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Abstract 

Genes play a strong role in Alzheimer’s disease (AD) with late-onset AD showing heritability 

of 58-79% and early-onset AD over 90%. Genetic association provides a robust platform to 

build our understanding of the etiology of this complex disease.  Over 40 loci are now 

implicated for AD, suggesting that AD is a disease of multiple components as supported by 

pathway analyses (immunity, endocytosis, cholesterol transport, ubiquitination, amyloid-β 

and tau processing). Over 50% of late-onset AD (LOAD) heritability has been captured and 

allows the calculation of the accumulation of AD genetic risk through polygenic risk scores 

(PRS). PRS predicts disease with up to 90% accuracy and is an exciting tool in our research 

armoury that could allow selection of those with high PRS for clinical trials and precision 

medicine, as well as the cellular modelling of the combined risk. Here we propose the 

multiplex model as a new perspective from which to understand AD. The multiplex model 

reflex’s the combination of some, or all, of these model components (genetic and 

environmental), in a tissue specific manner, to trigger or sustain a disease cascade, which 

ultimately results in the cell/synaptic loss observed in AD.  

 

Alzheimer’s disease genetics 
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Early-onset AD and the amyloid cascade hypothesis 

Early genetic findings of disease mutations in the amyloid precursor protein (APP) and 

presenilin genes1-3 were pivotal to the development of the amyloid cascade hypothesis4. It 

posits that misprocessing of A and its deposition, as the primary causal event in AD 

pathogenesis. Although these mutations explain less than 1% of AD, there is no doubt that 

this hypothesis has shaped mechanistic research and drug development for AD over the last 

25 years5. However, recent failures in clinical trials based on removing either soluble and/or 

insoluble A or targeting enzymes responsible for cleavage of APP have thrown doubt on the 

hypothesis6, 7. Several possibilities may explain this lack of success. First, the hypothesis may 

only relate to rare forms of early-onset AD in which causal mutations are observed. Second, 

the drug treatments may only be effective in the early stages of AD and not when the disease 

has already caused extensive neurodegeneration8, 9. Indeed, evidence suggests that the disease 

process begins up to 20 years before the first cognitive symptoms are observed10. The hope is 

that amyloid-based drug trials on mutation carriers, recruited and treated pre-

symptomatically,  will inform our understanding here11. Third, A and the associated 

amyloid plaques may be correlates of disease mechanisms that have the primary influence on 

disease development12.  

 

Late-onset AD Genetics: Common Variation 

Looking beyond AD mutations, genetic research has now produced extensive evidence that 

other genetic factors contribute to disease. Common forms of late-onset AD (LOAD) have 

heritability estimates of 56-79%13 and rarer forms with early-onset (5% of AD cases) of over 

90%14, are contributed to by multiple genetic risk factors.  
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Apolipoprotein E (APOE) on chromosome 19 was the first risk gene identified to associate 

with LOAD15, as well as influencing familial and early forms of disease, and remains the 

strongest genetic risk factor. The differential expression of the three major isoforms 

of ApoE (ε2, ε3 and ε4) is dependent on 2-point mutations (rs429358 and rs7412) within 

exon 4 of the gene. An increased risk of AD is found in carriers of the ε4 allele, whereas the 

ε2 allele confers a small protective effect16, 17. Risk is dose dependent with a 3-fold increase 

in ε4 heterozyogotes (ApoE ε3/ε4), and a 15-fold increase in ε4 homozygotes (ApoE ε4/ε4). 

Disease susceptibility is thought to result from a conformational change in ApoE that affects 

the proteins ability to bind ligands, including A and TREM218. ApoE ε4 is thought to be less 

efficient in mediating clearance of soluble and aggregated A19, but is also implicated in 

other cellular processes and tissues and certainly need more study to define its full 

contribution to disease20. 

 

Perhaps the most successful approach to identify the genetic architecture of AD is the 

genome-wide association study (GWAS). In 2009, the first novel genetic associations were 

identified using GWAS showing genome-wide association between AD and variants within 

the CLU, PICALM and CR1 loci21, 22. To date, over 40 risk loci (Figure1, Table 1) with 

genome-wide significance are associated with AD. This success in identifying risk loci can 

be attributed to the extensive national and international collaboration seen within the field. 

The initial Genetic and Environmental Risk in AD (GERAD) and European AD Initiative 

(EADI) GWAS21, 22, were quickly followed by studies led by the Cohorts for Heart and 

Aging Research in Genomic Epidemiology (CHARGE)23 and AD Genetics Consortium 

(ADGC)24, as well as an additional GERAD study25. The four consortia subsequently joined 

together to form the International Genomics of Alzheimer’s Project (IGAP) who, in 2013, 

identified a further 11 risk loci as novel genome-wide significant LOAD susceptibility loci26. 
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The IGAP GWAS results summary dataset is freely available to researchers (individual level 

data available upon request to the relevant consortia) and has been pivotal to multiple 

successive studies in a variety of research areas27-29.   

 

Building upon IGAP (2013)26  dataset, single nucleotide  26, 30-34, gene-wide35, 36, transethnic32 

and proxy design31, 37, 38 (based on reports of parental history) studies have identified 

numerous novel genome-wide significant (GWS) loci, see Table 1 and Figure 1.  

 

It is estimated that a substantial proportion (up to 60%)39, 40 of the genetic variance of LOAD 

is not accounted for. Given the success in other diseases41, there is no doubt that more 

powerful GWAS will identify additional associations. Currently, studies using research based 

or clinically diagnosed AD number 33,692 cases and 56,077 controls42, so more will be found 

with increasing sample size and greater power in the future. However, this ‘missing 

heritability' may also be contributed to by rare/low frequency susceptibility genes. 

 

Late-onset AD Genetics: Rare Variation 

The primary technology for the detection of rare genetic variation (population frequency less 

than 1%) has been sequencing. Next-generation sequencing (NGS) technologies in the form 

of whole-exome and whole-genome sequencing have identified protein-coding changes 

associated with disease43-46, . Interestingly, a number of rare disease-associated variants are 

identified in loci with common variants associated with LOAD47-50,  suggesting that these 

genes influence disease susceptibility in multiple ways. A number of additional loci have 

received attention as putative risk genes 51-53 .  
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Sequencing has historically proven to be prohibitively expensive for broad use in the field. 

While the costs of such experiments are falling, future gene discovery may be increasingly 

tractable through enriching sequencing for the most heritable samples, including early onset 

and familial AD. An alternate approach for rare variant detection is the use of exome-wide 

micro-arrays with variants selected from whole-exome sequencing. This approach has 

limitations and can only test what is known. Sims and colleagues used this approach in a 

powerful genome-wide study and found novel coding variants that influence AD and also 

showed that improved imputation panels now make GWAS more amenable to detecting rare 

variants54.  It is important to note that variants of small statistical effect can show substantive 

biological changes of disease relevance. For example, Sims et al.54 PLCG2 p.(Arg522) which 

has an effect size of 0.68, has been shown to increase enzymatic activity in cell lines55, 

human microglia derived from induced pluripotent stem cells (iPSC) and mouse microglia56.  

 

Systematic analysis of gene-gene interaction or epistasis in AD has been limited largely due 

to insufficient power and the massive multiple-testing burden inherent in genome-wide 

epistasis screening. Initial studies have identified interaction between single nucleotide 

polymorphisms (SNPs) that require replication57. It is noteworthy that a small number of 

individuals live well beyond 75 years of age without any symptoms of cognitive decline 

despite possessing a large number of risk factors for AD. These ‘AD resilient’ individuals 

may harbour protective genetic variation58. 

 

Subphenotypes of disease 

Genetic relationships have also been sought for disease phenotypes. Aside from the core 

cognitive symptoms of disease, individuals with AD can develop a range of behavioural 

symptoms. One area that has received attention in recent years is psychosis. Psychotic 
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symptoms are significantly more common in AD than the general population, 

affecting ∼40% of cases59. They are associated with decreased quality of life for caregivers 

and patients60, more rapid cognitive61 and functional decline62 and premature 

institutionalization60. While no gene has, thus far, shown genome-wide significant association 

to psychosis in AD, evidence suggests that loci influencing psychosis in disease do so with a 

greater effect than generally seen in LOAD (excluding APOE)63, and that the lack of a 

significant association may be accounted for by the small sample sizes tested to date. Another 

area of study is rate of decline. Early studies show that the genetic architecture for AD 

disease risk and rate of decline are distinct, with APOE showing no association with disease 

progression61. Recent work investigating the impact of both single nucleotide AD associated 

variation and PRS (generated from the IGAP genome-wide significant hits) on rate of decline 

show association between both the PRS and the rare TREM2 p.(His47) variant64. In fact, 

TREM2 p.(His47) carriers show a 23% faster rate of decline compared with non-variant 

carriers.  

 

Comorbid Traits 

Epidemiological observations of shared comorbidity in twin and family studies have long 

provided evidence for genetic correlations among diseases65, as has the co-occurrence of 

multiple diseases in the same individual66. The advent of GWAS allowed, for the first-time, 

systematic, cross phenotype analyses, with a significant number of traits sharing genetic 

architecture67. Indeed, up to 4.6% of SNPs and 16.9% of genes have cross-phenotype 

associations68. In dementia, initial work shows that AD and Parkinson’s disease (PD) are 

genetically distinct69, but that dementia with Lewy bodies (DLB) is correlated to AD and 

PD70, 71. Work by the Brainstorm consortium, attempted to quantify the degree of overlap in 

genetic risk factors of 25 common brain disorders including AD,29 and a range of behavioral-
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cognitive phenotypes. While AD shows no significant evidence of correlation with 

psychiatric or neurological traits, strong negative correlations with college attainment, years 

of education and intelligence are observed. AD and some aspects of cardiovascular disease 

also share common risk variants72. We are now in the era where sufficiently powered 

genome-wide datasets are available to extend these sophisticated analyses to a range of 

phenotypes and sub-phenotypes seen to overlap traditional diagnostic boundaries.   

 

Functional Genomics 

The progression from genetic association to biological mechanism poses a significant 

challenge to exploit the findings of GWAS for the development of new therapies. This is, in 

part, due to the location of the majority of risk variants to non-coding elements of the 

genome. Combined with the polygenic nature of many diseases, it is clear that analytical 

approaches that combine multiple data types are required to assist in this translation.  

 

Pathway Analysis 

The identification of many risk genes suggests commonalities or convergence in function. As 

with studies of gene expression, ‘pathway’ analyses methods have been developed for 

genomic association data that aim to identify, in general, an excess of association signal in 

sets of genes based on independent annotations (e.g. ALIGATOR73, INRICH74 and 

MAGMA75) They often incorporate risk loci that fall below the traditional genome-wide 

significant threshold, and can therefore offer insights into risk mechanisms beyond select 

loci, capturing the maximum amount of genetic association information available. 

Application of these methods to AD GWAS results has been particularly powerful in 

identifying disease relevant processes. Indeed, these approaches provide some of the first 

convincing genetic evidence that the immune system contributes to AD risk (Figure 2)76. 
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Other pathways implicated include endocytosis, cholesterol metabolism, ubiquitination and 

more recently, A clearance, and tau biology (Figure 2)42. 

 

Gene Expression 

In parallel with the identification of risk variants by GWAS, the genetic control of gene 

expression has been investigated using studies of expression quantitative trait loci (eQTLs)77. 

These studies aim to link specific variants with levels of gene expression, often across 

multiple tissue types and cellular contexts. As such, they are a powerful tool for investigating 

the relationship between genetic disease risk and gene expression, and for linking non-coding 

variants to target genes. Analytical advances such as Transcriptome Wide Association 

Studies78 and PrediXcan79 will also be useful for linking risk alleles to gene expression 

mechanisms, and have recently been applied to AD GWAS to identify genetically mediated 

changes in brain mRNA splicing80. Although many resources for brain tissue exist81-83 and 

continue to be enhanced with increasing cellular and developmental resolution, a striking 

overlap of AD risk variants and eQTLs in monocytes from blood has been reported84. eQTL 

studies represent the gold standard for linking variants to gene expression changes but they 

require multiple donors with matched genotype and RNA expression measurements. The 

sample sizes often range from 100s-1000s, making them expensive, and difficult to perform 

on hard to isolate cell types. In contrast, gene expression measurements from a small number 

of samples have also proven useful in linking putative risk genes to specific cell types. For 

AD, the integration of GWAS results with cell types identified from single-cell RNA-seq of 

brain tissue has highlighted microglia as the most enriched cell type85, 86; although the causal 

relationship is less clear with these studies than with eQTLs, they again support the role of 

immune cells in AD.  
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Tissue Specificity 

In addition to identifying likely causal cell types, the application of single cell technologies to 

heterogeneous tissues will help resolve different cellular states. This is particularly important 

for cells of the immune system, that are known to both rapidly respond to environmental cues 

and adopt long lasting ‘activation’ states. Indeed, recent scRNA-seq profiling of microglia 

from mouse models of AD have identified a subset of ‘disease-associated microglia’87. 

Distinct microglia subsets, based on scRNA-seq, have also been identified during normal 

development and response to injury88, 89. Identification of the molecular and environmental 

regulators of these cells states open up new opportunities for the manipulation of microglia 

function. Likewise, the influence of AD associated variants and genes on the transition 

between these states may have important consequences for understanding and treating the 

disease. Beyond measurements of gene expression, single cell omics technologies are now 

capable of interrogating the chromatin landscape90, 91, DNA methylation92 and targeted 

protein abundances93, 94. The availability of increasingly high-resolution data on cell types of 

interest (e.g. microglia) promises to refine these findings further95. Finally, convergence 

between genes at genetic risk loci and molecular system level changes in aged or diseased 

brains suggest that AD risk genes operate in pathways relevant to pathology96, 97, including 

those that change expression in response to Aβ accumulation98. 

 

Epigenome 

The gene regulatory mechanisms underlying eQTLs and non-coding risk variants is often 

poorly understood, but our knowledge of the gene regulatory landscape (the epigenome) of 

cell types is rapidly expanding with the advent of genome-wide sequencing applications such 

as ChIP-seq. These assays are able to provide genome-wide profiles of regulatory features 

based on histone modifications, the binding of individual transcription factors and 
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biophysical properties, such as open chromatin. Integration of these data types with GWAS 

findings can provide insights into risk mechanisms at individual loci, as well as identify cell 

types in which multiple loci operate. For AD GWAS, integrative analyses with gene 

regulatory elements, have identified immune cell types, particularly monocytes, as likely 

effectors of risk at genome-wide significant loci99-101, and are starting to identify functional 

variants underling risk associated eQTLs102. These approaches have been extended with 

methods such as stratified linkage disequilibrium (LD) score regression103 to partition the 

heritability by gene regulatory elements from different cell types. Again, SNPs located in 

immune cell types, including microglia, are the most enriched101, 104, 105. Recently, these 

approaches have been used with gene regulatory information from human microglia106 to 

increase the resolution from cell type to transcription factor cistromes. Tansey et al. (2018) 

identified an enrichment of genome-wide significant AD risk variants within particular 

microglial/macrophage motif containing DNA elements105, these sites were also enriched for 

AD common variant heritability. Amongst these enriched cistromes were those targeted by 

PU.1 (encoded by SPI1) and MEF2 (encoded by MEF2C). Interestingly, both SPI1 and 

MEF2C have been identified as AD risk, or onset modifying, loci26, 35, 104, 107. These findings 

suggest that common variant AD risk operates through transcriptional networks controlled by 

other AD risk genes that act as ‘hubs’. Such genes have also been referred to as ‘peripheral 

master regulators’108. Through co-ordinated regulation of other risk genes they could provide 

important avenues into trait biology. 

 

It is noteworthy that the majority of human functional genomic data produced to date uses 

post-mortem tissue and therefore poorly captures dynamic changes in gene regulation (e.g. 

during development or response to an environmental challenge). To address this, collections 
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of induced pluripotent stem cells from genotyped individuals are being generated to explore 

the genetic control of context specific gene expression109.  

 

Somatic mutations 

Single cell technologies are also being used to probe heterogeneity in cellular DNA content 

and sequence. These postzygotic changes are known as somatic mutations. Studies of somatic 

mutation in the brain are in their infancy. Nevertheless, they do occur in healthy brain tissue, 

resulting in mosaicism110, 111. Damaging mutations can therefore occur/accumulate in a subset 

of cells, resulting in restricted cell type consequences, including vulnerability to cell death112. 

Whole genome approaches to single cell DNA content are largely restricted by the cost of 

obtaining sufficient sequencing coverage for reliable quantification. However, targeted 

approaches have identified changes in APP copy number in cells from AD brain samples 

compared to controls113, as well as APP recombination events that result in the insertion of 

known disease causing APP mutations into the  genome of individual neurons114. The general 

importance of this type of mutation is still to be quantified and it should be noted that they do 

not contribute to the observed heritability of the AD. They are therefore likely to operate in 

conjunction with common variant risk factors.  

 

Risk prediction 

The finding that LOAD is the result of the combined influences of multiple genetic loci or 

polygenic effects, and that these effects can be captured in one algorithm, has enormous 

utility in the field. Whilst APOE has an established role as the strongest single genetic risk 

factor for sporadic AD, given it is neither necessary nor sufficient to cause disease. The effect 

estimates of the other associated risk loci range from an odds ratio of approximately 1.1-2.1 

for each disease associated allele, meaning their individual contribution to disease risk is 



 12 

relatively small. However, the cumulative effect of these susceptibility loci can be captured 

by PRS analysis. This takes advantage of all relevant association information and thus 

captures most of the variance of GWAS studies, including true genetic risk loci that are 

hypothesised to lie below the genome-wide significance threshold. This approach is 

supported by the observed increase in explained heritability when weak effect loci are also 

considered115.  

 

Early work showed that AD is a polygenic disease (P=4.9×10-26)116, an enrichment that 

remains significant after APOE and other genome-wide associated regions had been excluded 

(P=3.4×10-19). Escott-Price and colleagues created the Cardiff PRS (CPRS) from 17,008 AD 

cases and 37,154 controls taken from the IGAP dataset26. Using an association cut-off of 

P<0.5  they produced an algorithm based upon over 87,000 variants, incorporating age and 

sex, which showed an area under the curve (AUC) of 0.78, thus this CPRS could correctly 

classify cases and controls 78% of the time. The predictive utility of CPRS has now been 

validated in a number of independent datasets117. With the predictive accuracy of disease 

status reaching 84% in neuropathologically confirmed AD samples, 82% in the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) cohort (Figure 3) and extending to over 90% 

sensitivity (correctly identifying AD cases) in those individuals showing the greatest genetic 

risk for disease.  

 

Notably, those with a CPRS two standard deviations above the mean (extreme PRS) showed 

highly accurate prediction of AD diagnosis (Figure 3). Thus, the CPRS could identify those 

at high risk early in life. This facility could transform our understanding of the first stages of 

disease and also provide a means to develop high and low-risk stem cell models to explore 

disease mechanisms in human systems. Interestingly, the ADNI dataset also showed that 
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APOE was just as good as CPRS at detecting individuals with amyloid plaque deposition. 

However, only 62% of these went on to develop AD and CPRS and extreme CPRS still 

remained the best predictor of amyloid deposition within AD. The genetic heritability 

explained by APOE and the genome-wide significant loci is not high (h2=5.1%)118, as 

compared to genome-wide estimates (h2=24-53%)40, 115, 119.  The CPRS116 shows prediction 

accuracy of AUC=75%-84% (compared to AUC =66% for APOE and GWS loci120) in 

clinical and pathology confirmed samples, respectively116, 121. These AUC estimates are very 

close to the maximum prediction accuracy which can be achieved based upon SNP-based 

heritability captured by the whole genome118 and can be used for AD risk prediction with 

more confidence.  If used in the general population the majority of people will gain little from 

CPRS, however those with extreme CPRS will have a high degree of confidence that they 

will either develop or never develop AD. 

 

Current research is exploring the utility of using CPRS calculated for the biological pathways 

implicated in AD, enabling participant stratification for preventative and clinical trials of 

relevant targets, and potentially for precision medicine. Initial work, assessing the cumulative 

risk of 20 AD associated risk variants categorised by biological pathway suggests that the 

clinical model of early AD pathology is explained by different biological pathways122. In 

particular, the endocytosis pathway shows relevance in subjects with mild cognitive 

impairment122. Development of full PRS models for each AD implicated pathway are now 

needed to improve the quality of pathway-specific genetic scores that could feed into future 

research, including clinical trials of drugs targeting relevant pathways. Targeted drugs will 

also need pathway-specific biomarkers and drug trials which possibly move away from full 

disease measures to define outcomes, with the consequence of a likely reduction in timescale 

and cost. Identifying individuals at high or low risk of developing AD will also allow better 
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understanding of the earliest signs of disease, develop appropriate biomarkers through 

imaging and bio-sampling and help test for relationships with environmental factors which 

may interact with genetics to delay or exasperate disease mechanisms. 

 

Neuroimaging approaches offer insight into AD pathogenesis in vivo, demonstrating how the 

combined impact of AD risk genes are associated with altered brain physiology123-126. 

Accumulating evidence suggests that AD GWAS risk alleles influence brain structure and 

function in asymptomatic individuals.  Early studies showcase the potential roles of 

individual GWAS AD SNPs on brain structure and function127, 128, however recent work now 

assesses the impact of the cumulative impact of AD risk SNPs through CPRS.  These studies 

have primarily focused on putatively AD susceptible brain regions, such as medial temporal 

lobe macrostructure (hippocampal formation; amygdala) and other in vivo biomarkers of AD 

pathology such as Aβ42 deposition129-133. Collectively these observations suggest that an 

excessive burden of AD risk alleles may compromise brain health in individual’s years before 

the onset of clinical symptoms.  These hypotheses are further supported by large GWAS of 

neuroimaging data, demonstrating genetic correlations between AD and markers of brain 

health such as subcortical brain volumes134, 135.  However, the extended impact of AD PRS on 

the brain remains relatively unknown.  This is largely due to constraints such as multi-

sequence, multi-modal imaging in large sample sizes and constraints intrinsic to 

harmonization procedures136.  Initial evidence from a middle aged, population cohort (UK 

Biobank) does suggest relationships between CPRS and surface areas of the frontal and 

cingulate cortex, and specifically the anterior cingulate for the microglia-mediated innate 

immunity PRS137. 

 

Genetic modelling and disease mechanisms 
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Establishing animal and cellular models of AD mutations or functional coding variants is 

now routine. Several transgenic mouse models have been developed utilizing AD mutations 

in APP and the presenilin genes, but none recapitulate the full profile of the disease as seen in 

humans138.  However, they do show accumulation of A peptide in the brain and cognitive 

deficits, but rarely show AD associated cell death or tau dysfunction (unless tau mutations are 

also introduced). It is noteworthy that rodents do not naturally develop AD, and human based 

manipulations are necessary to produce AD relevant changes. If, as the genetics of common 

forms of AD suggests, the disease requires multiple components to change in order to trigger 

AD, then it is not surprising that transgenic models of single AD components do not reflect 

full blown AD.  Transgenic models of APOE are less numerous, but have shown interesting 

results when crossed with APP transgenic models138. APOE is shown to influence A 

aggregation and clearance from the brain, although other outcomes are now the focus of new 

research.  Indeed, as many more APOE models are being produced (MODEL-AD) we will 

soon see a much broader capture of the AD phenotype. Drosophila models of AD have also 

been the source of much research and benefit from the speed at which results, and 

manipulations can be achieved.  Drosophila have low redundancy which simplifies the 

analysis of gene disruption. Early work focussed on APP and tau models, but lately the 

models are facilitating the screening of GWAS susceptibility genes139. 

 

Stem cell derived models of AD genetic risk variants have, understandably, focused on rare 

variants, particularly those that cause familial AD. Lines derived from AD cases carrying 

PSEN1 and PSEN2 mutations were the first to be investigated140, followed by APP 

duplications141. More recently, TREM2 variant and null lines have been developed and used 

to investigate AD related microglial function142, 143. Common variant stem cell models have 

generally lagged behind with only a small number of target models developed, most notably 
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APOE144, 145. Only three loci identified exclusively by GWAS, PICALM146, CLU147  and 

PLCG2, have been used for stem cell models. Of these, only the PICALM and PLCG2 

models are based on a likely causal non-coding variant, highlighting the challenges of 

moving from GWAS association to a cell model. These models have begun to identify 

important AD relevant biology. For example, neurons deficient in CLU protein are resistant 

to neurodegeneration in response to Aβ risk and altered PICLAM expression manifests as 

disrupted transcytosis of Aβ by endothelial cells. Models of APOE mediated risk have 

identified multiple dysregulated processes across different stem cell derived cell types e.g. 

diminished neurotrophic function of APOE ε4/ε4 astrocytes144, differential activation of 

neuronal APP transcription and Aβ-synthesis by glial APOE isoforms148, and altered Aβ 

aggregates and hyperphosphorylation of tau in organoids.145  However, none as they stand 

recapitulate all aspects of the human AD149.  

 

The recent advances in identifying multiple genetic risk factors for AD described above, open 

new avenues for disease modelling. Specifically, that of constructing induced pluripotent 

stem cells (iPSC) from individuals with high or low PRS for AD or its component pathways, 

thereby creating resources which capture multiple disease factors in the same cells. However, 

there are challenges with these approaches. Individuals selected for high PRS will vary in 

other ways which could influence outcomes. Accordingly, studies involving many different 

iPSC donors will be needed to overcome this natural variation and identify the disease 

relevant consistencies. Thus, future research could combine information from models of 

specific known AD variants of APP, presenilin, APOE, TREM2, PLCG2, ABI3 for example, 

with the outcomes of high and low PRS models to triangulate onto disease relevant 

mechanisms (Figure 4). The multiplex model of AD (see below) also has implications for 

what are tested as outcome measures. Recent advances in cellular approaches such as single 
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cell RNA-seq, 3D cultures, organoids of neurons, glia and epithelial cells,  and the ability to 

transplant cells into the brains of mice to form chimeras, will undoubtedly expand our 

knowledge of disease mechanisms underpinning the AD model. 

 

The Multiplex Model of Alzheimer’s disease 

The multiplex model builds from evidence we observe from genetic, and for that matter, 

environmental studies of AD. Genetics show us that AD is a multi-component disease, and 

that deficits combine additively to trigger disease. There is strong evidence for changes in 

immunity/inflammation, Aβ production and clearance, endocytosis, ubiquitination, 

cholesterol and tau processing. Epidemiological research (not reviewed here) also highlights 

a significant vascular component to AD development (Figure 2)150.  The multiplex model 

assumes that changes to some, or all, of these model components act together to trigger a 

disease cascade, which ultimately results in the cell/synaptic loss observed in AD.  AD could 

be triggered by a number of different patterns of deficits that may differ between tissues and 

over the course of disease development.  Indeed, in time we may characterize AD as several 

diseases.  However, until we understand the specific biological mechanisms which underlie 

the model, it is beneficial to continue viewing AD as a single disease.  As we learn more, we 

will refine the model.  For example, we already have evidence that endocytosis could affect 

Aβ clearance146.  However, with current knowledge there is simply not enough evidence to 

show that they pinpoint the same disease mechanism.  It is also assumed that the liability 

threshold for disease could result from extreme loading on a limited number of components 

or indeed, moderate vulnerability across multiple components.  Future treatments and 

preventative approaches may focus on one or multiple AD components, which may also 

change over the course of disease development.  The multiplex model of AD encourages 

future research to focus on a broader range of outcome measures to understand disease 
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mechanisms, identify several new targets for treatments and may ultimately change the way 

we diagnose AD. 

 

Conclusions 

It is now well-established that drug trials based upon evidence with a genetic basis are more 

likely to succeed151. Thus, using this well-replicated robust biological evidence for future 

research into disease mechanisms and therapies seems the logical step. A variety of genome-

wide approaches have already identified over 40 loci associated with AD at a genome-wide 

level of significance. Pathway and functional genomic analyses have shown strong patterns 

of susceptibility implicating immunity, endocytosis, cholesterol transport, ubiquitination, A 

and tau processing and have highlighted several “hub” genes of significant influence, using 

most of the information from GWAS data, accounting for up to 50% of heritability, PRS can 

be calculated which show around 80% accuracy in predicting AD in a variety of independent 

datasets. Moreover, selecting individuals at the polygenic extremes achieves sensitivities of 

over 90% for the detection of AD cases. Applications of overall and AD pathway specific 

CPRS to future research could include selection/enrichment for clinical trials and precision 

medicine, understanding of early disease development through risk related epidemiology, 

selective biomarkers and iPSC models of PRS risk for single cell, multi-tissue/organoid and 

whole system chimeric analyses.  Combine this with the growing multi-omic approaches now 

available and it is clear our understanding of this complex disease will advance at a 

considerable pace.  Genetic studies have changed our perception of AD, highlighting its 

multifactorial complexity.  Building on these findings, together with the role of vascular 

factors implicated by epidemiology, we propose the multiplex model as a way of integrating 

evidence from several domains to support our understanding of Alzheimer’s disease. 
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Table 1: Loci reaching genome-wide significance (GWS) for association with sporadic 

Alzheimer’s disease (AD). Table differentiates between loci reaching GWS in AD diagnosed 

cohorts (loci numbered 1-43) and loci reaching GWS when AD diagnosed cohorts are meta-

analysed with UK Biobank proxy diagnosed cohorts (loci numbered 44-52).  
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 GWS Locus/Gene Original SNP/Publication Dataset Functional Information 

1 APOE rs429358 p.(Cys112Arg) 
rs7412 p.(Cys158Arg) 
[15] 

Case-Control A multifactorial protein, known primarily for its role in lipid 
transport. Known to bind soluble Aβ. 

2 EPHA1 
  

rs11767557  
[24, 25] 

Combined ADGC 
and GERAD+ 

Receptor tyrosine kinase. Role in immunity and endocytosis. 
Regulates cell morphology and motility, including permeability of 
the blood brain barrier to leucocytes. 

3 CLU  rs11136000  
[21, 22]  

GERAD 
EADI 

Molecular chaperone. Role in immunity and cholesterol 
metabolism. Binds Aβ. 

4 INPP5D  rs35349669 
[26] 

IGAP Inositol polyphosphate-5-phosphatase. Role in immunity and 
cholesterol metabolism. Mediate signalling of multiple myeloid cell 
pathways including. Inhibits TREM2 signalling by association with 
DAP12. 

5 HLA-DRB5/HLA-
DRB1  

rs9271192  
[26] 

IGAP HLA class II histocompatibility antigen. Role in immunity including 
involvement in antigen presentation. 

6 CR1  rs6656401  
[22] 

EADI Complement receptor. Role in immunity, functions include 
clearance of complement opsonized molecules and microglial 
phagocytosis. 

7 TREM2 
  

rs75932628 p.(Arg47His) 
[42, 44] 
rs143332484 p.(Arg62His)  
[54] 

Mixed Cohorts 
 
IGAP 

Receptor of the immunoglobulin superfamily, binds lipids and Aβ. 
Signals to affect multiple process in myeloid cells including 
phagocytosis and cellular metabolism. 

8 CD33  rs3865444  
[24, 25] 

Combined ADGC 
and GERAD+ 

Myeloid cell transmembrane receptor that binds sialic acids. Role in 
immunity.  

9 MS4A gene cluster 
  

rs4938933  
[24] 
rs610932 
[25] 

ADGC 
 
GERAD+ 

Specific function unknown. Expressed predominately in immune 
cells. 

10 ABI3  rs616338 p.(Ser209Phe)  
[54] 

IGAP Component of Abi/WAVE complex which regulates actin 
polymerization. Role in immunity.  

11 PLCG2  rs72824905 p.(Pro522Arg)  
[54] 

IGAP Phospholipase catalyzing the conversion of IP3 and DAG. Signal 
transducer of multiple pathways in immune cells. 

12 ZCWPW1/PILRA  rs1476679  
[26] 

IGAP ZCWPW1: Unknown function. Possible reader of histone 
modifications. 
PILRA: Control of cell 27signalling via SHP-1. 

13 MEF2C  rs190982  
[26] 

IGAP Transcription factor involved in development of multiple tissue 
types. Putative master regulator of microglia. In neurons, controls 
activity dependent synapse number. Hub gene. 

14 CD2AP  rs9349407  
[24, 25] 

Combined ADGC 
and GERAD+ 

Adapter molecule involved in cytoskeletal dynamics. Involved in 
early endosome morphology. 

15 BIN1  rs744373  
[23] 

CHARGE Involved in endocytic recycling and Aβ production. Also involved in 
membrane folding. 

16 PICALM  rs3851179  
[21] 

GERAD Clathrin assembly protein involved in clathrin-mediated endocytosis 
and transcytosis. 

17 CASS4  rs7274581  
[26] 

IGAP Regulates focal adhesion integrity, and cell spreading. Roles in 
cytoskeleton/axon development and tau metabolism.  

18 CELF1/SPI1  rs10838725  
[26] 

IGAP RNA binding protein involved in pre-mRNA alternative splicing. Role 
in cytoskeleton/axon development. 

19 FERMT2  rs17125944  
[26] 

IGAP Scaffolding protein, part of the extracellular matrix, controls cell 
shape. 

20 NME8  rs2718058  
[26] 

IGAP Unknown function. Possibly involved in ciliary function with a role 
in cytoskeleton/axon development. 

21 SORL1  rs11218343  
[26] 
 
Gene-wide 
[48] 

IGAP 
 
ADES-FR 

Endocytic receptor involved in the uptake of lipoproteins, APP 
processing and lysosomal targeting of Aβ. 

22 ABCA7  rs3764650 
[25] 
Gene-wide 
[50] 

GERAD+ 
 
IGAP 

Transporter involved in cholesterol metabolism and phagocytic 
clearance of amyloid-β. 

23 SLC24A4-RIN3  rs10498633  
[26] 

IGAP SLC24A4:  Na+/Ca2+, K+ exchange.  
RIN3: Ras interaction-interference protein regulating endocytosis. 
Role in cholesterol metabolism. 

24 PTK2B  rs28834970  
[26] 

IGAP Cytoplasmic protein tyrosine kinase sensitive to calcium. Regulation 
of ion channels in neurons, cell spreading and migration and 
immune cell function. 

25 ADAM10  rs593742  
[33, 37]  

IGAP+ 
Combined UK 
Biobank and IGAP 

Metalloprotease responsible for proteolytic processing of the 
amyloid precursor protein. 
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26 IGHV1-67  Gene-wide  
[35] 

IGAP Unknown function. 

27 PPARGC1A  Gene-wide  
[36] 

IGAP Transcriptional coactivator regulation mitochondrial oxidative 
metabolism. 

28 TP53INP1  Gene-wide  
[35] 

IGAP Tumour suppressor activity, regulates autophagy and transcription. 

29 ECHDC3 
 

rs7920721  
[33, 32] 

ADGC and IGAP 
IGAP+ 

Unknown function. 

30 ACE 
 

rs138190086  
[33] 
 
rs6504163 
[37] 

IGAP+ 
 
 
Combined UK 
Biobank and IGAP 

Catalyses the conversion of angiotensin I into a physiologically 
active peptide angiotensin II. Controls blood pressure and fluid-
electrolyte balance. 

31 ADAMTS1 
 

rs2830500  
[33] 

IGAP+ Metalloproteinase. Degrades extracellular matrix 
proteoglycans. Expression is induced by immune response. 

32 IQCK  rs7185636  
[33] 

IGAP+ Unknown function. 

33 TRIP4  rs74615166 
[30] 

Fundaciô ACE & 
IGAP 

Transcriptional coactivator of nuclear receptors. 

34 RORA  Gene-wide  
[36] 

IGAP Nuclear hormone receptor. Possible roles in circadian rhythm, 
cholesterol metabolism and inflammation. 

35 ZNF423  Gene-wide  
[36] 

IGAP DNA-binding transcription factor. Involved in differentiation of 
adipocytes, neurons and leukaemia. 

36 APP  rs63750847, 
p.(Ala673Thr) 
[46] 

Icelandic, Finnish 
and Swedish 

Amyloid precursor protein. 

37 IGHG3  rs77307099  
[44] 

ADSP Immunoglobulin gene whose antibodies interact with ß-amyloid. 

38 AC099552.4  7:154988675:G:A 
[44] 

ADSP Non-coding RNA. 

39 ZNF655  Gene-wide  
[44] 

ADSP Zinc-finger protein; transcriptional regulation. 

40 HBEGF/AFDN1 
 

rs11168036 
[32] 

Transethnic ADGC 
and IGAP 

Heparin Binding EGF Like Growth Factor. May be involved in 
macrophage-mediated cellular proliferation.  

41 BZRAP1-AS1 
 

rs2632516  
[32]  

Transethnic ADGC 
and IGAP 

Non-coding RNA. 

42 TPBG 
 

Gene-wide 
[32] 

Transethnic ADGC 
and IGAP 

Trophoblast Glycoprotein encodes a leucine-rich transmembrane 
glycoprotein that may be involved in cell adhesion.  

43 DSG2 rs8093731 
[26, 31] 

IGAP 
Combined ADSP, 
IGAP, PGC-ALZ 
and deCODE 

Desmoglein 2 a cell adhesion molecule. Desmogleins are calcium-
binding transmembrane glycoprotein components of desmosomes, 
cell-cell junctions between epithelial, myocardial, and other cell 
types. 
 

44 CLNK/HS3ST1 
 
 

rs6448453 
[31] 
 
 
 
rs4351014 
[34] 

Combined UK 
Biobank, ADSP, 
IGAP, PGC-ALZ 
and deCODE 
 
Combined 
GR@CE/DEGESCO, 
IGAP and UK 
Biobank 

CLNK: Member of SLP-76 family of immune cell-specific adaptors. 
HS3ST1: Sulfotransferase that utilizes 3’-phospho-5’-adenylyl 
sulfate (PAPS) to 28atalyse the transfer of a sulfo group to position 
3 of glucosamine residues in heparan. 
 
 

45 SCIMP rs113260531 
[31]  
 
 
 
rs77493189 
[38] 

Combined UK 
Biobank, ADSP, 
IGAP, PGC-ALZ 
and deCODE 
 
Combined UK 
Biobank and IGAP 

Transmembrane adaptor protein involved in MHC class II signalling 
transduction. 
  

46 PRKD3/NDUFAF7 rs876461 
[34] 

Combined 
GR@CE/DEGESCO, 
IGAP and UK 
Biobank  

PRKD3: Protein kinase D family of serine/threonine kinases, which 
bind diacylglycerol and phorbol esters. 
NDUFAF7: Assembly factor protein, assembly and stabilization of 
the mitochondrial respiratory chain Complex I. 

47 TREML2 rs9381040 
[34] 

Combined 
GR@CE/DEGESCO, 
IGAP and UK 
Biobank 

Cell surface receptor that may play a role in the innate and adaptive 
immune response enhancing T-cell activation. 

48 SHARPIN rs34674752 p.(Pro294Ser) 
rs34173062 p.(Ser17Phe) 
[34] 

Combined 
GR@CE/DEGESCO, 

Component of the LUBAC complex, plays a key role in NF-kappa-B 
activation and regulation of inflammation. 
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IGAP and UK 
Biobank 

49 MAPT/KANSL1# rs2732703 
[34] 

Combined 
GR@CE/DEGESCO, 
IGAP and UK 
Biobank 

MAPT: Transcripts are differentially expressed in the nervous 
system, depending on stage of neuronal maturation and neuron 
type. 
KANSL1: Subunit of histone acetylation complexes MLL1 and NSL1. 
The NSL complex may be involved in the regulation of transcription. 

50 CHRNE/C17orf107 rs72835061 
[34] 

Combined 
GR@CE/DEGESCO, 
IGAP and UK 
Biobank 

CHRNE: Controls an ion-conducting channel across the plasma 
membrane. 
C17orf107: Unknown function. 

51 IL34 rs4985556 p.(Tyr213Ter) 
[37, 34] 

Combined UK 
Biobank and IGAP 
 
Combined 
GR@CE/DEGESCO, 
IGAP and UK 
Biobank 

Interleukin-34. Cytokine that promotes the proliferation, survival 
and differentiation of monocytes and macrophages. 

# Genome-wide significant association only seen in APOE 4- analysis. 
 

Dementia in Parental-Proxy observation (not GWS in AD diagnosed). 
 

52 CNTNAP2* 
 

rs114360492  
[31] 

Combined UK 
Biobank, ADSP, 
IGAP, PGC-ALZ 
and deCODE 

Member of the neurexin family. 

53 ALPK2** 
 

rs76726049  
[31] 

Combined UK 
Biobank, ADSP, 
IGAP, PGC-ALZ 
and deCODE 

Alpha kinase. Specific function is unknown. 

54 ADAMTS4 rs4575098 
[31] 

Combined UK 
Biobank, ADSP, 
IGAP, PGC-ALZ 
and deCODE 

Extracellular matrix metalloproteinase (aggrecanase-1) 
 

55 APH1B** 
 

rs117618017 p.(Thr27lle) 
[31] 

Combined UK 
Biobank, ADSP, 
IGAP, PGC-ALZ 
and deCODE 

Component of the gamma-secretase complex; assists in the 
cleavage of APP. 

56 KAT8 
 

rs59735493  
[31] 
 
 
 
rs889555 
[37] 

Combined UK 
Biobank, ADSP, 
IGAP, PGC-ALZ 
and deCODE 
 
Combined UK 
Biobank and IGAP 

Histone acetyltransferase. Regulates the outcome of autophagy. 

57 SPPL2A  rs59685680 
[38] 

Combined UK 
Biobank and IGAP 

Signal Peptide Peptidase Like 2A related to TNF signaling 
(REACTOME) and signaling by GPCR. May play a role in the 
regulation of innate and adaptive immunity.  

58 HESX1* rs184384746  
[31] 

Combined UK 
Biobank, ADSP, 
IGAP, PGC-ALZ 
and deCODE 

Homeobox protein that is a transcriptional repressor. 
 

* Indicates SNPs/loci with missing data in AD case-control datasets.  
** Indicates SNPs/loci with minimal support (P=10-2 genome-wide significance level) in AD case-control datasets. 

 

 

Figure 1: Schematic of Mendelian disease-causing genes and loci reaching genome-wide 

significance (GWS) for single variant (not gene-wide) association with sporadic Alzheimer’s 

disease (AD). Blue circles and orange triangles represent risk and protective association 

respectively. Associations identified in AD diagnosed cohorts are indicated by the white text 

boxes, while associations identified in meta-analysis of AD diagnosed, and proxy diagnosed 

cohorts are indicated by the black text boxes. Of note, AD case-control data is absent for the 

CNTNAP2 and HESX1 loci and AD case-control data is only weakly supportive for the 

ALPK2and APH1B loci (P=10-2).  
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Figure 2: Multiplex model of Alzheimer’s disease. Pathways associated in the etiology of 

LOAD by genetic analysis, represented as cogs within the cell, the cell types implicated in 

disease, and the environment cues thought to directly affect biology.   

 

Figure 3: Part a) Illustrates accuracy of classifying AD and Control status (Area under the 

Curve) using APOE, Full, and Extreme Polygenic Risk Scores classed as two standard 

deviations above or below the mean across clinically diagnosed (Genetic and Environmental 

Risk for AD (GERAD)21), neuroimaging positive (Alzheimer’s disease Neuroimaging 

Initiative (ADNI): adni.loni.usc.edu) and neuropathically confirmed cohorts120. Part b) 

Illustrates the distribution of Polygenic Risk Scores and highlights two standard deviations 

above or below the mean indicated by the red lines. The white histogram bars represent 

controls and the grey histogram bars represent AD cases. The separate normal distributions 

for AD cases and controls are depicted by the black lines. 

 

Figure 4. Schematic demonstrating the complexity and methods to discovering Alzheimer’s 

disease mechanisms. Identifying and understanding the mechanisms involved in Alzheimer’s 

disease etiology and pathology paves the way for new therapeutic targets and new therapies. 

 


