in the search space, and it can move around with a velocity
vi = (vi1, vi2, . . . , viD) so as to find the optimal solutions.
We can use the following equation to calculate the coming
location of a particle for the next timestep,

xt+1
i = xti + vt+1

i , (6)

where t denotes the t-th timestep of iterations.
To decide the moving direction, each particle should

consider its own trajectory and the behaviours of the oth-
ers. Specifically, two best solutions are used to update the
position of each particle, i.e., the personal best position pbest
and the global best position gbest. Thus, each particle can
update its own position based on the information of pbest
and gbest as follows,

vt+1
i = ωvti + r1φ1(gbestt −xti) + r2φ2(pbesti −xti), (7)

where ω denotes the inertia weight that controls to what
extent the previous velocity affects the coming velocity.
φ1 and φ2 are constants that control the influences of the
personal and global guides. r1 and r2 are random numbers
uniformly distributed in [0, 1]. The velocity has a range
in [−vmax,vmax], which defines the limit of the velocity.
PSO algorithms will terminate when a good fitness value is
achieved or the maximum number of iterations is reached.

B. Extended Multi-Objective PSO Approach

To cope with multiple objectives, the standard PSO has
been modified for multi-dimensional spaces, such as aggre-
gating and lexicographic ordering [30]. The typical idea of
aggregating is to integrate multiple objectives into a single
objective so that the standard PSO is still applicable to find a
solution. In lexicographic ordering, multiple objectives must
be ranked based on their priorities, so each objective will be
considered as a single PSO problem.

Comparatively, we are interested in a Pareto front-based
approach in this work. To this end, we have to modify Equa-
tion 7, because it is impossible to find the pbest and gbest
in multi-dimensional spaces for MOO problems. Instead, we
need to find the Pareto front, so the gbest will be replaced
by a leader. It is important to maintain the diversity of the
Pareto front and choose the leader for fast convergence.
Several methods have been proposed to address this issue,
e.g., the work [31] selects the leader randomly from all
non-dominated solutions. OMOPSO [32] utilizes an external
archive, based on the crowding distance from NSGA-II, to
filter out leader solutions and divides the particle swarms into
three groups. To accelerate the convergence of the swarm,
it applies uniform, non-uniform and no mutation operators
to those groups, respectively. SMPOS [33], extended from
OMOPSO, employs a construction factor with random social

and cognition learning factors. In our work, we will introduce
a Pareto front refinement strategy and a probability-based
mechanism for selecting the leader.

1) Main Procedure: The main procedure of the proposed
MOPSO approach is summarized as follows:
• Step 1. A group of particles P and a global Pareto front

set Pf are initialized. Each particle pi ∈ P is born with
a random solution xi and a private Pareto front set P if .
The solution size of all private/global Pareto fronts is
set to n.

• Step 2. At timestep t, each particle’s solution xti will be
evaluated using f(x) and added into P if .

• Step 3. If the solution size of the private Pareto front
set for particle pi exceeds the limit n (i.e., ‖P if‖ > n),
it needs to be refined based on the PARETO FRONT
REFINEMENT STRATEGY (see Algorithm 1), which will
delete redundant or inferior solutions.

• Step 4. The global Pareto front set Pf is updated using
Pf ←

⋃
P if , and then it also needs to be refined based

on the PARETO FRONT REFINEMENT STRATEGY (see
Algorithm 1).

• Step 5. The refined global Pareto front will be stored
into a Elite Set B (defined to avoid population degra-
dation) using B ← B

⋃
Pf .

• Step 6. A leader will be selected from the global
Pareto front set Pf based on the PROBABILITY-BASED
SELECTION STRATEGY, which will be discussed latter.

• Step 7. The non-dominated solutions in each particle’s
private Pareto front set are updated using the following
equation,{

vt+1,k
f,i = vti + r1φ1(leader − xti) + r2φ2(xt,kf,i − xti)

xt+1,k
f,i = xti + vt+1,k

f,i ,
(8)

where xti denotes the current solution of particle pi at
timestep t, and xt,kf,i ∈ P if denotes the k-th solution in
the private Pareto front set of particle pi at timestep t.

• Step 8. Each particle pi randomly chooses a new solu-
tion xt+1,k

f,i from its private Pareto front set P if to update
its position xt+1

i for the next timestep, and the private
Pareto front set will be updated accordingly,

P if ← P if
⋃
{xt+1,k

f,i }. (9)

• Step 9. If the next timestep t + 1 does not exceed the
limit of iterations, switch to Step 2.

• Step 10. The termination condition is reached, and the
Elite set B will be refined based on the PARETO FRONT
REFINEMENT STRATEGY (see Algorithm 1).

2) Pareto Front Refinement Strategy: As mentioned
above, we have to refine the private Pareto front set, the
global Pareto front set and the Elite set in step 3, 4 and 10,
respectively. Herein, we will introduce a PARETO FRONT
REFINEMENT STRATEGY to delete redundant or inferior
solutions.

It should be noted that the Elite set is used to avoid
population degradation, which is a troublesome issue to



Algorithm 1: Pareto Front Refinement Strategy.
Input: Any unrefined Pareto set Pr.
Output: Refined Pareto front set Pr′ .

1 for xi,xj ∈ Pr,xj 6= xi do
2 if xi � xj then
3 Remove xi from Pr. . remove inferior

solutions.
4 end
5 end
6 while ‖Pr‖ ≥ n do
7 Calculate CPr using CROWDED VALUE(Pr);
8 . see Algorithm 2.
9 Find x such that arg min (CPr

);
10 . find x with the minimum crowded value.
11 Remove x from Pr.
12 end

MOO problems. This is because when refining the private or
global Pareto front sets, some non-dominated solutions may
be deleted or replaced by others, due to the limit of Pareto
front sets. Such a case can cause premature convergence and
loss of optimal solutions. Thus, in order to cope with this
issue, the Elite set B is employed to store all the global
optimal solutions in each iteration (see Step 5). After the
terminate condition is reached, we can use the refinement
strategy to reduce the size of the Elite set (Step 10). In
such a way, we can make sure that all the non-dominated
solutions are kept during the iterations.The PARETO FRONT
REFINEMENT STRATEGY is described in Algorithm 1.

We can see that when refine a Pareto front set, we first
remove all the inferior solutions (line 1-4). If the size of the
set still exceeds the limit n, we need to remove some of
the non-dominated solutions to compress the set. To decide
which solution to remove, we develop a CROWDED VALUE
function (see Algorithm 2) for evaluation, and then select the
one with the minimum crowed value (line 7, 9).

Algorithm 2: Crowded Value Calculation.
Input: Pareto set Pr.
Output: Set of crowded value CPr

.
1 for x ∈ Pr do
2 Calculate f̂(x) . normalization using Equation 10.
3 end
4 CPr = φ . initialize crowded value set.
5 K[xi,xj ] = ‖f̂(xi)− f̂(xj)‖2,xi,xj ∈ Pr
6 . adjacency score matrix of each solution in f̂(x).
7 for x ∈ Pr do
8 xa,xb = arg min{K[x :], 2} . find two solutions

with the smallest values.
9 cx = min{|f̂i(xa)− f̂i(xb)|}, i ∈ [1, l] . obtain

crowded value.
10 CPr

← CPr
∪ {cx} . update the crowded value set.

11 end
12 return CPr

In line 2 of Algorithm 2, for each solution of the input
Pareto set Pr, a normalization process is used to standardize
the objective vector f(x) = (f1(x), f2(x) . . . fl(x)) by the
below equation,

f̂i(x) =

fi(x)− min
k∈[1,n]

(fi(x
k
f ))

max
k∈[1,n]

(fi(xkf ))− min
k∈[1,n]

(fi(xkf ))
, (10)

where i ∈ [1, l], k ∈ [1, n] and xkf denotes the k-th solution
of the input Pareto front set Pr. The normalized objective
vector is denoted by f̂(x) = [f̂1(x) . . . f̂l(x)].

As mentioned above, the global Pareto front set Pf , the
private Pareto set P if for each particle pi, and the Elite set B
need to be refined based on the refinement strategy. For the
sake of simplicity and portability, all the input values (e.g.,
Pf , P if and B) are denoted as Pr in Algorithm 1.

3) Probability-Based Selection Strategy: In the main pro-
cedure of the proposed MOPSO approach, we have men-
tioned that the leader needs to be found so as to update
a particle’s position according to Equation 8. The leader’
selection is crucial for faster convergence.

In this work, the leader is selected from the global Pareto
front set Pf with a probabilistic distribution calculated by
the CROWDED VALUE in Algorithm 2. Thus, we have to
calculate the probabilities for all the solutions in the global
Pareto set using the following formula,

Prob(xkf ) =
cxk

f

Σcxk
f

,xkf ∈ Pf , (11)

where xkf denotes the k-th solution in the global Pareto front
set Pf . Afterwards, the solution with better expectation can
be selected as the leader with a high probability to update
all the private Pareto front set of each particle in Equation 8.

C. Adapted Version for Discrete Spaces

So far the presented MOPSO approach can solve the
MOO problems in continuous spaces, and it still needs to be
adapted so as to deal with the CMRTA problem in discrete
spaces. To this end, Equation 8 should be replaced to update
the solutions of each particle’s private Pareto front set by

xt+1,k
f,i = (xti ~ leader) ~ xt,kf,i , (12)

where the operator ~ is used to merge two discrete solutions,
and Algorithm 3 details the corresponding merge algorithm.

In Algorithm 3, we introduce a new operator ⊕ to swap
two nodes in a discrete sequence. To be specific, Op = {j, q}
(lines 5, 7) means that the node in position j needs to
be exchanged with the node in position q. For example,
if the operator ⊕ acts on the discrete sequence x̂′i =
(6, 3, 8, 5, 1) with the exchange pair Op = {2, 4}, after
the operation x̂′i ⊕ Op, the discrete sequence will become
x̂′i = (6, 5, 8, 3, 1). In lines 4-8, we first record indexes that
differentiate two discrete solutions. Afterwards, some nodes
in one solution will be exchanged according to a probability
function ProbSA (see line 10-15).



Algorithm 3: Updating discrete solutions by merging.
Input: Two discrete solutions x′i and x′′i , with regard

to particle pi.
Output: updated solution x∗i .

1 Ops = φ . initialize operator sets for storing position
pairs that need to be swapped in a solution.

2 x̂′i ← x′i . make a temp copy for recording differences
between x′i and x′′i .

3 for j ∈ [1 . . . ‖x̂′i‖] do
4 if x̂′i[j] 6= x′′i [j] then
5 Op← {j, q}, where x′′i [q] = x̂′i[j])
6 Ops← Ops ∪ {Op} . record the location.
7 x̂′i ← x̂′i⊕ Op . swap the nodes in x̂′i.
8 end
9 end

10 for Op ∈ Ops do
11 if rand() ≤ ProbSA(t) then
12 x′i ← x′i⊕ Op . swap the nodes in x′i.
13 end
14 x∗i ← x′i
15 end
16 return x∗i

In order to improve the search performance and guarantee
convergence, we apply a Simulated Anneal strategy to define
the probability function as follows,

ProbSA(t) = N (µ(t), σ)
σ = (max{γ1 − µ(t), µ(t)− γ2})/3
µ(t) = α+ β cos(π × t

tmax
),

(13)

where α and β control the shapes of the centre curve, and
they must obey α+β ≤ 1, and α−β ≥ 0. γ1 and γ2 are used
to control the size of the probability interval by changing the
σ in normal distribution N .

With regard to the CMRTA problem, each robot needs
to be allocated with a tour to visit. Thus, we need to find
m Hamiltonian tours or cycles, where each node has to be
visited only once. In order to minimize the tour cost for

Algorithm 4: Hamiltonian Tour Improvement.
Input: Subtask of k-th robot Tk, k ∈ [1 . . .m].
Output: Improved subtask T ′k of k-th robot.

1 for i ∈ [1 . . . ‖Tk‖] do
2 for j ∈ [i . . . ‖Tk‖] do
3 if dTk[i],Tk[j] + dTk[i+1],Tk[j+1] ≤

dTk[i],Tk[i+1] + dTk[j],Tk[j+1] then
4 Op← {i+ 1, j} . recode the nodes.
5 Tk ← Tk⊕ Op . swap the nodes in Tk.
6 end
7 end
8 end
9 T ′k ← Tk;

10 return T ′k

each robot, a Hamiltonian Tour improvement algorithm is

presented in Algorithm 4, which will be called after a new
solution is generated by Algorithm 3. Here we also apply the
operator ⊕ to exchange two nodes in a tour, with the aim of
minimizing the cost for each tour.

V. EXPERIMENTS AND RESULTS

In this section, in order to evaluate the proposed approach,
we first employ three benchmark functions to assess the
performance of finding the true Pareto fronts in continuous
spaces. Then, we use six datasets to investigate the task
allocation mechanism in dealing with the CMRTA problem
in discrete spaces.

A. Results of Finding True Pareto Front

As in [23], [27], the benchmark ZDT functions have
been used to evaluate the performance of finding the true
Pareto fronts. The definition of ZDT functions is described
in Table I. We can see that ZDT1 and ZDT3 have convex
Pareto fronts, but the convex Pareto front of ZDT3 is not
contiguous, and ZDT2 has nonconvex Pareto front.

To evaluate the performance of finding the Pareto fronts,
several MOO algorithms are available to test the ZDT
functions, but the work [34] found that OMOPSO [32],
SPEA2 [35], NSGA-II [23], and SMPSO [33] can yield the
best results. Thus, in this work we will compare the proposed
approach with those four well-known algorithms.

Although many metrics are available to evaluate two
Pareto fronts, we cannot find one that is absolutely reliable.
Thus, as introduced in [36], [27], we also employ two quality
indicators IH and Iε+ to comparing the performance of
algorithms, and the values of these two indicators express the
closeness to the true Pareto fronts. The values can be between
zero and one, and the higher is the value of IH (or the smaller
is the value of Iε+), the closer it is to the true Pareto front.
Table II shows the means and standard deviations for the
ZDT functions, and the bold values represent the best results
among the four well-known algorithms and our proposed
approach. Moreover, Figure 1 can demonstrate that the our
proposed approach can outperforms the other four algorithms
.

B. Results of CMRTA in Discrete Spaces

To validate the proposed approach to the CMRTA prob-
lem, six datasets from TSPLIB1 are used to compare the
performance between NSGA-II and our proposed approach.
The reason why we choose TSPLIB as the test benchmark is
because the CMRTA problem is modelled as a more complex
variant of mTSP. In the environment of TSPLIB, each robot
needs to be allocated with a set of nodes to visit, with the goal
of minimizing the overall team cost and any individual cost.
With regard to the parameter configurations, the population
of two approaches is set to 100, and the Pareto front size is
15. The number of iterations is 200, and the mutation rate
is set to 10 in NSGA-II.

In this experiment, we evaluate two algorithms in two
maps (labelled KroA and KroB), scaled nodes/cities (i.e.,

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.



TABLE I
DEFINITION OF THE BENCHMARK ZDT FUNCTIONS.

Problem Objective Functions Optimal Solutions comments

ZDT1

f1(x) = x1

f2(x) = g(x)
[
1−

√
x1/g(x)

]
g(x) = 1 + 9

(∑n
i=2 xi

)
/(n− 1)

x1 ∈ [0, 1]
xi = 0

i = 2, . . . , n
convex

ZDT2

f1(x) = x1

f2(x) = g(x)
[
1− (x1/g(x))

2
]

g(x) = 1 + 9
(∑n

i=2 xi
)
/(n− 1)

x1 ∈ [0, 1]
xi = 0

i = 2, . . . , n
non-convex

ZDT3

f1(x) = x1

f2(x) = g(x)
[
1−

√
x1/g(x)− x1

g(x)
sin (10πx1)

]
g(x) = 1 + 9

(∑n
i=2 xi

)
/(n− 1)

x1 ∈ [0, 1]
xi = 0

i = 2, . . . , n

convex
disconnected

TABLE II
RESULTS OF BENCHMARK ZDT FUNCTIONS AFTER 30 RUNS.

Problem OMOPSO SPEA2 NSGA-II SMPSO Our Approach

IH Iε+ IH Iε+ IH Iε+ IH Iε+ IH Iε+

ZDT1 Mean 0.739 0.480 0.610 0.511 0.856 0.531 0.554 0.506 0.883 0.484
Std. 0.140 0.065 0.121 0.070 0.150 0.074 0.164 0.058 0.086 0.027

ZDT2 Mean 0.739 0.898 0.473 0.796 0.583 0.949 0.527 0.894 0.602 0.613
Std. 0.268 0.101 0.202 0.088 0.222 0.039 0.290 0.141 0.044 0.062

ZDT3 Mean 0.843 0.552 0.711 0.499 0.851 0.461 0.693 0.543 0.858 0.384
Std. 0.126 0.077 0.144 0.068 0.107 0.061 0.136 0.093 0.022 0.025
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(a) Pareto fronts for ZDT1.
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(b) Pareto fronts for ZDT2.
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(c) Pareto fronts for ZDT3.

Fig. 1. Comparison of the performance with regard to the ZDT functions.

100, 150, and 200), and scaled robot teams (i.e., 3, 4, 5, and
6 robots), as shown in the results in Figure 2. In the figure,
Total Cost represents the overall travel distances among the
robot team, and Max Sub Cost indicates the maximum travel
distance of any individual robot. For a cooperative robot
team, we seek to minimize both of them. As can be seen from
the results, in comparison with the NSGA-II, our proposed
approach can reduce the Total Cost at least 26%, and reduce
the Max Sub Cost at least 21%. Moreover, the Max Sub Cost
is close to 1/m of the Total Cost according to our proposed
approach. It means that the tour cost for each robot is almost
the same, which also implies that the robots can balance their
workloads in a cooperative manner.

Figure 3 depicts the allocated tours in the map of KroB
by the proposed approach. Here, TC means the total cost of
all the tours, and MSC represents the maximum cost of an
individual tour. We can also directly observe that multiple
robots indeed can improve their team performance. In other
words, the individual cost reduces along with the increase of

the robot size. However, the total travel cost will be increased
if more robots engage in the teamwork.

VI. CONCLUSIONS AND FUTURE WORK

In this work, a novel Multi-Objective Particle Swarm
Optimization approach has been proposed to solve the CM-
RTA problem. As the problem involves multiple objectives,
the standard single particle swarm optimization cannot be
directly applied to resolve this problem. We present a new
Pareto front-based approach, which features a Pareto front
refinement strategy and a probability-based leader selection
strategy. In comparison with other well-known algorithms,
the experimental results show that the proposed approach can
provide a competitive solution to multi-objective optimiza-
tion problems in continuous spaces. Moreover, it can take
into account both the overall team cost and any individual
workload when resolving the CMRTA problem. In future
work, we are interested in modelling the interferences among
the robots and capability of continuously completing a set of



3 4 5 6
Number of robots

0

20000

40000

60000

80000

100000
Co

st

Total Cost: NSGA-II
Max Sub Cost: NSGA-II
Total Cost: Our Approach
Max Sub Cost: Our Approach

(a) Map: KroA, Number of nodes: 100

3 4 5 6
Number of robots

0

25000

50000

75000

100000

125000

150000

175000

Co
st

Total Cost: NSGA-II
Max Sub Cost: NSGA-II
Total Cost: Our Approach
Max Sub Cost: Our Approach

(b) Map: KroA, Number of nodes: 150

3 4 5 6
Number of robots

0

50000

100000

150000

200000

250000

Co
st

Total Cost: NSGA-II
Max Sub Cost: NSGA-II
Total Cost: Our Approach
Max Sub Cost: Our Approach

(c) Map: KroA, Number of nodes: 200
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Fig. 2. Performance comparison using the map KroA and KroB(30 runs).

allocated subtasks in real robots. This is because adding more
robots cannot always yield good team performance due to
potential interferences between each other in physical robot
teams. The subtasks might be distinguished with various
types that need different capabilities to complete. Thus,
multiple constraints should be considered in order to achieve
multiple objectives in a specific task.
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