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1 
2 
3 ABSTRACT. Designing and tailoring the assembly of complex ternary transition metal oxide 
4 
5 

(TTMO) structures are a key step in the pursuit of high performance pseudo-capacitive materials 

7 

8 for the development of next-generation energy storage devices. Here, we present uniquely 
9 
10 assembled 3D heterostructures with hierarchically bimodal morphological features, consisting of 
11 
12 

a  rigidly  interconnected  primary  nanoporous  framework  of  ZnCo2O4/NiMoO4   core-shell 

14 

15 structures and a secondary protruding structure of NiMoO4  layered nanosheets. By benefiting 
16 
17 from  the  combination  of  the  two  TTMOs,  each  with  distinct  physical  characteristics,  the 
18 
19 

assembled 3D ZnCo2O4/NiMoO4 heterostructures exhibit excellent pseudo-capacitive 
20 
21 

performance with high capacitances of 6.07 F cm
–2 

and 1480.48 F g
–1 

at 2 mA cm
–2 

as well as an 

23 
24 excellent cycling stability of 90.6% over 15000 cycles. Moreover, an asymmetric supercapacitor 
25 
26 device can deliver a high energy density of 48.6 Wh kg

–1
. The superior pseudo-capacitive energy 

27 
28 

storage characteristics are strongly attributed to the interconnected 3D nanoporous network 

30 

31 architecture of the TTMOs along with the secondary layered nanosheets that provide 1) an 
32 
33 enlarged surface area, 2) facile and multi-access ion paths, and 3) favorable structural stability. 
34 
35 

Combined, these results highlight the importance of novel nanostructure design in maximizing 
36 
37 

38 the  pseudo-capacitive  performance  and  provides  a  viable  way  to  develop  new  electrode 
39 
40 materials. 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
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1 
2 
3 1. Introduction. 
4 
5 

Pseudo-capacitors, which are an emerging class of electrochemical energy storage system, 

7 

8 have been intensively studied over the past few decades in an attempt to address the rapidly 
9 
10 increasing global energy requirements whilst also considering the corresponding impact on the 
11 
12 

economy and the environment.
1-4  

The significant importance of pseudo-capacitors as future 
13 
14 

15 energy storage devices stems from the fact that, theoretically, they are capable of providing a 
16 
17 power delivery and stable cyclability that is superior to that exhibited by Li-ion batteries. In 
18 
19 

addition, they are also capable of storing a higher energy density than that of  electrical double 
20 
21 

layer capacitors.
5-7 

Recent studies have recognized that even though the performance of pseudo- 

23 
24 capacitors is essentially determined by the intrinsic physical and chemical properties of the 
25 
26 electrode materials, the structural design of the electrode materials can also greatly influence the 
27 
28 

resulting pseudo-capacitive charge storage behavior as well as the electrochemical kinetics.
8,9 

As 

30 

31 a result, a tremendous amount of effort has been directed towards the development of carefully 
32 
33 structured  electrode  materials  with  a  controllable  size,  morphology,  stoichiometry,  and 
34 
35 

hierarchical architecture. The aim of this work has been to enlarge the electrochemically active 
36 
37 

38 regions to enable faster electrochemical kinetics, which in turn can lead to both higher energy 
39 
40 and higher power densities.

10-12
 

41 
42 

To date, it has been widely proposed and generally accepted that structural engineering of the 
43 
44 

45 electrode materials, through the miniaturization of the size as well as the construction of a 
46 
47 porous-structure, is an effective and viable strategy towards steadily improving many transition 
48 
49 metal  oxides  for  pseudo-capacitive  applications.

13,14    
Despite  these  notable  technological 

50 
51 

advances, it still remains a challenge to tailor complex ternary transition metal oxides (TTMOs), 

53 

54 which  has  the  advantage  of  combining  two  different  mono-component  metal  oxides  into 
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1 
2 
3 desirable  nanostructured  architectures  with  a  maximized  surface  area,  facile  and  short  ion 
4 
5 

diffusion paths, and a high structural integrity during the charge/discharge process. 

7 

8 Inspired by a basic spinel structural model with 3 dimensional (3D) open channels,
15 

in this 
9 
10 study,  we  propose  hierarchically  assembled  3D  heterostructures  that  comprise  a  rigidly 
11 
12 

interconnected nanoporous core-shell network  and a secondary protruding nanostructure as 
13 
14 

15 illustrated  in  Figure  1a.  Such  a  proposed  electrode  design  can  be  expected  to  enable 
16 
17 enhancement of the electrochemical features of the properly selected TTMO electrode beyond 
18 
19 

the aforementioned requirements for the next generation energy storage devices. Among the 
20 
21 

22 various TTMO candidates, ZnCo2O4 is considered as an ideal backbone material (core) for the 
23 
24 robust, porous, and conductive 3D architecture due to the combination of its excellent intrinsic 
25 
26 electrical conductivity and its unique cubic spinel crystal structure, which is highly stable and 
27 
28 

consists of large internal voids as well as 3D internal channels for rapid and multiple access of 

30 

31 the ions.
16,17  

On the other hand, NiMoO4  is considered to be a potential pseudo-capacitive 
32 
33 material for the shell and secondary protruding structure because the excellent redox behavior of 
34 
35 

the Ni atoms and the good electrical conductivity of the Mo atoms can contribute collectively to 
36 
37 

38 yield  a  high  pseudo-capacitive  performance.
18,19   

Moreover,  the  open  space  between  the 
39 
40 octahedral Ni sites and the tetrahedral Mo sites along with the nanoscale architecture can be 
41 
42 

particularly beneficial in terms of enhancing the pseudo-capacitive kinetics. 
43 
44 

45 Herein, we report a novel and unique bottom-up synthetic assembly of 3D ZnCo2O4/NiMoO4 

46 
47 heterostructures with sponge-like primary nanoporous plates along with a secondary protruding 
48 
49 layered nanosheet arrays. The electrodes that are directly integrated onto the 3D microporous 
50 
51 

current collector provide a unique configuration that consists of a porous and layered network 

53 

54 resulting in an enlarged active surface area and multi-access channel. This structure also exhibits 
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1 
2 
3 a superior structural integrity that can accommodate any mechanical stress that is induced when 
4 
5 

cycling through the charge/discharge process, ensuring a favorable electrochemical performance. 

7 
8 
9 
10 2. Results and Discussion 
11 
12 

The  synthetic  process  for  the  hierarchically  assembled  3D  ZnCo2O4/NiMoO4   electrode 

14 

15 structure is shown in Figure 1b. The ZnCo2O4/NiMoO4  heterostructures were fabricated using 
16 
17 stepwise bottom-up assembly synthesis procedure. Firstly, the nanoporous plate-like structure of 
18 
19 

ZnCo2O4 was prepared on a 3D microporous current collector (left of Figure 1b) so as to serve as 
20 
21 

22 the rigid backbone structure, which is expected to combine properties of high conductivity, 
23 
24 structural stability, and a desirable porous structure (middle of Figure 1b). Then, the resultant 
25 
26 nanoporous ZnCo2O4 plates were uniformly coated by the active nanoscale NiMoO4 shell layers, 
27 
28 

29 along with the formation of the layered NiMoO4 nanosheets on the surface of the interconnected 
30 

31 core-shell network using a subsequent bottom-up synthesis method (right of Figure 1b). As a 
32 
33 result, electrodes with two distinct primary and secondary nanostructures were successfully 
34 
35 

prepared, enabling rich, rapid, and stable Faradaic redox reactions for pseudo-capacitors. 
36 
37 

38 The  hierarchically  assembled  3D  ZnCo2O4/NiMoO4   heterostructures  were  assessed  by 
39 
40 scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-angle 
41 
42 

annular dark-field scanning TEM (HAADF-STEM) measurements. It can be seen that very thin 
43 
44 

45 nanostructured ZnCo2O4  plates with uniform and smooth surface morphology are dispersed 
46 
47 across the entire 3D microporous current collector (Figure 2a and S1a-b). TEM studies reveal 
48 
49 that the plates are composed of the rigidly interconnected nanoscale grains and pores with a size 
50 
51 

of 10–20 nm, as shown in Figure 2b and S1c. Moreover, Figure 2c presents the HAADF-STEM 

53 

54 image of ZnCo2O4, further demonstrating the existence of the highly-entangled grains (white 
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1 
2 
3 space) and pore channels (black space). The elemental distribution of the ZnCo2O4 plates is also 
4 
5 

clearly identified by the energy dispersive X-ray spectroscopy (EDX) mapping analysis (Figure 

7 

8 2d), confirming that the Zn, Co, and O elements are uniformly dispersed on the nanoporous 
9 
10 plates. 
11 
12 

After  a  hierarchical  bottom-up  assembly  process  to  develop  the  3D  ZnCo2O4/NiMoO4 

14 

15 heterostructures, there is an obvious change in the surface morphology of the electrodes with the 
16 
17 addition of the secondary nanosheet arrays that protrude from the backbone plate structure, as 
18 
19 

shown   in   Figure   2e   and   S2a-b.   Notably,   STEM   and   HAADF-STEM   images   show 
20 
21 

22 morphologically distinct regions, including a primary plate region with an interconnected porous 
23 
24 network (the center region in Figure 2f-g and S2c-e, see more detailed information in SI) and the 
25 
26 secondary nanosheet region (the edge region in Figure 2f-g). Furthermore, the EDX mapping 
27 
28 

images taken from the area in the HAADF-STEM image of Figure 2g and inset of Figure S2e 

30 

31 show that all the elements (Zn, Co, Ni, and Mo) are uniformly distributed along the hierarchical 
32 
33 nanostructures  (Figure  2h  and  S2f).  Therefore,  these  results  indicate  the  formation  of 
34 
35 

ZnCo2O4/NiMoO4 heterostructures with additional secondary nanostructures. 

37 

38 To further investigate the detailed structural features of the hierarchically assembled 3D 
39 
40 ZnCo2O4/NiMoO4 heterostructures, a high-resolution HAADF-STEM image was recorded from 
41 
42 

the center region of the sample as shown in Figure 3a. The corresponding EDX mapping images 
43 
44 

45 show the clear coexistence of all four metal elements on the whole area of the sample (Figure 
46 
47 3b). Interestingly, the EDX signals of the Ni and Mo atom were detected with relatively high 
48 
49 intensity on the white dotted area. These findings are believed to be strongly associated with the 
50 
51 

52 formation of the secondary NiMoO4 nanosheets on the surface of the ZnCo2O4 plates. Moreover, 
53 

54 Figure 3c-d show atomic scale structural characterization of the ZnCo2O4/NiMoO4 
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1 
2 
3 heterostructures further investigated by the high-resolution TEM images and the corresponding 
4 
5 

fast Fourier transform diffraction (FFT) patterns from the region outlined by a yellow dotted 

7 

8 rectangle as shown in Figure 3a. These TEM and FFT results clearly reveal two distinct regions 
9 
10 in  the  ZnCo2O4/NiMoO4   heterostructures:  (1)  the  region  1  is  found  to  be  a  primary 
11 
12 

heterostructure region consisting of the active NiMoO4 shell and rigid ZnCo2O4 core structures, 

14 

15 which are determined by three different adjacent lattice spacings of about 0.238, 0.145, and 
16 
17 0.210 nm, which correspond to a (311) plane of spinel ZnCo2O4, and (600) and (330) planes of 
18 
19 

monoclinic NiMoO4, respectively;
20, 21  

(2) the region 2 is identified as the secondary structure 
20 
21 

22 region associated with the layered NiMoO4  nanosheet structure from the observation of lattice 
23 

24 fringes with only 0.215 nm spacing, indicating the (400) planes of monoclinic NiMoO4.
[21]  

In 
25 
26 addition, the cross sectional HAADF-STEM (Figure 3e-f and S3a) and EDX mapping (Figure 
27 
28 

29 S3b) images of the ZnCo2O4/NiMoO4 heterostructures prepared using a focused ion beam also 
30 

31 clearly verify the hierarchical formation of secondary protruding layered nanosheets on the 
32 
33 primary nanoporous plates. 
34 
35 

Synchrotron X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis 
36 
37 

38 was also performed to further verify the crystal and chemical structures of the hierarchically 
39 
40 assembled 3D ZnCo2O4/NiMoO4  heterostructures. As shown in Figure S4 (see more detailed 
41 
42 

information in SI), all the reflections in the XRD patterns are unambiguously assigned to spinel 
43 

45 ZnCo2O4 (JCPDS 23-1390) and monoclinic NiMoO4 (JCPDS 86-0361).
22,23 

Moreover, Figure 3g 
46 
47 shows high-resolution XPS spectra of the Zn 2p, Co 2p, Ni 2p and Mo 3d peak regions with the 
48 
49 fitted peak components, clearly revealing the presence of the corresponding metallic elements. 
50 
51 

This is in good agreement with the EDX results as shown in Figure 2h and 3b. The peak fitting 

53 

54 analysis of all the XPS spectra suggests that there exist the compositions of Zn
2+ 

and Co
3+ 

in the 
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1 
2 
3 ZnCo2O4 structure, and the Ni and Mo exist as Ni

2+ 
and Mo

6+ 
states, respectively, in the NiMoO4 

4 
5 

structure.
24,25  

Thus, a comparison of the SEM, TEM, EDX, XRD, and XPS results provides 

7 

8 direct evidence that the 3D assembled ZnCo2O4/NiMoO4 heterostructures consist of the primary 
9 
10 ZnCo2O4/NiMoO4 plates and the secondary layered NiMoO4 nanosheet arrays. 
11 
12 

On the basis of the obtained heterostructures and chemical composition information, we have 
13 
14 

15 evaluated the pseudo-capacitive characteristics of the hierarchically assembled 3D 
16 
17 ZnCo2O4/NiMoO4 heterostructures. Figure 4 depicts the overall electrochemical performance of 
18 
19 

the bare ZnCo2O4 electrode without any additional NiMoO4 layer (denoted as single-TTMO) and 
20 
21 

22 the  ZnCo2O4/NiMoO4   heterostructured  electrode  with  hierarchically  bimodal  geometrical 
23 
24 structures (denoted as bimodal-TTMO). As shown in Figure 4a, a cyclic voltammetry (CV) 
25 
26 curve of the bimodal-TTMO exhibits the typical Faradaic redox  behavior with a potential 
27 
28 

window ranging from 0.0 to 0.6 V at a scan rate of 5 mV s
–1

. The integrated CV area for the 

30 

31 bimodal-TTMO sample is much larger than that of the single-TTMO. This indicates that the 
32 
33 bimodal-TTMO possesses a superior electrochemical capacitance due to the unique hierarchical 
34 
35 

core-shell  nanostructures  with  a  relatively  high  surface  area,  which  is  consistent  with  the 
36 
37 

38 Brunauer-Emmett-Teller (BET) surface area measurement results (Figure S5). Moreover, all CV 
39 
40 curves have similar shapes within scan rates of 5–50 mV s

–1
, indicating reversible Faradaic 

41 
42 

reaction behavior (Figure S6a). Further, we plotted the cathodic and anodic current densities as a 
43 
44 

45 function of the scan rates from the CV curves of the bimodal-TTMO and have clearly observed a 
46 

47 linear relationship with the oxidation reaction (R
2  

= 0.99959) and reduction reaction (R
2  

= 
48 
49 0.99886) values (Figure S6b). These high values of R

2
, close to 1, also imply that our bimodal- 

50 
51 

TTMO electrode exhibits good reversible redox reaction behavior.
26

 

53 
54 
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1 
2 
3 Figure 4b presents galvanostatic charge/discharge (GCD) curves of the bimodal-TTMO at 
4 
5 

different current densities. Similar to the CV results, the bimodal-TTMO electrode shows typical 

7 

8 charge/discharge curves with superior Faradaic redox reaction performance compared to the 
9 
10 single-TTMO electrode as shown in Figure S7a. As expected, the area and mass capacitance of 
11 
12 

the  bimodal-TTMO  are  significantly  enhanced  to  reach  6.07  F  cm
–2   

and  1480.48  F  g
–1

, 
13 
14 

15 respectively, at a current density of 2 mA cm
–2 

(Figure 4c), which are 4 times more than that of 
16 
17 the specific capacitance of the single-TTMO (Figure S7b). Moreover, even at a high current 
18 
19 

density of 50 mA cm
–2

, the bimodal-TTMO electrode can achieve a capacitance of up to 959.04 
20 
21 

F g
–1 

even at a high current density of 50 mA cm
–2

. 

23 
24 In addition to demonstrating the substantive electrochemical capacitive performance, we also 
25 
26 conducted electrochemical cycling tests to evaluate the capacitance retention capability and 
27 
28 

structural stability of the electrode. Obviously, it can be seen that the electrode remarkably 

30 

31 retains more than 96.8% of its initial capacitance after 3000 cycles at 50 mV s
–1  

(Figure 4d), 
32 
33 which shows a superior capacitance retention compared to other reported ternary transition metal 
34 
35 

oxide electrodes, as summarized in Table S1. It should be noted that under harsh conditions, the 
36 
37 

38 bimodal-TTMO exhibits excellent electrochemical cyclability with a capacitance retention of 
39 
40 90.6% after 15000 cycles at a high scan rate of 100 mV s

–1 
(Figure 4e). Inset images of Figure 4e 

41 
42 

present  Nyquist  plots  (left)  and  Bode  phase  plots  (right)  of  the  bimodal-TTMO  electrode 
43 
44 

45 obtained using electrochemical impedance spectroscopy (EIS) measurements to analyze the 
46 
47 electrochemical kinetics and stability of the electrode before and after the charge/discharge 
48 
49 cycling test. It can be clearly seen that in the Nyquist plots, even after 15000 cycles, semicircles 
50 
51 

at the high frequency region and straight lines at the low frequency region, which indicate the 

53 

54 charge transfer resistance (Rct) and the Warburg impedance (W) associated with ion diffusion
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1 
2 
3 processes, respectively, almost remain unchanged. Moreover, it is also observed that in the Bode 
4 
5 

plot, the phase angle at low frequency can be maintained at about ~ -77° (the degree for ideal 

7 

8 capacitor behavior is close to -90°)
27 

over the long-term cycling test. These EIS results indicate 
9 
10 that the bimodal-TTMO electrode has superior electrochemical kinetics and stability and hence 
11 
12 

retains its excellent capacitive behavior during the charge/discharge processes. Additionally, we 
13 
14 

15 further analyzed morphological changes of the electrode to investigate the structural stability 
16 
17 after long-term cycling testing using SEM examinations as shown in Figure S8. It is revealed that 
18 
19 

the morphology and the structure of the hierarchical 3D ZnCo2O4/NiMoO4  heterostructured 
20 
21 

22 electrode remain intact after 15000 cycling tests, demonstrating its structural robustness. 
23 
24 From the point of view of electrode design and material properties, our uniquely designed 
25 
26 electrode has multiple distinct advantages that enable superior electrochemical performance, as 
27 
28 

illustrated in Figure 4f. The first is the hierarchically assembled 3D heterostructures with open 

30 

31 interconnected porous channels, providing enhanced surface area and multi-access diffusion 
32 
33 pathways for facile and rapid ion transport. The second advantage is the formation of the 
34 
35 

secondary protruding NiMoO nanosheets on the surface of the primary nanoplates, which 
36 
37 

38 provide  an  additional  contribution  to  the  improvement  of  the  specific  capacitance  and 
39 
40 electrochemical  kinetics  because  of  the  high  pseudo-capacitive  activity combined  with  the 
41 
42 

unique  layered,  open  structure  that  facilitates  favorable  ion  diffusion  and  adsorption.  An 
43 
44 

45 additional advantage of  our electrode design  is that the direct integration of the  ZnCo2O4 

46 
47 backbone structure, which has high electric conductivity and good structural stability, onto the 
48 
49 3D microporous current collector framework ensures fast electron transport and good structural 
50 
51 

integrity (Figure S6c, see more detailed information in SI), but also stimulates more surface area 

53 

54 of the NiMoO4 to become electrochemically active. 
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1 
2 
3 To further evaluate the bimodal-TTMO electrode for practical applications, we fabricated an 
4 
5 

asymmetric supercapacitor (ASC) coin cell with activated carbon (AC) as the anode and the 

7 

8 bimodal-TTMO as the cathode. From CV curves of the AC and bimodal-TTMO electrodes 
9 
10 (Figure S9a), we have calculated the mass of the AC anode to fulfill the charge balance with the 
11 
12 

bimodal-TTMO cathode and estimated that the AC//bimodal-TTMO ASC can be operated in a 
13 
14 

15 wide potential range from 0 to 1.6 V.
28 

Figure S9b presents the CV curves collected at different 
16 
17 operating voltage windows at a scan rate of 50 mV s

−1
, showing capacitance contribution from 

18 
19 

both the AC anode and the bimodal-TTMO cathode. The inset of Figure S9c depicts typical 
20 
21 

GCD curves of the ASC at current densities from 20 to 2 mA cm
–2 

within a potential range of 0 

23 

24 to 1.6 V. Accordingly, the maximum specific capacitance of the ASC reaches 136.6 F g
–1  

at a 
25 
26 current density of 2 mA cm

–2 
(Figure S9c). 

27 
28 

On the basis of the GCD curves, the specific energy density and power density of the ASC 

30 

31 were calculated. Figure 5a presents the Ragone plot of the AC//bimodal-TTMOs ASC for the 
32 
33 purposes of comparison with other devices reported recently. The ASC device exhibits a high 
34 
35 

energy density of 48.6 Wh kg
–1 

and also reaches a reasonable power density ranging from 112.7 
36 
37 

38 to 2820 W kg
–1

. The practical electrochemical performance of our ASC are much higher than 
39 
40 those of other reported devices and commercial energy storage devices.

29-37 
Moreover, the ASC 

41 
42 

exhibits excellent cycle life with a capacitance retention of 94.0% after 3000 cycles at a scan rate 
43 
44 

of 50 mV s
–1 

(Figure 5b). These findings suggest that our ASC device can be used as a promising 

46 
47 energy  storage  system  with  reliable  long-term  operation  durability.  Additionally,  we  have 
48 
49 demonstrated that our optimized three ASC coin cells connected in series can successfully power 
50 
51 

up to 29 red light-emitting diodes (LEDs) which were assembled in parallel (Inset of Figure 5b 

53 

54 and Figure S10). 
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1 
2 
3 
4 
5 

6 3. Conclusions 
7 

8 In summary, we have reported hierarchically assembled 3D heterostructures of two different 
9 
10 TTMOs to emphasize the importance of designing nanoarchitectures that optimize the intrinsic 
11 
12 

electrochemical properties and provide a morphology that exhibits a high structural integrity. 
13 
14 

15 Such a novel electrode design confirms the significance of the hierarchical nanostructures and 
16 
17 the realization of the bimodal-TTMOs as a pseudo-capacitive cathode electrode. Importantly, the 
18 
19 

synergistic effects of bimodal-TTMOs within their unique interconnected nanoporous network 
20 
21 

22 structure,  combining  with  an  enlarged  contact  area,  plausible  electrochemical  kinetics  in 
23 
24 ion/charge transport and great mechanical stability have been reported, exhibiting a high specific 
25 
26 capacitance and a superior long-term cyclability over 15000 charge/discharge cycles. Moreover, 
27 
28 

the asymmetric coin cell supercapacitor can deliver a high energy density of 48.6 Wh kg
–1 

and a 

30 

31 high power density of 2820 W kg
–1

. Further, it is expected that our approach for rationally 
32 
33 designing and tailoring the hierarchical bimodal-TTMO electrode has great potential for energy 
34 
35 

storage  technologies  and  also  contributes  to  many  other  application  areas  dealing  with 
36 
37 

38 electrochemical  processes  and  ion/charge  transport  kinetics  within  nanoporous  network 
39 
40 structures. 
41 
42 
43 
44 

45 4. Experimental Section 
46 
47 Synthesis of hierarchically nanostructured ZnCo2O4/NiMoO4  heterostructures. All the 
48 
49 chemicals were of analytical grade and directly used after purchase without further purification 
50 
51 

52 steps.  Hierarchically assembled  3D  ZnCo2O4/NiMoO4   heterostructures  on  a  Ni  foam  were 
53 

54 synthesized by a two-step hydrothermal synthetic process. Prior to the hydrothermal synthesis, 
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1 
2 
3 the conductive Ni foam was cleaned by sonification using 1.0 M HCl, ethanol, and deionized 
4 
5 

6 water. For the synthesis of the ZnCo2O4 core backbone material, 1.0 mmol of Zn(NO3)2·6H2O, 
7 

8 2.0 mmol of Co(NO3)2·6H2O and 5.0 mmol of urea were dissolved in deionized water to form a 
9 
10 clear red solution. The red solution and the cleaned Ni foam were then transferred into a Teflon- 
11 
12 

lined stainless steel autoclave and kept at 130 
o
C for 5 h. After cooling down, the Ni foam 

13 
14 

15 sample was rinsed several times to remove impurities and dried at 60 
o
C for 12 h. In order to 

16 
17 obtain the crystallized nanoporous ZnCo2O4, the Ni foam sample was annealed at 350 

o
C for 2 h 

18 
19 

with a heating rate of 1 °C min
−1 

under Ar environment. Then, to obtain hierarchically assembled 
20 
21 

22 3D ZnCo2O4/NiMoO4  heterostructures, precursors for NiMoO4  were prepared. For this, 1.0 
23 
24 mmol of Ni(NO3)2·6H2O and 1.0 mmol of Na2MoO4  were dissolved in a mixture solution 
25 
26 (deionized water and ethanol) to form a clear green solution. The green solution and the annealed 
27 
28 

29 Ni foam sample with a nanoporous ZnCo2O4 core were transferred into the Teflon-lined stainless 
30 

31 steel autoclave and kept at 140 
o
C for 4 h. Finally, after the same cooling and rinsing steps, the 

32 
33 Ni foam sample was annealed at 350 

o
C for 2 h under the same heating rate and environmental 

34 
35 

conditions. 
36 
37 
38 
39 
40 Electrochemical  Characterization.  The  electrochemical  performance  of  the  obtained 
41 
42 

electrodes was tested in a three-electrode configuration consisting of the sample as the working 
43 
44 

45 electrode, a Pt mesh as the counter electrode, and a saturated Ag/AgCl electrode as the reference 
46 
47 electrode. CV (within the range of 0.0–0.6 V), GCD (within the range of 0.0–0.5 V), and EIS (in 
48 
49 the range of 10

–2 
to 10

5 
Hz) examinations were conducted using a potentiostat analysis system 

50 
51 

(PGSTAT302N, Metrohm Autolab). The specific areal and mass capacitance can be calculated 

53 

54 according to the following Equation 1: 
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                       where CA is the specific areal capacitance, Cm is the specific mass capacitance, Id is the discharge 
7 
8 

current, t is the discharge time, ∆V is the operating potential during the discharge process, A is 
9 
10 

11 the active area of the sample, and m is the mass of the active material. The loading mass of the 
12 

13 active materials is 2.1 mg cm
–2  

and 4.1 mg cm
–2  

for the ZnCo2O4  and the ZnCo2O4/NiMoO4 

14 
15 samples, respectively. The active carbon (AC)//ZnCo2O4/NiMoO4  asymmetric supercapacitor 
16 
17 

18 (ASC) was prepared to test the full cell performance by fabricating a 2032–coin cell. The ASC 
19 

20 was fabricated by using the AC as the anode material, the ZnCo2O4/NiMoO4  heterostructure 
21 
22 sample as the cathode material, a cellulose paper as the separator and 6.0 M KOH as the 
23 
24 

electrolyte  solution.  The  charge  balance  and  the  loading  mass  of  the  AC  electrode  were 

26 

27 optimized according to the following Equation 2: 
 
28 
29  

30 
 

32 where C+ and C- are the specific capacitance of the cathode and anode electrodes, respectively, 
33 
34 

and ∆V and ∆V  are the operating potential windows of the cathode and anode electrodes, 
35 
36 

37 respectively. The AC anode was constructed by using the active carbon as the active material, 
38 
39 poly(vinylidene difluoride) as the binder, and Ketjen black as the conductive material. This 
40 
41 solution was coated onto a compressed Ni foam as the current collector. The energy density and 
42 
43 

44 power density of the ASC can be calculated according to the following Equation 3: 

 

 
45 
48 

48   

49 where Cm is the specific overall capacitance, E is the calculated energy density, ∆V is the overall 
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50 
51 operating potential window, and t is the discharge time. 
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9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

35 Figure  1.  Illustrations  of  (a)  the  overall  hierarchically  assembled  3D  ZnCo2O4/NiMoO4 

36 

37 heterostructures and (b) the fabrication steps for 3D ZnCo2O4/NiMoO4 heterostructures directly 
38 
39 integrated on the 3D microporous conductive current collector through hierarchical bottom-up 
40 
41 

synthesis assembly. 

43 
44 
45 
46 
47 
48 
49 
50 
51 
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7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Figure  2.  (a)  SEM,  (b)  TEM,  (c)  HADDF-STEM,  and  (d)  EDX  mapping  images  of  3D 
24 
25 

26 nanoporous ZnCo2O4  serving as a back-bone structure. The inset image in Figure 2b indicates 
27 
28 highly porous grains of ZnCo2O4. (e) SEM, (f) STEM, (g) HADDF-STEM, and (h) EDX 
29 
30 mapping images of hierarchically assembled 3D ZnCo2O4/NiMoO4 heterostructures. 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
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10 
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18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Figure 3. (a) A high-resolution HAADF-STEM and (b) EDX elemental mapping images of 

34 

35 ZnCo2O4/NiMoO4  heterostructures. (c) A high-resolution TEM image of ZnCo2O4/NiMoO4 

36 
37 heterostructures taken from the region outlined by the yellow dotted rectangle in Figure 3a. (d) 
38 
39 

High-resolution  TEM  and  FFT  images  of  the  region  1  indicate  existence  of  primary 
40 
41 

42 heterostructures of the NiMoO4 shell and the rigid ZnCo2O4 core. High-resolution TEM and FFT 
43 
44 images of region 2 indicate existence of secondary layered NiMoO4  nanosheets. (e) A low- 
45 
46 resolution and (f) high-resolution cross sectional HAADF-STEM images of ZnCo2O4/NiMoO4 

47 
48 

49 heterostructures.  (g)  XPS  Zn  2p,  Co  2p,  Ni  2p,  and  Mo  3d  spectra  of  ZnCo2O4/NiMoO4 

50 

51 heterostructures. 
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1 
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3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 Figure 4. (a) CV curves of bimodal-TTMO and single-TTMO at a scan rate of 5 mV s

–1
. (b) 

34 
35 GCD  curves  of  bimodal-TTMO  at  different  current  densities.  (c)  Specific  capacitances  of 
36 
37 

38 bimodal-TTMO at different current densities. (d) Cycle performance of bimodal-TTMO at a scan 
39 

40 rate of 50 mV s
–1 

up to 3000 cycling charge/discharge tests. (e) Under harsh conditions, cycle 
41 
42 performance  of  bimodal-TTMO  at  a  scan  rate  of  100  mV  s

–1   
up  to  15000  cycling 

43 
44 

charge/discharge tests. The insets in Figure 4e indicate Nyquist plots and Bode plots of bimodal- 

46 

47 TTMO  before  and  after  long-term  cycling tests.  (f)  Illustration  showing pseudo-capacitive 
48 
49 behavior in hierarchically assembled 3D ZnCo2O4/NiMoO4 heterostructures. 
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6 
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8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 Figure 5. (a) Ragone plots of the AC//ZnCo2O4/NiMoO4 ASC as well as other, recently reported, 
37 
38 

pseudo-capacitive ASCs. (b) Cycle performance of the AC//ZnCo2O4/NiMoO4  ASC at a scan 

40 

41 rate  of  50  mV  s
–1   

up  to  3000  cycling  charge/discharge  tests.  The  inset  in  Figure  5b  are 
42 
43 photographs showing three ASCs in series that can light up 29 red LEDs. 
44 
45 
46 
47 
48 
49 
50 
51 



52 
53 
54 
55 
56 
57 
58 
59 
60 

21 

 

 

7 

32 

 
 

1 
2 
3 ASSOCIATED CONTENT 
4 
5 
6 

Supporting Information. Additional structural and electrochemical analysis data in Figure S1- 

8 

9 S10 and Table S1.  
13 
14 

AUTHOR INFORMATION 
15 
16 
17 Corresponding Author 
18 
19 

20 *E-mail: shin@unist.ac.kr (H.S.S.) and junginn.sohn@eng.ox.ac.uk (J.I.S.) 
21 
22 
23 Author Contributions 
24 
25 

26 ‡These authors contributed equally. 
27 
28 
29 Notes 
30 
31 

The authors declare no competing financial interest. 

33 
34 

35 ACKNOWLEDGMENT 
36 
37 This research was supported by the Industrial Fundamental Technology Development Program 
38 
39 

(10052745, Development of the nano-sized (100 nm) manganese ceramic material for high 
40 
41 

42 voltage pseudo-capacitor) funded by the Ministry of Trade, Industry and Energy (MOTIE) of 
43 
44 Korea, and the European Research Council under the European Union's Seventh Framework 
45 
46 Programme (FP/2007-2013)/Grant Agreement no. 685758, Project ‘1D-NEON’. In addition, 
47 
48 

49 SMM would also like to thank The Royal Society for financial support. 

mailto:shin@unist.ac.kr
mailto:junginn.sohn@eng.ox.ac.uk


52 
53 
54 
55 
56 
57 
58 
59 
60 

21 

 

 

6 

29 

 
 

1 
2 
3 REFERENCES 
4 
5 

(1) Dresselhaus, M. S.; Thomas, I. L. Alternative Energy Technologies. Nature 2001, 414, 

7 

8 332–337. 
9 
10 (2) Miller, J.; Simon, P. Electrochemical Capacitors for Energy Management. Science 
11 
12 

2008, 321, 651–652. 
13 
14 

15 (3) Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P.-L.; Grey, C. P.; Dunn, 
16 
17 B.; Simon, P. Efficient Storage Mechanisms for Building Better Supercapacitors. Nat. 
18 
19 

Energy 2016, 1, 16070. 
20 
21 

22 (4) Peng, Y.-Y.; Akuzum, B.; Kurra, N.; Zhao, M.-Q.; Alhabeb, M.; Anasori, B.; Kumbur, 
23 
24 E. C.; Alshareef, H.; Ger, M.-D.; Gogotsi, Y. All-MXene (2D Titanium Carbide) 
25 
26 Solid-State Microsupercapacitors for On-Chip Energy Storage. Energy Environ. Sci. 
27 
28 

2016, 9, 2847–2854. 

30 

31 (5) Simon,  P.;  Gogotsi,  Y.;  Dunn,  B.  Where  Do  Batteries  End  and  Supercapacitors 
32 
33 Begin?. Science 2014, 343, 1210–1211. 
34 
35 

(6) Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; Schalkwijk, W. Nanostructured 
36 
37 

38 Materials for Advanced Energy Conversion and Storage Devices. Nat. Mater. 2005, 4, 
39 
40 366–377. 
41 
42 

(7) Wang, G.; Zhang, L.; Zhang, J. A Review of Electrode Materials for Electrochemical 
43 
44 

45 Supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. 
46 
47 (8) Li, X.; Jiang, L.; Zhou, C.; Liu, J.; Zeng, H. Integrating Large Specific Surface Area 
48 
49 and High Conductivity in Hydrogenated NiCo2O4  Double-Shell Hollow Spheres to 
50 
51 

Improve Supercapacitors. NPG Asia Mater. 2015, 7, e165. 



55 
56 
57 
58 
59 
60 

22 

 

 

6 

29 

52 

 
 

1 
2 
3 (9) Chen,  H.;  Hu,  L.;  Chen,  M.;  Yan,  Y.;  Wu,  L.  Nickel–Cobalt  Layered  Double 
4 
5 

Hydroxide Nanosheets for High-performance Supercapacitor Electrode Materials. Adv. 

7 

8 Funct. Mater. 2014, 24, 934–942. 
9 
10 (10) Toupin, M.; Brousse, T.; Bélanger, D. Charge Storage Mechanism of MnO2 Electrode 
11 
12 

Used in Aqueous Electrochemical Capacitor. Chem. Mater. 2004, 16, 3184–3190. 
13 
14 

15 (11) Lee, Y.-W.; Kim, B.-S.; Hong, J.; Lee, J.; Pak, S.; Jang, H.-S.; Whang, D.; Cha, S.-N.; 
16 
17 Sohn, J. I.; Kim, J. M. A Pseudo-Capacitive Chalcogenide-Based Electrode with 
18 
19 

Dense  1-Dimensional  Nanoarrays  for  Enhanced  Energy  Density  in  Asymmetric 
20 
21 

22 Supercapacitors. J. Mater. Chem. A 2016, 4, 10084–10090. 
23 
24 (12) Mefford, T.; Hardin, W.; Dai, S.; Johnston, K.; Stevenson, K. Anion Charge Storage 
25 
26 through Oxygen Intercalation in LaMnO3 Perovskite Pseudocapacitor Electrodes. Nat. 
27 
28 

Mater. 2014, 13, 726–732. 

30 

31 (13) Chen, D.; Wang, Q.; Wang, R.; Shen, G. Ternary Oxide Nanostructured Materials for 
32 
33 Supercapacitors: A Review. J. Mater. Chem. A 2015, 3, 10158–10173. 
34 
35 

(14) Ren, X.; Guo, C.; Xu, L.; Li, T.; Hou, L.; Wei, Y. Facile Synthesis of Hierarchical 
36 
37 

38 Mesoporous Honeycomb-like NiO for Aqueous Asymmetric Supercapacitors. ACS 
39 
40 Appl. Mater. Interfaces 2015, 7, 19930–19940. 
41 
42 

(15) Qiu, Y.; Yang, S.; Deng, H.; Jin, L.; Li, W. A Novel Nanostructured Spinel ZnCo2O4 

43 
44 

45 Electrode Material: Morphology Conserved Transformation from a Hexagonal Shaped 
46 
47 Nanodisk Precursor and Application in Lithium Ion Batteries. J. Mater. Chem. 2010, 
48 
49 20, 4439–4444. 
50 
51 

(16) Liu, B.; Zhang, J.; Wang, X.; Chen, G.; Chen, D.; Zhou, C.; Shen, G. Hierarchical 

53 

54 Three-Dimensional  ZnCo2O4  Nanowire Arrays/Carbon Cloth Anodes for a Novel 



55 
56 
57 
58 
59 
60 

23 

 

 

6 

29 

 
 

1 
2 
3 Class of High-Performance Flexible Lithium-Ion Batteries. Nano Lett. 2012, 12, 3005– 
4 
5 

3011. 

7 

8 (17) Zhang, D.; Zhang, Y.; Li, X.; Luo, Y.; Huang, H.; Wang, J.; Chu, P. K. Self-Assembly 
9 
10 of Mesoporous ZnCo2O4 Nanomaterials: Density Functional Theory Calculation and 
11 
12 

Flexible All-Solid-State Energy Storage. J. Mater. Chem. A 2016, 4, 568–577. 
13 
14 

15 (18) Yin,  Z.;  Zhang,  S.;  Chen,  Y.;  Gao,  P.;  Zhu,  C.;  Yang,  P.;  Qi,  L.  Hierarchical 
16 
17 Nanosheet-Based NiMoO4 Nanotubes: Synthesis and High Supercapacitor 
18 
19 

Performance. J. Mater. Chem. A 2015, 3, 739–745. 
20 
21 

22 (19) Xiao, K.; Xia, L.; Liu, G.; Wang, S.; Ding, L.-X.; Wang, H. Honeycomb-like NiMoO4 

23 
24 Ultrathin Nanosheet Arrays for High-Performance Electrochemical Energy Storage. J. 
25 
26 Mater. Chem. A 2015, 3, 6128–6135. 
27 
28 

(20) Gai, Y.; Shang, Y.; Gong, L.; Su, L.; Hao, L.; Dong, F.; Li, J. A Self-Template 

30 

31 Synthesis of Porous ZnCo2O4 Microspheres for High-Performance Quasi-Solid-State 
32 
33 Asymmetric Supercapacitors. RSC Adv. 2017, 7, 1038–1044. 
34 
35 

(21) Peng, S.; Li, L.; Wu, H. B.; Madhavi, S.; Lou, X. W. Controlled Growth of NiMoO 
36 
37 

38 Nanosheet  and  Nanorod  Arrays  on  Various  Conductive  Substrates  as  Advanced 
39 
40 Electrodes for Asymmetric Supercapacitors. Adv. Energy Mater. 2015, 5, 1401172. 
41 
42 

(22) Gao, G.; Wu, H. B.; Dong, B.; Ding, S.; Lou, X. W. Growth of Ultrathin ZnCo2O4 

43 
44 

45 Nanosheets on Reduced Graphene Oxide with Enhanced Lithium Storage Properties. 
46 
47 Adv. Sci. 2015, 2, 1400014. 
48 
49 (23) Huang, L.; Zhang, W.; Xiang, J.; Xu, H.; Li, G.; Huang, Y. Hierarchical Core-Shell 
50 
51 

52 NiCo2O4@NiMoO4  Nanowires Grown on Carbon Cloth as Integrated Electrode for 
53 

54 High-Performance Supercapacitors. Sci. Rep. 2016, 6, 31465. 

4 



55 
56 
57 
58 
59 
60 

24 

 

 

4 

29 

 
 

1 
2 
3 (24) Qiu, K.; Lu, Y.; Zhang, D.; Cheng, J.; Yan, H.; Xu, J.; Liu, X.; Kim, J.-K.; Luo, Y. 
4 
5 

6 Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2  nanocone forests for 
7 

8 high-performance supercapacitors. Nano Energy 2015, 11, 687–696. 
9 
10 (25) Hong, J.; Lee, Y.-W.; Hou, B.; Ko, W.; Lee, J.; Pak, S.; Hong, J.-P.; Morris, S.; Cha, 
11 
12 

S.-N.; Sohn, J. I.; Kim, J. M. Solubility-Dependent NiMoO  Nanoarchitectures: Direct 
13 
14 

15 Correlation between Rationally Designed Structure and Electrochemical 
16 
17 Pseudokinetics. ACS Appl. Mater. Interfaces 2016, 8, 35227–35234. 
18 
19 

(26) Wang, H.;  Yi, H.;  Zhu, C.; Wang, X.;  Fan, H. J. Functionalized  Highly Porous 
20 
21 

22 Graphitic  Carbon  Fibers  for  High-Rate  Supercapacitive  Electrodes.  Nano  Energy 
23 
24 2015, 13, 658–669. 
25 
26 (27) Yuan, L.; Lu, X.-H.; Xiao, X.; Zhai, T.; Dai, J.; Zhang, F.; Hu, B.; Wang, X.; Gong, 
27 
28 

L.;  Chen,  J.;  Hu,  C.;  Tong,  Y.;  Zhou,  J.;  Wang,  Z.  L.  Flexible  Solid-State 

30 

31 Supercapacitors Based on Carbon Nanoparticles/MnO2  Nanorods Hybrid Structure. 
32 
33 ACS Nano 2012, 6, 656–661. 
34 
35 

(28) Masikhwa, T.; Madito, M.; Momodu, D.; Dangbegnon, J.; Guellati, O.; Harat, A.; 
36 
37 

38 Guerioune, M.; Barzegar, F.; Manyala, N. High Performance Asymmetric 
39 
40 Supercapacitor  Based  on  CoAl-LDH/GF  and  Activated  Carbon  from  Expanded 
41 
42 

Graphite. RSC Adv. 2016, 6, 46723–46732. 
43 
44 

45 (29) Cai, D.; Wang, D.; Liu, B.; Wang, Y.; Liu, Y.; Wang, L.; Li, H.; Huang, H.; Li, Q.; 
46 
47 Wang, T. Comparison of the Electrochemical Performance of NiMoO4 Nanorods and 
48 
49 Hierarchical   Nanospheres   for   Supercapacitor   Applications.   ACS   Appl.   Mater. 
50 
51 

Interfaces 2013, 5, 12905–12910. 



55 
56 
57 
58 
59 
60 

25 

 

 

6 

2    4 

29 

52 

 
 

1 
2 
3 (30) Cheng, Y.; Lu, S.; Zhang, H.; Varanasi, C.; Liu, J. Synergistic Effects from Graphene 
4 
5 

and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance 

7 

8 Supercapacitors. Nano Lett. 2012, 12, 4206–4211. 
9 
10 (31) Cai, W.; Lai, T.; Dai, W.; Ye, J. A Facile Approach to Fabricate Flexible All-Solid- 
11 
12 

State Supercapacitors Based on MnFe O /Graphene Hybrids. J. Power Sources 2014, 
13 
14 

15 255, 170–178. 
16 
17 (32) Cheng,  D.;  Yang,  Y.;  Xie,  J.;  Fang,  C.;  Zhang,  G.;  Xiong,  J.  Hierarchical 
18 
19 

NiCo2O4@NiMoO4 Core-Shell Hybrid Nanowire/Nanosheet Arrays for High- 
20 
21 

22 Performance Pseudocapacitors. J. Mater. Chem. A 2015, 3, 14348–14357. 
23 
24 (33) Zou, B.-X.; Liang, Y.; Liu, X.-X.; Diamond, D.; Lau, K.-T. Electrodeposition and 
25 
26 Pseudocapacitive  Properties  of  Tungsten  Oxide/Polyaniline  Composite.  J.  Power 
27 
28 

Sources 2011, 196, 4842–4848. 

30 

31 (34) He, Y.; Chen, W.; Li, X.; Zhang, Z.; Fu, J.; Zhao, C.; Xie, E. Freestanding Three- 
32 
33 Dimensional   Graphene/MnO2    Composite  Networks  as  Ultralight   and  Flexible 
34 
35 

Supercapacitor Electrodes. ACS Nano 2013, 7, 174–182. 
36 
37 

38 (35) Ramasamy, K.; Gupta, R.; Palchoudhury, S.; Ivanov, S.; Gupta, A. Layer-Structured 
39 
40 Copper  Antimony  Chalcogenides  (CuSbSexS2–x):  Stable  Electrode  Materials  for 
41 
42 

Supercapacitors. Chem. Mater. 2015, 27, 379–386. 
43 
44 

45 (36) Foo, C. Y.; Sumboja, A.; Tan, D. J. H.; Wang, J.; Lee, P. S. Flexible and Highly 
46 
47 Scalable V2O5-rGO Electrodes in an Organic Electrolyte for Supercapacitor Devices. 
48 
49 Adv. Energy Mater. 2014, 4, 1400236. 
50 
51 

(37) Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 

53 

54 845–854. 



55 
56 
57 
58 
59 
60 

26 

 

 

 
 

1 
2 
3 Table of Contents 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 


