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ABSTRACT 

The topic of ‘Industry 4.0’ has become increasingly important in both industry and 

academia since it was first published. Under this trending topic, many related 

capabilities required by current manufacturing systems have been pointed out in both 

academia and industry, such as automation, sustainability, and intelligence. Additive 

manufacturing (AM) is one of the most popular manufacturing systems in the era of 

Industry 4.0. Although the AM system tends to become increasingly automated and 

flexible, the issue of energy consumption still attracts attention. It is related to many 

attributes in different components of an AM system, which are represented as multiple 

source data, such as process operation data, working environment data, design-relevant 

data, and material condition data. How to integrate and analyse the multi-source data 

for AM energy modelling, prediction, and management has become a crucial research 

question. 

This research was structured according to four themes. Firstly, a categorical 

classification is proposed based on the research gaps between current manufacturing 

systems and Industry 4.0 requirement. Nine varied applications are generated relying 

on their classification to provide a roadmap to raise the intelligence level of 

manufacturing systems to achieve Industry 4.0 requirement. Inspired by this 

classification, a framework was designed for leading the research of AM energy 

consumption modelling, prediction, and management. The framework includes four 

layers, data sensing and collection layer, data pre-process and integration layer, data 

analytics layer, and knowledge and application layer. This four-layered framework 

covers the entire knowledge discovery process from data generation to performance 

presentation.  

Secondly, due to multi-source data of the AM systems usually involving nested 

hierarchies, a hybrid approach is proposed to tackle the issue. This hybrid approach 

incorporates clustering and deep learning technologies to integrate the multi-source 

data which is collected by the Internet of Things (IoT), to model energy consumption 
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for AM systems. Multi-source data is analysed and collected. The data collection 

methods are introduced within the validation of a selective laser sintering (SLS) system. 

Results derived using this hybrid approach reveal that it outperforms pre-existing 

approaches. 

Thirdly, while existing studies reveal that AM energy consumption modelling largely 

depends on the design-relevant features in practice, it has not been given sufficient 

attention. Therefore, in this research, design-relevant features are examined with 

respect to energy consumption prediction based on the study of AM energy modelling. 

By reviewing the literature of Design for AM and analysing some representative 

design models, AM design patterns are obtained and listed. Two types of design-

relevant features are found, part-design features and process-planning features. The 

AM energy consumption knowledge, hidden in the design-relevant features, is 

exploited for prediction through a design-relevant data analytics approach.  

Finally, methods enabling energy consumption management are provided in this 

research, which includes framework, modelling, prediction and the optimisation. The 

energy consumption optimisation method is based on particle swarm optimisation 

(PSO), and driven by deep learning technology, named as deep learning driven particle 

swarm optimisation (DLD-PSO). The proposed optimisation method aims to reduce 

the energy utility by optimising the design-relevant features. Deep learning was 

introduced to address several issues, in terms of increasing the search speed and 

enhancing the global best of PSO. The approaches proposed in this research were 

validated with the data collected from the target AM system, and the results reveal 

their merits.  

The expected main achievement of this research is to pave the way for AM energy 

consumption modelling, prediction, and management through the advanced data 

analytics, which provides a feasibility study for achieving Industry 4.0. As such, it 

offers great potential as a route to achieve a more practical and generalised 

implementation of digital and intelligent manufacturing. 
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Chapter 1 Introduction 

1.1 Background  

Since the first industrial revolution, subsequent revolutions have resulted in radical 

changes in manufacturing, from water and steam powered machines to electrical and 

digital automated production. Manufacturing processes have become increasingly 

complicated, automatic, and sustainable, which provide people to operate machines, 

efficiently and persistently (Wahlster, 2012). Nowadays, manufacturing has played a 

more essential role in the world, especially in European countries. About 17% of the 

GDP in European countries is accounted for by manufacturing, which also creates 

approximately 32 million job positions with many supplementary occupations 

(Commission, 2015). In this background, Industry 4.0 has been proposed which has 

greatly promoted the development of manufacturing, especially for intelligent 

manufacturing.  

Industry 4.0 requires manufacturing to be not only integrated, automated, predictive, 

and intelligent, but also sustainable and renewable (Stock and Seliger, 2016). More 

details about Industry 4.0 will be introduced in chapter 2. At present, industrial 

production activities use about 35% of the entire global electricity supply, which 

produces approximately 20% of total carbon emissions. In the last 20 years, there has 

been an increase of more than 50% in greenhouse gas emission which is released by 

the top five manufacturing countries. The manufacturing sustainability has never 

escaped the academia’s and industry’s attention. It is also an indispensable research 

topic in the age of Industry 4.0. The energy consumption is considered as one of the 
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most crucial fields of sustainability. It is known that the energy efficiency of 

production processing is normally below 30%. For some specific process, the losses 

of energy are unexpectedly high, for example, the energy loss of rough milling process 

is about 60%, and the finishing is about 95% (Dietmair and Verl, 2009). Therefore, 

increasingly researches have been paying close attention to energy consumption and 

its environmental and financial impact. In most manufacturing systems, energy 

consumption is part of essential standards to measure the benefits. Highly efficient 

energy usage can not only reduce production costs, and expand profit margins, but also 

solve associated environmental and social problems (Park et al., 2009).  

As one of the most popular manufacturing systems in the age of Industry 4.0, AM has 

become increasingly employed, due to digitalisation, automation, flexibility, and 

customisation. According to the ISO/ASTM 52900 international standard, AM is 

defined as ‘process of joining material to make parts from 3D model data, usually layer 

upon layer, as opposed to subtractive manufacturing and formative manufacturing 

methodologies’ (ISO/ASTM, 2015). It is also called 3D printing or rapid prototyping 

(RP). The first AM system emerged in 1987, which used the laser to solidify the light-

sensitive liquid polymer. With the over 20 years of development, current AM systems 

can even produce multiple material products which is now a popular topic of AM 

research (Wohlers and Gornet, 2014). In 2015, the AM industry, including commercial 

products and services is worth USD 5.165 billion which grew 25% compared to 2014. 

Specifically, there were 808 metal AM machines and 278,385 desktop 3D printers sold 

in 2015, which are produced by 62 manufacturers from worldwide (Wohlers, 2016).   

Comparing with the traditional manufacturing processing, the AM processing is a low 

energy efficiency system within the high-yield production, in terms of over hundreds 

mega joule per kilogram (Baumers et al., 2011). Many factors impact the energy 

consumption of AM process, and according to the Life Cycle Analysis (LCA), the AM 

energy consumption is one of the most critical elements affecting environmental 

impact (Kellens et al., 2011). Reducing AM energy consumption is one of the principal 

research targets for manufacturing sustainability in the age of Industry 4.0. 
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1.2 Motivations 

The AM process is widely known as a complex system including various technologies, 

such as electron beam melting (EBM), selective laser melting (SLM), and selective 

laser sintering (SLS) (Ford and Despeisse, 2016). Different processing technologies 

show different energy consumption rates due to various impact factors (Qin et al., 

2017). These factors are identified in the entire AM process. Generally, a typical AM 

process includes six stages (Convert, Locate and orient, Adding support structure, 

Slice, Build, and Post-process). In this standard process, related attributes, including 

evident and hidden energy consumption relevant factors, can be digitalised and 

connected in a virtual world using IoT techniques as different types of data (Gubbi et 

al., 2013).  

Because the data is collected from various sources, this data is defined as the multi-

source data (Yager, 2004), which are often used to build data analytics models for 

ascertaining the AM system relevant information and knowledge (Boyes et al., 2018). 

The multi-source data is generally collected by different methods (Chan et al., 2018). 

This data involves various features and dimensions, which tends to be nested as a 

multiple hierarchical structure. The features of this data structure are rarely 

independent (Rajeswaran and Blackstone, 2018). This data is difficult to integrate 

using typical data integration methods, such as the extract, transform, and load (ETL) 

technique (Yin and Kaynak, 2015). Under this complicated data environment, it is very 

challenging to integrate the multi-source data which includes the multiple hierarchical 

structure for building the prediction model (Cavalheiro and Carreira, 2016).  

Besides, due to AM’s high design freedom for producing end-use parts, AM processes 

provide part designers with a valuable opportunity to produce a wide range of parts 

(Thompson et al., 2016). However, the high design freedom of production also results 

in the AM process being more complicated, in terms of complex mechanical structures 

and unique design features. Furthermore, in some multiple-part production processes, 

such as selective laser sintering (SLS) and selective laser melting (SLM) (Gibson et 

al., 2010), a single AM production process can build several different parts at the same 

time. In these processes, the orientations and locations of the parts are determined by 
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process operators, which is noted as an AM process planning issue (Zhang et al., 2014). 

Due to the high design freedom in part production and the various processing plans in 

each AM process, AM systems are able to create countless possibilities for multiple 

part production, offering part designers and process operators a variety of options in 

part and process design (Peng et al., 2018).  

In order to help part designers and process operators to understand AM process design, 

design for additive manufacturing (DfAM) was proposed. The term DfAM is derived 

from design for manufacturing and assembly (DfMA) (Thompson et al., 2016). Similar 

to DfMA, DfAM includes numerous design-relevant aspects, such as material design, 

part geometry design, and process planning, each of which involves many design-

relevant features (Gibson et al., 2010). These features also play into factors that impact 

AM energy consumption, which are decided before starting the producing process by 

part designers and process operators (Qin et al., 2018). Modelling the design-relevant 

data of AM systems to predict energy consumption, and then reducing it by optimising 

the designs and decisions of part designers and process operators have become a 

crucial research topic for improving AM systems. 

1.3 Research Objectives 

Following the background and motivations, this research aims to pave the way for AM 

energy consumption modelling, prediction, and management, which provides a 

feasibility study for Industry 4.0. To achieve the aim of this research, the following 

research questions have been formulated: 

1. What is the implementation plan for AM energy consumption analytics based on 

the understanding of Industry 4.0? 

2. What is the impact data information of AM energy consumption, and how to 

sense, collect, and integrate the data of these impact features from multiple 

resources to build the energy consumption model? 
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3. Out of these impact features, what is the most essential features for AM energy 

consumption modelling, and how to predict energy consumption by using these 

features?  

4. How to deliver AM energy consumption management including framework, 

modelling, prediction, and optimisation, and what are the suggestions for the 

decision-makers to manage AM energy consumption? 

The origin and relevance of these research questions will be made clear in chapter 2 

through a thorough literature review. The answers of these research will be detailed in 

chapters 3, 4, 5 and 6. The outline of this thesis will be introduced in the next section. 

1.4 Thesis Outline 

Chapter 1 aims to provide broader contexts and background as to the motivation and 

significance of the research provided in this thesis.  

Chapter 2, Literature Review, provides a thorough review of the existing body of 

literature. It is divided into three main parts: (1) the details of different AM 

technologies, including the working principles, standard data, design for AM (DfAM) 

and research of AM process optimisation. (2) the AM energy consumption analysis 

and its impact features, including energy consumption comparison of various AM 

technologies, impact features of AM energy consumption, design-relevant impact 

feature of AM energy consumption. (3) the advanced data analytics, including current 

popular data analytics for AM, the introduction of machine learning and deep learning, 

and advanced data analytics for the AM.  

In Chapter 3, a framework is proposed for modelling, predicting, and managing the 

energy consumption on the AM process in the second half of this chapter. The 

framework consists of four layers, the data sensing and collection layer, the data 

preprocess, and integration layer, the data analytics layer and knowledge and 

application layer. The approaches proposed in chapter 4, 5 and 6 are based on this 

framework.  
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Chapter 4 focuses on multi-source data analytics on the AM process. The chapter 

firstly introduces a detailed data sensing and collection approach for an AM process. 

This data sensing and collection approach can collect four primary datasets from an 

AM process, design-relevant dataset, working environment dataset, material condition 

dataset, and operation dataset. By using the multi-source data, a data integrating, and 

modelling approach is then proposed for AM energy consumption modelling in this 

chapter. In addition, the approach proposed in the chapter is validated by the case study. 

The results are compared to the benchmarks and show the merits.  

In Chapter 5, the energy consumption impact features are compared firstly. Due to 

the literature review and finding of feature comparison, AM design-relevant features 

are examined and targeted as the main inputs of AM energy consumption prediction. 

Based on the CAD models collected from the target SLS system, the characteristics of 

design for the AM process are determined, including part design and process planning. 

These two types of design-relevant features are decided by two groups of people, part 

designers, and process operators. With the understanding of the design-relevant 

features, an AM energy consumption prediction method is proposed. Relying on the 

previous work, design-relevant data is used as the input dataset. Moreover, the method 

is validated on a real AM system. Results are compared to the one from multi-source 

data modelling and benchmarks.   

Chapter 6 aims to create the management of AM energy consumption in terms of 

framework, modelling, prediction, and optimisation. Based on the modelling and 

prediction approach, this chapter proposes a deep learning-based particle swarm 

optimisation (DL-PSO) algorithm to increasing AM energy efficiency for energy 

consumption management. Compared to the conventional PSO, the proposed 

algorithm can increase the search speed and enhance the global best. The optimisation 

results are validated by four examples which cost different energy consumption and 

included various designs. The results have shown that the optimisation can reduce 

energy consumption significantly. In addition, with the optimised design-relevant data, 

part designers and process operators can be guided to modify their design and decision 

for saving energy.   



Introduction 7 

 

Chapter 7 concludes this thesis by re-visiting and answering the research questions 

provided in this chapter. In the conclusions chapter, the entire research is discussed 

and reflected. The restrictions and future works are examined. In addition, the main 

contributions to the body of knowledge resulting from this research are summarised. 

1.5 Contributions 

This thesis makes several contributions to the wider body of knowledge. 

1. A contribution is made within the field of AM with the framework of achieving 

Industry 4.0. The framework focuses on AM energy consumption modelling, 

prediction, and management. It outlines technical stages to achieve Industry 4.0 

levelled manufacturing system in terms of AM energy consumption topic.  

2. In order to model AM energy consumption, a comprehensive multi-source data 

integrating and modelling approach is proposed. This approach shows the way 

from sensing and collecting data from target AM system to integrate and model 

AM energy consumption.  

3. Based on the multi-source data analytics of AM energy consumption, an energy 

consumption prediction method is provided using the design-relevant data, 

which AM energy consumption can be predicted before the production. Two 

types of design-relevant features are included, which are determined by part 

designers and process operators. In the case study, 12 design-relevant features, 

decided by part designers and process operators, are examined and were used to 

build the energy consumption model.  

4. To manage the energy consumption by optimising the design-relevant feature, a 

deep learning-based particle swarm optimisation (DL-PSO) method is proposed. 

The DL-PSO can obtain better results with lower time cost comparing to the 

conventional PSO. In the feasibility study, reducing energy consumption is the 

main purpose of energy management. The proposed method was tested on four 

productions, and energy consumption has been reduced significantly.  
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Consequently, this PhD research has achieved the aim of improving the AM system to 

Industry 4.0 level, in terms of modelling, predicting, and managing the energy 

consumption by using advanced data analytics technologies. 



  

 

Chapter 2 Related Works 

2.1 Introduction 

This chapter reviews the related works and previous relevant research concerning the 

three main sections, AM technologies, impacts on AM energy consumption and 

advanced data analytics. In section 2.2, five popular AM technologies are reviewed at 

the beginning. With the knowledge of AM processing, the data generation process of 

the AM process is presented for determining the data that is generated during the AM 

production process. Especially, the design for additive manufacturing (DfMA) is then 

examined. Several previous AM process optimisation studies are reviewed at the end 

of this section. The information and research of AM energy consumption is reviewed 

in Section 2.3. The energy consumption of five popular AM technologies is compared. 

Following it, the impacts of AM energy consumption is studied based on the relevant 

literature, which are divided into three classes, processing attributes, design-relevant 

attributes, and material attributes. The design-relevant impacts are highlighted, which 

is considered as the essential impacts. The advanced data analytics is reviewed in 

section 2.4, including popular conventional machine learning algorithms, basic deep 

learning knowledge and algorithm, and the previous research of advanced data 

analytics for AM. 

2.2 AM Technologies 

The AM process is widely known as a complex and popular digital system in Industry 

4.0. The AM is also called 3D printing, Additive fabrication, Rapid prototyping, and 
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Freeform fabrication (Gardan, 2016). The first AM systems was built in the 1980s as 

a solution for producing prototyping quickly. The AM systems began with the initial 

commercialisation of the plastic process, which was known as Stereolithography (SL) 

in 1987. With rapid development, the AM has become a wide ranging fabrication 

system in Industry 4.0. AM can produce single and multiple material, various size, and 

even the end-used parts (Wohlers and Gornet, 2014).  

AM includes various technologies, such as electron beam melting (EBM) (Węglowski 

et al., 2016), selective laser melting (SLM) (Gross et al., 2014), and selective laser 

sintering (SLS) (Gross et al., 2014), fused deposition modelling (FDM) (Tanikella et 

al., 2017) and STereoLithography (SLA) (Wang et al., 2015). Due to the various 

working principles, these AM technologies are very different regarding the main 

components, material supply, and the producing parts. These five AM technologies 

will be introduced in this section firstly. However, a typical AM process generally 

includes six stages (Convert, Locate and orient, Support structure, Slice, Build, and 

Post-process). In this standard process, various data is generated including many 

features, such as process features, working environment features, design-relevant 

features and material condition features. The data generation process of AM process 

will be examined in section 2.3.2. In these features, the design-relevant features are 

recently focused by many researchers due to the complex structure and high degree of 

freedom of AM produced parts, which is claimed as the term, design for additive 

manufacturing (DfAM). The DfAM will be explained following the AM data 

generation. At the end of this section, the previous works about AM process 

optimisation will be reviewed and discussed. 

2.2.1 Popular AM Technologies 

Five popular AM technologies are introduced in this section with detailed schematics, 

EBM, SLM, SLS, FDM, and SLA. The working principles and main material supply 

are different. 
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 Electron beam melting (EBM) 

The EBM technology uses a concentrated beam of electrons to melt metal powder or 

filament (wire) material to build products. Figure 2.2 shows the schematic metal wire-

based EBM system. The electron beam gun releases the electron beam to melt the 

metal material that is supplied by a material feeder on build bed. On the build bed, the 

melting alloy pool fuses with the prior deposit to build the re-solidified alloy which 

combines the producing part. The main supply materials of this AM technology is 

either beam or power type, such as Ti-6Al-4V, 316L, and stainless steel. It is 

highlighted that the EBM process is approximately 95% energy efficient. This is 5 to 

10 times better than the laser-based AM process (Huang et al., 2016, Xu et al., 2018). 

 

Figure 2.1 Schematic of EBM adapted from Węglowski et al. (2016) 

 Selective laser melting (SLM) 

The SLM technology uses high power-density laser power to the melt metal powder 

material to build products. The schematic of SLM is shown in Figure 2.3. The high 

power-density laser beam is controlled by the scanner to melt the powder type metal 

material on the fabrication powder bed. When one layer is built, the roller pushes the 

material from supply system to the build bed thereby preparing the next layer. Finally, 

the producing part is built successively. The main supply materials of this AM 

technology is powder type, such as Ti-6Al-4V, 316L, and stainless steel (Sing et al., 

2018). The SLM tends to produce parts with near full density (up to 99.9% relative 

density). While, this AM technology is commercialised, there are still many research 

and industrial challenges, such as balling effect, extensive cracking, limited flow 
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ability of ceramic, and the required high preheating of the chamber (Moritz and 

Maleksaeedi, 2018). 

 

Figure 2.2 Schematic of SLM adapted from Gross et al. (2014) 

 Selective laser sintering (SLS) 

The working principle of SLS is similar to SLM. The SLS schematic is shown in 

Figure 2.4. The significant different between these two AM technologies is the power 

of the laser and the material used. The SLS uses lower laser power. The main powder 

type material are non-metallic, such as polyamide and nylon (Chen et al., 2018). Due 

to the material properties, the SLS normally does not require structures to support the 

produced part. The un-used powder plays the role of support structure (Sing et al., 

2017). 

 

Figure 2.3 Schematic of SLS adapted from Sing et al. (2017) 
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 Fused deposition modelling (FDM) 

The FDM fuses thermoplastic filament material by heating printer extruder head’s 

nozzle to build products, which the schematic is shown as Figure 2.5. The beam 

material is supplied by the motor and melted by heating head. The melting material is 

then pushed out from the nozzle, which combines solidified part to produce the part. 

When the part has the suspended structure, the support structure is necessary. The main 

supply materials of this FDM is also beam type, such as acrylonitrile butadiene styrene 

(ABS), polycarbonate (PC), etc (Skowyra et al., 2015). This AM technology has been 

widely used as the personal 3D printer due to its affordable machine price and material.  

 

Figure 2.4 Schematic of FDM adapted from Tanikella et al. (2017) 

 Stereolithographic (SLA) 

The FDM uses photo polymerization converts liquid materials (photopolymer) into a 

solid form which the schematic is shown as Figure 2.6. The photo polymerization is 

released by light-emitting device and controlled by the scanner to solid the liquid 

materials. The producing part is pulled out when it is fully built. The main supply 

material of this FDM is a liquid, such as poly1500 or TuskXC2700T (Lee et al., 2015b). 

However, this AM system is very expensive, a typical SLA system normally costs 

about £200,000 (Salonitis, 2014).  
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Figure 2.5 Schematic of SLA adapted from Wang et al. (2015). 

2.2.2 Data Generation of the AM Process 

With the information of five popular AM processes, this section will introduce the 

standard AM process in the data generation perspective. AM process can be considered 

as a data generation process starting from the initial order to the product delivery. This 

process includes six stages, Convert, Locate and orient, Adding support structure, Slice, 

Build, and Post-process, which is shown in Figure 2.7 (Wang and Alexander, 2016).  

Typically, when customers make an order the CAD models are sent to the AM 

company. In the first stage (Convert), all of CAD (Computer-aided design) models, 

created by any design software, are converted into a particular format, such as STL 

(Standard Tessellation Language) format. Then, these models are sent to AM process 

operators (Sturm et al., 2017). In the next stage (Locate and orient), system operators 

decide orientations and positions of each part in every production (Sealy, 2011). The 

location and layout rotation of each product in the building bed depends on the 

operators’ knowledge and experiences. Particularly for multiple part production, the 

decisions on orientations and positions of the parts are challenging as they need to 

match several requirements. Sometimes operators have to forego lower priority 

requirements, such as minimum energy consumption.  

AM system software helps operators to add a supporting structure if it is necessary, 

which is the Support structure stage. Both  of the two stages (Locate and orient (Das 

et al., 2015), and Support structure (Hussein et al., 2013)) generate information about 

the products orientation, position and supporting structure. The AM aided software 
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then creates slice files (Slice) for the system to organise the processing paths of each 

layer (Gross et al., 2014). During the production process (Build), sensors generate 

sensing data to represent the working and environment information. Before shipping 

to the customer, the products need to be cleaned and checked. Unfused powders and 

support structures are removed in the Post-process stage. In this stage, material usage 

and product accuracy data is obtained.  

Consequently, the whole data generation process creates a considerable volume of data 

from multiple data sources, up to one trillion voxels of information with dozens of 

attributes (Dehoff, 2015): 

1. Process operation data (Steed et al., 2017, Uhlmann et al., 2017) is the data 

generated by the parameter settings which is controlled by process operators e.g., 

many factories: scan speed, scan power, and laser power rate. Generally, 

operators follow the induction training to set these parameters. They may also 

decide to modify them sometimes.  

2. Working environment data (O’Regan et al., 2016, Uhlmann et al., 2017, Zhao 

and Rosen, 2017) represents the working environment of the system during 

production, e.g., environment temperature, and chamber temperature. This data 

normally is collected from the monitoring system of AM machines. It will 

depend on how the monitoring system was designed. In many cases, the machine 

owners still build-up an extra monitoring platform for collecting more data from 

working environment. 

3. Design-relevant data (Diegel et al., 2010, Hällgren et al., 2016, Sturm et al., 

2017) is collected from design for AM, e.g., part orientation, part height, and 

part geometry. It can include part design (CAD models), process planning (part 

layout of the building bed) and material design (multi-material parts). This data 

depends on the technique requirement and human experiences. 

4. Material condition data (Han et al., 2015, Meredig, 2017) is represented the 

material condition, e.g., material density, material humility, and material melting 

point. With the different material condition, the finished parts can show very 
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different performance, which have been paid attention to by many materials 

researchers.  

 

Figure 2.6 data generation process in AM system 

The four primary data has mainly constituted a multi-source database of the AM 

system. While existing studies reveal that design-relevant features have influenced 

many issues of AM in practice, it has not been given sufficient attention. In the next 

section, the design for additive manufacturing will be focused and the relevant 

previous studies will be reviewed and discussed. 

2.2.3 Design for Additive Manufacturing (DfAM) 

AM provides designers with a unique and far-reaching freedom to optimise their 

designs, which makes the design of part production and processes more sustainable 

(Gebisa and Lemu, 2017). The parts produced by AM processes are also generally 

more complex than conventional manufacturing parts, in terms of geometry and 

internal structure. The design of these complex parts include additional design 

freedoms and high product level, especially in part consolidation (Becker and Grzesiak, 

2009), part embedded (Gibson and Rosen, 2015), and direct production of assemblies 
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(Calignano et al., 2014). It is difficult to apply conventional manufacturing design 

methods to AM production due to such special features.      

Current studies on Design for Manufacturing and Assembly (DfMA) typically focus 

on the standard geometric parts that are produced by conventional manufacturing 

systems. It makes DfMA methods no longer suitable for use in AM design (Li et al., 

2019). Furthermore, there exists an urgent need to provide AM design professionals 

with a greater range of design and analysis tools for complex part structures and AM 

processes, Design for Additive Manufacturing (DfAM) has been proposed as a way to 

address such design problems in AM processes, which has been extensively explored 

(Tang and Zhao, 2016).    

Thompson et al. (2016) reviewed over 300 research articles to summarise the research 

status, trends, challenges, and opportunities of and for DfAM. The authors of this paper 

claimed that DfAM was substantially different from conventional manufacturing 

assembly design in many aspects, such as knowledge, tools, rules, processes, and 

methodologies. They believed that AM processes require a new design framework 

because they involve various irregular factors, such as production time, cost, batch size, 

and so on, in contrast to conventional manufacturing processes. Additionally, the study 

reviewed a significant number of related works, which covered such topics as part 

geometry design, process design, and AM material design. Notably, the importance of 

DfAM was emphasised in cases that examined multiple customised parts produced by 

AM processes. On top of understanding functional optimisation, understanding 

sustainable optimisation is another significant objective of reviewing these DfAM 

studies, and this was highlighted throughout the paper.  

Tang and Zhao (2016) published a survey of the sustainability of DfAM. This paper 

focused on LCA and environmental impacts motivating product designers to optimise 

AM processes designs. The authors of this survey mentioned that the existing designs 

methods for AM process primarily focus on fine-tuning product functional 

performance including size, shape, and topology optimisation. In this survey, several 

DFAM methods are reviewed and compared as well. For instance, a formal framework 

was proposed by Rosen (2007) focused on the process, structure property relationship. 
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This framework considered cellular structure’s function and its manufacturability. 

Another method was proposed by Ponche et al. (2017). In this framework, three main 

steps of DFAM were pointed out: global analysis, dimensional and geometrical 

specification design and fulfilment of manufacturing. With these steps, the design 

process can gradually include manufacturing knowledge. Apart from the methods 

included in the survey, the DFAM methods are continually discovered and proposed 

by many other researchers.  

Ma et al. (2018) proposed a framework that integrated part lifecycle sustainability with 

AM product design. In this framework, the AM part lifecycle was described in detail 

including the part design, production process design, cost and usage control, and end-

of-life handling stages. The part and process design was the most critical aspect of 

their framework and was highlighted throughout it. Factors input into the framework 

included energy, material support, equipment, and logistics. Prcess cost, 

environmental impacts, and potential human toxicity were returned as outputs. To 

validate this framework, Ma et al. (2018) presented a case study targeted at a gear. 

This study handled each part of its framework independently, but the described 

stages—from part design to end-of-life handling—interact, meaning that every stage 

affects the others. Furthermore, it only produced LCA results without any optimisation. 

Gardan and Schneider (2015) introduced a design optimisation method, topological 

optimisations, for improving the part structure of the SLS process that discovered the 

knowledge of manufacturing limitation and situation from the SLS process. Further, a 

unique design structure that can clean unused powders augmented to this method’s 

optimised results. The method was validated by a case study using steel part example 

by different AM process: FDM, SLS and SLA. However, these optimisations are 

considered to be unable to match the fabrication capabilities of AM processes; the 

researchers must examine the process’s design methods in more detail (Tang and Zhao, 

2016). Moreover, Gebisa and Lemu (2017) pointed out that sustainability is an 

essential component of DfAM and discussed how current AM processes are not 

sufficiently energy efficient, as general manufacturing design principles are not 

suitable for use with them. 
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Based on this understanding of DfAM, Tang et al. (2016b) proposed a framework that 

integrates design in LCA assessment with the AM process. This framework used an 

LCA model to assess the environmental impact of the AM process, and design-relevant 

data was input into the framework. Moreover, they proposed a design for optimising 

energy consumption and material used according to this method. The paper also 

presented a case study validating the framework’s performance, using an aircraft 

engine bracket as the target product. Following their framework’s process, creating an 

optimised engine bracket design for production through AM remained the primary 

objective and kept the safety factors. The produced design required approximately 47% 

less material than did the original design; this figure was also lower than those of the 

optimised designs of conventional manufacturing processes, like the computer 

numerical control (CNC) process, by 22%. To produce new parts, more than half of 

the CO2 equivalents were either for AM or conventional processes. However, this new 

design only facilitated a production energy consumption approximately 2% lower than 

that of the original design through both the AM process and the conventional process. 

It is apparent that reducing energy consumption was more difficult than was optimising 

other LCA assessment indicators. The framework of Tang et al. is a fundamental 

architecture for AM process designers who seek to optimise their designs to protect 

the environment (Tang et al., 2016b). 

2.2.4 Short Summary  

AM has not only been a popular manufacturing technology for research but has also 

increasingly been employed by industry. It includes various technologies, such as 

EBM, SLM, SLS, FDM, and SLA, which produce different material products. Even 

with the different technologies and working principles, the general data generation of 

an AM process is similar, which can sense and collect different types of data from the 

process. It offers an opportunity to data-driven methods for solving problems. The 

design relevant information becomes interesting for many related researchers. 

According to the above research on DfAM, it is widely viewed as one of the most 

necessary aspects of AM systems, especially for sustainability analysis. Additionally, 

DfAM integrates design features for AM process optimisation. The research on AM 
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sustainability has become a crucial research topic. In this PhD research, energy 

consumption is selected as one of the most critical sustainability issues, which is 

reviewed in the next section. 

2.3 AM Energy Consumption Analysis and Impacts 

It is now established that AM is regarded as a comprehensive manufacturing system. 

It is interesting to know the energy consumption of AM processes accurately (Watson 

and Taminger, 2018). In this section, the energy consumption of different AM 

technologies is compared to show the range of AM energy consumption. Then, energy 

consumption impacts are determined from the previous literature. With the focus of 

design-relevant features, the design-relevant features of AM energy consumption are 

reviewed. 

2.3.1 Energy Consumption Comparison of Different AM 

Technologies 

Based on different working principles shown in the previous section, AM technologies 

have been applied to a number of different systems with various material supplies, it 

is interesting that the energy consumption has shown a large difference, as indicated 

in Table 2.1. 

Table 2.1 Energy consumption comparison between different AM technologies 

AM technologies Unit energy consumption (kWh/kg) 

EBM (Baumers et al., 2012) 17.0 to 49.1 

SLM (Kellens et al., 2010) 26.9 to 38.75 

SLS (Sreenivasan and Bourell, 2010) 14.5 to 36.0 

FDM (Baumers et al., 2011) 23.01 to 346.4 

SLA (Baumers et al., 2011) 20.7 to 41.4 

 

By understanding the working principles of these five AM technologies, there are 

several interesting points shown with the energy consumption. For instance, EBM and 

SLM both use similar materials. But their energy consumption rates are different due 
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to their different working principles. EBM utilises the concentrated beam of electrons 

to melt metal powder or filament material in order to build products, while SLM 

utilises the high power-density laser to melt metal powder material to build products. 

Moreover, SLM and SLS apply a similar technique. However, their energy 

consumption level shows large difference caused by different material usages. 

Comparing SLA and SLM, although the working principles and materials are different 

entirely the energy consumption rates are similar. Furthermore, even using the same 

technology and the same materials to conduct tests, the changes incurred in terms of 

energy consumption. Thus, it highlights the difficulty in analysing and optimising the 

energy consumption of AM systems (Sreenivasan and Bourell, 2010, Gross et al., 2014, 

Watson and Taminger, 2015, Telenko and Seepersad, 2010). That means the energy 

consumption of AM processing is challenging to analyse and optimise. Many 

researchers have shown that energy consumption of AM processing is caused by many 

different components and impacted by numerous attributes. 

According to the above studies, the level of AM energy consumption is typically 

described as low efficiency in a wide range. The problems regarding AM energy 

consumption are challenging to researchers due to the complexity of AM processes 

and various impact factors. In the next section, the energy consumption impacts are 

determined. 

2.3.2 AM Energy Consumption Impact Factors 

Table 2.2 has shown the differences in the rates of AM energy consumption caused by 

many different components and impacted by numerous attributes. Based on the system 

understanding and manufacturing experience, research has found correlations between 

energy consumption and various processing attributes of AM processes, such as 

processing, product design, and material attributes. 

Table 2.2 Energy consumption related attributes of AM systems in literature 

Literatucre Processing attributes 
Product design 

attributes 
Material attributes 

Sreenivasan and 

Bourell (2010)  

Scan speed; Laser power rate; 

Build platform size 
N/A 

Material powder 

density 
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Gross et al. (2014) 

Layer thickness; Laser beam 

radius; Scan speed; Laser 

power 

Part orientation 
Material powder 

absorption 

Watson and Taminger 

(2015) 

Feedstock and recycling 

transported distance; Build 

platform size 

Volume of 

deposited material 
N/A 

Telenko and Seepersad 

(2010) 
N/A Z-height 

Material powder 

density 

Baumers et al. (2011) 
Processing procedures; Build 

time 

Part geometry; Z-

height; Capacity 

utilisation 

N/A 

 

In Table 2.2, literatures have shown various models for examining energy 

consumption in AM systems. However, the impacts are inconsistent because many 

correlations exist. Thus, it is difficult to identify all related attributes of AM process 

energy consumption from a single study or experiment. Specifically, Sreenivasan and 

Bourell (2010) applied a basic energy consumption function, where the voltage and 

the current are the main inputs. In their study, system power is calculated from 1000 

watts to 2500 watts, and the heater system is highlighted as the largest energy 

consumer. Furthermore, this article shows that scan speed, laser power rates, build 

platform size, and material density impact the energy consumption in the targeted AM 

system. However, energy consumption modelling was not established in this paper.  

Watson and Taminger (2015) built an energy consumption model by considering the 

impact of the process and product design attributes, such as the feedstock and recycling 

transported distance, build platform size, and the volume of deposited material. But, 

in this paper, the energy consumption model was suggested without any experimental 

validation. In another paper, Telenko and Seepersad (2010) compared the differences 

in energy consumption between SLS and injection moulding (IM). They also revealed 

the correlations between energy consumption and build height and material density, 

which were obtained from the experimental results. A Similar methodology had been 

also applied by Baumers et al. (2011). In this research, the energy consumptions of 

two SLS machines were compared. They defined an AM process with 3 phases of 

energy consumption, which are warm-up, building, and cooling down. Furthermore, 

the authors indicate that product geometry could have an essential impact on energy 

consumption in the AM system. From these studies, some researchers consider 
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processing attributes are more closely related to energy usage. They contain scan speed, 

layer thickness and building time. While, product design attributes, such as part 

orientation, the products of height, are also defined as critical energy-relevant factors 

in AM systems, which are reviewed in next section with more details. 

2.3.3 Design-relevant Impacts on AM Energy Consumption  

It is highlighted that the design-relevant data highly depends on human’s actives, 

which includes two categories, part design data and process planning data. These two 

types of data are determined by part designers and process operators. However, design-

related impacts are often overlooked due to their complexity.  

Zhang et al. (2018a) believed that a bio-inspired part design could improve 

sustainability through functionality improvements, the reduction of material usage and 

energy consumption, and the introduction of smaller environmental impacts. They 

applied this idea to the part design stage in the AM process and proposed a conceptual 

model for redesigning areas of the AM process. This model integrated DfAM 

principles with bio-inspired design aspects, such as material features, production 

process parameters, and product functionality. A case study was conducted which 

compared three different part filling structures (diamond, honeycomb, and bone) using 

an SLS process. The bone structure was considered the bio-inspired structure in this 

study, and many factors relating to the structures, such as their physical properties, 

basic stress analysis results, energy consumption rates, and other LCA assessments, 

were compared. Notably, the energy consumption of the bone structure was found to 

be lower than that of the honeycomb structure by 8% and that of the diamond structure 

by 12%. The bio-inspired geometrical design highlighted in this paper provides a 

solution for the structural design of the AM process which reduces energy 

consumption and maintains product functionality. 

Aside from parts’ filling structures, other design-relevant factors also draw researchers’ 

attention. Panda et al. (2016) pointed out that slice thickness and part orientation are 

two significant factors in determining AM energy consumption. An optimised 

framework based on genetic programming was proposed to develop the relationship 
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between energy consumption, slice thickness, and part orientation. In their experiment, 

slice thickness varied between 0.02 mm and 0.10 mm in intervals of 0.02 mm and part 

orientation varied between 0° and 45° in 5° intervals. Other process parameter settings 

were kept the same. Based on this approach, energy consumption can be predicted with 

an error rate of 3.45%. Based on the idea that slice thickness and part orientation are 

two important aspects of AM energy consumption, Paul and Anand (2012) also 

conducted several experiments on part orientation. In these experiments, three 

geometric primitives (a cube, a cylinder, and a functional part) were built in three slice 

thicknesses (0.03 mm, 0.05 mm, and 0.10 mm) and three part orientations (0°, 30°, 

and 45°). The energy consumption of the production process was then monitored. For 

each geometric primitive, energy consumption decreased as slice thickness increased 

and orientation degree decreased. However, it is difficult to compare the amount of 

energy consumed in the production of these three geometric primitives because these 

experiments monitored total energy consumption rather than the unit energy 

consumption of each process. According to the above studies, filling structure, slice 

thickness, and part orientation impact AM energy consumption. However, only a 

single part was built in each AM production experiment, which happens rarely in 

current AM production processes (particularly SLS and SLM).  

Baumers et al. (2012) claimed that differences in energy consumption are revealed 

between processes in which a single part is built and processes in which multiple parts 

are built. In their study, six AM systems, including SLS, SLM, electron beam melting 

(EBM), and fused deposition modelling (FDM), were tested and compared; each 

system produced both a single part and multiple parts within a single production 

process. On average, building multiple parts costed approximately 25% less energy 

than did the production of single parts, and the SLS system was found to use 97% less 

energy than the other systems examined in this study. However, it is difficult to draw 

a conclusion on the energy consumption behaviours of these systems based on these 

experiments alone. Further, each experiment used the part design that was based on 

the single-part production process to generate a multiple-part production process 

design. In an AM process, various part designs are combined and built together to 

produce a suitable process design. Moreover, the chosen process plan varied in terms 
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of orientation and part positioning for each AM technology that was used; this was not 

addressed in the paper. Therefore, due to the complex process and various impacts, it 

is necessary to apply real data rather than experimental data to analyse and model AM 

energy consumption.  

2.3.4 Short Summary 

According to the above related works and previous research of the AM technologies 

and energy consumption analysis, the issue of AM energy consumption analysis is a 

crucial research problem. However, manufacturing is currently moving into the next 

industrial revolution, Industry 4.0, which allows the production equipment to sense 

and collect more data from AM systems (Shrouf et al., 2014). With more data being 

sensed and collected, the behaviour of energy consumption in AM systems tends to be 

predictive by advanced data analytics. Advanced data analytics, as a range of 

approaches, was researched in this thesis, especially machine learning and deep 

learning. In the next section, the conventional machine learning algorithms and deep 

learning algorithm are introduced, and the relevant previous research is reviewed. 

2.4 Advanced Data Analytics  

Advanced data analytics refers to a group of technologies which are applied to data to 

solve the critical problem. Sometimes it is not a specific technology but rather a 

combination or integration of several methods to gain information, build predictive 

model, and discover the relevant knowledge (Bose, 2009). Different technologies 

provide various function and solution for the research or industrial problems. For 

example, the data mining and data integration generally is used for discovering the 

pattern recognition and identifying the relationships. Evolutionary and Swarm 

Algorithms (EAS) normally focus on the multi-objective optimisation problems. 

Neural networks can anticipate decisions and assist in predictive analytics (Brook Wu 

et al., 2006).  In some conventional machine processing, energy is significantly 

consumed which is able to be reduced by optimising several parameters and features, 

such as tool path of machining (Hu et al., 2018) and changing the multi-objective 

feature sequencing. 
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2.4.1 Process Optimisation by Advanced Data Analytics  

One of the most powerful functions of advanced data analytics is to optimise the 

manufacturing process. Especially, the evolutionary and swarm algorithms (ESA) is a 

group of optimisation technologies, such as genetic algorithms (GA) and particle 

swarm optimisation (PSO). In this section, several research cases of process 

optimisation are reviewed.  

Bensingh et al. (2019) introduced a hybrid approach that combines artificial neural 

networks (ANN) and PSO to optimise the injection modelling process parameters. In 

their study, the injection modelling process produced a bi-aspheric lens. The quality 

of the lens and its upper process capability was the model’s optimisation validation 

metrics, and it was represented through the three main measures of each side of the bi-

aspheric lens: radius of curvature, surface roughness, and waviness. In this study, 

seven parameters were optimised to improve the quality of products. An ANN based 

model was used to predict lens quality based on the injection modelling process 

parameters. Training and testing data were collected from the 44 experiments 

conducted over the course of the study. Based on the ANN prediction model, PSO was 

applied to optimise the parameters of the NN structure, including its number of neural 

layers, to improve the model’s performance.  

Moreover, the optimised results were compared to the GA- optimised ANN, and the 

proposed approach was found to return fewer errors and present a faster convergence 

speed than traditional PSO. The optimisation provided by PSO was proven to be better 

than that of GA. However, one of the six main outputs, the waviness of the shallow 

profile, was predicted with a substantial error larger than the mean error of the original 

values. With the similar idea, Perhinschi and Perhinschi (1997) modified standard GA 

to base on the floating-point representation of the chromosome and appropriate genetic 

operators to solve controller design problem of autonomous air-vehicle. Five 

parameters were optimised in this research by using the modified GA method.  

Wang and Hsu (2008) proposed a GA-based, hybrid grey theory method to forecast 

high technology industrial output, which high technology industry is the rapidly 
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progressive technology with various demand and high investment. In the high 

technology manufacturing, factors such as production techniques, market demand and 

investment capital influence the development trends, making it difficult to forecast. In 

their study, as the traditional grey forecasting model is unreliable, the grey theory was 

used for predicting the output of the high technology industry, and the GA was used 

to minimise the prediction error of the model parameters. The results showed that the 

GA-based method achieved higher accuracy and a lower error rate compared to the 

Bayesian genetic model and the grey forecasting model. Besides, in the pharmaceutical 

industry, GA can provide a solution for some problems, like facility layout 

optimisation. 

Janahiraman et al. (2018) introduced a hybrid method that integrates extreme learning 

machine with PSO to optimise CNC processing and product surface roughness. Two 

stages were identified as essential in their paper: modelling and optimisation. PSO was 

used for optimisation. Three inputs were used for modelling: cutting speed, feed rate, 

and cut depth. A difference of 24% was found to exist between the predictive results 

returned by this model and the real-world results. Additionally, it identified optimal 

parameter settings. Task scheduling presents another problem that is often solved by 

PSO methods.  

Hamamoto (1999) introduced GA-based methods to optimise the facility layout design 

in pharmaceutical factories, which considered many objectives, such as operation cost, 

maintenance coat, material handling cost, and throughput rate. In this research, two 

facility layout methods are used, growth method and band layout method. Moreover, 

GA also shows the exceptional performance in machining. Yildiz (2013) introduced a 

hybrid differential evolution algorithm for selecting the optimal milling process 

parameters such as depth of cut, feed rate and cutting speed. This method compares 

the GA-based hybrid to other evolutional algorithm -based methods. The achievement 

of the process is verified by using two objective functions, which are unit production 

time and unit production cost. The comparison of the algorithms focuses on the 

economic aspect rather than other aspects such as product quality and tool wear. 

Furthermore, GA can also optimise a nonlinear programming model. 
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Zhang et al. (2018b) published an article addressing the digital array radar (DAR) task 

scheduling problem, which was defined as an N-P problem and was, therefore, difficult 

to solve using only the meta-heuristic method. In this study, an integer programming 

optimisation model was built to establish the DAR task structure and was formed of 

multiple aspects. In addition, a hybrid PSO was proposed for improving efficiency in 

task scheduling schemes. This study adopted chaotic sequences and Shannon entropy 

equation to improve the quality of the initialised points and the convergence speed. 

When compared to three other scheduling optimisation methods (the online 

interleaving algorithm, GA–PSO, and the HPF algorithm), the proposed optimisation 

method obtained the highest successful scheduling ratio from the same number of 

targets. PSO improved when the initialised point and convergence speed coefficients 

were changed. The study was championed by many other researchers as one of the 

most important studies for PSO improvement. For example, Kennedy (2011) 

suggested setting the convergence coefficients as 2.05 and the initial coefficient as 

0.7298 to improve the convergence speed of PSO.  In next section, the focus is to AM 

process, some relevant researches are reviewed.  

2.4.2 Advanced Data Analytics for AM  

According to the data generated from AM process, current related research only uses 

a part of the data in this multi-source database, which is mostly collected from the 

process operation and the working environment. Steed et al. (2017) pointed out that it 

was essential to analyse process data to understand AM process. Thus, a software, 

called Falcon, was developed for a better exploratory visual analysis of the large, 

irregular and multivariate time-series data that are generated from AM process. Falcon 

software displayed data from system monitoring files with a clear visualisation. It 

allows users to check the data across multiple views and provides users with basic data 

analysis results, including the mean, quartile, and variance. Falcon software also 

showed product imagery to users helping people to understand the building condition 

of every single layer. However, their research focused on a single AM process which 

failed to reveal general knowledge of AM systems. O’Regan et al. (2016) proved some 

correlations between building environment and product voids and residual stress after 
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summarising critical process parameters and data in an SLM system. They found that 

most attributes that impacted the product voids and residual stress were represented 

and displayed as different types of data in system monitoring files by the target system. 

However, they did not establish any data analytical model in this paper, which was 

indicated as a future work.  

It is well-known that AM processes are complex due to its high levelled automation 

and customization. Issues of AM process normally related to many impacts, which is 

a big challenge to researchers. Deep learning, as the most popular technology of 

machine learning, is considered to solve problems of complex system, such as AM 

process. Uhlmann et al. (2017) introduced a data analytical method, using neural 

networks to build a classification model, for assessing selective laser melting (SLM) 

process. This approach focused on the quality of product to classify products into three 

categories, prefect products, defective products and unfished products. Data was 

collected from machine process log files and sensor log files, which included 16 

different features, such as platform temperature, chamber temperature, layering time 

and process pressure. The neural network was used as one of the modelling algorithms, 

which showed merits compared to other conventional machine learning methods, such 

as nearest neighbour, Bayes classifier, and support vector machine (SVM). The highest 

predictive accuracy, showing by neural network model, is about 90%. They pointed 

out that more system behaviour knowledge could be discovered when more related 

data was collected and used, and data analytical methods could be optimised by 

expanding input data. This result proved that deep learning technology is suitable for 

AM process predictive problems comparing to other machine learning algorithms.  

Shevchik et al. (2018) also paid close attention on the quality issues of AM process. 

They claimed that quality monitoring of AM process is lack of attention. In their paper, 

the acoustic emission was treated as the index of product quality. The acoustic signals 

of a SLM system are recorded by sensors. This type of data was shown as the light 

microscope images that presented the energy densities. These energy densities were 

classified as three different levels that represented three types of product quality (poor 

medium and high part qualities), which were able to observe on microscope images. 

Using these images as inputs, a spectral CNN was designed to build the classification 
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model. The classification accuracies were over 80%, specifically, poor quality is 89%, 

medium quality is 85% and high quality is 83%. This study using the leading-edge 

method, CNN, to solve the problem of AM process, which was claimed as a novel 

approach in research of AM process.  

The AM process condition is another focus of attention, which deep learning 

technologies are often applied as solutions. Xiong et al. (2013) proposed a neural 

network structure to predict the process condition of a gas metal arc welding (GMAW) 

based AM process. In their study, a laser vision sensor was used with composite 

filtering technique to measure the bead width and height. These two measurements 

were inputs of the proposed neural network and process condition parameters were 

predicted, which were welding speed, wire feed rate, and arc voltage. The results of 

these predictions were acceptable. Specifically, predictive error of welding speed was 

19.26%, error of wire feed rate was 22.69%, and error of arc voltage was only 1.19%. 

The second part of their study was predicting the bead geometry (width and height) 

using the welding speed, wire feed rate, and arc voltage. The error of width and height 

was only about 1% to 2%. Their study established a relationship between process 

variables and the bead geometry by using deep learning technology.  Current research 

about deep learning for AM process tends to pay attention on the issues of quality 

detective and process monitoring. However, this leading-edge technology, especially 

CNN, can solve more than them. Combining product design model, CNN is a 

functional tool to extract product features that are too abstract to be represented by 

some specific attributes.  

Vahabli and Rahmati (2017) also focused on modifying part orientation and layer 

thickness to improve the surface roughness. In their study, the target AM technology 

was FDM. They tried six different analytical models to build the relationship between 

surface roughness and the inputs, layer thickness and part orientations. By comparing 

the results of different models, the authors proposed a hybrid model to predict the 

surface roughness and it had shown its merits. The method was also validated by 

producing various parts with different material, parameters, and machines. This 

prediction model can help the AM operators to modify the layer thickness and part 

orientation for improving the surface roughness.  
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With the same interests, Asadollahi-Yazdi et al. (2018) believed the optimising 

parameter settings for AM process can improve the process. In their research, the layer 

thickness and part orientation were determined as the main target of the optimising 

parameters. By optimising these two important parameters, three objective functions 

were focused, production time and material mass, surface roughness, and mechanical 

behaviour (Ultimate Tensile Strength (UTS)). In this paper, the authors used the Non-

dominated sorting genetic algorithm-II (NSGA-II) as the optimisation approach which 

was introduced by. Deb et al. (2002) for solving multi-objective optimisation problems. 

In Asadollahi-Yazdi’s paper, it can be proved that the production time, material mass, 

roughness and UTS of AM were influenced by layer thickness and part orientation. 

Apart from genetic algorithm, the PSO was another popular evolutionary algorithm. 

PSO is one of the most famous evolutionary algorithms used to solve continuous, non-

linear, multi-objective optimisation problems (Kuo and Lin, 2010, Tang et al., 2016a). 

Theoretically, the traditional PSO method works by sending out a swarm of particles 

to search for the best result according to the required limitations; each particle 

represents a feasible solution to the given problem (Zou et al., 2019). PSO was also 

used to solve AM process optimisation problems (Yusup et al., 2012). Ye et al. (2018) 

proposed a PSO-based method for optimising AM processes which features stochastic 

finite element analysis (SFEA). SFEA was used to model the output value, which was 

the residual stress in thin-walled parts. PSO was used to find the maximum value of 

the target within the limitations. The proposed method began by extracting the process 

parameters, such as layer thickness, melting temperature, scanning speed, and hotbed 

temperature flux, from the process. Also, the CAD part design model was considered 

a potential input variable for the SFEA model. The results of their case study were 

reasonable, and their research involved collecting part design data to characterise one 

of the essential process factors. This emphasises the necessity of carrying out further 

DfAM research.   

Raju et al. (2018) proposed a hybrid PSO method integrated with bacterial foraging 

optimisation (BFO) to solve mechanical and surface quality problems of AM processes, 

such as those introduced by varying hardness, flexural modulus, tensile strength, and 

surface roughness. Four parameters were considered for input into the simulation 
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model: layer thickness, support material, model interior, and orientation. The model 

was built through multiple linear regression. Two types of part design were printed to 

model data collection, and 18 samples were produced for each. Three parameter setting 

combinations were used to uncover the best solution to each mechanical and surface 

quality problem. The PSO–BFO algorithm was then used to find the best parameter 

settings. This study exemplifies the advantages PSO can offer AM parameter 

optimisation and how it can be easily integrated with other algorithms for exceptional 

results. However, the authors selected the constant inertia weight and cognitive factors 

for the proposed PSO–BFO model without providing an explanation of either choice. 

2.4.3 Short Summary 

Advanced data analytics is a group of powerful data-driven technologies, such as GA 

and PSO, especially in the industrial big data environment. The big data provide 

sufficient historical data and information for mining the patterns. Technologies like 

machine learning and deep learning have the capability to learn and discover 

knowledge from data. With the optimisation methods, manufacturing processes are 

improved by optimising the relevant parameters. 

2.5 A Critical View 

In summary, five different AM technologies were presented in detail in section 2.2.1. 

With the understanding of AM systems, the data generation process of AM was 

displayed, and then the DfAM was focused as one of the interesting, relevant research 

topics. Following the knowledge of AM, the AM energy consumption analysis was 

introduced, which includes the comparison between different AM technologies, 

impacts, and design-relevant features. In order to solve the problems, advanced data 

analytics was selected as the leading technology. In section 2.4, the core advanced data 

analytics technologies were introduced, and the research cases of process optimisation 

were reviewed. At the end of the section, the research how advanced data analytics 

work on AM process was reviewed as well. 
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From these related works, the AM energy consumption analysis is proved as an 

interesting and significant research issue, which is able to be solved by advanced data 

analytics. It is also considered as an implementation of achieving an Industry 4.0 level 

manufacturing system. 

 



  

 

Chapter 3 A Framework for AM 

Energy Consumption Analytics under 

Industry 4.0 

3.1 Introduction 

With rapid advancements in the industry, technology, and applications, many concepts 

have emerged in manufacturing. It is generally known that the far-sighted term 

‘Industry 4.0’ was published to highlight a new industrial revolution. Many 

manufacturing organizations and companies are researching this topic. However, the 

achievement criteria of Industry 4.0 are yet uncertain. There is still a long way to go 

to improve manufacturing up to the required level to match all concepts with all 

dimensions, especially consciousness. Moreover, industry and academia demand a 

complete structure of these technology applications to show the development of 

manufacturing with the different levels of performance, which will be introduced in 

next section. AM is one of the most popular applications of Industry 4.0. Although 

AM systems tend to become increasingly automated and worry less, the issue of energy 

consumption still attracts attention, even in the era of Industry 4.0 (Frank et al., 2019). 

In this chapter, a framework is designed for modelling, predicting, and managing the 

energy consumption of AM processes. This framework is designed by following the 

standard industrial data mining process, which is explained in Appendix A.1. The main 

sections of the framework are inspired by the 5C structure for Industry 4.0, which 

includes data collection, data transformation, data analytics and intelligent function 
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delivery (Lee et al., 2015a). In addition, the proposed framework includes the core 

elements of the AM process, which are reviewed in Section 2.2. 

The framework includes four sections, Data sensing and collection section, Data 

Integration section, Data analytics section, and Information and Knowledge section. 

The framework demonstrates a comprehensive structure for building an Industry 4.0 

level manufacturing from the hardware level to intelligence level, which the AM 

process is focused as the target system. At the end of this chapter, the experimental 

setup of this PhD research is introduced.    

3.2 A Framework of AM Energy Consumption Modelling 

Prediction, and Management under Industry 4.0  

According to the literature review in the last chapter, the AM system has some 

concepts, such as digitalisation, communication, standardisation, flexibility, and 

customisation. However, it does still not achieve the lower level of Industry 4.0 (Atzori 

et al., 2010). In order to upgrade AM systems matching the requirement of Industry 

4.0 in the respective of energy analysis, a framework is proposed in this section. In this 

framework, an AM system is integrated. The production design, operators, and 

materials statement are integrated with AM machine to generate an energy model. In 

the model, plenty of data is collected, where information and knowledge can be 

discovered. Based on this design principle an IoT based framework is designed which 

is shown in Figure 3.1 (Qin et al, 2017). 

In this framework, there are four sections, which are: The Data sensing and collection 

section, the Data Integration section, the Data analytics section, and the Information 

and Knowledge section. These four section are closely interlinked, and each section 

consists of several components



  

 

 

Figure 3.1 A Framework of AM energy consumption modelling, prediction, and management 

 



  

 

3.2.1 Data Sensing and Collection Section 

The Data sensing and collection Section is known as the AM production status and 

processing environmental condition where the target AM system, materials, operators, 

products, and other environmental factors are included. It is obvious that the AM 

system and other associated physical objects typically carry lots of relevant data 

invisibly. With different sensors and components, this invisible data is able to be 

extracted (Gajski et al., 1994). However, in this section, the digital data sets are only 

generated and collected as the raw datasets, which means this type of datasets tends to 

be unreadable, being represented as massive and meaningless strings of numbers. 

According to the previous work of AM system data generation, this section considers 

four types of premier datasets, design-relevant datasets, operation datasets, working 

environment datasets, material condition datasets. 

The AM system is the main object of this research, as the majority of energy is 

consumed by it. Most current AM systems have embedded sensors in them obtaining 

various processing data collected during operation. This data is generally represented 

in the machine logs, which is creased after each production. In addition, to achieve the 

integrated function, the IoT technology has become one of the best solutions, generate 

horizontal integration, end-to-end digital integration, and vertical integration in 

manufacturing systems (Kagermann et al., 2013). In this section, the IoT technology 

will be used to sense and collect the extra data for collecting other relevant data, which 

will be integrated in the energy model. The IoT based data collection system includes 

data sensing components, i.e. sensors, identify components and collection and 

transformation devices, i.e. embedded development boards. In next chapter, the data 

sensing and collection will be introduced comprehensively. 

3.2.2 Data Pre-process and Integration Section 

As mentioned in last section, the raw datasets are typically unreadable and massive. 

The first mission on the Data pre-process and integration section is data cleaning and 

transfer. By applying the data cleaning and transfer, the raw data is cleaned without 

missing value and outliers. All datasets are transferred into the standard data format, 



38 A Framework for AM Energy Consumption Analytics under Industry 4.0 

 

which can be accessed by the database software, programming application, and basic 

analysis software. The most important step on this layer is data integration.  

The data is collected from different resources, such as product design, working 

environment, operation parameter setting and IoT data sensing and collecting system. 

These data carry different information representing different features, which involve 

various and dimensions and tend to be nested as a multiple hierarchical structure. The 

features of these dataset structure are rarely independent (Rajeswaran and Blackstone, 

2018). This data may be difficult to integrate using typical data integration methods, 

such as the extract, transform, and load (ETL) technique (Yin and Kaynak, 2015). 

Under this comprehensive data environment, it is very challenging to integrate the 

multi-source data which includes the multiple hierarchical structure for building the 

prediction model (Cavalheiro and Carreira, 2016). In this section, this nested data will 

be integrated by a novel technology which will be discussed in next chapter with more 

technical details. Also, the integrated data is upload to the data warehouse for the 

storage, which allows people to access the database in the local and cloud. 

3.2.3 Data Analytics Section 

When the integrated data is obtained from the previous section, Data pre-process and 

integration section, the integrated data is used for several advanced data analytics 

technologies, such as data statistic, data mining, machine learning, deep learning, and 

evolutionary and swarm algorithms, with different purpose.  

For example, by applying data statistic, basic statistical analysis is obtained, which 

gives people a general idea of how the data is shown as for every collected feature and 

target values. With the data mining technology, the relationship between system 

energy consumption and related attributes can be found. The hidden information is 

exploited. Machine learning and deep learning technologies can build the energy 

consumption model which can predict the energy consumption of the AM system. The 

evolutionary and swarm algorithm can help to optimise relevant parameters and design 

for reducing the energy consumption. Overall, in this section the valuable information 

of AM energy consumption is discovery by several advanced technologies which 



A Framework for AM Energy Consumption Analytics under Industry 4.0 39 

 

assist people in modelling, predicting and managing energy usage and making the 

correct decisions. 

3.2.4 Knowledge and Application Section 

In the Knowledge and application section, the discovered information is shown as 

different implementations and applications. The performance and applications can be 

divided into three sections; Process orientated applications, Operator orientated 

applications, and Enterprise orientated applications based on differently oriented 

objects.  

In the section of processing orientated applications, AM processing receives the 

feedback controlling signals, which then changes the settings of the relevant 

parameters for reducing the energy consumption. These decisions change parameter 

are made by the IoT framework relying on the information and knowledge analysed 

from the preceding layer. Operators and designers are able to obtain the system energy 

consumption behaviour from the production energy recorded, and by predicting the 

future energy use from the Operator oriented applications. The information will be 

presented to them virtually and graphically; which can guide operators to utilize the 

system economically. In addition, they can also receive production design suggestion 

for improving the design. The enterprise manager is more interested in the system life-

cycle analysis, energy sustainability analysis, and energy management which can also 

be delivered as the enterprise oriented applications. 

This framework focuses on AM process energy consumption which creates a new 

method of energy consumption analysis in the age of Industry 4.0. This framework 

involves numerous related factors which integrate different attributes within the data 

and cloud-based database. Benefits from the data mining and big data analysis 

technology. Valuable information and knowledge about AM process energy 

consumption are generated and presented to people intelligently and some decisions 

are made by framework and control system automatically. This framework is able to 

match Industry 4.0 required capabilities, which is regarded as an application of 

Industry 4.0 (Qin et al., 2016). 
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3.3 Feasibility Study Setup 

3.3.1 Introduction of the Experimental SLS Machine  

In the last decade, SLS has become a mainstream AM system. This system sinters 

powdered material to build products using lasers. Figure 3.4 displays a schematic 

layout of the SLS process as an example of the AM systems, which is the main target 

AM system of this PhD research. In Figure 3.2, it is seen that the system consists of 

many different types of power consuming systems, such as laser system, heating 

system, build platform system, feed and recycle system and miscellaneous (Kellens et 

al., 2011, Sreenivasan and Bourell, 2010). 

 

Figure 3.2 Main power drains of SLS process adopted from Watson and Taminger (2015) 

Each energy consuming system has included several power consumers. For example, 

the heating system, consisting of frame heating, platform heating, and process 

chamber heating, is responsible for the major of energy consumed in this process. In 

addition, the laser units, scanner, and laser cooling system are three main power 

components in the laser system, with the laser cooling system consuming the most of 

energy in this subsystem. The main energy usages of the build platform system are 

driving the motors. Feed and recycle system includes the material and inert gas feed 

and recycle process. There are also controllers, electrical elements, and sensors 
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supporting the system controlling and monitoring functions in such an SLS system, 

which are also a main part of energy consumers (Kellens et al., 2010).  

In this research, the EOS P700 is the target SLS system which is located in School of 

Engineering at Cardiff University. The EOS P700 has a build envelope, maximum size 

is 740* 400* 590 mm (𝑥, y, and 𝑧), and the effective build envelope size is 700* 380* 

580 mm (x, y and z). This significant build platform allows multiple part, sometimes 

more than hundreds, producing at the same time. In the chamber, two parallel blades 

are built as the recoater to make sure the powder can be placed on the building bed 

equally.  

The EOS P700 consists of two 50W CO2 lasers which can sinter nylon materials 

(PA2200 and PA3200GF). To produce the entire volume of parts, it also has two 

powder storage areas that can store 40 to 80 kg powder material for guarantying the 

material supply. Normally, each production takes less 24 hours; this depends on the 

building volume. Figure 3.3 shows the EOS P700 in the working environment (Soe, 

2012). 

 

Figure 3.3 Experiment machine in working environment 
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PA2200 is the original polyamide-12 material without any fillers, and PA 3200GF 

contains 40% glass beads for enhancing stiffness. The general material properties and 

thermal properties are shown in Table 3.1. the melting point of both two material is 

about 172-180 ℃, and the density of laser-sintered part of PA2200 is 0.93 g/cm3, 

PA3200GF is 1.22 g/cm3. 

Table 3.1 Material data collected from the support company material sheet 

Material properties PA2200 PA3200GF 

Average grain size 56 µm 57 µm 

Bulk density 0.45 g/cm³ 0.63 g/cm³ 

Density of laser-sintered part 0.93 g/cm³ 1.22 g/cm³ 

Melting point 172-180 ℃ 172-180 ℃ 

Vicat softening temperature B/50 163 ℃ 166 ℃ 

Vicat softening temperature A/50 181 ℃ 179 ℃ 

3.3.2 Unit Energy Consumption of the AM Process 

The understanding of AM energy consumption is helpful to be determined before 

introducing the unit energy consumption. The unit energy consumption (𝐸𝑈 is shown 

as the following equation: 

 
𝐸𝑈 =

𝐸𝑇

𝑀𝑇
 (3.1) 

In the equation 3.1, the 𝑀𝑇 is the product weight of a total build. 𝐸𝑇 represents the 

total energy consumption of each build, which is denoted as following, where 𝑛 is the 

number of energy consumers ( 𝐸𝑒 ), such as heating system, layer system, build 

platform system feed, and recycle system, in the system, 𝑇 is the total time of each 

process (Qin et al., 2017). It is highlighted that an AM system typically consists of 

these kinds of consumers, although they may be different in different AM technologies. 

In addition, when the entire process is considered, involving pre-process and post-

process, 𝐸𝑒 should include more consumers of pre-process and post-process. In this 

paper, the energy consumers (𝐸𝑒) focus on the energy consumers in the AM system 
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(Yosofi et al., 2019). The total energy consumption of each build is shown as equation 

3.2. 𝐸𝑒 is monitored by system monitoring system. 

 
𝐸𝑇 =  ∑(∫ 𝐸𝑒

𝑡

0

)

𝑛

 (3.2) 

From the above equations, the unit energy consumptions of all existing builds have 

been calculated. Figure 3.6 is the unit energy consumption frequency histogram of all 

tracking builds which was collected from Aug 2016 to Apr 2019 wich more than a 

hundered builds. It is noticable in the histogram that over 80% builds consume the unit 

energy from 120 kWh/kg to 600 kWh/kg. However, the energy consumption of each 

build shows differently even in this range.  

 

Figure 3.4 Energy consumptions frequency histogram 

Table 3.2 shows the basic statistic information including the value of maximum, 

minimum, mean, standard deviation, 1st quartile, 3rd quartile, and median. The range 

of the energy consumption is significant which a big standard deviation, 496.8285 

kWh/kg. The media is lower than mean value means majority energy consumption is 

between minimum value and mean value.  
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Table 3.2 Basic information of the unit energy consumption of experimental machine 

 
Maximum Minimum Mean 

Standard 

deviation 

1st 

quartile 

3rd 

quartile 
Median 

Unit Energy 

Consumption 

(kWh/kg) 

107.2829 3468.4256 483.1233 496.8285 278.3328 505.1319 386.5819 

 

3.3.3 Evaluation Metrics 

In this research, the model performance is mainly evaluated by Root-mean-square-

error (RMSE) and Model correlation coefficient (MCC), and all the results are 

obtained by five-fold cross validation (Wong, 2015).  The RMSE is used to measure 

the difference between the predictive value and the actual value, which denotes as: 

 

𝑒𝑅𝑀𝑆𝐸 =  √
∑ (𝑝𝑖 − 𝑎𝑖)2𝑛

𝑖=1

𝑛
 (3.3), 

where 𝑝𝑖  is the predictive value, 𝑎𝑖 is the actual value that is the unit energy of each 

build (𝐸𝑈) in this research (Han et al., 2011).  

Another performance validation method is the MCC, represented as: 

 
𝑀𝐶𝐶 =

𝑆𝑃𝐴

√𝑆𝑃𝑆𝐴

 (3.4) 

 

 𝑆𝑃𝐴 =
∑ (𝑝𝑖−�̅�)(𝑎𝑖−�̅�)𝑖

𝑛−1
;  𝑆𝑃 =

∑ (𝑝𝑖−�̅�)2
𝑖

𝑛−1
; 𝑆𝐴 =

∑ (𝑎𝑖−�̅�)2
𝑖

𝑛−1
 (3.5), 

 

where �̅� is the average value of the predicted values, and �̅� is the average value of the 

entire actual values. 
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3.4 Summary 

In the era of Industry 4.0, AM processes are necessary for the whole manufacturing 

production industry. Energy consumption has become a big concern with the rapid 

growth of the product volume. It is an indispensable component of the power source 

reduction, environment protection, and process life cycle analysis. Current AM energy 

consumption analysis methods were reviewed in Section 2.3. These methods are 

difficult to obtain reasonable results because the energy consumption problem is a 

multi-attribute convergence problem. The Industry 4.0 solution is designed for solving 

this type of problem. Based on this purpose and relying on this classification, a 

framework was designed for AM energy consumption modelling, prediction, and 

management. Using this IoT framework, the energy consumption of the AM process 

is going to be modelled, predicted, and managed which assists AM engineers, 

researchers and enterprise managers in solving the energy problem of the process. This 

framework collects, integrates, and analyses data from the entire production 

environment. The relevant information and knowledge is discovered. The results are 

shown intelligently for different processing participants dependent upon their roles in 

the system. 



  

 

Chapter 4 Multi-source Data Analytics 

for AM Energy Consumption 

Modelling 

4.1 Introduction 

In the AM data generation process, which has been reviewed in Chapter 2, process, 

material, design and environmental attributes, including evident and hidden energy 

consumption related factors, can be digitalised and connected in a virtual world (Gubbi 

et al., 2013) using IoT techniques (Qin, 2017). Depending on the different data sources, 

this data is defined as the multi-source data (Yager, 2004), which are often used to 

build data mining models for ascertaining the AM system relevant information and 

knowledge (Boyes et al., 2018). Unfortunately, multi-source data is generally 

collected by different methods from various data sources (Chan et al., 2018). This data 

involves various features and dimensions, which tend to be nested as a multiple 

hierarchical structure. The features of this data structure are rarely independent 

(Rajeswaran and Blackstone, 2018). This data is difficult to integrate using typical 

data integration methods, such as the extract, transform, and load (ETL) technique 

(Yin and Kaynak, 2015). Under this large data environment, it is very challenging to 

integrate the multi-source data, which includes the multiple level structure for building 

the prediction model (Cavalheiro and Carreira, 2016). Integrating and modelling this 

multi-source data of the AM system to predict energy consumption becomes a crucial 

research question for AM development.  
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This chapter proposes a hybrid multi-source data integration and analytics approach 

for AM energy consumption modelling based on IoT, clustering, and deep learning 

techniques in the AM system. In Section 4.2, the multi-source data collection is 

described with the methodology and the experimental. The experimental data is 

collected from a SLS system, which is also used for the validation of the proposed 

modelling approach. In section 4.3, a hybrid approach is proposed, where the multi-

source data is integrated and modelled by a clustering based deep learning approach 

to predict AM energy consumption. So, in section 4.4, the proposed approach is 

validated, compared with the conventional machine learning modelling approaches 

and discussed to reveal the performance. 

4.2 Multi-source Data Sensing and Collection 

In order to integrate the multi-source data and build the energy consumption model 

for AM systems, an IoT application is utilised to sense and collect the multi-source 

data from several relevant data sources of an AM system, such as production process 

operation, product design, working environment and materials condition. In this 

section, the method of data sensing and collection is described and the hardware setup 

of data sensing and collection for a real-world AM system is introduced. 

4.2.1 Multi-source Data Sensing and Collection for an AM Process 

To analyse the energy consumption of an AM process, the data is collected from four 

primary sources: production operation, working environment, product design and 

materials. In the context of IoT, there are three main data collection methods, such as 

system monitoring files, design CAD models, and IoT application, to collect data from 

these four data sources in an AM process. The data sensing and collection process is 

illustrated in Figure 4.1.  

In Figure 4.1, system operation data and working environment data are collected from 

the machine embedded sensors, which are represented as a series of numbers in the 

system monitoring files. These numbers can be temperature, voltage, current, and gas 

concentration, where data pre-processing is necessary before model building. 
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Furthermore, the data collected from system monitoring files is not enough to present 

the comprehensive aspects of a working environment (Chong and Kumar, 2003). In 

this research, extra working environment data is sensed and collected using an IoT 

data collecting platform. This IoT platform is structured on single-board computers, 

such as Raspberry Pi and MBed devices, to connect sensors (Min et al., 2007, Zhou et 

al., 2017, Risteska Stojkoska and Trivodaliev, 2017), and the target AM system. This 

connection builds a wireless data sensing and collection network (Pereira et al., 2018, 

Yashiro et al., 2013). 

 

Figure 4.1 Multi-source data sensing and collection using IoT for an AM process 

Besides, product design CAD models can be shown as various formats depending on 

CAD design software and saving templates (Diegel et al., 2010, Hällgren et al., 2016). 

By converting process, these design CAD models are converted to STL format, which 

has mentioned in the chapter 2. To obtain design-relevant information, such as 

geometric information, spatial location information, spatial proportion information, 

these design CAD models need to be analysed by software, such as SolidWorks, 

Autodesk CAD, or AM software (Han et al., 2000, Babic et al., 2008). The details of 

data requirements and data sources are introduced in next section. 
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4.2.2 Hardware Setup of Data Sensing and Collection for the Target 

System 

In this project, to validate the above data sensing and collection approach, data was 

collected from a real-world AM process, EOS P700 (a SLS system) which is 

descripted in last chapter. As mentioned before, the data is collected from four main 

data resources, part design, working environment, process production, and material. 

This data is collected through three collection methods in the project, system 

monitoring files, IoT data collecting system, and product design CAD models. This 

section will show how the data is collected and the details of collected data.  

 System monitoring file 

The EOS P700 system automatically generates two monitoring files in each build. One 

file, called Job file, recorded parameter settings of each process. This file can be 

viewed by a parameter view software (EOS-Formats) (Tomsoftware, 2015), which is 

shown in Figure 4.2.  

 

Figure 4.2 Parameter setting features viewed by EOS-Formats software 

By using this software, seven parameter setting data were collected from the Job file, 

maximum and mimmum value of dispenser, recoater speed, power of laser for 

sintering, scan speed of laser for sintering, scan space of laser for sintering, and scan 

angle between each layer. The details of the data is shown in Table 4.1 which the data 

attribute name and description. This data was typically given by system technicians 
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before starting production process, which was not changed during process. However, 

technicians would change some parameters between builds depending on working 

condition. This data was categorised into a build-level dataset which means the data 

is considered as the same value for each build.  

Table 4.1 Data description of Job file 

Data attributes Data description 

DispenserMax The maximum value of dispenser measured in ‘%’. 

DispenserMin The minimum value of dispenser measured in ‘%’. 

RecoaterSpeed The recoater speed measured in ‘mm/mim’. 

HatchPower The power of laser for sintering measured in ‘%’. 

HatchSpeed The scan speed of laser for sintering measured in ‘mm/s’. 

HatchWidth The scan space of laser for sintering measured in ‘mm’. 

 

Also, during each production process, the system automatically generated another 

monitoring file, called Report file, which included eleven production process data 

attributes. This data was collected for every production layer by various sensors that 

are embedded within the system, such as working time of each layer, laser sintering 

time and cumulative recoating time, frame temperature, chamber temperature, 

platform temperature, scanner temperature, and oxygen level, which the details of the 

data is determined in Table 4.2. 

Table 4.2 Data description of Report file 

Data attributes Data description 

ChamberTemperature The building chamber temperature measured in ‘°C’. 

FrameTemperature front The front-frame temperature measured in ‘°C’. 

FrameTemperature back The back-frame temperature measured in ‘°C’. 

FrameTemperature left The left-frame temperature measured in ‘°C’. 

FrameTemperature right The right-frame temperature measured in ‘°C’. 

PlatformTemperature The working platform temperature measured in ‘°C’. 

ScannerTemperature The scanner temperature measured in ‘°C’. 

PyrometerTemperature The Pyrometer temperature measured in ‘°C’. 

O2Level The oxygen percentage in the working chamber measured in ‘%’. 

EnergyDeviation The energy deviation percentage of the system. 
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The data size of each Report File was different depending on heights of building 

products, which meant more layers that were produced, more significant of the data 

was generated. This data was classified into a layer-level dataset. These monitoring 

files were formatted as RPT files by the system, which were typical machine report 

files. In this case study, these RPT format files were converted to standard comma-

separated values (CSV) data format which was popular in many data analytics areas. 

Benefit from completed monitoring system in EOSP700, there was not any missed or 

abnormal data in the monitoring files. Table 4.3 shows a screen shot of an RPT file 

opened by CSV data format. Based on the data description and the data collection 

principle of system monitoring system, the data in Report files is collected once per 

layer, which is represented as the layer-level datasets. 

 IoT data collecting system 

A part of data cannot be collected from working environment and material condition 

only via system monitoring files. In this research, an IoT platform was introduced to 

sense and collect more data from working environment and material condition 

according to the data sensing and collection process in the section 4.2.1. This IoT 

platform was designed using the Raspberry Pi (RPI), and it connected multiple RPIs 

and the AM system via a wireless communication by an Ad-Hoc network. The 

network allowed nodes to be dynamically added and removed from the system.  

 

Figure 4.3 DHT11 sensor located in the material cylinder 

This system is entirely self-sufficient with no external infrastructure required. Notably, 

three RPIs were connected, and one of them was linked to the EOS P700 controlling 
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system. Several temperature and humidity sensors, the DHT11 Sensor were set up on 

this wireless IoT platform to collect external data and identify the type of used material. 

Figure 4.3 shows the working environment of a DHT11 sensor sensing the temperature 

and humidity of the material. The core coding of sending and receiving data by RPIs 

is shown in Appendix C.1 and B.2. Figure 4.4 shows one of three RPIs collecting the 

data of the sensors. 

 

Figure 4.4 An RPI collecting the data of sensors 

By using the RPI based IoT platform, more working environment and material 

condition data were sensed and collected, like lab temperature, humidity, controlling 

system temperature and humidity, material powder temperature and humidity, and 

proportion between new powder and recycled powder with the data attribute name and 

description is shown in Table 4.4. The IoT data is collected once per layer, which 

belongs to layer-level data.  

 

 



  

 

 

 

Table 4.3 Screen shot of an RPT file opened by CSV data format 



  

 

Table 4.4 Data description of wireless IoT system 

Data attributes Data description 

TempNewPowder The new powder temperature measured in ‘°C’. 

HumNewPowder The new powder humidity measured in ‘%’. 

TempRecyPowder The recycle powder temperature measured in ‘°C’. 

HumRecyPowder The recycle powder humidity measured in ‘%’. 

LabTemperature The lab temperature measured in ‘°C’. 

ControlTemperature The control system temperature measured in ‘°C’. 

ControlHumidity The control system humidity measured in ‘%’. 

 

 Product design CAD models 

Another build-level data was collected from product CAD models, which include product 

design information. In this research, the SLS system produce a wide range of parts and 

components from complicated mechanical parts to building models. 13 product design 

features were recognised from product design CAD models and shown in Table 4.5. More 

information about design-relevant data collection is introduced in the next chapter, section 

5.3. 

Table 4.5 Data decryption of design-relevant data 

Data attributes Data description 

AverFillingDegSingle The average filling degree of single part measured in ‘%’ 

FillingDegWhole The filling degree of the whole build measured in ‘%’. 

AverRateLWSingle The average rate between length and width of single part measured in ‘%’. 

AverRateLHSingle The average rate between length and height of single part measured in ‘%’. 

AverRateHWSingle The average rate between height and width of single part measured in ‘%’. 

AverRateLWWhole The rate between length and width of the whole build measured in ‘%’. 

AverRateLHWhole The rate between length and height of the whole build measured in ‘%’. 

AverRateHWWhole The rate between height and width of the whole build measured in ‘%’. 

BottomArea The bottom area measured in ‘mm2’. 

HeightBuild The entire height measured in ‘mm’. 

NoPart The number of printing products. 

HightPart The average height of produced parts. 

 

Overall the data for this research is collected from four main data resources. Three data 

collection methods are used, and two levelled data types are introduced, build-levelled and 
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layer-levelled data. The comprehensive data description including data attribute name, 

description, sources, categories, collection methods is displayed in Table 4.6. For integrating 

this data and building the model of AM energy consumption, the approach of multi-source 

data integration and energy consumption modelling is proposed in next section 

4.3 AM Energy Consumption Modelling using Multi-source 

Data 

In this research data is collected from the monitoring files, product design models, and the 

IoT data collecting system. Four main types of data, process operation data, working 

environment data, product design data, and material condition data, are created. 

4.3.1 Multi-source Data Integration 

In an AM process, it is obvious that these four multi-source data are contained with either, 

build-level or layer-level data. Specifically, during each build, process parameter settings 

are constant. The relevant data is collected once at each build. This data is classified into the 

build-level dataset.  Also, work environment, and material condition may keep changing all 

the time during a working process. This type of relevant data is collected many times during 

a build, specifically several times or once per layer, which is categorised into the build-level 

dataset. To integrate the multi-source data and build an energy consumption prediction 

model, this research proposes a hybrid approach shown in Figure 4.5. 

 



  

 

Table 4.6 Data description including data sources, categories, and collecting methods 

Data attributes Data description Data sources Build-levelled data Layer-levelled data Collection methods 

DispenserMax The maximum value of dispenser measured in ‘%’. 

Process operation 

Yes No 

Machine log 

DispenserMin The minimum value of dispenser measured in ‘%’. Yes No 

RecoaterSpeed The recoater speed measured in ‘mm/m’. Yes No 

HatchPower The power of laser for sintering measured in ‘%’. Yes No 

HatchSpeed The scan speed of laser for sintering measured in ‘mm/s’. Yes No 

HatchWidth The scan space of laser for sintering measured in ‘mm’. Yes No 

HatchAngle The scan angle between each layer measured in ‘°’. Yes No 

AverFillingDegSingle The average filling degree of single part measured in ‘%’ 

Product design  

Yes No 

Product design model 

FillingDegWhole The filling degree of the whole build measured in ‘%’. Yes No 

AverRateLWSingle The average rate between length and width of single part measured in ‘%’. Yes No 

AverRateLHSingle The average rate between length and height of single part measured in ‘%’. Yes No 

AverRateHWSingle The average rate between height and width of single part measured in ‘%’. Yes No 

AverRateLWWhole The rate between length and width of the whole build measured in ‘%’. Yes No 

AverRateLHWhole The rate between length and height of the whole build measured in ‘%’. Yes No 

AverRateHWWhole The rate between height and width of the whole build measured in ‘%’. Yes No 

BottomArea The bottom area measured in ‘mm2’. Yes No 

HeightBuild The entire height measured in ‘mm’. Yes No 

NoPart The number of printing products. Yes No 

HightPart The average height of produced parts. Yes No 

RateNewRecy The rate between new and recycle powder, measured in ‘%’. 

Material condition 

Yes No 

Wireless IoT platform 

TypeMaterial The type of material. Yes No 

TempNewPowder The new powder temperature measured in ‘°C’. No Yes 

HumNewPowder The new powder humidity measured in ‘%’. No Yes 

TempRecyPowder The recycle powder temperature measured in ‘°C’. No Yes 

HumRecyPowder The recycle powder humidity measured in ‘%’. No Yes 

LabTemperature The lab temperature measured in ‘°C’. 

Working 

environment  

No Yes 

ControlTemperature The control system temperature measured in ‘°C’. No Yes 

ControlHumidity The control system humidity measured in ‘%’. No Yes 

t_at_BNLA The time of each production layer measured in ‘s’. No Yes 

Machine log 

ChamberTemperature The building chamber temperature measured in ‘°C’. No Yes 

FrameTemperature front The front-frame temperature measured in ‘°C’. No Yes 

FrameTemperature back The back-frame temperature measured in ‘°C’. No Yes 

FrameTemperature left The left-frame temperature measured in ‘°C’. No Yes 

FrameTemperature right The right-frame temperature measured in ‘°C’. No Yes 

PlatformTemperature The working platform temperature measured in ‘°C’. No Yes 

ScannerTemperature The scanner temperature measured in ‘°C’. No Yes 

PyrometerTemperature The Pyrometer temperature measured in ‘°C’. No Yes 

O2Level  The oxygen percentage in the working chamber measured in ‘%’. No Yes 

EnergyDeviation The energy deviation percentage of the system. No Yes 



  

 

 

Figure 4.5 Multi-source data integration and modelling process 

It is evident that each build contains layers of differing numbers, largely depending on 

the height of the products. Therefore, the size of each layer-level dataset is varied, and 

consisting of format for every dataset is necessary. In this research, the clustering 

method is introduced to unify layer-level database format. 

The 𝐿𝑛𝑖
𝑗

 is a raw layer-level dataset for each build, where 𝑗  is the  𝑗𝑡ℎ  build (𝑗  is 

between 0 to 𝐽, which 𝐽 is the total number of builds). 𝑛 is the number of layers for 

each build, 𝑖 is the number of features collected for layer data. Because every build 

includes various layer number depending on the height of build, 𝑛 is different between 

different 𝑗. For every 𝐿𝑛𝑖
𝑗

. 

 𝐶𝐿𝑐𝑖
𝑗

= 𝑓𝐶(𝐿𝑛𝑖
𝑗

) (4.1) 

𝑓𝐶  is the clustering function to discover the number of 𝐶 centre points (𝐶𝐿𝑐𝑖
𝑗

). In each 

build, the layer-level raw dataset (𝐿𝑛𝑖
𝑗

) represents a dataset with the number of 𝑛 

indexes and the number of 𝑖 features. With the algorithm, each 𝐿𝑛𝑖
𝑗

 will be clustered 

into 𝐶 clusters, and minimize the total Euclidean distance, between cluster centre and 

each point. So, in each build, a centre points dataset (𝐶𝐿𝑐𝑖
𝑗

 ) can represent an original 

layer-level dataset. Then, combining all the 𝐶𝐿𝑐𝑖
𝑗

 into a resided dataset, representing as 

𝐿𝑖𝑐
𝐽

. The 𝐿𝑖𝑐
𝐽

 is one input part of the merged neural network that is structured as Figure 

4.10. The 𝐵𝑘
𝐽
 is a build-level database which is the other input part of the merged neural 

network, which 𝑘 is the number of features in the build-level database 
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4.3.2 Merge Neural Network for Multi-source Data Modelling 

This merged neural network (MNN) includes three sections, layer-level section, build-

level section and full-connected section, shown in Figure 4.6. The 𝐿𝑖𝑐
𝐽

 is the input of 

the layer-level section and the 𝐵𝑘
𝐽
 is the input of the build-level section. The full-

connected section is connected to the layer-level and build-level sections. 

Specifically, the neurons of a layer-level section are described using the equations (4.2): 

 𝑢𝐿 = ∑ 𝑤𝐿𝑖𝑐𝐶𝐿𝑖𝑐
𝑙
1  , 𝑦𝐿 = 𝑓𝑙(𝑢𝐿 + ∆𝑏𝑙) (4.2) 

𝑤𝐿𝑖𝑐  is the weight of each neuron on each layer-level section, l is the number of 

neurons on each layer-level section, 𝑦𝐿 is the output of each neuron, which is the input 

of next layer, 𝑓𝑙 is the activation function of a layer-level section, and ∆𝑏𝑙 is the bias.  

The neurons of a build-level section are denoted as a set of equations (4.3): 

 𝑢𝐵 = ∑ 𝑤𝐵𝐵𝑘
𝑏
1  , 𝑦𝐵 = 𝑓𝑏(𝑢𝐵 + ∆𝑏𝑏) (4.3) 

𝑤𝐵 is the weight of each neuron on each build-level section, b is the number of neurons 

on each build-level section, 𝑦𝐵 is the output of each neuron, which is the input of next 

layer, 𝑓𝑏 is the activation function, and ∆𝑏𝑏 is the bias.  

With the full connection layer, neurons are represented as: 

 𝑢𝑓 = ∑ (𝑤𝑓𝑖𝑦𝑙 + 𝑤𝑓𝑖𝑦𝑏)𝐹
1 , 𝑦𝑓 = 𝑓𝑓(𝑢𝑓 + ∆𝑏) (4.4) 

 

 

 



60 Multi-source Data Analytics for AM Energy Consumption Modelling 

 

 

Figure 4.6 Merged neural network structure 

𝑤𝑓𝑖 is the weight of each neuron on each full connection section, F is the number of 

neurons, which 𝐹 = ∑ 𝑓𝑖 , 𝑦𝑓 is the output of each neurons, which is the input of next 

layer, 𝑓𝑓 is the activation function of, and ∆𝑏 is the bias of full connection section. This 

hybrid approach fuses clustering and deep learning techniques, the levelled multi-

source data is integrated and modelling to predict target values. In next section, the 

proposed approach is validated by the real case of the SLS system. 

4.4 Evaluation of AM Energy Modelling using Multi-

source data 

In this section, results focus on validation of the proposed method. Several 

comparisons were raised for verifying performances of the proposed approach. Firstly, 
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this case study introduced three ML methods as benchmarks. In this section, results 

from three machine learning methods are presented using results from single level 

datasets and multi-level datasets. 

4.4.1 Results of Conventional Machine Learning (ML) Approaches 

These three ML algorithms are linear regression (LR), k-nearest neighbours (k-NN), 

decision tree (DT), which are popular in academia, industry, and business (Han et al., 

2011). LR was the first ML algorithm to predict energy consumption in this case study. 

Using this algorithm, outputs were expected to be a linear combination of inputs. In 

this project, results from the ordinary least squares regression were taken as the LR 

results. k-NN is one of the most straightforward supervised machine learning, which 

is applied to both classification and regression (Altman, 1992). DT is a first classifier 

structure like a flowchart. Every internal node, branch and leaf node of a DT represents 

an attribute, a result, or a class label, respectively, and the topmost node is called the 

root. Depending on attribute values, unknown tuple is classified within each leaf node 

storing the class information, which contains the classification rules of a DT models 

(Pedregosa et al., 2011). Five-fold cross-validation was used to avoid the flag problems 

like overfitting or selection bias (Kohavi, 1995). All these conventional machine 

learning algorithms were programmed in the Python language with Scikit-learn 

package, the codes are shown in Appendix B.3.  

The experiments were run with 3 types of input datasets for the conventional machine 

learning algorithms, layer-level datasets, build-level datasets, and combined datasets. 

For the layer-level datasets, the clustering was used for equalling the dimensions due 

to the layer number was different between each build. For clarity, the data was 

collected from over a hundred builds including thousands of product design models, 

and each build contained the different number of layers from 20 to 3500. Accordingly, 

the cluster number was set from 1 to 20 for the layer-level datasets. Figure 4.8 shows 

the MCC results of three conventional machine learning algorithms with which the 

layer-level data is used.  
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Figure 4.7 shows the MCCs of three ML methods. It is obvious to see the maximum 

MCC, the best MCC results, appear when the cluster number is one for all three ML 

methods. Comparing the three ML methods, linear regression obtained the best result 

(0.530) with k-NN close to it. DT did worst job for MCC which was 0.316. The worst 

result of DT is 0.032 which was also the lowest MCC of all results.   

Moving to RSME, Figure 4.8 shows the RSME of conventional ML methods. 

Generally, the trend of RSME is same as MCC when cluster number is changed. The 

minimum values of RSME of three ML methods were obtained when cluster number 

is set as one. The lowest RSME is get from k-NN (51.901 kWh/kg) which is also very 

stable when cluster number is changed. LR involved the largest RSME (1436.755 

kWh/kg) and when the cluster number is changed the results of LR changes 

dramatically. The RSME of DT is also stable however, the minimum RSME of DT 

(99.584 kWh/kg) is larger than the best results of other two results. The entire results 

are shown in the Appendix B.1. 

 

Figure 4.7 MCC of three ML methods using layer-level datasets 

 



Multi-source Data Analytics for AM Energy Consumption Modelling 63 

 

 

Figure 4.8 RMSE of three ML methods using layer-level datasets 

Next, the MCC and RSME of three ML methods by using build-level datasets are 

displayed in Table 4.7. Comparatively, the MCC of DT is the largest value (0.687), 

however, the RSME of DT is also the largest. The k-NN obtained the lowest RSME 

value (42.215 kWh/kg). And the MCC is 0.526 which is lower than best results about 

0.162. It is hard to tell which the best modelling method is by only using the build-

level dataset. The entire results are shown in the Appendix B.2. 

Table 4.7 MCC and RSME results of three ML method using build-level dataset 

 Linear regression Decision tree k-NN 

MCC 0.573 0.687 0.526 

RSME (kWh/kg) 115.056 102.704 42.215 

 

In order to combine the layer-level and build-level dataset and apply the conventional 

ML methods, the centre point values of the cluster (one cluster to represent layer-level 

data) was used to join with build-level data. Table 4.8 shows the results (MCC and 

RSME) of the combined datasets.  
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Table 4.8 MCC and RSME results of combined datasets 

 Linear regression Decision tree k-NN 

MCC 0.607 0.691 0.541 

RSME (kWh/kg) 86.822 59.585 44.168 

 

All these three ML methods have improved by integrating the layer-level and build-

level datasets, especially the RSME of DT has reduced about 50%. Overall, comparing 

these three methods, it is difficult to say which one is the best method for modelling 

the target AM system energy consumption. Considering all the results, the highest 

MCC is 0.691 which the DT was applied, and the combined datasets were used. And 

the lowest RSME is 42.215 kWh/kg which the k-NN was applied and the build-level 

datasets were used.  

4.4.2 Results of the Multi-source Data Modelling 

In this section, the results of proposed approach are presented. Results using the layer-

level dataset and considering the number of clusters from 1 to 20 are shown in Figure 

4.9. An artificial neural network was applied as the prediction model. Parameter 

settings of the neural network are highly depended on different training and testing 

dataset. With a different dataset, neural network structures tended to be different for 

obtaining the best performance. All neural networks used two types of activation: (1) 

for the output layer, scaled exponential linear activation was applied, and (2) for the 

remaining layers, the ReLU activation was used. The mean squared error was used to 

represent the loss. Supported by a popular Python package, Keras, the Adam optimiser 

was used (LeCun et al., 2015b). The codes are shown in Appendix C.4.  
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Figure 4.9 Results comparison between a different number of the cluster 

With the different number of clusters represents the layer-level dataset, MCCs and 

RMSEs show an irregular pattern. The best result appears when choosing 4 clusters 

with the highest MCC (0.694) and lowest RMSE (32.306 kWh/kg). Also, the results 

of 3 and 5 clusters take the second and third best place. Specifically, with 3 clusters, 

the MCC is 0.687 and RMSE is 32.353 kWh/kg, and with 5 clusters, the MCC is 0.602 

and RMSE is 32.414 kWh/kg. It is also needed to be highlighted that the highest RMSE 

is 44.965 kWh/kg with only one cluster. When the number of clusters is increased 

more than 5, RMSEs start to increase. MCCs is reduced when the number of clusters 

is more than 4, and the lowest is 0.454 when 20 clusters are chosen. Moreover, when 

only using build-levelled datasets as input dataset the MCC is 0.753, and the RMSE is 

62.955 kWh/kg. It is interesting to know the prediction performance when integrated 

these two datasets by using the proposed method. 

Table 4.9 Results comparison applying MNN using the build-level dataset and layer-level dataset with 

different the number of clusters (3 to 5) 

 3 Clusters 4 Clusters 5 Clusters 

MCC 0.786 0.803 0.685 

RMSE (kWh/kg) 25.906 25.460 28.406 
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From Table 4.9, it appears that choosing to apply 4 clusters representing the layer-

level dataset prediction performance is the best. This case study uses 3 to 5 clusters as 

the layer-level input dataset separately. When 4 clusters represent the layer-level data 

and integrating with build-level data is used, the best result is obtained with the highest 

MCC (0.803), and lowest RMSE (25.460 kWh/kg). Comparing with all other results 

from any above input datasets and prediction models, this result is the best. 

4.4.3 Discussion 

According to the results from the last section, energy consumption of the AM process 

is predicted accurately by using the proposed method. A few interesting points are 

necessary to discuss from the results. Firstly, the prediction accuracy varies with 

different number of clusters. When layer-level data are clustered as 3 to 5 clusters, the 

best results are obtained. It is interesting to note that the AM production process can 

also be divided as 3, 4 or 5 energy phases regarding Baumers et al.’s (2011) research. 

This finding indicated that the clustering centre points are able to represent the entire 

production process. It also proves the correctness of Baumers et al.’s suggestion. 

Secondly, by using the ML algorithms, it is difficult to show that expanding input 

datasets can yield better results. With the results obtained by either datasets (layer-

level dataset, build-level dataset or both datasets), the deep learning based algorithms, 

including typical neural networks and proposed clustering based MNN, show merits 

compared to the results of benchmark algorithms in this case study. The deep learning 

methods have presented a good performance for building the relationship between the 

target and high dimension data input. However, with the integrated input datasets, 

typical ANNs cannot easily be applied to model the target values, while the proposed 

clustering based MNN structure is able to integrate different levelled datasets and 

predict AM energy consumption precisely. To build the predictive model of AM 

energy consumption, multi-source data cannot be applied entirely. Because some data 

is generated during the process, only the historical data is allowed to be used, such as 

working environment data. Therefore, the multi-source data have to be analysed, 

whilst considering the data sensing time point.  
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4.5 Summary  

The approach, proposed in this chapter, is based on a review of related research 

indicating the significant meaning of data-driven methods in industrial sustainability 

domain. In contrast to the existing published research, a hybrid approach has been 

proposed fusing IoT, clustering, and deep learning techniques. In this chapter, the 

multi-source data generated from an AM process are sensed and collected by IoT 

techniques. This data includes process operation data, working environment data, 

material condition data and product design data, which is categorised into two level 

datasets, layer-level dataset, and build-level dataset. By applying a clustering-based 

MNN to integrate this multi-level multi-source data, the AM energy consumption is 

predicted accurately. Comparing with other research regarding AM energy 

consumption analysis, this method can predict the energy consumption of each 

production rather than measure a range of energy usage, which provides an accurate 

value of energy consumption. In addition, this approach is suitable for not only one 

AM technology, but also other typical AM technologies. In the actual industrial 

scenario, this can be very helpful to implement data analytics when the multi-source 

data is collected. In the next chapter, the multi-source features are analysed for 

determining the energy consumption prediction method.  



  

 

Chapter 5 Design-relevant Data 

Analytics for AM Energy Consumption 

Prediction 

5.1 Introduction  

To recap within the standard data generation of AM processes, four primary datasets 

can be generated and collected; process operation dataset, design-relevant datasets, 

working environment dataset, and material condition dataset. In the previous chapter, 

the energy consumption model was built based on this multi-source data. However, 

the multi-source data cannot be used entirely for the prediction, as working 

environment dataset is generated during the process. Design-relevant dataset plays a 

significant role in the model built in multi-source data, and it is generated before the 

production. It is well known that the design-relevant data has the highest randomness 

compared with the other three primary datasets. In addition, according to the interview 

held with the AM technicians, the design-relevant information changes in every built. 

The data values can be significantly different when the location and orientation of each 

part changes. However, there are currently no comprehensive guidelines for AM part 

designer and operators to optimise their design and ensuring decisions. The input data 

is decided before the production, and the predictive energy consumption can be known 

before the system starts. With the help of the proposed energy consumption prediction, 

the energy is able to be controlled by changing the part designers’ and process 

operators’ design and decision, in terms of optimising the design-relevant data.  
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The design information based prediction approach relies on the modelling introduced 

in chapter 4. In Section 5.2, the multi-source features are analysed first to determine 

the critical features for energy consumption. By comparing correlation between these 

impacts features and energy consumption, design-relevant features are selected for 

AM energy consumption prediction. Next, design-relevant data is analysed to attempt 

to identify patterns. After describing these patterns, the proposed AM energy 

consumption prediction approach is presented, in which design-relevant data is the 

main input dataset. A case study is provided in section 5.3, which validates the 

performance of the proposed approach. 

5.2 AM Energy Consumption Prediction  

This section will display the weights of each feature in the multi-source data model for 

determining the importance of each feature for AM energy consumption modelling. 

Considering the data generation time point and the weights of impact features, the 

design-relevant features are selected for AM energy consumption. Then, this 

introduces the design-relevant data collected from the target AM system (EOS P700) 

for determining the general patterns of design-relevant data in the SLS process. After 

the analysis, the AM energy consumption prediction approach is proposed. 

5.2.1 AM Energy Consumption Impact Feature Comparison  

The energy consumption model is based on the merged neural network of multi-source 

data, which the weight of each input feature can be extracted from the first layer of 

neural network. The weight is a representation of the importance for the target value 

that is energy consumption. Tables 5.1, 5.2, 5.3, and 5.4 show the weights used for 

each data source.  

Table 5.1 shows the weights of process operation features. The hatch speed has the 

largest weight compared to other process operation features, which means the hatch 

speed is the most significant feature in the process operation feature. The total weight 

is 0.1034 which is lower than the average weight compared to other classes of features. 

The data of these features is decided before the production. From the interview of 
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technicians, these decisions are basically based on the manufacturer handbook which 

is generally fixed. Any change of these feature would need to be evaluated before it is 

implemented.   

Table 5.1 Weights of process operation features 

Feature name Weight Feature name Weight 

DispenserMax 0.0089 DispenserMin 0.0096 

RecoaterSpeed 0.0134 RecoaterPower 0.0158 

HatchSpeed 0.0207 HatchWidth 0.0137 

HatchAngle 0.0072 Total weight 0.1034 

 

The weights of design-relevant features are shown in Table 5.2. The total weight is 

0.4635 which is the highest value of four classes of energy consumption impact 

features. In filling degree of whole build obtains the largest weight in the entire design-

relevant features. These features will be discussed in next section in terms of the reason 

of collection and more details of each feature. It is highlighted that the design-relevant 

features are determined before the production process.  

Table 5.2 Weights of design-relevant features 

Feature name Weight Feature name Weight 

AverFillingDegSingle 0.0345 AverRateLWWhole 0.0309 

AverRateLWSingle 0.0384 AverRateLHWhole 0.0323 

AverRateLHSingle 0.0390 AverRateHWWhole 0.0334 

AverRateHWSingle 0.0444 BottomArea 0.0396 

HeightPart 0.0368 HeightBuild 0.0386 

FillingDegWhole  0.0560 NoPart 0.0396 

Total weight 0.4635   

 

In this research, six material condition features considered with which the type of 

material has the largest weight in the energy consumption modelling. The total weight 

is only 0.0826 which is the smallest weight compared to other feature classes. The 

material condition is considered as the lowest impact for energy consumption in this 

research. However, there are much more material condition features are not considered 

in this research. In addition, the material condition does change much in the lab 
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environment, which will show much different results when the production is happened 

in real industrial environment.   

Table 5.3Weights of material condition features 

Feature name Weight Feature name Weight 

RateNewRec 0.0097 HumNewPowder 0.0114 

TypeMaterial 0.0184 TempRecyPowder 0.0129 

TempNewPowder 0.0137 HumRecyPowder 0.0106 

Total 0.0826   

 

The working environment features have obtained the second place of importance for 

energy consumption modelling, which the total weight is 0.3505. The weight of 

platform temperature is the largest weight. Although the working environment impact 

AM energy consumption significantly, it cannot be considered as the prediction input 

features. Because this data is generated during the production, the prediction is made 

for the energy consumption. From the weight values, the manufacturer should focus 

the analysis of heating system. These features can impact AM energy consumption 

without any doubt.   

Table 5.4 Weights of working environment features 

Feature name Weight Feature name Weight 

LabTemperature 0.0146 FrameTemperature left 0.0403 

ControlTemperature 0.0127 FrameTemperature right 0.0329 

ControlHumidity 0.0102 PlatformTemperature 0.0426 

t_at_BNLA 0.0114 ScannerTemperature 0.0269 

ChamberTemperature 0.0292 PyrometerTemperature 0.0264 

FrameTemperature front 0.0383 O2Level  0.0135 

FrameTemperature back 0.0367 EnergyDeviation 0.0145 

Total weight 0.3505   

 

By analysing the importance of energy consumption impact features. The design-

relevant features are focused for AM energy consumption prediction in this research. 

Before proposing the prediction method, the patterns of design-relevant feature is 

determined by analysing some examples of CAD model for the target system.  
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5.2.2 Pattern Analysis of Design-relevant Data 

A number of examples of the CAD model will be shown in the section. These examples 

are chosen from the system CAD model database that was created over the last two 

years. Figure 5.1 shows two examples of product CAD models. From these two 

examples, a sort of characteristics were identified and noted： 

1. The overall complexity of the part made by SLS can be very different. It could 

be a complicated mechanical part or a well-designed special model.  

2. The part design can consist of many different geometric features. Some of them 

are more of a standard shape and form, while others can be a one-off with unique 

features.   

3. In one build, to be more process efficient, it often consists of different designs 

in different shapes and forms designed by different designers, but to be made 

together in one build. 

 

 

Figure 5.1 Two examples of products made by target SLS system 

The two parts shown in Figure 5.1 were collected from the same production which is 

displayed in Figure 5.2 (a). In this production operation, totally, 17 items were 

produced where these 17 parts were originally from several orders. Generally, the 

number of parts made in every SLS production can be very different. In some cases, it 



Design-relevant Data Analytics for AM Energy Consumption Prediction 73 

 

made 3 to 4 parts in one built, while others can produce more than one hundred parts 

simultaneously. Figure 5.2 (b) shows another production example where 28 items were 

made together. Both builds shown in Figure 5.2 (a) show respective SLS production 

particularly from the viewpoint of product design and process planning.  

 

 

 

Figure 5.2 CAD models of another SLS production 

Observing and comparing above two SLS productions shown in Figure 5.2, a few 

points concerning production characteristics are noted: 
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1. Each SLS operation produces a wide range of parts and components in terms of 

both quantity and geometric profiles.   

2. The parts and components produced in each production can have very different 

product features represented in CAD models.  

3. The exact position (location) and rotation of every single part and component in 

the bed are determined by SLS technicians.  

4. The products are often randomly chosen from customers’ orders. This means for 

parts contained in a specific order, they can appear in different SLS productions. 

Based on the interview with a number of SLS technicians at School of Engineering, 

Cardiff University, it is often the case that technicians decide the type, quantity, 

position and rotation of parts and components to be produced in each production. Their 

decisions largely depend on the size of SLS building platform and technicians’ past 

experience. While critical process-related information, for example, concerning SLS 

system energy spending, has been highlighted in literature, technicians and designers 

have not really considered such critical inputs during their production planning. 

Therefore, it is imperative that such critical aspects of the process, e.g., energy 

consumption, can be reflected during design phase or in production planning.  

In the next section, the design-relevant data of AM process is focused as the main input, 

and based on the proposed energy consumption modelling approach, an energy 

consumption prediction method is proposed 

5.2.3 Energy Consumption Prediction based on Design-relevant 

Data 

In order to predict energy consumption for AM systems based on the design-relevant 

data, a deep learning based approach is proposed in this study. The proposed AM 

energy consumption modelling process is shown in Figure 5.3. 
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Figure 5.3 AM energy consumption modelling based on design-relevant data 

Firstly, the design-relevant data (𝐷𝑖 ) is used for predicting the process data. The 

process data includes various datasets, such as working environment dataset, process 

operation dataset (parameter setting data), and material condition dataset. Each of 

these datasets can also involve different data attribute. For example, the process 

operation dataset consists of the parameter settings of laser powder, scan space, scan 

speed, and scan angle. It is noticed that a different system may involve different 

attributes. More details of multi-source data analytics for AM energy consumption has 

been introduced and discussed in our previous paper (Qin et al., 2018). The first deep 

learning based prediction model 𝑓𝑝(∗)  is built using the design-relevant data and 

historical process data (𝐿𝑗), shown as follows:  

 𝐿𝑗 = 𝑓𝑝(𝐷𝑖) (5.1) 

 

 𝐸𝑈 = 𝑓𝑚(𝐷𝑖 , 𝐿𝑗) (5.2) 

By using the design-relevant data and the predicted multi-source data that predicted 

by equation (5.1), these two datasets consist a complete multi-source dataset which 

can be classified into two levelled datasets (Qin et al., 2018). Then the merged neural 

network 𝑓𝑚(∗) is used for integrating the predicted other multi-source data and design-

relevant data and predicting energy consumption (𝐸𝑈), which is donated as equation 
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(5.2). The details of the merged neural network ( 𝑓𝑚(∗)) are explained in the Chapter 

4. This energy consumption modelling is based on deep learning techniques, and two 

neural networks are applied in the approach. The design-relevant data is used as the 

primary input data. 

Generally, the design features of the AM process are defined by two group people, part 

designers and process operators (Chergui et al., 2018). The design-relevant data is then 

categorised as two datasets, part-design dataset, and process-planning dataset, which 

is donated as: 

 𝐷𝑖 = [𝑃𝐷𝑔, 𝑃𝑃ℎ] (5.3) 

where 𝑃𝐷 represents the part-design dataset which the number of 𝑔 features, 𝑃𝑃 is the 

process-planning dataset which the number of ℎ feather. 

5.3 Evaluation of AM Energy Consumption Prediction 

using Design-relevant Data 

This research has collected design-relevant data from August 2016 until April 2019, 

including over a thousand product CAD models and spanning more than a hundred 

productions. These parts are ordered by different companies and designed by various 

part designers. Each production process produces a wide range of parts in terms of 

geometric profiles. Also, these parts are placed in different locations with various 

orientations which are generally determined by operators. These decisions normally 

depend on system operators’ experiences of AM process planning. It is obvious that 

every build of this AM process can be very different, in terms of not only the part 

number and geometric profiles but also the process planning factors, such as part 

position and rotation. In this section, the design-relevant data used in the target system 

was used for building energy consumption modelling. The performance of the 

proposed model was compared to the one of multi-source data modelling and 

benchmarks.  
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5.3.1 Design-relevant Data Description  

In this case study, several design-relevant features were extracted to describe the 

produced models. The original data of these design-relevant features was extracted 

from the CAD models. To recognise these features, an AM analysis software was 

applied in this case study, called Autodesk Netfabb. The user interface of the software 

is presented as Figure 5.4. The CAD models shown in the figure were built on 15th 

September 2017. The whole production had 26 different part which were ordered by 

five different companies or organisations. As discussed in last section, the parts built 

in the same production involves significantly different patterns and characteristics.   

 

Figure 5.4 Autodesk Netfabb interface for collecting design-relevant data, example built on 15th 

September 2017 

In order to represent these patterns and characteristics, this research used Autodesk 

Netfabb software to analyse the models. From the software several data or information 

is extracted, such as the envelop size (three dimensions) of each part and the entire 

build, the filling degree of entire build, and the area size of the entire build. The 

interface of design information analysis is shown as Figure 5.5. The information can 

be exported as the datasets, which allows calculations to be done to obtain more 
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design-relevant data. The code of generation design-relevant data is shown in 

Appendix B.5.  

With this information, more design-relevant data is calculated, which includes average 

filling degree of a single part, average rates between three dimensions of a single part, 

and rates between three dimensions of a whole build. By using this programming, 

twelve design-relevant features are collected in this case study. The details of design-

relevant data is shown at Table 5.5. The entire design-relevant dataset is shown in the 

Appendix A.2. 

 

Figure 5.5 Information shown by Autodesk Netfabb 

These features were divided into two classes, the part-design-relevant features, and the 

process-planning-relevant features. The part-design-relevant features are determined 

by part designers, and the process-planning-relevant features are determined by 

process operators. Specifically, the part filling degree, the average geometry ratios of 

three dimensions, and the average part height are the part-design-relevant features. The 

totally filling degree of the whole build, the total geometry ratio of three dimensions, 

the bottom area, the height of the build, and the number of produced parts are the 

process-planning-relevant features. 
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Table 5.5 Design-relevant feature description. 

Part-design-relevant features Process-planning-relevant features 

Feature names  Feature description Feature names Feature description 

Part filling 

degree (%) 

The average ratio 

between the actual 

volume and the envelope 

volume of each part.  

Total filling 

degree (%) 

The ratio between the actual volume 

and the envelope volume of the 

whole build.  

Geometry ratio 

(wl) 

The average ratio 

between the width and 

length of each part.  

Total geometry 

ratio (wl) 

The ratio between the width and 

length of each part.  

Geometry ratio 

(hl) 

The average ratio 

between the height and 

length of each part.  

Total geometry 

ratio (hl) 

The ratio between the height and 

length of the whole build. 

Total geometry 

ratio (wh) 

The ratio between the width and 

height of each part.  

Geometry ratio 

(wh) 

The average ratio 

between the width and 

height of each part.  

Bottom 

area(cm2) 
The bottom area of the whole build. 

Height (mm) The height of the whole build. 

Part height 

(mm) 

The average height of 

each part. 
Number of Parts 

The total number of parts of the 

whole build. 

 

Additionally, the basic statistical information of this dataset is shown in Table 5.6, 

including the value of the maximum, minimum, average, and standard deviation for 

each design-relevant feature. These design-relevant features can represent the 

behaviours of the part designers and the process operators. Furthermore, the target AM 

process have included a wide range of design-relevant feature and energy consumption. 

It is interesting to note that the standard deviation of the ratio between the width and 

the length of the whole build is only 0.0303. The reason is that the AM process 

operators generally filled the bottom of the building plate entirely. When the build 

chamber is fully filled, the ratio between the chamber width and its length is about 

0.66. 

 



  

 

 

Table 5.6 The basic statistic information of the design-relevant data 

 
Part filling 

degree (%) 

Geometry 

ratio (wl) 

Geometry 

ratio (hl) 

Geometry 

ratio (wh) 

Part height 

(mm) 

Total filling 

degree (%) 

Total 

geometry 

ratio (wl) 

Total 

geometry 

ratio (hl) 

Total 

geometry 

ratio (wh) 

Bottom area 

(cm2) 

Height 

(mm) 

Number 

of Part 

Minimum 2.1237 0.0713 0.0319 0.2637 15.4958 1.4895 0.4664 0.0461 0.6448 1228.4154 29.5429 2 

Maximum  41.4006 7.8088 8.3898 28.1925 321.0955 22.7305 0.6530 0.8246 10.8877 2655.0434 570.6848 115 

Average  15.9732 1.1709 0.5615 3.3402 65.4453 8.6514 0.5361 0.2688 2.9369 2359.5735 180.2767 27 

1st Quartile 9.0960 0.6422 0.2527 1.5174 35.7571 4.9704 0.5244 0.1551 1.5724 2240.7884 100.8143 11 

Median 13.6305 0.9597 0.3965 2.2560 50.6216 7.6354 0.5374 0.2250 2.3545 2476.7168 153.3181 20 

3st Quartile 23.0468 1.2183 0.6034 3.3602 80.4060 11.3647 0.5443 0.3388 3.4840 2568.2663 228.1132 38 

Standard 

deviation 
9.1083 1.0374 0.8547 3.7172 48.0987 4.5723 0.0303 0.1642 2.1445 295.5327 114.5861 22 



  

 

5.3.2 Results of Energy Consumption Prediction based on Design-

relevant Data 

Based on the validation metrics that are shown in Chapter 3, the results of three energy 

prediction models, which are the ANN model using design-relevant data directly, the 

proposed model, and the multi-source data model, are displayed in Table 5.7. The 

proposed model is compared to the previous energy consumption prediction model 

(Qin et al., 2018) and the model that only uses design-relevant data. The MCC of the 

proposed energy consumption model that is introduced in this chapter is 0.7908, and 

RSME is 23.2163 kWh/kg. According to Energy consumption model shown in last 

chapter, the MCC of energy consumption prediction model using multi-source data is 

0.8030, and the RSME is 20.2271 kWh/kg. The comparison of the proposed model 

and the previous model reveal that, although the proposed method has not obtained the 

best results (Panda et al., 2016), it is still acceptable with only 0.0122 MCC and 2.9892 

kWh/kg RSME differences. 

It is highlighted that the RSME of the proposed model is over 50% less than the model 

using an ANN model to predict energy consumption directly. Furthermore, the 

proposed model is better than the performance of the benchmark models that were 

compared in the previous paper. The performances of benchmark models are shown 

in the previous paper, which the MCC and the RMSE of the Linear regression are 

0.607 and 115.056 kWh/kg; the MCC and the RMSE of the Decision tree are 0.691 

and 59.585 kWh/kg; the MCC and the RMSE of the k-nearest neighbour are 0.541 and 

44.168 kWh/kg, which has been obtained from last chapter.  

Table 5.7 The prediction results of the three models 

Prediction model MCC RSME (kWh/kg) 

ANN model using design-relevant data  0.7012 69.5732  

Proposed energy consumption prediction model 0.7908 23.2163 

Multi-source data predict energy consumption  0.8030 20.2271 

 

Moreover, the weights of the design-relevant feature are extracted from the merged 

neural networks. The weights displayed in Table 5.8. The most substantial one (0.1254) 
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is the weight of the total filling degree. Also, there exist other four weights which are 

higher than the average weight, the geometry of width and height, the bottom area, the 

height of the whole build, and the geometry of height and length. These five features 

are considered as the most critical features that can significantly impact the prediction 

of AM energy consumption in this case study.  

Table 5.8 The weights of the design-relevant features extracted from the merged neural networks. 

Part-design-relevant features Process-planning-relevant features 

Feature name Weight Feature name Weight 

Part filling degree (%) 0.0744 Total filling degree (%) 0.1209 

Geometry ratio (wl) 0.0828 Total geometry ratio (wl) 0.0667 

Geometry ratio (hl) 0.0841 
Total geometry ratio (hl) 0.0697 

Total geometry ratio (wh) 0.0720 

Geometry ratio (wh) 0.0958 
Bottom area(cm2) 0.0853 

Height (mm) 0.0832 

Part height (mm) 0.0793 Number of Parts 0.0854 

Total weight 0.4164 Total weight 0.58353 

 

5.3.3 Discussion 

Energy consumption was predicted using a deep learning-based prediction model 

developed based on previous work. The purpose of this chapter is to build the model 

by using design-relevant data. The data was collected before the AM process began, 

which indicates that AM energy consumption could be predicted prior to the 

production process commencing. The performance promotion of the proposed model 

is 1.52% MCC lower and 4.98% RSME higher compared to the results of Chapter 4. 

Although it did not match the performance of the multi-source data prediction model, 

it can predict the energy consumption before the process. The performance of the 

proposed model was worse than that of the multi-source data prediction model within 

a reasonable range of error. It performs better than the model that used neural networks 

directly and other benchmark algorithms used in the last chapter. AM energy 

consumption was predicted using a deep learning-based prediction model developed 

based on our previous work.  
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The data was collected before the AM process began, which indicates that AM energy 

consumption is predicted prior to the production process commencing. Comparing to 

our previous study, this modelling and prediction method proposed in this paper has 

been improved, which provides an opportunity to understand and reduce the AM 

energy consumption before the process.  

Generally, other relevant researches focused on impacts of one or two design-relevant 

features, such as thickness and part orientation, for AM energy consumption, and 

examined the relationship through the experimental focusing on certain values of 

features. However, with the rapid development of AM technology, AM tends to 

produce multiple parts in one production, especially for SLS and SLM systems 

(Chergui et al., 2018). It is hard to analyse the system only based on one or two features 

that descript the single part, like part orientation. Also, the AM produced part generally 

is complex because of the special structure and design. Therefore, it is necessary to 

consider more design features, which represent the design information precisely. In 

addition, only applying the experiment is difficult to validate this complex issue that 

should involve significant variants of each feature. Comparing to the other relevant 

researches reviewed in Section 2, the proposed approach involves more AM design-

relevant features, including part design features and process planning features, which 

are able to represent the design condition of multiple part production. These two types 

of design-relevant features are proposed based on the review of DfAM research, which 

stands on both perspectives of part designer and process operators. Furthermore, the 

proposed method was built and validated by a large sum of historical data, including 

thousands of CAD models in over a hundred builds. Different from other relevant 

studies, this method covers much more variables of each feature according to the actual 

production.    

Moreover, two types of design-relevant features, part design relevant features and 

process planning features, are used in this research, which have not covered the entire 

area of DfAM. Another future work in this research is to collect more design-relevant 

data. For example, material design can be one type of important feature as the multiple 

material AM production is a trend in both academia and industry (Thompson et al., 
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2016). Furthermore, testing experiments should be applied to validate the simulation 

results in the future 

5.4 Summary 

The focus of this chapter has been on the prediction of AM process energy 

consumption. With the model built in the last chapter and feature analysis of all energy 

consumption features, the design-relevant features are selected as the best optimiser 

for reducing the AM energy consumption. In this chapter, the design patterns are 

discovered from several examples of AM produced product, especially for multiple 

part production, such as SLS and SLM. It is more complicated than the single part 

production. Also, according to the literature of DfAM, the determined AM design 

patterns follow the essential characteristics of DfAM. 

Then, the design-relevant data based energy consumption prediction is proposed, 

which is exemplified in an SLS process. The energy consumption prediction approach 

based on deep learning technology has been proposed that uses design-relevant data 

as input. Design-relevant data is generated before the AM process begins and includes 

part design data and process planning data, which are determined by part designers 

and process operators. It appears that the proposed energy consumption prediction 

approach obtained results similar to those of the previous prediction model using 

design-relevant data. 



  

 

Chapter 6 Data-driven AM Energy 

Consumption Management  

6.1 Introduction 

In the last chapter, the AM energy consumption has been predicted before producing 

the parts only based on design-relevant data and historical multi-source data. With the 

help of energy consumption framework, modelling, prediction, and optimisation, 

managing energy consumption become possible. Modelling and prediction have been 

introduced in the last two chapters. 

The management process includes framework design, modelling, prediction, and 

optimisation. In the first section of this chapter, the entire data-driven AM energy 

consumption management is introduced. It reflects the essential information of 

previous chapters, and the energy consumption optimisation will be introduced in the 

second half. This research proposes a deep learning driven energy consumption 

method. The energy consumption is controlled by optimising the decisions of part 

designers and process operators using the proposed method. The optimisation method 

is validated on the target AM system. The results are displayed and discussed in detail.  

6.2 Data-driven AM Energy Consumption Management 

In order to manage AM energy consumption, it is necessary to model, predict, and 

optimise energy consumption. In this section, the modelling and prediction are 
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reflected to enhance the understanding of energy consumption. Furthermore, an 

optimisation method is introduced in next section.  

6.2.1 Process of Data-driven AM Energy Consumption 

Management  

Sufficient relevant data is needed to be collected and analysed to manage the energy 

consumption in the AM. The framework is necessary to be designed and structured for 

understanding the process, collecting and integrating the relevant data, and analysing 

to discover the information and knowledge. In this research, a framework was 

proposed in for the above aims in chapter 3. From the understanding of the AM, the 

AM production generates a multi-source data environment, which four types of 

features have been considered for energy consumption. To integrate this multiple 

levelled data for energy consumption modelling, a hybrid energy consumption 

modelling approach was proposed, which is based on the cooperation of IoT, clustering, 

and deep learning technologies. By analysing the weight of each input features in the 

energy consumption mode, the importance of each energy consumption impact feature 

is obtained. Comparing these features, the design-relevant feature and working 

environment feature are two types of most essential features.  

For the prediction, the input data need to be determined before production. The design-

relevant features are selected as the core input feature for the prediction. Based on the 

analysis of AM design-relevant feature and literature of DfAM, twelve design-relevant 

features are focused, which decided by part designers and process operators. These 

two types of design-relevant features are determined to rely on the relevant 

professionals’ experience and the capability of the AM system. This research proposed 

a prediction method which only uses the design-relevant features as the input of 

prediction, which is based on the multi-source data modelling. Only historical multi-

source data is used.  

The final step of the AM energy consumption management is to optimise the energy 

consumption by changing some features or parameters. Based on the reviewed 

literature and prediction method, the design-relevant features are focused as the 
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optimised features to manage energy consumption for the AM, which aims to reduce 

energy consumption to the lowest value. In the next section, a novelty energy 

consumption optimisation is proposed. 

6.2.2 Deep Learning Driven Particle Swarm Optimisation (DLD-

PSO)  

In this section, the energy consumption optimisation approach is proposed based on 

particle swarm optimisation (PSO). Among the various optimisation algorithms, PSO 

is a robust algorithm that is able to solve nonlinear multi-objective problems so as to 

help relevant professionals for decision-making (Bai, 2010, Moradi and Abedini, 2012, 

Chen and Huang, 2017). 

In this chapter, the AM energy consumption management is explained in detail 

including energy consumption modelling, prediction, and optimisation. For the 

optimisation, a novel deep learning driven PSO (DLD-PSO) algorithm is proposed to 

reduce AM energy consumption. The main factors in DLD-PSO, such as constant 

inertia weight and cognitive factors, are driven by the deep learning model. A case 

study validates the approach. In the case study section, four build examples are tested 

for proving the feasibility of the approach in detail in terms of result comparison, 

optimisation process and optimisation details. Moreover, only with a reasonable 

optimisation process, the AM energy consumption can be managed. To fill this 

research gap, an energy consumption optimisation is proposed based on the PSO. The 

design-relevant data is the target of optimisation, and the purpose of the optimisation 

is reducing the energy consumption. In the next two subsections, the proposed 

optimisation approach is introduced in detail.  

Generally, the searching speed of the particles is adjusted by equal parameters in 

conventional PSOs (Kennedy, 2011, Kim and Son, 2012). These parameters are 

defined by constant inertia weight and cognitive factors (Shi, 2001). However, since 

each relevant feature may have various types of relationship with the optimised target, 

it is necessary to introduce variable particle searching speed based on the correlations 

between each feature and the optimised target. Deep learning, as an advanced machine 
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learning technique, has shown its merits in prediction modelling based on high-

dimensional and large-scale data (LeCun et al., 2015a). It has also shown its sensitivity 

to correlate the relevant features, which is represented by neuron activity (Kim et al., 

2016). If this functional characteristic can be adapted to drive PSO, each feature will 

use a different searching speed in order to achieve the optimised value. If this is 

possible, it not only improves the convergence speed but also enhances the global best 

of PSO. 

 Objectives of DLD-PSO 

To initialize the particles, the restriction of each design-relevant feature is necessary 

to identify. Due to the high-relevance between these features and design, it is essential 

to identify the sources of the design. The purpose of managing the AM energy 

consumption is to minimise the energy usage of the AM process. Define the objective 

function as: 

 𝑀𝑖𝑛 [𝑓𝑚(𝐷𝑖 , 𝐿𝑗) ] (6.1), 

where the 𝑓𝑚()  is the merged neural network, and 𝐷𝑖 , 𝑎𝑛𝑑 𝐿𝑗  are referred to the 

function 5.2.   

 𝑠. 𝑡. ∶  𝑃𝐷𝑚𝑖𝑛
𝑚 ≤ 𝑃𝐷𝑚 ≤ 𝑃𝐷𝑚𝑎𝑥

𝑚  (6.2) 

where the 𝑃𝐷𝑚𝑖𝑛
𝑚  and 𝑃𝐷𝑚𝑎𝑥

𝑚  are the minimum and maximum of the part-design 

dataset that is determined by part designers. 

 𝑃𝑃𝑚𝑖𝑛
𝑛 ≤ 𝑃𝑃𝑛 ≤ 𝑃𝑃𝑚𝑎𝑥

𝑛  (6.3) 

The 𝑃𝑃𝑚𝑖𝑛
𝑛  and 𝑃𝑃𝑚𝑎𝑥

𝑛  are the restriction of the process-planning dataset that is 

determined by process operators. 

 Process of DLD-PSO  

The DLD-PSO is applied to solve the AM energy management and optimisation 

problem in this study. The optimisation process is shown in Figure 6.1.  
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Figure 6.1 The process of the DLD-PSO 

Before starting the optimisation, the particle restriction is initialized by part designers 

and process operators respectively. In the restriction, the initial particles are generated. 

The fitness values are calculated by the function (2). Then, the fitness value of each 

particle is compared for find the best values, lowest energy consumption, which is 

defined as the personal best (𝑝𝑏𝑒𝑠𝑡). Once the new personal best is targeted, the global 
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best particle (𝑔𝑏𝑒𝑠𝑡) is also found from the best particle’s personal best. After that, new 

particles in each interval is expressed by the following equation: 

𝑣𝑖(𝑡 + 1) = 

𝑊 ∗ (𝑤0 ∗ 𝑣𝑖(𝑡) + 𝐶1 ∗ [𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝐷𝑖(𝑡)] + 𝐶2 ∗ [𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝐷𝑖(𝑡)])  

(6.4) 

 

 𝐷𝑖(𝑡 + 1) = 𝐷𝑖(𝑡) + 𝑣𝑖(𝑡)  (6.5) 

where 𝑣𝑖  is the iteration velocity; 𝑤0  is the inertia weight; 𝐶1  and 𝐶2  are cognitive 

factors. These two factors determine the cognitive speed when the particle is personal 

best and globe best. 

 𝑤𝑘
𝑒 = [𝑤1, 𝑤2, … 𝑤𝐾] (6.6) 

 

 𝑊 = [𝑤𝑑
1, 𝑤𝑑

2, … 𝑤𝑑
𝑒]  (6.7) 

After training the deep learning model, weights of all neurons (𝑤𝑑
𝑖 ) are defined by the 

optimiser function. 𝑘 is the number of neurons on the first layer that is connected to 

the input layer. Each neuron on the first layer is fully connected to all the neurons on 

the input layer, which have the number of 𝑖 features. Each weight in the 𝑊  has 

represented the weight of a feature of the design-relevant dataset. The 𝑊 is based on 

the prediction model. It affects one of the most critical factors of PSO, the changing 

velocity 𝑣𝑖. Once the optimisation process achieves the maximum number of iterations, 

the process ends, and the global best of the particle is considered as the optimised 

results. In Section 3.3, the validation methods were presented. 
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6.3 Evaluation of DLD-PSO 

In this section, the proposed energy consumption management/optimisation method is 

validated by a feasibility study. It is highlighted that the main purpose of energy 

consumption management in this feasibility study is reducing energy consumption, 

which is based on most actual situations. 

Four build examples are selected in the feasibility study. According to the details of 

these four examples and system capability, the restrictions are determined before the 

optimisation process. The optimisation processing is shown as three types of 

optimisation, which the results are compared. At the end of this section, optimised 

design-relevant features are displayed. 

6.3.1 Introduction of AM Built Examples for Energy Consumption 

Management 

The actual energy consumption frequency histogram is displayed in Figure 6.2. It is 

noticable that over 80% of builds consume unit energy ranging from 120 kWh/kg to 

600 kWh/kg. However, energy consumption of each build shows differently even in 

this range. The standard deviation is 496.8285 kWh/kg which is larger than the average 

(about 450 kWh/kg).  Due to the computing capability, it is necessary to select different 

examples from the entire range of energy consumption for the simulation. In order to 

display the reasonable and convincing optimised results, this case study selects four 

examples that have different energy consumption, which were the Build No. 1 

(111.3531 kWh/kg), Build No. 2 (427.1967 kWh/kg), Build No. 3 (632.4544 kWh/kg), 

and Build No. 4 (1514.6010 kWh/kg). The design-relevant data of these four examples 

is shown in Table 6.1, and the CAD models are displayed in Figure 6.2. 

These four examples are selected from the entire order database on different date. The 

required parts were ordered by several different companies or originations, which are 

designer by different designers and CAD software. The CAD models generally 

converted to STL files, which do not require the source type of file. Design-relevant 

information of these four examples are various in every feature. 



  

 

 

 

Figure 6.2 The CAD models of the optimised examples 



  

 

 

 

 

Table 6.1 Examples used for energy consumption management in the different ranges of energy consumption 

Build No. 
Part filling 

degree (%) 

Geometry 

ratio (wl) 

Geometry 

ratio (hl) 

Geometry 

ratio (wh) 

Part height 

(mm) 

Total filling 

degree (%) 

Total 

geometry 

ratio (wl) 

Total 

geometry 

ratio (hl) 

Total 

geometry 

ratio (wh) 

Bottom 

area 

(cm2) 

Height 

(mm) 

Number 

of Part 

Energy 

(kWh/kg) 

Build No. 1 25.2876 1.2242 0.9478 1.2916 76.4834 12.6910 0.5360 0.3116 1.7202 2558.3574 215.2757 27 111.3531 

Build No. 2 17.1347 0.6876 0.1508 4.5597 31.1093 6.6278 0.5420 0.2178 2.4883 2466.3961 146.9372 30 427.1967 

Build No. 3 5.4582 0.9810 0.1761 5.5715 44.0349 4.9138 0.5401 0.6390 0.8452 2613.2170 444.4750 33 632.4544 

Build No. 4 41.4006 0.9381 0.2662 3.5245 21.1145 5.2255 0.5270 0.1190 4.4278 2476.9831 81.6000 26 1514.6005 



  

 

6.3.2 Feature Restriction 

Before introducing the results, the design-relevant feature restriction is examined. The 

restriction is theoretically determined by part designers, process operators, and process 

capability. According to the interviews of the part designers, and the operators of the 

target AM process, the historical data and process capability, the restriction of all 

features for the four examples are displayed in Table 6.3. It still gives the part designers 

and the AM process operators a wide range of choices to improve their decision for 

managing energy consumption, which is generally reducing energy consumption.  

Table 6.2 The restriction of the design-relevant features in the four optimised build examples 

Features Build No. 1 Build No. 2 Build No. 3 Build No. 4 

Part filling degree (%) 23.0 ~ 28.0 15.0 ~ 20.0 3.0 ~ 8.0  39.0 ~ 44.0 

Geometry ratio (wl) 1.00 ~ 1.50 0.40 ~ 0.90 0.70 ~ 1.20 0.60~ 1.10 

Geometry ratio (hl) 0.70 ~ 1.20 0.05 ~ 0.55 0.05 ~ 0.55 0.05 ~ 0.55 

Geometry ratio (wh) 1.00 ~ 1.50 4.30 ~ 4.80 5.30 ~ 5.80 3.30 ~ 3.80 

Part height (mm) 60 ~ 90 22.5 ~ 52.5 35.0 ~ 48.0 18.0 ~ 38.0 

Total filling degree (%) 10.0 ~ 15.0 5.0 ~ 10.0 3.0 ~ 8.0 3.0 ~ 8.0 

Total geometry ratio (wl) 0.30 ~ 0.80 0.30 ~ 0.80 0.30 ~ 0.80 0.30 ~ 0.80 

Total geometry ratio (hl) 0.10 ~ 0.60 0.10 ~ 0.60 0.40 ~ 0.90 0.05 ~ 0.55 

Total geometry ratio (wh) 1.50 ~ 2.00 2.20 ~ 2.70 0.60 ~ 1.10 4.20 ~ 4.70 

Bottom area (cm2) 2000 ~ 3000 2000 ~ 3000 2000 ~ 3000 2000 ~ 3000 

Height (mm) 195 ~ 270 143 ~ 225 420 ~ 495  75 ~ 100 

Number of Part 15 ~ 35 20 ~ 40 23 ~ 43 16 ~ 36 

 

Moreover, some parameter settings of the neural networks and optimisation algorithms 

are determined before display the results. All neural networks used two types of 

activations: 1) for the output layer, scaled exponential linear activation was applied, 

and 2) for the remaining layers, the rectified linear unit activation was used. The mean 

squared error was used to represent the loss. Supported by a popular Python package, 

Keras, the Adam optimiser was used (LeCun et al., 2015b). Based on the dimension 

of input data, the participles pool size is 100, and the maximum number of iterations 

is 1000 for the PSOs in this paper (Röhler and Chen, 2011). Basic parameters of the 

conventional PSO, i.e., constriction coefficient 1 (𝑐1), constriction coefficient 2 (𝑐2), 
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and inertia weight (𝑤𝑜), are 2, 2, 0.748 respectively, which is commonly used in PSO 

applications (Yusup et al., 2012) 

6.3.3 Optimisation Results of DLD-PSO 

Before display the optimisation results, Table 7 shows the comparison between 

predictive energy consumption and the actual energy consumption for these four builds. 

The absolute average error of these builds is about 34.3513 kWh/kg, which is close to 

the RSME of the proposed model (23.2163 kWh/kg). The error will grow when energy 

consumption increases. The lowest prediction error (+4.9959 kWh/kg) is from Build 

No. 1, while the actual energy consumption is 111.3531 kWh/kg. The largest error (-

78.2030 kWh/kg) of these four examples is Build No. 4, while the actual energy 

consumption is 1514.6010 kWh/kg. 

Table 6.3 The comparison between the predictive and the actual energy consumption 

 Build No. 1 Build No. 2 Build No. 3 Build No. 4 

Actual energy consumption (kWh/kg) 111.3531 427.1967 632.4544 1514.6010 

Predictive energy consumption (kWh/kg) 116.3490 408.2854 597.1588 1436.3987 

Error (kWh/kg) 
+4.9959 

(+4.48%) 

-18.9113 

(-4.43%) 

-35.2956 

(-5.58%) 

-78.2023 

(-5.16%) 

 

Three types of optimisation results are presented depending on the decision of part 

designers and operators. The part-designer-oriented optimisation is for AM part 

designer only. The process-operator-oriented optimisation is to optimise the process 

operators’ decision. The designer-and-operator-oriented optimisation considers 

optimising the decisions of part designers and process operators. Figure 6.2, Figure 

6.3, Figure 6.4, and Figure 6.5 display the optimisation results of four build examples 

using the conventional PSO and the DLD-PSO. Among these optimisation results, the 

proposed PSO generally obtains better results that require lower energy consumption 

than the conventional PSO in smaller convergence time. 
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Figure 6.3 Part-designer-oriented optimisation result comparison between the conventional and the DLD-

PSO for Build No.1 

 

 

Figure 6.4 Process-operator-oriented optimisation result comparison between the conventional and the 

DLD-PSO for Build No.1 
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Figure 6.5 Designer-and-operator-oriented optimisation result comparison between the conventional and 

the DLD-PSO for Build No.1 

 

 

Figure 6.6 Part-designer-oriented optimisation result comparison between the conventional and the DLD-

PSO for Build No.2 
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Figure 6.7 Process-operator-oriented optimisation result comparison between the conventional and the 

DLD-PSO for Build No.2 

 

 

Figure 6.8 Designer-and-operator-oriented optimisation result comparison between the conventional and 

the DLD-PSO for Build No.2 
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Figure 6.9 Part-designer-oriented optimisation result comparison between the conventional and the DLD-

PSO for Build No.3 

 

 

Figure 6.10 Process-operator-oriented optimisation result comparison between the conventional and the 

DLD-PSO for Build No.3 
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Figure 6.11 Designer-and-operator-oriented optimisation result comparison between the conventional and 

the DLD-PSO for Build No.3 

 

 

Figure 6.12 Part-designer-oriented optimisation result comparison between the conventional and the DLD-

PSO for Build No.4 
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Figure 6.13 Process-operator-oriented optimisation result comparison between the conventional and the 

DLD-PSO for Build No.4 

 

 

Figure 6.14 Designer-and-operator-oriented optimisation result comparison between the conventional and 

the DLD-PSO for Build No.4 
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Table 6.5 shows the optimisation performance of the conventional and the DLD-PSO 

including the convergence speed, 𝐼𝑣 (iteration), and the lowest energy consumption, 

𝐸𝑙(wh/g). The average convergence iteration of the conventional PSO is 360 iterations 

which are significantly larger than the proposed PSO (114 iterations). With the help of 

deep learning driven weights, the proposed PSO is able to search the globe best faster 

than the conventional PSO which uses the constant cognitive factors to determine the 

convergence speed. It is interesting to note that in comparison with each optimisation 

based on the DLD-PSO, the part-designer-oriented optimisation obtains the best 

results within the minimal iteration, 82 iterations on average, and process-operator-

oriented optimisation have spent more time to get the best results, 134 iterations on 

average. Moreover, the DLD-PSO optimised energy consumption is generally lower 

than the conventional PSO optimised energy consumption, which is about 2.14% for 

the part-designer-oriented optimisation, about 6.62% for the process-operator-oriented 

optimisation, and about 3.40% for the designer-and-operator-oriented optimisation. 

 



  

 

 

Table 6.4 Comparison between the conventional PSO and DLD-PSO 

  Build No. 1 Build No. 2 Build No. 3 Build No. 4 

  𝑰𝒗 𝑬𝒍 (kWh/kg) 𝑰𝒗 𝑬𝒍 (kWh/kg) 𝑰𝒗 𝑬𝒍 (kWh/kg) 𝑰𝒗 𝑬𝒍 (kWh/kg) 

C
o

n
v

en
ti

o
n

a
l 

P
S

O
 

Part-designer-oriented 

optimisation 
713 51.5563 147 158.2691 493 316.1101 396 1187.2131 

Process-operator-oriented 

optimisation 
323 48.3003 139 135.4456 375 214.3041 611 850.5141 

Designer-and-operator-

oriented optimisation 
425 48.3733 355 120.8380 153 116.6745 188 769.9511 

D
L

D
-P

S
O

 

Part-designer-oriented 

optimisation 
147 50.9837 52 154.2734 85 314.3977 44 1089.6268 

Process-operator-oriented 

optimisation 
166 45.8434 72 109.7810 104 160.9628 192 718.8854 

Designer-and-operator-

oriented optimisation 
136 43.4054 166 100.4880 76 98.1448 132 717.8302 



  

 

6.3.4 Optimised Design-relevant Features 

Tables 6.6-6.9 show all optimisation results of the DLD-PSO which includes the part-

designer-oriented optimisation, initialized as 𝐼 , the process-operator-oriented 

optimisation, initialized as 𝐼𝐼, and the designer-and-operator-oriented optimisation, 

initialized as 𝐼𝐼𝐼. In addition, Tables 6.6-6.9 include another set of optimised result, 

initialized as 𝐼𝑉. Energy consumption of 𝐼𝑉 is calculated by the proposed prediction 

model through the optimised design-relevant features from 𝐼 and 𝐼𝐼. It is highlighted 

that the proposed PSO is not applied to generate 𝐼𝑉. Generally, the most substantial 

reduction of AM energy consumption appears in the designer-and-operator-oriented 

optimisation for these four build examples, which reduces the energy usage by 67.92%. 

Comparing between four examples, the most substantial reduction of AM energy 

consumption is on the Build No. 3, 83.57% energy usage is reduced in the designer-

and-operator-oriented optimisation. Furthermore, the largest average reduction of AM 

energy consumption reduction of three types of optimisation is 70.24% (Build No. 2). 

Also, energy consumption reduction of the optimisation 𝐼𝑉 is generally smaller than 

the designer-and-operator-oriented optimisation.   

In Table 6.6-6.9, the most considerable change of the optimised design-relevant feature 

is the total filling degree, which has changed 45.64% in the process-operator-oriented 

optimisation and about 38.43% in the designer-and-operator-oriented optimisation. 

The weight of the total filling degree (0.121) is also the largest compared to the weights 

of other features. Moreover, the changes in the part-designer-oriented and the process-

operator-oriented optimisation are generally more significant than the changes of the 

designer-and-operator-oriented optimisation. It is interesting to note that the changes 

in the optimised design-relevant-features grow when original energy consumption 

increases. Specifically, Build No. 1 cost the lowest energy consumption (116.3490 

kWh/kg), and the average change of all features is about 14.39%. In contrast, the most 

substantial feature change is Build No. 4, which is about 27.29%. The design-relevant 

feature optimisation process is shown in Appendix B.3 including 12 design-relevant 

features of four examples.



  

 

 

 

Table 6.5 The optimised results of Build No.1 

  
Part filling 

degree (%) 

Geometry 

ratio (wl) 

Geometry 

ratio (hl) 

Geometry 

ratio (wh) 

Part 

height 

(mm) 

Total filling 

degree (%) 

Total 

geometry 

ratio (wl) 

Total 

geometry 

ratio (hl) 

Total 

geometry 

ratio (wh) 

Bottom 

area (cm2) 

Height 

(mm) 

Number 

of Part 

Energy 

(kWh/kg) 

I 

Optimised 

results 
26.3859 1.2688 0.9897 1.2931 70.94 12.6910 0.5360 0.3116 1.7202 2558.3574 215.28 27 50.9837 

Difference +1.0983 +0.0446 +0.0419 +0.0015 -5.54 0 0 0 0 0 0 0 -65.3653 

II 

Optimised 

results 
25.2876 1.2242 0.9478 1.2916 76.48 14.0004 0.4606 0.2907 1.6993 2457.3249 252.52 22 45.8434 

Difference 0 0 0 0 0 +1.3094 -0.0754 -0.0209 -0.0209 -101.0325 +37.24 -5.0000 -70.5056 

III 

Optimised 

results 
25.1556 1.2020 0.9277 1.3054 79.13 13.9552 0.4469 0.2790 1.7620 2424.4020 225.95 19 43.4054 

Difference -0.1320 -0.0222 -0.0201 +0.0138 +2.64 +1.2642 -0.0891 -0.0326 +0.0418 -133.9554 +10.67 -8 -72.9436 

IV 

Optimised 

results 
26.3859 1.2688 0.9897 1.2931 70.94 14.0004 0.4606 0.2907 1.6993 2457.3249 252.52 22 48.1260 

Difference +1.0983 +0.0446 +0.0419 +0.0015 -5.54 +1.3094 -0.0754 -0.0209 -0.0209 -101.0325 +37.2443 -5 -68.2230 



  

 

 

Table 6.6 The optimised results of Build No.2 

  
Part filling 

degree (%) 

Geometry 

ratio (wl) 

Geometry 

ratio (hl) 

Geometry 

ratio (wh) 

Part 

height 

(mm) 

Total filling 

degree (%) 

Total 

geometry 

ratio (wl) 

Total 

geometry 

ratio (hl) 

Total 

geometry 

ratio (wh) 

Bottom 

area (cm2) 

Height 

(mm) 

Number 

of Part 

Energy 

(kWh/kg) 

I 

Optimised 

results 
16.0894 0.5962 0.3819 4.4716 37.74 6.6278 0.5420 0.2178 2.4883 2466.3961 146.94 30 154.2734 

Difference -1.0453 -0.0914 +0.2311 -0.0881 +6.63 0 0 0 0 0 0 0 -254.0120 

II 

Optimised 

results 
17.1347 0.6876 0.1508 4.5597 31.11 9.3045 0.5074 0.3162 2.3265 2714.9799 180.05 22 109.7810 

Difference 0 0 0 0 0 +2.6767 -0.0346 +0.0984 -0.1618 +248.5838 +33.11 -8 -298.5044 

III 

Optimised 

results 
16.6467 0.7105 0.1352 4.5853 36.07 8.9977 0.5169 0.2724 2.4418 2695.2499 165.63 25 100.4880 

Difference -0.4880 +0.0229 -0.0156 +0.0256 +4.96 +2.3699 -0.0251 +0.0546 -0.0465 +228.8538 +18.69 -5 -307.7974 

IV 

Optimised 

results 
16.0894 0.5962 0.3819 4.4716 37.74 9.3045 0.5074 0.3162 2.3265 2714.9799 180.05 22 123.9675 

Difference -1.0453 -0.0914 +0.2311 -0.0881 +6.63 +2.6767 -0.0346 +0.0984 -0.1618 +248.5838 +33.11 -8 -284.3179 

 



  

 

 

Table 6.7 The optimised results of Build No.3 

  
Part filling 

degree (%) 

Geometry 

ratio (wl) 

Geometry 

ratio (hl) 

Geometry 

ratio (wh) 

Part 

height 

(mm) 

Total filling 

degree (%) 

Total 

geometry 

ratio (wl) 

Total 

geometry 

ratio (hl) 

Total 

geometry 

ratio (wh) 

Bottom 

area (cm2) 

Height 

(mm) 

Number 

of Part 

Energy 

(kWh/kg) 

I 

Optimised 

results 
7.5168 0.7736 0.4717 5.5533 46.60 4.9138 0.5401 0.6390 0.8452 2613.2170 444.48 33 314.3977 

Difference +2.0586 -0.2074 +0.2956 -0.0182 +2.57 0 0 0 0 0 0 0 -282.7611 

II 

Optimised 

results 
5.4582 0.9810 0.1761 5.5715 44.03 7.8365 0.6876 0.4480 0.8012 2698.5380 435.46 29 160.9628 

Difference 0 0 0 0 0 +2.9227 +0.1475 -0.1910 -0.0440 +85.3210 -9.02 -4 -436.196 

III 

Optimised 

results 
4.1210 0.8763 0.2750 5.5370 44.96 7.3646 0.6292 0.4460 0.8084 2654.8710 443.05 30 98.1448 

Difference -1.3372 -0.1047 +0.0989 -0.0345 +0.93 +2.4508 +0.0891 -0.1930 -0.0368 +41.6540 -1.43 -3 -499.014 

IV 

Optimised 

results 
7.5168 0.7736 0.4717 5.5533 46.60 7.8365 0.6876 0.4480 0.8012 2698.5380 435.46 29 101.04134 

Difference +2.0586 -0.2074 +0.2956 -0.0182 +2.57 +2.9227 +0.1475 -0.1910 -0.0440 +85.3210 -9.02 -4 -496.1175 



  

 

Table 6.8 The optimised results of Build No.4 

  
Part filling 

degree (%) 

Geometry 

ratio (wl) 

Geometry 

ratio (hl) 

Geometry 

ratio (wh) 

Part 

height 

(mm) 

Total filling 

degree (%) 

Total 

geometry 

ratio (wl) 

Total 

geometry 

ratio (hl) 

Total 

geometry 

ratio (wh) 

Bottom 

area (cm2) 

Height 

(mm) 

Number 

of Part 

Energy 

(kWh/kg) 

I 

Optimised 

results 
39.5530 0.8958 0.0878 3.4442 27.71 5.2255 0.5270 0.1190 4.4278 2476.9831 81.60 26 1089.6268 

Difference -1.8476 -0.0423 -0.1784 -0.0803 +6.60 0 0 0 0 0 0 0 -346.7719 

II 

Optimised 

results 
41.4006 0.9381 0.2662 3.5245 21.11 7.4449 0.6627 0.3207 4.3755 2725.8123 112.66 32 718.8854 

Difference 0 0 0 0 0.00 +2.2194 +0.1357 +0.2017 -0.0523 +248.8292 +31.06 +6 -717.5133 

III 

Optimised 

results 
39.9526 0.9038 0.3158 3.6697 25.65 6.8276 0.7046 0.2283 4.3160 2721.7830 121.35 33 717.8302 

Difference -1.4480 -0.0343 +0.0496 +0.1452 +4.54 +1.6021 +0.1776 +0.1093 -0.1118 +244.7999 +39.75 +7 -718.5685 

IV 

Optimised 

results 
39.5530 0.8958 0.0878 3.4442 27.71 7.9975 0.7987 0.5500 4.4408 2987.9628 102.53 36 847.1742 

Difference -1.8476 -0.0423 -0.1784 -0.0803 +6.60 +2.7720 +0.2717 +0.4310 +0.0130 +510.9797 +20.93 +10 -589.2245 



  

 

 

6.3.5 Discussion 

In the validation of the optimisation performance, four build examples with various 

energy cost were examined in the case study. The design-relevant features were 

categorised as two classes: the part-design features, and process-planning features. For 

optimal results, each feature of these two classes was changed within restriction ranges 

that was determined by part designers and process operators. The restriction ranges in 

this case study were determined by part designers, process operators, and SLS process 

capabilities. It provided these groups of professionals a reasonable range in which to 

optimise decisions regarding the reduction of AM process energy consumption. 

Optimisation performance was shown through three types of optimisation oriented 

toward different professionals.  

Generally, the DLD-PSO model obtains the best results faster than conventional PSO 

method do, in terms of faster convergence speed and lower energy consumption. 

Moreover, the best results of this model were generally better than those of the 

conventional PSO model. The process-operator-oriented optimisation through the 

DLD-PSO model offered a significant improvement over the conventional PSO. It can 

be seen from the results that the weights of each feature in the deep learning-based 

prediction model represent the impacts of these features on the target value which is 

energy consumption in this study. Additionally, the weights driven by the deep 

learning-based model can help the PSO model find better results faster than 

conventional PSO model. The performance of the DLD-PSO model was not affected 

by the prediction model’s accuracy, but the convergence speed and result quality of 

the conventional PSO worsened as the error of the prediction model grew. 

In this case study, process-operator-oriented optimisation obtained better results than 

part-designer-oriented optimisation did. This may be caused by seven features being 

changed in process-operator-oriented optimisation, and one of them had the largest 

weight of all the features. Furthermore, designer-and-operator-oriented optimisation 

consumed the lowest amount of energy—an amount lower than that of part-designer-
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oriented optimisation and process-operator-oriented optimisation combined. This 

means that two types of design-relevant features and energy consumption are not 

independent from each other in this optimisation method. When an optimisation 

method accounts for all design-relevant features, the lowest possible energy 

consumption can be obtained. This requires the cooperation of AM part designers and 

process operators, which is the main principle of DfAM (Thompson et al., 2016). 

Though these two groups of professionals work separately, AM energy consumption 

can still be reduced using the proposed optimisation method. Currently, part designers 

and process operators may have not realised the relationship between energy 

consumption and these design-relevant features yet, when they made decisions. 

However, with the development of the research, these design-relevant features will be 

highlighted in the AM design software for reducing AM energy consumption in the 

future. 

6.4 Summary 

The focus of this chapter has been on the management of AM process energy 

consumption, which exemplifies the SLS process. The proposed approach is based on 

a review of related research, indicating the significance of DfAM and PSO in the 

manufacturing domain. In order to reduce AM energy consumption, the DLD-PSO 

approach is proposed to optimise design-relevant features. A case study showing the 

merits of the proposed approach was carried out based on SLS process data. It appears 

that the proposed energy consumption prediction approach obtained results similar to 

those of the previous prediction model using design-relevant data. For optimisation 

purposes, three types of optimisation oriented toward different groups of professionals 

were introduced. It was found that the DLD-PSO model yields a higher convergence 

speed and lower energy consumption than the conventional PSO. Four build examples 

were adopted to validate the proposed optimisation method. 



  

 

Chapter 7 Achievements and 

Conclusions 

Under the umbrella of Industry 4.0, the intelligent improvement of AM processes is 

crucial, especially in sustainability. In this PhD research, the AM energy consumption 

modelling, prediction and management, and advanced data analytics have been 

explored, which was implemented as an Industry 4.0 levelled application. The 

framework, modelling, prediction, and optimisation approaches for AM energy 

consumption are proposed in this research.  

This chapter begins with a summary of the main achievements of this research and 

finishes with the discussion and reflection of this PhD research to re-think and review 

the entire research process, and to discuss the possible application for thesis 

contributions.  

7.1 Achievements and Conclusion 

To summarise the research achievements, it is useful to revisit the original intentions 

of the research: 

The key objective of this research is to pave the way for AM energy 

consumption modelling, prediction, and management under 

Industry 4.0. 

As mentioned in abstract, the key purpose of this research is to model, prediction, and 

optimise AM energy consumption, thereby to manage it. This motivation was explored 
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in at the beginning of this thesis and is underpinned by a discussion of the background 

of Industry 4.0, industry sustainability and the current state of additive manufacturing 

and its energy consumption. Despite significant media and academics have paid 

attention on the growing potential, there has been little empirical research regarding 

the intelligent modelling, prediction, and management of energy consumption on AM 

processes in the age of Industry 4.0.   

To determine the state-of-the-art research, the literature review was provided the 

relevant technologies and relevant research, through which the research questions were 

developed within the overall aim of the research. Firstly, five state-of-the-art AM 

technologies were reviewed in detail, including working principles, schematic, support 

materials, and so on. The standard data generation, design for additive manufacturing, 

and process optimisation of the AM process were then discovered. With the 

understanding of AM, energy consumption and its impacts were examined in this 

chapter as well, especially for design-relevant features. At the end of this chapter, 

several advanced data analytics technologies were introduced and reviewed, which 

included data mining, machine learning, deep learning, and evolutionary algorithms. 

Based on the reviews of previous relevant research and study, modelling, predicting, 

and managing AM energy consumption to achieve the requirement of Industry 4.0 by 

using advanced data analytics technologies is theoretically feasible.  

Following the understanding of related works, a novel opinion of Industry 4.0 and 

manufacturing was introduced. Summarising various perspectives, the main concepts 

of future manufacturing have been identified to inform the research aim. In common 

with the entire industry, there was a gap between recent industry and the achievement 

of Industry 4.0. With this finding, a categorical classification of Industry 4.0 was 

presented, which identifies how different intelligence level technologies were acted 

within three automation of production systems. From this classification, it was clear 

that the future of current manufacturing was developing in the direction of Industry 

4.0. Base on this guidance, the research targeted on AM energy consumption analysis. 

In order to build a smarter AM process, which can model, predict, and manage energy 

consumption intelligently, a framework was proposed. This framework included four 

different layers, which covered the entire data analytics process, from data collection 
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to knowledge implementation. This chapter answered the research question 1, which 

was shown in chapter 1.  

To collect and integrate multi-source data from AM systems, an IoT based data sensing 

and collection method was provided based on the standard AM data generation process. 

Four datasets were collected, which were shown as various data format and structure. 

Relying on the domain knowledge and clustering technology, a hybrid multi-source 

data integration, and modelling approach was proposed in this chapter, fusing IoT, 

clustering, and deep learning techniques. A case study was carried out based on SLS 

process data collected, which has shown the merits of the proposed approach. 

Experimental results indicated that the proposed approach tended to yield better 

performance when integrating the multi-level multi-source data. Especially, 

comparing with other research regarding AM energy consumption analysis, this 

method can predict the energy consumption of each production rather than measure a 

range of energy usage, which provided an accurate value of energy consumption. In 

the actual industrial scenario, this can be very helpful to implement data analytics when 

multi-source data was collected. 

Among from all of energy consumption impact features, the design-relevant features 

were selected for predicting the energy consumption due to high relationship to energy 

consumption and optimisability. The design-relevant features were explored and 

discussed in chapter firstly, which a couple of AM build examples. The build examples 

were collected from the real AM production, which was with by different companies. 

The design-relevant features were examined as the complex and highly based on 

human’s experience and behaviours. An energy consumption prediction approach 

based on deep learning technology had been proposed that used design-relevant data 

as input. Design-relevant data was generated before the AM process begins and 

included part design data and process planning data, which were determined by part 

designers and process operators. It appeared that the proposed energy consumption 

prediction approach obtained results similar to those of the previous multi-source data 

prediction model. Energy consumption can be predicted before the process only based 

on the CAD models, which were designed and decided by part designers and process 

operators.   
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The proposed energy managing approach was inspirited by the understanding of AM 

energy consumption knowledge, which included framework, modelling, prediction, 

and optimisation. Apart from the proposed framework, modelling, and prediction 

approaches, a deep learning based energy consumption optimisation approach was 

proposed to optimise design-relevant features, which is call DLD-PSO. A case study 

showing the merits of the proposed approach was carried out based on SLS process 

data. Three types of optimisation oriented toward different groups of professionals 

were introduced. It was found that the DLD-PSO model yields a higher convergence 

speed and lower energy consumption than the conventional PSO. Four build examples 

were adopted to validate the proposed optimisation method. The best results were 

obtained to generate the recommendations for part designers and process operators. 

Finally, this approach was a data-driven approach which can also be developed to help 

other AM technologies. 

7.2 Discussion and Reflection 

This PhD research has answered all of the research questions raised in chapter one. 

The achievements and contributions have been highlighted in the last section. The 

concepts of Industry 4.0 inspired the research. After reviewing the main visions, 

concepts, and examples of Industry 4.0, there are gaps between the Industry 4.0 

levelled manufacturing system and current manufacturing system. This research firstly 

published a categorical classification which provided a roadmap to help develop an 

Industry 4.0 manufacturing system. 

In order to validate the feasibility of this roadmap, the AM process was selected as the 

target manufacturing system, which was one of the most representative high-value 

manufacturing systems. By reviewing the current research of AM processes, energy 

consumption analysis was focused on the main research issue. There was currently a 

need for research about how to model, predict, and manage energy consumption on 

AM systems precisely. Due to the complexity of AM systems, energy consumption is 

impacted by many features during the entire manufacturing phases, pre-process, 

building process, and post-process. This research focused on the building process 
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because of its uncertainty. However, the other two manufacturing phases also consume 

energy, which can be analysed as one future work. 

Energy consumption impact features were considered based on the data generation 

process of AM, which includes four primary datasets, process operation dataset, 

working environment dataset, design-relevant dataset, and material condition dataset. 

These four primary datasets can cover all the data collected during the AM processing. 

To collect more data, an IoT-based data sensing and collection system were designed 

and developed, comparing to the original monitoring system in the case study, the IoT 

system collected over 50% of the entire data. Based on the collected data, two energy 

consumption modelling approach were built with a better result compared with 

benchmarks. However, the methodology was only validated on one AM system, which 

was SLS due to the budget of this research. This research could validate the method 

on another AM system to prove the generality on AM, which can be considered as 

another future work. 

In order to manage energy consumption, this research proposed a design-relevant data 

based energy consumption modelling and prediction based on multi-source data 

analytics, especially the design-relevant data. Then, a deep learning based PSO was 

generated to optimise the design-relevant features. Part designers and process 

operators decided these features. Twelve features were extracted in the case study 

relying on the CAD models. This approach can be developed as software or an add-on 

package to help people to make their decisions, which can be one of the possible 

industrial applications from this research. However, the optimisation results are 

validated by the proposed model, which needs to be tested by real experiments. 

The proposed method is a data-driven approach which is highly dependent on 

historical data. Although different AM technologies may have different working 

mechanisms and principles, the approach in exploiting such data to facilitate process 

modelling and analytics remain similar. In addition, the data required in this research 

can be generally collected from other AM processes based on the method proposed in 

this study, or the collected data can be converted to the same data characteristic to 

match the input requirement. In practice, this research has been collecting the data 
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from one AM system for more than two years, including processing data, material 

condition information, and CAD model information. It will not only raise the cost of 

the research but also extend the research time to build the model based on another AM 

system. However, benefitting from the increasingly completed monitoring system and 

Internet of Thing (IoT) technologies, the AM system is collecting more and more data 

from the process and related objects. In the future, this method will be validated on 

other AM technologies to prove its generality. 

7.3 Conclusions 

In conclusion, the common theme throughout this research was to improve the AM 

system that promote the intelligentisation level of the AM system, in terms of 

analysing energy consumption. A framework was designed to provide a general guilde 

of how to analyse energy consumption by using advanced data analytics technologies. 

In order to solve the problem of multi-source data integration and modelling, this 

research proposed an approach for integrating AM multi-source data by using the 

technologies of clustering and deep learning. Then, the design-relevant data was 

focused, and the AM energy consumption was predicted. Furthermore, to reducing the 

AM energy consumption, a deep-learning driven PSO algorithm was proposed. In 

comparison with conventional PSO, the proposed PSO can obtain lower energy 

consumption with a short convergence process. This thesis has demonstrated the entire 

process of AM energy consumption modelling, prediction, and management. In the 

future, the AM will be increasingly employed in many industry fields. The research of 

AM energy will become increasingly important.   
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Appendix A Advanced Data Analytics 

Technologies 

In order to solve the industrial problems, advanced data analytics technologies must 

be well understood. Data mining, machine learning and deep learning are three of the 

most popular and useful advanced data analytics technologies, which are reviewed in 

this section. 

A.1 Data mining 

Data mining is one of the most popular technologies of the advanced data analytics. 

Data mining is also known as ‘knowledge discovery in databases (KDD) (Piateski and 

Frawley, 1991). In manufacturing, data is the most important communication carrier. 

The volume of data may increase at what can be deemed an abnormal rate. However, 

data application is usually limited in scope. Vast amounts of raw data is hardly used 

for manufacturing activities. It is described as ‘rich data but poor information’. From 

the 1990s, manufacturing began to introduce the data mining technologies for 

receiving valuable information (Lee, 1993). Since then, the application of data mining 

has always drawn manufacturing researcher’s attention. It became an indispensable 

technology for many areas of manufacturing, such as machining, assembly, production 

processing.  
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Figure A.1 Data Mining Processing in Manufacturing 

Typically, the process of data mining follows five stage process, which are Selection, 

Pre-processing, Transformation, Data Mining and Interpretation/Evaluation. By 

applying this process, the relevant knowledge is discovered from raw data (Fayyad et 

al., 1996). In the perspective of manufacturing field, the processing of data mining was 

defined differently. Several extra steps were included, which is shown in the Figure 

2.8 with seven steps. This process starts at the Domain understanding, which the 

current existing knowledge is employed to determine and clear the input and target 

features. Once the target has been confirmed, the raw data needs to be collected 

following the specific purposes. Then, in the step of Data cleaning and transformation, 

the collected data is cleaned without strange data, such as noise data, missing data and 

outlier. The cleaned data is also transferred into the required data format which is 

suitable for data integration and modelling. After the modelling, the results will be 

used for operating the controlling system. The feedback and the valuable information 

are also displayed and stored after the implementation. This information and 

knowledge will update the domain knowledge for future research (Choudhary et al., 

2008). 

A.2 Conventional machine learning algorithms  

Machine learning refer to a set of methods which can detect required patterns in data 

and the patterns are used to predict future trend, which can associate people to make 

the decision. Generally, machine learning is divided into two types of learning 
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approaches, the supervised learning approach and the unsupervised learning approach. 

The supervised learning is the most widely used machine learning approach in practice, 

including classification and regression. On the other hand, one of the best applications 

of unsupervised learning is the clustering. In this subsection, three supervised learning 

machine learning algorithms will be introduced which are Linear Regression (LR), 

Decision Tree (DT), and k-Nearest Neighbors (k-NN). 

1. Linear Regression (LR) is a linear approach to modelling the relationship 

between input and output values. The inputs can be single or multiple variables. 

There are usually two aims of LR, prediction and variation explanation. For the 

prediction, LR is applied to fit the predictive model to the response dataset and 

explanatory variables. When the model is developed, the predictive values are 

obtained by put the variables into the model. Another functional goal of LR is to 

explain the strength of relationship between the explanatory variables the 

response (target value), especially for determining the linear relationship. This 

function can also identify the redundant information of the response 

(Montgomery et al., 2012). A typical LR is described as following equations: 

 𝑦 ̂𝐿𝑅(𝑤𝐿𝑅, 𝑥𝐿𝑅) = 𝑤𝐿𝑅0 + 𝑤𝐿𝑅1𝑥𝐿𝑅1 + ⋯ + 𝑤𝐿𝑅𝑝𝑥𝐿𝑅𝑝 (A.1), 

where 𝑦 ̂𝐿𝑅 is the predicted attribute and 𝑤𝐿𝑅 = (𝑤0, 𝑤1, … 𝑤𝑝) is the weight for 

each input in the combination. Therefore, discovering the best set of w is the 

most fundamental job in this method. Three different algorithms can be used to 

search for the best set of weights: Ordinary Least Squares Regression, Ridge 

Regression and Bayesian Regression. To build the LR predictive model, several 

assumptions are made about input variables, target values and the relationship. 

The major assumptions are like, weak exogeneity, linearity, constant variance, 

independence, and lack of perfect multicollinearity.  

2. Decision Tree (DT) is one of the fundamental classifiers, which is structured 

like a flowchart. Every internal node, branch and a leaf node of a decision tree 

represents an attribute, a result, and a class label, and the topmost node is called 
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the root. Depending on the attribute values, the unknown tuple is classified 

within each individual leaf node storing the class information, which are the 

classification rules of a decision tree (Han et al., 2011).  

ID3 (Iterative Dichotomiser), C4.5 and CART are three decision tree algorithms, 

which approach the non-backtracking structure to ‘divide-and-conquer’ from top 

to bottom. This type of algorithm selects the ‘best’ attribute from all attributes 

by using an attribute selection measure, like information gain or Gini index. 

Therefore, the attribute selection measure is one of the features distinguishing 

the algorithms, which is also known as ‘splitting rules’. (The other feature is the 

attribute selection rule in the tree building.)  There are three frequently used 

attribute selection measures; information gain, gain ratio and Gini index. As the 

measure of ID3, the information gain requires the minimum information to 

classify the tuples, which means this measure finds a simple tree from the 

minimum number of tests (Quinlan, 2014).  

3. k-Nearest Neighbors (k-NN) is a very simple supervised learning algorithm for 

both classification and regression, which requires zero parameter setting. This 

algorithm searches the nearest test sample for specified training samples based 

on the distance metric, which Euclidean distance is a comment distance here 

(Danielsson, 1980): 

 
d𝑘𝑛𝑛(𝑥𝑖 , 𝑥𝑙) = √(𝑥𝑖1 − 𝑥𝑙1)2 + (𝑥𝑖2 − 𝑥𝑙2)2 + ⋯ + (𝑥𝑖𝑝 − 𝑥𝑙𝑝)2 (A.2) 

For the discrete variable, like text classification, the overlap metric or hamming 

distance is used for determining the distances (Norouzi et al., 2012). The 

hamming distance tracks the number of positions at the corresponding symbols 

is different between two strings. For example, the hamming distance between 

‘Cardiff2019’ and ‘Swansea2020’ is 2, where only the bold bytes are counted. 

Due to its simplicity, this algorithm is used to solve many different problems, 

such as metric learning, feature extraction, dimension reduction, decision 

boundary and data reduction (Muja and Lowe, 2009).    
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A.3 Deep learning 

Different to conventional machine learning, Neural Networks are inspired by networks 

of living neurons, which are shown as the systems of ‘neurons’.  These ‘neurons’ 

exchange the information between each other associating numeric connection weights. 

The weights are able to be updated by using the data, which represents the learning 

processing (Aleksander and Morton, 1990). A basic ‘neuron’ model consisted of three 

elements that are ‘serval connecting links’, ‘a linear combiner’ and ‘an activation 

function’, which is shown in Figure 2.9. 

 

Figure A.2 The ‘K’ nonlinear neuron model 

Every connecting link is characterized by the weight 𝑤𝑑𝑘𝑖, where 𝑘 represents neurons 

of the 𝐾 layer, and  𝑖 represents this connecting link. The linear combiner is used to 

add all of the weighted input signals. The activation function is able to define the 

output which is limited within an allowed amplitude range which is normally as [0, 1] 

or [-1, 1]. As shown in Figure 2.9, the model includes a bias (𝑏𝑑𝑘). This bias is used 

for changing the input of the activation function basic on the requirement of the 

function.  

In addition, neurons of ‘K’ layer are also described as a set of equations: 

𝑥𝑑𝑘1 

𝑥𝑑𝑘2 

𝑥𝑑𝑘𝑚 

... 

... 
𝑤𝑑𝑘1 

𝑤𝑑𝑘2 

𝑤𝑑𝑘𝑚 
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𝑏𝑑𝑘 
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𝑦𝑑𝑘 𝑓𝑑 (·) 
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𝑢𝑑𝑘 = ∑ 𝑤𝑑𝑘𝑖𝑥𝑖

𝑚

𝑖=1

 (A.3) 

 𝑦𝑑𝑘 = 𝑓𝑑(𝑢𝑑𝑘 + 𝑏𝑑𝑘)  (A.4) 

Then the net input 𝑣𝑑𝑘 = 𝑢𝑑𝑘 + 𝑏𝑑𝑘, so: 

 𝑦𝑑𝑘 = 𝑓𝑑(𝑣𝑑𝑘)  (A.5), 

which the 𝑓𝑑(·)  is activation function, such as Threshold Function and Sigmoid 

Function. Generally, the neural network is constituted by neurons within the layers. 

There are three basic layered neural network classifications, single-layer feedforward 

networks, multilayer feedforward networks’ and recurrent networks.  

In order to build the neural networks model, the learning algorithm is necessary to be 

known as one of the most important components. The backpropagation is a popular 

learning algorithm of multilayers neural networks which includes one or many hidden 

layers to revise the weights. The learning process is two steps. At first the output values 

are received by the neural networks which is with initial weights from input values. 

Then, an error signal is obtained by comparing between the actual and desired outputs 

(Hecht-Nielsen, 1992). 

The neuron shown in Figure 2.9 is also seen as the neuron in hidden or output layer 

(the ‘𝑘’ layer) of a multilayer neural network. The inputs 𝑥𝑑𝑘 are also the outputs of 

the previous layer (the ‘𝑗’ layer), so they can be marked as 𝑦𝑑𝑗. So the net inputs: 

 𝑣𝑑𝑘 = ∑ 𝑤𝑑𝑗𝑘𝑦𝑑𝑗

𝑗

+ 𝑏𝑑𝑘 
(A.6), 

and outputs of the ‘k’ layer, 𝑦𝑑𝑘 : 

 𝑦𝑑𝑘𝑖 = 𝑓𝑑(𝑣𝑑𝑘) (A.7), 
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where 𝑓(·) is activation function. Generally, the activation function is non-linear and 

differentiable, therefore, the logistic function or sigmoid function is applied, which is: 

 
𝑓𝑠𝑖𝑔(𝑧) =  

1

1 + 𝑒−𝑧
 (A.8), 

which can be differentiated by 𝑧 , 

 𝜕𝑓

𝜕𝑧
(𝑧) = 𝑓(𝑧)(1 − 𝑓(𝑧)) (A.9) 

From the equation (1), actual outputs of ‘k’ layer is calculated. Comparing with the 

desired output, the error is obtained by using the squared error function: 

 
E𝑑𝑘 =

1

2
(O𝑑𝑘 − 𝑦𝑘)2 (A.10), 

where the E𝑑𝑘 is the squared error, the O𝑑𝑘 is the desired outputs of ‘k’ layer. The 

reason of the factor 
1

2
 is to remove the exponent.  

The target of the backpropagation is received the corrected weight using a correcting 

value (∆w𝑑𝑗𝑘). The ∆w𝑑𝑗𝑘 can be calculated from the gradient descent: 

 
∆w𝑑𝑗𝑘 =  −η

𝜕𝐸𝑑

𝜕w𝑑𝑗𝑘
 (A.11), 

where η is called learning rate. As the chain rule: 

 𝜕𝐸𝑑

𝜕w𝑑𝑗𝑘
=

𝜕𝐸𝑑

𝜕𝑦𝑑𝑘

𝜕𝑦𝑑𝑘

𝜕𝑣𝑑𝑘

𝜕𝑣𝑑𝑘

𝜕w𝑑𝑗𝑘
 (A.12), 

and 
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𝜕𝑣𝑑𝑘

𝜕w𝑑𝑗𝑘
=

𝜕

𝜕w𝑑𝑗𝑘
(∑ 𝑤𝑑𝑘𝑖𝑥𝑖

𝑚

𝑗=1

+ 𝑏𝑑𝑘) = 𝑦𝑑𝑗 (A.13) 

According to the equation (2), 

 𝜕𝑦𝑑𝑘

𝜕𝑣𝑑𝑘
=

𝜕

𝜕𝑣𝑑𝑘
𝑓𝑑(𝑣𝑑𝑘) = 𝑓𝑑(𝑣𝑑𝑘)(1 − 𝑓𝑑(𝑣𝑑𝑘)) (A.14), 

and according to the equation (3), 

 𝜕𝐸𝑑𝑘

𝜕𝑦𝑑𝑘
=

𝜕

𝜕𝑦𝑑𝑘

1

2
(O𝑑𝑘 − 𝑦𝑑𝑘)2 = 𝑦𝑑𝑘 − O𝑑𝑘 (A.15) 

The learning algorithm of backpropagation uses this error to adjust weights of all 

layers from the output to the input (Rumelhart et al., 1988). With the algorithm, the 

model can upgrade the weight of each neuron, which is considered as the learning 

capibility.  



  

 

Appendix B Additional Results and Datasets 

B.1 More Results of Different Clustering Quantity  

Table B.1 Conventional ML results using layer-levelled dataset in 1 to 20 clusters.  

 LR DT k-NN 

Clusters MCC RMSE (kWh/kg) MCC RMSE (kWh/kg) MCC RMSE (kWh/kg) 

1 0.5799 64.2580 0.6661 62.7905 0.5296 43.1550 

2 0.5720 100.3767 0.5254 143.3810 0.3944 49.1802 

3 0.2994 248.1262 0.0328 105.0982 0.5193 45.0737 

4 0.2888 794.9748 0.3055 129.5172 0.3145 51.8955 

5 0.2595 1436.7553 0.5466 103.3907 0.2605 48.3878 

6 0.0985 667.0310 0.0729 149.1981 0.2435 43.2525 

7 0.4247 210.7593 0.4254 104.5026 0.3127 46.7922 

8 0.0696 361.1748 0.5673 87.1092 0.1913 53.7604 

9 0.4892 394.7965 0.3872 100.5944 0.3658 45.8448 

10 0.4978 205.6747 0.3162 99.5842 0.5058 45.4644 

15 0.4070 124.8918 0.1816 133.5043 0.4756 48.0096 

20 0.3444 149.4259 0.3271 131.0927 0.4716 46.7576 
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Table B.2 Convectional ML results using merged dataset in 1 to 20 clusters. 

 LR DT k-NN 

Clusters MCC RMSE (kWh/kg) MCC RMSE (kWh/kg) MCC RMSE (kWh/kg) 

1 0.6069 115.0557 0.6903 59.5850 0.5403 54.2386 

2 0.4732 127.7264 0.1819 110.8348 0.4124 49.9239 

3 0.0741 372.3821 0.4412 97.7057 0.4203 44.1683 

4 0.3605 838.7617 0.2797 121.4489 0.3197 48.9306 

5 0.4024 1161.7069 0.6116 93.7099 0.3011 52.2378 

6 0.3753 407.5528 0.1867 103.3263 0.2351 45.8685 

7 0.4451 201.6085 0.4821 93.6605 0.4212 44.8881 

8 0.1365 257.9760 0.3262 98.5770 0.1723 52.3058 

9 0.5216 394.3280 0.4754 96.5295 0.2978 46.7471 

10 0.4331 142.1725 0.3000 90.4353 0.4005 47.0695 

15 0.4442 123.0823 0.1673 136.5256 0.3970 45.8066 

20 0.3878 148.8892 0.3353 139.3908 0.5093 45.1356 

 



  

 

B.2 Design-relevant Dataset 

Table B.3 The entire design-relevant dataset 

Part 

filling 

degree 

PartRate 

wl 

PartRate 

hl 

PartRate 

wh 

Part 

height 

Part 

Bottom 

area 

Total 

filling 

degree 

TotalRate 

wl 

TotalRate 

hl 

TotalRate 

wh 

Bottom 

area 
Heigh NumPart 

8.996 0.100 0.079 1.267 48.395 1286.173 8.280 0.541 0.450 1.202 2585.639 311 45 

20.317 1.294 0.673 1.923 59.242 468.536 17.022 0.553 0.264 2.096 2480.893 176.7 59 

25.118 1.211 0.366 3.310 35.281 548.913 15.891 0.538 0.428 1.258 2581.136 296.4183 115 

9.129 1.211 0.436 2.779 82.302 1012.383 6.892 0.528 0.528 1.000 2508.800 363.7444 41 

10.079 0.835 0.279 2.989 29.148 315.591 10.541 0.536 0.113 4.753 2477.000 76.6857 27 

9.344 0.681 0.355 1.920 93.241 2712.602 10.613 0.492 0.339 1.450 2018.679 217.2668 5 

24.622 0.330 0.547 0.603 89.987 864.191 10.765 0.544 0.570 0.954 2434.704 381.4096 34 

21.650 0.926 0.557 1.662 83.079 1199.230 4.868 0.520 0.691 0.752 2238.271 453.5429 13 

14.106 0.974 0.475 2.051 29.331 200.809 2.342 0.564 0.257 2.193 2518.024 171.9048 38 

9.183 0.473 0.392 1.206 51.016 229.531 2.143 0.488 0.175 2.782 1821.576 107.1787 12 

17.745 0.947 0.317 2.985 27.331 725.750 6.602 0.627 0.064 9.801 1953.420 35.7136 4 

11.252 2.949 1.658 1.778 90.741 437.839 9.125 0.515 0.187 2.748 2294.050 125.099 20 

7.814 1.036 0.222 4.676 46.106 859.766 7.477 0.536 0.106 5.066 2553.330 73.0429 10 

13.598 0.901 0.032 28.193 16.550 1876.734 7.335 0.472 0.073 6.486 2023.008 47.6253 4 

6.032 1.408 0.179 7.859 36.426 1771.598 4.678 0.543 0.212 2.556 2476.450 143.4911 11 

9.768 0.969 1.511 0.641 73.530 239.702 3.724 0.534 0.225 2.371 1748.363 128.8164 26 

7.118 1.948 0.722 2.699 68.395 803.790 4.722 0.537 0.458 1.173 2566.860 316.4426 32 

31.040 1.009 0.386 2.612 54.211 1279.488 21.154 0.543 0.227 2.397 2485.550 153.3029 15 

5.746 0.607 0.197 3.087 30.375 403.181 5.344 0.541 0.443 1.220 2577.383 305.9876 90 
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(Continued) 

23.177 1.108 0.147 7.549 26.208 1154.746 22.731 0.541 0.094 5.776 2498.567 63.6453 9 

30.754 0.434 0.083 5.216 40.082 1819.161 10.414 0.538 0.241 2.234 2544.425 165.581 5 

18.261 0.954 0.786 1.213 89.551 389.515 13.822 0.530 0.208 2.554 2512.897 142.9217 38 

5.176 5.483 0.919 5.964 45.653 333.555 4.301 0.542 0.106 5.110 2547.612 72.7074 28 

18.086 0.378 0.057 6.690 40.955 766.644 2.356 0.518 0.179 2.899 2369.075 120.8879 7 

27.745 0.762 0.595 1.281 41.925 169.351 12.206 0.534 0.124 4.326 2428.042 83.2623 43 

23.317 0.573 0.268 2.141 58.791 225.593 4.177 0.514 0.164 3.138 2200.487 107.2002 19 

11.772 0.803 0.196 4.092 32.609 806.868 11.196 0.540 0.081 6.685 2557.011 55.5837 13 

10.538 1.084 0.062 17.510 19.210 1950.530 6.553 0.483 0.046 10.455 1976.620 29.5429 2 

13.663 1.070 0.407 2.630 45.537 469.855 12.720 0.524 0.072 7.249 2473.824 49.6762 21 

16.026 0.791 0.425 1.862 72.216 512.652 11.349 0.550 0.254 2.163 2602.279 174.9661 33 

22.227 0.742 0.405 1.830 26.186 130.024 6.265 0.528 0.140 3.766 2532.076 97.1462 73 

9.824 0.786 0.248 3.162 76.304 1241.760 5.617 0.537 0.369 1.453 2549.203 254.5667 16 

26.159 2.295 0.783 2.930 56.990 514.920 14.096 0.545 0.122 4.448 2069.423 75.4667 11 

8.385 1.125 0.530 2.124 40.652 405.370 8.427 0.534 0.374 1.426 2576.257 259.9667 82 

34.795 0.829 0.257 3.225 24.324 674.949 8.280 0.532 0.166 3.198 2417.187 112.1035 23 

8.862 0.379 0.352 1.075 128.041 1985.207 6.999 0.542 0.426 1.270 2622.473 296.6568 16 

16.123 1.009 0.384 2.631 22.042 117.991 7.929 0.510 0.056 9.032 1968.721 35.0667 25 

13.800 0.839 0.988 0.849 192.074 1827.364 5.041 0.530 0.649 0.817 2562.885 451.2 17 

6.059 1.985 0.820 2.420 81.477 745.884 3.870 0.544 0.458 1.187 2533.781 312.7593 27 

11.751 3.001 0.467 6.421 52.093 1181.899 7.428 0.543 0.320 1.695 2655.043 224.0333 28 
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4.708 0.495 0.201 2.464 68.249 803.899 2.824 0.575 0.326 1.761 2384.846 210.1867 12 

23.028 0.424 0.593 0.715 51.030 316.801 10.175 0.551 0.164 3.358 1547.433 86.9333 16 

30.653 1.165 0.754 1.544 42.746 328.560 8.883 0.501 0.178 2.821 2146.171 116.2667 24 

21.372 1.180 0.415 2.840 42.666 387.249 13.951 0.539 0.182 2.966 2590.797 125.9643 32 

17.662 1.831 0.852 2.149 58.131 373.505 11.510 0.553 0.237 2.338 2413.347 156.2667 43 

10.035 0.690 1.936 0.357 321.096 1377.624 14.442 0.544 0.788 0.691 2612.598 545.8734 20 

8.050 0.460 0.560 0.822 220.490 2536.552 13.563 0.518 0.486 1.064 2501.766 338.1047 12 

10.184 1.828 0.931 1.964 76.592 611.148 7.236 0.540 0.156 3.462 2603.404 108.2667 18 

23.773 0.838 0.601 1.394 72.623 501.900 8.526 0.524 0.343 1.528 2461.853 235.0667 51 

14.673 0.981 0.644 1.524 42.967 340.892 7.565 0.543 0.240 2.259 2587.914 165.8333 55 

6.987 1.116 0.244 4.580 34.718 508.560 7.706 0.543 0.339 1.604 2593.979 234.0333 51 

12.034 1.057 0.610 1.734 106.513 2390.635 11.172 0.550 0.541 1.016 2585.512 371.02 24 

17.588 1.315 1.684 0.781 188.497 1110.563 9.346 0.532 0.825 0.645 2546.881 570.6848 54 

11.313 0.877 0.271 3.236 40.084 699.673 10.435 0.540 0.377 1.434 2582.768 260.5134 47 

20.027 0.895 0.512 1.750 80.049 758.624 4.545 0.502 0.318 1.576 2279.717 214.6667 12 

23.104 1.234 0.441 2.796 40.828 595.113 4.693 0.492 0.171 2.871 1917.705 107.0004 10 

5.572 4.003 0.330 12.132 28.436 595.757 4.908 0.554 0.171 3.234 2530.330 115.7513 28 

8.833 1.019 0.508 2.005 90.382 1489.528 4.994 0.549 0.690 0.796 2620.010 476.5526 35 

7.633 2.773 0.312 8.897 42.339 1795.021 7.732 0.534 0.181 2.957 2595.734 125.9132 15 

9.830 1.867 0.462 4.044 27.080 413.194 5.758 0.623 0.061 10.172 2241.628 36.7505 9 

37.750 1.234 1.045 1.181 76.988 610.567 18.498 0.531 0.248 2.144 2434.868 167.7095 41 

30.645 0.496 0.212 2.337 54.480 755.898 20.965 0.546 0.341 1.600 2433.545 227.8639 31 

4.840 0.770 0.301 2.558 125.028 5055.569 3.820 0.471 0.276 1.706 2219.167 189.5 2 
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9.317 0.940 0.532 1.765 81.886 1001.940 2.741 0.490 0.265 1.847 1705.939 156.5587 5 

11.877 0.703 0.334 2.103 38.109 706.549 13.949 0.560 0.217 2.582 2571.963 146.9601 22 

31.685 0.425 0.283 1.500 50.227 570.190 13.918 0.556 0.225 2.470 2582.399 153.3333 21 

31.869 0.395 0.326 1.213 55.269 289.325 6.025 0.478 0.242 1.975 1919.449 153.3333 11 

16.748 0.919 0.616 1.492 49.947 673.953 3.776 0.653 0.109 5.984 2195.976 63.2806 5 

7.147 0.453 0.335 1.350 106.278 1078.863 10.923 0.525 0.299 1.755 2435.601 203.8359 12 

4.232 0.604 0.473 1.276 150.794 1697.661 3.037 0.541 0.419 1.292 2644.929 292.9461 11 

41.401 0.938 0.266 3.524 21.115 246.114 5.226 0.527 0.119 4.428 2476.983 81.6 26 

10.135 0.997 0.438 2.275 49.123 525.833 3.538 0.596 0.131 4.552 1630.554 68.5052 6 

24.692 2.709 1.056 2.566 28.954 81.426 3.657 0.574 0.166 3.465 1228.415 76.6667 20 

4.303 1.107 0.315 3.511 70.744 1056.296 6.468 0.541 0.223 2.432 2632.619 155.1881 16 

6.220 0.554 0.253 2.188 82.425 1602.543 5.786 0.536 0.151 3.542 2442.111 102.1333 5 

10.378 0.366 0.150 2.437 47.562 1075.177 6.882 0.466 0.222 2.097 1603.289 130.4 9 

13.217 0.071 0.236 0.302 105.840 1552.359 12.974 0.560 0.460 1.216 2304.188 295.4197 44 

17.135 0.688 0.151 4.560 31.109 531.164 6.628 0.542 0.218 2.488 2466.396 146.9372 30 

20.108 1.924 1.210 1.590 66.160 601.926 11.101 0.588 0.323 1.822 2185.567 196.6667 20 

5.797 7.809 0.756 10.324 35.916 437.531 4.989 0.536 0.174 3.085 2567.034 120.202 42 

13.422 1.517 0.813 1.867 63.136 769.802 4.659 0.510 0.220 2.320 2038.235 139.0464 12 

13.207 1.104 0.493 2.237 43.060 799.276 4.211 0.524 0.148 3.548 2491.805 101.8667 10 

14.717 0.965 0.109 8.891 27.880 1034.999 12.748 0.494 0.118 4.189 2355.213 81.3938 14 

17.374 0.544 0.102 5.323 27.938 1100.316 4.852 0.604 0.305 1.983 2361.819 190.5333 13 

4.576 1.216 0.401 3.034 136.646 3153.981 3.942 0.547 0.312 1.751 2350.640 204.8 3 

Continue to next page



  

 

(Continued) 

19.163 2.929 1.253 2.338 107.565 1573.665 16.239 0.525 0.218 2.407 2260.758 143.0371 11 

25.288 1.224 0.948 1.292 76.483 478.774 12.691 0.536 0.312 1.720 2558.357 215.2757 27 

10.872 0.799 0.524 1.523 91.184 990.052 5.118 0.541 0.362 1.495 2622.536 251.9429 19 

11.523 0.949 0.293 3.244 61.684 1077.097 9.214 0.519 0.145 3.579 2356.059 97.6571 9 

19.438 0.332 0.251 1.322 47.645 609.267 5.034 0.609 0.164 3.713 1427.107 79.3829 7 

13.798 1.900 0.291 6.528 20.796 238.395 9.437 0.546 0.106 5.173 2559.432 72.291 50 

23.254 0.654 0.163 4.009 38.505 467.869 13.181 0.540 0.306 1.766 2362.726 202.2354 39 

7.056 0.383 0.270 1.416 106.029 1490.951 6.422 0.545 0.329 1.656 2634.065 228.861 11 

2.124 1.583 0.914 1.732 171.712 3201.548 1.490 0.547 0.293 1.863 2194.927 185.9428 3 

26.043 2.212 8.390 0.264 197.676 623.303 11.413 0.506 0.324 1.563 2332.575 219.7646 114 

24.305 0.361 0.378 0.956 43.829 432.394 9.464 0.537 0.219 2.446 2579.023 152.0788 34 

5.452 0.389 0.185 2.103 26.738 176.188 16.888 0.536 0.049 10.888 2586.627 34.2081 38 

37.607 0.322 0.504 0.638 52.552 360.427 8.368 0.528 0.296 1.783 2512.167 204.2029 81 

36.458 1.312 0.099 13.298 15.496 612.257 15.658 0.482 0.193 2.495 2110.806 127.8089 38 

28.504 1.161 0.318 3.651 27.250 335.289 15.157 0.517 0.153 3.386 2316.880 102.2667 46 

28.567 1.211 0.511 2.372 27.992 165.777 13.368 0.530 0.118 4.490 2102.161 74.3667 67 

5.458 0.981 0.176 5.571 44.035 2088.241 4.914 0.540 0.639 0.845 2613.217 444.475 33 

11.235 0.334 0.157 2.127 63.719 1329.322 5.059 0.540 0.466 1.159 2587.446 322.4 16 

6.059 1.985 0.820 2.420 81.477 745.884 3.870 0.544 0.458 1.187 2533.781 312.7593 27 

 



 

B.3 Design-relevant Feature Optimisation Process 

 

Figure B. 1 Bottom area and part quantity optimisation (designer-and-operator-oriented) process 

for Build No.1 

 

Figure B. 2 Filling degree of part and total optimisation (designer-and-operator-oriented) process 

for Build No.1 
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Figure B.3 Height of part and total optimisation (designer-and-operator-oriented) process for Build 

No.1 

 

 

Figure B. 4 Rate between height and length of part and total build optimisation (designer-and-operator-

oriented) process for Build No.1 
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Figure B. 5 Rate between width and height of part and total build optimisation (designer-and-operator-

oriented) process for Build No.1 

 

 

Figure B. 6 Rate between width and length of part and total build optimisation (designer-and-operator-

oriented) process for Build No.1 
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Figure B. 7 Bottom area and part quantity optimisation (designer-and-operator-oriented) process 

for Build No.2 

 

Figure B. 8 Filling degree of part and total optimisation (designer-and-operator-oriented) process 

for Build No.2 
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Figure B. 9 Height of part and total optimisation (designer-and-operator-oriented) process for 

Build No.2 

 

 

Figure B. 10 Rate between height and length of part and total build optimisation (designer-and-operator-

oriented) process for Build No.2 
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Figure B. 11 Rate between width and height of part and total build optimisation (designer-and-operator-

oriented) process for Build No.2 

 

 

Figure B. 12 Rate between width and length of part and total build optimisation (designer-and-operator-

oriented) process for Build No.2 
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Figure B. 13 Bottom area and part quantity optimisation (designer-and-operator-oriented) process 

for Build No.3 

 

Figure B. 14 Filling degree of part and total optimisation (designer-and-operator-oriented) process 

for Build No.3 
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Figure B. 15 Height of part and total optimisation (designer-and-operator-oriented) process for 

Build No.3 

 

 

Figure B. 16 Rate between height and length of part and total build optimisation (designer-and-operator-

oriented) process for Build No.3 
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Figure B. 17 Rate between width and height of part and total build optimisation (designer-and-operator-

oriented) process for Build No.3 

 

 

Figure B. 18 Rate between width and length of part and total build optimisation (designer-and-operator-

oriented) process for Build No.3 
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Figure B. 19 Bottom area and part quantity optimisation (designer-and-operator-oriented) process 

for Build No.4 

 

Figure B. 20 Filling degree of part and total optimisation (designer-and-operator-oriented) process 

for Build No.4 
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Figure B. 21 Height of part and total optimisation (designer-and-operator-oriented) process for 

Build No.4 

 

 

Figure B. 22 Rate between height and length of part and total build optimisation (designer-and-operator-

oriented) process for Build No.4 
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Figure B. 23 Rate between width and height of part and total build optimisation (designer-and-operator-

oriented) process for Build No.4 

 

Figure B. 24 Rate between width and length of part and total build optimisation (designer-and-operator-

oriented) process for Build No.4 

 



  

 

Appendix C Core Programming Coding 

C.1 IoT Platform Data Sensing and Collecting 

1. sense1GPIO=4   

2. GPIO2=24   

3. HOST= "10.2.1.10"   

4. PORT= 8889   

5. #Basic parameter setting   

6. s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)   

7. s.connect((HOST, PORT))   

8. SensorData=()   

9. #server connection   

10. #Temperature and humidity data collection   

11. def Get_Temp_Humid_Data(a):   

12.     import Adafruit_DHT #package Adafruit_DHT is used   

13.     sensor=Adafruit_DHT.DHT11   

14.     gpio=a   

15.     humidity, temperature=Adafruit_DHT.read_retry(sensor,gpio)   

16.     if humidity is None and temperature is None:   

17.         print ('Failed to Get Reading. Please retry')   

18.     else:   

19.         return temperature, humidity   

20. #Keep collecting data and send it to server    

21. while 1:   

22.     data=s.recv(1024)   

23.     print data   

24.     if data=='Get':   

25.         SensorData=Get_Temp_Humid_Data(sense1GPIO)   

26.         Sense2=Get_Temp_Humid_Data(GPIO2)   

27.         print 'Data Assigned: ', SensorData, ' and ', Sense2   

28.         if SensorData is None and Sense2 is None:   

29.             time.sleep(5)   

30.     string1=(SensorData, Sense2)   

31. s.close   
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C.2 Ad-hoc Wireless Network Data Receiving 

1. GPIO1=21   

2. GPIO2=20   

3. HOST = "10.2.1.10"              # Symbolic name meaning all available interfaces   

4. PORT1=8888   

5. PORT2 = 8889                    # Arbitrary non-privileged port   

6. s.listen(10)                    #function to deal with handling connections   

7. d.listen(10)   

8. #Parameter setting   

9. def createfile():   

10.     f=open(file, 'w')   

11.     writer=csv.writer(f, quotechar=" ")   

12.     writer.writerow(['Pi Number, Date and Time, Temperature 1 (*C), Humidity 1, Temperature 2 (*C), 

Humidity 2'])   

13. def writefile(pi, t1, h1, t2, h2):   

14.     f=open(file, 'a')   

15.     writer=csv.writer(f, quotechar= " ")   

16.     now=datetime.datetime.now()   

17.     writer.writerow([pi, now, t1, h1, t2, h2])   

18. def write_local_sensors():   

19.     temp1, humid1=Get_Temp_Humid_Data(GPIO1)   

20.     if temp1 is None: #and temp2 is None:   

21.         time.sleep(2)   

22.     temp2, humid2 = (0,0)   

23.     writefile(1, temp1, humid1, temp2, humid2)   

24. def clientthread(conn, pi):   

25.     import time                         #Send message to clients   

26.     conn.send('Get')                    #loop  so function does not terminate   

27.     print 'Getting'                     #receive from client   

28.     time.sleep(1)   

29.     data=conn.recv(1024)   

30.     if data is None:   

31.         time.sleep(2)   

32.         print 'were waiting'   

33.     print data   

34.     for char in '()':   

35.         data=data.replace(char, '')   

36.     temp1, humid1, temp2, humid2 = tuple(filter(None, data.split(',')))   

37.     return (data)   

38. #Receiving data from client RPIS   

39. while 1:#keep talking to client   

40.     createfile()   

41.     #wait for connection   

42.     conn1, addr1 = s.accept()   

43.     print 'Connected to ' +addr1[0]   

44.     conn2, addr2 = d.accept()   

45.     print 'Connected to ' +addr2[0]   

46.     while True:   

47.         write_local_sensors()   

48.         time.sleep(5)   

49.         data2=start_new_thread(clientthread, (conn2, 2))   

50.         time.sleep(5)   

51.         data1=start_new_thread(clientthread , (conn1, 3))   

52.         time.sleep(80)   

53.         print data2   

54. s.close()   

55. d.close() 
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C.3 Benchmark Algorithms 

1. #import packages (only important ones are shown here)   

2. from sklearn import preprocessing, cross_validation, svm   

3. from sklearn.preprocessing import MinMaxScaler   

4. from sklearn.linear_model import LinearRegression, RidgeCV, LogisticRegression   

5. #import datasets   

6. Build_info=pd.read_csv('~/Build-level_dataset.csv')   

7. target=pd.read_csv('~/Label_Real1.csv')   

8. target=target.drop(['Unnamed: 0'], axis=1)   

9. Layer_info1=pd.read_csv('~/Layer-level_dataset.csv')   

10. merge_dataset=pd.merge(Build_info, Layer_info1, left_index=True, right_index=True)   

11. for j in range(0,5): # Five-fold cross validation    

12.     x_train, x_test, y_train, y_test = cross_validation.train_test_split(input_data,target,test_size=0.2,rand

om_state=j)   

13.     scaler = MinMaxScaler(copy=True, feature_range=(0, 1))   

14.     x_train=scaler.fit_transform(x_train)   

15.     x_test=scaler.fit_transform(x_test)   

16. #Linear Regression      

17.     LR = linear_model.LinearRegression()   

18.     LR.fit(x_train,y_train)   

19.     predictions_LR = LR.predict(x_test)   

20.     a_LR = np.reshape(predictions_LR,len(predictions_LR))   

21.     b_LR = np.reshape(y_test.values.astype('float'),len(predictions_LR))   

22.     co_LR = np.corrcoef(a_LR,b_LR)[1,0]   

23.     rms_LR = sqrt(mean_squared_error(predictions_LR, y_test))   

24.     mae_lr=mean_absolute_error(y_test, predictions_LR)   

25. #Desion Tree   

26.     DT = tree.DecisionTreeRegressor()   

27.     DT.fit(x_train,y_train)   

28.     predictions_DT=DT.predict(x_test)   

29.     accuracy_DT=DT.score(x_test,y_test)   

30.     a_DT = np.reshape(predictions_DT,len(predictions_DT))   

31.     b_DT = np.reshape(y_test.values.astype('float'),len(predictions_DT))   

32.     co_DT = np.corrcoef(a_DT,b_DT)[1,0]   

33.     rms_DT = sqrt(mean_squared_error(predictions_DT, y_test))   

34.     mae_dt=mean_absolute_error(y_test, predictions_DT)   

35. #k-nearest neighbours        

36.     knn = neighbors.KNeighborsRegressor(10, 'distance')   

37.     knn.fit(x_train,y_train)   

38.     predictions_knn = knn.predict(x_test)   

39.     a_knn = np.reshape(predictions_knn,len(predictions_knn))   

40.     b_knn = np.reshape(y_test.values.astype('float'),len(predictions_knn))   

41.     co_knn = np.corrcoef(a_knn,b_knn)[1,0]   

42.     rms_knn = sqrt(mean_squared_error(predictions_knn, y_test))   

43.     mae_knn=mean_absolute_error(y_test, predictions_knn)   
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C.4 Merged Neural Network 

1. #import keras as the main package for building neural network   

2. import keras.layers    

3. from keras.models import Sequential   

4. from keras.layers import Dense, Dropout,noise,Embedding,LSTM, Merge   

5. from keras import optimizers   

6. from keras.optimizers import RMSprop, TFOptimizer,adam\   

7. #import datasets   

8. Build_info=pd.read_csv('~/Build-level_dataset.csv')   

9. target=pd.read_csv('~/Label_Real1.csv')   

10. target=target.drop(['Unnamed: 0'], axis=1)   

11. Layer_info1=pd.read_csv('~/Layer-level_dataset.csv')   

12. Mcc_dnn=[]   

13. for j in range (5):                             # Five-fold cross validation    

14.     x_train1, x_test1, y_train, y_test = cross_validation.train_test_split(Build_info,target,test_size=0.2,ra

ndom_state=j)   

15.     x_train2, x_test2, y_train, y_test = cross_validation.train_test_split(Layer_info,target,test_size=0.2,ra

ndom_state=j)   

16.     x_test2=np.load('E:/Blake/PhD/EOSP700Experiment/Data/Dataset/Dataset_designfeature(SecP)/x_te

st2.npy')    

17.     scaler = MinMaxScaler(copy=True, feature_range=(0, 1))   

18.     x_train1=scaler.fit_transform(x_train1)   

19.     x_test1=scaler.fit_transform(x_test1)   

20.     x_train2=scaler.fit_transform(x_train2)   

21.     x_test2=scaler.fit_transform(x_test2)   

22.     model1 = Sequential()                          #Neural network for build-level dataset   

23.     model1.add(Dense(50, input_dim=x_train1.shape[1], activation = 'relu'))   

24.     model1.add(Dense(50, activation='relu'))   

25.     model1.add(Dense(50, activation='relu'))   

26.     model1.add(Dropout(0.2))   

27.     model1.add(Dense(50, activation='relu'))   

28.     model1.add(Dense(50, activation='relu'))   

29.     model2 = Sequential()                           #Neural network for layer-level dataset   

30.     model2.add(Dense(200, input_dim=x_train2.shape[1], activation = 'relu'))   

31.     model2.add(Dense(200, activation='relu'))   

32.     model2.add(Dropout(0.2))   

33.     model2.add(Dense(200, activation='relu'))   

34.     #model2.add(Dense(100, activation='relu'))   

35.     model = Sequential()                            #Neural network for combination   

36.     model.add(Merge([model1, model2], mode='concat'))   

37.     model.add(Dense(1, activation='linear'))   

38.     model.summary()   

39.     adam(lr=0.005, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)  #train the model   

40.     model.compile(loss='mean_absolute_error',   

41.                   optimizer='Adam',   

42.                   metrics=['accuracy'])   

43.     history = model.fit([x_train1, x_train2], y_train.values.astype('float'),   

44.                         validation_split=0.2,   

45.                         batch_size=2,   

46.                         epochs=200,   

47.                         verbose=1,   

48.                         validation_data=([x_test1, x_test2], y_test.values.astype('float')))   

49.     predictions = model.predict([x_test1, x_test2])     #Test the model   
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C.5 Design-relevant Dataset Generation 

1. #define a few function for the caculation   

2. def filling_degree(dataset):   

3.     dataset['BoxVolume (cm³)']=dataset['Length (mm)']*dataset['Width (mm)']*dataset['Height (mm)']/10

00   

4.     dataset['Filling degree_parts(%)']=dataset['Volume (cm³)']/dataset['BoxVolume (cm³)']*100   

5.     dataset['BoxVolume (cm³)'][len(dataset)]=dataset['Length (mm)'][len(dataset)-

1]*dataset['Width (mm)'][len(dataset)-1]*dataset['Height (mm)'][len(dataset)-1]/1000   

6.     a=dataset['Filling degree_parts(%)'].drop(len(dataset)-1)   

7.     dataset['Filling degree_parts(%)'][len(dataset)-1]=geometric_mean(a)   

8.     filling_degree_average=dataset['Filling degree_parts(%)'][len(dataset)-1]   

9.     filling_degree_total=dataset['Volume (cm³)'][len(dataset)-1]/dataset['BoxVolume (cm³)'][len(dataset)-

1]*100   

10.     return dataset, filling_degree_average,filling_degree_total   

11. def dimension_rate(dataset):    

12.     dataset['Width/Length']=dataset['Width (mm)']/dataset['Length (mm)']   

13.     dataset['Height/Length']=dataset['Height (mm)']/dataset['Length (mm)']   

14.     dataset['Width/Height']=dataset['Width (mm)']/dataset['Height (mm)']   

15.     b=dataset['Width/Length'].drop(len(dataset)-1)   

16.     c=dataset['Height/Length'].drop(len(dataset)-1)   

17.     d=dataset['Width/Height'].drop(len(dataset)-1)   

18.     dataset['Width/Length'][len(dataset)-1]=geometric_mean(b)   

19.     dataset['Height/Length'][len(dataset)-1]=geometric_mean(c)   

20.     dataset['Width/Height'][len(dataset)-1]=geometric_mean(d)   

21.     wl_Arate=dataset['Width/Length'][len(dataset)-1]   

22.     hl_Arate=dataset['Height/Length'][len(dataset)-1]   

23.     wh_Arate=dataset['Width/Height'][len(dataset)-1]   

24.     wl_Trate=dataset['Width (mm)'][len(dataset)-1]/dataset['Length (mm)'][len(dataset)-1]   

25.     hl_Trate=dataset['Height (mm)'][len(dataset)-1]/dataset['Length (mm)'][len(dataset)-1]   

26.     wh_Trate=dataset['Width (mm)'][len(dataset)-1]/dataset['Height (mm)'][len(dataset)-1]   

27.     dimension_rate=(wl_Arate,hl_Arate,wh_Arate,wl_Trate,hl_Trate,wh_Trate)   

28.     return dataset, dimension_rate    

29. #caculat design-relevant data   

30. def Design_data(dataset):   

31.     Part_fillingDeg=filling_degree(dataset)[1]   

32.     Total_fillingDeg=filling_degree(dataset)[2]   

33.     #dimension_rate=dimension_rate(dataset)[1]   

34.     PartRate_wl,PartRate_hl,PartRate_wh,TotalRate_wl,TotalRate_hl,TotalRate_wh=dimension_rate(dat

aset)[1]   

35.     Bottom_area=dataset['Width (mm)'][len(dataset)-1]*dataset['Length (mm)'][len(dataset)-1]/1000   

36.     Heigh=dataset['Height (mm)'][len(dataset)-1]   

37.     NumPart=int(len(dataset))-1   

38.     De_data_tem=(file[0:-4],Part_fillingDeg,Total_fillingDeg,   

39.              PartRate_wl,PartRate_hl,PartRate_wh,TotalRate_wl,TotalRate_hl,TotalRate_wh,Bottom_area,H

eigh,NumPart)   

40.     return De_data_tem   

41. path2='~/STLInfor'   

42. data_dir_list = os.listdir(path2)   

43. for file in data_dir_list:   

44.     designpath = path2 +'/'+ file   

45.     dataset2=read_data(designpath)   

46.     dataset2=filling_degree(dataset2)[0]   

47.     dataset2=dimension_rate(dataset2)[0]   

48.     design=(Design_data(dataset2))   

49.     DesignData.append(design)   

50. De_data=pd.DataFrame(DesignData,columns=['Build Date','Part filling degree','Total filling degree',   

51.              'PartRate_wl','PartRate_hl','PartRate_wh','TotalRate_wl','TotalRate_hl','TotalRate_wh','Bottom_

area','Heigh','NumPart']) 

52. De_data.to_csv('~/Design_dataset.csv)  


