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ABSTRACT 

Machine learning (ML) has been vastly used in various fields, but its application in engineering 

science remains in infancy. In this work, for the first time, different machine learning algorithms 

and artificial neural network (ANN) structures are used to predict the mechanical properties of 

single-layer graphene under various impact factors of system temperature, strain rate, vacancy 

defect and chirality. The predictions include fracture strain, fracture strength and Young’s 

modulus. High throughput computation (HTC) combined with classical molecular dynamics 

(MD) simulation is used to generate the training dataset for the ML models. It was discovered 

that both temperature and vacancy defect have negative effects on the predicted properties while 

strain rate has positive correlations with the prediction results. The stochastic gradient descent 

(SGD) method could not properly capture the effects of the different impact factors on the 

mechanical properties of graphene, while k-nearest neighbors (KNN), support vector machine 

(SVM), decision tree (DT) and ANN provided desirable prediction results. Discoveries in this 

work provide new perspectives on the study of mechanical properties using state-of-the-art 

computational methods. 
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1. Introduction 

The peculiar properties of graphene have attracted enormous attentions from scientists all 

over the world. Due to the unique 2D structure of graphene, it possesses extraordinary thermal 

[1-3], optical [4-6] and mechanical [7-9] properties. The measured thermal conductivity of 

graphene can reach 5000 W/mK [10] with high electron mobility (2.5  105 cm2/Vs) [11] at 

room temperature. Graphene and graphene-based heterostructures have been extensively used in 

thermal interface materials for thermal management in electronic devices. The list of potential 

applications includes field effect transistors (FET) [12], high-end composite materials [13], 

electromechanical sensors [14], supercapacitors [15], water desalination membranes [16] and 

solar cells [17].  

One of the most important applications of graphene lies in its implementation in 

mechanical, civil and aerospace reinforcement structures. Graphene-based nanocomposites 

provide 2D building blocks assembled in layered structures which can provide superior stiffness, 

strength and energy dissipation capacities [18]. However, no practical devices from these 

materials will be possible until the physics at the micro/nanoscale is better understood. The 

elastic constants of pyrolytic graphite has been determined separately by ultrasonic, sonic 

resonance, and static test methods [19], in which a Young’s modulus of 0.91±0.08 TPa was 

derived. Using an atomic force microscope (AFM) nanoindentation method, the Young’s 

modulus of a monolayer graphene sheet was measured to be 1.0 TPa, which established graphene 

as the strongest material ever measured [20]. However, the Young’s modulus of the multilayer 

graphene sheets was extracted as only 0.5 TPa, also using an AFM technique [21]. Using first 

principles approach, Kudin et al. [22] predicted a Young's modulus of 1.02 TPa, Von Lier et al. 

[23] reported a Young's modulus of 1.11 TPa, and Konstant et al. [24] obtained a Young’s 
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modulus of graphene at 1.24 TPa. Meanwhile, Liu et al. [25] reported Young’s modulus at 1.05 

TPa and investigated the chirality effect on phonon instability, which normally corresponds to 

brittle cleavage fracture. In the past ten years, molecular dynamics (MD) simulation dominates 

the in-silico tests on the mechanical properties of graphene. A vast effort has been put to 

investigate the effects of various impact factors on the mechanical properties of graphene, such 

as the effects of system temperature, strain rate, surface defects and chirality. It has been shown 

that the shear modulus, shear strength and fracture strain of graphene can be reduced as much as 

50% by increasing hydrogen coverage to 30% [26]. Using classical MD simulations, Pei et al. 

[27] revealed that the elastic modulus, strength and fracture strain of graphene can drop by, 

respectively, as much as 18%, 43% and 47%, with addition of methyl decorations. The fracture 

strength, strain and Young’s modulus reduce, respectively, by 65.9% and 67.6% and 23.7%, 

when the temperature increases from 300 K to 2000 K [28]. The decrease of fracture strength 

and strain with increasing temperature can also be explained from the viewpoint of energy [29]. 

Zhao et al. [30] proved that temperature plays an important role in determining the fracture 

strength and strain of graphene, while it does not have a significant effect on Young’s modulus 

until about 1200 K, beyond which the material becomes softer. They also reported that strain rate 

has little effects on the fracture strength and strain at low temperature, but plays a more 

prominent role at high temperature. 

While the mechanical properties of graphene have been investigated both experimentally 

and numerically, these studies are, in general, capital intensive and time consuming. Therefore, 

most focused only on one or two aspects. The inclusion of multiple factors in a single study 

requires extensive effort and is normally difficult to realize. However, by using well-trained 

machine learning (ML) models, one can easily obtain results with any combination of factors 
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within a fraction of a second. Given the rapid development of computational power and the 

explosion in big data, machine learning has been used to build models in a broad number of 

fields, including information technology, software engineering, time series forecasting and 

bioinformatics, whereas its application in the realm of engineering science remains in its infancy 

[31-33].  

In this work, accelerated discoveries of graphene’s mechanical properties are realized by 

the combination of machine learning algorithms and high-throughput computations. Effects of 

different modulators, such as system temperature, strain rate, single vacancy defect and chiral 

direction, on the mechanical properties of graphene are explored. This paper is organized as 

follows. Section 2 presents the different machine learning and neural network structures used, 

followed by principles of the MD simulation method to extract mechanical properties of 

graphene, such as fracture strain, fracture strength and Young’s modulus. The workflow of using 

ML and HTC to predict the mechanical properties is also provided. Section 3 presents and 

discusses the results for different impact factors. The training processes for different ML models 

are explained and the prediction procedures are clarified in detail here. In the last section, the 

results are summarized, and the contributions of this work are explained. 

2. Computational Methods 

Four different machine learning algorithms, i.e., stochastic gradient descent (SGD), k-

nearest neighbors (KNN), support vector machine (SVM) and decision tree (DT) were used to 

train on the mechanical properties of graphene obtained from MD simulations. Mean square 

errors (MSE) were used to evaluate the performances of different models. The MSE is calculated 

by 
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where y is the target value, ŷ  is the predicted value, n is the number of samples and i is the 

sample index. The fracture strain, fracture strength and Young’s modulus were simultaneously 

modeled to obtain comprehensive understanding of the mechanical properties of graphene. As a 

result, each machine learning model had three unique outputs. The MSE for each output was 

calculated separately. As opposed to the batch gradient descent method, at each step the SGD 

method uses a random instance in the training set to compute the gradient, which makes the 

algorithm much faster due to the small size of data to manipulate at each iteration [34]. This 

method is particularly useful on large training datasets since only one instance is stored in the 

memory at each step. But on the other hand, due to its stochastic nature, the optimized results 

will bounce around the minimum points and never settle down. Neighbors-based regressions, 

such as the KNN method, can be used in cases where the target values are continuous rather than 

discrete variables [35]. Since the fracture strain, fracture strength and Young’s modulus should 

change continuously with variation of different impact factors, KNN may be a perfect modelling 

strategy for these parameters. The SVM algorithm is very powerful and versatile, and has been 

extensively used in machine learning studies [36]. The method used in support vector 

classification can be extended to solve regression problems. In support vector regression, instead 

of trying to draw the largest possible area between different classes, it tries to fit as many 

instances as possible within the area. Similar to SVM, DT is also a robust machine learning 

algorithm that can perform both classification and regression trainings [37]. The objective of DT 

is to create a model that can predict the target values based on simple splitting rules inferred 
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from the input features. The data profiles can be approximated by a set of if-then-else decision 

rules which can become fairly complicated as the tree grows deeper. 

Artificial neural networks, on the other hand, do not use explicit formula expressions to 

predict the output based on input information. The neural network is consisted of input, output, 

as well as hidden layers of neuron units, with each neuron representing a weight to be placed on 

the input value to transform into something the output layer can use. A schematic of a simple 

neural network is depicted in Fig. 1. 

 

Figure 1. Schematic of a typical neural network structure composed of one input layer, two 

hidden layers and one output layer. 

When the number of hidden layers is  2, the neural network can be called a deep neural 

network. Feedforward neural networks are used here, wherein connections between the nodes do 

not form a cycle. The neural network model is simply a nonlinear function from a set of input 

variables to a set of output variables controlled by a matrix of adjustable parameters. The 

objective is to train the network to learn the weights of the neurons that can minimize the MSE. 

 

 

 

 

 

 

Input Layer Hidden Layers Output Layer 
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To suppress the overfitting problem, weight regularizations are generally applied to the neural 

networking during model training, and the total loss is expresses as 

1
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where w
r

 is the weight matrix. The weight matrix is updated every step using the gradient 

descent algorithm 
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where  is the learning rate. The weight updates can be achieved using a local message passing 

scheme in which information is sent alternately forwards and backwards through the network, 

which is also known as error backpropagation [38].  

The training, validation and testing dataset for different ML models are obtained by MD 

simulations. All simulations are performed using Large-scale Atomic/Molecular Massively 

Parallel Simulator (LAMMPS) [39] with the adaptive intermolecular reactive empirical bond 

order (AIREBO) potential [40]. The time step was set to 0.1 fs. Periodic boundary condition was 

applied in all directions. A 20 Å vacuum space was created in the out-of-plane z direction to 

avoid cross-boundary interactions. The graphene sheet without any vacancy defects and the ones 

with different number of single vacancy defect along armchair direction were created to 

investigate the effect of single vacancy defects. The temperatures of 1, 10, 100, 300, 600 and 

1200 K, and strain rates of 5  10−5, 1  10−4, 2.5  10−4, 5  10−4, 1  10−3 and 2.5  10−3 ps−1 

were used for each graphene sheet with or without defects. The strain rates were selected to be 

small enough to allow the system to respond to the mechanical deformations, while being large 
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enough for the simulation runs to be computationally feasible. Depending on the stain rates, the 

stretching process took from 1.2  106 to 6  107 time steps. The uniaxial tensile deformation 

was applied in either armchair or zigzag direction to investigate the chirality effect. For each case, 

five different simulations with different initial conditions were performed and the results were 

averaged to suppress statistical noise. The graphene sheets were equilibrated for 50 ps at the 

targeted temperature under the isothermal-isobaric (NPT) ensemble before stretching. The 

displacement-control method was used at the targeted loading rate with a 0.1 fs time step during 

stretching. The engineering strain and stress were calculated following the procedure in Zhao’s 

work [41] assuming the thickness of the graphene sheet is 3.35 Å [20]. 

For each MD simulation case, the fracture strain, fracture strength and Young’s modulus 

were extracted from the strain-stress profiles. A total number of 1440 simulation runs were 

performed and the results were automatically collected by a MATLAB script. The training 

dataset was then fed into different ML algorithms for model training. Once the deployment 

standard was met, the trained ML models could be used to predict the mechanical properties of 

graphene giving only the impact factors. 

3. Results and Discussions 

The strain-stress relations in the armchair and zigzag directions at 300K with a strain rate 

of 5  10−4 ps−1 are shown in Fig. 2. The inset figure shows the chirality effect in the small strain 

region. As the strain increases, the chirality dependence becomes more distinct. As a result, the 

graphene sheets fail at 13.0±0.3% and 19.6±0.1% strains, respectively, in armchair and zigzag 

directions. The associated fracture strengths are 89.4±1.0 GPa and 107.3±0.2 GPa. To 

investigate the chirality effect on the stiffness, while keeping the fitting portion in the linear 
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elastic region for both directions, first 2.5% strain range was selected to fit the Young’s modulus. 

The associated Young’s moduli were 0.950±0.002 TPa and 0.866±0.006 TPa in armchair and 

zigzag directions. A list of available experimental and computational results for graphene are 

shown in Table 1. Our results are in reasonable agreement with these previously published 

values and indicates the fidelity of the proposed MD model and simulation method. The 

following uses this MD model to investigate the effects of temperature, strain rate, single 

vacancy defect, and chirality on the mechanical properties (i.e., fracture strain, fracture strength 

and Young’s modulus) of graphene sheet. 

Table 1. Summary of the mechanical properties of graphene 

Authors Method 

Fracture Strain, 

Armchair/Zigzag 

(%) 

Fracture Strength, 

Armchair/Zigzag 

(GPa) 

Young’s Modulus, 

Armchair/Zigzag 

(TPa) 

Present MD 13.0 / 19.6 89.4 / 107.3 0.950 / 0.866 

Blakslee et al.[19] 
Sonic 

resonance  
- - 0.91 ± 0.08 

Lee et al.[20] AFM  25 130±10 1.0 ± 0.1 

Frank et al.[21] AFM  - - 0.5 

Kudin et al.[22]  DFT - - 1.02 

Van Lier et al.[23] DFT - - 1.11 

Konstant et al.[24] DFT - - 1.24 

Liu et al.[25] DFT 26.6 / 19.4 121 / 110 1.05 

Zhao et al.[41] MD 13 / 20 90 / 107 1.01 ± 0.03 

Ansari et al.[45] MD 23.3 / 21.8 123 / 127 0.8 

Ni et al.[52] MD 38.1 195 1.13 / 1.05 

Tsai et al.[53] MD - - 0.912 
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Figure 2. Strain-stress profiles of graphene in armchair and zigzag directions at room 

temperature with a strain rate of 0.0005 ps−1. 

3.1 Effects of temperature and strain rate 

The effect of temperature on the fracture strain, strength, and Young’s modulus at a strain 

rate of 5  10−4 ps−1 are shown in Fig. 3. Overall, the higher temperature deteriorates the 

mechanical properties of graphene with reduced fracture strain and strength. The two fracture 

properties decrease nonlinearly with increasing temperature. In the armchair direction, the 

fracture strain, strength and Young’s modulus are more sensitive in the high temperature range 

than in the low temperature range. To be specific, the fracture strain only decreases 15% during 

the first two decades of increasing the temperature, which is from 1 K to 100 K, but further drops 

40% during the next decade (i.e., from 100 K to 1000 K). The fracture strength decreases 3% 

during these first two decades, but there is a further drop of 35% in the third decade. The 

Young’s modulus initially drops 1.5% in these first two decades, and then drops another 8.6% 
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during the third decade. The fracture strain and strength in the zigzag direction have similar 

sensitivities to variation of the temperature as the ones in the armchair direction. 

 

Figure 3. Effects of temperature on (a) fracture strain, (b) fracture strength and (c) Young’s 

modulus of graphene with a strain rate of 0.0005 ps−1. 

Compared to the large effect of temperature on the fracture properties, the effect of the 

strain rate is less significant, especially in the lower temperature range since the system is frozen 

and cannot promptly respond to the change of the loading rate. Nevertheless, the fracture 

properties of graphene are enhanced at higher strain rate. As shown in Fig. 4, the fracture strain 
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in the armchair direction increases with increasing strain rate at all simulation temperatures from 

1 K to 1200 K. However, it is clear that the fracture strain is less sensitive to strain rate at lower 

temperatures than at higher temperatures. For instance, when the strain rate is increased from 5  

10−5 to 2.5  10−3 ps−1, the fracture strain only increases about 1% at 1 K, but increasing about 10% 

at 1200 K. The fracture strength has a similar trend, where the strength increases by 7% by 

varying the strain rate from 5  10−5 to 2.5  10−3 ps−1 at 1200 K, but remains unchanged at 1 K. 

Moreover, the effect of strain rate on the fracture properties in the zigzag direction is similar to 

the armchair direction, but with different magnitudes, as shown in Fig. 5. One can see that the 

moduli in the two directions are not changing substantially, even with a 50-fold change in 

loading rate. This was also observed by others for single-crystalline and polycrystalline graphene 

[42] and for single-layer and multiple-layer graphene [43]. 

 

Figure 4. Effects of strain rate on the fracture strain of graphene sheet at different temperature. 
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Figure 5. Effects of strain rate on (a) fracture strength and (b) Young’s modulus of graphene at 

room temperature. 

3.2 Effects of single vacancy defects 

To investigate the effect of single vacancy defects on the mechanical properties of 

graphene sheet, the graphene sheet without defect and the ones with 1, 2, or 3 single vacancy 

defects in the center line of zigzag direction and along the armchair direction were created. The 

influence of the addition of a small number of defects, put here in the form of the addition of 

vacancies, can substantially affect the response. The effect of the number of single vacancy 

defects on the fracture strain and strength, and Young’s modulus at 300 K for stretching at a 

strain rate of 0.0005 ps−1 are shown in Fig. 6. As indicated, for even a single vacancy defect, the 

fracture strain and strength in both directions drop substantially (about 29% and 17%, 

respectively, for fracture strain and strength). It is known that introducing a defect will cause a 
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stress concentration and thus facilitates easy crack propagation near the defect and result in the 

graphene sheet failing at low stresses. As discussed in Ansari’s work [44], additional reductions 

of fracture strain and strength occur only when the distance between two defects is smaller than a 

critical distance (46.86 Å for their system). In addition, introducing single vacancy defects in the 

presented configuration does not influence the stiffness (i.e., the Young’s modulus) of the 

graphene sheet in either direction, which was also observed in another work [45]. As 

demonstrated by others [46, 47], the stiffness will reduce only if the density of the defects is 

significant or the dimension of defect is relatively large comparing to system dimensions. 

 

Figure 6. Effects of single atom vacancy defect on (a) fracture strain, (b) fracture strength and (c) 

Young’s modulus of graphene at room temperature with a strain rate of 0.0005 ps−1. 
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3.3 ML model training and predictions 

Based on the MD simulation results, a total of 1440 data points were collected with 4 

features (system temperature, strain rate, single vacancy defect and chirality) and 3 target values 

(fracture strain, fracture strength and Young’s modulus) associated with each data point. The 

dataset was split into 3 portions with, respectively, 64%, 16% and 20% in training, validation, 

and testing. In order to flag overfitting or selection bias, 10-fold cross-validation is used to test 

the accuracies of trained models. Once optimal performances were achieved on the validation 

dataset, the models were employed on the test dataset for a final benchmark. It is worth noting 

that the dataset was not split randomly but using a stratified method that ensures the most 

important feature have sufficient impact on the training results. The Pearson’s correlation 

between each pair of features and outputs were calculated and are shown in Fig. 7. The 

correlation coefficient ranges from −1 to 1, corresponding, respectively, to the strongest negative 

and positive correlations. As shown in Fig. 7, among the different impact factors, temperature 

has the strongest effect on the mechanical properties of graphene, which is consistent with the 

aforementioned MD results. Therefore, stratified splitting was performed based on the 

temperature distributions. Feature scaling was applied to achieve better training results. All input 

values were normalized between 0 and 1 to make the feature space evenly distributed. For the 

SGD method, the stopping criterion was set to 0.001. The l2 regularization term is used to 

suppress overfitting. The number of neighbors is 5 for the KNN method. All points in the 

neighborhood were weighted equally. The Euclidean distance was used to measure the 

separations between data points. The radial basis function kernel [48] was used in the SVM 

regressor. The penalty parameter and the loss function cutoff were selected, respectively, as 2000 

and 0.001. Once trained, the ML models were used to predict the mechanical properties of 
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graphene. Prediction results of different models are shown in Fig. 8. All machine learning 

models except SGD predicted the results reasonably well. Since the SGD method uses a linear 

kernel, it may be concluded that the mechanical properties of graphene cannot be predicted using 

linear models for the four impact factors. For other ML models, the predicted fracture strains and 

strengths closely match the MD simulations results. However, some discrepancies were observed 

in the Young’s modulus, which could be caused by the selections of fitting range. 

 

Figure 7. Pearson’s correlations between input layer features and output layer targets. 

Aside from the ML models used above, four different artificial neural network structures 

were used. There were, 1 layer with 20 neurons (ANN-20), 1 layer with 40 neurons (ANN-40), 2 

layers with 20 neurons each (ANN-20-20) and 2 layers with 40 neurons each (ANN-40-40). The 

mini-batch gradient descent method was used in the training processes. Instead of computing the 

gradient based on the full training set or based on only one random instance, the mini-batch 

gradient descent computes the gradient based on a small set of training instances. 
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Figure 8. Prediction results of (a)-(c) stochastic gradient descent, (d)-(f) k-nearest neighbors, 

(g)-(i) support vector machine and (j)-(l) decision tree. 

A mini-batch size of 20 was selected in all ANN trainings. The l2 regularization technique 

was used to constrain the ANN’s connection weights [49]. The dropout regularization [50] was 

also tested with dropout rates from 0.1 to 0.9, but this did not achieve better performance. 

Therefore, only l2 regularization was used in the ANN trainings. The adaptive moment 

estimation (Adam) optimization [51] method was used to minimize the total loss in the system as 

expressed in Eqn. 3. The Adam optimization method keeps track of exponentially decaying 

average of both past gradients and squared gradients. It is worth noting that the regularization 
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losses must be included in the overall loss in the training process, otherwise they will be 

neglected. A learning rate of  = 0.001 was used in all optimizations. The total training epoch 

was set to 1000, which is long enough to reach optimum training results. Four different 

activation functions (i.e., linear, logistic, rectified linear unit (ReLU) and exponential linear unit 

(ELU)) were compared in the ANN models. It was discovered that the ELU activation function 

gives the best training results and was, thus, selected in all neural network trainings. The ANN 

training results are shown in Fig. 9. The predicted mechanical properties coincide well with the 

MD simulations results. To better compare the performances of different ML models, their MSE 

values on the test dataset are shown in Table 2. Aside from SGD, the performance differences 

among the different models are subtle. 

Table 2. MSE for different algorithms 

Algorithms 
Fracture Strain 

(%) 

Fracture Strength 

(GPa) 

Young’s Modulus 

(GPa) 

SGD 1.6  10−3 27.2 349.7 

KNN 3.3  10−5 3.3 38.8 

SVM 1.5  10−5 2.3 41.5 

DT 9.3  10−6 2.0 43.4 

ANN-20 5.4  10−5 4.5 49 

ANN-40 3.0  10−5 3.5 43.3 

ANN-20-20 2.6  10−5 3.2 39.7 

ANN-40-40 1.8  10−5 2.5 41.2 

 

Prediction of mechanical properties using ML was successful, yet more studies are needed. 

Given the computational power restrictions, only four impact factors were considered here, and 

the vacancy defect scenario only included single point defects. For each new feature added to the 
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dataset, the number of instances will increase substantially with the number of attributes in the 

feature list, which significantly increases the computational effort. In addition, for different ML 

models, especially the ANN, selection of training parameters is time consuming and it is difficult 

to capture all possibilities. In this regard, effort should be given to check data integrity and make 

sure the most important features are included. 

 

Figure 9. Training results of (a)-(c) 1 layer neural network with 20 neurons, (d)-(f) 1 layer neural 

network with 40 neurons, (g)-(i) 2 layers neural network with 20 neurons each and (j)-(l) 2 layers 

neural network with 40 neurons each. 
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4. Conclusion 

Several ML models such as SGD, KNN, SVM, DT and ANN were employed in this work 

to predict the mechanical properties of graphene using MD obtained datasets. The Young’s 

modulus, fracture strength and fracture strain were investigated in armchair and zigzag directions 

for the temperature range 1 − 1200 K, strain rates from 510−5 to 2.510−3 ps−1 and single 

vacancy defect from 1 to 3. It was revealed that the mechanical properties of graphene 

deteriorate with increasing temperature and surface defect, while improved with increasing strain 

rate. Once trained, the ML models were able to predict the mechanical properties of graphene in 

a fraction of a second given only the knowledge of system temperature, strain rate, surface defect 

condition and chiral direction. The MSE of the SGD method was one or two orders of magnitude 

higher than the other methods, which indicated that it cannot properly model the relationships 

between the input features and output results. All other models provided excellent prediction 

results. This work sheds some lights on the explorations of mechanical properties using data-

driven approaches and can be applied to a wide range of materials. 
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