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Abstract 

 

The preparation method of a heterogeneous catalyst is one of the most 

fundamental aspects that can determine its morphology, surface area, 

phases present, elemental mixing and of course ultimately its catalytic 

activity. Currently there are a large number of different ways of preparing 

metal oxide catalysts such as co-precipitation or sol gel but over the last 20-

30 years there has been a large number of solvent systems that have been 

used to develop alternative synthesis techniques such as supercritical 

solvents, ionic liquids, deep eutectic solvents and switchable solvents. These 

systems contain interesting properties that are not found in conventional 

solvent systems which could be utilised to synthesise metal oxide or metal 

oxide precursors that have unique properties that gives them an advantage 

over the metal oxide catalysts prepared by conventional methods. 

The aim of this thesis was to investigate the potential for these novel systems 

and adapt them for the application of metal oxide catalyst preparation and to 

see how these techniques compare with more established methods. In order 

to assess these systems three catalytic reactions were chosen to use as a 

model to see how metal oxide catalyst prepared by these methods compare 

with methods such as co-precipitation or supercritical anti-solvent. 1) the use 

of Co3O4, Mn2O3 and Fe2O3 for the total oxidation of propane to CO2. 2) the 

use of copper-manganese oxide (hopcalite) for low temperature carbon 

monoxide oxidation and 3) Cu/ZnO catalyst for methanol synthesis from CO2 

and H2. 

Cobalt oxalate, manganese oxalate and iron oxalate were prepared using 

choline chloride-oxalic acid based deep eutectic solvent with a water or 

water-alcohol anti-solvent. It was found the for cobalt and iron precursors a 

rod shape morphology could be achieved and this morphology was retained 

after calcination although the precipitated manganese did not form rods. 

Varying the anti-solvent mixture changed morphology and surface area of the 

cobalt oxide and iron oxide catalysts.  Mixed cobalt manganese oxide and 
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iron manganese oxide prepared using deep eutectic solvents were also 

shown to form rod like morphologies similar to the single cobalt oxide and 

iron oxide catalysts. These catalysts that were tested for propane total 

oxidation method and did show some variations in activity between the 

different preparation methods but there was no significant improvement over 

the reference catalysts. 

The use of hydrothermal synthesis to make a crednerite phase CuMnO2 as a 

precursor to the spinel phase copper-manganese oxide was found to 

produce spinel copper-manganese oxide catalysts with properties that 

differed from co-precipitated equivalents. These catalysts demonstrated 

lower deactivation during the first 30 minutes of CO oxidation despite having 

generally having lower a surface area, although these catalysts showed 

deactivation after temperature ramp to 50 °C. Characterisation on the 

crednerite derived spinel showed that they differed from the regular co-

precipitated hopcalite with XPS showing a higher Cu+:Cu2+ at lower 

temperature heat treatment which may indicate greater Cu-Mn integration. 

The use of a switchable solvent system was demonstrated for the 

preparation of carbonate precursors to copper manganese oxides CO 

oxidation catalysts which were shown to have high surface areas and 

excellent CO conversion comparable to copper-manganese oxide catalysts 

prepared by supercritical anti-solvent methods, presenting a less energy 

intensive method of making metal oxide catalysts to supercritical anti-solvent 

precipitation. 

The use of choline chloride-urea deep eutectic solvents to prepare copper-

zinc oxide methanol synthesis catalysts was shown to be an ineffective 

method, with the MP-AES showing loss of zinc at higher copper loadings and 

XPS showing large amounts of surface chlorine present after calcination 

resulting in inactive catalysts. An initial study using switchable solvents to 

prepare Cu/ZnO catalysts was shown to produce catalysts that were active 

for methanol synthesis and presents a promising potential for future 

development. 
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Chapter 1 Introduction and Literature Review 

 

1.1 Catalysis 

 

A catalyst is most commonly defined as “a substance that increases the rate 

of a reaction but does not get changed itself”1 but this is a simplified 

explanation of an area of science that is fundamental in chemical industry, 

and in fact even in nature since without enzymes, biological catalysts, life 

could not occur2. Catalysts are categorised into three main areas 1) 

biocatalysis: the use of biological catalyst (enzymes), 2) homogeneous 

catalysis:  when the catalyst is in the same phase as the substrate (for 

example an organometallic complex dissolved in a solvent) and 3) 

heterogeneous catalysis: the use of a catalyst that is a different phase to the 

reactants or products. Heterogeneous catalysts are usually solids that 

catalyse reactants that are either in the gas phase (such as the oxidation of 

carbon monoxide to carbon dioxide) or liquid phase (such as the Meerwien 

Ponndorf Verley, catalytic reduction of carbonyls to alcohols3).   

 

Figure 1.1: Energy diagram showing the difference in activation energy between a 
non-catalysed reaction and a catalysed reaction on a heterogeneous catalyst surface

2
. 
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The catalyst achieves the increase in the rate at which the reaction proceeds 

to equilibrium by allowing the reaction to proceed via a pathway with 

activation energy (Ea) that is significantly lower than it would be if there was 

no catalyst4, 5. For example, under ambient conditions oxidation of carbon 

monoxide with oxygen to form carbon dioxide would need at least  

494 kJ mol-1 to break the O-O bond1, but in the presence of a catalyst (for 

example gold nanoparticles on a metal oxide support) the oxygen can adsorb 

and disassociate on the surface and lower the activation energy to as little as 

20-44 kJ mol-1 6 (as shown in Figure 1.2). The lowering of the activation 

energy means it is more likely that the CO will react with the oxygen (on the 

surface), thereby increasing the rate at which CO oxidises to CO2.  

Heterogeneous catalysis has many favourable factors that has led to wide 

spread applications. These include their thermal stability, less complex 

preparations and easier handling than homogeneous catalysts and as such 

have been applied in many reactions, such as the three way catalyst7 in car 

exhausts but also in many important industrial applications such as  the 

synthesis of methanol from carbon dioxide and hydrogen8 (which is a 

feedstock be used to make other organic products)2 or the Fischer Tropsch 

reaction9, 10. 

 

Figure 1.2: A Langmuir Hinshelwood type mechanism 1) physisorption onto surface 2) 
chemisorption and disassociation 3) reaction on surface and 4) desorption of product 
from surface 



 

3 
 

In heterogeneous catalysis the reaction occurs on the surface of the catalyst 

whether a bulk metal oxide, supported metal catalyst or in some cases the 

interface between the supported metal catalyst and the support. The 

reactants interact with the solid catalyst in two ways 1) physisorption, where 

the molecules are bound to the surface with weak Van De Waals forces and 

chemisorption were the molecules form a chemical bond with the catalyst 

surface and the molecule disassociates. When the reactants are adsorbed 

onto the surface the molecules react before the exothermic reaction causes 

desorption of the product from the surface of the catalyst 2, 4. 

There are a variety of mechanisms that occur with heterogeneous catalysts 

but the three main mechanisms in heterogeneous catalysis are Langmuir 

Hinshelwood, Eley Rideal and Mars Van Krevelen11. In the Langmuir 

Hinshelwood mechanism (Figure 1.2), the reactants (a) and (b) adsorb onto 

the surface of the catalyst, then the reactants disassociate (on the surface) 

before (a) and (b) react to form product (c) which desorbs from the surface. 

 

Figure 1.3: Eley Rideal Mechanism 1) (a) is adsorbed onto the surface 2) disassociates 
on surface, 3) (b) in gas phase reacts with the adsorbed (a) to forms (c) and 4) (c) 

disassociated from the surface 

In Eley Rideal (Figure 1.3) only (a) absorbs onto the surface and (b) remains 

in the gas or liquid phase reacting with (a) to form (c) which then desorbs 

from the surface. Mars Van Krevelen (Figure 1.4) is another mechanism 

pathway that occurs with metal oxide catalysts. In this mechanism the 

reactant (a) is adsorbed onto the surface, (a) then reacts with the surface (b) 

of the catalyst to form (c) and the catalyst is then regenerated by reacting 
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with (b) from the atmosphere. An example of this would CO oxidation where 

CO is oxidised by surface oxygen of a metal oxide and atmospheric oxygen 

would then react with the catalyst to regenerate the metal oxide site12.  

 

Figure 1.4: The Mars Van Krevelen mechanism 1) (a) is adsorbed onto the surface, 2) 
lattice oxygen (b) of the catalyst reacts with (a) to form (c), 3) (c) disassociate from 
surface, (4) atmospheric oxygen (b) reacts with the catalyst surface to regenerate the 
oxide (5). 

Sometimes catalysts may, proceed with two (or more) of these mechanisms, 

for example hopcalite as a CO oxidation catalyst was found to catalyse the 

oxidation of CO to CO2 via both the Langmuir Hinshelwood and Mars Van 

Krevelen mechanisms (see Section 1.4.2 Hopcalite)12.  

Heterogeneous catalysis is a highly important area, not just in industry but its 

contribution to the way we live, and provides solutions to many of the 

problems we face today including utilisation of captured CO2
13, reduction of 

harmful emissions14, and the production of ammonia for use in fertiliser for 

food production2, 15. The most common heterogeneous catalysts are either 

bulk catalysts with  metal oxides being the most common or supported metal 

catalyst such as gold nanoparticles supported on an metal oxide support16. 



 

5 
 

The choice of catalyst used is generally dependent on the reaction which it is 

being used for, with factor such as desired products, selectivity and activity 

(the rate of conversion) being the most important. However there are other 

factors that have to be considered such as the cost-benefit of the catalyst for 

that certain reaction (i.e. using Co3O4 or  Pt/Al2O3 as a VOC oxidation 

catalysts17), whether or not the catalyst deactivates in short or long term, 

although all catalyst eventually deactivate18, and its resistance to poisoning 

from impurities in the gas feed such as sulphur or water vapour. 

1.2 Overview of metal oxides in heterogeneous catalysis 

 

For a large number of reactions involving heterogeneous catalysts, metal 

oxides are heavily used either as bulk catalyst or as a support19. Metal oxide 

are used as bulk heterogeneous catalysts for a variety of reactions such as 

total oxidation (e.g. carbon monoxide20 or volatile organic compounds 

(VOC)21 to CO2), selective oxidation22 and dehydrogenation23, among many 

others process24. 

The reasons for the use of metal oxides in these reactions varies with the 

application, as low-cost alternatives to supported noble metal catalysts or for 

other factors such as oxygen mobility. This makes the study of metal oxides 

in the field of heterogeneous catalysis is a highly important one. Metal oxide 

catalysts can be used as either a single metal oxide with examples including  

Co3O4, Mn3O4 
17, 21 and CeO2 

7, 17 or as mixed metal oxide comprising of two 

or more metal elements such as CuMn2O4, LaMnO3
25 or mixed CeO-MnO 26.  

The phase of a metal oxide whether a single or mixed element oxide, plays 

an important role in its properties such as oxygen mobility27, thermal 

stability27, redox behaviour28 and acid-base properties29 and can influence 

the catalytic activity and selectivity of that metal oxide. Common examples of 

metal oxide phases that are commonly used as catalysts include corundum 

A2O3 (single metal), spinel (AB2O4) (single or mixed) 29 and perovskite ABO3 

(mixed metals)30 although there are many others including fluorite and 

delafossite31. 
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Spinel phase oxide materials are bulk oxides with the formula AB2O4 where A 

is a +2 metal in a tetrahedral co-ordinated to four oxygens in AO4 and B is a 

+3 metal co-ordinated in a octahedral arrangement to 6 oxygens in the form 

of BO6
1, 22. Spinel oxides can be present as either a mixed metal oxide such 

as CuCr2O4
32

 or CuMn2O4 
33 or as a single metal oxide materials such as 

Co3O4 or Mn3O4 (which would comprise of Mn2+(Mn3+)2O4) 
1, 22, 34.  There are 

some cases were an inverted spinel can exist, i.e. where the +2 is in the 

octahedral B site and the +3 are in the tetrahedral A-site35, 36. Although spinel 

phase oxides in the bulk comprise of both the octahedral (A) site and the 

tetrahedral (B) site in the bulk in reality, on the surface, the structure is 

different and in the case of spinel it has been found that the surface is 

populated by octahedral sites with studies showing little presence of 

tetrahedral sites22. Spinel phase materials are studied as heterogeneous 

catalysts and in other fields due to their properties such as chemical and 

thermal stability, low cost of materials, ease of preparation and their redox 

cycling37, 38. These properties of spinel phase metal oxides makes them 

suitable for applications in high temperature, gas phase reactions such as the 

total oxidation of VOCs14. 

Although single and mixed metal oxides as catalysts (not supports) have 

advantages it should be noted that they also have disadvantages compared 

to supported (noble) metal catalysts, the main one being  that metal oxides 

are mostly less active than supported metal catalysts16. However, there are 

also a variety of other reasons that make metal oxides less favourable, 

notably that some metal oxides deactivate quicker and are more prone to 

(non-selective) poisons such as SO2 or atmospheric water39, 40. 

A notable example of this is with CO oxidation. Haruta in the late 1980s 

demonstrated that supporting gold onto metal oxide was able to catalyse the 

conversion of CO to CO2 with 100% conversion of CO41, 42  even in the 

presence of water in the gas feed. In comparison Co3O4 is also a highly 

active CO oxidation catalysts showing 100% CO conversion at sub ambient 

temperatures, but Co3O4 was only highly active for CO oxidation under ultra-

dry conditions. The presence of atmospheric water reduces its catalytic 

activity due to water binding to the active site (Co3+) 43. 
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The cost and increased scarcity of noble metals, as well as competition with 

other applications, has made it more difficult to scale up their application on 

an industrial level and as a result, research in the field of heterogeneous 

catalysts for several processes in recent years has seen the shift of focus 

(back) to the use of metal oxide catalysts38, 44, 45.  As a result, there is a focus 

on finding ways of improving the activity of metal oxide catalysts to a level 

that is nearer to supported noble metal catalysts. In order to improve the 

performances of metal oxide catalysts research groups try to improve factors 

such as the total surface area, reducing potential catalyst poisoning, 

increased phase integration and exploring the metal oxides particle 

shape/morphology46-48.  There are various ways in which these factors can 

be improved, but the most common and important is how the metal oxide 

catalyst is prepared28, 49. 

 

1.3 Current methods of preparing metal oxide precursors and 

catalysts 

 

One of the main strategies of improving the catalytic activity of metal oxide to 

levels comparable with supported metal catalysts is through the method by 

which these catalysts are prepared.  

One strategy of making metal oxides with higher surface area is through the 

decomposition of a precursor material; a metal salt, that under heating 

degrades to the oxide. For example, manganese oxide can be prepared 

through the decomposition a manganese precursor (such as manganese 

carbonate or manganese oxalate)50  at temperatures >200 °C. Preparing a 

metal oxide catalyst through thermal decomposition of a metal salt has 

several advantages. Firstly, the controlled thermal decomposition of the 

metal salt can determine which phase is formed. For example, manganese 

oxalate can form Mn3O4, Mn2O3 or MnO depending on the atmosphere the 

manganese oxalate is calcined under51. The second advantage is that the 

precursor salt can act as a soft template for the resulting oxide to form both 
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single and mixed oxides with a higher surface area. A third advantage is that 

the templating can give better mixing of elements at lower temperatures than 

a solid-state reaction of two oxides.  

There are a wide variety of preparation technique for metal oxides, with the 

established methods such as co-precipitation, sol gel and hydrothermal 

synthesis being the more common approaches46, 52, 53. The different 

preparation techniques and precursors, as well as the heat treatment, can 

rapidly change the properties of catalysts such as surface area, elemental 

mixing, morphology and phase of the final material28, 54. 

While some of the research focuses on improving and understanding more 

established methods such as co-precipitation and sol gel chemistry. The use 

of more novel techniques such as supercritical anti-solvent precipitation or 

ionothernal synthesis (the use of a deep eutectic solvent or ionic liquid under 

hydrothermal conditions55) has in recent years received increased attention 

as a method of preparing materials with increased surface area and better 

elemental mixing as well as lower calcination temperatures56.  

1.3.1 Co-precipitation 

 

The most established and refined method of making mixed metal oxides is 

via the co-precipitation method57. Precipitation is simply the formation of an 

insoluble solid or precipitate from a solvent and co-precipitation is when two 

or more components are simultaneously  precipitated58. This is achieved by 

dissolving a metal salt in water then adding an agent that reacts with the 

dissolved species (metal ions) to form an insoluble species58. For metal oxide 

catalysts (Figure 1.5) typically the metal salts would be dissolved in water 

(with metal nitrates being the most common salts due to their high solubility), 

then using a base, such as sodium carbonate, a metal carbonate is formed 

and precipitates out of the solution59. The metals then undergo an aging 

process in the solution, before filtration, washing (to remove any residual 

precipitating agents, nitrates and sodium) and dried before calcination to form 

the oxide60, 61.  
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Co-precipitation remains one of the most widely used methods for preparing 

catalysts in industry since the process is relatively simple, reproducible and 

can be easily scaled up compared to other techinques62. The co-precipitation 

method has had the advantage of being heavily studied and refined over 

many years with aspects of the techniques including, pH, concentration of 

metal salt and precipitating agent and the aging of the precursor in the 

solution all being  studied and optimised61, 63. 

Aging, the time the precursor is left in the solution mixture, has often been 

cited as a highly important aspect of co-precipitation of metal oxide catalyst64. 

The aging of a catalyst precursor can have a variety of effects on the 

precursor such as morphology, surface area of the precursor final metal 

oxide formed and the catalytic activity of the final metal oxide. 

 

Figure 1.5: The steps of making a metal oxide catalyst using co-precipitation 

There are many aspects of aging itself that can affect the final material such 

as the temperature64 and pH 57 of the solution that the precursor is being 

aged in, as well other factors such as continued addition of metal nitrate and 
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sodium carbonate after the initial addition and the atmosphere that the 

solution is being aged under65. 

Many studies on aging of copper-zinc oxide precursors have shown the effect 

of aging on the Cu/Zn hydroxyl carbonate precursor, with the non-aged 

sample forming a more amorphous phase while the aging allows the 

formation of crystalline Cu/Zn hydroxyl carbonate66. Aging of hopcalite 

catalysts (see section 1.4.2) was found to have an impact on their 

performance with the catalysts aged for 30 minutes shown to be the most 

active compare to those that were aged longer47. 

There are other aspects of the aging environment that may affect the 

catalysts. Mirzaei et al. looked into the effect of aging on CuO/ZnO CO 

oxidation catalysts under different atmospheres; air, hydrogen, nitrogen and 

carbon dioxide65. This showed that for all atmospheres surface area 

increased with aging time, but the CO oxidation activity of the catalyst varied 

with different aging atmospheres. The catalyst aged under air showed the 

highest conversion while those aged under carbon dioxide showed the lowest 

activity65.  

The pH of the solution during the precipitation and aging is also very 

important, since changing the pH can greatly affect the phase formation of 

the catalyst for example with Cu/ZnO a higher pH can cause the formation of 

crystalline CuO67. 

Refinement of these aspects of co-precipitation (especially aging, 

temperature and pH) has resulted in co-precipitation being one of the most 

widely used methods of preparing mixed metal oxides and still is activity 

researched as well as remaining an industrial favourite for the preparation of 

several catalysts such as Cu/ZnO/Al2O3
59. 
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1.3.2 Sol gel synthesis  

 

Sol gel synthesis is another widely used method for the preparation of single 

and mixed metal oxides. As with co-precipitation the use of sol gel chemistry 

to make metal oxides has been utilised for a long time but is still widely 

studied in the field of inorganic synthesis, not just being limited to metal 

oxides and heterogeneous catalysts53.  

Although there are many different sol gel synthesis methods, the basic steps 

are as follows53, 58, 68, 69. The process starts off with the formation of a metal 

alkoxide in solution. This metal alkoxide then hydrolyses to form a dispersed 

colloid called a “sol”.  This sol undergoes polycondensation to form the “gel” 

which is made up of a network of bridged metal spieces68, 69 . The solvent is 

removed and the gel is dried to remove any solvent resulting in the formation 

of a porous gel such as xerogel or aerogel (aerogel being formed when the 

solvent inside the pours is replaced with gas without structure collapse 

through techniques such as supercritical drying53, 70, 71). The gel is then 

calcined to form the metal oxide. 

The use of the sol gel technique has many advantages. Notably, it is a very 

good technique for forming mixed metal oxides since the gel process bridges 

different elements resulting in a near perfect elemental distribution and also 

sol gel materials generally have high surface areas20. As such the method 

has been used to make mixed metal oxide catalysts such as cobalt 

manganese oxide72, copper manganese oxide20 and lanthanum based 

perovskites73 as well as being used to prepare Cu/ZnO/Al2O3 catalysts for 

methanol synthesis through a xerogel or aerogel (polymer gels)  

precursors70. 

However one of the disadvantages of sol gel synthesis is that it utilises larger 

chelating agents such as citric acid, which can undergo exothermic 

combustion during the calcination process53, 70. While this does create high 

surface areas it can also create residual carbon on the surface and cause 

sintering of the material reducing the surface area. 
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1.3.3 Hydrothermal and solvothermal techniques  

 

1.3.3.1 Overview on hydrothermal and solvothermal techniques 

Solvothermal techniques in simple terms are a chemical reaction/synthesis in 

a solvent under a pressurised system at a temperature near or higher than 

the solvents boiling point52. This is usually between 1-15 bar and 100-270 °C 

for water, but can vary depending on the solvent used74-76. The process of 

using solvothermal synthesis dates as far back as the 19th century, but the 

method is still utilised in many fields including metal oxide preparations75, 76. 

Solvothermal reactions are usually performed in a high-pressure autoclave 

such as the one presented in Figure 1.6. The solvent is contained in a non-

reactive liner to protect the autoclave reactor from any corrosive substances. 

 

 

 

Figure 1.6: A pressurised autoclave used for a solvothermal method 

Hydrothermal, is the use of water as the solvent and the term solvothermal 

usually applied when the technique is used with non-aqueous solvent such 

as ethanol is used76. Another type of solvothermal technique is ionothermal; 

the use of an ionic liquid or deep eutectic solvent as the solvent77.  

During hydrothermal/ solvothermal synthesis, the greater pressure allows 

reaction mixture to remain in the liquid phase at much greater temperatures 
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than could be achieved under atmospheric conditions, allowing transportation 

of the metal ions to occur easily compared to lower temperature liquid phase 

or high temperature solid state equivalents77. The pressure of the reaction at 

a given temperature can be controlled by the volume of the solvent in the 

vessel74.  

One factor that makes solvothermal/hydrothermal synthesis attractive is that 

it can be used to make kinetic controlled and metastable materials, which 

under the high temperatures, required for solid state reactions or calcination 

of a precursor salt, would not form in favour of a more thermally stable 

material52, 58, 77. Varying the pressure and temperature as well as any 

additives can rapidly change how the particles grow, thereby allowing a 

method that can tailor the morphology and size of the metal oxide 

nanoparticles76. Hydrothermal techniques can also be used to dissolve 

oxides in water under pressure that would usually be insoluble under 

atmospheric pressure78. 

1.3.3.2 Hydrothermal synthesis for metal oxide preparation 

 

Hydrothermal, solvothermal and ionothermal methods have been used in a 

wide range of reactions and synthesis; however, the focus here will be on the 

preparation of metal oxides (ionothermal is discussed in Section 1.6.5). 

Hydrothermal synthesis has been widely used for the preparation of metal 

oxides, most famously zeolites75 but also a variety of single metal oxides (for 

example Mn3O4 and Fe2O3
79) and mixed metal oxide phases including 

spinels32, 80 and perovskites81, 82.  Hydrothermal synthesis presents a number 

of advantages over solid state reactions or calcination of metal salts. Firstly, 

although high temperatures and pressure above 100 °C and 1 bar are 

required, the conditions are lower than that of the solid state equivalent77. An 

example of this would be delafossite phase materials which have the form 

ABO2 such as CuFeO2 or CuMnO2 (where the A site is +1 metal such as Cu+ 

or Ag+ and B site is a +3 metal such as Mn3+ or Fe3+). Delafossite are formed 

through solid state preparation under an inert atmosphere at 860-1150 °C 83 
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but can easily be formed at temperatures <200 °C under hydrothermal 

conditions31, 52. 

Likewise, forming a metal oxide from a precursor such as a metal oxalate or 

metal carbonate66 through co-precipitation or sol gel requires a calcination 

step with temperatures of 270-500 °C to break down the precursor metal salt 

into the metal oxide. This can cause several potential problems, notably 

sintering84 of the metal oxide catalyst as well as residual carbon forming on 

the surface of the metal oxide, potentially blocking active sites and reducing 

catalytic activity. However, because most hydrothermal synthesis makes the 

metal oxide, rather than a precursor salt, this step is essentially eliminated. 

Another advantage of solvothermal/ hydrothermal synthesis for metal oxide 

preparation is that it is a tailorable method and different oxide morphologies 

can be achieved by changing parameters such as the volume of solvent, the 

temperature and reaction time85. For example, Zheng et al reported that 

manganese acetate in ethanol (with no other additive, although under an 

inert atmosphere) under solvothermal conditions (200 °C) would form 

dispersed round particle after 3-6 hours that would grow into 1-dimentional 

rods after 12 hours85.  

Hydrothermal synthesis has another advantage over in that it is essentially a 

one-pot and one step process, forming both single and mixed metal oxides 

without the need for a calcination step32,  although some do require washing 

steps as hydrothermal synthesis involve the use of additives such or bases 

(e.g. NaOH), to form a precursor that would then form the desired  oxide 

phase during the hydrothermal process86. 

 

  



 

15 
 

1.4 Application of metal oxide as catalysts 

 

1.4.1 Metal oxides catalyst for total oxidation of volatile organic 

compounds 

 

Volatile organic compounds are defined as organic compounds that have a 

high vapour pressure and are low boiling87, examples including alcohols, 

hydrocarbons (such as propane, n-hexane) and ketones. Industry is under 

increased legislation to reduce emissions of these compounds88, and one of 

the strategies of achieving this is through total oxidation of these compounds 

to CO2 
89. 

Supported metal catalysts have shown excellent activity towards VOC 

oxidation with examples including platinum or palladium supported on 

Al2O3
17

, but as stated in Section 1.2 the expense of noble metal catalysts has 

seen several groups focus on metal oxide alternatives such as Mn2O3, Mn3O4 

and Co3O4 or mixed phase as CoMnOx and CuMn2O4 
90 . Spinel phase metal 

oxides are notably one of the most common alternatives91 as are perovskite 

phase oxides such as LaMnO3 or LaCoO3. However perovskites require a 

more energy intensive approach such as higher calcination conditions to form 

(up to 800 °C)92 which can result in heavy sintering and reduced surface 

area. In comparison, spinel phase materials often require a calcination 

temperature of 300-500 °C to form the phase37. On the whole the use of 

spinel phase oxides the oxidation of VOCs is still a popular area of 

research14. 

Examples of single metal spinel oxides that have been used as VOC 

oxidation catalysts include Co3O4 and Mn3O4 
93, 94. In the case of Mn3O4, it 

was noted to have superior propane conversion over other manganese 

oxides such as Mn2O3 and MnO2 owing to its oxygen mobility which helps 

increase the oxidation performance at lower temperatures94. Oxygen mobility 

is an important factor since many of these metal oxides oxidise VOCs via the 

Mars Van Krevelen mechanism38.  
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Co3O4 is another spinel phase material of particular interest due its high 

catalytic activity compared to similar spinel oxides such as Mn3O4 or Fe3O4 

for both VOC oxidation and low temperature CO oxidation17, 95. One of the 

key factors for highly active cobalt oxide catalysts is the crystallite size with 

Co3O4 that have a smaller crystallite size being more active for both CO and 

propane oxidation17. As a result, the main focus of Co3O4 was to form 

nanocrystalline Co3O4 while increasing the surface area as well as controlling 

the morphology and particle shape of these crystallites has also been 

researched21, 93. The reducibility of Co3O4 has also been noted as another 

important factor in its catalytic oxidation of VOCs89.  

There are a variety of techniques that can be used to achieve highly active 

materials such as hard templating with KIT-617, precipitation in ethylene 

glycol (at 160 °C)96 or  supercritical anti-solvent precipitation21. Co3O4 

prepared by supercritical anti-solvent and by solid state reaction had a lower 

temperature of total conversion (T100) for propane oxidation than the 

reference Pd/ Al2O3 or Pt /Al2O3 
21, 91.  

Although cobalt oxide had been demonstrated as a very good VOC oxidation 

catalyst, there have been many developments on mixed spinel oxides, in 

order to increase their activity for total conversion at lower temperatures. 

Mixed metal spinel oxides such as cobalt manganese oxide, iron manganese 

oxide and copper manganese oxide (commonly referred to as hopcalite and 

explained in more detail in Section 1.4.2) have higher CO and VOC oxidation 

activity at lower temperatures (lowing their temperature at which they achieve 

10% conversion (T10)) than the single spinel oxide counterparts14, 97.  

This results from several factors such as change in redox behaviour38 and 

increase in reducability97. It has been noted that the Co2+ in Co3O4 played a 

less active role in the reaction than Co3+ and substituting the tetrahedral site 

for a more active +2 metal such as Cu2+ was found to increase its VOC 

conversion at lower temperatures98.  
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Table 1.1: Examples of Propane oxidation using a variety of different metal oxides and 
comparison with supported Pt/Al2O3. (Tx= temperature which x% conversion is achieved) 

Catalyst Preparation methods 
Reaction 

Conditions 

Surface 

area/ 

m
2 

g
-1

 

Activity Ref 

Co3O4 

 

Mixed oxalate formed 

by precipitation with 

ammonium oxalate in 

water 

97.8 ml min
-1 

0.4% propane+ 

20% O2/Ar 

60 

T50 ≈200 °C. full 

conversion by 250 

°C 

95
 

Co3O4 

 

Supercritical anti-

solvent 

(scCO2) 10% water 

Calcined 250 °C 

 

0.5% Propane/air 

GHSV= 6000 h
-1

 

36 

 

T10=110 °C  

T50 =175 °C 

100% conversion at 

200 °C 

 

21
 

Co3O4 

Nano crystalline 

 

Solid state reaction 

with Co(NO3)2.6H2O 

and NH4HCO3 

Calcined 300 °C 

0.5 % propane/air 

GHSV=  

45000 h
-1

 

159 

T10=145 °C 

T50=165 °C 

T100=200 °C 

17
 

Co3O4 Templating with KIT-6 
0.5% propane.air 

GHSV= 4800 h
-1 

138 

T10=170 °C 

T50 =250 °C 

 

91
 

MnxCo3-xO 

Redox method of 

Co(NO3)2 and KMnO4 

on ceramic 

honeycomb monolith 

hydrothermal at 95 °C 

0.3% propane 

+10% O2 with N2 

balance 

50 ml min
-1

 

35.5  

(6:4 Co:Mn) 

T50=310 °C 

(6:4 Co:Mn) 

99
 

Cu1.5Mn1.5O4 

/CuO 

Co-precipitation 

Cu(NO3)2, Mn(NO3)2 

Na2CO3 

Calcined 500 °C 

1% Propane +7% 

O2/ He balance 

200 ml min
-1 

46 T50 =292 °C 
90

 

La0.8Ce0.2MnO3 

Citric acid gel 

With nitric acid 

treatment 

0.5% 

Propane+10% O2 

100 ml min
-1

 

26 

112 (acid 

etching) 

T50=237°C 

T90=284 °C 

Acid treatment: 

T50=156°C 

T90=196 °C 

100
 

4.8% Pt/Al2O3 
Impregnation 

Calcined 300 °C 

4% (1:16 

propane:O2) 

Helium balance 

30 ml min
-1 

- 

100% conversion by 

350 °C 

T50=265 °C 
87

 

101
 

87
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Like the single oxides, researchers have investigated different methods of 

preparation of mixed oxide phases to increase surface area95  or control the 

morphology102 as well as control the ratios of the two (or more) metal 

elements99. The group of Li et al. prepared high surface area Co-Mn spinel 

oxide (1:1) by annealing a Co-Mn 1,3-propanediol complex, which resulted a 

porous “coral” like morphology, with a surface area of 99 m2 g-1, higher than 

the single metal oxides (Co3O4 and Mn3O4) prepared by the same method. 

The mixed cobalt manganese oxide had higher catalytic activity for total 

oxidation of benzene than the single oxide equivlents38. 

Tang et al. used a redox reaction between KMnO4 and Co(NO3)2 on a 

ceramic honeycomb to form nanosheets of spinel phase Co-Mn oxides which 

performed better (T50 of 310 °C)  than  Pt/Al2O3 (T50 of 370 °C) as propane 

oxidation catalysts99.  Faure and Alphonso prepared both single manganese 

oxide, cobalt oxide and mixed cobalt manganese spinel phase oxides by 

creating oxalate precursors through precipitation of metal nitrates with oxalic 

acid and forming the oxides through controlled decomposition, using a 4% 

O2/Ar and a mass spectrometer to detect the temperature of CO2 formation, 

holding the reaction at that temperature95.  

1.4.2 Hopcalite 

 

Hopcalite catalysts are mixed copper-manganese spinel phase oxides in the 

form of CuxMn3-xO4 
61, 103, 104

 .  CuMn2O4 (Cu:Mn ratio of 1:2) is the most 

common ratio used as a catalyst since this ratio had been demonstrated as 

the most active towards CO oxidation61, 103, although other Cu:Mn ratios such 

as Cu1.5Mn1.5O4 have also been applied as catalysts104. Hopcalite has been 

used as a heterogeneous catalyst for many process, most commonly for the 

low temperature oxidation of carbon monoxide to carbon dioxide105, 106 and 

total oxidation of VOCs such as propane90, toluene103 or naphalene33. 

Hopcalite has also been used as catalyst for other processes such as H2O2 

decomposition107 and the water gas shift reaction108. 
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1.4.2.1 Hopcalite as a CO Oxidation Catalyst 

 

Hopcalite was used in the early 1920s as a CO oxidation catalyst in breathing 

masks109. It was reported that mixtures of copper oxide or silver oxide on 

manganese dioxide produced active catalysts that were effective at 

converting CO to CO2 at room temperature109. Since then the use of mixed 

copper-manganese oxides continues to be studied, most notably into new 

ways of preparing hopcalite with better activity and higher surface areas46, 110. 

Even 30 years after Haruta demonstrated that supported gold catalysts had 

superior CO oxidation activity at sub ambient conditions16, 42, hopcalite 

remains the standard catalyst for CO oxidation in respirators20, 111, mostly 

owing to its lower cost. The publication on supported gold nanoparticles that 

renewed interest in both fields of CO oxidation and on the preparation of 

hopcalite in the 1990s16, 112, 113. 

𝐶𝑢2+ + 𝑀𝑛3+ ↔  𝐶𝑢+ + 𝑀𝑛4+ 

Figure 1.7: Copper-manganese redox coupling proposed by Scwab et al
107

 

The reaction mechanism of hopcalite (Figure 1.7) was proposed by Schwab 

et al. and later confirmed by XPS studies by Veprek et al. to involve a redox 

coupling mechanism between the copper and manganese, with copper 

cycling between Cu2+ and Cu+ and manganese cycling between Mn3+ and 

Mn4+  28, 46, 106, 107. It is thought that this redox mechanism is responsible for 

the enhanced catalytic activity of hopcalite towards both CO oxidation at 

ambient temperatures and VOC oxidation114. Veprek et al. observed that the 

deactivation of hopcalite was followed by a shift of the copper to lower 

binding energy and a decrease in the satellite at 940-943 eV which would 

suggest a rapid decrease in surface Cu2+ 106.  

Hopcalite has also been used with addition of metals such as gold, silver and 

cobalt as a catalyst for CO oxidation and propane oxidation115, 116,117. Gold 

doping on hopcalite was shown to improve the stability of the catalyst during 

CO oxidation117. Studies on hopcalite using a temporal analysis of products 

reactor (TAP) reactor showed that standard, (non doped) hopcalite, converts 

CO into CO2 with both the Mars Van Krevelen and the Langmuir-
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Hinshelwood mechanisms12. The study also showed that doping gold onto 

hopcalite promoted the Mars Van Krevelen system over the Langmuir 

Hinshelwood mechanism and it was believed that doping with gold increased 

the reducibility of the copper thereby increasing the redox cycling (Cu2+/Cu+ 

and Mn3+/Mn4+) and thereby increasing the CO conversion12, 28.  

 

 

Figure 1.8: A catalytic cycle of hopcalite during CO oxidation showing the redox 
coupling between copper and manganese106

 

Generally most investigations have accepted that for CO oxidation hopcalite 

is more active in a more disordered state than the crystalline spinel phase115. 

As a result calcination and heat-treatment conditions are usually limited to 

200-400 °C. Calcination at or above 500 °C forms highly crystalline CuMn2O4 

and phase separated Mn2O3, Mn3O4 and CuMnO2 resulting in a less active 

catalyst46, 107. The extent of crystallinity and copper-manganese mixing was 

studied by Kondrat et al. showing that phase separated Cu/Mn, formed when 

hopcalite was calcined under an inert atmosphere, was totally inactive and 

that hopcalite needed both copper-manganese mixing and some extent of a  

spinel phase, in order to be an active CO oxidation catalyst28. 

1.4.2.2 Preparing Hopcalite  

 

The recent research on hopcalite catalysts has been focused on the 

variations in preparation techniques in order to improve their catalytic 

preformation and stability46, 118. Like many other mixed oxide catalysts, 

hopcalite is commonly prepared by co-precipitation, typically using copper 

and manganese nitrates with Na2CO3 as the precipitating agent28, 33, 61. 
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Hutchings et al. carried out several studies into improving co-precipitation in 

the 1990s demonstrating that factors such as pH, Cu:Mn ratio and aging time 

dramatically affect the CO oxidation activity of hopcalite 61, 119 In the last 

decade other methods for preparing had been explored including, but not 

limited to ball milling105, supercritical anti-solvent precipitation (with both 

supercritical CO2 and supercritical H2O)46, 120, sol gel20 and flame spray 

pyrolysis118.  

These routes were investigated for a range of reason but most notably to 

increase the total surface area, reduce the use of sodium47 , increase the 

catalyst stability in particular, towards atmospheric water poisoning111 and 

varying Cu:Mn mixing. The reason for improving the first two points are more 

obvious, since increased surface area will expand the number of surface 

sites were the reaction can occur, thereby increasing the rate of CO 

conversion and sodium is a poison that has been shown to reduce the CO 

oxidation activity of mixed copper-manganese systems47. Finding an 

alternative which reduces or eliminate the use of sodium is desirable. 

Supercritical anti-solvent, flame spray pyrolysis and ball milling are examples 

of methodologies that can make hopcalite or its precursors without the use of 

sodium containing salt as the precipitating agent. 

The deactivation by water has been one of greater focus over the last few 

years118. Generally commercial hopcalite is prone to deactivation with the 

presence of atmospheric water in the gas feed in a relatively short time 

period20, 111.  
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Recently the use of flame spray pyrolysis had been demonstrated to make a 

hopcalite catalyst that had better atmospheric water resistance than the 

conventional hopcalite118.  

The increased research into copper-manganese oxide over the last 20 years 

has shown that, despite the fact that it has already been an established 

industrial catalyst for nearly a century and more active alternatives such as 

supported gold catalysts, the use of copper-manganese oxide catalysts is still 

relevant and generates interest with new methods of preparation being 

continually investigated. 

 

1.4.3 Copper/zinc Oxides based catalyst for methanol synthesis 

 

Copper-zinc catalysts have been applied for many reactions but the most 

famous two are water gas shift121 and methanol synthesis8 and are made 

industrially on 5000 ton per year scale59. This has caused extensive studies 

into Cu/ZnO systems for catalysis including different methods of preparation 

although co-precipitation remains the favourite due to its optimisation, good 

Cu/Zn mixing and highly studied system. Recent synthetic methods for 

copper-zinc oxide include sol gel and supercritical anti-solvent process 

(which would be covered later in section 1.5.3).  

Methanol synthesis is a highly important industrial process122 with an output 

of up to 50 Mtons per annum123 and is an area that still attracts attention in 

academia and industry today8 using a whole variety of catalysts, but the most 

widely studied is Cu/ZnO/Al2O3
67, 124. Cu/ZnO has been applied as methanol 

synthesis catalyst since the 1960s122 and their use as methanol synthesis 

catalysts, and water gas shift, is still ongoing with the focus on both 

improving Cu/ZnO catalysts and fundamental understanding of this catalyst 

during the reaction itself.  Methanol is synthesised through the hydrogenation 

of CO2 (3:1 H2:CO2) to form methanol and water (Figure 1.9 a)8, 67, 125,   

although the reaction is more complex  with multiple steps, intermediates, 

side reactions such as the reverse water gas shift reaction (Figure 1.9 b)125, 

as well as the formation of side products such as HCO2 or H2CO 8. If CO is 
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present in the gas mixture then it can be hydrogenated (Figure 1.9 c) to form 

methanol as well: some syn gas contains mixtures of both CO and CO2
67

. 

a CO2 + 3H2 → CH3OH + H2O 

     b  CO2 + H2 → CO + H2O 

     c   CO + 2H2 → CH3OH 

Figure 1.9: a) Methanol synthesis from CO2 hydrogenation, b) reverse water gas shift 
and c) methanol from CO

125, 126
 

The route to methanol is thermodynamically favoured, by high pressure (from 

around 50 bar to as high as 100 bar127) and lower temperatures since it is an 

exothermic reaction of -49.8 kJ mol-1 and under Le Chatilier’s principle 

equilibrium towards methanol, is more favoured at lower temperatures60 128.  

With Cu/ZnO based catalysts the methanol productivity is directly related to 

the surface area of copper, with an increase in copper surface area generally 

relating to an increase in methanol production64 which is also why industrial 

Cu/ZnO catalysts use a higher Cu:Zn (typically around 70:30)127. 

However, there have been many studies that demonstrate the ZnO plays an 

important role in the process. Research carried out into the effect of the 

copper with other metals such as copper-manganese, copper-magnesium 

and copper-ceria and had shown that the secondary metal had an effect on 

the methanol conversion, but also showed that for some catalysts such as 

Cu-Mg had higher Cu surface area but lower activity suggesting that the ZnO 

played an influential role in methanol synthesis67.  

Studies on co-precipitated Cu/ZnO catalysts are extensive with most using 

Na2CO3 as the precipitating agent59, 64.  In the initial stages of co-

precipitation, the copper-zinc hydroxyl carbonate forms a phase called 

zincian georgeite (see section 1.5.3) which then, during aging process 

becomes zincian malachite (higher ratio Cu:Zn), or at lower Cu:Zn ratios 

aurichalcite or a hydrotalcite like phase.  The aging step is essential for these 

catalysts with a long aging process resulting in a more crystalline material, 

growth of the Cu/Zn precursor and better copper-zinc distribution129. As well 
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as the aging time, the temperature and pH of the mixture also has an effect 

on the precursor and productivity of the final catalyst57, 60. 

Some of the groups focus on improving co-precipitation catalyst such as 

Prieto et al. who tried to eliminate Na2CO3 (as source of Na poisoning123) by 

using NH4HCO3 as the precipitating agent59. The group also investigated 

different calcination conditions (such as using 1% NO/N2 atmosphere)59. This 

method also had the advantage of reducing washing steps required to 

remove the excess sodium. 

Other precipitating agents have also been used, notably oxalic acid in a co-

precipitated oxalate-gel method with ethanol, which was reported to have 

formed a highly active and selective methanol synthesis catalyst130, 131. Other 

preparations include direct combustion of Cu and Zn nitrate with citric and 

oxalic acid132, use of a surfactant during precipitation133 and a sol gel 

combustion method134. While all of these methods have their advantages 

giving good Cu surface area and methanol production, for various reasons 

they have been dismissed as potential alternatives to Na2CO3 based co-

precipiation59. But in recent years, supercritical anti-solvent, the use of 

supercritical fluids, such as supercritical carbon dioxide, as an anti-solvent to 

precipitate a metal precursor had been successfully applied to make Cu/ZnO 

catalyst precursor (zincian georgeite) which resulted in a highly active 

Cu/ZnO methanol synthesis catalyst135. 
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1.5 Supercritical fluids for metal oxide preparation 

 

1.5.1 Supercritical fluids  

 

Supercritical is a state at which a substance above certain temperature and 

pressure reaches a point where the liquid-gas interface disappears (Figure 

1.10) and the substance becomes a supercritical fluid136. This state  is 

described as having properties of both gas and liquid56, with gas properties 

such as low viscosity137 and liquid phase properties such as high  

densities136, 138. In this state the supercritical substance such as supercritical 

carbon dioxide (scCO2) can be utilised as a solvent for chemical reactions for 

example homogeneous catalysed hydrofomylation139  or as an anti-solvent 

method for precipitating a dissolved solid out of a solvent140. 

 

Figure 1.10: Phase diagram of temperature v.s. pressure showing the point at which a 
substance becomes "supercritical" 

56, 136, 137
. 

There are a wide variety of substances that have been used as supercritical 

fluids (SCF) such as water (scH2O)120, carbon dioxide135, isopentane141, 

ethanol or ammonia56 . Carbon dioxide however is the most common and 

widely applied supercritical fluid as is non-toxic and requires lower 

temperatures (operating conditions of 31 °C and 72.8 bar)  to achieve 
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supercritical state138. Supercritical water has had some applications but 

mostly avoided due to its corrosive nature making application of supercritical 

water, especially on an industrial scale, undesirable142. However there have 

been publications into the use of supercritical water to prepare mixed metal 

oxide catalysts with examples including perovskite phase LaMnO3 and 

hopcalite catalysts25, 120, 143. 

 

1.5.2 Type of supercritical fluid process 

 

There are a number of ways in which supercritical fluids can be utilised to 

dissolve or precipitate a precursor material. The application of these 

techniques varies depending of the field that they are used in. Two examples 

most commonly used for precipitating solids are discussed below: 

Rapid expansion of a supercritical solution (RESS) was one of the earlier 

developed techniques utilising supercritical fluids56 and precipitating out 

solids. It was developed in the 1980s although it had been first discovered as 

far back as 1879137, 144. The technique is relatively simple, dissolving the 

precursor in a supercritical fluid and then spraying the supercritical fluid into 

through a heated nozzle into a precipitation vessel. The sudden expansion 

causes the supercritical fluid to depressurise and revert back to its gas 

phase, resulting in the rapid nucleation of any dissolved particles in the 

SCF145. The technique was noted for being simpler and cheaper than the 

anti-solvent methods but had limitations due to the solubility of precursor in 

supercritical fluids144.   

The anti-solvent process is the use of supercritical CO2 as a way of 

precipitating a solute from a solvent by using supercritical fluids as a bad 

solvent i.e. an anti-solvent. The solvent is dissolved into the SCF but the 

metal salt (such as an acetate) is insoluble and will instantly precipitate in the 

supercritical fluid and the solvent (for example ethanol) is removed from the 

precipitate. There are many variations on the use of SCF as anti-solvent but 

the two main examples are gas anti-solvent (GAS) and supercritical anti-

solvent (SAS).  
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SAS is a flow process, in which, scCO2 is flowed through the precipitation 

vessel and the solvent mixture is continually injected into the precipitation 

vessel through a coaxial nozzle. As the solution mixture exits the nozzel the 

solvent dissolves into the scCO2 while any dissolved substance insoluble in 

scCO2, would precipitated instantly and collected on the bottom of the 

precipitation vessel56. 

GAS is the use of supercritical CO2 in a batch type process. The solvent 

mixture is added to the reactor and the scCO2 is pumped into the solution 

until the solution reaches a point at which it is miscible in the supercritical 

fluid and precipitation would occur144, 146, 147. After precipitation the system is 

opened to a flow anti-solvent system to allow the removal of the solvent as a 

“washing step”147. 

SAS is the most common supercritical technique for making metal oxides for 

the application as catalysts, although the GAS method is applied in situations 

that might require a batch method like impregnation of a metal or metal oxide 

onto a support such as the preparation of cobalt and ruthenium on TiO2 

catalyst for the Fischer Tropsch process9. 

 

1.5.3 Supercritical anti-solvent process for heterogeneous catalyst 

preparation 

 

The use of supercritical fluids for the preparation of catalysts and materials in 

general has greatly expanded over the last 20 years. The earliest examples 

of SCF for the synthesis of inorganic materials being reported by the group of 

Reverchon in the 1990s148 who used supercritical CO2 to make materials 

such as Sm2O3 and ZnO. The area expanded in the later 1990s and early 

2000s and saw the synthesis mixed oxide such as vanadium phosphates 

(with isopropanol as the solvent)149. 

The use of SAS precipitated metal oxides as catalyst had expanded rapidly 

over the past two decades. Early examples of metal oxide precursors 

(including applications as catalysts) utilised DMSO or isopropanol149 as the 
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solvent150. However more recent examples have used ethanol26 as the 

solvent due to lower toxicity and lower environmental issues compared to 

DMSO46. The use of SAS to prepare hopcalite (briefly mentioned in  

Section 1.4.2) had initially used DMSO as the solvent but found that while the 

precursor had a surface area of 300 m2 g-1 the resulting catalyst after 

calcination had a lower surface area of 10-50 m2 g-1 110. This was later 

attributed to exothermic decomposition of the acetate salts46. When ethanol 

was used as the solvent the precipitate had a surface area of 33-175 m2 g-1. 

It was also found that the addition of water in the alcohol changed the nature 

of the precipitate (both for hopcalite and other metal acetates)21, 46. The 

acetates that were precipitated from pure ethanol (like DMSO) were found to 

be predominantly precipitated as metal acetates. However when the water 

was added to the ethanol/acetate mixture (5-20% volume) the metal 

precipitates as a metal carbonate46 66. The surface area of the precursor as 

carbonates (with the addition of water) were lower (140 m2 g-1) than the 

acetate (when no water was used) (264 m2 g-1). However after calcination, 

due to exothermic decomposition of the acetate salts, the catalysts had a low 

surface area (33 m2 g-1) whereas the samples that had 5-15 % water/ethanol 

mixtures were shown to have higher surface area (65-175 m2 g-1) in the 

resulting catalyst. As a result the carbonate precipitates were more active for 

CO oxidation than the copper-manganese precipitated as acetate46. This was 

also seen with other transition metal oxide catalyst such as cobalt oxide 

which was reported to show increased surface area and propane oxidation 

activity with 5-15% water/ethanol content compared to the metal acetates 

precipitated from pure ethanol21. 

The most significant example of the advantages of SAS were shown in 2016 

when Kondrat et al. showed that the SAS technique could be used to make a 

rare copper-zinc carbonate phase called georgeite135. Georgeite and zincian 

georgeite are amorphous hydroxyl carbonate phases that forms initially 

during co-precipitation but is unstable and degrades during the aging process 

to form the more crystalline zincian malachite (2:1 Cu:Zn)123. As a result, 

prior to the supercritical anti-solvent preparation, the study into zincian 

georgeite as a Cu/ZnO catalyst precursor was rare due to the material 
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instablity123, 151 but the SAS prepared georgeite/ zincian-georgite (formed 

from acetate salts in 5-30% water/ethanol solvent) was stable and could be 

studied in more depth as well being more applied as a Cu/ZnO catalyst 

precursor.  

It was found that the amorphous phase produced a highly dispersed Cu in 

the ZnO which resulted in a Cu/ZnO catalyst that contained a high Cu 

surface area135, 151. The zincian georgeite derived Cu/ZnO catalyst was found 

to be an excellent catalyst for both methanol synthesis135, 151 and water gas 

shift reactions152. When Al (as AlO(OH)) was added it increased the stability 

of the catalyst without significantly affecting the Cu-Zn dispersion151.   

The use of supercritical CO2 to prepare metal oxides is a still expanding area, 

and although it is yet to be used at an industrial level60 in the field of catalyst 

preparation, there is still potential for the method to be scaled up for industrial 

use. 

 

1.6 Ionic liquids and deep eutectic solvents 

 

1.6.1 Ionic liquids 

 

Ionic liquids (or more specifically room temperature ionic liquids (RTIL)) are 

defined as salts which melt at or below 100 °C and form a liquid at room 

temperature153.  Most ionic liquids (ILs) are organic based with an organic 

cation such as an imidazolium, pyridinium or quaternary amide (Figure 1.11) 

and anion which could be either organic or inorganic 154 155.  Although ionic 

liquids were first discovered in 1914, it is only been with in the last few 

decades that air and moisture stable ionic liquids have been synthesied154. 
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a   b      c   

 

Figure 1.11: Some of the organic cations used for ionic liquids a) tetra alkyl 
ammonium b) 1-alkyl-3-methyl imidazolium and c) N-alkyl pyridium

155
 

Ionic liquids have been investigated as alternatives to regular organic 

solvents156, due to various properties such as a very small (almost negligible) 

vapour pressure157, 158, low volatility159, stability160 and easily tuneable 

properties. As a result, ionic liquids have been applied in many reactions and 

synthesis, including biological process, catalytic reactions, extraction of metal 

ions from water, stabilisation of metal nanoparticles and synthesis of 

inorganic   compounds155, 161-164. Ionic liquids can have their properties easily 

modified, for example viscosity, acid-base, electrochemical and solubility, by 

changing the anion and/or the cation allowing a wide range of  

applications163, 165. Some research groups have also found that ionic liquids 

can be used not only as a solvent but also as a template and in some cases 

can act as both a solvent and a template in the same reaction166. Many 

papers on ionic liquids are highly cited, showing the extent the high of 

interest in the area which is still increasing both academically and 

industrially167. The imidazolium based ionic liquids are the most commonly 

used although ionic liquids containing other organic cations are also widely 

used168. Imidazolium cations are widely used in ionic liquids since they are 

commercially widely available and are air stable169. Although most 

imidazolium based ionic liquids are water stable, they are also hydroscopic 

and would readily add water to the system which may induce precipitation or 

stop a reaction.  The imidazolium based ionic liquids consist of a charged 

side (with the methyl group) and a non-polar alkyl chain170.   
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a  b   c     

   

Figure 1.12: Anions used for ionic liquids a) hexafloruophosphate b) tetrafloruoborate 
and c) bis-trifluoromethanesulfonylimide 

The length of the alkyl chain has an effect on the ionic liquids properties, 

most notably its melting point since after a certain chain length (C10), the Van 

de Waals interactions become dominate, increasing the ionic liquids melting 

point and the ionic liquid starts to form a  

solid170, 171. The length of the alkyl chain has also been important influence 

for the stabilisation of nanoparticle in ionic liquid solution, influencing their 

size distribution154. 

The choice of anion is also important as it can change the properties of the 

ionic liquid with the same cation such as solubility in water, the ability to 

dissolve metal salts and stabilisation of nanoparticles among other 

properties156. Most anions used in ionic liquids are water stable but a few, 

notably the aluminium chlorates (e.g. AlCl4
- and Al2Cl7

-) decompose when in 

contact with water170, 172 and therefore have to be handled in a dry 

atmosphere. The choice of anion is also important for the water miscibility of 

the ionic liquid in water with some anions such as chloride and aluminium 

chloride being water miscible where as other anions such as PF6
-, BF4

- and 

Tf2N
- (Figure 1.12) are more water immiscable172.  

 

Figure 1.13: 1-butly-3-methylimazolium hexafluorophosphate (BMIm[PF6]) 

Recently many groups are moving away from the hexafluorophosphate 

anions as it has been reported to very slowly hydrolyse in excess water, or 

long term exposure to moisture, to form HF168, 173 which make using these 
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chemicals hazardous (and consequently defeats the point of using ionic 

liquids as a green alternative to organic solvents)174, 175 . As a result, there 

have been various studies into using the imidazolium cation with alternative 

anions to PF6
- , although it has been noted that some groups continue with 

the use of PF6
- despite its disadvantages168, 174. Other anions such as  

bis-trifluoromethanesulfonylimide (Tf2N
-) (Figure 1.12 c) and 

trifluoromethanesulfonate are increasingly popular alternatives to 

hexafluorophosphate and tetrafluoroborateas water immiscible counter ions 

for the imidazolium based ionic liquids169.    

There are also a class of ionic liquids termed “task specific ionic liquids” 

(TSIL) which was first reported by Davis176. These are ionic liquids which are 

based on more common ionic liquids such as imidazolium or quaternary 

amine, but contain a functional group which modifies the properties of the 

ionic liquids such as ability to solubilise metal nanoparticles177. The functional 

group of the TSIL interacts with the nanoparticle allowing them to solubilise in 

the ionic liquid solution172, 176, 177. 

 

1.6.2 Deep eutectic solvents 

 

Since 2003 there has been a rapid increase publications on a group of ionic 

liquids based around quaternary ammonium salts, in particular choline 

chloride (ChCl) (Figure 1.14)167, 178-181, which was first developed by the group 

of Abbott et al.167, 181.  The choline chloride is mixed with a hydrogen bond 

donor such as urea, oxalic acid, malonic acid and ethylene glycol among 

others, at various ratios of choline chloride to hydrogen bond donor (for 

example 1:2 ChCl:urea or 1:1 for ChCl:oxalic acid182). When mixed, the 

choline chloride and the hydrogen bond donor form a single homogenous 

liquid at a temperature below the melting point of both of the solids, for 

example a mixture of urea and choline chloride form a liquid at room 

temperature whereas the melting points of urea and choline chloride 

(individually) are 135 °C and 302 °C respectfully. This type of liquid has been 

termed a deep eutectic solvent (DES)167, 178. 
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Figure 1.14: Choline chloride 

A deep eutectic solvent has been defined by most literature as a quaternary 

amide that interacts with a H-bond donor such as malonic acid, urea or 

ethylene glycol (Figure 1.15)  although a review by Smith el al.182 define these 

as type III DES. The more generic term for the deep eutectic solvent is 

related to the interaction between acid and bases that causes two solids to 

form a liquid at a temperature below the melting point of either solid182. The 

other types, (I, II and IV) involves the interaction between a quaternary amide 

and a metal halide (type I), a metal halide hydrate (type II) or the interaction 

of a quaternary amide with both an H-bond donor (e.g. urea malonic acid) 

and a metal halide (type IV)182. In this review the term DES would be used for 

the “type III”.  

 

a     b       c   

 

Figure 1.15: Commonly used H-bond donors used with choline chloride to form the 
DES a) malonic acid, b) urea and c) oxalic acid 

Deep eutectic solvents have been generally classified and referred in the 

literature as ionic liquids even though they are not strictly ionic liquids. The 

definition of an ionic liquid is a room temperature molten salt comprising of 

anions and cations, where as deep eutectic solvents are the result of the 

interaction between choline chloride and hydrogen bond donors167, 182. 

However, the properties, such as low vapour pressure, viscosity and 

conductivity, of deep eutectic solvents are similar to those of ionic liquids to 

the extent that deep eutectic solvents are being used as alternatives to ionic 
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liquids.183 Deep eutectic solvents have several advantages over ionic 

liquids184. The constituent parts of the DES (choline chloride and H-bond 

donor) are cheap and readily accessible and the preparation of the DES is 

relatively simple. In comparison ionic liquids (such as imidazolium) are 

expensive, require complex synthesis and some pose environmental 

issues173, 183, 185.   

These advantages of choline chloride based deep eutectic solvents have led 

to an increase in their applications and have been as alternatives to both 

regular organic solvents and ionic liquids. These include the use of DES for 

the extraction of organic materials (such as lignins and sugars) and/or 

inorganic material from organic solvent/water183, 186, electrochemical 

deposition180, 185, 187 and solvents for organic synthesis188. Deep eutectic 

solvents have also been applied as solvents in catalytic reactions, such as 

the upgrade of crude oil using molybdenum (VI) oxide catalyst in a urea-

choline chloride DES189. The use of dissolving metals using choline based 

techniques is currently patented by Abbott168. 

 

 

1.6.3 Solubility of metal salts in deep eutectic solvents 

 

The solubility of metal oxides in deep eutectic solvents has been widely 

studied178. The group of Abbott et al. carried out a wide range of early 

research into deep eutectic solvents including their abilities to dissolve metal 

oxides187. In 2005 the group started dissolving metal oxide in choline chloride 

based deep eutectic solvents. The group focused on dissolving a range of 

metal oxides (including ZnO, Al2O3 and PbO2) in a 1:2 choline chloride-urea 

deep eutectic solvent and used mass spectrometry, UV-vis and also tested 

the electrodeposition of the metal oxides from the DES187.  It was reported 

that the some metal oxides such as Cu2O, PbO2 and ZnO showed high 

solubility while other metal oxides such as Al2O3 and CaO showed poor 

solubility. The paper speculated that this was due to the ability of the metal to 

complex with the urea and dissolve in the solution. The group noted that 
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there was a correlation between the solubility of the metal oxide and its 

melting point; metal oxides with higher melting points, such as Al2O3  

(2045 °C), were less likely to dissolve in the urea/choline chloride DES than 

metal oxides with lower melting points for example  MnO2 (493 °C)187. 

However, it should be noted that ZnO does not fit this trend since it has both 

a high melting point (1975 °C) and a high solubility of 8500 ppm187. In 2006 

Abbott et al. investigated further into dissolving various first row transition 

metal oxides in choline chloride based DES with malonic acid, urea and 

ethylene glycol. The group found that the degree of ionic/covalent properties 

had an effect on the solubility of the metal oxide in the DES, with more ionic 

oxides dissolving better than more covalent oxides, with zinc oxide and 

copper oxide being found to be the most soluble oxides and titanium oxide 

being the least soluble178. The group also showed that the oxides were more 

soluble in the choline chloride-malonic acid DES than the choline chloride-

urea or the choline chloride-ethylene glycol178, 184 (with nearly all metal oxides 

being the least soluble in the choline-ethylene glycol mixture).  The solubility 

of the metal oxides in the choline chloride DES were also found to be 

temperature dependent, with ZnO and Cu2O being noted for temperature 

dependent184. 

The group also found that in the choline chloride-malonic acid DES, the metal 

oxide dissolved and formed a metal chloride whereas in the choline chloride-

urea solution the metal oxides formed an oxide-chloride or oxide-urea 

complex178. The group stated that the reason for this was that the metal oxide 

interaction with the malonic acid was strong enough to accept the oxygen 

from the metal oxide and thereby forming a metal chloride which increase the 

metals solubility in the deep eutectic solvent.  

Antal et al. further investigated V2O5 in the choline chloride-urea DES 

focusing what structures formed in the solution190.  Using 51V NMR, Infra red 

spectroscopy and X-ray diffraction the group found that in the DES the 

vanadium oxide forms a [H2V10O28]
4- but over a longer time period, due to the 

hydrogen bonding interactions of the choline chloride-urea DES with the 

vanadium [(CH3)3N(CH2)2OH]4[H2V10O28].2NH2CO forms which has low 

solubility190.   
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1.6.4 Anti-solvent processes using ionic liquids and deep eutectic 

solvents 

 

Ionic liquids and deep eutectic solvents have been applied for anti-solvent 

techniques. A few notable examples focused of re-precipitated zinc oxide 

from choline chloride into an anti-solvent (mostly water) by the group of 

Wong et al. in 2010191-193. The group dissolved zinc oxide into 1:2 choline 

chloride-urea DES at a concentration of 2400 ppm (at 70°C) for two days191. 

The DES-zinc oxide was injected into different types of anti-solvents (water, 

50:50 water ethanol and 10:90 water ethanol) over different time periods. The 

group found that changing the anti-solvent and the injection time influences 

the structure, notably injecting over a long time period in water gave 1-D 

crystals, whereas injecting over a shorter time period gave smaller particles. 

The group also noted that the ethanol stops or slows the precipitation of ZnO 

and ZnO structures in 10:90 water ethanol formed more random shapes191. 

The group further expanded on this in 2011 when they used 

tri(hydroxymethyl)amino-methane as an additive to induce shape control192. It 

was found that the higher concentrations of the additive gave bigger and 

more rounded nanoparticles with lower surface area (the surface area with 

no additive was 52.4 m2 g-1 and 15.7 m2 g-1 with 500 mM of the additive)192. 

The group of Hsu et al. in 2014 used the zinc oxide anti-solvent method but 

added copper nitrate to the anti-solvent (50:50 water ethylene glycol)193. It 

was found that the Cu2+ doped itself onto the ZnO nanoparticles although at 

higher concentration, the Cu substituted itself into the ZnO structure193. The 

group also found that increasing the amount of Cu2+ changes the morphology 

of the nanoparticles to a more rounded morphology. It was also noted that 

this technique could be used with Ni2+ as well193. 
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1.6.5 Ionothermal synthesis of metal oxide  

 

Ionothermal synthesis, as mentioned earlier (section 1.3.3) is a solvothermal 

synthesis performed in an ionic liquid or deep eutectic solvent. Ionothermal 

synthesis is an area that has rapidly expanded over the last few years due to 

better understanding of deep eutectic solvents and ionic liquids77. The 

method has notably been used for metal oxide preparation including the 

preparation of Co3O4, NiO  and α-Fe2O3
55, 167, 194 and mixed oxides such as 

perovskites phase oxides (for example Sr1-xBaxSnO3)
195. Ionothermal 

synthesis has been utilised with both conventional heating and microwave 

power, the latter being advantageous with ionic liquids due to their high 

dielectric constant and high polarity allowing them to absorb microwave 

energy more efficiently than conventional solvents196, 197. Choline chloride- 

urea is one of the most common DES applied but choline chloride-oxalic acid 

was used with make metal oxalates such as dysprosium and erbium in which 

the DES acts as both a solvent and a template198. 

The reasons and the role of DES in ionothermal synthesis varies between 

different papers and applications with some groups using the DES as a 

solvent and others using it as a template where the choline chloride-urea 

breaks down during the process55. However, it has been noted that the 

breaking down of urea (to ammonia and metal carbonate or metal oxide) that 

occurs in this process (as well as breaking down of other type of DES) is 

ordered and reproducible77, 199.  This has led to some groups using DES as a 

template for metal oxide preparation, with Hammond et al. notably in 2017 

making ceria with this method, with the group also noting that the addition of 

water and different temperatures of ionothermal synthesis greatly affected 

the morphology of the ceria which were shown to have varying CO oxidation 

activities55. The group had also used microwave assisted ionothermal 

synthesis for the production of iron oxide and found that the temperature 

influences the phase formed (α-Fe2O3 or γ-Fe2O3) depending on conditions 

and the addition of water made a difference to the morphology200.  
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As well as being used for metal oxide preparation, DES-ionothermal 

synthesis has been applied for the preparation of metal oxide precursors (or 

materials that could be used as metal oxide precursors) including 

manganese carbonate201 and a layered double hydroxide of nickel and mixed 

cobalt-iron as a precursor to the spinel phase oxides202.  In the case of 

manganese carbonate, like the ceria, the urea complexes with the 

manganese, forming a urea manganese chloride which then breaks down 

under the pressure and temperature of solvothermal conditions to 

manganese carbonate and ammonium chloride and ammonia201. The 

manganese carbonate formed different morphologies at different 

temperatures, forming cubic shaped particles at 120 °C and elliptical at  

150 °C201. 

Ionothermal synthesis is rapidly growing area of DES research that has been 

applied to the preparation of metal oxides (including applications as 

catalysis). The versatility of DES and ionic liquids with the advantages of 

using solvothermal conditions that can change the morphology is the reason 

why there has been such an interest in the area over the last 10-12 years167, 

and probably an area that will see continued development, especially in the 

application of catalyst preparation.   

 

1.7 Switchable solvents 

 

Switchable solvents is a term first used by Jessop in 2005 to describe 

solvents that can change their properties, e.g. their polarity, under different 

atmospheres such N2 to CO2, with the atmosphere essentially acting as a 

switch203, 204. Most switchable solvents use CO2 as the switching gas 

although other gases such as SO2 and CS2 have also been reported205.  

Many switchable solvents are made up from two components for example an 

amidine-alcohol or an amine-water mixture although single component 

switchable solvents (such as switchable surfactants) have also been 

applied206.  
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Figure 1.16: Switching of DBU (left) non polar form (under inert atmosphere) to (right) 
polar form under carbon dioxide atmosphere

204
 

Early work on switchable solvents focused around the compound  

1,8 diazobicyclo[5.4.0]-undec-7-ene commonly referred to as DBU  

(Figure 1.16). When combined with an alcohol, DBU forms an ionic liquid 

under a carbon dioxide atmosphere which is a highly polar molecule207. 

When heated to 60 °C under nitrogen the carbon dioxide comes off and 

components revert back to the alcohol and DBU, hence it can be changed 

back to its original non-polar state under a nitrogen or argon atmosphere. 

Since then other switchable polar solvent combinations have been 

discovered208. The ability to switch the solvent between non-polar and polar 

characteristics had been applied as a potential way of reducing the steps and 

solvents required for synthesis steps, thereby reducing waste209.  The polarity 

range of switchable polar solvents (SPS) is different for different 

amidine/alcohol mixture with some having greater polar change than 

others210. 

Although widely used, the DBU/alcohol switchable system is very water 

sensitive and as a result many SPS system only work under ultra-dry 

conditions211.  Any more that 42 ppm of atmospheric water in the system 

would result in the formation of the solid DBU carbonate210, 211 , although this 

process is reversible; 60 °C under inert atmosphere would remove the CO2 

and the mixture switches back to DBU and water208.  This problem is 

predominant in most SPS or two component switchable solvents206, although 

Yamanda et al. did report that using a primary amine instead of an alcohol 

with DBU (and other aminides) resulted in a less water sensitive SPS 

system. However the group also reported that some of these mixtures 

(including some DBU/primary amine mixture) would still form a bicarbonate 
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salt in the presence of residual water after several hours208, 210. The general 

water sensitivity of these SPS systems makes them difficult to work with for 

the preparation of metal oxide precursors, especially if the initial metal salt 

contains water. 

There are a wide variety of switchable systems other than SPS  that have 

been applied, as well as other switchable systems such as switchable 

hydrophilicity (SHS)206,209, switchable surfactants212 and switchable water; 

where the additive increases its ionic strength under different atmospheres 

and can be used to precipitate out compounds213. 

Switchable hydrophilicity solvents are also widely used. Some of these 

solvents have a similar, if not higher, polarity range than SPS138, 210 and 

these systems have the added advantage that the presence of water is not 

an issue meaning the ultra-dry conditions are not required. There are a 

variety of additives (mostly amines) that could be used with water to make  

SHS, including triethylamine209, cyclodimethylamine214 and N,N,N’ 

tributylpentanamidine215 (Figure 1.17) 

A study by Vanderveen et al. into the properties of different amine, amidines 

and guanidines as SHS showed that the switching ability of these additives 

was related to the pKaH (strength of the conjugated acid) and the Log Kow  

(octanol-water partition coefficient).  The group reported that an additive with 

a low pKaH would result in a mixture that would not react with the CO2, 

thereby not being able to switch, while a too high pKaH would remain stable, 

under ambient temperature, after the CO2 addition and will not reverse back 

under N2 atmosphere138, 209. Also SHS with a low Log Kow would be too 

hydrophilic and as a result would remain soluble in water and  would not form 

a biphasic system under either atmosphere and likewise a high Log Kow 

would result in a biphasic (hydrophobic) system under both atmospheres209. 

As a result the group concluded SHS that can regularly switch must have a 

Log Kow value of 1.2-2.5 and a pKaH value of 9.5-13 and even then this can 

vary with amine: water (volume) ratio138, 209 
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a  b c  

 

Figure 1.18: Examples of switchable hydrophilicity solvents a) triethylamine
209

 b) 
cyclodimethylamine

214
 and c) N,N,N’ tributylpentanamidine

215
 

There are other limitations in the applications of SHS (or any switchable 

solvent). Triethylamine for example, fits within the parameters that 

Vanderveen et al. reported209 to make it a good SHS under ambient  

temperature but  it is not always widely used, partially due to its volatility and 

toxicity.  

The method and apparatus used for switchable solvents varies for the 

different applications. Nanta et al. utilised a DBU and ethylene glycol (2:1 

ratio) switchable polar solvent mixture (with DMSO) for the dissolution of 

cellulose but with high pressure CO2 with a pressure range of  50-100 bar 

which was near or at supercritical216. In fact, the group used a supercritical 

reactor set up in a SAS like flow system216, 217 which demonstrates a mixed 

switchable solvent–supercritical application216. 

The use of switchable solvents in the field of catalyst preparation is currently 

rare. However switchable solvents are still a relativity young area of research, 

compared to the field of ionic liquids or supercritical solvents which have had 

a more mainstream research and development for at least 20-30 years218. 

Although the area of deep eutectic solvents is not  that much older181 (by 2-3 

years) and has already been used as a solvent/method of preparing metal 

oxides or metal oxide precusors55, 167. Switchable solvents have been used 

for dissolving and re-precipitating metal in the fields of extraction219, 220 and 

metal recovery (including copper nitrate and iron nitrate220) but not so much 

in the field of metal oxide/ metal oxide precursor preparation in general. One 

example of the application of switchable solvents in the field of catalyst 

preparation was in 2017 by Saunders et al. who reported the use of a 

silylamine based switchable surfactant as an alternative method to deposit 
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gold nanoparticles onto a support212. The use of a switchable surfactant had 

the advantage that the silylamine would be attached to the gold nano-

particles under a carbon dioxide atmosphere but can be removed by 

switching to nitrogen thereby removing the need of a post preparation 

treatment common with other colloids212.  

 

1.8 Discussion: green processes for making metal oxide catalysts  

 

The wide variety of different processes used to prepare metal oxides 

discussed here have each shown their merits and advantages in terms of 

achieving unique morphologies, higher surface areas and enhanced activities 

over the more traditional methods (such as co-precipitation). However, the 

advantages of these techniques should not just be based solely on the 

enhancement of the catalyst or the perceived relative greenness of the 

process but the overall energy consumption of the process including the 

manufacturing of the solvents and the energy consumption of the process 

and any additional post treatment such (as washing) required which would 

produce waste solvents.  

Although ionic liquids have been classified as green, this is often referred by 

the fact that this is only based on their very low volatility and ability to retain 

the solvent after use (unlike organic solvents) but does not consider several 

major factors: firstly, some ionic liquids can be toxic and secondly the 

process of making ionic liquid involves various chemical synthesis steps138. 

Seldon referred to this as the E-factor221, which is based on the number of 

chemical steps required to make an ionic liquid from its basic components 

well as the solvents and yield of each step that are required to make an ionic 

liquid and the E-factor assess the greenness of ionic liquids based on these 

factors138. This E-factor should also be considered when looking at 

alternative preparation methods of preparing heterogeneous catalysts. 

Deep eutectic solvents often come out well on this basis since their 

components are relativity abundant, easily purchasable and synthesised and 

the formation of the eutectic itself does not require complex synthetic steps, 
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unlike many ionic liquids221.  As a result, choline chloride based DES are 

considered green alternatives to ionic liquids. 

However one of the misleading facts about DES, that is often ignored, is the 

assumption of their relatively non-toxic and environmental benign 

properties138, 222. This assumption is based on the fact that their constituent 

parts such as choline chloride and a carboxylic acid are non-toxic (or a minor 

hazard), but does not take into consideration that this toxicity changes when 

they form a DES (just as equally mixing the two solid forms a DES)222.  This 

factor is often overlooked in most publications, although most DES such as 

the choline chloride based sample are highly soluble in water which can 

easily dissolved and break down the DES191. 

Another factor which has to considered in the synthesis of metal oxides for 

catalysis using novel techniques is the residual species from either the 

solvent system or any other additives (for example the use of sodium 

hydroxide or sodium carbonate as base). Often solvents or additives that are 

added during the process can be retained which could subsequently act as a 

poison for the catalyst (for example chloride in DES) or create a high 

exothermic decomposition during calcination making washing steps more 

essential. In addition, some of these alternative techniques may not be as 

versatile or understood as co-precipitation59. 

This factor was often one of the attractive features of the supercritical anti-

solvent process since the process involves the removal of the solvent and the 

drying of the precursor, often eliminating additional steps that would have 

otherwise be required for solvent base preparation methods. The process 

also eliminated the need for a sodium containing precipitating agent used for 

co-precipitation or chelating agents used in sol gel. However the high energy 

cost of cycling the pressure during the process, even on the lab scale, makes 

it less suitable for industrial scale up62. Despite this, supercritical CO2 has 

been used on an industrial scale138, and has had many papers citing the 

advantages of using the process as a way of precipitating precursors but 

without washing step and a drying step can be performed after the solvent 

addition under scCO2
123

. 
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The greenness of a solvent or preparation method is not only relative to the 

established solvent, but to the process in general221 and the clean up 

afterwards of waste or contaminated water. This is the major problem of co-

precipitation in industry since the process produces excess of water 

containing nitrates and unreacted metals59, 123. One of the factors that is in 

favour of the use of supercritical CO2 over co-precipitation for metal oxide 

catalysts preparation is that the process reduced the production of waste 

water containing metal nitrate and does not require a washing steps123. 

Overall the continued investigation of alternative and novel preparations of 

metal oxides for application as catalysts is an area that must and will have 

continued interest in the future in order to achieve a metal oxide catalyst with 

greater surface area, morphology control and catalytic activity and to 

overcome the problems associated with the current preparation methods. 
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1.9 Aims of the Thesis 

 

The work presented in this thesis is part of the UK Catalysis Hub  project: 

Green Catalyst for Green Processes. The title of this thesis is metal oxides 

for heterogeneous catalysis but the main aim of the Hub project presented 

here is to find alternative methods of preparing metal oxide or metal oxide 

precursors to the energy intensive supercritical anti-solvent process. The 

work will look into some of the solvent systems discussed in the literature 

review and apply both novel and established techniques to make single and 

mixed metal oxide for the application as heterogeneous catalysts. The 

methods chosen for preparation are based on deep eutectic solvents, 

switchable solvent and hydrothermal synthesis. 

Because there is a wide range of different metal oxide catalyst that could be 

prepared using these methods, this thesis focuses on a few select examples 

with different chapters investigating different catalysts and/or preparation 

techniques.  

 Chapter 3 investigates the application of choline chloride-oxalic acid 

based DES for the preparation of iron, cobalt and manganese oxalates 

as precursors for VOC combustion catalysts. 

 Chapter 4 investigates the use of hydrothermal synthesis for the 

preparation of a delafossite phase CuMnO2 (crednerite) as a precursor 

to spinel phase copper-manganese oxide CO oxidation catalysts  

 Chapter 5 investigates the application of switchable solvents to 

prepare carbonate precursors of copper-manganese oxides as CO 

oxidation catalysts. 

 Chapter 6 investigates the use of both deep eutectic solvents and 

switchable solvents for the preparation of copper-zinc oxide as 

catalysts for methanol synthesis. 

Each of these catalysts will be compared with a catalyst made by more 

established/conventional methods such as co-precipitation or sol gel as well 

as catalyst precursors prepared by supercritical anti-solvent. The catalyst will 

be compared on the basis of catalytic activity and surface area as well as 
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difference in morphology and behaviour in comparison to the conventional 

method. The characterisation and testing will be used to see and determine 

whether these methods have potential to be a substitute for the more 

conventional methods, and if using alternative solvent systems such as DES 

or switchable solvent as well as hydrothermal and SAS have any potential 

disadvantages. 
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Chapter 2 Experimental 

 

2.1 Introduction 

 

This chapter outlines the methods used to produce the catalysts, the 

characterisation techniques used to determine the physical properties of the 

catalyst and the catalyst testing procedure that are presented in this thesis. 

The chapter will also explore the theory of the characterisation techniques, 

while the theory and reasons behind the strategies of catalyst preparation are 

explained in Chapter 1 and the relevant results chapters.  

 

2.1.1 Chemicals list 

 

Table 2.1: DES components and switchable additives purchased 

Sample Chemical formula Grade/purity Company Chapters 

Choline 
chloride 

((CH3)3NCH2CH2OH)Cl 
Bio reagent 

98% 
Sigma 
Aldrich 

3, 6 

Urea (pellets) CO(NH2)2 99.5% 
Sigma 
Aldrich 

6 

Oxalic acid 
dihydrate 

C2H2O4.2H2O 
ACS grade 

99% 
Sigma 
Aldrich 

3 

Oxalic acid 
(anhydrous) 

C2H2O4 
Anhydrous 

Puriss ≥99% 
Sigma 
Aldrich 

3 

Triethylamine (CH3CH2)3N ≥ 99 % 
Sigma 
Aldrich 

5, 6 
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Table 2.2: The precursor metal salts used for this work 

Sample Formula Grade/purity Company Chapter 

Manganese (II) 
acetate 

tetrahydrate 
Mn(CH3CO2)2.4H2O 99% 

Sigma 
Aldrich 

3 , 5 

Manganese (II) 
nitrate 

tetrahydrate 
Mn(NO3)2.4H2O 97% 

Sigma 
Aldrich 

3 ,4, 5 

Manganese (II) 
chloride 

tetrahydrate 
MnCl2.4H2O 

ACS reagent 
grade 

Sigma 
Aldrich 

3 

Cobalt (II) acetate 
tetrahydrate 

Co(CH3CO2)2.4H2O 
ACS reagent 
grade 98% 

Sigma 
Aldrich 

3 

Iron (II) acetate Fe(CH3CO2)2 95 % 
Sigma 
Aldrich 

3 

Iron (II) oxalate 
dihydrate 

Fe(C2O4).2H2O 98% 
Sigma 
Aldrich 

3 

Copper (II) acetate 
monohydrate 

Cu(CH3CO2)2.H2O 98% 
Sigma 
Aldrich 

5 , 6 

Copper (II) nitrate 
hemipentahydrate 

Cu(NO3)2.2.5H2O 
Reagent 

grade 98% 
Sigma 
Aldrich 

4,5 , 6 

Zinc (II) nitrate 
hexahydrate 

Zn(NO3)2.6H2O >99.0% 
Sigma 
Aldrich 

6 

Zinc (II) oxide ZnO 99 % 
Sigma 
Aldrich 

6 

 

 

Table 2.3: Acids, Bases and solvents 

Sample Formula Grade/purity Company Chapter 

Sodium 
hydroxide 
(pellets) 

NaOH Reagent grade VWR 4 

Sodium 
carbonate 

(anhydrous) 
Na2CO3 Reagent grade Fischer 4 

Ethanol CH3CH2OH Absolute 99.8% VWR 3,4,5,6 

Methanol CH3OH 
HPLC grade 

99.8 % 
VWR 3 

Nitric acid HNO3 70% in water VWR 
3,5,6 

(MP-AES) 

Hydrochloric acid HCl 35 % in water VWR 
3,5,6 

(MP-AES) 
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2.2 Catalyst preparation 

 

2.2.1 Deep eutectic solvents 

 

In this work, choline chloride with either urea in a 1:2 molar ratio or oxalic 

acid in a 1:1 molar ratio was used to prepare some of the catalysts. The 

formation of deep eutectic solvents outlined here is well established in the 

literature1-4. This method used an anti-solvent approach using water or a 

water-alcohol mixture to precipitate a metal precursor from the DES. 

 

2.2.1.1 Choline chloride-oxalic acid for metal oxide preparation 

 

Choline chloride and oxalic acid (anhydrous or dihydrate) were mixed in a 1:1 

molar ratio in a round bottom flask and the mixture was heated to 82 °C and 

left until a homogenous liquid had formed. The time taken depended on the 

oxalic acid used; 1 hour for oxalic acid dihydrate and 2 hours for anhydrous 

oxalic acid. 

The metal salt; cobalt acetate tetrahydrate, iron acetate, manganese acetate, 

manganese nitrate or manganese chloride, was added to the choline 

chloride-oxalic acid deep eutectic solvent at a molar ratio of 0.1:1:1 of metal 

salt:oxalic acid:choline chloride. The mixture was heated to 120 °C for 1 hour 

and then 150 °C for 2 hours. The mixture was then cooled to 65 °C prior to 

the addition of the anti-solvent. 

The anti-solvent mixtures were comprised of either deionised water, 50:50 

volume ratio of water-ethanol, 50:50 (volume) of water-methanol, pure 

methanol or ethanol. 

Fast precipitation: The deep eutectic mixture was poured into the anti-solvent 

mixture (600 ml) and left under vigorous stirring for 1 hour during which time 

a precipitate formed. The metal oxalates were then filtered under vacuum 
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and washed with deionized water and ethanol before being dried under 

vacuum at 60 °C for 15 hours. 

Slow precipitation: 100 ml of the anti-solvent was injected using a syringe 

pump at a rate of 1 ml min-1 followed by 100 ml injected at 4 ml min-1. The 

oxalates were then filtered and washed with deionized water and ethanol 

before being dried under vacuum at 60 °C for 15 hours. 

The oxalate precursors (approximately 0.5-0.75 g) were calcined in a furnace 

opened/exposed to an air flow at 300 °C, 350 °C, 400 °C and 500 °C for 3 

hours with a heating rate of  2 °C min-1. 

2.2.1.2 Choline chloride-urea for copper/zinc oxide preparation 

 

Choline chloride and urea were added in a 1:2 molar ratio in a round bottom 

flask. The mixture was heated to 82 °C, and after 2 hours a clear 

homogeneous liquid formed. Zinc oxide was dissolved in the DES with a zinc 

concentration of 28000 ppm at 82 °C and left for 2-3 days to dissolve to form 

a single phase solution. 

Fast precipitation: The DES was poured into deionised water (1500 ml) 

containing of copper acetate or copper nitrate with the concentration 

depending on the target loading. A blue precipitate formed which was then 

filtered and washed with deionised water and ethanol and dried at 60 °C for 

15 hours. 

Slow precipitation: the copper salt (copper acetate or copper nitrate) was 

dissolved in 100 ml of deionised water and injected into the deep eutectic 

mixture at a rate of 1 ml min-1 followed by 600 ml at a rate of 2 ml min-1. The 

precipitate was then filtered and washed with deionised water and ethanol 

and dried at 60 °C for 15 hours. 

Approximately 0.5-1.0 g of the precursor (unless otherwise stated) were 

calcined in a furnace, exposed, to an airflow of approximately 10 ml min-1 at 

350 °C for 3 hours with a heating rate of 5 °C min-1.  
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2.2.2 Oxalate gel method for cobalt oxide preparation 

 

Cobalt acetate (5.83 g, 23 mmol) was dissolved in 200 ml of ethanol and left 

to stir at room temperature for 1 hour. Oxalic acid dihydrate  

(3.03 g, 24 mmol) was added to the solution and a pink precipitate formed, 

which was left in the solution under stirring for 1 hour. The solid was then 

filtered, washed with ethanol and deionised water and dried at 60 °C 

 under vacuum for 15 hours. The cobalt oxalate was calcined at  

300 °C or 500 °C for 3 hours with a heating rate of  

2 °C min-1 to form the cobalt oxide catalyst. 

 

2.2.3 Supercritical anti-solvent process 

 

2.2.3.1 Reactor set up and design  

 

All supercritical anti-solvent experiments were performed on the Separex 

built supercritical reactor set up in the supercritical anti-solvent (SAS) 

configuration (Figure 2.1). The reactor (Figure 2.2) was set up in SAS flow 

process although this reactor can be setup for other supercritical processes 

(such as GAS) these were not used for the work in this thesis.  More detail on 

the theory and history of the supercritical anti-solvent precipitation process is 

discussed in Chapter 1 (Section 1.5).  

The supercritical reactor was linked to a 55 bar cylinder of CO2. A pump was 

used to pressurise the reactor to supercritical conditions, above 78 bar, while 

the pressure of the supercritical rig was controlled by the back-pressure 

regulator, during the reaction and the depressurisation stage. The metal 

precursor solution was added to the precipitation vessel via a HPLC pump at 

a fixed flow rate during the process. Prior to the addition of the metal 

precursor solution, pure ethanol was injected for 10 minutes to allow the 

supercritical system to equilibrate before the anti-solvent precipitation. 
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Figure 2.1: Diagram of the Separex supercritical rig setup for SAS 

 

 

2.2.3.2 Supercritical anti-solvent precipitation of cobalt and manganese 

carbonate 

 

Manganese acetate tetrahydrate or cobalt acetate tetrahydrate was dissolved 

in 600 ml of ethanol at a concentration of 7 mg ml-1. The reactor was 

pressurised to 120 bar, with a CO2 flow rate of 7 kg h-1 and heated to 38 °C. 

Ethanol was injected at a rate of 3.75 ml min-1 using a HPLC pump for 10 

minutes prior to the addition of the metal acetate mixture to allow the system 

to equilibrate. The precursor solution was pumped into the system at a rate of 

3.75 ml min-1. Once the solution had been pumped the system was left under 

supercritical condition for 20 minutes to allow drying before being 

depressurised.  

The precursors were calcined in a furnace exposed to an air flow at 

500 °C for 3 hours with at heating rate of 2 °C min-1. 
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Figure 2.2: Photograph of the Separex build supercritical rig set up for the SAS 
method used to make the oxide in this thesis 

 

2.2.3.3 Supercritical anti-solvent precipitation of copper manganese 

carbonate 

 

Copper acetate monohydrate and manganese acetate tetrahydrate were 

dissolved, at 1:2 molar ratio of Cu:Mn, in 500 ml of 15% (vol) water in ethanol 

mixture with a total metal concentration of 9.85 mg ml-1. The supercritical 

reactor was pressurised to 110 bar and heated to 38 °C. Ethanol was 

injected for 10 minutes to allow the system to equilibrate before the addition 

of the copper-manganese acetate-ethanol mixture. The precursor mixture 

was pumped into the system at a rate of 4.5 ml min-1. After 95% of the 

solution had been pumped, the system was left under supercritical conditions 

for 20 minutes to allow the precipitate to dry before the system was 

depressurised. 

The precursors were calcined in a furnace exposed to an air flow at 350°C 

and 400 °C for 3 hours with at heating rate of 2 °C min-1. 
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2.2.4 Preparation of crednerite and spinel derivatives by hydrothermal 

synthesis 

 

The delafossite phase were made using previously a published method5. 

Manganese nitrate tetrahydrate (3.76 g, 14.9 mmol) and copper nitrate 

hemipentahydrate (3.48 g, 14.9 mmol) were dissolved in 35 ml of water. 

Sodium hydroxide (4.4 g, 110 mmol in 35 ml of water) was added to the 

solution. The brown slurry was then transferred to polytetrafluoroethylene/ 

PTFE liner which was then placed in a 125 ml stainless steel autoclave (Parr) 

and heated to 82 °C for 24 hours. The precipitate was poured into 1500 ml of 

water then filtered and washed with deionised water and ethanol. The 

product was then dried at 60 °C under vacuum for 16 hours. 

CuMnO2 was calcined in a furnace exposed to a flowing air system at either 

300 °C, 350 °C, 400 °C or 500 °C for 3 hours with a heating rate of 5 °C min-1 

to form the spinel phase catalysts. 

 

2.2.5 Preparation of copper manganese oxides by co-precipitation 

 

The co-precipitation was carried out using a Metrohm Titrando auto-titrator  

based on previously published methods6. 

Copper nitrate hemipentahydrate (2 M) and manganese nitrate tetrahydrate 

(2 M) were mixed at a volume ratio of 1:2 or 1:1 Cu:Mn. The solution was 

heat to 82 °C and sodium bicarbonate (2 M) was added with the rate of 

addition varied to maintain a solution pH of 8.3. After mixing the solution was 

aged at 80 °C for 1 hour. The precipitate was filtered and washed with hot 

water. The resultant copper manganese carbonate was calcined at 350 °C, 

400 °C and 500 °C under flowing air with a heating rate of 2 °C min-1 to form 

the hopcalite phase oxide/CuMn2O4. 
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2.2.6 Switchable solvent experiment for metal oxide preparation 

 
The standard preparation (unless otherwise stated): Triethylamine (5.56 ml) 

and water (4 ml) were added (1:1 molar ratio or 1.4:1 volume ratio) to a round 

bottom Radley flask equipped with a gas adapter. The flask was then filled 

with N2 (1 bar) for 30 minutes, while being degassed twice to remove trace 

amounts of CO2. 

The solvent was switched by changing to a CO2 atmosphere (1 bar) for 30 

minutes to 1 hour, being degassed regularly until a single-phase solvent had 

formed. 

A stock solution with total metal concentration of 7 M consisting of 2.33 M of 

copper nitrate or acetate and 4.67 M of manganese nitrate/acetate for copper 

manganese oxides or 3.5 M of copper nitrate and 3.5 M zinc nitrate for 

copper zinc oxide preparation was made up prior to the addition. 

4 ml of the metal nitrate solution, with a total metal concentration of 7 M, 

unless otherwise stated, was injected into the solvent under either the carbon 

dioxide or nitrogen atmosphere. The sample was left under a carbon dioxide 

atmosphere for 1 hour (except for aging studies) after metal salt addition. The 

precipitated sample was then centrifuged and washed with 3x40 ml of 

deionised water then 30 ml of ethanol. The sample was dried under vacuum 

for 15 hours at 60 °C. 

The carbonate samples were then calcined in a furnace opened/exposed to 

an to an airflow at either 250 °C (copper-zinc oxide only), 350 °C, 400 °C and 

500 °C at a heating rate of 2 °C min-1 for 3 hours. 
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2.3 Catalyst characterisation: theory and methods 

 

2.3.1 Powder X-ray diffraction 

 

X-ray diffraction (XRD) is a technique used to determine the bulk structure 

and phase of a prepared material. XRD is one of the most used 

characterisation techniques in the fields of material science and catalyst 

characterisation. As a bulk method however, it only gives an average 

determination of the structure and only can be used to identify crystalline 

samples. However, XRD has the advantage that it can be carried out under 

both atmospheric and reaction conditions and therefore in situ experiments 

can be performed7.  

 

Figure 2.3: Diffraction of X-rays by a crystalline lattice at angle θ  

XRD works on the elastic scattering of the X-rays by the crystal lattice. When 

the X-ray enters the lattice at an angle of θ it is diffracted (Figure 2.3), 

however the waves that are diffracted must be in phase with each other to 

produce constructive interference, which enhance the amplitude of the 

diffracted beam so that it is detectable7, 8. It is the small wavelength of X-rays  

that allows them to be diffracted by the crystal lattice and hence be used to 

determine the crystal structure of a material7. The diffracted peaks that are 

detected are often referred to as reflections8.  

The angle at which X-rays, of a monochromatic wavelength, are diffracted 

can give information of the distance between the lattice plane known as the 
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d-spacing. This relationship is summarised in the Bragg equation  

(Figure 2.4) 7.  

𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃 

Figure 2.4:The Bragg equation where n is the order of refraction and λ is the 
wavelength of the X-rays, d is the lattice spacing and θ is the diffracted angle.  

The angle of diffraction, is characteristic of the lattice plane (with miller 

indices of (h k l)) which it is diffracted from and as a result of this each crystal 

phase will produce a set of diffractions from various planes different angles, 

which produces a pattern that can be used to identify the phase and structure 

of that material7-9.  

The X-rays that are used for diffraction are generated through collision of 

high-speed electrons with a metal surface such as Cu or Mo. The collision of 

electrons with a target metal results in the ejection of an electron from a core 

orbital which creates an electron hole. This hole is filled by another electron 

moving down from a higher orbital, with the excess energy of that electron 

being emitted in the form of X-rays of a characteristic wavelength/energy7, 8.  

This method of generating X-rays is also used for the X-ray photoelectron 

spectroscopy (Section 2.3.2). The wavelength of the generated X-rays, varies 

with different targets and Cu Kα (used to generate XRD in this thesis) has a 

wavelength (λ) of 0.154 nm. The Kα refers to the fact that electrons come 

from the k shell.  

X-ray diffractometers are usually set up as shown in Figure 2.5. The sample 

is place in a holder so that the top is as flat as possible. The X-ray source 

and detector rotate around the sample on the X-Y axis relative to the sample 

in order to measure X-ray counts at different values of θ, while the sample 

itself is rotated horizontally to reduce errors that might be cause such as 

diffractions that could be cause by misaligned crystals, which are averaged 

out by the rotation. 
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Figure 2.5: The set up used to detected the diffracted X-rays at different angles
8
 

Both the peak shape and the peak’s full width at half maximum give 

information on the material such as the extent of crystallinity but also the size 

of the particles, since a perfect crystal would have long range order and 

therefore would give an intense, sharp reflections. With smaller crystals these 

reflections reduce in size due to destructive interference and scattering 

caused by the large number of smaller crystallites9. The relationship between 

the crystallite size and the size/ intensity of the reflection peak is summarised 

in the Scherrer equation (Figure 2.6). 

𝐷 =
𝑘𝜆

𝛽𝐶𝑜𝑠𝜃
 

Figure 2.6:The Scherrer equation 

Where D is the average (mean) crystallite size for that particular plane, k is a 

constant usually 0.9 to 1 (0.9 was used in this work), θ is angle of diffraction 

and β is the broadening of the peak.   

Both standard and in situ XRD were performed on a PANalytical X’pert Pro 

using a Cu Kα source with a voltage setting of 40 kV and current setting of  

40 mA. 
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The samples were either placed in an Al sample holder or loaded onto a non-

reflective Si wafer depending on the sample volume available for analysis. 

The scans were taken from a 2θ angle of 5° to 80° at a scan rate of 2 ° min-1.  

For the in situ experiment of crednerite, the sample (200 mg) was mounted 

on using an Anton Parr XRK 900 cell with air flowing through the sample at a 

rate of 10 ml min-1. The first XRD was taken at 50 °C and then the sample 

was heated to 200 °C-600 °C with an XRD scan being performed at each 

100 °C interval. 

 PANalytical Highscore was used to match the XRD data to the crystal group 

and identify the sample phase using the International centre for diffraction 

data (ICDD) database. The crystallite size using the Scherrer equation was 

also determined using PANalytical High score software. 

 

2.3.2 X-ray photoelectron spectroscopy 

 

X-ray photoelectron spectroscopy (XPS) is the analysis of electrons that are 

ejected from an atom using X-rays of sufficient energy to eject the electrons 

from a core orbital of an atom, which is known as the photoelectric effect. 

The energy required to eject the electron from the orbital is known as the 

binding energy (B.E. or Eb) and is expressed in the equation below  

(Figure 2.7) 

𝐸𝐵.𝐸 = ℎ𝜐 −  𝐸𝐾.𝐸 − 𝜙  

Figure 2.7: The relationship between the binding energy and the energy required to 
eject the electron from an orbital

9, 10
 

EK.E is the kinetic energy of the ejected electron, hυ is the energy of the 

photon used to eject the electron and ϕ is the work function and is the energy 

required to eject the electron into a vacuum10. 

The binding energy of the electron is determined by the energy of the atom in 

its initial (with full electrons) and final state (-1 electron) also referred as EI 

and Ef in Figure 2.8. The energy of the final state is determined by how well 

electron cloud stabilised the positive hole left by the ejected electron9. 
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𝐸𝐾.𝐸 = ℎ𝜐 − (𝐸𝐹 − 𝐸𝐼) − 𝜙 

Figure 2.8: The relationship between kinetic energy of an ejected electron with the 
initial and final energy of the atom which it was ejected from 

The energy of the final state of an atom is determined not just by the element 

or oxidation state but also by its environment and its surrounding 

components (e.g. OH or O). This is one of the advantageous aspects of XPS 

since it aids identification of not only the oxidation state of an species but its 

environment and therefore could be used to determine possible active 

sites10. It can also give indication into the structure of the surrounding 

environment, for example a Cu+ that is in an octahedral structure will have a 

different binding energy to one in a tetrahedral structure11 . 

Due to the high probability of electron collision in the bulk, the distance or 

mean free path, that the electrons can travel is very low and therefore only 

electrons close to the surface can be observed on XPS, which allows the use 

of the technique for surface analysis which is helpful in characterising 

heterogeneous catalysts7, 9. 

The X-rays in XPS are generated in a similar manner to how they are 

generated with XRD (as described in Section 2.2.1); high energy electrons 

are bombarded against a metal target that produces X-rays of a 

characteristic energy. For XPS used in this thesis an Al target is used which 

produce X-rays with an energy of 1486.6 eV12. 

The pattern of binding energies that an element/oxidation state produces is 

dependent on both the orbital and the spin of the electrons that are ejected.  

Electrons of different spins in the same orbital will have different binding 

energies due to spin orbit coupling and momentum J=L+S where  J is total 

momentum, S is the spin ±
1

2
  and L is the orbital momentum7, 9, 13.  

This results in XPS producing two peaks with electrons ejected from either a 

p, d and f orbitals but not an s orbital since that only has two electrons9, 14. 

For example Cu (0) will give two p-orbital peaks at for the p3/2 at B.E.=932.6 

eV and p1/2 at 951.9 eV14. 
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Figure 2.9: The result of an electron hole being created a) Auger emission and b) X-ray 
fluorescence. A similar process can also occur in electron microscopy

15
 

 

When an electron is knocked out of a core orbital two other process can 

occur: 1) An electron from higher (valance) orbital moves down to a lower 

orbital and gives out electromagnetic radiation a process is known as X-ray 

fluorescence (Figure 2.9 b).  

2) An electron from a higher orbital is moved down to fill the hole, and 

transfers its energy to another electron which is then also ejected, a process 

known as Auger spectroscopy (Figure 2.9 a)12. Although Auger electrons 

have a different energy range they can appear in the main XPS spectra. 

Using two X-ray sources can identify these peaks9 

Another factor that can occur which would show up in final XPS spectra is 

shakeup which occurs due to the photoelectron giving energy to another 

electron resulting in an additional peak at a higher binding energy9, 12. These 

additional peaks can appear in the spectra of several elements, depending 

on the oxidation state such as Cu2+, Mn2+ and Fe3+. This can be used as an 

aid in identifying element, oxidation and surrounding species 14, 16.   

The XPS experiments was performed by Dr David Morgan on a Thermo 

Fischer Scientific K-alpha+ spectrometer.  Samples were analysed using an 

Al X-ray source (72 W) over an elliptical area of 400x800 μm. The samples 

were charged neutralised using argon ions and electrons. For survey scans 
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the data was recorded with energy passes of 150 eV with a 1 eV step and for 

high resolution scans a pass of 40 eV (1 eV step). Data analysis was carried 

out using the CasaXPS program. 

Published material and online references were used as a guide for the 

assignment of the peaks to the appropriate elemental state14,16 The peak 

were fitted to best represent the spectra that was produced. This was done 

using the Casa XPS program. 

2.3.3 Electron microscopy 

 

Electron microscopy is the use of electrons to visualise objects, usually in the 

μm-nm range and is a widely used technique in many fields of science7. 

Using electrons rather than light has several advantages. Firstly electrons 

can be diffracted, like electromagnetic radiation (De Broglie relationship) but 

have a wavelength of less than 0.1 nm which can produce images with 

greater resolution and higher quality than could be achieved with  an optical 

microscope giving details about the surface of the object that may give 

important information7, 15. 

 

Figure 2.10: The different processes that can occur when a focused electron beam is 
used to probe a surface

17
 

Secondly when an electron beam hits a sample, there are several processes 

that can occur such as transmition, Auger and energy dispersive X-rays, 

each giving different information and insight into the nature of the sample 

being analysed9. There are many types of electron microscopy techniques 
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the such as scanning electron microscopy (SEM)18, transmission electron 

microscopy (TEM) and scanning transmission electron microscopy (STEM). 

2.3.3.1 Scanning electron microscopy 

 

Scanning electron microscopy is the use of an electron beam to probe the 

surface of the material and produce an image of the surface. The electrons 

can be generated through different methods such as using a heated tungsten 

filament, emitting electrons through thermionic emission or using a high 

electric field to remove electrons known as a field emission gun  (FEG)15, 18 

which is used on the Tescam Mira3 SEM that produced the images in this 

thesis. The emitted electrons are then passed through a series of scan coils, 

objective lens and apertures to refine this to a small beam over a square area 

with a x and y direction known as a raster.7, 18  

The depth at which the electrons penetrate the sample is dependent on the 

accelerating voltage used. Typically, this would be around 5 kV to 30 kV with 

higher voltages penetrating further into the sample.  When the electron beam 

is focused on a small area there are several events that can occur; back 

scattered electrons, secondary electrons and X-ray fluorescence from the 

sample (see section 2.3.27, 17).   

Secondary electrons are due to the energy interaction from the electron 

beam to the atoms of the sample giving enough energy to eject an electron. 

In the bulk, the ejected electron rapidly loses energy and therefore does not 

travel far but if the electron is near the surface it can escape (into vacuum) 

and can be detected18. As a result, secondary electrons detection gives an 

image of the surface of the material. 

Back scattered electrons originated from scattering of the electrons from the 

electron beam throughout the sample and subsequently escape into the 

vacuum15. The scattering of the electrons is affect by the size of the atom, 

with heavy atom scattering more electrons than lighter atoms one and giving 

a brighter image18. This therefore mean this technique could be used to 

differentiate between different element although this does not work well with 

element of similar mass (e.g. Cu/Zn or Mn/Fe). 
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2.3.3.2 Energy dispersive X-ray spectroscopy 

 

Energy dispersive X-ray spectroscopy (EDX) is a method of using the 

electron beam to gather information about the elements present in the 

sample. This technique can be used for mapping elements across an area 

that is being analysed and is useful in determining elemental mixing and 

assigning morphologies and features to a particular element. 

The X-rays are created from the samples in a similar manner to what was 

seen with XRD and XPS. When the electron beam collides with an element it 

can give some of its energy to one of the electrons in the atom, which 

subsequently gets ejected and creates a hole. This hole is then filled by an 

electron from a higher orbital moving down and, in the process, emits X-rays. 

The energy of these X-rays is based on the orbitals that the electron moved 

from. Because different elements have electron configurations and orbital 

energies, the energy of the emitted X-rays is going to vary and therefore 

each element produces a “finger print” which can be used to identify and 

quantify elements present as well as map out the location and distribution of 

elements onto an SEM image of the sample9. 

 

2.3.3.3 SEM and EDX method 

 

All SEM were performed on Tescam Mira3 (FEG-SEM) with the electrons 

being generated by a tungsten tip, field emission gun. Imaging was done 

using in-beam secondary electron detector and an electron beam with an 

accelerating voltage of 5-15 kV (depending on the sample). View fields, 

working distance, electron detection type and accelerating voltage are 

specified in the images. 

The copper-manganese sample in Chapters 4 and 5 and the copper-zinc 

oxide samples in Chapter 6 were suspended on a carbon film and were 
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coated with a 10 nm AuPd coating to reduce charging affects that occur due 

to electrostatic build up from the beam which can interfere with the imaging18.  

The oxalate needles in Chapter 3 were loaded onto a 3.05 mm 300 mesh Cu 

grids with a holey carbon film and placed on a STEM sample holder.  

EDX analysis was performed with using an Oxford-instrument X-MaxN 80 

which was fitted to the Tescam Mira3 and was inserted during EDX analysis 

but retracted for SEM analysis. All EDX data were recorded, analysed and 

reported using the Oxford AZtec program. 

SEM images that were performed by Dr Thomas Davies are specified in the 

caption below the figure. 

 

2.3.4 Thermal gravimetric analysis and differential scanning calorimetry  

 

Thermal gravimetric analysis (TGA) is simply a technique for measuring the 

change in weight of a sample over a temperature range at a selected heating 

rate and atmosphere. This can be used to determine the temperature range 

in which a precursor either breaks down, combusts or oxidises depending on 

the sample and atmosphere used. This is useful in seeing how the catalyst 

precursor degrades under different conditions. The degradation of a catalyst 

precursor can give important information on how the final catalyst forms. This 

includes how the thermal degradation effects the catalytic activity of the final 

oxide, insight into the precursor structure, when a metal oxide changes its 

oxidation state and indication of phase formation8,19. 

Differential scanning calorimetry (DSC) is the measurement of the difference 

in heating between the sample and a reference sample and keeping the 

heating rate consistent by increasing or decreasing the power to the sample. 

This can be used to determine whether reaction is exothermic or endothermic 

and can give an indication as to whether a mass loss at a certain 

temperature range is a single or multiple decomposition as well as giving 

some indication into the nature of the precursor8. 
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Two pieces of equipment were used for TGA and TGA/DSC. The majority of 

the TGA analysis was performed on a Perkin Elmer TGA 4000 equipped with 

an auto sampler. The crucibles were weighed in the machine prior to the 

addition of the sample (5-10 mg). The standard TGA programme used during 

this work, unless otherwise stated, consisted of an initial 2 minutes hold at 30 

°C to allow stabilisation before proceeding from 30 °C to 900 °C at a heating 

rate of 5 °C min-1 under a flowing air system of 30 ml min-1. 

DSC/TGA runs were performed on a Setaram TGA/DTA. The sample (5-10 

mg) was placed in a pre-weighed crucible and heated from 30 to 800 °C at a 

heating rate of 1°C min-1, under an air flow of 30 ml min-1.  

2.3.5 Temperature programmed reduction  

 

Temperature programmed reduction (TPR) is a technique used to measure 

the temperature a catalyst would reduce to a metallic state or lower oxidation 

state under a reducing atmosphere such as 10% H2/Ar or CO/He9, 20. When 

the catalyst reaches a certain temperature, under the reducing atmosphere it 

will reduce to a lower oxidation state and oxidise the gas (H2 to H2O or CO to 

CO2), which would produce a signal on a thermal conductivity detector (TCD) 

due to the change in atmosphere (see Section 2.4.1.4). 

As well as determining temperature of reduction, TPR can also give 

information on other factors such as crystallite size or give information on 

mixed oxides systems. For example, with copper manganese oxides if the 

copper and manganese are well integrated into a spinel AB2O4 structure, the 

manganese would facilitate the reduction of the copper and resulting in a 

change in the reduction temperature with the Cu2+ to Cu0 and Mn3+ to Mn2+ 

reduction peak partly merged. In comparison a phase separated material 

comprising of CuO and Mn2O3 would produce two separate peaks at higher 

temperatures21. This would give an indication of the extent of interaction 

between the metals but other techniques such as XPS would be needed to 

reinforce this observation. 

Temperature programmed reduction was performed on a Quantachrome 

ChemBET Pulsar instrument. 0.05 g of the sample was placed in a glass 
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tube held in place by quartz wool. The sample was pre-treated to 110 °C 

under helium and held at 110 °C for 30 minutes to remove any surface 

species. Temperature programmed reduction under a 10% H2/Ar atmosphere 

from 30 to 800 °C at a heating rate of 10 °C min-1. 

 

2.3.6 Surface area analysis 

 

The performance of a catalyst in many catalytic processes is related to the 

surface area of the catalyst and/or support. The surface area of a catalyst 

can be defined by two parameters; the first is total surface area of the whole 

material and the second is specific surface area of the active component. 

Total surface area can be determined through physisorption techniques while 

specific surface area can be worked out through chemisorption techniques 

using gases such as N2O or CO. 

 

2.3.6.1 Total surface area  

Total surface area is measured using physical adsorption of an inert gas, 

such as N2, onto the surface of the material. By measuring the adsorbent gas 

volume and pressure as making the assumption that the adsorbent occurs 

mostly as a monolayer and cover the entire surface, then the surface area of 

the material can be calculated. Adsorption experiments were carried out at 

77 K, to allow the nitrogen to condense on the surface. However multilayers, 

of adsorbent can form on the surface of the material.  

The Brunauer-Emmet-Teller (BET) equation in, Figure 2.11, can be used to 

calculate the surface area from physisorption on a surface22, 23. 

𝑷

𝒗(𝑷𝟎 − 𝑷)
=

𝟏

𝒗𝒎𝑪
+

𝑪 − 𝟏

𝒗𝒎𝑪
.

𝑷

𝑷𝟎
 

Figure 2.11: The Brunauer Emmett Teller equation 

Where P0 is saturated pressure, P is the equilibrium pressure and vm is the 

monolayer capacity. C is the measurement of how well defined the isotherm 

is and is derived from the equation in Figure 2.12. 
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𝑪 = 𝒆
𝑯𝒂𝒅−𝑯𝒍

𝑹𝑻  

Figure 2.12: The relationship between the C constant in the BET equation and the 
enthalpy of adsorption of the monolayer 

Where Had is the enthalpy of the adsorbed monolayer on the surface of the 

material and Hl is the enthalpy given out by the formation of the additional 

layers of gas molecules on top of the surface adsorbents. When the enthalpy 

of forming the additional physisorbed layers Hl is high, the C value is low 

which means that it is more favourable to form multiple layers of adsorbent 

which means that the accuracy of the determined surface based on a 

monolayer is lower22. If Had> HI and therefore C is high then the formation of a 

monolayer adsorbent is more likely to occur than a multilayer22.  

The 5-point surface area analysis of the samples were performed on a 

Micromeritics Gemini 2360. 100 mg of the sample was put into a 9.6 mm x 

155 mm tube and degassed under nitrogen on a Flow-Prep 060 at 110 °C for 

1 hour for metal oxides and 60 °C for 16 hours for precursor materials. The 

lower temperature for the metal precursors was to ensure that these 

materials did not degrade prematurely during the degassing stage. 

The samples and tubes were reweighed after degassing. The sample was 

then fitted to the instrument (Micrometrics Gemini 2360) that was fitted with a 

second, empty tube (9.6 mm x 155 mm) as a reference. 

 

2.3.6.2 N2O Cu surface area analysis 

One method of determining the specific surface area of metallic copper on a 

material surface is through chemisorption of N2O. The basic principle is 

relatively simple: N2O reacts with Cu(0) to form CuO and N2
24 on the surface 

of the Cu(0) particle (Figure 2.13). 

 

N2O+CuSur → N2 + CuO 

Figure 2.13: N2O titration on a Cu(0) surface 
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One advantage of using N2O is that below 100 °C N2O only rapidly reacts 

with the surface copper and not the bulk25, therefore any N2 that formed 

would only be as a result of the reaction of N2O with the surface copper. 

Another advantage is that the ratio should be 1:2 N2O: Cusur
24. Using this, if 

the amount of N2O converted to N2 is calculated based on the N2 detected 

against the theoretical value of N2 for total conversion and a fixed volume 

was injected over a known mass/Cu loaded catalysts then the surface area of 

Cu can be determined24, 25. 

50-75 mg of the calcined CuO/ZnO was placed into a U-shaped glass tube 

and suspended by quartz wool. The sample was reduced at 260 °C under a 

10% H2/Ar mixture at a heating rate of 10 °C min-1 to 140 °C then 2 °C min-1 

to 250 °C (to reduce any potential sintering) and left for 20 minutes. The gas 

flow was changed to helium and the sample was then cooled down to room 

temperature. The sample was then reweighed, to determine the mass loss 

during reduction. 

The sample was then placed back into the instrument and heated to 65 °C 

under helium flow. N2O (1 bar) was filled into a sample loop of 113 μL which 

was injected at 5 minutes intervals onto the Cu/ZnO catalyst for a total of 12 

times followed by 4 injections with nitrogen which were used as reference 

peaks.  The gas was passed through a 5Å molsieve to remove any unreacted 

N2O and other impurities so that only N2 from the reduction of surface Cu2+ to 

Cu is detected.  

2.3.7 Infra-red spectroscopy 

 

Infra-red (IR) spectroscopy is the use of electromagnetic radiation with a 

wavelength between 100000 nm and 700 nm , which correlates to 100-14000 

cm-1  to induce a vibrational mode for a diatomic bond with a dipole moment. 

When the bond is exposure to IR light, the molecule is excited to a higher 

vibrational state and act as a harmonic oscillator which become more 

anharmonic at higher vibrational energy levels. Because a harmonic 

oscillator is dependent on the mass and the force constant (Figure 2.14), the 
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frequency of the vibration is related to the force constant i.e. the strength of 

the bond13.  

𝜐 =
1

2𝜋
√

𝑘

𝜇
 

Figure 2.14: Relationship between the frequency of oscillation and force constant, 

where ν =frequency of oscillation μ= reduced mass and k = force constant 
13

  

When the IR radiation is at the frequency of oscillation, it will be absorbed at 

that wavelength, with the rest of the spectrum being transmitted through the 

sample to the detector. The data can plotted in frequency against either 

transmittance (the % of light passed through) or absorbance (the % of light 

that is absorbed by the molecule during vibration)26. 

Most modern spectrometers instead of measuring the absorbance/ 

transmittance of each wavelength individually, the machine uses a 

interferometer, a device that use moving mirrors and beam slitters to create a 

series of interference pattern known as an interferogram13, 27.  After the beam 

has through the sample, the resulting interferograms are translated from a 

time based domain to a frequency domain using a mathematical function 

known as a Fourier transformation (FT) which produces an IR spectra13, 27. 

This method has the advantage of fast measurements and production of 

spectra compared to measuring different wavelength using a 

monochromator.   

Attenuated total reflectance or ATR is a method of IR detection where the 

entire IR beam has total internal reflected off a crystal due to the angle of the 

bean being less than the critical angle θc
13, 28. However due to constructive 

interference between the incoming and outgoing wave the amplitude of the 

wave appears above the crystal surface, which is referred to as a evanescent 

wave28.  It is the evanescent wave that interacts with the sample on top of the 

ATR crystal but this affects the IR beam and as such the vibrational change 

is detected28. 

The Infra-red spectra were recorded on a Bruker vertex 70 equipped with an 

ATR cell and two detectors: 1) mercury cadmium telluride (MCT) and 2) 

deuterated triglycine sulphate (DTGS). For the measurement of metal oxide 
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and metal oxide precursors the DTGS detector was used since this type of 

detector was better at reading in the lower wavenumber range 1000-400 cm-1 

than the MCT28 where metal oxygen vibration for materials such as Co3O4 

and Mn3O4 is more likely to occur29.  

A background of 16 scans was recorded prior to the sample scan (which 

comprised of 32 scans). The sample was then placed on the ATR cell and 

pressed onto the crystal. The sample was then exposed to the IR beam for 

32 scans on an aperture setting of 6 cm-1.  

Most experiments (apart from some in Chapter 6) were performed in 

transmittance mode using the DTGS detector and an aperture size of 6 cm-1. 

The DES precipitated Cu/ZnO precursor in Chapter 6 used absorbance mode 

(6 cm-1 aperture) with the MCT detector. 

 

2.3.8 Microwave plasma atomic emission spectroscopy  

 
Microwave plasma atomic emission spectroscopy (MP-AES) is a technique 

used to analysis the concentration of metals in a solution.  

When an atom is exposed to energy such as heat, electromagnetic radiation 

or collision, an electron can be promoted from its ground state orbital to a 

higher, excited state orbital. However, this configuration is unstable and the 

electron returns to the ground state orbital by emitting the excess energy in 

the form of electromagnetic radiation. An atom can have electrons that are 

excited to different energy levels and therefore give different wavelengths as 

they relax to the ground state but each of these wavelengths is characteristic 

(and consistent) of the difference in energy between the excited state orbital 

and the ground state orbital27. Because each element has a different electron 

configuration, the wavelengths will also differ between elements, hence the 

technique can be used to identify an element, although there are many 

elements that may emit radiation at similar wavelengths. 

In addition the probability of an electron to occupy a certain orbital and emit a 

characteristic wavelength is consistent therefore the proportion of atoms 

emitting a certain wavelength gives an intensity that correlates to the 
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concentration of those atoms30. This gives a method of working out the 

concentration of different elements in a sample if a calibration plot of the 

concentration against intensity of the wavelength for those elements had 

been performed. This is technique known as atomic emission spectroscopy 

(AES)30. 

 

 

Figure 2.15: An electron that has been excited returning to the ground state and 
emitting an electromagnetic wave which is the detected by a spectrometer 

In order to excite the elements to a higher energy and to atomise the 

molecule into single atoms, very high temperatures are required. This is 

achieved using a microwave induced plasma of nitrogen which can reach 

temperature of 6000-10000 °C, enough to atomise the molecules31. 

The sample is pumped into a neutralizer spray chamber that converts the 

dissolved sample into an aerosol that is then injected into the plasma torch 

that atomises and excites the atoms to produce the wavelength (as shown in 

Figure 2.15)31. The light is then passed through a monochromator, to isolate 

the desired wavelength from the rest of the spectrum that would be produced 

from other elements or the plasma. The light (of the desired wavelength) is 

then passed through a series of lenses before being detected by a 

spectrometer30. 
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Table 2.4: Wavelength used for MP-AES for each of the metals 

Metal Wavelength 1/nm Wavelength 2/nm 

Cobalt 340.512 347.404 

Manganese 279.482 403.076 

Iron 302.064 371.993 

Zinc 213.857 481.053 

Copper 324.754 327.395 

 

For MP-AES analysis 50-75 mg of the sample was dissolved in 10 % 

(volume) aqua regia(1:3 HCl: HNO3) (mixture was 1:6 of 36% HCl/water:70% 

HNO3/water) in water solution and left overnight to digest. The solution was 

then diluted so that the total concentration of metals in the mixture was 

approximately 10-30 ppm. Reference solutions of the metal from  1000 ppm 

stock solutions (dissolved in HNO3/water) were made to concentrations of 5 

ppm, 10 ppm 20 ppm and 30 ppm in order to calibrate the MP-AES before 

analysing the solution. Each metal concentration was analysed using two 

wavelengths so that an average concentration could be determined. The 

wavelength chosen are shown in Table 2.4. 

 

2.4 Catalysts testing 

 

2.4.1 Gas chromatography 

 

For all catalyst testing experiments, the products were measured by online 

gas chromatography (GC). Gas chromatography is the separation of gas or 

liquid mixtures using a column (stationary phase) with a gas (e.g. helium) as 

the mobile phase32. The Gas Chromatographs used in this work were an 

Agilent 7890b equipped with an FID and TCD for propane oxidation and 

methanol synthesis and an Agilent 490 Micro GC for CO oxidation.  
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2.4.1.1 Columns 

 

Columns are an essential part of any chromatograph technique. The column 

is the part that separate the gas mixture based on the retention time of the 

componenets (i.e. how well a molecule interacts or sticks to the column). This 

interaction comes in many forms depending on what is being separated, for 

example a molecular sieves column separates analytesbased on their size 

(since molecular sieves have a well-defined pore structure)33. Columns are 

usually placed in an oven with either constant or varying temperature to help 

separate the components. 

In GC columns are divided into two types, packed or capillary. The packed 

columns have a larger internal diameter of 2-4 mm and are typically shorter, 

usually 2-3 m33  and are packed with the stationary phase supported in a 

porous material32. The second type are capillary columns, also known as 

open tubular, are thinner than pack columns and have an internal diameter of 

<1mm and have the stationary phase coated on the inside32. 

2.4.1.2 Backflush 

 

The GC used for CO oxidation (Agilent 490) is equipped with a back flush. 

Back flushing is a process of removing unwanted products. The gas sample 

is initially separated on a pre-column, and the quickly eluting sample would 

then pass through a pressure point to the main column. After a selected time 

the system would reverse the flow before the pressure point, removing the 

unwanted products to vent. For the CO oxidation GC, backflush is used to 

prevent carbon dioxide and water from entering the molecular sieves column 

as these products can block this type of column, and the backflush also 

allows direct analysis of carbon monoxide concentration relative to oxygen 

and nitrogen peaks33. 

 

 



 

85 
 

 

2.4.1.3 Injection valves 

 

For gas sampling using an online GC (not the Agilent 490 used in CO 

oxidation), the sample is injected using a sample loop. This is a relatively 

simple concept whereby the gas sample is flowed through a sample loop of a 

known, fixed volume as shown in Figure 2.16 a
27. When the GC injects 

(Figure 2.16 b), the sample loop is switched so that the carrier gas flows 

through the loop and into the column32. This occurs for a few seconds before 

the valve is switched back for refilling. This is a very efficient method of 

injection of a sample to a column with <0.5% variation in the gas volume. 

 

a b  

Figure 2.16: GC sample loop in a) loading and b) inject  

 

2.4.1.4 GC detectors 

There are a variety of detectors used to detect the end product, however the 

two most common used are flame ionisation detector (FID) and thermal 

conductivity detector (TCD)32. FID, commonly used for detecting organic 

compounds, essentially work by exposing the analyte to a hydrogen-air flame 

which pyrolyzes the molecule into ions and electrons. These ions/electrons 

then interact with an electrode which give a response. TCD consists of two 

heated coils, with one of the coils in exposed to the analyte gas and the other 

under the carrier gas as a reference.  

The resistance of these coils is dependent on the atmosphere they are 

under. Hydrogen and helium have a higher thermal conductivity than other 

Carrier gas Carrier gas 
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gas so when the gas composition changes the thermal conductivity of the 

gas rapidly changes which changes resistance of the coil thereby creating a 

signal when an analyte comes off the column into the TCD32. 

GC and the equipment (Chembet Pulsar) used for TPR and N2O 

decomposition utilise TCD for detection but these operate differently. The 

TPR measures the change in conductivity of a gas before and after it had 

passed over a catalyst bed while the TCD of a GC works by measuring the 

difference between the separated gas mixture and carrier gas  

reference9, 27, 32.The detectors do not explicitly tell what the analyte is, only 

that there is a gas component being separated at a specific time or 

temperature. The assignment of the peaks area based on calibrated runs 

with known sample compositions and concentrations. 

 

2.4.1.5 GC layout Diagrams 

 

 

 

Figure 2.17: Column and switching value layout for the GC (Agilent 7890) used for 
propane oxidation 
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Figure 2.18: Channel and column layout for the micro GC (Agilent 490) used for CO 
oxidation 

 

2.4.2 Carbon monoxide oxidation reaction 

Carbon monoxide oxidation reaction was performed in a glass U-shape 

reactor (6 mm outer diameter, with a 4 mm inner diameter) placed in a 

programmable water bath (Thermo Versa cool) as shown in Figure 2.19. 

50 mg of the catalyst was placed in the U-shaped glass reactor (6 mm overall 

diameter 4 mm inner diameter) and held in place by glass wool. The inlet of 

the glass reactor was connected the gas feed of 4850 ppm CO/air or N2 

which was controlled by mass flow controller set to a flow rate of 20 ml min-1, 

which gives a gas hourly space velocity (GHSV) of 19100 s-1. The outlet of 

the glass reactor was connected to a gas chromatogram that sampled and 

analysed the outgoing gas mixture.  

Gas chromatography was performed on an Agilent Micro GC 490 fitted with 

two channels (Figure 2.17). Channel 1 is fitted with a 10 meter molsieve 5Å, 

heated to 120 °C with a heated injector (80 °C). Channel 2 is fitted with a 10 

meter Poraplot Q heated to 80 °C. The pressure on both columns was 

maintained at 150kPa. The reaction gases on both columns were analysed 

by TCD. 
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Figure 2.19: Diagram of the reactor used for carbon monoxide oxidation symbols are 
defined in Table 2.6 

 

The GC reports both channels independently of each other to give two 

chromatograms. It should be noted here that this is different to how the 

propane oxidation GC (Agilent 7890 A) (Section 2.3.3) give its chromatogram 

in that the chromatogram gives two different separations whereas the 

propane oxidation gives two different methods of detection (FID and TCD) 

from the same product separation. 

Table 2.5: List of the retention time and peak heights for CO oxidation for no 
conversion (Channel 1) and maximum conversion (channel 2) 

Channel 1 Channel 2 

Retention 

time/ min 

Gas  Peak 

maximum 

Retention 

time/ min 

Gas  Peak 

maximum 

0.482 O2 19.757±0.05 0.373 N2/O2 98.856±0.05 

0.546 N2 79.738±0.05 0.480 CO2 0.505±0.05 

0.809 CO 0.465±0.05 0.935 CO/H2O 0.639±0.05 

Gas Chromatogram 

Catalyst Bed    

+ Glass wool 

 

5000 ppm CO/air 

MFC control 

Nitrogen 
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The CO maximum was worked out by performing a blank reaction with no 

catalyst. The CO peak at no conversion is 0.465 ±0.02  (based on variations 

observed during blank runs), which corresponds to the 4850 ppm of CO in 

the air mixture. On Channel 2 the CO2 peak at maximum conversion was 

0.500± 0.005. 

a) 𝐶𝑂 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 % = 100 −
𝐶𝑂 𝑐𝑜𝑢𝑛𝑡𝑠

𝐶𝑂 𝑐𝑜𝑢𝑛𝑡𝑠 𝑓𝑜𝑟 𝑛𝑜 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
𝑥100 

b)    𝐶𝑂 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 % =  
𝐶𝑂2 𝐶𝑜𝑢𝑛𝑡𝑠

𝐶𝑂2 𝑐𝑜𝑢𝑛𝑡𝑠 𝑎𝑡 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
𝑥100 

C) 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (𝑚𝑜𝑙 𝑚−2𝑠−1) =
(𝑚𝑜𝑙𝑠 𝑜𝑓 𝐶𝑂 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑) 𝑋  (% 𝑜𝑓 𝐶𝑂 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑) 

(𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡) 𝑋 (𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑚𝑎𝑠𝑠)
 

Figure 2.20: The calculations used for work out CO conversion using a) CO peak in 
channel 1, b) CO2 peak in channel 2 and c) the calculation used to determine surface 
area normalised conversion 

 

2.4.3 Propane oxidation 

The propane oxidation was done under a 5000 ppm mixture of propane in 

synthetic air. The reaction was done on a reactor set up in Figure 2.21 which 

was designed for both propane oxidation and oxidative dehydrogenation 

reactions.  

The catalyst (50 mg-120 mg) was place in a quartz tube (internal diameter 7 

mm) and held in place with quartz wool to ensure a 10 mm long catalyst bed 

(unless otherwise state) which gave a GHSV of 6200 h-1 at a flow rate of 40 

ml min-1. A thermocouple was inserted so that it was resting just above the 

catalyst bed.  The reaction gas mixture was flowed through the bypass for 

the first hour before being flowed through the catalyst bed. The catalyst bed 

would then be heated from 200-400 °C (from 100 °C with cobalt based 

oxides) at 50 °C increment and held at each temperature increment for 1 

hour (or for 45 minutes for iron oxide) to allow for stabilisation and averaging. 
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Figure 2.21: Schematic of the reactor used for propane oxidation 

 

a)   𝐶3𝐻8 % =
𝐶3𝐻8 (𝑝𝑝𝑚)

𝐶3𝐻8(𝑝𝑝𝑚) 𝑓𝑜𝑟 𝑛𝑜 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
𝑥100 

b)     𝐶𝑂2 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 % =
𝐶𝑂2(𝑝𝑝𝑚)

𝐶3𝐻6(𝑝𝑝𝑚)𝑠+𝐶2𝐻4(𝑝𝑝𝑚)+𝐶𝑂2(𝑝𝑝𝑚)+𝐶𝑂 (𝑝𝑝𝑚)
 

c) 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (𝑚𝑜𝑙 𝑔−1𝑠−1) =
(𝑚𝑜𝑙𝑠 𝑜𝑓 𝑝𝑟𝑜𝑝𝑎𝑛𝑒 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑) 𝑋  (% 𝑜𝑓 𝑝𝑟𝑜𝑝𝑎𝑛𝑒 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑) 

 (𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑚𝑎𝑠𝑠)
 

Figure 2.22: The calculation to work out a) propane conversion, b) CO2 selectivity and 
c) mass normalised rate normalised activity 

For deactivation studies on cobalt the reactor was heated to 250 °C and held 

for 16 hours with sampling every 15 minutes (GC run time). The products 

were analysed using an on line Agilent GC 7890A. The gases were 

separated with a Haysep Q and molsive 5Å columns and analysed with an 

FID and TCD. The GC was equipped with a methaniser, an nickle catalyst 

that converts CO and CO2 to methane so that it can be detected by the the 

FID34, 35. Propane conversion, CO2 selectivity (Figure 22 a and b) were 

worked out by converting the counts to concertation in ppm using the 
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response factor, a constant that is worked out from plotting known 

concentrations against GC counts.  

Error in propane conversion was worked out by repeating a catalyst run with 

the same material and was found to be 9.8% of the value calculated (e.g. for 

50 % conversion the error would be ± 4.9 %). 

 

2.4.4 Methanol synthesis testing  

 

All methanol synthesis testing presented in this thesis was performed by  

Dr James Hayward. The reaction was performed on a 6 bed reactor (Figure 

2.23). (0.1 g) of the CuO/ZnO was placed in a stainless-steel reactor tube, 

suspended by quartz wool, and reduced in situ under a 5% H2/He  

(25 ml min-1) at 225 °C prior to the testing, to form the active Cu/ZnO 

catalyst.  

 

Figure 2.23: Diagram for the reactor used for methanol synthesis testing 

After reduction the reactor was then cooled down to room temperature and 

the gas flow was switched to a (20:60:20) CO2:H2:N2 gas mixture and the 
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pressure set to 20 bar using a back pressure regulator. The reactors were 

then heated to 200 °C, 225 °C and 250 °C. The reactor was held at each 

temperature interval for 200 minutes. Each catalyst bed had its own 

independent MFC and temperature controlled furnace. Product were 

analysed on an Agilent 7890b equipped with an FID and TCD with a gas 

sampling run time of 25 minutes. A Vici valve was used to select each 

individual catalyst reactor.  The GC peaks were translated to concentrations 

using the response factor and the molar flow rate of the total gas and CO2 at 

standard temperature and pressure. These values were then used to 

calculate carbon dioxide conversion, methanol selectivity and yield using the 

equations shown in Figure 2.24 

a) 𝐶𝑂2𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 % =
𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (𝑚𝑜𝑙 𝑚𝑖𝑛−1)

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑒𝑒𝑑 𝐶𝑂2(𝑚𝑜𝑙 𝑚𝑖𝑛−1)
𝑥100 

 

b)  𝐶𝐻3𝑂𝐻 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 % =  
𝐶𝐻3𝑂𝐻 (𝑚𝑜𝑙 𝑚𝑖𝑛−1)

𝐶𝐻3𝑂𝐻 + 𝐶𝐻4 +𝐶𝑂 +𝐶𝐻3𝑂𝐶𝐻3(𝑚𝑜𝑙 𝑚𝑖𝑛−1)
𝑥100 

 

c) 𝐶𝐻3𝑂𝐻 𝑌𝑖𝑒𝑙𝑑 % =  
𝐶𝐻3𝑂𝐻 (𝑚𝑜𝑙 𝑚𝑖𝑛−1)

𝑡ℎ𝑒𝑜𝑟𝑡𝑖𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑢𝑚 𝐶𝐻3𝑂𝐻 𝑓𝑟𝑜𝑚 𝐶𝑂2 𝑓𝑒𝑒𝑑 (𝑚𝑜𝑙 𝑚𝑖𝑛−1)
𝑥100 

  

Figure 2.24: Methanol synthesis calculations a) CO2 conversion b) CH3OH selectivity 
and c) CH3OH Yield 

Table 2.6: Definition of symbols 

Symbol Meaning 

 
Valve 

 

 

Three Way Valve 

 

Mass Flow Controller 
 

 

Gas Filter 
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Chapter 3 Choline Chloride-Oxalic Acid Based Deep Eutectic 

Solvents for the Preparation of Metal Oxalate Precursors for 

Metal Oxide Catalyst 

 

3.1 Introduction 
 

3.1.1 Background on deep eutectic solvents and metal oxalates 
 

The use of deep eutectic solvents (DES) to make metal oxides as catalyst or 

for other applications has been rapidly expanding over the last few years due 

to a better understanding of DES systems1-3. The advantage of DES over 

ionic liquids has mostly been focused on the cheapness of their components 

and their less complex synthesis4 as well as their components being less 

toxic although this is not always the case5.  

A choline chloride-urea mixture has been established as a DES for the 

preparation of metal oxides or metal oxide precursors such as ceria for CO 

oxidation6. This method utilised ionothermal conditions which resulted in the 

breaking down of urea, to form a cerium oxycarbonate precursor or forming 

the oxide depending on the conditions used6. Ionothermal synthesis has also 

been used to make other oxide precursors such as manganese carbonate7 or 

a cobalt-iron double layer hydroxide3 which are then calcined to form the 

metal oxide. The use choline chloride-urea can also be used to prepare metal 

oxides via other technique such as precipitation using an anti-solvent8.   

Another DES that could be utilised is choline chloride and oxalic acid. This 

was one of the DES that Abbott et al. had reported in 20049 and has been 

used for various applications but very little in the synthesis of metal oxalates 

as a metal oxide precursor. A few studies were done on making metal 

oxalate in DES such as the formation of gallium oxalate10 or lanthanide 

oxalates (dysprosium and erbium)11, using ionothermal synthesis at a 

temperature of 120 °C, over a 3-day period. These metal oxalates were 

formed during the ionothermal synthesis followed by washing with water to 

remove the precursor choline chloride and excess oxalic acid.  Another study 

looked into the use of choline chloride oxalic acid, alongside other choline 
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DES mixtures, as a template to make MgFe2O4 by mixing the metal oxides in 

the DES, then calcining the mixture, although this resulted with some degree 

of phase separation12. 

The use of metal oxalate as precursors for both single and mixed metal 

oxides has been widely established, including applications in the preparation 

of catalysts13,14. Using metal oxalates have an advantage in that the metal 

oxide can retain the initial morphology of the metal oxalate after calcination15, 

meaning that the formation of the initial oxalate can be used as a route to 

achieving metal oxides with controlled morphologies. Another advantage of 

oxalates is that different metal oxide phase can be achieved by using 

different calcination conditions and atmospheres16. 

Previous methods of making metal oxalate with controlled morphologies such 

as nanorods or polyhedrons include surfactant assisted growth with bis(2-

ethylhexyl)sodium sulfosuccinate15,17. Cobalt oxalate has also been 

synthesised with ionic liquids (such as [BMIM] [BF4]) under microwave power 

which favoured linear growth forming nanorods18. Another example included 

the controlled precipitation of cobalt oxalate from organic solvents (such as 

N,N-dimethylacetamide) with the addition of water19.  

However, if the metal oxalate can be precipitated from a DES using a 

controlled anti-solvent process then a new route for making metal oxalates 

with a degree of controlled morphology and shape of the precipitated oxalate 

could be achieved. 
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3.1.2 Overview of the preparation method for cobalt, manganese and 

iron oxalate 

 

The design of the methodology was based on the three steps required for 

controlled synthesis of the oxalate precursors. The first step involved 

dissolving the metal salt into the DES (formed at approximately 80 °C); 

secondly water was removed (by heating to 150 °C after allowing the system 

to stabilise at 120 °C for 1 hour); and thirdly the anti-solvent was added after 

cooling to precipitated the metal oxalate. This protocol was used for all metal 

oxalate preparations in this chapter. 

Cobalt acetate was dissolved in the choline chloride-oxalic acid mixture at a 

ratio of 0.1:1:1 of cobalt acetate:choline chloride:oxalic acid. The cobalt 

oxalate mixture was precipitated in a range of anti-solvents; pure water, 

50:50 (volume ratio) water-ethanol, 50:50 water-methanol, pure ethanol and 

pure methanol. For a long precipitation time, the anti-solvent (100 ml) was 

injected at a rate of 1 ml min-1 followed by 100 ml at a rate of 4 ml min-1 with 

the. For a fast precipitation the DES-metal oxalate mixture was poured into 

600 ml of the anti-solvent.  

During the precipitation of the cobalt oxalate with the 50:50 water-ethanol 

anti-solvent, the DES formed a highly viscous gel, which required stirring. At 

least 100-200 ml of water-ethanol anti-solvent to 40 g of DES was required to 

break the eutectic and precipitate the metal oxalate. In contrast pure water 

mixed into the DES-metal gel for the first 10 ml (to 40 g of the DES) before 

the cobalt oxalate precipitated.  
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Figure 3.1: The process of making cobalt oxalate and the cobalt oxide catalyst in this 
chapter using deep eutectic solvent through the anti-solvent process 

 

When water or water-ethanol/methanol anti-solvent mixtures were used the 

mixture would form a light pink precipitate. However, when pure ethanol was 

used the mixture formed a purple gel-like precipitate and if dried would revert 

back to the blue cobalt-choline chloride-oxalic acid gel rather than a pink 

solid that would be expected for cobalt oxalate. 

This would suggest that the ethanol was mixed with the gel but did not 

precipitate the cobalt oxalate out of the DES mixture. When pure methanol 

was used a dark pink precipitate formed but characterisation data showed 

that this was not a pure cobalt oxalate hydrate as per when water was used 

(see Section 3.2.3) 

The methodology was also applied to manganese and iron oxalate to see if 

this technique could be used to make other metal oxalates. The method was 

also applied to make mixed metal oxalates cobalt manganese and iron 

manganese. 
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3.1.3 Aims of the chapter  

 

The aim of this chapter was to investigate the potential of choline chloride-

oxalic acid deep eutectic solvent for tailoring the shape and morphology of 

metal oxalates as precursors to metal oxides focussing on cobalt manganese 

and iron oxides as catalysts for the total oxidation of volatile organic 

compounds (VOCs). 

The different conditions as anti-solvent mixture, rate of addition of the anti-

solvent to the DES and precursor metal salt were varied to observe the effect 

on morphology and surface area of the materials. The materials were 

compared to conventionally synthesis metal oxalate and oxides derivatives to 

determine the advantages of using this methodology. The catalysts were also 

tested for propane oxidation as a model for assigning their catalytic activity 

relative to catalyst made from other methods such as supercritical anti-

solvent (SAS) precipitation20 and metal oxalate made using oxalic sol-gel 

procedure21. 

3.2 Cobalt oxalate  

 

3.2.1 Synthesis of cobalt oxalate and cobalt oxide and comparison to 

standard 
 

Cobalt oxide was chosen as the initial material to assess the methodology. 

Co3O4 is a known active catalyst for volatile organic compound oxidation 

(VOC) and some cobalt oxide catalysts that were studied for this reaction 

have been prepared from cobalt oxalate22. Cobalt oxide is also a good 

catalyst to test this method on since the method of preparation affects the 

particle shape and crystallite size of cobalt oxide which can impact on their 

catalytic activity23. The use of DES and controlled anti-solvent system could 

potentially be used to achieve highly active cobalt oxide catalysts. 

The cobalt oxide derived from the DES prepared oxalate was compared with 

supercritical anti-solvent precipitated cobalt acetate and metal oxalate 

prepared by oxalate gel method14, 24 .  
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The anti-solvent mixture that was initial chosen was a 50:50 (volume ratio) 

water: ethanol mixture. The materials prepared by this method were 

compared with materials synthesised by oxalate gel method where the metal 

oxalate was precipitated in an ethanol solution. One aim of this work was to 

demonstrate that the cobalt oxalate could be precipitated from the DES in a 

controlled manor achieving morphologies that could not be easily obtained 

using the oxalate gel method. 

 

Figure 3.2: XRD of the cobalt oxalate precipitated using a) the oxalate gel method and 
b) DES anti-solvent method using 50:50 water: ethanol anti-solvent 

 

The XRD pattern of the precipitate (Figure 3.2) confirmed that the cobalt 

oxalate had precipitated from the DES in the anti-solvent mixture by the 

reflections at 18.6° (2 0 2), 22.7° (1 1 2), 29.5° and 34.9° . However, the XRD 

pattern of the cobalt oxalate precipitated from DES and that precipitated by 

oxalate gel have some notable differences, such as the reflection at 2θ=21.3° 

which corresponds to the (1 1 2) plane that is missing in the sample that was 

prepared by DES anti-solvent. In addition, there appears to be two reflections 

at 2θ=18.3° and 18.7° in the DES precipitated sample but not in the oxalate 

gel. This would suggest that the cobalt oxalate from the precipitated oxalate 

gel method had an orthorhombic structure (based on the single peak at 
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2θ=18.6° and 21.3°), while the DES precipitated oxalate was a monoclinic 

phase. 

FTIR analysis (Figure 3.3) showed vibrational peaks that corresponded with 

the  cobalt oxalate hydrates with peaks at 3350 cm-1 (O-H), 1614 cm-1 (C-O) 

symmetrical stretching 1357 cm-1 and 1309 cm-1 (C-O asymmetric stretching) 

corresponding to the oxalate species. The peaks all belong to the cobalt 

oxalate25, with no additional vibrations that could come from residual species, 

such as choline chloride, visible in the spectra, suggesting that the choline 

and remaining DES (choline chloride and excess oxalic acid) was removed 

during the precipitation and washing process.  

 

Figure 3.3: FTIR of cobalt oxalate precipitated from choline chloride-oxalic acid in 
water-ethanol anti-solvent 

The TGA/DSC of the sample (Figure 3.4) showed two mass losses. The first 

(endothermic) loss at 135-162 °C (with a 17.3% weight loss) corresponds to 

the loss of crystalline water. This is followed by a large exothermic peak at 

275 °C (38% weight loss) which would be the decomposition of the oxalate to 

carbon dioxide, carbon monoxide and the metal oxide. The overall profile 

shows a mass loss typical of cobalt oxalate decomposition in terms of both 

temperatures of mass loss and the % weight change. This would suggest, 

along with the FTIR, that there was very little choline chloride left in the 

sample although any remaining choline chloride might burn off during the 

large exotherm at 275 °C (decomposition temperature of choline chloride is 

302 °C).  
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The cobalt oxalates made with other precipitation methods and reference 

methods had the same TGA profile. The exception to this was when pure 

methanol was used to precipitate described later (see Section 3.2.3). 

 

Figure 3.4: Thermal gravimetric analysis and differential scanning calorimetry of 
cobalt oxalate precipitated from the choline chloride-oxalic acid DES in water-ethanol 

anti-solvent 

 

XRD analysis on the calcined samples (Figure 3.5) confirmed that the cobalt 

oxalate formed Co3O4 after calcination at 500 °C. The DES precipitated 

sample had a much higher degree of crystallinity than the oxalate gel 

precipitated sample and this is reflected in their surface areas with the 

oxalate gel having 22 m2 g-1 (± 2 m2 g-1) compared to the 15 m2 g-1  

(± 2 m2 g-1) of the DES and the supercritical anti-solvent precipitated 

materials. 

The low surface area is probably a result of the sintering process that 

occurred during the calcination at 500 °C leading to larger crystallites and 

lower surface areas (Table 3.1), although this also occurred with the oxalate 

gel material. 
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Figure 3.5: XRD of the cobalt oxide calcined at 500 °C from precursor prepared by a) 

DES, b) oxalate gel and c) supercritical anti-solvent precipitated cobalt acetate 

 

Table 3.1: Surface area (5 point BET) and XRD crystallite size (± 2 nm)(of the Co3O4 
catalysts prepared DES, oxalate gel and supercritical anti-solvent precipitation 
 (± 2 m

2
 g

-1
)  

Preparation method Surface area/ m2 g-1 Crystallite size 2θ=36.8° 
/nm 

DES-oxalate 15  37.9 

SAS (cobalt acetate) 16  27.9 

Oxalate gel 22  35.6 

 

SEM imaging of the cobalt oxalate that was precipitated using the 50:50 

water-ethanol anti-solvent (Figure 3.6 a), showed that the precipitate had 

primarily formed rod shaped cobalt oxalate. The cobalt oxalate rods formed 

here are similar to those that had previously been reported, that were 

synthesised under microwave power18,25. The formation of the rods in the 

ionic liquid solution however, was attributed to the polarisation of ions under 

microwave power but here the formation of the rods occurs during the anti-

solvent precipitation. 
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a b  

c  

The calcined cobalt oxalate (Figure 3.6 b and c) retained the rod shaped 

morphology after calcination. However, the cobalt oxide had formed distinct 

crystallites that appeared to be joined together in the rods of the precursor. 

These crystallites were most likely formed during the high temperature 

calcination which resulted in the sintering observed by the XRD (Figure 3.5) 

and surface area analysis (Table 3.1).  

Comparison of the SEM images of the cobalt oxide calcined at 500 °C from 

the cobalt oxalate prepared by DES (Figures 3.6) and oxalate gel (Figure 3.7) 

showed differences in morphology between the two preparation methods. 

While DES prepared cobalt oxalate formed needle like morphology, the 

oxalate gel formed clusters of oxides with no particularly ordered 

morphology. This would be a reflection on their preparation methods; oxalate 

from DES used a controlled addition of water-ethanol, which allowed the slow 

precipitation of the cobalt oxalate from the DES and favoured the liner 

growth. With the oxalate gel method however, the precipitation occurred in a 

less controlled manor, hence the more disparate morphology.   

Figure 3.6: SEM images of a) 
cobalt oxalate precipitated 
from DES in 50:50 water 
ethanol, b) calcined 500 °C and 
c) close up image of the cobalt 
oxide needles.  

(Image B taken by Dr Thomas 
Davis) 
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a  b  

Figure 3.7: a) and b) SEM images of Co3O4 (calcined 500 °C) from cobalt oxalate 
prepared by oxalate gel 

The cobalt oxides made from the technique were tested as VOC catalyst for 

the total oxidation of propane, to see how they compare in terms of 

conversion / catalyst activity to cobalt oxide calcined 500 °C from precursors 

prepared by other techniques such as oxalate gel, supercritical anti-solvent 

or calcined cobalt acetate tetrahydrate.  

 

Table 3.2: The temperature of conversion at 10% and 90% for cobalt oxide catalyst 
with a 51-55 mg catalyst loading 

Catalyst T10/ °C T50/ °C T90/ °C 

DES 205 246  298 

SAS 198 225 265  

Acetate 216 271 321 

 

The DES samples were using a catalyst loading of 50-55 mg and a GHSV of 

6200 h-1. The low GHSV was due to the very low density of the DES cobalt 

oxide, which originating from the needles structure. Selectivity to CO2  

(Figure 3.9) was usually within 95% after 250 °C for all catalyst although SAS 
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and DES lower selectivity at 150 °C due with higher amounts of CO that had 

formed during the reaction.  

 

Figure 3.8: Propane conversion for a range of cobalt catalyst calcined at 500 °C, 
loading at 52-55 mg   

 

The cobalt oxide catalysts derived from SAS precipitated acetate was shown 

to be the most active catalyst achieving total conversion at 300 °C.  The DES 

anti-solvent catalyst was show to be less active than the supercritical anti-

solvent precipitated catalyst despite having similar surface areas. The higher 

activity of the supercritical anti-solvent catalyst over the DES oxalate 

however may be attributed to the smaller crystallite size which is linked to the 

catalytic activity of Co3O4 for propane oxidation22. However the DES anti-

solvent cobalt oxide catalyst was more active than the cobalt oxide formed 

from calcined acetate with a T50 of 246 °C  for DES oxalate compared to T50 

of 271 °C for the acetate. 
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Figure 3.9: Carbon dioxide selectivity of the different Cobalt oxide catalysts during the 
propane conversion shown in Figure 3.8 

Comparison of mass normalised activity of the DES anti-solvent derived 

cobalt oxide with oxalate gel at the same GHSV of 6200 h-1 (Figure 3.10) 

showed similar performance at 200 °C with the oxalate gel being slightly 

better than the DES derived catalysts (which had archived 98% conversion at  

250 °C with 125 mg loading).   

Figure 3.10: Mass normalised activity of the cobalt oxide catalysts calcined from 

cobalt oxalate prepared by DES anti-solvent (54 mg) and oxalate gel (125 mg) GHSV 

=6200 h
-1 

(error ±10 % taking into account error of surface area and catalyst mass) 
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3.2.2 Effect of heat treatment 

 

The initial catalyst was calcined at 500 °C to form the oxide from the oxalate 

and also to ensure the removal of any residual oxalate or choline chloride. 

However as observed by XRD, BET and SEM analysis of the cobalt oxides, 

(notably the DES anti-solvent) showed reduced surface area and larger 

crystallites which reduced their catalytic activity. Therefore, the cobalt oxalate 

was also calcined at 300 °C, just above the main TGA mass loss to see if the 

surface area could be increased. In addition, the effect of different heat-

treatment conditions such as calcination temperature, flow rate and heating 

rate was also investigated to see how the DES anti-solvent precipitated 

catalysts behaved under different calcination conditions and to see if the 

catalyst surface and activity can be optimised. 

 

Figure 3.11: XRD pattern of the cobalt oxide calcined from cobalt oxalate, precipitated 
in 50:50 water-ethanol at a) 300 °C and b) 500 °C 

The XRD pattern (Figure 3.11) of the calcined samples showed that after 

calcination at both 300 °C and 500 °C the oxalate decomposed to form a 

spinel Co3O4 phase. As expected the sample calcined at 300 °C had a lower 

degree of crystallinity (Table 3.3) with a crystallite size of 19.6 nm (at 
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2θ=36.8°) as well as a higher surface area of 55 m2 g-1 compared to 16 m2 g-1 

for the material calcined at 500 °C. 

Table 3.3: Crystallite size (±2 nm) for cobalt oxide synthesised by DES anti-solvent 
and oxalate gel calcined at 300 °C 

Sample preparation 
(airflow, heating rate) 

Crystallite size (2θ=36.8°) 
/ nm 

DES oxalate 
(Static 2 °C min-1) 

19.6 

DES Oxalate 
(static, 1 °C min-1) 

19.5 

DES Oxalate 
 (75 ml min-1, 2 °C min-1) 

16.7 

Oxalate gel 
(static, 2 °C min-1) 

15.2 

 

The effect of heating rate and air flow rate during the calcination was also 

investigate for several reasons; firstly, the oxalate decomposition to cobalt 

oxide is an exothermic process so controlling the heating rate could decrease 

the likelihood of sintering. Secondly, the airflow can aid in removing residual 

carbon that may result from the rapid decomposition of the oxalate and 

residual DES (which could reduce or block surface sites). 

Figure 3.12: The XRD patterns of the cobalt oxalate precipitated from DES in 50:50 
water-ethanol anti-solvent with different heat treatments a) exposed air flow 
(approximately 5 ml min

-1
) 2 °C min

-1
 b) direct air flow (50 ml min

-1
) 2 °C min

-1
) and c) 

open furnace (exposed to an air flow (approximately 5 ml min
-1

) 1 °C min
-1 
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The effect of the ramp rate and air flow was shown by XRD (Figure 3.12) to 

make some difference, with the sample calcined exposed to an air flow (open 

furnace) showed a higher degree of crystallinity (19.8 nm at 2θ=36.9°) 

compared to direct which airflow showed a smaller crystallite size (16.7 nm).  

The heating rate on the other hand did not show significant difference to the 

crystallinity of the sample. 

Comparison of the SEM images (Figure 3.13) of the cobalt oxalate and the 

cobalt oxide materials calcined at different temperatures shows the change in 

crystallites over the calcination temperature range. The sample calcined at 

500 °C (Figure 3.13 a) shows a series of larger crystallites while the sample 

calcined at 300 °C (Figure 3.13 b) did not show distinct crystallites in the 

needle structure. The 500 °C calcined materials showed that significant 

sintering had occurred resulting in the large crystallites seen in the SEM and 

observed by XRD. 

a  b    

c   

 

Figure 3.13: SEM images of 
cobalt oxalate precipitated from 
DES in the 50:50 water ethanol 
anti-solvent mixture a) as 
precipitated, b) calcined 300 °C 
and c) calcined 500 °C 
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The DES oxalate calcined at 300 °C showed significant improvement in 

catalytic activity over the catalyst calcined at 500 °C showing 100 % 

conversion by 250 °C (Figure 3.14).  This increased in activity showed that 

the sintering that occurred after calcination at 500 °C had a significant effect 

on the catalytic performance of the cobalt oxide needles, which would be 

expected, by the rapid increase in crystallite size. The change in calcination 

conditions also appear to have had a rapid change in the catalytic activity of 

the DES-derived cobalt oxalates with the slow heating rate (1 °C min-1) 

catalyst showing the highest conversion (79% at 200 °C), despite the similar 

sized crystallite size to the sample calcined under airflow. The catalyst 

calcined under flowing air appeared to have the lowest conversion at 200 °C 

although like the others the conversion rapidly increased to 100 % by 250 °C 

with the light off occurring in the 150-250 °C range. 

 

 

Figure 3.14: Propane oxidation of the cobalt oxide calcined under different conditions 
(50-55 mg catalyst), GHSV 6200 h

-1
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3.2.3 Effect of anti-solvent mixtures and rate of addition of anti-solvent 

 

While the initial study into precipitating cobalt oxalate from DES was shown 

to make cobalt oxalate (and cobalt oxide) with rod-like morphology, the main 

objective of the method was to demonstrate the ability to change the 

morphology based on the anti-solvent process. As a result, different anti-

solvent mixtures were used to see how these influence the morphology, 

surface area and catalytic activity. The anti-solvents chosen were: water, 

50:50 water-methanol, pure methanol and pure ethanol. However, the pure 

ethanol anti-solvent resulted in the formation of a purple gel rather than a 

solid/powder precipitate.  

In addition, with water and 50:50 water-ethanol, the rate of addition was also 

varied with the standard (slow) rate of anti-solvent addition of 1 ml min-1 being 

compare to material that formed from the rapid addition of the anti-solvent to 

the DES.  

One of the factors considered when making the cobalt oxalate from the 

choline chloride-oxalic acid DES was the effect hydrated oxalic acid had on 

the metal oxalate and the corresponding oxide. Althought the water should 

have been removed during the process at 150 °C, the effect of using 

hydrated oxalic acid during the intial preparation stage should still be 

considered. A publication made by group of Gontrani et al.  has shown 

through X-ray and ionic conductivity that there were both physical and 

structual differences between DES with the hydrated and anhydrous oxalic 

acid DES26. However DES based on choline chloride with an organic acid 

including oxalic acid, malonic acid and malic acid are known to undergo 

esterifcation to form an ester and water27. It should also be noted that the 

choline chloride- oxalic acid DES has a decoposition temperature of  

160-162 °C 27. 

When water, 50:50 water-ethanol and 50:50 water-methanol were used as 

anti-solvents were used a pink precipitate formed which was confirmed as 

cobalt oxalate by XRD and FTIR. The XRD pattern of the cobalt oxalate 

precipitated in 50:50 water methanol (Figure 3.15 b) had similar reflections  as 
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the cobalt oxalate precipitated in 50:50 water: ethanol however, the 

precipitate had a single reflection at 2θ=18.4. The like the water-ethanol 

precipitated oxalate, the water methanol had no reflection at 2θ=21.3° (1 1 

2). 

 

Figure 3.15: XRD of the cobalt oxalate formed from DES with the anti-solvent of a) 

50:50 water-ethanol (fast), b) 50:50 water-methanol, c) water fast precipitation, d) 

anhydrous oxalic acid 50 50 water ethanol and e) water slow 

The XRD pattern (Figure 3.15 d) of the sample formed using the anhydrous 

DES (precipitated in the water-ethanol anti-solvent mixture) showed the 

same reflections as the samples that form from the DES that used hydrated 

oxalic acid. Like the cobalt oxalate that used hydrated oxalic acid the 
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reflections at 2θ=21.3° is not present. However, the reflection at 2θ= 30.1° 

and 48.3° are notably larger in the anhydrous sample than they are in the 

hydrate sample. 

The cobalt oxalate that was precipitated using water as the anti-solvent 

(Figure 3.15 c) showed the reflection at 2θ=21.3° which was not present in 

the sample precipitated in the water-ethanol anti-solvents but was present in 

the XRD of the sample which was precipitated by the oxalate gel method, 

which had been identified as an orthorhombic structure. What is notable is 

that this reflection was also not present in the sample that was slowly 

precipitated with a water anti-solvent (Figure 3.15 e) which suggests that the 

reflection and the oxalate structure may depend on the rate of addition and 

precipitation of the cobalt oxalate. 

The rate of precipitation appeared to have little effect on the 50:50 water-

ethanol with the XRD patterns (Figures 3.2 b and 3.15 a) appearing very 

similar including the broader reflection at 29-30°, rather than the sharper 

reflection at 30.2° that appears with the water-methanol precipitated oxalate. 

 

Figure 3.16: XRD of the precipitate formed from DES using methanol anti-solvent 

The precipitate (Figure 3.16) formed using methanol as the anti-solvent 

showed a very different XRD pattern to those precipitated with water-alcohol 

anti-solvents but there were reflections notably at 2θ=19.2° and 30.3° that 

can be assigned to the cobalt oxalate phase, however there are additional 
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reflections present in the XRD pattern such as 17.4° and 21.0° which do not 

originate from the cobalt oxalate. The intensities of the cobalt oxalate 

reflections were weaker than the other sample suggesting a more disordered 

sample showed that the cobalt oxalate had partially formed after the anti-

solvent precipitation. 

The FTIR of the cobalt species that was precipitated in pure methanol (Figure 

3.17 a) shows vibrations associated with the cobalt oxalate. However, the 

FTIR of this sample also feature additional vibrations shifts at 1750 cm-1, 

1474 cm-1, 1190 cm-1 and 956 cm-1 that are associated with choline 

chloride28-30. The  FTIR of the cobalt, choline chloride-oxalic acid mixture 

prior to anti solvent process (Figure 3.17 c) showed both the choline chloride 

vibrations and the oxalic acid (although shifted) at 1719 cm-1, 1487 cm-1 1176 

cm-1 and 951 cm-1.  
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Figure 3.17: FTIR of the cobalt sample that was precipitated in a) methanol and b) 
ethanol and c) FTIR of cobalt acetate dissolved in oxalic acid-choline chloride DES 
(after 3 hours 150 °C) 
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When both methanol and ethanol was added, the band at 1605 cm-1 (O-H 

bending) is notably stronger in these precipitate relative to the band at 1716-

1750 cm-1 than when the cobalt oxalate-DES mixture.  

This showed that the methanol sample was not a pure oxalate but as a 

mixture of cobalt oxalate and choline chloride and that water is required to 

break down the DES and remove the excess choline and oxalic acid. By 

comparison there was little or no indication of residual choline chloride 

present in the material that was precipitated with a water containing anti-

solvent. Since cobalt oxalate is mostly insoluble in water30  the DES structure 

breaks down and cobalt oxalate precipitates out when a water or water-

alcohol  anti-solvent mixture is used.  

a  b  

Figure 3.18: a) TGA profile of the cobalt precipitate using pure methanol (heating rate  
5 °C min

-1
) and b) DSC scan of the same precipitate heating rate 1 °C min

-1 

 

The TGA profile of the sample precipitated in pure methanol (Figure 3.18 a) 

showed a completely different profile from cobalt oxalate hydrate. The main 

mass loss occurred at 310-350 °C approximately 50 °C higher than would be 

expected for a metal oxalate (as well as those precipitated by DES with 

water-based anti-solvent). The FTIR did show the presence of an oxalate 

species in the sample but the addition vibrational shifts (partially those 

associated with cobalt oxalate-DES mixture) would suggest that the sample 

is not a standard oxalate material. 

A DSC scan (Figure 3.18 b) on the sample (at a heating rate of 1 °C min-1) 

showed that the mass loss at 350-370 °C (appearing at a lower temperature 
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in the DSC due to the lower heating rate) contributed to two large exothermic 

peaks, which would indicate that there was a two-part decomposition 

occurring (as was partially seen in the differential of the TGA). This two-part 

decomposition could possibly be the two components (choline chloride and 

oxalic acid/ cobalt oxalate) although this is above their expected 

decomposition temperatures. 

 

Figure 3.19: XRD of the DES anti-solvent prepared cobalt oxide (calcined 500 °C) with 
anti-solvent mixture of a) water and b) made using anhydrous oxalic acid 

 

The XRD patterns (Figures 3.19 and 3.20) of the cobalt oxalates prepared 

with the different anti-solvents calcined at 300 °C showed the reflections of 

Co3O4 with no other crystalline substance being present. Although the 

catalyst precipitated with methanol as the anti-solvent formed at a lower 

temperature the TGA determined although the mass loss did start to occur at 

300 °C (from differential and DSC).  
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Figure 3.20: XRD patterns of the DES-anti-solvent prepared cobalt oxides (calcined 
300 °C) using anti-solvent of a) 50:50 water ethanol, b) water fast and c) methanol  

 

The different anti-solvents caused some variations in both crystallite size and 

surface areas (Table 3.4). The water precipitated oxalate calcined at 300 °C 

shows lower surface area (38 m2 g-1) than the precipitate calcined at 300 °C 

with the water-ethanol or pure methanol precipitated oxalate showing surface 

area of 52-54 m2 g-1. The samples calcined at 500 °C all show similar surface 

area of 11-17 m2 g-1 and larger crystallite sizes resulting from the sintering 

that occurred.  

Table 3.4: Surface area (±2 m
2
 g

-1
) and crystallite size of the calcined cobalt oxalates 

prepared by DES with various anti-solvents. n/a is used for values not taken. 

Sample 

300 °C 500 °C 

Surface area/ 

m
2 
g

-1
 

 

Crystalline 

size at 

2θ=36.9°/ nm 

Surface area/ 

m
2 
g

-1
  

 

Crystalline size 

at 2θ=36.9° /nm 

Anhydrous 

Water-ethanol n/a n/a 16 40.5 

Water-ethanol 54 19.8 15 39.6 
Water-slow 

injection 38 26.1 17 47.9 
Water fast 

injection 
n/a n/a 11 45.3 

Methanol 52 22 n/a n/a 
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The effect of the anti-solvent mixture on the morphology of the oxalate was 

observed in the SEM images of the samples (Figure 3.21). The morphology 

did not change with the different rate of addition of the water-ethanol anti-

solvent to the DES. Changing the anti-solvent to water-methanol showed the 

same needle shaped cobalt oxalates that had occurred when water-ethanol 

was used. 

 

 a     b         

   c   d   

Figure 3.21 SEM images of the cobalt oxalate prepared with different anti-solvents a) 
50:50 water ethanol (fast), b) water slow, c) 50:50 water methanol and d) methanol 

The sample precipitated in water, with slow addition, showed some difference 

in morphology to the water-ethanol and water-methanol precipitated cobalt 

oxalates. The slow water precipitated cobalt oxalates still formed liner/rod like 

but these rods were both wider and shorter than the water-ethanol 

precipitated oxalate. This is in contrast to previous publications on the 

precipitation of zinc oxide from choline chloride urea which favours a more 

linear growth with pure water than water-ethanol mixture8. 
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The methanol precipitated sample (Figure 3.21 d) showed a very different 

morphology with plate shaped particles rather than the rods that were 

observed with the water and water alcohol precipitated oxalate. However, this 

precipitate was not a pure oxalate with some trace of DES/choline chloride 

remaining in the samples. The sample was only washed with methanol and 

had no water wash which would have removed the remaining DES but might 

not have formed the needles seen with water-methanol anti-solvent. 

The SEM of the methanol precipitated sample after calcination at 

300 °C (Figure 3.22 a) showed clusters of cobalt oxides that resembles the 

oxalate gel Co3O4 rather than the rod or needle structures that formed after 

precipitation from the DES in the water and water-alcohol anti-solvents. This 

is due to the precursor still being a partial mixed in the DES with no defined 

morphology resulting in the calcined oxide forming clusters of oxide 

crystallites rather than the rod-shaped clusters that the water-ethanol and 

water precipitated cobalt oxide had formed. 

a               b  

Figure 3.22: SEM of the Co3O4 catalysts formed from the DES a) methanol anti-solvent 
calcined 300 °C and b) water anti-solvent calcined 500 °C 
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Figure 3.23: Propane conversion using cobalt oxide catalysts prepared by DES anti-
solvent calcined at 300 °C, 50-55 mg of catalyst, GHSV= 6200h

-1 

  

The cobalt oxide (calcined at 300 °C) from the cobalt oxalate precipitated in 

the water-ethanol anti-solvent mixture was shown to be the most active 

propane oxidation catalysts out of the DES anti-solvent cobalt oxides. This is 

likely due to the higher surface area and smaller crystallite size than the 

water precipitated cobalt oxide. The methanol precipitated catalyst was 

shown to be the least active catalyst despite similar crystallite size and 

surface area. This is most likely due to the presences of residual choline 

chloride in the precursor sample which resulted in residual chloride species 

present in the calcined oxide which would have poisoned the catalyst and 

reduced its catalytic activity. However, all of these catalysts showed close to 

100% propane conversion by 250 °C. Comparison of these catalysts to 

previous studies, from the literature20, on Co3O4 catalysts synthesised by 

supercritical anti-solvent) showed that the DES precipitated catalysts showed 

similar conversion at 200 °C and 250 °C to the less optimised SAS Co3O4 

catalysts (calcined at 400  °C). However the more optimised SAS catalysts 

(that had 5-10% water/ethanol solvent) showed greater propane conversion 

0

10

20

30

40

50

60

70

80

90

100

100 150 200 250 300 350

P
ro

p
an

e
 c

o
n

ve
rs

io
n

 %
 

Temperature/ °C 

MeOH Water fast 50 50 water ethanol



 

123 
 

at lower temperatures compared to the DES-oxalate catalysts, especially 

those that were calcined at lower temperatures, showing 100% propane 

conversion at 200 °C 20, compared to the 13-35 % propane (at 200 °C) 

conversion seen with the DES-oxalate prepared cobalt oxides (calcined at 

300 °C) 

 

Figure 3.24: Long term propane oxidation at 200 °C using cobalt oxide catalysts (75 
mg) precipitated from DES and the oxalate gel-methods (error 9.8 %) 

The stability of the DES anti-solvent derived catalysts and one prepared by 

oxalate gel was investigated by performing propane oxidation at 200 °C for 

up to 12 hours (Figure 3.24). All three cobalt oxide catalysts showed an initial 

decrease but all stabilised within the first two hours. What is notable is that 

50:50 water-ethanol precipitated catalysts showed the lowest deactivation 

while the catalyst precipitated in water with a fast anti-solvent (calcined  

300 °C) showed a more rapid deactivation with a drop in propane conversion 

(from 28% to 19%) within the first hour and took longer to stabilise. The 

oxalate gel catalyst calcined at 300 °C appeared to be less active than the 

DES-water precipitated catalysts and also had a drop in propane conversion 

within the first hour. 
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3.3 Iron oxalate  

 

The DES anti-solvent methodology was also applied for the precipitation of 

iron oxalate as iron oxide precursors. The salt that was chosen to dissolved 

in the DES mixture was iron (II) acetate to form iron (II) oxalate since iron (III) 

oxalates are soluble in water31. The iron oxalate was precipitated in two anti-

solvent mixtures; 50:50 water-ethanol and pure water with slow addition of 

anti-solvent to solvent. Although the anti-solvent dissolved in the DES-iron 

oxalate better than the cobalt-DES vigorous stirring was still required to break 

up the gel that had formed.  

The XRD patterns (Figure 3.25) of both iron precipitates confirmed that iron 

(II) oxalate had formed. The anti-solvent seemed to change the precipitated 

material with the water-ethanol only showing one reflection at 18.4° (2 0 0) 

whereas the water precipitated oxalate showing two reflections at 18.4° (2 0 

0) and 18.2° (possibly from the (1 1 0)) as well as a larger reflection at 

2θ=28.3° (-3 1 2). This showed that the two anti-solvents precipitated 

different forms of iron oxalate similar to what was seen with the cobalt 

oxalate (Section 3.2.3). 

 

Figure 3.25: XRD of the iron oxalates precipitated from the DES in a) 50:50 water-
ethanol and b) water  
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Figure 3.26: TGA profile of the iron oxalate precipitated from DES in a) 50:50 water 
ethanol and b) water  

TGA profile for the two DES precipitated iron oxalates (Figure 3.26) show a 

loss of crystalline water occurring at 150 °C, followed by the main oxalate 

decomposition at 250 °C. There was no indication of any other 

decomposition product which showed that these samples were mostly iron 

oxalate and in addition the weight loss of 56% corresponding to the transition 

of iron oxalate to Fe2O3.  

 

Figure 3.27: XRD of the iron oxides calcined (300 °C) from the iron oxalates 
precipitated from DES in a) water, b) water-ethanol and c) calcined iron oxalate 
purchased from Sigma Aldrich  

 The XRD of the calcined iron oxide at 300 °C (Figure 3.27) had confirmed 

the degradation of the oxalate and the formation of primary α-Fe2O3 which 

was shown as the only phase present in the reference oxalate (Figure 3.27 c) 

and the DES oxalate precipitated in water. The iron oxide derived from the 
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50:50 water:ethanol precipitated oxalate showed additional reflections at 

2θ=30.5° and 43.6° which could indicate the possible presence of Fe3O4 or 

originating from γ-Fe2O3 which has its reflections in the same region. 

Although given that iron oxalate degrades to γ-Fe2O3 under inert atmosphere 

and Fe3O4 under a static air15 atmosphere the latter is more likely the phase. 

The iron oxide formed from the oxalate that was precipitated in water-ethanol 

mixture had an overall lower surface area (Table 3.5) than the iron oxide 

precipitated in water (221 m2 g-1), with the samples generally having 

increased surface area with decreasing crystallite size at 2θ=35.7° (1 1 0).  

Table 3.5: Surface area (BET 5 point) and crystallite size for the iron oxides after 
calcination of the iron oxalates at 300 °C, 3 hours, 2 °C min

-1 

Iron oxide/oxalate 
sample 

Surface area/  
m2 g-1  

Crystallite size 2θ=35.7° 

Water 221 (±10) 15.6 

50:50 water-ethanol 55 (±2) 19.2 

Sigma Aldrich iron 

oxalate dihydrate 

108 (±10) 16.4 

 

SEM images (Figure 3.28) of the iron oxalate showed that like the cobalt 

oxalate precipitated from the DES iron oxalate formed liner-rod like 

structures. However, the behaviour of iron oxalate in two anti-solvent 

mixtures differs to cobalt oxalate in that the iron oxalate precipitated in water 

showed longer and thinner rods whereas the iron oxalate precipitated in the 

water-ethanol mixture shows mostly shorter wider rods although some longer 

rods were present but less abundant.  
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a   b  

 c  

This seems to correspond to the surface areas of the oxides as the iron oxide 

calcined from the iron oxalate precipitated in water had a higher surface area 

and longer rods whereas  the iron oxide from the iron oxalate precipitated in 

the water-ethanol mixture that had shorter, wider rods with a lower surface 

area. The iron oxides retained the rod-like structure is after calcination at 300 

°C. The high surface area could also be contributed to porosity of the water 

precipitated iron oxalate but without a more in depth surface area analysis it 

cannot be certain that this is the case. 

a b   

Figure 3.29: XPS of the Iron oxide calcined from iron oxalate precipitated in water a) 
Fe 2p and b) Cl 2p regions  
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Figure 3.28: SEM images of 
iron oxalate precipitated 
from DES in a) water, b) 
water-ethanol and c) water 
precipitated oxalate  the 
calcined 300 °C  
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XPS of the Cl 2p region (Figure 3.29 b) shows the presence of the chloride 

species  in the final oxide even after washing and calcination at 300 °C. The 

binding energy of the Cl peak at 198.1 eV and 199.5 eV is within the region 

associated with metal chloride, which indicated that chlorine is binding to the 

iron rather than originating from residual organic chlorides that may have still 

been present. In comparison, there was no indication from XPS of chlorine 

present in the cobalt samples. The anti-solvent addition on the cobalt oxalate 

was greater than the iron and therefore more washing may be required to 

remove the chloride species. The Fe region (Figure 3.29 a) shows that the 

material precipitated in water was α-Fe2O3 based on the position of the 

satellite binding energy of  718.3 eV and the asymmetrical peak at 709.6 eV 

and 710.6 eV 32. 

 

Figure 3.30: Propane conversion of the iron oxides made from iron oxalate calcined at 
300 °C at a GHSV of 6200 h

-1
. 

The propane conversion (Figure 3.30) between the water-fast anti-solvent 

precipitated catalyst and the iron oxide the was calcined from stock iron 

oxalate did not show significant difference in terms of propane conversion 

and light-off temperature despite having lower surface, with the stock 

showing a slightly better performance. 
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 Like the cobalt oxalate, the 50:50 precipitated iron oxide had a much lower 

density and therefore the catalyst mass used to maintain the same volume 

(and GHSV). However, when the activity is normalised to surface area 

(Figure 3.31) the iron oxide precipitated form DES both showed similar 

activity at 300 °C, although at 350 °C the water precipitated catalyst was 

shown to be more active (due to the lower light off). The calcined oxalate 

catalyst however was more active in this respect than the DES precipitated 

catalysts. 

 

Figure 3.31: Surface area normalised activity of the iron oxide catalysts prepared by 
DES and reference catalysts (error ±10 % taking into account error of surface area and 
catalyst mass) 
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3.4 Manganese oxalate 

 

Three manganese precursors were dissolved into the choline chloride-oxalic 

acid mixture: manganese chloride tetrahydrate, manganese acetate 

tetrahydrate and manganese nitrate tetrahydrate, to observe the effect of the 

salt on the morphology of the manganese oxalates precipitated from the DES 

using as the water anti-solvent.  

The XRD patterns of the precipitates (Figure 3.32) confirmed the formation of 

manganese oxalate with all of the manganese precursors. However, the 

relative intensities of the reflections showed some variations between the 

three samples, notably the chloride sample where the reflection at 2θ=18.4° 

and 18.8°, which correspond to the (-2 0 2) and (2 0 0), are partially merged 

compared to those of the acetate and nitrate sample which had these 

reflections more as distinctively separate. 

 

Figure 3.32: XRD of manganese oxalate precipitated from the DES (water anti-solvent) 
with the original manganese salt as a) Mn(CH3CO2)2.4H2O, b) Mn(NO3)2.4H2O and c) 
MnCl2.4H2O  

The TGA profile (Figure 3.33) of the precipitated manganese oxalates shows 

the expected profile16  with the loss of crystalline water at 115-145 °C 

followed by the main oxalate decomposition to Mn5O8 (with some Mn2O3) and 

CO2/CO. The minor mass loss at 450 °C occurred in the region where Mn5O8 

transforms into Mn2O3. The TGA profiles and the weight loss for these two 
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oxalates are almost identical showing that the initial manganese salt does not 

affect the degradation of the oxalate or the extent of residual choline chloride 

present. 

 a b  

Figure 3.33: TGA profile of manganese oxalate precipitated from DES with the original 
manganese salt as a) Mn(CH3CO2)2.4H2O and b) MnCl2.4H2O 

The XRD pattern of the manganese oxalate (from manganese acetate) that 

was calcined at 350 °C (Figure 3.34 a) showed that the precursor had initially 

transformed into Mn5O8 but would further oxidise to form Mn2O3 at 500 °C. 

While the acetate sample was calcined at 350 °C and 500 °C, the TGA of the 

chloride sample showed a minor mass loss at 450 °C that is usually 

associated with the formation of Mn2O3 from Mn5O8 
16. 

 

Figure 3.34: XRD of manganese oxides from oxalate (acetate) formed at a) 350 °C and 

b) 500 °C 

a 

b 
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The XRD patterns of all three samples (Figure 3.35) showed the formation of 

Mn2O3 after calcination at 500 °C for 3 hours. The crystallite size at 2θ=33.1° 

appear to vary when different precursors are used, although the surface 

areas of the three samples were within 5 m2 g-1 of each other and did not 

significantly vary for the different manganese salt used (Table 3.6).  

 

Figure 3.35: XRD patterns of the manganese oxides calcined at 500 °C from the 
oxalates precipitated from DES with the precursor manganese salt as  
a) Mn(CH3CO2)2.4H2O, b) Mn(NO3)2.4H2O and c) MnCl2.4H2O 

 

Table 3.6: Surface areas (error ±2 m
2 
g

-1
) and crystallite size (± 2 nm) of the manganese 

oxalate and calcined derivatives 

Manganese salt dissolved 
in DES 

Manganese oxalate Mn2O3, 500°C 

Surface 
area/ 
m2 g-1 

Crystal size 
2θ= 29.8° 

Surface 
area/ 
m2 g-1 

Crystal size 
2θ=33.1° 

Mn(NO3)2.4H2O 2 64.1 26 30.8 

Mn(CH3CO2)2.4H2O 1 44.7 21 26.4 

MnCl2.4H2O 2 32.9 24 29.3 

 

a 

b 

c 
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The SEM images (Figure 3.36) of the manganese oxalates showed two 

interesting features. Firstly, the shape of the agglomerated particles differed 

between the three salts used with manganese chloride forming short and 

wide cylindrical shaped particles, nitrates forming smaller elliptical particles 

and acetates forming clusters of squared shaped particles. 

The second interesting feature is that the shape of the manganese oxalates 

precipitated by DES is completely different from the rod-shaped cobalt 

oxalate and iron oxalate precipitated from DES. This shows that the metal 

oxalate precipitation during anti-solvent process varies with different 

metal/elements that are being precipitated. This suggests, the effect of the 

dissolved salt on the final shape of the oxalate might differ for each metal.  

However, it should be noted that there was a delay from adding the anti-

solvent to the DES in the precipitation of the manganese oxalate. It may be 

the case that the oxalate is not precipitating from the DES via the anti-solvent 

 

Figure 3.36: SEM images of the 
manganese oxalate precipitated 
in water from the DES with the 
precursor salt as a) MnCl2.4H2O 
b) Mn(NO3)2.4H2O and c) 

Mn(CH3CO2)2.4H2O 
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procedure but dissolving in the water and precipitating from the oxalic acid 

present. 

 

Figure 3.37: Propane conversion using the manganese oxide catalyst calcined at 500 
°C GHSV of 6200 h

-1 

The propane total oxidation activity (Figure 3.37) for the three DES 

precipitated catalysts were compared to one made by supercritical anti-

solvent precipitation which gives manganese carbonate that is then calcined 

at 400 °C. What is notable was that the acetate derived Mn2O3 from the DES 

methodology showed similar activity to the Mn2O3 oxide prepared by 

supercritical anti-solvent precipitated catalysts with a lower T50 and similar 

T10 (Table 3.7). The nitrate derived catalyst performed the worse despite 

having a slightly higher surface area than the other manganese oxides with 

T90 at 368 °C compared to 294 °C for the acetate derived catalyst. 
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Table 3.7: T10, T50 and T90 for the DES oxalate prepared Mn2O3 catalyst and SAS 
precipitated Mn2O3 

Mn2O3 T10 T50 T90 

SAS 199 260 295 

DES nitrate 229 290 368 

DES chloride 213 270 324 

DES acetate 197 253 294 

 

3.5 The preparation of mixed metal oxides using DES-oxalate 

method  

 

The previous sections have demonstrated that choline chloride-oxalic acid 

based DES can be used to precipitate single metal oxalate of cobalt, iron and 

manganese with anti-solvents with the ability to control morphology (at least 

for cobalt and iron oxalates). However the ability of the technique to make 

mixed metal oxalate and mixed metal oxides is just as important since mixed 

cobalt manganese and iron manganese catalysts are potentially useful 

catalysts33.  Previous publications have shown that mixed cobalt-manganese 

oxalate prepared by oxalate gel and co-precipitation are a good precursor for 

the mixed oxides34. 

Therefore, three mixed metal oxalates were made using the DES-oxalate 

method with the 50:50 water-ethanol anti-solvent; mixed CoMnOx with fast 

and slow anti-solvent addition and a mixed FeMnOx all having 1:1 metal ratio. 
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3.5.1 Cobalt manganese oxalate 

 

Figure 3.38: XRD patterns of mixed Cobalt-manganese oxalate: a) oxalate gel method 
and d) DES method using 50:50 water-ethanol anti-solvent (fast). 

 

The XRD patterns of the cobalt manganese precipitate (Figure 3.38) shows 

reflections of a metal oxalate, with both cobalt oxalate and mixed cobalt 

manganese oxalate producing the same XRD patterns 2θ=18.6°, 22.7° and 

29.7°. However, there is no indication of reflections that might originate from 

phase separated manganese oxalate which suggest that the metals are well 

integrated in one phase. The DES anti-solvent precipitated oxalate also 

appeared to have a higher degree of crystallinity than the oxalate gel 

prepared sample.   

The XRD patterns of the calcined cobalt manganese oxides (Figure 3.39) only 

shows the reflections that could be assigned to either Co3O4 or a mixed 

MnxCo3-xO4. A Co1.5Mn1.5O4 (1:1 Mn:Co) would produce  this XRD pattern 

while cobalt-manganese oxide spinel with higher manganese content (2:1 

Mn:Co) would give a different structure and produce a different XRD 

pattern35 . 
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Figure 3.39: XRD of the mixed cobalt-manganese oxide calcined at 300 °C precipitated 
in 50:50 water ethanol a) fast and b) slow injection 

 

There were no reflections visible that would indicate the presence of isolated 

manganese oxide (at least after calcination at 300 °C) suggesting that the 

manganese was either well integrated in a mixed cobalt-manganese oxide 

spinel or was not crystalline enough to be detected by XRD. The decrease in 

crystallinity might also be due to the substitution of manganese into the 

cobalt oxide structure. MP-AES (Table 3.8) analysis showed that there was a 

ratio close to 1:1 cobalt: manganese for both fast and slow precipitation 

showing that the cobalt and manganese precipitated close to the expect ratio. 

This would confirm that the calcined catalyst was a mixed cobalt manganese 

spinel oxide Co1.5Mn1.5O4 and the lack of manganese oxide reflections was 

not due to the lack of manganese in the material.  
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Figure 3.40: TPR of cobalt-manganese oxide (calcined 300 °C) from the mixed oxalate 
that was precipitated in 50:50 water-ethanol anti-solvent (fast) 

TPR on the cobalt manganese oxide from 50:50 water-ethanol, calcined  

300 °C (Figure 3.40) showed three main reductions at 260 °C, 325 °C and 

450 °C. The first two reductions can be assigned to the cobalt reduction of 

Co(III) to Co(II) followed by the reduction of Co(II) to metallic Co 34. The final 

reduction peak observed at 450 °C can be assigned to the reduction of the 

manganese phase, which is lower than the usual manganese reduction due 

to the presence of cobalt34. The TPR profile confirmed that the manganese 

and cobalt were both present which confirms, along with the MP-AES, that 

both cobalt and manganese precipitated during the anti-solvent process.  

XPS on the Co 2p region of the mixed cobalt manganese (Figure 3.41 a) 

shows the main Co 2p3/2 peak at 780.4 eV and 2p1/2 at 795.6 eV. What is 

notable is the satellite at 786.5 eV is stronger in the mixed sample than it is in 

the pure Co3O4 precipitated in the water-ethanol (calcined at 500 °C).   
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a b  

Figure 3.41: XPS Co 2p region of a) CoMnOx and b) Co3O4 prepared by DES-oxalate 

In comparison, the Co 2p region of the cobalt oxide (Figure 3.41 b) 

precipitated from the DES shows a more typical Co3O4 spectra featuring the 

satellite at 789.6 eV but no (or very weak) peak at 786.5 eV.  This change in 

the Co XPS in the mixed cobalt manganese oxide compared to the Co3O4 is 

similar to what has previously been shown for mixed cobalt manganese 

oxides36, providing further evidence that the cobalt manganese precipitated 

as a mixed system has some extent of the mixed oxide phase rather than 

phase separated cobalt oxide and manganese oxide. 

 

SEM of the cobalt manganese oxalate (Figure 3.42) showed the formation of 

the linear-rod shaped particles that the single cobalt oxalate precipitated in 

the water-ethanol anti-solvent mixtures. This would suggest that the influence 

of the cobalt during the precipitation stage is higher than the manganese. 
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Figure 3.42: SEM image of 
the cobalt manganese 
oxalate precipitated (slow 
inject) from DES into 50:50 

water:ethanol anti-solvent 
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Figure 3.43: TGA profile of the cobalt manganese oxalate precipitated from DES in 
50:50 water:ethanol anti-solvent 

The TGA profile of both cobalt-manganese oxalate (Figure 3.43) showed the 

typical metal oxalate profile with only two mass losses at 140-185 °C (loss of 

crystalline water) and a sharper mass loss at 290 °C, associated with 

degradation of the oxalate to CO, CO2 and the mixed metal oxide.  

Table 3.8: BET surface area (± 2 m
2
 g

-1
), crystallite size and Co:Mn (determined by MP-

AES) for the cobalt manganese oxides (calcined 300 °C) from DES in 50:50 water 
ethanol anti-solvent 

Sample Surface area 
calcined 300 °C/ 

m2 g-1 

Crystallite size 

2θ=36.8° 

Co: Mn (molar 
ratio) from MP-

AES 

Co Mn fast 58  10.8 1:1 

Co Mn slow 60  8.0 1:1 

 

3.5.2 Iron manganese oxalate 

 

The XRD pattern of the mixed iron-manganese oxalate (Figure 3.44) was 

predominately that of manganese oxalate indicated that although manganese 

and iron oxalate have similar patterns and the iron reflections may be 

masked by the manganese oxalate. The MP-AES of the iron manganese 

gave a Fe: Mn ratio of 1:1.5 showing that there was an excess of manganese 

present in this sample indicating that manganese oxalate may have been the 

predominant phase that precipitated. 
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Figure 3.44: XRD of the iron manganese oxalate precipitated from the DES in 50:50 
water ethanol  

 

 

Figure 3.45: XRD of the mixed iron manganese oxide catalyst calcined from the iron 
manganese oxalate at 300 °C 

The XRD pattern of the calcined iron-manganese material (Figure 3.45) 

showed reflections at 2θ=18.5°, 29.0°, 31.8° and 36.8° that are assigned to 

Mn3O4 phase. This would suggest that there was some degree of phase 

separation that had occurred with this material. Although the MP-AES 
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showed iron present in this sample there were no XRD reflection associated 

any iron oxide phase. 

 

Figure 3.46: TGA profile of the iron manganese oxalate 

The TGA of the iron-manganese oxalate (Figure 3.46) showed a typical metal 

oxalate decomposition with the water mass loss at 120-160 °C followed by 

the main decomposition at 240-260 °C. There was no further mass loss that 

would be associated with the formation of Mn2O3 from Mn5O8 or Mn3O4 

although the XRD had shown the formation of phase separated Mn3O4 in the 

iron manganese oxide after calcination at 300 °C. 

 

The SEM of the mixed iron-manganese oxide calcined at 

300 °C (Figure 3.45 b) showed that the sample had formed shorter cuboid 

shaped rods, similar to the Fe2O3 morphology from the iron oxalate 

precipitated in the water-ethanol anti-solvent. This shows that like the cobalt 

manganese (Figure 3.4.2) that the iron manganese oxalate and oxide formed 
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Figure 3.47: SEM image of 
the iron manganese oxide 
oxalate precipitated 
calcined 300 °C from the 
iron manganese oxalate 
prepared by DES 
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the morphology closer to that of the pure oxalate rather than that of the  

manganese oxalate. However, the size of the iron manganese rods is not 

consistent throughout the sample. 

 

3.5.3 Mixed oxide catalyst testing 

 

 

Figure 3.48: Propane oxidation of the mixed metal oxides (75 mg) precipitated by DES-
anti-solvent in 50:50 water-ethanol and calcined at 300 °C 

 

The propane conversion when using the mixed metal oxide catalyst (Figure 

3.48) showed greater activity than the single oxides. This was more notable 

with the iron manganese catalysts showed an increased in activity over the 

single iron oxide with 100 % conversion by 300 °C and a T10 of 163 °C with a 

light off between 150-250 °C. The activity of the mixed iron manganese oxide 

catalysts was close to that of both cobalt and mixed cobalt manganese oxide 

catalysts of similar loading. 
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Figure 3.49: Mass normalised propane oxidation activity with cobalt oxide (55 mg) and 
mixed cobalt manganese oxide (75 mg) preapared by DES anti-solvent with 50:50 
water-ethanol calcined 300 °C (Error of ±10% taking into account error of surface area, 
propane counts and mass of catalysts) 

 

The comparison of mass normalised activity (Figure 3.49) of the mixed cobalt-

manganese oxide with the standard cobalt oxide prepared by DES anti-

solvent showed that both had similar propane activity at 100 and 150 °C, with 

the mixed cobalt manganese showing a slightly better activity at 200 °C 

compared to the single cobalt oxide (at 250 °C both reached 100 % 

conversion). This increase in activity could originate from an interaction 

between cobalt and manganese in the mixed sample. This would support the 

XRD, TPR and XPS observations that the cobalt manganese oxide 

precipitated as a single phase Co1.5Mn1.5O4 rather than phase separate 

cobalt and manganese oxides.  
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3.6 Chapter 3 Conclusions 

 

The method of using deep eutectic solvents as a way to make metal oxalate 

as precursor for metal oxide catalysts has been demonstrated to work for 

cobalt, manganese and iron oxide as well as mixed metal oxide. The use of a 

controlled anti-solvent technique to control the morphology has been shown 

to work for cobalt and iron oxalate precursors to make oxides with needle like 

structures which could be altered depending on the anti-solvent mixture. For 

cobalt oxalate the addition of ethanol or methanol to the anti-solvent formed 

longer needles. Manganese on the other hand did not form needles but it 

was demonstrated that the precursor salt used had an effect on the shape of 

the precipitate. 

The cobalt oxide catalysts calcined from the cobalt oxalate precipitated using 

DES anti-solvent method were shown to be active for total oxidation of 

propane to CO2 showing to be more active than cobalt oxide calcined from 

cobalt acetate but were not as active as cobalt oxide precipitated using 

supercritical anti-solvent process, due to the larger crystallite size of the 

DES-oxalate catalysts.  

Changing the calcination conditions of cobalt oxalate prepared by DES anti-

solvent however improved the catalytic activity, with the light off and T10 and 

T100 shifting to lower temperatures when the cobalt oxide was calcined at 

300 °C and with a lower heating rate (1 °C min-1). Changing the anti-solvent 

also had a small effect on the catalytic activity but most of the cobalt oxide 

catalyst precipitated by DES had similar surface areas and crystallite size 

which resulted in a small difference in catalytic activity. 

The methodology can be utilised to control the morphology of iron oxide 

although the effect different anti-solvents was opposite to cobalt with the iron 

oxalate forming longer rods in pure water as the anti-solvent and shorter 

when precipitated with water-ethanol anti-solvent. The iron oxalate was 

shown to produce iron oxide with very high surface areas of up to 221 m2 g-1. 

The use of the method to make mixed metal oxalate and oxides was also 

shown to work for cobalt manganese oxide forming a mixed metal oxide 
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material while iron-manganese oxalate appeared to form some degree of 

phase separation with (Mn3O4 being detected by XRD). Both catalysts 

showed improvements in mass normalised propane activity compared to the 

single oxides indicating that there was some degree of phase integration. 

Overall, this chapter has shown that metal oxalates preparation from choline 

chloride-oxalic acid based DES was a viable way to make catalyst with 

different morphologies. However, this was dependent on the metal under the 

parameters used and that in some cases such as iron, high surface area 

metal oxide could be formed. 

3.7 Chapter 3 Future work 

 

The DES anti-solvent was shown to be a viable method for the preparation of 

cobalt, iron and manganese oxalate. However, this was the starting point for 

this methodology and there are various avenues to pursue and investigate in 

order to improve both the method and oxalate/oxide catalysts. For 

consistency during this chapter, all metal oxalates were prepared under the 

same conditions; 120 °C for 1 hour then 150 °C for 2 hours and cooling to  

50 °C before anti-solvent additions. Modification of these parameters is 

another avenue of investigation to see the effect on the precipitation of the 

metal oxalate. Parameters that could affect the morphology could include 

temperature used, time the metal salt was left to dissolve into the DES and 

the concentration of metal salt used in the DES. The concentration may have 

a significant effect as the high concentration of metal salt in the DES could 

change the nucleation versus the growth rate of precipitation.  

Other anti-solvent mixtures that had not been explored in this work such as 

ethylene glycol may also provide interesting change to the morphology of the 

cobalt oxalate and cobalt oxide. This method was only demonstrated with a 

few select examples (iron, manganese and cobalt) of metal oxalates, and as 

shown in this chapter, the method of precipitation is dependent on the metal 

that is being precipitated. Use of the method for other metal oxalate such as 

mixed copper-zinc oxalate or nickel oxalate could also be investigate to see if 

this method works for these systems.  
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Chapter 4 Evaluation of Delafossite Phase Copper-

Manganese Oxides and Spinel Derivatives for CO 

Oxidation. 

 

4.1 Introduction 

 

4.1.1 Background on delafossite materials 

 

Delafossite materials are mixed metal oxides that consist of a ABO2 
1-3 with 

the A site as a monovalent metal such as Cu+, Ag+ or Pd+ and the B site as a 

trivalent metal such as Mn3+, Fe3+, Y3+ and Cr3+ 2-5 . Copper based delafossite 

materials have been of interest to many material scientists due to their P-type 

semiconductor properties and have been used in applications such as 

hydrogen production from photoelectrochemical splitting of water6.  

Until recently delafossite based materials have rarely been used in gas 

phase heterogeneous catalysis, partially due to the high temperature heat 

treatments of up to 1100 °C under inert atmospheres required to achieve the 

delafossite phase1, 7. Such high temperature conditions result in surface 

areas of less than 1-2 m2 g-1, which would limit their potential use as 

heterogeneous catalysts, or catalyst supports for oxidation reactions. Despite 

this, some groups have investigated the potential for copper-based 

delafossite in heterogeneous catalyst including the use as an alternative to 

CeO2 for oxygen storage in the three way catalyst1.  

However, in recent years it has been demonstrated that under hydrothermal 

conditions of less than 200 °C (under both conventional heating or 

microwave heating), delafossite phase materials can be formed, reducing the 

excessive heat treatments require to form a pure delafossite phase material8, 

9.  This technique has the potential for increased surface areas of delafossite 

materials since it avoids high temperature conditions and therefore potentially 

could produce delafossite materials higher surface areas than previously 

been achieved, therefore making them comparable to other mixed metal 
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oxide phases. This has already led to publication into the use of CuCrO2 for 

CO oxidation10 and CuFeO2 and its spinel derivatives as a Fischer-Tropsch 

catalyst11 . 

Copper-manganese based delafossite, known as crednerite, could act as an 

interesting alternative CO oxidation catalyst to the more conventional spinel 

phase hopcalite. In addition, it is known that delafossite can oxidise to form 

the spinel phase in air at high temperature1, 12 and could act as a potential 

precursor to hopcalite. Copper-manganese crednerite differs from regular 

delafossite in that it forms a monoclinic phase that results from the Jahn-

Teller distortion caused by the Mn3+ 13. The distortion creates an oxygen layer 

between the copper layer (in a linear form) and manganese layer (forming an 

octahedral MnO6)
13, 14 resulting in a different layer of the ABO2 structure 

compared to other delafossite materials such as CuCrO2 or CuFeO2  which 

form a rhombohedral structure15.   

Hopcalite, as discussed in Chapter 1, are mixed copper-manganese oxides 

in the spinel phase with the most common and active (for CO oxidation) 

having a 1:2 of copper: manganese in the form CuMn2O4
16 17, although other 

ratios have been used as catalysts18, 19. Hopcalite have been applied as 

catalysts for a range of reactions but most notably in gas phase oxidation 

reactions such as CO, toluene and naphthalene oxidation20-22 and have been 

noted to have CO oxidation activity close or equivalent to support precious 

metal catalysts23. Although hopcalite has been used as a catalyst for over 90 

years24, it is still widely studied with the most common and refined method of 

preparation being co-precipitation16, 22, 25, although more recent alternative 

methods have been reported including supercritical anti-solvent precipitation 

and flame pyrolysis17, 18, 26, 27. Although these techniques have produced very 

active hopcalite, most require complex synthesis or in the cases of co-

precipitation calcination conditions of 300-400 °C  forming amorphous 

hopcalite20, which is the more active than the crystalline hopcalite28. 

The hopcalite derived from crednerite is interesting in comparison because 

the hopcalite phase forms from another crystalline oxide i.e. crednerite 

whereas the co-precipitated hopcalite forms carbonate that breaks down into 
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an amorphous phase. In addition, the formation of both the spinel phase and 

isolated copper oxide may provide a copper-manganese catalyst with 

interesting properties compared with conventional co-precipitated hopcalite. 

 

4.1.2 Aims of Chapter 4 

 

The aim of the work presented in this chapter is to use crednerite as 

prepared by hydrothermal synthesis and the spinel derivatives formed after 

heat treatment at 300-500 °C as catalysts for CO oxidation as a model of 

testing their potential as gas phase oxidation catalysis. The work is to 

compare both the physical properties and catalytic properties of crednerite 

and its spinel derivatives with copper-manganese oxide made from the more 

established co-precipitation method and to see if it can be used as an 

alternative to conventional hopcalite.  

 

4.2 Crednerite synthesis  

 

4.2.1 Hydrothermal synthesis of crednerite  

 

The crednerite sample was synthesised in a high-pressure static autoclave at 

80 °C. The formation of the delafossite phase during the hydrothermal 

process is a result of an electron transfer from the manganese to the copper 

as shown in the equation below12. 

𝐶𝑢2+ + 𝑀𝑛2+ → 𝐶𝑢+ + 𝑀𝑛3+ 

Figure 4.1: The electron transfer process during the hydrothermal process 

The group of Zhao et al. found that the optimum conditions for making 

crednerite at lower temperatures was dependent on the quantity of NaOH 

used, with a molar ratio of 2.8:1:1 NaOH:Cu:Mn resulting in phase pure 

CuMnO2, whereas  a lower amount of NaOH would result in phase separated 

CuO/Mn3O4 
29. They noted that the concertation of sodium hydroxide also 
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played an important role in the mechanism for the formation of crednerite, 

also affecting the particle morphology and crystal size. 

The large amount of sodium hydroxide used to form the crednerite can be 

useful to modify the crystallinity but it also poses a problem since sodium 

causes deactivation of copper manganese oxides during CO oxidation 

reactions30. As a result, the crednerite water mixture was poured into a 

minimum of 1500 ml of water (this also reduced the base concentration) and 

washed with a further 1000 ml of water and 200 ml of ethanol to remove the 

majority of the sodium and nitrate species. 

The crednerite sample was prepared using a Cu:Mn ratio of 1:1 and 1:2, the 

latter as a way of comparing with more conventional hopcalite made from co-

precipitation in the 1:2 Cu:Mn ratio.  

4.2.2 Spinel oxides derived from crednerite 

 

It is known from literature that crednerite oxidises to the spinel phase and 

copper oxide when heated in air above 200 °C due to the oxidation of Cu+ to 

Cu2+ in air as shown by the equation in Figure 4.2 29, 31. The formation of the 

spinel phase was later confirmed by X-ray diffraction (XRD) (Figures 4.4 and 

4.5) and thermal gravimetric analysis (TGA) (Figure 4.6). 

 

CuMnO2 +  
2

3 − 𝑥
 O2  →  

1

3 − 𝑥
Cu𝑥Mn3−xO4 +

3 − 2𝑥

3 − 𝑥
 CuO 

Figure 4.2: The oxidation of crednerite to form the spinel phase x= amount of oxygen: 
copper-manganese  

 

Spinel phase copper-manganese is widely known for being a good CO 

oxidation catalyst, with the most established method being co-precipitation16, 

22. This opens up a possible alternative route to make hopcalite catalysts 

from the crednerite and samples were heat treated at 200 °C, 300 °C,  

350 °C, 400 °C and 500 °C to form the spinel phase. These spinel phase 

oxides could also be directly compared to hopcalite made from conventional 

or more established methods such as co-precipitation.  
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4.2.3 Hopcalite prepared by co-precipitation 

 

Hopcalite made from co-precipitation was used as a standard for comparison 

of both the physical and catalytic properties with crednerite derived spinel 

oxides. Co-precipitation was chosen since it was one of the most common 

techniques for making hopcalite reported16, 22, 32 and therefore a good 

example for comparison with crednerite derived hopcalite. The co-

precipitated hopcalite prepared using published methods20, was synthesised 

with a Cu: Mn ratio of both at 1:2 and 1:1 to directly compare with both the 

more established and active hopcalite ratio (1:2)16 and with the crednerite 

and its oxidised form (1:1).  

 

4.3 Characterisation of crednerite and its spinel derivatives and 

comparison with co-precipitated hopcalite 

 

The X-ray diffraction pattern of crednerite prepared with 1:1 Cu:Mn  

(Figure 4.3 a) confirmed that the CuMnO2 phase had formed, as shown with 

the reflections at 31.28° (0 0 2), 33.01° (2 0 0), 36.99° (-1 1 1) and 40.48° (1 

1 1), with  no other crystalline phase being detected . The XRD pattern 

confirmed that this was the monoclinic crednerite13. MP-AES analysis on the 

sample had confirmed that the crednerite had a ratio of 1:1 Cu:Mn, which 

would confirm the XRD analysis that CuMnO2 was primarily formed with no 

detectable phase separated species present. 

The XRD pattern (Figure 4.3 b) of crednerite that was synthesised in a 1:2 

Cu:Mn ratio however showed that the crenerite phase had mostly formed but 

there was also additional reflections that indicated high degree of phase 

separation, with the majority of these reflections being associated with 

Mn3O4. This would suggest the mechansim of an electron transfer from 

copper to manganese (Figure 4.1) to form the crednerite phase was still 

occuring under this hydrothermal conditions and that the crednerite was 
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formed primarily over the spinel phase with the exess manganese forming 

the spinel phase Mn3O4. 

 

Figure 4.3: X-ray diffraction of crednerite prepared by hydrothermal synthesis with a 
Cu:Mn ratio of a) 1:1 and b) 1:2 

It has been noted by other groups that with Cu and Cr, different ratios of 

Cu:Cr would form the spinel phase instead of the delafossite but these 

experiments were performed under slighly different conditons at a  

temperature of 180 °C10. Here it appears that the formation of the crednerite 

phase was more favourable due to the electron transfer over the mixed 

CuxMn3-xO4/ spinel phase. 

An in situ XRD study performed on the 1:1 Cu:Mn crednerite sample  

(Figure 4.4) from 50 to 600 °C showed that the crednerite phase was still 

stable under air to at least 200 °C but the sample subsequently, fully oxidised 

to the spinel phase by 300 °C with no trace of the reflection associated 

crednerite phase at 300 °C or above. This shows that the formation of the 

spinel occurred between 200 °C and 300 °C and that the Cu+ oxidses to Cu2+ 

resulting in the rearangment of the structure of the oxide from a CuMnO2 

phase to a spinel phase in this temperature r region which was also observed 

by a mass increases in the TGA of crednerite  (Figure 4.6).  
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The reflection for isolated CuO at 2θ=38.2°, that forms during the oxidation of 

crednerite starts to become more intense and visable at around 400 °C. The 

reflection at 2θ=18.4° that appears after 300 °C indicates possible formation 

of phase spearted Mn2O3 in this sample. 

 

Figure 4.4: In situ X-ray diffraction performed on crednerite at a) 50 °C, b) 200 °C, c) 
300 °C, d) 400 °C, e) 500 °C, f) 600 °C 

The Scherrer equation (Table 4.1) shows that the crystallite size initially 

increases for crednerite from 50 to 200 °C at 2θ=37.4°  caused by the 

sintering of the crednerite at higher tempeatures. The reflections of the spinel 

phase that forms after are less intense than those of the proceeding 

crednerite phase, with the crystaline size (at 2θ=35.9°) being 14.6 nm. The 

rapid decrease in crystallinity is probably due to a  structural rearrangement 

of the sample when it is oxidsed from the crednerite phase into the spinel 

phase and copper oxide. However it should be noted that the spinel phase is 

still a crystalline phase at 300 °C, with the relections of the spinel phase large 

enough to be observed which is important when compairing to  the co-

precipitated hopcalite later on (Figure 4.11). 
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X-ray diffraction (Figure 4.5) performed of the 1:1 Cu:Mn crednerite, calcined 

under a slight air flow (approximately 5 ml min-1) for 3 hours, confirmed the 

observations of the in situ XRD, with the crednerite phase still being stable up 

to 200 °C (even after 3 hours) but oxidises to the spinel phase at 300 °C and 

above. The presence of the spinel phase was confirmed by the reflections at 

18.66° (1 1 1), 20.56° (2 2 0), 35.97° (3 1 1), 43.51° (4 0 0) and 58.17° (5 1 

1). 

Table 4.1: Crystallite size of crednerite and spinel derivatives from the in situ 
XRD at 2θ= 37.4° for crednerite and 2θ=35.9° for spinel 

Temperature Crystallite size 

50  (CuMnO2) 38.6 

200  (CuMnO2) 41.7 

CuMn-300 14.7 

CuMn-350 19.2 

CuMn-400 29.4 

CuMn-500 45.3 

CuMn-600 38.6 

 

However, it should be noted that the reflections present in the XRD of the 

calcined samples shows that heat treatment of crednerite formed 

Cu1.5Mn1.5O4 with no reflection at 2θ= 38.8° that would indicate the presence 

of phase separated copper oxide.  

This would indicate that the conditions that these catalysts were formed 

favour the greater oxygen uptake (equation in Figure 4.2) and therefore 

formed the single phase Cu1.5Mn1.5O4 over CuMn2O4 and phase separate 

CuO.  
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Figure 4.5: X-ray diffraction pattern of heat treated crednerite at a) 200 °C and spinel 
derivative formed at  b) 300 °C, c) 350 °C d) 400 °C and e) 500 °C 

As observed in the in situ XRD (Figure 4.4) the crednerite phase increases in 

crystallinity when heated to 200 °C but the subsequent spinel phase formed 

after 300 °C is a less crystalline phase due to the change of phase and 

rearrangement of the crednerite phase to the spinel phase. The crystalline 

size is slightly different to those seen in the in situ study but  this could be 

due to error between the two experiments and these values are within the 

same range of each other.  Thermal gravimetric analysis of the crednerite  

(Figure 4.6), performed under flowing air at a heating rate of 5 °C min-1, 

showed the mass of the catalyst increasing by 6% between at 250 °C and 

350 °C. The initial water loss occurring between 100-200 °C and the mass 

gain at 250-350 °C corresponds to the oxidation of crednerite phase to the 

spinel phase, as observed in both XRD studies (Figures 4.4 and 4.5). The 

mass loss that occurs again above 600 °C has been attributed to the  partial 

decomposition of the spinel phase back to CuMnO2 which would only fully 

occur at higher temperatures31
. 
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Table 4.2: Crystalline size from X-ray diffraction and surface area of the crednerite 
derived spinel catalysts  

Sample/ 

calcination 

temperature /°C 

 

Main phase  

Crystalline size /nm  

Surface area  

m2 g-1  

(±2) 

2θ=35.9° 

(spinel) 

(±5 nm) 

2θ=36.8° 

(crednerite) 

(±5 nm) 

Crednerite CuMnO2 - 36.4 31  

200  CuMnO2 - 45.5 39 

300  Cu1.5Mn1.5O4 10.4 - 26 

350 Cu1.5Mn1.5O4 14.0 - 22 

400  Cu1.5Mn1.5O4 19.4 - 18 

500  Cu1.5Mn1.5O4 31.4 - 19  

 

Both XRD and TGA studies on crednerite shows that this material would be 

limited as catalyst for oxidation reactions below 200 °C as the phase would 

oxidise to the spinel phase. However, the phase is stable at higher 

temperatutres under a non oxidising atmosphere such as nitrogen29.   

 

Figure 4.6: Thermal Gravimetric analysis of the crednerite in air, 30 ml min
-1

, 5 °C min
-1 

A parameter that could affect the formation of the spinel catalysts derived 

from crednerite is the conditions that the materials were calcined under, 

specifically the airflow rate over the catalysts during the heat treatment 

process. The crednerite sample however can also be used as a precursor to 

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

97

98

99

100

101

102

103

104

105

106

0 100 200 300 400 500 600 700 800 900

D
if

fe
re

n
ti

al
/ 

%
 K

-1
 

W
ei

gh
t 

%
 

Temperature/ °C 



 

159 
 

the spinel phase, which as mentioned earlier is active for CO oxidation33, 

forming spinel phase as low as 250-300 °C.  

  

Figure 4.7: Thermal gravimetric analysis of crednerite under air static and flow of 75 
ml min

-1
 conditions,

 
5 °C min

-1  

 

Figure 4.8: The differential of the TGA (from Figure 4.7) 

Thermal gravimetric analysis of crednerite under static air and a flow of  

75 ml min-1 (Figure 4.7) showed that the uptake of oxygen to form the spinel 

phase occurred at a narrow temperature range (250-350 °C)  for a higher 

flow rate (75 ml min-1) than it does for static conditions. The TGA profile 

under static conditions show that the increase in mass starts to occur at the 

same point (250 °C) but the whole mass increase occurs across a wider 

temperature range (250-450 °C) (Figure 4.8). This would suggest that the 
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crednerite would still oxidise to the spinel phase under a static system at 300-

400 °C.  

Comparison of the XRD of both spinel phase copper-manganese oxide that 

formed from heat treatment of crednerite under static and flow (100 ml min-1) 

(Figure 4.9) shows that the sample that was heat treated under flow had a 

notable reflection at 2θ=39.0° which closely matches the (1 1 1) of CuO. 

Under static conditions of the same sample the reflection at 2θ=39.0° is 

much weaker (it appears in this sample but the crednerite samples that were 

calcined while exposed to flowing air do not even have a reflection in this 

area). This would therefore suggest that the flow conditions during the heat 

treatment had an impact on the formation of a pure spinel phase or a mixed 

spinel and phase separate copper oxide. Based on the equation shown in 

Figure 4.2, the slower flow rates have greater oxygen up take that allows the 

formation of pure phase spinel. This might be due to the higher static/slow 

flow rate conditions allowing the oxygen to stay on the surface longer and 

thereby favouring the phase pure spinel over the phase separate spinel and 

CuO. It is also possible however that the other material had formed isolated 

CuO but these crystallites were too small to be detected by XRD. 

 

Figure 4.9: X-ray diffraction of crednerite calcined to 350 °C under a) static air and b) 
flowing air 100 ml min

-1
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Table 4.3: Surface area of spinel derived by heat treatment of crednerite under 
different airflows (±2 m

2 
g

-1
) and crystallite size (± 5 nm) 

Air flow conditions Surface area/m
2 

g
-1

 
Crystallite size at 2θ=35.9°  

/nm 

Static 20
 

13.4 

Exposed to air flow 22 14.0 

Direct air flow (100ml min
-1

) 22 13.6 

 

Surface area analysis of the sample under both static and flow (Table 4.3) 

shows that the surface area of the sample under total static conditions had a 

surface area of 20 m2 g-1, which, especially when taking the uncertainties of 

BET technique into account is not different to the surface area of the samples 

calcined in furnace exposed to an airflow and directly under airflow (100 ml 

min-1). It should be noted here however that the surface area of the precursor 

(crednerite) was already relatively low at 31 m2 g-1 and the small differences 

in surface area observed may be a result of the crednerite already having a 

low surface area. The crystallite size at 2θ=35.9° did not vary much between 

the static and flow conditions. 

Figure 4.10: The X-ray diffraction pattern of copper-manganese carbonate made from 

co- precipitation (pH 8.3) with a Cu:Mn ratio of a) 1:1 and b) 1:2 
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The diffraction pattern of the copper-manganese precursor prepared by co- 

precipitation (Figure 4.10) showed that, for both ratios, the most predominant 

phase detected was the manganese carbonate phase rhodochrosite as 

confirmed by the reflections at 24.2° (0 1 2), 31.6° (1 0 4), 37.6°, 41.4°, 45.1° 

and 51.9°.  

The X-ray diffraction pattern of the copper-manganese oxides calcined at 400 

°C (Figure 4.11) showed that the material was amorphous for the 1:2 Cu:Mn, 

while the 1:1 Cu:Mn showed a single broad reflection with a peak at 2θ=35.6° 

but otherwise was also mostly amorphous. The amorphousness of the co-

precipitated copper-manganese oxides at 400 °C is interesting to note as all 

of the spinel oxides formed from crednerite are crystalline, with the 

Cu1.5Mn1.5O4 reflection being easily identifiable as a crystalline spinel phase 

formed at 300 °C while the co-precipitated hopcalite is still amorphous at 400 

°C. This is most likely due to crednerite already being a crystalline oxide that 

is subsequently oxidised to the spinel phase while the co-precipitated 

hopcalite forms from the decomposition of the carbonate species which 

results in the formation of an amorphous phase at 400 °C.  

 

Figure 4.11: XRD for Co-precipitated copper-manganese calcined at 400 °C with a 
Cu:Mn ratio of a) 1:1 and b) 1:2 
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The co-precipitated catalysts were shown to form crystalline material by  

500 °C with the spinel phase reflections being identified by XRD  

(Figure 4.12). The 1:2 Cu:Mn contains additional reflections at 2θ=33.1° and 

2θ=23.0°, suggesting possible phase separated Mn2O3 present in the 1:2   

co-precipitated sample after calcination at 500 °C. It is known that when 

hopcalite is calcined at temperatures of 500 °C and above, phase separation 

occurs and results in a less active catalyst17. The 1:1 co-precipitated 

hopcalite however appears to be phase pure, with no indication of the 

formation of phase separated Mn2O3 formation.  

 

Figure 4.12: XRD for the co-precipitated catalyst calcined at 500 °C with a Cu:Mn ratio 

of a) 1:1 and b) 1:2)  

The thermal gravimetric analysis on the both 1:2 and 1:1 co-precipitated 

copper-manganese carbonates (Figure 4.13) shows that they are stable until 

around 400 °C where the carbonates break down into CO, CO2 and the 

spinel phase copper-manganese oxide. However, as seen in the XRD 

(Figure 4.12) crystalline hopcalite does not start to form until after 400 °C, 

being amorphous at 400 °C but crystalline by 500 °C. It should be noted that 

the decomposition of the carbonates occurs at a significantly higher 

temperature range (400-500 °C) than the oxidation of crednerite to the spinel 

phase, which occurs at a temperature range of 250-300 °C. However, the 

a 

b 
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crednerite derived spinel catalysts formed 300-400 °C had a lower surface 

area (Table 4.4)  of 26 m2 g-1 at 300 °C and 18 m2 g-1 at 400 °C than the co-

precipitated catalyst calcined at 400 °C which had 73 m2 g-1.  

 

 

Figure 4.13: Thermal gravimetric analysis of co-precipitated copper-manganese 
carbonate at a) 1:2 and b) 1:1 copper:manganese ratio 

 

Table 4.4: A comparison of the surface area of the copper-manganese oxides from 
heat treated crednerite and co-precipitated  

 

Sample 

Surface area m2 g-1 

Calcined 400 °C Calcined 500 °C 

Spinel from crednerite 18 19 

Co-precipitation 1:1 47 24 

Co-precipitation 1:2 73 21 

  

X-ray photoelectron spectra of the crednerite in the Cu 2p (Figure 4.14 a) 

confirmed that the copper was in the +1 oxidation with the two peaks at 

932.28 eV and 951.93 eV along with the satellite peak at 945 eV. The XPS 

did show peaks such as 933.8 eV that would indicate small amounts of Cu2+ 

present on the surface, possibly due to surface oxidation. The manganese 2p 

region (Figure 4.14 b) showed two peaks at 652.9 eV with a shoulder peak at 

649.0 eV, and a second peak at 641.8 eV. The lacked of a satellite peak in 

the region of 647 eV suggests that there is only Mn3+ or Mn4+ with Mn3+ being 

more likely due to the phase being confirmed by XRD as CuMnO2, in which 

Mn is in the +3 state. However the shoulder peak at 649.2 eV is unusual but 
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does appear in all crednerite samples and those published previously29, 34
. 

The O 1s region shows two peaks at 529.8 eV (which is associated with 

lattice oxygen) and 531.3 eV associated with adsorbed oxygen35. 

a b  

c  

The XPS of the, Cu 2p region of CuMnO2 that was heat treated at 200 °C 

(Figure 4.15 a) shows the existence of Cu2+ in the sample as evidenced by 

the strong satellites and difference in binding energies. The Cu 2p region 

however showed what appeared to be two additional copper-states one at 

932.5 eV which would originate from Cu+ in the crednerite structure and the 

other weak at 931.0 eV due to Cu+ in the in a spinel phase octahedral site36, 

37 which suggests the formation of a spinel phase with a possible Cu-Mn 

redox coupling38. Since the XRD pattern  (Figure 4.5 a) of the material 

calcined at 200 °C only showed CuMnO2, which would suggest that the 

spinel phase had formed on the surface though partial oxidation during heat 

treatment at 200 °C but the bulk remained in the crednerite phase. 
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a  

b c  

Figure 4.15: XPS of crednerite after heat treated at 200 °C, 3 hours a) Cu 2p region, b) 
Mn 2p region and c) O 1s region 

X-ray photoelectron spectroscopy of the Cu 2p region of the spinel sample 

calcined at 300 °C (Figure 4.16 a) indicates that there is a mixture of both Cu+ 

and Cu2+ present in the sample, the broader peaks at 933.18 eV and 953.18 

eV along with the strong satellites at 961.88 eV and 940.33-943.73 eV from 

Cu2+. The sharp peaks at 930.68 eV originates from the Cu+, the shift from 

932 eV in crednerite to 930.7 eV in the spinel originate from the octahedral 

Cu+ of the spinel phase redox coupling with manganese36. The Cu+ 930.7 eV 
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proves that the entire sample has formed the spinel phase and the Cu+ is 

originating from the redox properties of the spinel and not residual crednerite 

and the crednerite phase had oxidised to spinel after 300 °C. The Mn 2p 

spectra remained the same as the untreated crednerite with the two peaks at 

641.58 eV and 653.06 eV. The feature at 649.0 eV which appears in the 

fresh crednerite samples does not occur in any of the spinel phase materials. 

 

Figure 4.16: XPS of the copper 2p region of the spinel phase oxides calcined at a) 300 

°C, b) 350 °C, C) 400 °C and d) 500 °C 

The Cu 2p spectrum for the spinel formed at 350 °C (Figure 4.16 b) showed 

the same peaks at similar binding energies to the 300 °C spinel oxide (Cu+ at 

930.68 eV and 950.88 eV). However, the intensities of the Cu+ peak relative 

to the Cu2+ peaks increases in the 350 °C compared to the 300 °C sample. 

Copper-manganese spinel oxides are known to undergo a redox coupling 

(Cu2+ and Cu+ with Mn3+ to Mn4+)28, 38. The XPS would suggest that the redox 

coupling is greater in the 350 °C sample than the 300 °C and therefore would 

suggest a higher phase integration in the 350 °C and the formation of a more 

crystalline material28 which is supported by XRD. The increase in Cu+ is 

associated with deactivation of the catalyst28, 37. 

The Cu 2p spectra of the crednerite spinel heated to 400 °C and 500 °C 

(Figure 4.16 c and d) shows the presence of both Cu+ and Cu2+, with the 
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intensity of the Cu+:Cu2+ increasing again with increase in calcination 

temperature as the spinel phase becomes more crystalline and improved 

mixing of the copper and manganese resulting in a higher redox coupling. 

The manganese 2p region (Figure 4.17 left) showed two broad peaks at 

641.8 eV and 653.5 eV. However manganese (II-IV) oxides all have similar 

binding enrgies and it is known for these peaks to merge and the broadness 

of the peaks would suggests more than one oxidation state, which would 

occur in a redox couped hopcalite37, 38. The satellite at 687.8 eV indicates the 

presence of Mn2+ in this sample39, 40. 

           

 

Figure 4.17: (left) XPS of the manganese 2p region and (right) O 1s region for spinel 
catalysts calcined at a) 300 °C, b) 350°C, c) 400 °C and d) 500 °C 

The XPS spectra of the Cu 2p region for the co-precipitated sample in a 1:2 

ratio calcined at 400 °C showed that Cu+ (peaks at binding energies of 930.9 

eV and 950.6 eV) was present in this sample. However the Cu2+:Cu+ peak 

height was low, especially in comparison to the crednerite derived spinel 

catalysts formed at the same or lower temperatures.  

The XPS of the co-precipitated catalyst calcined at 500 °C showed a large 

increase in Cu+:Cu2+ in comparison to the co-precipitated sample calcined at 
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400 °C, comparable to the crednerite calcined at 500 °C, which would 

indicate an increase in crystallinity of the spinel phase, as seen with the XRD. 

 

Figure 4.18: XPS of the Cu 2 p region for the co precipitated copper-manganese 
oxides (1:2 ratio) calcined at a) 400 °C and b) 500 °C 

The Mn 2p region for the co-precipitated sample calcined at 400 °C  

(Figure 4.19 left) did not show a satellite peak at 647 eV which would possibly 

indicate that there is no or very little Mn2+ present in the system, while the 1:2 

Cu:Mn, co-precipitated material calcined at 500 °C shows a possible satellite, 

it is not as prevalent  as crednerite calcined at 300-500 °C. 

Comparing the XPS spectra of the copper and manganese regions of the co-

precipitated samples with that of crednerite derived spinel catalysts shows 

that there is more copper-manganese redox interaction present in the 

crednerite-derived samples based on the ratio of Cu+:Cu2+ peaks present. 

This is notable in samples calcined at lower temperature 300-400 °C which 

showed a larger presence of Cu+:Cu2+ than the co-precipitated sample 

calcined at 400 °C. The increase in interaction that causes the increase in 

Cu+:Cu2+ ratio is related to the crystallinity of the sample. The samples that 

have the high Cu+:Cu2+, are fairly crystalline whereas the samples with very 

low Cu+ are less crystalline or amorphous (such as the co-precipitated 

sample calcined at 400 °C).  
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Figure 4.19: XPS spectra of (left) manganese 2p region and (right) O 1s region for the 
co-precipitated copper-manganese oxides calcined at a) 400 °C and b) 500 °C 

 

The O 1s region for the calcined samples shows three peaks with binding 

energies of 529.6 eV (lattice oxygen), 531.3 eV (adsorbed oxygen) and 

532.9-533.3 eV, which is associated with small amounts of hydroxyl species 

on the surface. The sample calcined at higher temperatures did not show 

significant changes in the oxygen XPS with the ratio of lattice:surface oxygen 

mildly decreasing with increased calcination temperature. 

However, when compared with the O 1s XPS of the co-precipitated oxide 

calcined at 400 °C, it showed a larger ratio of adsorbed oxygen at 531.8 eV 

and surface OH groups (533.3 eV) compared with the more crystalline 

crednerite derived spinel phase. 
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Table 4.5: Surface oxygen composition (± 5%) of the heat treated crednerite and co-
precipitated catalysts 

Sample/ 

Calcination 

temperature 

Lattice 

% 

O 1s surface 

% 

OH 

% 

Crednerite   

200 °C 

73 27 - 

Crednerite   

300 °C 

58 30 12 

Crednerite   

350 °C 

50 33 17 

Crednerite   

400 °C 

55 40 5 

Crednerite   

500 °C 

53 39 8 

Co-precipitation 

1:2 Cu:Mn 400 °C 

43 42 14 

Co-precipitation 

1:2 Cu:Mn 500 °C 

61 35 4 

  

Temperature programmed reduction (TPR) of the crednerite sample (Figure 

4.20) performed under 10% H2/Ar, showed a large reduction peak at 200-220 

°C (centred at 209 °C) caused by the reduction of Cu+ to Cu0 which results in 

the decomposition/collapse of the crednerite phase and possible Mn3+ 

reduction to Mn2+ .  The TPR profile of the sample that was calcined at 200 

°C shows an initial reduction peak appering at 210 °C followed by a much 

broader reduction from 220 °C to 260 °C. This broader reduction could 

originate from managese reduction (Mn3+ to Mn2+) and isolated Cu2+/ 

CuMn2O4 that was shown by XPS to have existed in the sample after 

calcination at 200 °C.  
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Figure 4.20: Temperature programmed reduction of crednerite a) as synthesised and 
b) heat treated at 200 °C in air 

The temperature programmed reduction profile of the spinel phase catalysts 

formed at 300-500 °C (Figure 4.21) showed a general change with increasing 

calcination temperature.  The 300 °C sample showed two reductions that had 

merged at 243 °C and 255 °C. The first reduction at 243 °C can be assigned 

to the reduction of Cu2+ to Cu0 while the second reduction is that of Mn3+ to 

Mn2+ 41.  

The spinel phased formed at 350 °C had a different reduction profile with an 

initial reduction peak at 200 °C which could be assigned to the reduction of 

dispersed CuO to Cu, while the bulk Cu2+ is assigned to the second peak at 

260 °C. The manganese reduction (Mn3+ to Mn2+) occurred at around 305-

325 °C. The sample calcined at 400 °C had a similar reduction to the one 

calcined at 350 °C with the dispersed CuO reduction at 190 °C followed by 

the bulk Cu2+ at 240 °C and the manganese reduction (which was broader 

that the 350 °C sample) at 270-330 °C.  The 500 °C spinel showed an initial 

reduction at 190 °C while the CuO reduction and the manganese reduction 

occurred over a broader temperature range of 250-330 °C.41 
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Figure 4.21: Temperature programmed reduction of the spinel copper-manganese 
oxides formed at a) 300 °C, b) 350 °C, c) 400 °C and d) 500 °C 

The change in the TPR profiles between the spinel oxides calcined from 300 

°C to 500 °C seem to suggest an increase in dispersed CuO, practically from 

300 °C to 350 °C where the peak associated with more dispersed CuO starts 

to appear as well as shifting to lower temperatures (205 °C to 190 °C) with 

increasing calcination temperatures. This could indicate possible phase 

separation occurring although this was not observed by XRD.  

The temperature programmed reduction profile of the both 1:1 and 1:2 co-

precipitated spinel oxides calcined at 400 °C (Figure 4.22) showed a broad 

reduction starting from 150 °C-260 °C comprising of an initial peak at 203 °C 

(Cu2+ to Cu0) and a broad peak 232-260 °C being Mn3+ to Mn2+. The co-

precipitated samples calcined at 500 °C showed a reduction occurring at 

higher temperature with the 1:2 sample showing two reduction peaks at 285 

°C and 306 °C, with the Cu2+ to Cu0 and followed by the Mn3+ to Mn2+. The 

1:1 Cu:Mn calcined at 500 °C had multiple reductions which might suggest 

some degree of phase separated or dispersed CuO (reduction at 211 °C) 

and manganese oxide (reduction at 358 °C).  
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Figure 4.22: TPR profile of co-precipitated copper manganese oxide a) 1:1 calcined 
400 °C, b) 1:2 calcined 400 °C, c) 1:1 calcined 500 °C and d) 1:2 calcined 500 °C 

The difference in TPR profile between the co-precipitated samples calcined 

at 400 °C and 500 °C with the crednerite showed that the co-precipitated 

(calcined 400 °C) did not contain copper oxide that was present in the 

crednerite based spinel catalysts. This would confirm that CuO had formed 

during the calcination process, although this was not detected by XRD 

probably due to the spinel being the dominant crystalline phase, and the CuO 

being too small to be detected. However, it should be noted that the co-

precipitated samples were mostly amorphous which may affect their TPR 

profile. In addition, the possible presence of residual carbonates (left over 

from calcination) and may contribute to the reduction profile20. 

Comparison of the SEM images of the co-precipitated spinel calcined at  

400 °C (Figure 4.23 f) compared with the crednerite derived spinel oxides 

(Figure 4.23 a-e) showed vary different morphologies. The crednerite particles 

formed a plate like morphology, which was retained in spinel oxides even 

after heat treatment as high as 400 °C, although the particles at 500 °C 

appeared to be slightly larger possibly due to the crystallization of the spinel 

phase. In comparison, the co-precipitated copper-manganese oxide had a 

much different structure, forming a flower like structures made up from 

smaller oval particles.  
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a  b  c  

d  e  f  

Figure 4.23: SEM images of the copper manganese samples; (a) crednerite, the 
calcined samples at (b) 300 °C, (c) 350 °C, (d) 400 °C, (e) 500 °C and (f) co-precipitated 
calcined at 400 °C. 

 

4.4 Crednerite and spinel derivatives as catalyst for CO oxidation 

 

4.4.1 Carbon monoxide conversion activity of crednerite and spinel 

derivatives in comparison with co-precipitated hopcalite. 

 

The crednerite and the spinel derived from heat treatment of the crednerite 

were used as catalyst for the oxidation of CO in a 4850 ppm CO/air mixture 

and compared to the co-precipitated materials. The reaction was initially 

performed at 20 °C to observe the initial activity and any deactivation that 

might occur in the first 30 minutes of testing. The activity of the catalyst was 

studied over a temperature range of 20-70 °C (and held at each temperature 

for 20 minutes) in order to see the increase in activity and to compare the 

increase in activity of crednerite and its calcined spinel derivatives with the 

co-precipitated catalysts.  
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Figure 4.24: CO oxidation (4850 ppm CO/air) using crednerite and spinel oxides 
derived from heat treatment of crednerite at 200-500 °C 

The conversion of CO using the crednerite material is very low, showing 

almost no conversion at room temperature and only approximately 4% at 60-

70 °C.  This shows that the crednerite is not practically active towards CO 

oxidation at low temperatures, especially when compared with hopcalite. The 

reasons for the low activity could be due to the oxidation state of the metal in 

this phase as all of the copper is present in the +1 oxidation state and 

manganese is present in the +3 oxidation state. It has been proposed by 

literature17, 38 that during CO oxidation hopcalite undergoes a redox cycling 

between the copper and manganese, with the copper moving between the +1 

and +2 and manganese between the +3 and +4 oxidation states. This 

mechanism would be absent in crednerite, which is locked in the Cu+ and 

Mn3+ oxidation states38. The potential for the catalysts to be poisoned by 

sodium is unlikely since the calcined catalyst had no additional treatment that 

would have removed residual sodium and these catalysts showed no signs of 

poisoning.  

The crednerite sample that was heat treated to 200 °C (with the bulk still 

present in crednerite phase) showed a much higher conversion than the  
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non-heat treated crednerite, with 2% conversion at 20 °C and 34% 

conversion at 70 °C. The increase in activity of the 200 °C crednerite over the 

non-heated sample is most likely due to the presence of spinel phase that 

had formed on the surface of the 200 °C crednerite as observed by XPS. 

This may have created isolated active sites (possibly spinel phase) on the 

surface which enhanced the activity of the crednerite. 

The spinel oxides derived from crednerite however showed a much more 

interesting conversion profile in comparison. The crednerite-derived spinel 

(Figure 4.24) calcined between 300-400 °C had a CO conversion of 16-28 % 

at 20 °C but remained stable at that level. In comparison the co-precipitated 

catalysts calcined at 400 °C (Figure 4.25) had, initially, a higher CO 

conversion but this rapidly dropped within the first 30 minutes whereas the 

crednerite derived spinel maintain a consistent level CO conversion within 

this time frame. This is not also taking into account the lower surface area of 

the crednerite derived materials over the co-precipitated materials. 

 

Figure 4.25: CO-oxidation of the co-precipitated catalysts 1:1 and 1:2 Cu:Mn calcined 
at 400-500 °C 

However the crednerite derived spinel oxides start to show signs stagnation 

after 50 °C (80 minutes) while the co-precipitated catalysts continued to 

increase the amount of CO converted with increasing temperature. This 
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suggests that the crednerite derived spinel had started to deactivate after 80 

minutes which resulted in a decrease in CO conversion after each 

temperature ramp. 

The spinel oxides, prepared from both crednerite and co-precipitation (1:1 

and 1:2 Cu:Mn) that were calcined at 500 °C all showed very low CO 

conversion compared to those calcined 300-400 °C, with this low conversion 

originating from the increase in crystallinity of the sample and lower surface 

area. 

XPS performed on the post reaction catalyst calcined from crednerite at  

300 °C in the Cu 2p region (Figure 4.26) showed that a slight increase in the 

Cu+ peak relative to the Cu2+ compared to the fresh catalyst which is 

normally a sign of deactivation37. While this is only a minor decrease, it does 

demonstrate a possibility that the catalyst is deactivating due to increased 

Cu+. 

The O 1s region however did show differences between for Cu1.5Mn1.5O4 

calcined at 350 °C pre and post CO oxidation (Table 4.6) with the post CO 

catalysts showing a greater peak at 531.0 eV (adsorbed oxygen) than the 

fresh catalyst. The  catalyst calcined at 300 °C however did not show a 

difference between the fresh and post CO catalyst in the O 1s region. 

 

Figure 4.26:Cu 2P XPS region of spinel (from crednerite heat treated at 300 °C) a) fresh 
and b) post reaction 
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Table 4.6: Ratio of lattice: surface oxygen (±0.1) calculated by XPS of the fresh and 
post reaction catalysts (crednerite calcined 300 °C and 350 °C) 

Sample Oxygen Lattice: surface 

Fresh catalysts Post reaction 

CuMn-300 1:0.5 1:0.6 

CuMn-350 1:0.6 1:0.8 

 

4.4.2 Discussion on surface area normalised rates 

 

While the previous sections discussed the activity of each catalyst as a 

function  of CO converted for 50 mg of catalyst, one factor to consider is that 

the co-precipitated catalysts had a higher surface area than the crednerite 

derived materials. The fact that the co-precipitated catalyst performed better 

than crednerite derived materials at higher temperatures may be partly due to 

the greater number of surface sites present (76 m2 g-1 for 1:2 co-precipitated 

calcined at 400 °C).  

The surface area normalised rates were worked out using the equation 

shown below; 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (𝑚𝑜𝑙 𝑚−2𝑠−1) =
( 𝐶𝑂 𝑚𝑜𝑙𝑠 𝑠−1) 𝑋  (% 𝑜𝑓 𝐶𝑂 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑) 

(𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑚2 𝑔−1) 𝑋 (𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑚𝑎𝑠𝑠 𝑔)
 

Figure 4.27: Equation for working out surface area normalised activity 

Where mol of CO is the amount of CO passing through the catalyst bed per 

second, which for 4850 ppm CO air at a flow of 20 ml min-1 worked out as 

6.52x10-8 mol s-1 (when assuming standard temperature and pressure 

conditions). For all experiments the catalyst mass was 50 mg and the surface 

areas are the values derived from 5-point BET (Table 4.2). 
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Figure 4.28: The Surface area normalised CO conversion of the co-precipitated 
catalyst (400 °C) and crednerite derived spinel (300 °C and 400 °C) 

Normalising the activity per surface area (Figure 4.28) has shown that the 

crednerite derived catalysts have significantly higher rates than the co-

precipitated catalysts at nearly all temperatures with the co-precipitated 

catalyst having a rate of 1.36x10-9 mol s-1 m-2 at 60 °C compared to the 

crednerite derived spinel (calcined 400 °C) which had 1.31x10-9 mol s-1 m-2 at 

20 °C. This is even more significant when taking into account that the 

crednerite derived material is in a 1:1 Cu:Mn ratio whereas the co-

precipitated catalysts are 1:2 which has previously been stated as the most 

activate catalyst for CO oxidation16.  

 

4.4.3 The effect of airflow heat treatment methodology on the activity on 

the CO oxidation activity 

 

The different methodology used during the heat treatment (at 350 °C) did not 

affect the catalytic ability of the crednerite derived spinel (Figure 4.29), with 

both the static and flowing air heated copper-manganese having almost the 

same activity apart from 80 °C when the static showed a slightly higher 

conversion at 80 °C to the sample calcined under flowing air. Taking surface 

area normalised rate would make little difference since the two catalysts had 

the same surface area of 22 m2 g-1. 
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Figure 4.29: CO conversion of crednerite heat-treated at 350 °C under flow and static 
air 

The similar CO conversion and the similarities in the XRD data and surface 

areas show that the airflow over the crednerite had no major effect on its 

catalytic performance at lower temperatures, especially when taking into 

account the ±5% error. Although the two materials formed different amounts 

of phase separated CuO and spinel phase, the effect on their catalytic activity 

is very little, especially when compared with the difference in preparation 

methods and heat treatment temperatures.  

 

4.4.4 Catalyst deactivation and stability 

 

The stability of crednerite derived spinel catalyst was investigated further. As 

noted in section 4.4.2 the crednerite-derived spinel catalysts deactivated and 

stagnated in their activity at 50 °C and above. Because of this observation 

multiple CO oxidation runs were performed to see if the activity recovered in 

the second run. For this study, the 400 °C spinel sample was used and 

compared with co-precipitated also calcined at 400 °C (1:1 ratio only). It 

should be noted the CO oxidation was performed at 20-80 °C and the ramp 
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rate is 1 °C min-1. The lower heating rate also had the advantage of giving 

better control over the temperature set point. 

 

Figure 4.30:  CO oxidation with the crednerite derived catalyst calcined at 400 °C with 
the initial/first run and second run 

The initial CO oxidation activity of the sample calcined at 400 °C (Figure 4.30) 

showed conversion of 21% which plateaued above 50 °C with CO conversion 

remaining at 40-46%. When the sample was reused for a second reaction 

after cooling back down the CO conversion halved at 20 °C. However, as the 

temperature increases the difference in CO conversion between the first and 

second run starts to decrease until 80 °C where the performance of the 

catalyst was very similar between the first and second run. The CO 

conversion on the first run appears to decline after each temperature ramp 

but on the second run, the activity appears to stabilise shortly after reaching 

each temperature interval.  
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Figure 4.31: CO oxidation of the co-precipitated catalyst (1:1 Cu:Mn) calcined at  
400 °C. 

In comparison, repeat studies of the co-precipitated catalyst (1:1 ratio) also 

calcined at 400 °C showed a somewhat different trend, with the second CO 

conversion during the second run oxidation showing very similar conversions 

although the second run at 40 °C was slightly better than the first, although 

this difference is within the margin of error. 

What is also interesting to note was that there was also no pre-treatment for 

the spinel phase from crednerite but its conversion remained similar to the 

sample that was pre-treated with 20% conversion at 20 °C.  This would 

confirm that it had a higher stability towards atmospheric or surface water (at 

least during the initial run) than the co-precipitated catalysts which showed a 

rapidly reduced conversion when not pre-treated.  
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4.5 Chapter 4 Conclusions 

 

Copper manganese based delafossite formed from hydrothermal synthesis at 

80 °C has been shown to be a poor catalyst for low temperature CO 

oxidation. The use of crednerite as a precursor to the spinel phase however 

showed some interesting properties. The spinel phase copper-manganese 

oxide fully formed at 300 °C with no signs of crednerite phase left while at 

200 °C, the phase was still predominately crednerite although XPS studies 

showed the formation of spinel phase on the surface, which contributed to an 

enhanced CO conversion compared non heat treated crednerite. 

The catalysts despite having a lower surface area of <27 m2 g-1, showed 

reasonable CO oxidation at room temperature and when compared with co-

precipitated catalyst in terms of surface area normalised rates, showed a 

much better CO oxidation activity per m2, and also showed a lower rate of 

deactivation in the first 30 minutes of testing. However, these catalysts 

showed signs of deactivation after heating to higher temperatures and repeat 

testing showed that CO conversion halved at 20 °C on the second run. XPS 

showed that there was an increase in the Cu+:Cu2+ between the fresh and 

post reaction crednerite derived spinel catalyst (calcined 300 °C) that would 

suggest that a catalyst composition change was partially responsible for this 

deactivation.  

The characterisation of the crednerite-derived spinel oxides showed 

differences to those prepared by co-precipitations, with XPS analysis on the 

samples heat treated at 300-400 °C showing a higher Cu+:Cu2+ than the co-

precipitated oxides which, along with the TPR profiles, would suggest greater 

Cu-Mn interaction and mixing in the crednerite derived spinel catalysts than 

the co-precipitated catalysts. 

The formation of crednerite using hydrothermal synthesis rather than a high 

temperature solid state synthesis demonstrates that hydrothermal synthesis 

is still a key technique for making materials and catalysts with unique or 

unusual properties compared to forming oxide through calcination of a 

precursor salt formed by technique such as co-precipitation. 
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4.6 Chapter 4 Future Work  

 

The use of hydrothermal synthesis to make crednerite and its spinel 

derivative from heat treatment in air has been shown to produce copper-

manganese spinel oxides that behave differently from the conventional 

hopcalite catalysts.  However, further investigation using temporal analysis of 

products (TAP) reactor is needed to analyse the reaction to see if there are 

any mechanistic differences between the crednerite derived spinel and the 

co-precipitated hopcalite samples during CO oxidation. 

There has been very little study into the use of crednerite or delafossite in 

general as supports for precious metals such as gold or platinum for 

catalysis. The presence of Cu+ and the P-type nature of delafossite materials 

may give properties to supported metal catalysts that may enhance catalytic 

activity and selectivity, which could be investigated. The spinel phase oxides 

derived from the crednerite phase, which behave differently from 

conventional, co-precipitated hopcalite catalysts, may also give different 

properties and behaviours as supports for precious metal catalysts. 

The use of the spinel (derived from crednerite) catalysts could also be used 

for oxidation of VOCs such as propane, toluene and naphthalene21, 25 to 

investigate if these catalysts are viable alternatives to co-precipitated 

hopcalite and to see if they behave differently for these reactions as well.  

The catalysts investigated here were made from one crednerite precursor. 

Investigation into varying the crednerite preparation methodology (such as 

temperature during hydrothermal synthesis) and its effects on the spinel 

derivative is also another avenue that could be investigated. 
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Chapter 5 Switchable Solvents for The Preparation of 

Copper Manganese Oxide Catalysts 

 

5.1 Introduction 

 

5.1.1 Background on switchable solvents 

 

Switchable solvents as discussed in Chapter 1, are solvents that change their 

properties, for example, solvent polarity1, depending on the atmosphere 

which they are under. One example is a mixture of  

1,8-diazobicylo[5.4.0]undec-7-ene and an alcohol or amine, which is a non-

polar solvent under a nitrogen atmosphere, but becomes a polar solvent 

under carbon dioxide2-5. Switchable systems other than switchable polar 

solvents (SPS), have since been discovered including switchable hydrophilic-

hydrophobicity solvents (SHS) using additives such as triethylamine6-8, 

switchable water additives such as dimethyl ethanolamine which increase the 

ionic strength of water and induced a salting out affect9 and switchable 

surfactants10-12.   

Such solvent systems have been applied to areas such as metal extraction13, 

recycling homogeneous catalysts14 as well as reducing the steps and 

solvents required for purification of products15. 

 

Figure 5.1: The switchable hydrophobic to hydrophilic system (SHS) using 
triethylamine and water 

While switchable solvents have been used in a wide range of applications the 

use of switchable solvents as a medium for the preparation of catalysts or 
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catalyst precursors has not been explored beyond a few publications. One 

notable publication was by the group of Saunders et al. who used a 

switchable surfactant as a way of preparing gold supported on silica for use 

as a catalyst for the reduction of 4-nitrophenol to 4-aminophenol16. The role 

of the switchable surfactant was to control the gold particle size but by having 

a surfactant that was switchable under different atmospheres, the surfactant 

(a silylamine) could be removed (by switching the atmosphere) avoiding the 

use of post synthesis treatments. 

Although the carbonated version of the switchable additive triethylammonium 

carbonate has been reported as a base the for co-precipitation of ceramics 

including spinel phase oxides17, 18, the use of a base in a switchable solvent 

system has not been reported for the precipitation of metal oxide precursors. 

The use of a switchable solvent could allow the precipitation of a metal 

precursor to occur under a carbon dioxide atmosphere or in a nitrogen 

atmosphere and then switch to a carbon dioxide atmosphere. The use of 

such system could potentially be used as a recyclable base system i.e. 

precipitate the precursor under CO2 and recover the switchable additive. This 

system can also allow a co-precipitation route without the use of sodium 

carbonate and therefore reduce sodium poisoning and the washing 

required19.  

5.1.2: Choosing the switchable solvent and overview on the switching 

process for metal carbonate preparation 

 

Since Jessop published the use of DBU as a switchable solvent in 2005, 

there has been a wide expansion of research in the area of switchable 

solvents and investigations into other switchable additives1. While the 

switchable polarity additive DBU is still widely used3, 20, 21, it has several 

disadvantages, most notably its sensitivity to water22. The switching occurs 

due to the formation of an amidinium carbonate salt formed from the DBU 

and alcohol, which forms an ionic liquid at room temperature. However, the 

presence of water forms a bicarbonate salt which is more stable than the 
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carboxylate form. To achieve a proper switchable process with DBU ultra dry 

conditions are required22. 

The other consideration when choosing the switchable solvent is the 

complexity of synthesis and the cost of the switchable additive to synthesise 

a sufficient amount to be used to make enough catalyst/ precursors for 

characterisation and catalyst testing. 

However, one of the larger influences to consider when choosing the 

switchable additive is the possibility of residual switchable additive in the 

catalyst precursor. As seen with the use of choline chloride-oxalic acid deep 

eutectic solvent in Chapter 3, constituent inorganic or organic substance can 

be retained in the catalysts even after washing and calcination. Inorganic 

species as previously seen can poison the catalyst even after excess 

washing and more complex organic additives such as DBU can also affect 

the calcination through increasing the calcination temperature and possible 

exothermic decomposition, potentially increasing the likelihood of carbon 

formation on the surface, which would restrict active sites and decrease the 

catalytic activity. 

For this reason, simpler and cheaper alternatives to these systems were 

investigated. In addition, the use of switchable hydrophilic-hydrophobic 

solvents or switchable water would avoid the issues of posing by water, while 

the hydrophilic and hydrophobic systems also have a larger polar change in 

comparison to the DBU systems23. The requirements of ultra-dry conditions 

needed for DBU would further be hampered by the fact that many of the 

precursor salts are hydrated and would therefore kill the switchable reaction 

and also may cause the bicarbonate DBU to precipitate with the metal 

precipitate therefore potentially causing the problems mentioned earlier. 

For these reasons triethylamine (TEA) was chosen as the switchable solvent 

because of its relative broad switching range, commercial availability, and 

cost as well as the fact that it can be used with water. 
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5.1.3 Aims of Chapter 5 

 

The aim of this chapter is to use the switchable solvent mixture of 

triethylamine and water to prepare manganese oxide, copper oxide and 

mixed copper-manganese oxide catalysts for the use in CO oxidation. The 

use of switchable solvents for carbon dioxide capture can lead to the 

formation of metal carbonates, thereby avoiding the use of sodium carbonate 

which can poison the catalysts and may provide an alternative to the more 

energy intensive supercritical anti-solvent (SAS) process24.  

This chapter will compare the physical and catalytic properties of hopcalite 

made from switchable solvents with those made from supercritical anti-

solvent precipitation and co-precipitation, to evaluate the use of switchable 

solvents for the formation of metal carbonates. 

 

5.2 Switchable solvent for single metal carbonate preparation: 

copper and manganese carbonates 

 

The first investigation was to see if the technique could be used to make or 

precipitate single metal oxide precursors. For this manganese and copper 

was chosen as a starting point since the method was also going to be used 

for the formation of hopcalite precursors and possibly other mixed copper 

based catalysts such as copper-zinc oxides (as explored in Chapter 6). 

For the formation of manganese carbonate both manganese acetate and 

manganese nitrate salts were used as the precursor salt. For copper only, 

the nitrate salt was used. All of the single metal precursors were precipitated 

under a carbon dioxide atmosphere and left under carbon dioxide for 0.5-1 

hour. 
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Figure 5.2: Manganese carbonate formed from switchable solvent triethylamine and 

water with a) manganese acetate tetrahydrate and b) manganese nitrate tetrahydrate  

 

The XRD pattern (Figure 5.2) confirmed that manganese carbonate was 

formed when using both manganese salts with the triethylamine and water 

based switchable solvent with reflections at 2θ= 24.3° (0 1 2 ), 31.4° (1 0 4), 

37.6° (1 1 0) being associated with the manganese carbonate 

(rhodochrosite) phase. However infra-red spectroscopy of the samples 

showed a slight difference between the two samples, with the sample made 

from nitrates showing two additional peaks at 1791 cm-1 and 1039 cm-1 which 

could suggest additional impurities not present in the acetate sample that 

could originate from residual nitrates. 
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Figure 5.3: FTIR spectrum of the manganese samples formed in switchable solvents 
using a) manganese acetate and b) manganese nitrate salts 

The X-ray diffraction pattern of  the copper precipitate (Figure 5.4) indicates 

the formation of malachite (Cu2(CO3)(OH)2) with reflections at 15.3°, 18.0° 

24.5°, 31.7° and 36.1°. The XRD of the sample calcined at 350 °C shows 

only the reflections of copper oxide with no other crystalline phase observed. 

This assignment is supported by the FTIR spectrum (Figure 5.5) of the 

sample that shows IR stretches associated with malachite. The stretches at 

3406 cm-1 and 3321 cm-1 are associated with the OH stretching while the 

peaks   1625 cm-1 ,1475 cm-1, 1326 cm-1, 1315 cm-1  are associated with the 

carbonate25.  
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Figure 5.4: XRD of a) copper carbonate precipitated in switchable solvent under CO2 
and b) calcined at 350 °C for 3 hours 

  

Figure 5.5: FTIR of copper sample precipitated from switchable solvent showing 
vibrations associated with malachite 

The thermal gravimetric analysis (Figure 5.6) of the manganese carbonate 

(acetate sample) shows multiple mass losses in the region of 50-550 °C. A 

slow mass loss of 10% occurred between 50 and 150 °C followed by a more 

rapid two-step mass loss at 170-350 °C before another rapid mass loss at 

550 °C. Typically manganese (II) carbonate has been reported to fully 

decompose at around 300-350 °C, which corresponds to the second part of 
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the mass loss, while the final mass loss at 550 °C is caused by the formation 

of Mn2O3 from MnO2 and the release of oxygen26. The first mass loss at 240 

°C (too high for water) as well a minor mass loss at 430 °C are less typical of 

a manganese carbonate decomposition suggesting that these mass losses 

are originating from an impurity in the sample (such as residual acetate or 

amine species). In addition, the weight loss is approximately 36% which is 

higher than the expected mass loss from the decomposition of a manganese 

carbonate (non-hydrate) to a manganese oxide of 28-30 %27 which would 

support impurities present giving rise to these features. 

 

Figure 5.6: TGA profile of manganese carbonate formed from switchable solvents and 
manganese acetate 

The malachite sample showed a different TGA profile (Figure 5.7) with three 

weight losses. The first at 100-130 °C most likely being water evolution, 

followed by a very rapid decomposition at 184 °C and a more gentle 

decomposition at 300-340 °C. The weight loss at 298-335 °C is more typical 

range for malachite degrading to copper oxide and malachite usually has no 

mass loss prior to this temperature28. The rapid mass loss at 184 °C could be 

caused by the degradation of residual nitrates that may cause a rapid 

decomposition leading to premature degradation of the carbonates at a lower 

temperature range. It is known from the XRD that copper oxide is the only 

crystalline phase detected that had formed by this temperature suggesting, 

along with the TGA, that the precursor material has fully decomposed by this 

temperature (assuming that the sample is fully crystalline).  
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Figure 5.7: TGA profile and differential of malachite made from switchable solvents 

The SEM images of the carbonates formed from the nitrate solutions show 

that both copper and manganese formed agglomerates of smaller particles. 

The manganese carbonate had uniformly formed spherical agglomerates of 

particle whereas the copper had formed two distinct morphologies, the first 

being made up of small spherical particles the second forming larger, 

rectangular particles that appeared to form in separate agglomerates.  The 

formation of two morphologies could suggest that two precipitation 

mechanisms are happening in the solution, with one occurring over a longer 

time period than the other. It is also possible that a second undetected 

compound has been precipitated with the malachite. 

a      b  

Figure 5.8: SEM images of the single metal precursors precipitated (from nitrate salts) 

in switchable solvent under carbon dioxide a) manganese and b) copper 
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5.3 Switchable solvent for copper-manganese preparation 

 

The previous section demonstrated that the switchable process could be 

used to prepare single metal carbonates such as manganese and copper 

carbonate. However, the next step was to make mixed copper-manganese 

carbonate as a precursor to hopcalite for use as a CO oxidation catalyst. 

Catalysts prepared using this technique were then compared to the 

characterisation and catalytic properties to hopcaltite made from other 

techniques such as co-precipitation and supercritical anti-solvent (SAS).  

The initial catalysts were prepared using an amine:water ratio of 1:1.4 

(volume) before a series of other catalyst were prepared with variations to the 

amine: water volume ratios using 1:1 or 1:0.7 (the former is the standard 

concentration used for switchable solvents) to observe the effect of amine 

concentration and amine: metal has on the precipitation of the precursor. 

The parameters of switchable solvent experiment were then varied to see the 

effect on the copper-manganese mixing, surface area and catalytic activity. 

The parameters that were chosen to change were: initial metal salt, the 

atmosphere (CO2 or N2) during precipitation, the ratio of amine: water and 

amine: metal and the effect of aging time under different atmospheres. 

As a basis for comparison hopcalite precipitated with triethylamine (TEA) was 

compared with the hopcalite made from both co-precipitation and SAS. The 

co-precipitated hopcalite which had a Cu:Mn ratio of 1:2 was also used as 

reference catalyst in Chapter 4. 

Previous work looking into the differences between hopcalite made from SAS 

precipitation and that from co-precipitation has been studied and published 

by Tang et al.29, 30. Most notably the SAS precipitated hopcalite was noted for 

its higher surface area but also its high degree of mixing of the copper and 

manganese than the co-precipitated catalyst, which were found to form 

isolated copper oxide31.    
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The conditions chosen for the precipitation of the SAS reference samples 

was based on the condition that had been noted in previous research to give 

the optimum surface area and CO oxidation activity30. For this reason, the 

solvent used was 15% water in ethanol, since this gave good surface area 

and good catalytic activity. 

 

5.3.1 Switchable solvent to prepare hopcalite precursor and 

comparison to SAS and co-precipitated hopcalite 

 

The initial preparation conditions chosen was the addition of copper-

manganese nitrate (in 4 ml of water) to a mixture of 1.4:1 triethylamine: water 

(volume ratio) under carbon dioxide. This sample was also compared to 

hopcalite precipitated by SAS.  

The XRD pattern of the TEA precipitated material (Figure 5.9 a) was identified 

as the manganese carbonate phase rhodochrosite (MnCO3), which is also 

known to appear in the precursor of co-precipitated material (see Chapter 4) 

and was also the main phase detected in the SAS prepared hopcalite 

(Figure 5.9 b). The XRD also showed weak malachite reflections suggest that 

not all of the copper mixed with the manganese, resulting in isolated 

malachite particles although this is also known to occur in other hopcalite 

preparations such as ball milling32. In comparison no separate malachite was 

detected in the supercritical anti-solvent precipitated sample with the 

manganese carbonate being the only detectable crystalline phase. 
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Figure 5.9: XRD of the copper-manganese carbonate precipitated using a) switchable 
solvent under carbon dioxide with 1.4:1 TEA:water and b) supercritical anti-solvent 
process (15% vol water/ethanol) 

 

Figure 5.10: FTIR of the copper-manganese carbonate precipitated by a) switchable 
solvent under carbon dioxide with 1.4:1 TEA:water and b) supercritical anti-solvent 
precipitation (15% vol water/ethanol) 

FTIR (Figure 5.10 a) of the switchable precursor showed the IR shifts 

associated with the carbonate at 1386 cm-1 and hydroxide peaks at  

3350 cm-1. These were the same IR peaks seen in the SAS precipitated 

sample (Figure 5.10 b). What is notable is that the switchable solvent 
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prepared sample showed additional vibrational peak at 819 cm-1 as well as a 

broader, intense vibration at 1050 cm-1. These correspond to vibrations that 

were observed with the FTIR of the malachite formed from the switchable 

solvents, (1039 cm-1 and 813 cm-1 assigned to OH liberation and CO3 

asymmetric bending respectfully25), with the other malachite vibrations (such 

as 1380 cm-1 or 1486 cm-1) being indistinguishable from the carbonate 

vibrations of both manganese carbonate and mixed copper-manganese 

carbonate30. This, along with the XRD, would suggest that that phase 

separated malachite had formed during the precipitation in the switchable 

solvent but not in the SAS sample. 

 

Figure 5.11: XRD of the calcined 350 °C copper-manganese carbonates made by a) 
switchable solvents, b) supercritical anti-solvent and c) co-precipitation   

The XRD of the calcined material (Figure 5.11) precipitated in the switchable 

solvent showed three reflection; two sharper reflections at 35.5° and 39.0° 

and a broader reflection at 37° which could either originate from a spinel 

phase CuMn2O4 or isolated CuO. However the reflection at 2θ=39.0° is close 

to where the (1 1 1) or (2 0 0) of copper oxide is expected so it is likely that 

these reflections originate from isolated CuO. 

There is little indication of the carbonate phase in the sample after calcination 

at 350 °C other than a weak reflection at 2θ=32°, suggesting that most of the 

manganese and copper manganese carbonate phase had decomposed 
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however small amounts of MnCO3 may still be present. In comparison the 

XRD of both the co-precipitated and the supercritical precipitated copper-

manganese still shows large manganese carbonate reflections (although 

much weaker than the precursor XRD pattern) present after calcination at 

350 °C which would correspond to the TGA of those samples.  

The XRD of the calcined material from supercritical anti-solvent precipitation 

(Figure 5.11 b) show mostly an amorphous pattern. However, the sample 

calcined at 350 °C shows some reflections (at 2θ=31.9°) which could indicate 

residual manganese carbonate in the sample. Likewise, the co-precipitated 

sample (Figure 5.11 c) (from same batch used in Chapter 4) still showed 

manganese carbonate reflections after calcination at 350 °C and did not 

show the formation of amorphous phase until after 400 °C. It should be noted 

that in comparison the copper-manganese samples precipitated from 

switchable solvents was already observed to be weakly crystalline phase by  

350 °C with no reflections that could be associated with manganese 

carbonate. This would indicate that the main carbonate phase had degraded 

by 350 °C (as seen in the TGA) whereas the rhodochrosite phase was still 

present in co-precipitated sample after heat treatment at 350 °C for 3 hours. 

The surface area of both the precursor and final supercritical anti-solvent 

precipitated catalyst (Table 5.1), was shown to be the highest, although this is 

relativity small increase over the switchable solvent made catalyst, with the 

final calcined catalysts surface area within 5 m2 g-1 of each other. The co-

precipitated catalyst showed the lowest surface area although this was still 

mostly in the carbonate phase (Figure 5.11 c) at this temperature. 

  



 

202 
 

Table 5.1: Surface area (5 point BET) of the precursor and calcined (350 °C) copper-
manganese carbonate made from switchable solvent precipitation, co-precipitation 
and supercritical anti-solvent precipitation (N/A means not measured). 

 Surface area/ m2 g-1 

Supercritical  

anti-solvent 

Co-precipitated Switchable 

(1.4:1, Nitrate, CO2) 

Precursor 93 (±10) N/A 64 (±5) 

350 °C 109 (±10)  15 (±2) 102 (±10) 

 

The TPR profile of the hopcalite from supercritical anti-solvent, calcined  

350 °C, (Figure 5.12) showed a two step reduction with the first step at  

215 °C (the preceding broad reduction being caused by residual carbonate)33 

and 260 °C which could suggest good phase integration and copper-

manganese interactions34.  In comparison those formed from switchable 

solvent precipitation had multiple reduction peaks at 234 °C, 260-280 °C and 

311 °C, which would suggest not only a less integrated copper-manganese 

phase and that some extent of phase separation had occurred34.  

 

Figure 5.12: TPR of copper-manganese oxide catalysts (calcined at 350 °C) prepared 
by a) supercritical anti-solvent and b) switchable solvent  

It should be noted that the catalyst from supercritical anti-solvent precipitation 

(Figure 5.12 b) showed a very small reduction at 340-360 °C that could 
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possibly originate from a phase separated manganese species, in addition to 

a reduction between 110-180 °C which would suggest residual carbonate 

species still present in the sample (partially seen in XRD). In comparison this 

reduction is not as prevalent in the switchable solvent precipitated sample 

which would suggest that this precursor had mostly degraded during the 

calcination process at 350 °C. 

 

a  b  

Figure 5.13: SEM images of the copper-manganese carbonate prepared by a) 
switchable solvent precipitation and b) supercritical anti-solvent 

 

The SEM images of the carbonate precipitated from SAS shows spheres 

made up of agglomerate of smaller spherical particles. The switchable 

solvent precipitated sample showed a mixture of the spheres along with a 

second morphology that formed rod shaped crystals. EDX analysis ((Figure 

5.39), section 5.3.4) showed that these rods are more copper rich and 

therefore likely originating from the phase separate malachite seen in the 

XRD and FTIR. 
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Figure 5.14: CO oxidation as using copper manganese oxide catalysts prepared by 
switchable solvent and supercritical anti-solvent precipitated hopcalite calcined 350 
°C  

The CO testing of the supercritical anti-solvent precipitated catalyst and the 

switchable solvent precipitated catalyst (pre-treated under nitrogen at  

110 °C) both show a rapid deactivation in the first 30 minutes, which is 

commonly observed with hopcalite catalysts30, 35 (see Section 4.4). The 

catalyst prepared by supercritical anti-solvent precipitation was slightly more 

active than the switchable solvent catalyst, most notably after the first 

temperature ramp at 30 °C but the switchable catalyst had stabilised after the 

first temperature ramp and by 40 °C the difference in CO conversion 

decreased. The higher CO oxidation of the SAS catalyst could owe to the fact 

that firstly the sample had a slightly higher surface area than the switchable 

catalyst and secondly the sample had a better copper-manganese mixing 

which is important in the redox coupling during CO oxidation36, 37.   

Surface area normalised conversion (Figure 5.15) showed that the 

supercritical anti-solvent precipitated hopcalite was still more active at lower 

temperatures in this respect, which suggested that the higher activity was 

more likely owed to better copper-manganese mixing than the higher surface 

area, although the differences in the normalised activity between the two 
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catalysts was lower at 20 °C and 40 °C. However by 50 °C both catalysts 

were showing very similar rates. 

 

Figure 5.15: Surface area normalised CO conversion using switchable and SAS 
precipitated hopcalite calcined 350 °C 

 

5.3.2 Change in precursor salt and precipitation atmosphere 

 

The effect of using different precursor salts and the atmosphere of 

precipitation on the final catalyst was also investigated. The acetate salt was 

dissolved in water at the same concertation as the nitrate salt and was 

precipitated under CO2 with 1.4:1 TEA:water (the same as the standard 

sample) and left for 1 hour before centrifuged and washed. 

The XRD of the material made from the acetate (Figure 5.16 a) only showed 

the reflections of rhodochrosite with no reflections associated with malachite 

or any copper containing compound being observed by XRD. This could be 

due to better mixing but it should be noted from MP-AES analysis later on 

((Table 5.10) Section 5.3.4) that the acetate sample had a lower 

copper:manganese ratio of 1:2.5. This would suggest that lack of phase 
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separate malachite peaks might be due to the lack of copper that precipitated 

rather than the formation of a more phase pure material. The loss of copper 

could be due to its failure to precipitate during the addition, resulting in coper 

being dissolved in the solvent mixture rather than co-precipitating with the 

manganese carbonate but more investigation would be required to confirm 

this. 

 

Figure 5.16: XRD of the copper-manganese carbonate precipitated under carbon 
dioxide using a) acetate salts b) nitrate salts and c) precipitated under nitrogen 
(switched to CO2) with nitrate salts 

 

XRD of the sample precipitated (Figure 5.16 c) under nitrogen showed two 

small reflections at 2θ=12.8° and 26.3° C which could be assigned to copper 

nitrate hydroxide which is known to have two reflections at these angles38. 

This would suggest that not all of the copper nitrates reacted with the TEA 

during the 1 hour under CO2.  Using the Scherrer equation the crystallite size 

of the manganese carbonate reflection at 2θ=31.6° (Table 5.2) in the acetate 

sample was significantly smaller than the material precipitated from the 

nitrate or the supercritical anti-solvent precipitated precursors.  
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Table 5.2: Crystallite size (±2 nm) of the manganese carbonate precursors at 2θ=31.6° 
and malachite 2θ=17.5°. Value of n/a is used for materials that had no malachite 
reflections. 

Sample Crystallite size manganese 

carbonate 2θ =31.6° 

Crystallite size malachite 

2θ=17.5 ° 

1.4:1, CO2, Acetates 6.2 n/a 

1.4:1, CO2, Nitrates 7.9 15.0 

1.4:1, N2, Nitrates 10.3 10.0 

Supercritical anti-solvent 9.3 n/a 

Co-precipitated (Na2CO3 

pH 8.3) 

13.4 n/a 

 

The FTIR of the sample precipitated using the acetate salts (Figure 5.17 a) 

showed the same vibrational shift as the supercritical anti-solvent precipitated 

sample (Figure 5.10 b) but did not show the additional vibrations at 813 cm-1 

and 1050 cm-1, associated with malachite, that was observed in the sample 

that used nitrate salts (Figure 5.17 b). This along with the XRD (Figure 5.16) 

would suggest that separated/isolated copper carbonate predominantly forms 

with the nitrate salts but was not observed when the acetate salt was used 

although this could be due to the lack of copper in the acetate sample. 

 

Figure 5.17: FTIR spectrum of the copper-manganese carbonate precipitated under 
CO2 using a) acetate salts and b) nitrate salts 
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The XRD profile of the sample precipitated under nitrogen after calcination at 

350 °C (Figure 5.18 c) showed the same reflections at 35.3° and 38.5° as the 

sample precipitated under carbon dioxide (Figure 5.18 a) which are assigned 

to isolated copper oxide, along with the broad reflection at 36.4°. In 

comparison the sample precipitate using acetate salts under carbon dioxide 

(Figure 5.18 b) was mostly amorphous with a broad reflection at 36.2°. The 

more amorphous nature could be related to the fact that the two reflections at 

35.3° and 38.5° originate from isolated CuO which would correspond to the 

malachite reflections of the precursor and better copper-manganese phase 

integration seen in both supercritical anti-solvent precipitated and acetate 

samples. On the whole the reflections at 35.3° and 38.5° are seen in the 

samples that had malachite in the precursor further justifying the assignment 

of these reflections to isolated copper oxide. 

 

Figure 5.18: XRD of the calcined (350 °C) copper-manganese samples precipitated in 

1.4:1 TEA:water a) nitrate salts CO2 b) acetate salts CO2 and c) nitrate salts N2 

The surface area of the acetate precursor was generally higher than that of 

the nitrate salts for the precursor, but the nitrate salt precipitated under the 

nitrogen atmosphere generally had a higher surface area than either of the 

two samples precipitated under CO2. 
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Table 5.3: Surface areas (± 10 m
2 
g

-1
) of the precipitated samples (1.4:1 TEA:water) and 

calcined oxides 350 °C . N/A is used for experiment not performed 

Sample  Surface area/ m2 g-1 

Precursor Calcined 350 °C 

Acetate CO2 92 149 

Nitrate N2 N/A 176 

Nitrate CO2 64 102 

 

The TGA profile of the sample precipitated under nitrogen and carbon dioxide  

in the 1.4:1 TEA:water (Figure 5.19) showed three mass losses at 220 °C, 

280 °C and 500 °C. The mass loss at 280 °C has been associated with the 

breakdown of the carbonate phase to form the spinel phase while the final 

mass loss may be attributed to phase separated carbonates. The mass loss 

was greater for the carbonates that were precipitated under the carbon 

dioxide atmosphere (38%) than the samples precipitated under nitrogen (33 

%). This difference might suggest that while XRD showed both samples had 

formed carbonates, there was possibility that not all of the metals had been 

carbonated during the aging process under carbon dioxide after the 

precipitation under nitrogen. 

In addition, the mass losses, at 220 °C and 280 °C are more rapid for the 

carbon dioxide precipitated sample suggesting that the carbonates degraded 

more rapidly in these samples. The overall profile is very much like the TGA 

profile observed with manganese carbonate precipitated in TEA, suggesting 

that the main degradation profile is caused by the manganese carbonate with 

the copper species degrading in the same temperature range. The rapid 

decomposition at 184 °C observed in the malachite sample  

(Figure 5.7) is not seen in this sample but the second decomposition at  

300 °C would occur in the second decomposition in these samples. The 

profile also shows that the final weight loss at 500 °C is most likely the 

formation of phase separated Mn2O3 from MnO2 that is known to occur at this 

temperature range27. 
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Figure 5.19: TGA profile under flowing air of copper manganese carbonate 
precipitated under a) carbon dioxide and b) nitrogen with 1.4:1 triethylamine: water 
(nitrate salts) 

Temperature programmed reduction was performed on the samples 

precipitated with nitrates under both atmospheres (Figure 5.20), showed 

varying reduction profiles between the different the atmospheres. The 

nitrogen precipitated carbonate showing only two reduction profile at  214 °C 

(Cu2+ to Cu0) (the broad reduction prior to this is due to residual 

carbonates)33 and 271 °C which was overall more typical reduction of co-

precipitated hopcalite (Chapter 4) and supercritical anti-solvent precipitated 

samples30. The samples precipitated under carbon dioxide using both nitrate 

and the acetate salts showed similar reduction profile showing multiple 

reductions the main two at 218 °C and a broad reduction at 251-270 °C, while 

the sample precipitated using nitrates showed three reductions at 240 °C 

(with a shoulder reduction at 230 °C), 280 °C and 330 °C. The additional 

reduction at 330 °C would suggest a phase separate MnO2 present in the 

sample with the multiple reductions suggesting that the copper-manganese 

was as well integrated as the other materials34. 
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Figure 5.20: TPR of the copper-manganese oxide calcined 350 °C precipitated from 
switchable solvents a) 1.4:1 under nitrogen, b) 1.4:1 Carbon dioxide using nitrate salts 
and c) 1.4:1 carbon dioxide atmosphere acetate salt 

 

SEM images of the copper-manganese carbonates (Figure 5.21) that were 

precipitated from switchable solvents (using the acetates salts) formed 

rounded globe shape particles that formed from agglomeration of smaller 

spherical particles that come together. This type of morphology is also 

observed with SAS precipitated hopcalite precursors, with the shape and size 

being very similar suggesting that a rapid precipitation had occurred. The 

samples retained this morphology after calcination at 350 °C. EDX analysis 

(Figure 5.22) carried out on the acetate sample showed a consistently even 

distribution of copper and manganese in the sample, showing that the 

sample had a much better copper-manganese mixing than the nitrate 

sample.  This would also be backed up by the fact that these particles appear 

more commonly in the samples where phase separated malachite was 

detected by XRD (Figure 5.16 b and c) and do not appear in samples (Figure 

5.21 a and b) with no phase separated malachite detected by XRD such as 

the acetate samples (Figure 5.16 a). 
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a)   b)  

c)    d)  

Figure 5.21: copper-manganese carbonate precipitated from triethylamine (1.4:1) 

under carbon dioxide using a) acetate salts, and b) calcined at 350 °C and with c) 

nitrate and d) calcined 350 °C 

 

Figure 5.22: a) SEM image of copper-manganese carbonate from switchable solvent 
(acetate) and EDX mapping of b) copper, c) manganese and d) oxygen 
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The CO oxidation activity of the three catalysts shows large variations. The 

acetate sample precipitated under carbon dioxide showed the highest activity 

of the 1.4:1 samples with an initial conversion of 90% although the catalyst 

was still showing deactivation after the first temperature ramp. This increased 

CO activity may be related to the better metal mixing and lack of isolated 

copper clusters. The acetate sample shows greater CO conversion than the 

supercritical anti-solvent precipitated catalyst (Figure 5.14), which is partially 

due to the higher surface area. The enhanced CO activity of the acetate 

sample and supercritical anti-solvent precipitated catalyst could be due to the 

fact that both materials show as mixed copper-manganese oxide compared 

to the other switchable solvent prepared catalysts that show varying amounts 

of segregated single oxides. 

 

Figure 5.23: CO oxidation of switchable precipitated hopcalite (calcined 350 °C) made 
from acetate and nitrate salt (1.4:1 triethylamine: water) 

The nitrate sample precipitated under both atmospheres (with 1.4:1 

TEA:water) showed the same initial deactivation curve and have similar 

conversions. However, the nitrogen precipitated sample showed deactivation 

after the temperature ramp whereas the carbon dioxide precipitated sample 

showed a greater degree of stability after the temperature ramp.  
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5.3.3 Effect of varying the amount of triethylamine  

 

In addition to precipitating copper manganese carbonate in 1.4:1 TEA:water, 

other ratios of 1:1 (standard TEA concentration for switchable solvent) 0.7:1 

was also done in order to observe the effect of concertation of TEA on the 

catalyst and to see how this affects the catalytic activity of the final oxide. The 

concentration of the TEA would also have an additional affect in that as well 

as changing the base concentration; the switchable properties would also be 

changed15. The 1:1 amine to water is the standard ratio used for switchable 

hydrophilic solvent (SHS) system39. 

 

Figure 5.24: XRD of the copper-manganese carbonates precipitated under CO2 with 
triethylamine: water ratio of a) 0.7:1 b) 1:1, c) 1.4:1 and d) precipitated under nitrogen 
1.4:1 TEA:water 

The sample precipitated with 0.7:1 TEA:water did not vary from the 1.4:1 

sample, both showing the presence of manganese carbonate and reflections 

of malachite. In addition the crystallite size of the manganese carbonate 

(2θ=31.6°) did not vary much between the two samples. The sample 

precipitated with 1:1 however, was not sufficiently washed and as a result 

produced two reflections that indicate the large presence of copper nitrate 

hydroxide. It has been noted however that in conventional co-precipitated 

catalysts the copper nitrate hydroxide forms initially before redissoving40. 
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There was also no reflection associated with isolated malachite detected in 

this sample. The sample precipitated under nitrogen with 1:1 TEA:water also 

showed malachite and rhodochrosite reflections and was more similar to that 

of the 1.4:1 and 0.7:1 sample precipitated under CO2. 

There is a correlation between the crystallite size of the manganese 

carbonate phase of the precursor and the surface area of both the precursor 

and the final catalysts although the 1:1 TEA:water CO2 sample does not 

follow this trend (due to the excess of copper nitrate or copper hydroy nitrate 

and reduced overall surface area). 

 

Table 5.4: Crystallite size of the malachite 2θ = 17.5° and manganese carbonate 
2θ=31.6° phase of the precursors precipitated in switchable solvent using nitrate salts 
(error of ±2 nm). Value of n/a is used for materails that had no malachite reflection. 

Sample Crystalline size 

manganese carbonate 2θ 

=31.6° 

Crystalline size malachite 

2θ=17.5 ° 

1:1 CO2 8.8 n/a 

1:1 N2 9.4 15.2 

1.4:1 CO2 7.9 15.0 

1.4:1 N2 10.3 10.0 

0.7:1 CO2 7.7 10 
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Figure 5.25: XRD of the copper-manganese oxide calcined 350 °C precipitated with 
triethylamine: water ratio of a) 0.7:1 b) 1:1, c) 1.4:1 and d) precipitated under nitrogen 
1.4:1 

The XRD of the calcined copper-manganese oxides (Figure 5.25) shows that 

the carbonates precipitated with 1.4:1 TEA:water under carbon dioxide and 

1:1 TEA:water under nitrogen displayed the same XRD pattern with the two 

CuO reflections at 35.3° and 38.3° as well as the reflection at 36.2°. The 

sample precipitated with 0.7:1 TEA:water also shows these reflections but 

they are significantly weaker than those of the copper-manganese oxide 

precipitated with 1.4:1 TEA:water suggesting a more disordered phase. 

However, the sample that was precipitated under CO2 with 1:1 TEA:water 

shows distinct reflections at 2θ=25.1° and 32.3° which would indicate the 

presence of manganese carbonate which would show that this precursor did 

not fully convert to the oxide unlike the other samples where the manganese 

carbonate reflections are either very weak or not present.  However, this 

sample also shows reflections at 35.3° and 37.3° which could indicate 

presences of CuMn2O4 or isolated CuO. The remaining manganese 

carbonate is separate and would therefore more likely to form phase 

separated Mn2O3 if heated to higher temperatures and that the copper-

manganese in this sample was not as homogeneously dispersed as the other 

samples. 
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Table 5.5: Surface area (±2 m
2 
g

-1
) of the precipitated sample (using nitrate salts) using 

different amine ratios (volume) and precipitation atmospheres 

Sample 

Surface area/ m2 g-1 

Carbonate Calcined 350°C 

1.4:1 CO2 64 102 

0.7:1 CO2 76 202 

1:1 CO2 9 39 

1:1 N2 37 101 

 

The low surface area of the precursor with 1:1 amine:metal could be 

associated with the excess Cu2(OH)3(NO3) that was seen by XRD (2θ=12.9°) 

as this reflection seen in samples that were aged also appears along with a 

decreased surface area of the precursor. This sample had a low surface area 

even after calcination at 350 °C, although the material still contains unreacted 

manganese carbonate (Figure 5.25). The copper hydroxyl nitrates have been 

reported as having an endothermic degradation41 so this is unlikely to have 

contributed to the reduced surface area but copper nitrate hydrate has been 

reported to degrade exothermically42, which could have contributed to 

sintering and reduced surface area if there was unreacted copper nitrate 

present in the sample. 
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Figure 5.26: CO oxidation profile of the calcined hopcalite (350 °C) which were 
precipitated under carbon dioxide with different concentrations of triethylamine 
(using nitrate salt) 

The activity of the catalyst that was made using the 1.4: TEA:water was 

shown to be the most active showing an initial conversion of 76% but rapidly 

deactivating in the first 30 minutes. The sample precipitated with 0.7:1 had a 

lower conversion despite have almost twice the surface area of the 1.4:1 

sample. In addition, this catalyst saw continued deactivation after the first 

temperature ramp whereas the 1.4:1 TEA:water catalyst exhibited stable 

performance 

The low activity of the catalyst precipitated in 1:1 TEA:water under carbon 

dioxide with nitrate salts may be related to the excess copper nitrate or 

copper hydroxyl nitrate that was still present in the sample which resulted in 

this sample having lower surface area after calcination at 350 °C. The fact 

that the material had the lowest surface area and the large presence of 

phase separated manganese carbonate after calcination may be other 

factors that had decreased CO activity for this catalyst. 
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Figure 5.27: CO oxidation profile of copper-manganese oxides (calcined 350 °C) made 
from switchable solvents precipitated under nitrogen before being switched to CO2 

The catalysts that were made from precursors added under a nitrogen 

atmosphere and then switched to CO2 show the same initial CO oxidation 

activity followed by a large deactivation with the catalysts that was 

precipitated with 1.4:1 TEA:water.  

The CO oxidation activity of the catalyst precipitated under both atmospheres 

indicated that the catalysts precipitated in 1.4:1 TEA:water were generally 

more active than those precipitated with 0.7:1 or 1:1. While the increased 

activity of the 1.4:1 sample over the 1:1 could be due to the increased 

surface area, the 0.7:1 sample showed a much lower activity despite the 

higher surface area and similar XRD pattern to that of the 1.4:1 sample. 

The copper manganese that was precipitated using 0.7:1 of TEA:water was 

heat treated at different temperatures (350 °C, 400 °C and 500 °C) to 

investigate the formation of the crystalline hopcalite phase, as well as to 

observe the changes in the material (such as surface area and reduction 

profile). 
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Table 5.6: Surface areas (±10 m 
2
 g

-1
) of copper-manganese catalyst/precursor made 

from SAS, co-precipitation and switchable solvents. n/a is used when experiment was 
not performed 

Calcination 

temperature 

Surface area/ 

m2 g-1 

Supercritical anti-

solvent precipitation 
Co-precipitated 

Precipitation 0.7:1  

TEA:water under 

CO2 using nitrates 

 (Precursor) 93 n/a 76 

350 °C 109 15 202 

400 °C 125 73 142 

500 °C n/a 21 30 

 

The XRD of the calcined oxide at 350 °C was very much amorphous, while 

the samples calcined at 400 °C showed more intense CuO reflections and 

the sample calcined at 500 °C had formed a crystalline spinel phase but with 

isolated Mn2O3 reflections present in the sample (at 2θ=33.1°). The CuO 

reflection at 2θ=35.5 would most likely be masked by the spinel reflection at 

the same 2θ but the 38.5° reflection is still visible. The formation of separated 

Mn2O3 is likely to have occurred at around 500 °C as observed in the TGA 

profile for copper-manganese carbonate by the small mass loss in this region 

being associated with the formation of Mn2O3, although co-precipitated 

hopcalite (1:2 Cu:Mn Chapter 4) also formed phase separate Mn2O3 at this 

temperature region as well.  The surface area of this hopcalite material 

dropped rapidly with the increased calcination temperature and formation of a 

more crystalline material. 
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Figure 5.28: XRD of copper-manganese precipitated in 0.7:1 triethylamine: water and 
calcined at a) 350 °C, b) 400 °C and c) 500 °C 

The TPR profile of the 400 °C calcined copper-manganese oxide showed 

very similar reduction profiles to the 350 °C with two reductions at 215 °C 

(Cu2+ to Cu0) and a second reduction at 264 °C (Mn3+ to Mn2+), which would 

suggest that the copper-manganese integration did not change much 

between calcination at 350 °C and 400 °C. The TPR profile of the sample 

calcined at 500 °C showed a much higher reduction profile as well as 

multiple reductions which confirmed what was observed with the XRD of 

phase separation occurring, most likely originating from phase segregated 

Mn2O3. 

Overall the change in the calcination conditions (sample precipitate in 0.7:1 

TEA:water sample) for the switchable solvent precipiated hopcalite showed 

that the sample calcined at 400 °C started to show some degree of 

crystallinity but overall remained mostly amorphous. However, this catalyst 

showed the same behaviour as co-precipitated catalyst when calcined at  

500 °C, becoming more crystalline but with a reduced surface area.  
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Figure 5.29: Comparison of CO conversion at 20 °C (30 minutes) with copper-
manganese oxide catalyst (0.7:1 sample) with and without pre-treatment at 110 °C for 
30 minutes prior to reaction. 

The pre-treatment stage of the catalyst at 110 °C under nitrogen was done in 

order to remove physisorbed water. It was noted when degassing the 

switchable solvent precipitated samples for surface area analysis that even 

after calcination at 350 °C they lost roughly 5-10% weight after the degassing 

stage. CO oxidation  activity of some of these samples showed that the initial 

conversion (at 20 °C) dropped by 12-15% when the samples were not 

degassed under nitrogen compared to those that were pre-treated. This 

suggests that the samples are prone to deactivation by physiosorbed species 

such as water, which affects the initial conversion. It should be noted that 

supercritical anti-solvent precipitated and co-precipitated prepared hopcalite 

have similar trends but the effect of pre-treatment shows that these copper-

manganese oxides as just as prone to deactivation by water. 

5.3.4 Effect of aging time and atmosphere 

 

Another important factor to consider to is the effect of aging the metal 

carbonate precursors for different time periods under the different 

atmospheres to see the effect of leaving the catalyst precursors under these 
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conditions. It has been previously reported that in conventional co-

precipitation of metal carbonates, the atmosphere under which the catalyst 

precursor is aged does affect its catalytic performance43. Since switchable 

solvent precipitations were carried out under different atmospheres (nitrogen 

and carbon dioxide) the influence of the atmosphere and how long the 

catalyst is left to age under these atmospheres is an important factor to 

consider. 

 

 

Figure 5.30: XRD of the copper-manganese carbonate with a) no aging and aging 
under carbon dioxide atmosphere for b) 0.5 hours, c) 2 hours and d) 5 hours 

The effect of the aging atmosphere and time was performed on copper-

manganese carbonates that were precipitated under a carbon dioxide 

atmosphere and either left to age under either a carbon dioxide atmosphere 

for 30 minutes, 2 hours and 5 hours, or switched to a nitrogen atmosphere 

and aged for the same time intervals. For the no aging study, the precipitate 

was centrifuged and washed immediately after precipitation. 

 

The X-ray diffraction pattern of the copper manganese carbonate precipitated 

at all aging times showed rhodochrosite phase as the predominant phase in 
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the sample. With no aging (Figure 5.30 a) only the rhodochrosite phase 

reflections was observed by XRD. However, with aging under a carbon 

dioxide atmosphere another phase began to appear, in particular the 

reflections at 2θ= 14.6°, 17.3° and 36.3°. These reflections would appear to 

indicate the presence of malachite that precipitates during the aging process, 

and increases with increased aging time. It has been noted that other 

preparation methods of making hopcalite have also seen formation of phase 

separate malachite in the samples and this observation is not unique to this 

system32. What is also notable is that with increasing aging time under the 

CO2 atmosphere, the samples crystallinity appeared to increase after 2 

hours, although with the crystallite size initially decreasing for the first 30 

minutes of aging. This seems to follow the trend observed with the surface 

area of the calcined samples (Table 5.7). 

Table 5.7: Crystal size of rhodochrosite 2θ =31.6° (1 0 4) for the copper-manganese 
carbonate precipitated and aged under carbon dioxide atmosphere (± 2 nm). 

Sample Crystal size 2θ=31.6° 

nm 

No aging 12.3 

0.5 hour 9.2 

2 hours 10.2 

5 hours 10.6 

 

Infra-red spectroscopy (Figure 5.31) also appears to confirm this observation 

with the main (very broad) carbonate peak appearing at 1150-1550 cm-1 with 

the hydroxyl peak appearing (weaker) at 3580-3500 cm-1 which was more 

predominate after 5 h aging. The FTIR for the sample with no aging did not 

show the additional vibrations at 1050 cm-1 and 815 cm-1 that are associated 

with phase separate malachite suggesting that this phase does not form 

instantly with the manganese phase but precipitates more slowly over the 

aging time. The FTIR spectrum does not significantly change after 30 

minutes aging suggesting that most of the malachite phase forms within the 

first 30 minutes. 
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Figure 5.31: FTIR of the copper-manganese carbonates precipitate with 
switchable solvent with a) no aging and aging under carbon dioxide for b) 0.5 
hours, c) 2 hours and d) 5 hours 

The XRD of the carbon dioxide aged catalysts after calcination shows that 

the precursors are mostly amorphous with some crystalline phase reflection 

being present at 2θ=32.7°, 35.8°, 37.2° and 39.0°. These reflections 

increased in intensity with an increase in the aging time and were not 

distinguishable in the sample with no aging but more defined after 5 hours 

aging under CO2. The reflections at 35.8° and 39.0° having been established 

as isolated CuO, would suggest that the increase in aging time favours the 

growth of the malachite (as seen in the precursor). The XRD pattern of the 

non-aged sample resembles the supercritical anti-solvent precipitated 

catalyst calcined at 400 °C, suggesting that the non-aged sample had better 

copper-manganese phase mixing and less separated copper carbonate 

formation in the precursor. 
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Figure 5.32: XRD of copper-manganese catalyst after calcination at 400 °C with a) no 

aging of the precursors and aging under carbon dioxide for b) 0.5 hours c) 2 hours d) 

5 hours and e) SAS precipitated copper-manganese oxide calcined 400 °C 

 

 

Figure 5.33: XRD of the copper-manganese precipitated in switchable solvents with a) 
no aging and aging under nitrogen atmosphere for b) 30 mins, c) 2 hours and d) 5 
hours 

The aging process under nitrogen showed a similar trend in the XRD pattern 

with the malachite reflections appearing during the aging process. For the 

sample aging under nitrogen for 30 minutes additional reflections appear at 

12.8° and 25.5° which are the reflections associated with copper nitrate 
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hydroxide. The excess copper- nitrate hydroxide may have been removed 

during the washing steps but these samples may have not been sufficiently 

washed to remove this. The fact that there is still copper nitrate hydroxide in 

the sample even after aging for a short time would suggest that it does not 

fully dissolve back into the switchable solvent unlike co-precipitation where 

the copper-nitrate hydroxide initially forms but re-dissolves during the aging 

process40, 44. 

Table 5.8: Crystalline size (rhodochrosite) with different aging times under nitrogen 

Sample Crystalline size 2θ=31.6° 

No aging 12.3 

0.5 hours 9.9 

2 hours 8.7 

5 hours 9.5 

 

Figure 5.34:  XRD of the copper-manganese catalyst calcined at 400 °C with a) no 
aging and aging under a nitrogen atmosphere for b) 0.5 hours, c) 2 hours and d) 5 
hours 

XRD of the calcined samples that were aged under nitrogen (Figure 5.34) 

showed a similar pattern to those aged under carbon dioxide with three 

reflections at 2θ=32.7°, 35.8° and 37.2° with the 32.7° and 37.2° reflection 

assigned to CuO. However, the sample aged for 0.5 hours showed 
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reflections from the spinel phase with reflection at such as 18.5° (1 1 1), 

58.6° (5 1 1) and 64.2° (4 4 0), while the broad reflection at 37.2° disappears 

which suggest that this sample has formed a more crystalline spinel phase 

than the other aged samples. 

The surface areas of the copper-manganese oxides initially increased with 

aging time under CO2 at 30 mins and then decreases with increased CO2 

aging time after 30 mins. The aging under nitrogen showed an opposite trend 

with the surface area initially decreasing but then increasing. Both the 

nitrogen for 0.5 hours and carbon dioxide aging for 5 hours show significantly 

lower surface area, which corresponds to the additional Cu2(OH)3NO3  peaks 

observed in the XRD. Aging under nitrogen for 2-5 hours appeared to favour 

an increase in surface area of both the precursor and the calcined sample 

compared with the sample aged under carbon dioxide.  

Table 5.9: The BET surface area (±10 m
2 
g

-1
) of the copper-manganese oxides and 

precursors with different aging times under carbon dioxide and nitrogen atmospheres 

 

 

 

 

 

 

The TGA of the sample with no aging and aging under both carbon dioxide 

and nitrogen atmosphere (Figure 5.35) all show three main mass losses at 

220-240 °C, 300-340 °C and 460-540 °C. The TGA profile for the non-aged 

sample is very similar to the one seen for manganese carbonate prepared 

from manganese acetate (Figure 5.6), which would suggest that the sample 

has better Cu-Mn mixing (copper in the manganese carbonate structure and 

lack of isolated malachite) as seen with the XRD of the precursors. 

 

 

Aging time and 
atmosphere 

Surface area m
2 

g
-1

 

Precursor Calcined 400 °C 

No aging 34 118 

CO2 

30 mins 80 128 

2 hours 81 112 

5 hours 12 105 

N2 

30 mins 21 97 

2 hours 107 143 

5 hours 113 145 
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Figure 5.35: TGA of the copper-
manganese carbonate with a) no 
aging, aging under carbon 
dioxide for b) 0.5 hours, c) 2 
hours and d) 5 hours and aging 
under nitrogen e) 0.5 hours f) 2 

hours and g) 5 hours 
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However, as the aging time is increased to 2 hours the most significant mass 

loss shifts from the 220-240 °C range to the 300-340 °C area. It should be 

noted that the 5 hours aging under carbon dioxide and the 0.5 hour aging 

under nitrogen which lack additional washing steps both have a larger mass 

loss at the initial 220-240 °C range. Both of these samples also had the 

additional reflection at 12.8° in the XRD, which did not appear in the other 

samples, suggesting that the copper nitrate hydroxide that appeared at this 

range also contributed to the initial mass loss at 220-240 °C. This would also 

suggest that the copper nitrate hydroxide is more likely to be removed with 

increased aging (assuming standard washing is used). The formation of 

carbonate over the nitrate hydroxide may be more likely with longer aging 

time in the switchable solvent. It appears that the mass loss is significantly 

reduced after 2 hours aging under either atmosphere with the main mass 

loss shifting to the 310 °C range. It should also be noted that for the sample 

aged for 5 hours aging under CO2 had a larger mass loss at 240 °C while the 

mass loss at 310 °C had also increased (from the differential) compared to 

the sample aged for 0.5 hour under nitrogen which would suggest that 

although there were excess nitrates the shift to higher temperature still 

occurred with increased aging. The final mass loss at 500 °C is the formation 

of phase separated Mn2O3 from MnO2 
25. 

This shift in mass loss towards 310-320 °C, would suggest that the carbonate 

phase is more predominate with increased aging time as well as the increase 

formation of malachite, since this mass loss region is associated with the 

degradation of the carbonates. This trend is in agreement with the XRD of 

the precursor phase with the carbonate phase becoming more crystalline and 

formation of the malachite phase with increased aging time under both 

atmospheres. 
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Figure 5.36: TPR profile of the copper-manganese oxides (calcined 400 °C) made from 
switchable solvents with a) no aging and aging for 5 hours under b) nitrogen and c) 
carbon dioxide 

The TPR profile of the samples (10 °C min-1 heating rate) shows very similar 

reduction profiles for the catalysts that had no aging and the catalyst that was 

aged under nitrogen for 5 hours, with two reduction peaks. The sample that 

was aged under a carbon dioxide for 5 hours also showed a broad reduction 

at 150-300 °C but the peaks have merged intoa broad reduction peak (or at 

least the two distinct reduction peaks are not visible), the most likely reason 

being the slightly higher degree of crystallinity observed and possibly better 

phase integration. The TPR profiles shown here are closer to those of SAS 

and co-precipitated hopcalite, which shows that the copper-manganese 

mixing for these samples does not differ from the conventional standards. 

The aging of the precursors overall seems to have had minor effect on the 

reduction profile, suggesting that the oxidation state and phase integration is 

more likely determined by the calcination step.  
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Table 5.10: Cu:Mn ratios (in ppm) calculated from MP-AES analysis (±0.1 Mn) 

CuMn2O4 

Sample 
Cu Average 

(PPM) 
Mn Average 

(PPM) 
Cu:Mn 
(PPM) 

Cu:Mn 
(Molar 
ratio) 

Acetate 4.0 8.5 1: 2.2 1:2.5 

No aging 4.2 7.5 1: 1.8 1:2.1 

Aging 5 hours 
Nitrogen 

4.3 7.8 1: 1.8 1:2.1 

Aging 5 hours 
carbon dioxide 

7.2 13.0 1: 1.8 1:2.1 

Supercritical 
anti-solvent 

4.8 8.1 1 :1.7 1:1.9 

Co-
precipitation 

5.9 10.2 1: 1.7 1:2 

   

MP-AES analysis on the materials showed that there were some differences 

between the desired ratio and the actual ratio of Cu:Mn, overall there was 

roughly a 1:2 ratio of copper:manganese precipitated. In addition the ratio of 

all Cu:Mn did not change with aging for 5 hours under both CO2 and N2 

atmosphere which means that the increase in malachite reflections and 

particle size seen in the XRD would be due to a growth in the malachite 

particles rather than a delayed precipitation. The values however did suggest 

that there was some small amount of copper loss during the switching 

process with the acetate system having the most significant loss of copper. 

This might explain why malachite is not observed in the copper-manganese 

sample when acetate are used (although they also do not appear in the non-

aged sample which has a closer ratio of Cu:Mn of 1:2).  

Cu 2p XPS of the non-aged sample (calcined at 400 °C) shows only Cu2+ 

peaks present with no indication of the presence of Cu+ associated with the 

spinel redox coupling that occurs in hopcalite35-37. However, the sample aged 

under CO2 for 5 hours showed Cu+ peaks alongside the Cu2+ which indicates 

along with the XRD and TPR that this hopcalite is more crystalline and had a 

better degree of phase integration. The sample that was calcined at 400 °C 

with the 5-hour aging under nitrogen showed no Cu+ peaks either. In 

comparison both copper manganese oxide prepared by supercritical anti-
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solvent precipitation and co-precipitation (Chapter 4) both showed small 

amounts of Cu+ after calcination at 400 °C.  

 

Figure 5.37: Cu 2p region of the copper-manganese oxides (calcined 400 °C) with a) 
no aging b) 5 hours nitrogen, c) 5 hours carbon dioxide and d) SAS precipitated, 
calcined 400 °C  

The O 1s XPS (Figure 5.38) showed a minor increase in the lattice:adsorbed 

oxygen ratio (529.9 eV and 531.6 eV) with increased aging time under both 

atmospheres, with the nitrogen having higher amounts of adsorbed oxygen 

than the carbon dioxide aged sample.  
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Figure 5.38: (left) XPS of the 
O 1s region of the copper-
manganese catalysts with a) 
no aging, b) 5 hours nitrogen 
and c) 5 hours carbon 
dioxide. 
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Table 5.11: XPS peak area % (± 5% )of the O 1s region  

Sample 
 

Lattice Oxygen 
529.9 eV 

(%) 

Adsorbed oxygen 531.6 
eV 
(%) 

No aging 69 31 

5 hours 
Nitrogen 

63 37 

5 hours 
Carbon dioxide 

65 35 

 

 

 

a  b  

c  d  

Figure 5.39: SEM images of the copper-manganese oxide (calcined 400 °C) with a) no 
aging b) 30 minutes CO2 c) 2 hours CO2, d) 30 mins N2  

SEM images (Figure 5.39) shows an interesting feature of the aging process. 

The sample without aging showed mostly the single morphology associated 

with the mixed copper-manganese phase. Upon aging the second rod like 

morphology associated with the isolated malachite appears. EDX mapping 

(Figure 5.40) showed this area was relatively Cu rich (and lower manganese) 

compared to the spherical particles. This would correlate with the XRD 
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observations of the precursor which showed malachite reflection on the 

samples that were aged under both atmospheres but was not seen in the 

non-aged sample. 

 

Figure 5.40: a) SEM image of copper manganese oxide (calcined 400 °C) from 
precipitated aged under carbon dioxide for 30 minutes and EDX mapping of b) copper, 
c) manganese and d) oxygen. The circle shows the mapping of the second 
morphology 

This would suggest that malachite was precipitating from solution during the 

aging time but had not precipitated during the initial addition of the nitrate 

solution, although MP-AES analysis showed the aged and non-aged samples 

had a similar Cu:Mn ratio. The aging process may have also caused the 

growth of malachite crystallites, which is supported by observations in both 

the XRD and the FTIR. 
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Figure 5.41: CO oxidation of the copper-manganese with no aging and aged under 
Carbon dioxide for 0.5, 2 and 5 hours 

 

The catalyst testing for the sample with no aging showed an initial high CO 

conversion of 68% at 20 °C but very rapidly deactivated to <3% within the 

first 20 minutes. The sample aged for 0.5 hours showed a less rapid 

deactivation stabilising at 14% conversion after 20 minutes. The most notable 

sample was the 2 hours aging under carbon dioxide had a less rapid 

deactivation to the extent that the sample had not stabilised after 30 minutes 

were as the other samples had stabilised after 15-20 minutes. The samples 

that were aged under nitrogen show a similar trend, with the exception of the 

0.5 hour aged sample which could be due to the more crystalline phase that 

formed or presence of residual copper nitrate hydroxide observed by XRD. It 

should be noted that the deactivation changes after the first 5 minutes with 

the initial deactivation curve matching that of the sample with no aging but 

then the deactivation slows down. The initial deactivation would be due to 

water, which had been removed from the catalyst surface during the pre-

treatment. 
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Figure 5.42: CO oxidation of copper-manganese carbonate with no aging and aging 
under a nitrogen atmosphere for 0.5 hours, 2 hours and 5 hours 

 

With the exception of the two samples with residual copper nitrate hydroxide 

in the precursor (0.5 hour aging nitrogen and 5 hour aging carbon dioxide) 

the samples seem to show a less rapid deactivation with increased aging 

time. The sample with no aging and aged under CO2 for 30 minutes showed 

the most rapid deactivation within the first 20 minutes. In comparison the 

sample aged 2 hours CO2 and 2 and 5 hours N2 showed a less rapid 

deactivation (with 20-30 % conversion after 30 minutes) but were continuing 

to deactivate even after the first temperature ramp at 20-30 °C. These 

samples were the ones that had the usually higher mass loss at 230 °C in the 

TGA profile, which shows that the washing and presence of nitrates affect the 

final hopcalite catalyst and its activity. It should also be noted that for the 

sample aged for 0.5 hours in nitrogen also was more crystalline than the 

other samples and this may also contribute to its different CO oxidation 

activity. 
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5.4 Chapter 5 Conclusions 

 

This chapter showed that the use of switchable solvents could be used not 

only to prepare single metal oxide precursors such as manganese and 

copper, but also can be used to make mixed copper-manganese oxide 

precursors.  The change in parameters such as initial metal salt (acetate or 

nitrate), the atmosphere of precipitation, amine: water ratio and aging time all 

have a significant effect on the surface area copper-manganese distribution 

and the catalytic activity. This variation has shown that the method can be 

tailored to change the properties of both the precursor and the final catalyst. 

While the method has been used to prepare active hopcalite catalysts, there 

is some degree of phase separation which occurs in nearly all of the catalysts 

which may cause some decrease in CO activity and catalyst stability.  

However, the method has been shown to produce active copper-manganese 

catalyst that not only have comparable activity to those of co-precipitated and 

supercritical anti-solvent precipitation but also in some cases (such as when 

acetate salts were used) have enhanced catalytic activity. This method is 

more advantageous as it avoids the potential poisoning from sodium (as in 

co-precipitation with Na2CO3) as well as producing catalysts with similar 

morphology and surface area those prepared by the supercritical anti-solvent 

process without the need for the high pressures which make the process 

uneconomical for commercial scale up. The use of switchable solvents to 

precipitate hopcalite precursors demonstrates a greener approach to making 

highly active metal oxides precursors. 

  



 

239 
 

5.5 Chapter 5 Future work 

 

The work here has proven that switchable solvents are a viable option for 

synthesising high surface area hopcalite catalysts with enhanced activity over 

hopcalite made from other methods. The potential of switchable solvents has 

been demonstrated to be wide spread and therefore must be investigated 

further. The use of switchable solvents for hopcalite should be further 

investigated practically with the improvement of the phase integrations and 

further investigation using acetate salts.  

In addition there are several parameters that can be applied to widen the 

investigation of switchable solvents for metal oxide preparation. 

The first parameters is to investigate whether switchable solvent precipitation 

can be used to make other single metal oxide precursors such as cobalt, iron 

and nickel oxides as catalysts for reactions such as VOC combustion as 

alternatives to supercritical anti-solvent precipitated equivalents45 to see if 

these catalyst also have enhanced activity over these conventional catalysts. 

The use of switchable solvent to prepare other mixed metal oxides, such as 

cobalt-manganese oxide precursors should also be investigated to see how 

well the methodology works with other mixed metal oxide systems. The use 

of switchable solvents for preparation of copper-zinc oxide precursors has 

also been investigated and the results are given in Chapter 6 of this thesis. 

The second parameter that should be investigated is the use of other 

switchable solvents (switchable hydrophilic-hydrophobic solvents and 

switchable polar solvents) to prepare metal oxide precursors and to see if 

these have any improvement over the TEA based switchable hydrophilic-

hydrophobic solvents. In addition, the used of mixed solvent systems such as 

using ethanol to dissolve the metal precursors before addition to the 

switchable solvent system is also another factor that could change the 

catalyst precursor and tailor the system to suit different catalyst preparations.   
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Chapter 6 Deep Eutectic Solvent and Switchable 

Solvents for The Preparation of Copper-Zinc Oxides. 

 

6.1 Introduction 

 

6.1.1 Background  

 

In the previous chapters, deep eutectic solvents (DES) and switchable 

solvents have both been demonstrated as viable, alternative methods for the 

preparation of single and mixed metal oxides such as cobalt oxide, 

manganese oxide and copper-manganese oxide as catalysts for CO 

oxidation or total oxidation of volatile organic compounds (VOC). These two 

preparation methods were shown to have advantages and disadvantages 

over the conventional method for making metal oxide catalysts for these 

reactions. However the potential of the use of DES and switchable solvents 

beyond CO and VOC oxidation is an avenue that has yet to be explored. 

Copper-zinc oxide catalysts are widely used by industry for various reactions, 

most notably for methanol synthesis and low temperature water gas shift 

reaction1-4. Despite having been used as the industrial standard catalyst for 

methanol synthesis since the 1960s5, Cu/ZnO are still widely studied in 

academia and industry, with the focus on improvement on the performance of 

copper zinc catalysts through the preparation methods3, 6.   

Co-precipitation is still the most common method of preparing Cu/ZnO or 

Cu/ZnO/Al2O3 methanol synthesis and water gas shift catalysts7. The 

catalysts are usually precipitated from a nitrate solution using sodium 

carbonate and are precipitated as hydroxyl carbonate most commonly as a 

zincian malachite or other phases such as rosasite and aurichalcite7, 8. These 

hydroxyl carbonate precursors are then calcined to the CuO/ZnO and are 

reduced in situ to the active Cu/ZnO catalyst.   

In recent years it was demonstrated that a copper-zinc carbonate precursor 

known as georgeite, which is naturally unstable and difficult to synthesise by 
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conventional methods, aging to form zincian malachite during co-

precipitation9, could be prepared through supercritical anti-solvent 

precipitation8. Copper-zinc catalysts derived from supercritical anti-solvent 

precipitated georgeite were found to have highly disperse Cu and a higher 

Cu surface area. This resulted to have formed Cu/ZnO that were highly 

active for methanol synthesis8, 10. The supercritical anti-solvent process also 

had the advantage over co-precipitation as the process avoided the use of 

sodium carbonate as a precipitating agent, thereby eliminating poisoning by 

sodium3.  

These publications on georgeite prepared by supercritical anti-solvent 

precipitation demonstrates how alternative techniques can be used to make 

catalyst precursors that are not only difficult to prepare but also enhances the 

catalytic properties of the metal oxide catalyst compared to those derived 

from conventional methods. 

However, supercritical anti-solvent is an energy intensive process with an 

operating pressure of 100-150 bar at 40 °C and as such its application and 

scale up to industrial level is often not applied for catalyst preparation, even if 

the resulting catalyst is more active than the conventional co-precipitated 

catalysts11. As a result, co-precipitation remained the most common and the 

industrial standard method for the preparation of Cu/ZnO catalysts as it is a 

more easily scalable and optimised process3, 12. 

The work in Chapter 5 demonstrated that not only could copper-manganese 

oxide (hopcalite) catalysts be prepared using switchable solvents but were 

also in some cases, found to be more active CO conversion catalysts than  

those synthesised by supercritical anti-solvent precipitation. This is important 

since switchable solvents process only required 1 bar pressure compared to 

the 100-150 bar for supercritical anti-solvent precipitation, therefore providing 

a greener alternative to prepare these catalysts.  

Choline chloride based deep eutectic solvents (DES), although containing 

chlorine, have been shown to be excellent templates for synthesising metal 

oxide and/or metal oxide precursors with controllable morphologies. It had 

been demonstrated that the addition of water could be used to DES make 
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metal oxide with rod like morphologies with examples including ceria13 or the 

use of water as an anti-solvent to form zinc oxide needles14. Chapter 3 also 

demonstrated that the use of other choline chloride-oxalic acid based DES 

with an anti-solvent could be used to tailor the morphology of the catalyst 

precursor and final oxides. 

 An early publication on deep eutectic solvents by Abbott et al. showed 

different metal oxides including zinc oxide could be dissolved by choline 

chloride based DES. Zinc oxide could be dissolved in choline chloride-urea 

based DES with a concentration of 1800-90000 ppm depending on the 

temperature of the DES solution15-17. It was later demonstrated by Dong et al. 

that zinc oxide could also be precipitated out of the DES though an anti-

solvent18 method, primarily with water, and that different rates of addition of 

the anti-solvent to the choline chloride-urea based DES could change the 

morphology of the precipitated zinc oxide. If the zinc oxide was allowed to 

precipitate slowly from the DES, it would form long needles compared to 

elliptical shaped ZnO particles if a rapid precipitation occured18. This method 

later showed that if a copper salt such as copper nitrate was added to the 

anti-solvent then the copper would co-precipitate onto the zinc oxide during 

the anti-solvent process, resulting in a Cu2+ doped onto ZnO19.  

 

6.1.2 Aims of chapter 

 

The aim of this chapter was to apply the DES anti-solvent and switchable 

solvent methodologies described in the previous chapters of this thesis to 

prepare precursors of Cu/ZnO methanol synthesis catalysts. This chapter will 

look into variations in both the DES method and switchable solvent method to 

see variations in the precursor surface area, decomposition temperature and 

morphology. Some of these catalysts were tested for methanol synthesis to 

see how they perform and to assess whether these are viable methods of 

preparing Cu/ZnO catalysts. 

Making copper-zinc oxide catalysts using deep eutectic solvents and 

switchable solvents presents more of a challenge than preparing single 
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oxides or mixed metal oxide for CO/VOC oxidation. For this reason, only 

bimetallic Cu/ZnO was prepared during this work to assess the methods with 

Al2O3 not being added to the catalysts shown in this chapter. 

 

6.2 Deep eutectic solvent preparation 

 

Although the use of choline chloride-urea has been established for the 

preparation of single and mixed metal oxides, one important factor that most 

likely will cause problems with this method is the use of a chlorine-based 

solvent. The work in Chapter 3 did demonstrate that for some metal oxide 

precursors such as cobalt oxalate, the choline could be sufficiently removed 

and the resulting oxide would contain little chlorine. However, the presence of 

chlorine was still present in iron oxide after washing and calcination and as 

such poses a potential problem.  

The preparation to make the mixed Cu/ZnO was based on the method used 

by Hsu et al.19 however to make enough catalyst the concentration of the 

ZnO in the choline chloride-urea  DES was increased from 2400 ppm to 

28000 ppm. Deionised water was used as the anti-solvent. For rapid 

precipitation 1500 ml of water was used in order to rapidly breakup the 

eutectic and precipitated ZnO (with co-precipitation of the copper). In 

addition, the precursor was washed with additional 1500 ml of water and 600 

ml of ethanol to remove the choline species from the precursor. 

 

6.2.1 Effect of the Cu:Zn ratio 

 

The first step was to see what Cu:Zn ratios were possible for this technique 

and the effect on the properties of the material with increased ratios. The 

group of Hsu et al. only up synthesised up to 10% (atomic) loading of Cu on 

the ZnO, which would be too low for a methanol synthesis or water gas shift 

catalyst therefore higher ratios, were prepared. To see the effect on the 

phase a series of Cu:Zn loadings of 0.01:1 to 2:1 were prepared. The volume 
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of anti-solvent was kept the same with the concentration of copper acetate in 

the anti-solvent increased for higher copper loadings. 

Figure 6.1: XRD of ZnO precipitated from the DES solution in 1500 ml of water 

The XRD patterns of the zinc oxide precipitated from choline chloride-urea 

without copper (Figure 6.1) showed reflections of zinc oxide at 32.0° (1 0 0), 

34.6° (0 0 2) and 36.5° (1 0 1) along with the 47.7° (1 0 2), 56.8° (1 1 0) and 

63.1° (1 0 3). There were no additional reflections that would indicate any 

crystalline impurities in this sample. Other publications on the precipitation of 

ZnO from DES have noted that zinc carbonate can form as a result of a 

reaction of zinc oxide with urea during the anti-solvent process14, but the 

XRD pattern (Figure 6.1) did not show any indication of this in this sample, as 

only  ZnO reflections were detected. 

The XRD patterns of the samples that were co-precipitated with the copper-

acetate (Figure 6.2) showed for 0.01:1 Cu:ZnO some of the zinc oxide 

reflections were still viable. With the increase in copper loading the zinc oxide 

reflections start to disappear and the XRD shows a less crystalline phase 

with some reflections such as 2θ= 36.9°, 59.4° remaining the same intensity 

while the reflection at 12.5° became more visible at higher Cu loadings 

(0.2:1-1:1 Cu:Zn loading (Figure 6.2 e-g)). The  patterns (12.5°, 24.6° (weak 

more visible in Figure 6.8) 33.2° 35.3° and 60.1°), particularly at higher 

loadings  indicate that the copper-zinc precipitated as a (hydrotalcite-like) 
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layered double hydroxide (LDH) phase20, 21. It is notable that the LDH 

reflections appeared when copper was added and are more prevalent at 

higher loading. This suggests that the LDH formation is caused by the 

addition of copper acetate in the anti-solvent. In addition, the disappearance 

of zinc oxide peaks above 0.01:1 Cu:Zn suggest the formation of a mixed 

phase material although it should be noted that LDH have been reported to 

form during ionothermal synthesis with choline chloride-urea after the 

addition of water 22.  

 

Figure 6.2 XRD of the copper-zinc precursors precipitated out of the DES with a Cu:Zn 
ratio of a) 0.01:1 b) 0.02:1 c) 0.05:1 d) 0.01:1 e) 0.02:1 f) 0.04:1 and g) 1:1 

 

The FTIR of the precipitated sample (Figure 6.3) showed variations at  

3350 cm-1 (possible O-H) 2200 cm-1 (not to be confused with the CO2 peak at 

2350 cm-1) 1623 cm-1 (C-O), 1473 cm-1, 1387 cm-1, 1049 cm-1 and 840 cm -1. 

What is notable is the strong band at 2200 cm-1. This band would indicate a 

possible urea-metal coordination bond, which is known to occur in metal salt-

urea, based DES23. In addition, a weaker vibration at 1635 cm-1 (C=O of 

urea) would confirm that some of the urea from the DES was precipitated and 



 

248 
 

retained in the structure of the precipitate. It should be noted that ZnO when 

dissolved in the DES is complex with urea15 and its possible that urea was 

still bound to the zinc when it precipitated, which gave rise to the metal-urea 

bond vibration seen in the FTIR. In addition, there are several peaks, notably 

at 1473 cm-1 that might originate from residual choline chloride. 

 

 

Figure 6.3: FTIR of the copper-zinc precursor precipitated by DES with a Cu:Zn ratio of 
a) 0.05:1 (baseline corrected) and b) 0.4:1 

The TGA/DSC (Figure 6.4) of the precipitate (0.4:1) (heating rate 1 °C min-1) 

shows two minor mass losses at 74 °C and 180 °C followed by a large mass 

loss at 265 °C . The sample remained at 69% of original mass after 300 °C 

suggesting that the precursor and residual DES had mostly decomposed  by 

this temperature. 

What was interesting to note was the DSC scan showed that the mass loss 

at 220-280 °C (peaking at 265 °C) was an endothermic decomposition rather 

than an exothermic decomposition that would occur with an acetate. This 

endothermic decomposition would suggest that the copper was no longer 

present as an acetate1.   
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Figure 6.4 TGA and DSC profile of the 0.4:1 Cu:Zn precursor precipitated by DES anti-
solvent  

XRD patterns of the calcined samples (Figure 6.5) confirmed the formation of 

CuO/ZnO after calcination at 350 °C for 3 hours and the CuO reflections 

(notably at 2θ= 38.6°) becoming larger with increased copper loading as 

would be expected.  Table 6.1 shows a general increase in surface area of 

the calcined sample when the copper: zinc ratio is increased from 0.02:1 to 

0.4:1 (40 m2 g-1) although 0.2:1 is the exception with a surface area of  

52 m2 g-1. However, at higher loadings the total surface area rapidly 

decreases.

 

Figure 6.5: XRD of CuO/ZnO calcined at 350 °C with a Cu:Zn ratio of a) 0.05:1, b) 0.1:1, 
c) 0.2:1 and d) 0.4:1 
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However, MP-AES analysis on the sample precipitated by DES (Table 6.1 

and Figure 6.6 a and b) showed that the target ratio of Cu:Zn was achieved 

with ratios between 0.01:1 to 0.4:1 within a reasonable range (10-16%) of the 

expected ratio as well as linear to the expected concentration. However, 

when the target ratio of Cu:Zn was increased to 1:1 the MP-AES showed that 

the ratio that precipitated was 3.6:1 which means that at least 72% of the zinc 

failed to precipitate out (assuming that all of the copper precipitated). Cu:Zn 

with a target of 2:1 was off by a more substantial amount of 31:1. This means 

that the higher copper loading is preventing the zinc oxide from precipitating 

out of the DES during the anti-solvent process or reacting with the zinc to 

form a water-soluble compound. One notable fact was that the anti-solvent 

volume was constant (1500 ml) while the concentration of the copper acetate 

in the solution was changed. 

Table 6.1: Surface area of the final oxide materials calcined at 350 °C and the copper: 
zinc ratio determined by MP-AES  

Sample (target ratio) 

Cu:Zn 

Actual ratio 

(error ±2%) 

BET Surface area 

m2g−1 

(± 2 m2 g-1) 

0.01:1 0.016:1 15 

0.02:1 0.023:1 4 

0.05:1 0.059:1 31 

0.1:1 0.11:1 37 

0.2:1 - 52 

0.4:1 0.46:1 40 

1:1 3.6:1 9 

2:1 31:1 16 
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a b  

Figure 6.6: Aimed Cu:Zn ratio plotted against the actual Cu:Zn ratio a) 0.01:1 to 0.4:1 
Cu:Zn and b 0.01:1 to 2:1 Cu:Zn 

XPS analysis of the Cl 2p region of the calcined CuO/ ZnO (0.05:1, 0.2:1 and 

0.4:1) (Figure 6.7) showed that there was a significant amount of chlorine left 

on the surface of the catalyst even after calcination. 0.05:1 showed the 

highest amount of chlorine with approximately 12% (Table 6.2) of the surface 

being chlorine while the 0.2:1 and 0.4:1 had around 5%. This amount of 

chlorine would most likely cause these catalysts to be inactive. The binding 

energy of the chlorine from the Cl 2p region showed peak with binding 

energies of 198.7 eV, which would indicate that the surface chloride, is in the 

form of a metal chloride rather than residual organic chloride. 

 

 

Figure 6.7: XPS of Cl 2p region for the CuO/ZnO prepared by DES (calcined 350 °C) a) 
0.05:1, b) 0.2:1 and c) 0:4 
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Table 6.2: Surface chlorine (atomic %) derived from XPS (error ±1%) 

Cu:ZnO Surface Cl (%) 

0.05:1 12 

0.2:1 5 

0.4:1 5 

 

 

6.2.2 Effect of the rate of precipitation and the precursor salt. 

 

As with the Chapter 3 and previous work on the use of DES-anti-solvent, the 

rate of precipitation from the DES can have a major effect on the morphology 

and surface area of the precursor18. The initial investigation of preparing 

copper-zinc oxide precursors using a rapid precipitation method (i.e. adding 

the DES to 1500 ml of deionised water). The rate of precipitation was 

controlled by adding the copper/water anti-solvent mixture at a controlled rate 

of 1 ml min-1 for 100 ml followed by 600 ml of deionised water (similar to the 

setup described in Chapter 3). 

Another factor that was considered was the effect of the copper salt used in 

the anti-solvent. Changing the metal salt may have an effect on how the zinc 

oxide co-precipitates (when the DES is broken up) with the previous section 

using copper acetate. 
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Figure 6.8: XRD of the 0.4:1 Cu:Zn precursor with a) rapid precipitation and b) slow 

injection of anti-solvent 

The XRD (Figure 6.8) of the precursor that was formed with a slow addition of 

the copper acetate water anti-solvent showed the same reflection pattern that 

were identified as a LDH like phase (2θ=12.5° (0 0 3), 24.6° (0 0 6), 33.5°, 

35.2° and 60.1°), which matched those of the precipitated by rapid addition, 

showing that the rate of addition did not alter the phase of the material. 

FTIR (Figure 6.9) also confirmed that the same precursor  was produced with 

the different rates of precipitation, both showing the hydroxyl peak  

(3380 cm-1) the metal-urea shift (2187 cm-1)23  the CO shift at  

1630-1650 cm-1 from urea and carboxy shifts 1380 cm-1. The slow 

precipitated copper-zinc precursor will still have some DES retained in the 

sample so it is likely that the precursor and the final  Cu/ZnO catalyst would 

still have large amounts of chlorine present.  
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Figure 6.9: FTIR (absorbance) of the copper-zinc precursors (0.4:1) precipitated from 
DES using a) fast injection and b) slow injection of the anti-solvent 

 

While the XRD and FTIR showed little difference between the two rates of 

addition, BET analysis (Table 6.3) of the precursors showed a rapid increase 

in the surface area from 59 m2 g-1 to 212 m2 g-1 demonstrating that the rate of 

addition of the anti-solvent to the DES had an impact on precursor 

morphology, without altering the phase. 

 

Table 6.3 BET surface area of the precursor 0.4:1 Cu:ZnO with rapid and slow 
precipitation  

Sample 
Cu:Zn 

Surface area 

𝒎𝟐 𝒈−𝟏 

Fast 
precipitation 

0.4:1 
59 (± 5) 

Slow 
precipitation 

0.4:1 
 

212 (± 20) 
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Figure 6.10: XRD of the Cu/ZnO precursor precipitated from DES in water with copper 
nitrate with as Cu:Zn ratio of 1:1 

The XRD pattern of the 1:1 nitrate precursors (Figure 6.10) showed a pattern 

similar to that of the acetate precursors with the reflections that had been 

associated with a LDH like phase, although there is an additional reflection at 

16.2° that is not in the acetate samples. 

The XRD pattern (Figure 6.11) of the calcined nitrate precursor (Cu:Zn 1:1) 

showed a different profile from the XRD pattern seen with the calcined 

acetate precursors. Firstly, the CuO reflections are more intense which would 

suggest that like the acetate, the target ratio of Cu:Zn was not achieved at 

higher copper loadings. Secondly there was a higher degree of impurities 

indicated by the appearance of a reflection at 2θ=11.3°. There had been a 

very weak reflection that appeared in the acetate sample in this region but is 

more intense in this sample which would suggest that this reflection 

originates from a copper based compound.  
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Figure 6.11: XRD of the calcined (350 °C) CuO/ZnO (target ratio 1:1) precipiated from 
DES with copper nitrate 

SEM images of the precursor material (Figure 6.12) shows a change in the 

morphology between the two rates of precipitation with the slow precipitation 

showing flake like sheets whereas the fast precipitation formed large clusters. 

Since XRD and FTIR identified the two precipitates as the same phase, the 

difference in morphology must therefore originate with the rate of 

precipitation. The clustered morphology that had formed would have most 

likely been caused by the rapid addition/exposure to the anti-solvent whereas 

the slow addition of the anti-solvent allowed the formation of the flake like 

morphology. This rapid change in morphology reflected the BET surface area 

(Table 6.3) 
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a   b  

c    

The slow precipitated precursor had a flake like morphology similar to the 

platelets that hydrotalcite type materials form, which supports the XRD 

observation (Figures 6.2, 6.8 and 6.10) that these materials, resembled a 

hydrotalcite. The nitrates also formed a flake like morphology similar to the 

acetate although this may be due to the nature of a slow precipitation.  

The total surface areas of the materials calcined at 350 °C (nitrate and 

acetate) were the same (43 m2 g-1), possibly owing to a collapse in the 

precursor structure during calcination which means that any increase in the 

surface area of the precursor (Table 6.3) was lost. When the slow precipitated 

catalyst (acetates) had a lower heating rate of 1 °C min-1 (from 5 °C min-1) the 

surface area increased from 43 m2 g-1 to 71 m2 g-1, which may also confirm 

that the precursor structure collapsed during the calcination step and lowing 

the heating rate would control that process resulting in an enhanced surface 

area. However the 1:1 Cu:Zn with the nitrate salt had a higher total surface 

area after calcination than the 0.4:1. 

Figure 6.12: SEM images of the 
copper-zinc precursor with a 
Cu:Zn ratio of 0.4:1,  
precipitated using DES anti-
solvent with copper acetate 
with a) rapid precipitation, b) 
slow precipitation and c) DES 
anti-solvent with copper-nitrate 
slow precipitation  
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Table 6.4: BET surface areas (± 5 m
2
 g

-1
) of the Cu:ZnO prepared by DES anti-solvent  

Cu:Zn (target ratio) Copper-salt 
precipitation rate and 

heating rate 

BET  Surface area 
calcined 350 °C/ 

m2 g-1 

0.4:1 Slow precipitation 
 1 °C min-1 

71 

0.4:1 Slow precipitation 
5 °C min-1 

43 

0.4:1 Nitrate 
Slow precipitation 

5 °C min-1 

43 

1:1 Nitrate  
slow precipitation  

1 °C min-1 

112 

 

However, copper surface area of these catalyst was poor with the 0.4:1 

acetate and nitrates showing, <1 m2 g-1 of copper. Even with low copper 

loading these are very low values for copper surface area. The very low 

copper surface area might have been caused by the high concentration of 

chlorine present in the calcined sample, resulting in sintering during the 

reduction. 

 

Table 6.5: Copper surface area determined by N2O chemisorption of the 0.4:1 Cu/ZnO 
prepared by DES (error ±0.1) 

Sample Cu  SSA / m2 g-1 

0.4:1 slow precipitation acetate 0.3 

0.4:1 Fast precipitation acetate 0.2 

1:1 Slow nitrate 0.6 
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6.2.3 Catalytic testing 

 

The catalysts that were tested were the 0.4:1 Cu/ZnO from the acetate salt 

and 1:1 slow precipitation with copper nitrate. The catalysts prepare by the 

DES anti-solvent process showed low methanol yield of 0.1% and 0.1-0.25% 

CO2 conversion (Table 6.6). This showed that the catalytic activity of these 

catalysts was very poor, even if considering the low copper loading and 100 

mg of catalyst used. The most likely reason is down to two factors; firstly the 

presence of chlorine still present in the sample and secondly the <1 m2 g-1 

copper surface area which for methanol synthesis is an important factor. The 

high selectivity is generally due to the low conversion of the CO2. 

Overall, despite the variation in morphology and surface area that can be 

achieved with DES anti-solvent, the presence of chlorine and the limitations 

in copper loading is too much of an issue for this method to be a viable route 

for the preparation of Cu/ZnO. Even using different salts and different Cu:Zn 

ratios did not dramatically improve catalytic performance. In fact, at lower 

temperatures the nitrate catalyst (with higher copper loading) performed 

worse than the acetate Cu/ZnO. 
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Table 6.6: CO2 conversion, methanol selectivity and methanol yield after 200 minutes 
for the Cu/ZnO (0.1 g) catalyst precipitated using DES anti-solvent method, calcined at 
350 °C. Reaction performed by Dr James Hayward 

Catalyst 

Reaction 
temperature 

/ °C 

CO2 
conversion 

% 

Methanol 
selectivity/ 

% 

Methanol 
yield/ % 

0.4:1 
Cu/ZnO 

Acetate 

slow 

200 0.16 29.6 <0.1 

225 0.25 26.6 0.1 

250 0.05 100 0.1 

1:1 Cu/ZnO 

Nitrates 

slow 

200 0.02 100 <0.1 

225 0.04 100 0.1 

250 0.14 100 0.1 

 

 

6.3 Switchable solvent preparation 

 

In addition to investigating the hopcalite systems as presented in Chapter 5, 

the use of triethylamine-water switchable solvents was also investigated for 

the synthesis of other mixed metal oxide catalyst precursors to see how 

widely this technique could be used. The copper-zinc system was also used 

to investigate the use of switchable solvents for a broader range of metal 

oxide precursors. One advantage of using the switchable solvent system to 

precipitate the Cu/ZnO precursors is that it avoids the use of sodium based 

precipitating agents (i.e. sodium carbonate) which is commonly used in co-

precipitation. Sodium is a known poison for copper-zinc oxide methanol 

synthesis catalyst as it increases sintering and copper size during 

calcination3, so the use of a system that avoids sodium is advantageous.  
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Two copper-zinc precursors were prepared; one precipitated in triethylamine-

water under nitrogen and the other under carbon dioxide. The same basic 

method used for the copper-manganese precursors in Chapter 5 was used 

with copper-zinc precursors with an amine: water ratio of 1.14:1. Both 

samples were aged under carbon dioxide for 1 hour. 

 

6.3.1 Characterisation 

 

The XRD of the precursors (Figure 6.13) that were precipitated under both 

carbon dioxide and nitrogen showed reflections at 12.8°, 25.6°, 32.8°, 35.4°.  

The reflections at 2θ=12.8° and 25.6° (and possibly 36.6°) could be assigned 

to a nitrate-hydroxide which shows reflections at these angles of similar 

intensities. Pure zinc or copper hydroxyl carbonate would show a much 

higher intensity around 30-40° than those shown here. This would suggest 

that the copper zinc oxide did not form a carbonate species, unlike the 

copper-manganese carbonate from Chapter 5 which showed the formation of 

malachite and manganese carbonate. Copper was known (from Chapter 5) to 

form a copper nitrate hydroxide when unaged and not fully washed, although 

the copper zinc precursor had the same washing (with water and ethanol) 

and aging (1 hour CO2) steps as per the standard copper manganese 

preparation. 

The XRD pattern of the sample precipitated under nitrogen contained most of 

the reflections of the sample precipitated under carbon dioxide but also 

notably contained additional reflections which suggest a separate second 

phase that formed under the nitrogen precipitation but not the carbon dioxide 

precipitation. Some of these reflections such as 2θ=17.8° and 24.4° could 

indicate the possible formation of a copper carbonate hydroxide. It might be 

the case that the sample precipitated quickly as a copper-zinc hydroxide but 

when precipitated under nitrogen (and switched to CO2) some of the copper 

had a delayed precipitation resulting in the formation of malachite under the 

CO2 atmosphere. 
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Figure 6.13: XRD of the precursor precipitated in the switchable solvent under a) 
nitrogen and b) carbon dioxide  

The FTIR of the two precipitates (Figure 6.14) showed matching peaks at 

3330 cm-1 (O-H), 1033 cm-1 and 831 cm-1, although the sample precipitated 

under carbon dioxide showed a broad vibration at 1382 cm-1 and a smaller 

vibration at 1471 cm-1. The sample precipitated under nitrogen showed 

multiple vibrational peaks in this region at 1340 cm-1 1350 cm-1 and  

1512 cm-1. These additional vibrational shifts match those seen in the FTIR 

of malachite formed from copper nitrate in the switchable solvent (Figure 5.5 

in Chapter 5). 

The FTIR and XRD results both suggest the formation of phase separated 

copper (possibly in the malachite form) and zinc nitrate during precipitation 

under the nitrogen atmosphere and a more phase integrated copper zinc 

precursor under carbon dioxide precipitation. 
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Figure 6.14: FTIR of the copper-zinc precipitate formed using switchable solvent 
under a) carbon dioxide, b) nitrogen atmosphere and c) copper carbonate precipitated 
under carbon dioxide 

The TGA analysis both of the copper-zinc precursors (Figure 6.15) showed a 

different profile between the two precipitation atmospheres. The sample 

precipitated under carbon dioxide showed three mass losses; a minor mass 

loss at 160 °C followed by a large mass loss at 220 °C and a minor mass 

loss at 400-450 °C. The sample precipitated under nitrogen showed only two 

large mass losses at 160 °C and 250 °C. There was also a difference in the 

final mass of the two samples, with the carbon dioxide precipitated sample 

having 46 % mass loss after 500 °C compared to the 36 % for nitrogen 

precipitated sample. 

 

Figure 6.15: TGA profile for copper-zinc precursors precipitated under a) carbon 
dioxide and b) nitrogen 
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This difference in mass loss between the precipitates formed under CO2 and 

N2 suggests along with the XRD and FTIR data that the precursors are 

somewhat different. The sample precipitated under nitrogen showing a larger 

mass loss at 168 °C which had also been observed with the hopcalite 

samples (Chapter 5) that still had nitrate species present. This would 

corroborate with the nitrate hydroxide reflections observed in the XRD 

patterns. The two-part decomposition of the nitrogen precipitated sample 

compared to the one-part decomposition of the carbon dioxide precipitated 

sample would support the formation of two species in the precursor formed 

under nitrogen. In addition the temperature of range of the first mass loss 

(160-185 °C) is in the same temperature range as the pure copper precursor 

(Figure 5.5 in Chapter 5). 

Figure 6.16: XRD of the calcined copper-zinc oxides a) precipitated under nitrogen 
calcined 250 °C, b) precipitated under carbon dioxide calcined 250 °C and c) carbon 
dioxide calcined 350 °C 

The XRD pattern of the samples (Figure 6.16) after calcination at both 250 °C 

and 350 °C showed the reflections for both copper oxide and zinc oxide. The 

samples were shown to form crystalline CuO and ZnO phases as low as  

250 °C, although the nitrogen precipitated sample was shown to have a 

higher ZnO crystallite size (Table 6.7) at 250 °C than the carbon dioxide 

precipitated samples calcined at 250 °C or 350 °C.  
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Table 6.7: BET surface areas and crystallite size of the CuO/ZnO precipitated using 
switchable solvent (calcined at 250-350 °C) 

Sample Surface area / 
m2 g-1 

(±2 m2 g-1 ) 

Crystallite size 
copper at 

2θ=38.96°/ nm 

(±2 nm) 

Crystallite size 
zinc at 

2θ=56.52°/ nm 

(±2 nm) 

Carbon dioxide 
calcined 250 °C 

23  12.1 17.9 

Carbon dioxide 
calcined 350 °C 

19 12.4 22.1 

Nitrogen calcined 
250 °C 

26 12.2 24.1 

 

The SEM of the sample precipitated under carbon dioxide (Figure 6.17 a) 

showed that this sample has a somewhat different morphology from the 

sample previously seen with the DES anti-solvent precipitates or the copper 

manganese carbonate formed by switchable solvents. A more random and 

jagged structure was formed with some areas showing what appear to be 

small needles. The variations of shapes in this sample showed that the 

morphology was not homogeneous throughout. 

a  b  

Figure 6.17: SEM of the a) copper-zinc precursor precipitated by switchable solvents 
under carbon dioxide and b) calcined at 350 °C to form the CuO/ZnO 

However, the SEM of the sample after calcination (Figure 6.17 b) showed that 

this structure had collapsed and formed small rounded crystallites like those 

seen with the DES precipitated CuO/ZnO calcined at the same temperature. 

EDX mapping (Figure 6.18) of the sample (calcined 350 °C) showed that the 
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copper and zinc were evenly distributed with no sign of isolated zinc or 

copper clusters. This is in contrast to the EDX mapping of the copper-

manganese oxide catalyst in Chapter 5, which showed clusters of isolated 

copper as well as mixed copper manganese.  

EDX analysis determined a Cu:Zn ratio (by mass) of 38:33 which would give 

a molar ratio of 1.16:1 Cu:Zn which suggest a slight excess of copper 

formation but close to the target ratio, unlike the DES 1:1 Cu:Zn samples 

which had a massive excess of copper at this ratio.  Another region showed 

0.92:1 Cu:Zn showing that at least from surface analysis the Cu:Zn ratio is 

close to the target value but the distribution of  copper and zinc may vary 

within the bulk sample. 

 

Figure 6.18: a) SEM scan of the CuO/ZnO calcined at 350 °C from the sample 
precipitated under carbon dioxide and EDX mapping of b) copper, c) zinc and d) 
oxygen 
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6.3.2 Catalyst testing 

 

The Cu/ZnO precipitated using switchable solvents were shown to be active 

for methanol synthesis, unlike the DES sample which showed near very little 

conversion and 0.1% methanol yield at 250 °C. All products observed were 

methanol or CO with no other side products being detected.  

The switchable solvent precipitated catalyst showed (Table 6.8) a reasonable 

methanol yield of up to 2.1 %. Out of the three catalysts the CO2 precipitated 

catalyst calcined at 350 °C was shown to be the least active, which was 

expected as this was calcined at a higher temperature and sintering would 

have occurred. The nitrogen precipitated sample appeared to have a slightly 

better CO2 conversion and methanol yield but lower selectivity (at 200 °C and 

225 °C) than the carbon dioxide precipitated sample, although the decrease 

in selectivity would be an effect of increased activity of the catalyst (forming 

CO as a by-product).  

Otherwise, the two catalysts (precipitated under carbon dioxide and nitrogen 

and aged for 1 hour) calcined at 250 °C showed similar performance at all 

three temperatures after 200 minutes. In terms of stability the catalyst 

precipitated under CO2 did show a slight deactivation between 25 and 200 

minutes at 200 °C while the catalyst precipitated under nitrogen showed a 

higher degree of stability at all temperatures with no drop in the methanol 

yield with time, although there was a decrease in methanol selectivity with a 

slight increase in CO2 conversion after 20 minutes. At 225 °C and 250 °C the 

nitrogen precipitated catalysts showed higher CO2 conversion, methanol 

yield and selectivity after both 25 and 200 minutes compared to the CO2 

precipitated catalysts. 

In comparison to published results3 using copper zinc catalysts prepared by 

supercritical anti-solvent, the catalyst prepared by switchable solvents had a 

slightly lower conversion and methanol yield than the supercritical anti-

solvent (SAS) precipitated catalysts. Notably sodium free SAS Cu/ZnO had a 

methanol yield of 2.9% with MeOH selectivity of 67% compared to yield of 

2.2% and MeOH selectivity of 43-45% with the switchable catalysts. 



 

268 
 

However it should be noted that the switchable catalysts only had 1:1 Cu:Zn 

ratio compared than 2:1 Cu:Zn of the SAS catalysts as well as having a 

higher flow rate (25 ml min-1 used with switchable solvents compared with 

6.25 ml min-1 with SAS catalysts). In addition these catalysts have not been 

optimised, opening the possibility of making more active catalysts in future 

studies. 

Table 6.8: CO2 conversion, methanol selectivity and methanol yield after 25 and 200 
minutes (after each temperature ramp) for the Cu/ZnO (0.1 g) catalyst precipitated 
using switchable solvents (calcined 250-350 °C). Reaction performed by Dr James 
Hayward 

Catalyst Reaction 

temperature 

/ °C 

CO2 conversion / 

% (±1 %) 

Methanol 

selectivity/ % (±1 

%) 

Methanol 

yield/ % (±0.1) 

25 

mins 

200 

mins 

25 

mins 

200 

mins 

25 

mins 

200 

mins 

Cu/ZnO 

 

Nitrogen 

250 °C 

200 2.9 3.2 68.6 62.2 2.0 2.0 

225 5.2 5.2 43.1 42.1 2.2 2.2 

250 10.7 10.7 19.3 19.6 2.1 2.1 

Cu/ZnO  

 

Carbon 

dioxide  

250 °C 

200 2.8 2.6 71.0 68.5 1.9 1.8 

225 4.6 4.6 45.8 45.3 2.1 2.1 

250 9.3 10.8 20.8 18.2 1.9 2.0 

Cu/ZnO  

 

Carbon 

dioxide 

350 °C 

200 2.3 2.1 56.4 60.0 1.3 1.3 

225 3.8 3.5 43.5 44.0 1.6 1.5 

250 6.9 7.1 21.3 24.2 1.5 1.7 
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6.4 Chapter 6 Conclusions 

 

This chapter looked into the use of DES and switchable solvents to prepare 

Cu/ZnO catalysts for methanol synthesis. The DES anti-solvent method was 

shown to be able to prepare Cu/ZnO precursors with different morphologies 

and in some cases a high BET surface areas, although the there was a limit 

in the Cu:Zn target ratio that could be achieved. 

Although the copper zinc oxide could be formed with high surface area 

precursors the amount of choline present in the sample even after washing 

and the limitation on the copper loading before massive amount of zinc loss, 

make this method not viable for copper-zinc oxide preparation at least as a 

catalyst. Variations to improve the method including different salts and Cu:Zn 

ratios did not result in an improvement in the poor catalytic performance. The 

use of at least 3 litres of deionised waster did not remove the chlorine. The 

use of choline chloride-urea DES for anti-solvent Cu/ZnO catalyst preparation 

is hard to justify further research. In addition, the process resulted in very low 

Cu surface area which would make any additional washing (after calcination) 

useless as these catalysts would generally be inactive. 

However, the switchable solvent precipitated copper-zinc oxide catalysts 

have shown some degree of promise. These catalysts showed reasonable 

methanol yield, despite the process not being fully optimised. Like the 

hopcalite catalysts shown in Chapter 5, changing the atmosphere of 

precipitation had some effect on the precursor material with precipitation 

under a nitrogen atmosphere resulting in a slightly more active catalyst. 

  



 

270 
 

6.5 Chapter 6 Future work 

 

The work here has demonstrated that, while choline chloride-urea DES can 

be used to prepare Cu/ZnO precursor the amount of residual chlorine as well 

as a breakdown in the Cu:Zn ratio at higher copper loadings, makes this 

method not viable for the preparation of copper-zinc catalysts . However, this 

does not mean that DES should be avoided or even to that matter choline 

chloride based DES. In fact, Chapter 3 had previously demonstrated that 

some precipitates such as cobalt oxalate could be prepared with no or very 

little chlorine present even though choline chloride oxalic acid was used. 

There are also a wide variety of DES that do not contain choline chloride24 

and could be used as alternative to prepare Cu/ZnO.  

This chapter has shown that switchable solvents can be used to make 

Cu/ZnO catalysts that are active for methanol synthesis. However, this was 

only a preliminary study to demonstrate that it was possible to use the 

technique to prepare these catalyst and as such the condition have not been 

optimised. There are a number of parameters that can be altered that can 

improve the technique to prepare more active catalysts. 

Another factor that should be considered when preparing these catalysts with 

switchable solvents is the aging. Aging had been shown to be an important 

parameter for the preparation of copper-zinc carbonate precursors in co-

precipiation25 and the use of different aging times should be performed to see 

the effect on the catalyst. Chapter 5 showed that the aging time affected the 

copper-manganese carbonate under the switchable solvents and therefore 

the effect on copper-zinc carbonate could be another area of investigation 

that could potentially increase the activity of these catalysts.  

As well as the aging time, the aging atmosphere could also be investigated 

as it was in Chapter 5. Previous research into aging of copper-zinc 

carbonates under different atmospheres showed a change in catalytic activity 

for CO oxidation26 and therefore investigation of copper-zinc under different 

atmospheres should be investigated with the switchable solvents. 
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Chapter 7 Overall Conclusions and Future Work 

 

The aim of this thesis was to find alternative methods of preparing metal 

oxides or metal oxide precursors to the energy intensive supercritical anti-

solvent process, to produce highly active catalysts with properties such as 

tailored morphology or high surface areas that cannot easily be achieved 

through conventional methods. This work explored switchable solvents, 

hydrothermal synthesis and deep eutectic solvents as possible alternatives. 

 

7.1 Conclusions 

 

7.1.1 Deep eutectic solvents for metal oxide preparation 

 

The use of choline chloride based deep eutectic solvent (DES) with different 

anti-solvents mixtures was explored as a novel method to prepare cobalt, 

manganese and iron oxalates, with the aim of using the technique to tailor 

the morphologies of these materials to enhance their catalytic activity. This 

method comprised of dissolving the metal salt/precursor in the choline 

chloride-oxalic acid DES and then precipitating the metal oxalate through a 

controlled anti-solvent precipitation. 

For cobalt oxalate, anti-solvent mixtures such as water and water-alcohol 

resulted in the formation of 1-D rod like morphologies. When using the 

ethanol-water anti-solvent the cobalt oxalate needles were longer and thinner 

compared to when a pure water anti-solvent was used. The requirement of 

water in the anti-solvent process was shown to be an important factor when 

precipitating the cobalt oxalate from the DES as demonstrated when using 

pure ethanol or methanol.  

The cobalt oxides derived from the DES route were shown not to be as active 

for propane oxidation as cobalt oxide made from supercritical anti-solvent 

(SAS) precipitation, but were shown to be more active than calcined cobalt 



 

274 
 

acetate. The use of different anti-solvents was demonstrated to make some 

difference to the surface area, crystallinity and propane oxidation activity of 

the sample, although this was not as significant as the calcination 

temperature and conditions used to make the oxide from the oxalate.  

This method showed differences in the precipitation when other metals were 

added which resulted with alternative morphologies being observed. It was 

also shown that the precursor salt caused variations in morphology and 

activity. The use of the technique to prepare iron oxalate was shown to result 

in iron oxides with a linear rod-like formation as observed for cobalt although 

the iron oxides had a higher surface area of up to 221 m2 g-1.  

The method was also viable for making mixed metal oxide precursors as 

demonstrated with cobalt-manganese and iron-manganese oxalate. The 

characterisation of these materials using X-ray diffraction and temperature 

programmed reduction showed that there was some extent of phase 

integration which contributed to the increase in propane oxidation at lower 

temperature compared to the single metal oxides. 

However, it should be noted that there are several downsides to this 

technique. Firstly, it relies on the metal that is being precipitated with some 

metals (cobalt and iron) precipitating as linear needles or rods but 

manganese oxalate forming different morphology. This may be due to the 

possibility that the nature of the DES may be changed when larger 

concentrations of metal salts are dissolved, but further studies would be 

required to prove this. 

Secondly some metal oxides such as iron oxide were shown by X-ray 

photoelectron spectroscopy to have retained the chlorine after calcination 

and therefore would require more washing steps to remove this. However it 

should be noted that cobalt and manganese showed no indication of chlorine 

after precipitation and calcination. 

However, despite these disadvantages the method has been demonstrated 

as a novel route to make metal oxalate precursors and the few parameters 

that were changed where shown to have an impact on the morphology and 



 

275 
 

surface area of the metal oxide catalysts. This, therefore, demonstrates a 

novel route for making metal oxalates that can be tailored and is an avenue 

that should be further explored beyond this work. 

The use of DES for copper-zinc oxide preparation, however, showed the 

major disadvantage of using DES for preparation of catalyst. The method had 

problems in several areas, notably loss of zinc at higher Cu:Zn ratios and 

excess chlorine in the catalysts even after calcination, which resulted in 

catalysts with very low Cu surface area and almost completely inactive. 

 

7.1.2 Crednerite as a hopcalite precursor 

 

Chapter 4 had demonstrated that while crednerite is a poor CO oxidation 

catalyst it does provide an interesting alternative as a precursor to the spinel 

phase copper-manganese oxide. The crednerite based spinel catalysts were 

different to conventionally prepared hopcalite in that hopcalite materials are 

usually prepared from soluble metal salt. It has been shown that the  

non-crystalline hopcalite is the most active but all of the crednerite derived 

catalysts were all crystalline since crednerite itself was a crystalline phase. 

Although these catalysts had a lower initial CO conversion at 20 °C they 

retained a stable activity in the first 30 minutes compared to co-precipitated 

catalysts, which rapidly dropped in activity. However, they showed possible 

deactivation at higher temperatures and longer time periods with CO 

conversion halved in repeat tests, possibly owing to change in surface 

composition seen by XPS. However, these catalysts showed the same CO 

conversion whether or not they were pre-treated under N2 before the 

reaction. 

The use of crednerite as a hopcalite precursor was shown to not only be a 

viable alternative to make spinel phase copper-manganese oxides but also 

produced hopcalite catalyst that differed in behaviour from the conventional 

co-precipitated catalysts as well as taking a somewhat different approach to 

what has previously be taken with preparation of hopcalite material by using 
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a crystalline phase as a precursor. This demonstrated that, although 

hydrothermal synthesis has been around for a long time, it still has major 

advantages and uses as a method for the preparation of metal oxides 

compared to precipitation based methods. 

 

7.1.3 Switchable solvents for hopcalite and copper zinc oxide 

 

It was demonstrated that the switchable solvent mixture of triethylamine and 

water, could be utilised to precipitate both single copper and manganese 

carbonate and mixed copper-manganese carbonate and copper-zinc 

carbonate precursors. The calcined copper-manganese oxides had a high 

surface area, CO oxidation activity and morphology similar to the 

precursor/catalyst prepared by SAS precipitation and in some cases was 

shown to have a superior surface area and CO oxidation activity than the 

SAS prepared catalyst. It was also showed that variations in the method 

including amine: water ratio (volume), metal salt and aging all had an effect 

on the elemental mixing, surface and catalytic activity of the final catalyst.  

Like co-precipitation the use of triethylamine required both washing and 

drying steps to remove nitrates and triethylamine. It was observed that 

residual metal nitrates were present in the precursor when the washing step 

was not performed which resulted in a lower surface area copper-manganese 

oxide catalyst that had a lower CO oxidation activity. It should be considered 

that SAS precipitation, although an energy intensive process, does eliminate 

the use of a precipitating agent (such as sodium carbonate)1, 2, which 

reduces the possibility of poisoning and the need for washing steps. 

Switchable solvents however offered a potential alternative without the need 

for high pressure and that hinders the potential for scale up. 

The method also worked for copper-zinc oxide preparation and although this 

was only an initial investigation, the catalysts formed using the switchable 

solvent methodology were shown to have reasonable methanol production 

activity. This is despite only having 1:1 Cu:Zn ratio and not being fully 
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optimised, especially when compared to those prepared by the DES anti-

solvent method. This shows that the switchable solvent methodology can be 

used not only for hopcalite but for other catalysts was well. 

As well as the requirement of washing step and drying steps needed to 

remove excess nitrates there are several disadvantages with the technique. 

There is a possibility of the loss of triethylamine due to its high vapour 

pressure during the degassing of N2/CO2 during the switching. The method 

used created a lack of control in the precipitation or the pH of the solution. 

However, like the DES methodology this was an initial investigation and 

further development could improve and eliminate these problems, and the 

method overall has shown to be a viable alternative to supercritical anti-

solvent for the application in metal oxide preparation. 

 

7.1.4 Overall conclusions 

 

This thesis has looked into a diverse range of methods for preparing different 

catalysts, each one with its merits and disadvantages. The key points 

outlined in the introduction and aims was to investigate these methods for the 

application in preparing catalyst that have equally or ideally superior catalytic 

activity to those prepared by supercritical anti-solvent and co-precipitation. To 

this extent, switchable solvents have achieved this goal, notably, when used 

for the preparation of copper-manganese oxide catalysts which were shown 

to have equal or superior ambient temperature CO oxidation activity than the 

reference supercritical anti-solvent precipitated catalysts. While deep eutectic 

solvents did not fully achieve this, it was demonstrated that they can be 

utilised as a method for making metal oxides with tailorable morphologies 

and is a method that, with further expansion has the potential of making 

highly active metal oxide catalysts. However, there are some DES and metal 

combinations such as the preparation of Cu/ZnO where this method is not 

viable.  
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The key factors that were highlighted for the solvent systems in this work 

were the effect of residual solvent present after the formation of the metal 

precursor precipitated. This factor was prevalent when using choline chloride 

based deep eutectic solvents since the residual chlorine was found from XPS 

to be retained in some catalysts even after calcination, most notably in the 

Cu/ZnO catalysts in Chapter 6 prepared by choline chloride-urea. This 

resulted Cu/ZnO with very poor catalytic activity although other problems 

associated with this method also contributed to this.  

Likewise, iron oxide prepared by DES-oxalate method was found to have 

retained chlorine although in this case it was found to have not been as much 

of a problem as Cu/ZnO. However, cobalt oxide prepared with choline 

chloride-oxalic acid did not show signs of residual chlorine in the final 

catalysts, demonstrating that not all choline chloride-based DES methods 

retain chlorine in the final catalyst. This problem was not found to be an issue 

with the triethylamine switchable solvents, with little indication of residual 

switchable additive, although some metal nitrates could be retained if the 

precipitate was not extensively washed. The possibility of retaining residual 

solvent was one of the factors considered when choosing a switchable 

additive and the requirement of extensive washing. This is often a factor that 

is not fully considered or mentioned by research publications on the use of 

these solvents for novel preparation but it is none the less a highly important 

one. 
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7.2 Future work expansion of deep eutectic solvent, hydrothermal 

and switchable solvent systems 

 

This work has shown that a number of different metal oxide catalysts could 

be prepared using alternative techniques such as switchable solvents or 

deep eutectic solvents. However, some of the method use for preparing 

metal oxides with these techniques, notably the switchable solvent and DES-

oxalate based methods were novel preparation methods and as such this 

work only explored the initial preparation and testing for a few selected metal 

oxides, suitable reactions and limitation in the parameters that were varied.  

Variations in the DES oxalate method such as temperature at which the 

DES-oxalate mixture was maintained at or the use of other anti-solvent 

mixtures (such as ethylene glycol) as well as applying this method under 

ionothermal conditions in an autoclave are parameters that could have an 

impact on the morphology and surface area of the cobalt oxalate precursor 

which could increase their activity. 

Application of these DES-oxalate derived oxides as supports is a possible 

area were the tailorable morphology properties may be more advantageous, 

as well as the high surface area iron oxide that resulted from this preparation 

could make a good support for gold nanoparticles3. 

While the use of choline chloride-urea deep eutectic solvent resulted in 

inactive Cu/ZnO catalysts, this does not mean that all DES are problematic 

for the application in Cu/ZnO preparation. There are a whole variety of deep 

eutectic solvents and choline based ionic liquids already published in the 

literature. Examples of DES that eliminate choline chloride that could be 

utilised as a solvent or as soft templating include dimethylurea-citric acid 

mixture. In addition, there are other choline based ionic liquids notably 

choline carboxylates that could eliminate the problem of choline chloride and 

these ionic liquids have much simpler preparation techniques compared to 

the imidazolium based ionic liquids. These alternatives could be useful 

solvents for metal oxide preparation4. 
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The use of hydrothermal synthesis to make crednerite as a precursor formed 

a copper-manganese oxide catalyst with properties that differed from that of 

conventional hopcalite. Although this work demonstrated that the use 

CuMnO2 as an interesting precursor to spinel phase Cu1.5Mn1.5O4 catalysts, 

there are a variety of copper based delafossites that could also be applied to 

CO oxidation or other reactions. In fact, there has recently been publication in 

the application of copper based delafossite in heterogeneous catalysis most 

notably CuFeO2 as a precursor to a Fischer-Tropsch catalyst5. 

In addition, the use of gold and cobalt doped on co-precipitated hopcalite has 

been reported to enhance these catalysts for CO oxidation6, 7 and doping 

these metals onto crednerite derived hopcalite would be another area to 

investigate how these differ from conational co-precipitate hopcalite. 

The synthesis of metal oxides with switchable solvents is perhaps the area 

that has both the largest potential and the area that has been used the least 

in the field of metal oxide preparation and therefore the area with the greatest 

potential for expansion. While the use of TEA-water based switchable 

hydrophilic-hydrophobic solvents can be used for other single and mixed 

metal oxides such as cobalt, iron and nickel, there are a whole variety of 

switchable solvents that had been discovered8, some of which may provide 

better Cu/Mn mixing and eliminate the problems of excess nitrates being 

retained in the precursor. In addition, it had already been demonstrated that 

using a metal nitrate or a metal acetate salt had an impact on the final 

catalyst and more investigation into using different copper-manganese salts 

would prove interesting as well as eliminating the problem of residual nitrates 

being retained in the precursor. 

There are a large variety of novel solvent systems as well as expanding 

knowledge on the nature of systems such as ionic liquids and deep eutectic 

solvents that have allowed us to understand how these systems could be 

used as potential alternatives to the conventional systems and this thesis as 

only a small part of a much larger area, which is only just becoming 

mainstream in the field of heterogeneous catalyst preparation. 
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