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To a graded finite-rank matrix factorisation of the difference of two
homogeneous potentials one can assign two numerical invariants, the
left and right quantum dimension. The existence of such a matrix fac-
torisation with non-zero quantum dimensions defines an equivalence
relation between potentials, giving rise to non-obvious equivalences of
categories.

Restricted to ADE singularities, the resulting equivalence classes
of potentials are those of type {Ad−1} for d odd, {Ad−1,Dd/2+1} for d
even but not in {12, 18, 30}, and {A11,D7,E6}, {A17,D10,E7} and
{A29,D16,E8}. This is the result expected from two-dimensional ra-
tional conformal field theory, and it directly leads to new descriptions
of and relations between the associated (derived) categories of matrix
factorisations and Dynkin quiver representations.
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1 Introduction and summary

Let k ⊂ C be a field. By a homogeneous potential in m variables we mean a
polynomial V ∈ k[x1, . . . , xm] such that

V
(
λ|x1|x1, . . . , λ

|xm|xm
)

= λ2V (x1, . . . , xm) for all λ ∈ C× (1.1)

and
dimk

(
k[x1, . . . , xm]/(∂x1V, . . . , ∂xmV )

)
<∞ (1.2)

where k[x1, . . . , xm] is viewed as a graded ring by assigning degrees |xi| ∈ Q+ to
the variables xi. As we will only be concerned with homogeneous potentials, we
shall refer to them simply as potentials.

The purpose of this paper is two-fold. Firstly, we will define an equivalence
relation on the set Pk of all potentials, where the number of variables in the
polynomial ring is allowed to vary, but where the field k is kept fixed. Secondly,
in the case k = C we will list all equivalence classes in the restricted set of simple
singularities, leading to new equivalences of categories.

In the remainder of this section we describe these two points in more detail,
leaving technical details and supplementary discussions for Sections 2 and 3.

1.1 Orbifold equivalence of potentials

The equivalence relation is defined by the existence of a matrix factorisation with
certain properties.

We will write x for the sequence of variables x1, . . . , xm, and we pick a poten-
tial V ∈ k[x]. A matrix factorisation of V is a Z2-graded free k[x]-module M
together with an odd k[x]-linear endomorphism dM , the twisted differential, such
that dM ◦ dM = V · 1M . Let us denote the two homogeneous subspaces of M
with respect to the Z2-grading by M0 and M1, so that M = M0 ⊕ M1. We
call M ≡ (M,dM) a graded matrix factorisation if M0 and M1 are in addition
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Q-graded,1 and if the following properties are satisfied: (i) Acting with xi is an
endomorphism of degree |xi| with respect to the Q-grading on M . Consequently,
V has degree 2. (ii) dM has degree 1 with respect to the Q-grading on M .

There are categories of (graded) matrix factorisations whose morphisms are
(homogeneous) even linear maps up to homotopy with respect to the twisted
differential. These are idempotent complete as they are triangulated and have
arbitrary coproducts [Nee]. We denote by hmf(k[x], V ) the idempotent closure
of the full subcategory of finite-rank matrix factorisations; this means that its
objects are homotopy equivalent to direct summands of finite-rank matrix fac-
torisations. Furthermore, hmfgr(k[x], V ) is the full subcategory of graded matrix
factorisations which are homotopy equivalent to finite-rank ones; hmfgr(k[x], V )
is also idempotent complete, see [KST, Lem. 2.11].

Let now V (x), W (y) ∈ Pk be two potentials, where x = x1, . . . , xm and y =
y1, . . . , yn. Then W (y)− V (x) is a potential in the ring k[x, y]. Let X = (X, dX)
be a finite-rank graded matrix factorisation of W (y)− V (x). The even and odd
parts of X = X0⊕X1 necessarily have the same rank, say r, and we may as well
assume that X0 = X1 = k[x, y]r. The twisted differential is then given by two
r-by-r matrices d0, d1 with entries in k[x, y]. We think of these as k[x, y]-linear
maps d0 : X0 → X1 and d1 : X1 → X0, and we call (X, dX) rank-r.

We assign two numbers to X, the left and right quantum dimensions [CR2,
CM2]

diml(X) = (−1)(
m+1

2 ) Res

[
str
(
∂x1dX . . . ∂xmdX ∂y1dX . . . ∂yndX

)
dy

∂y1W, . . . , ∂ynW

]
,

dimr(X) = (−1)(
n+1
2 ) Res

[
str
(
∂x1dX . . . ∂xmdX ∂y1dX . . . ∂yndX

)
dx

∂x1V, . . . , ∂xmV

]
. (1.3)

These formulas arose in the study of adjunctions in the bicategory of Landau-
Ginzburg models, see [CR2, CM2] and Remark 1.8 below. Here we just point out
the following properties:

- The definition of the quantum dimensions is independent of the Q-grading
on X. In fact, the same residue expressions also work for ungraded matrix
factorisations; in this case however diml(X) and dimr(X) are not necessarily
numbers, but polynomials in k[x] and k[y], respectively, see Lemma 2.6.

- The quantum dimensions only depend on the isomorphism class of X in
hmfgr(k[x, y],W−V ) or hmf(k[x, y],W−V ), cf. Sections 2.1 and 2.2. Hence

1Often one rescales the degrees |xi| by their least common denominator, so that one can work
with a Z-grading. For our purposes the present convention, where the degrees are normalised
such that each potential has degree 2, is more convenient (the grading is then better behaved
when taking differences of potentials). Note that a rescaled Z-graded matrix factorisation
gives a Q-graded one, but not necessarily vice versa.
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they are independent of the choice of isomorphism between X and k[x, y]r⊕
k[x, y]r.

- The quantum dimensions are multiplicative for a suitably defined tensor
product. In addition, there is a duality (−)† on matrix factorisations
which exchanges left and right quantum dimensions (see again Sections 2.1
and 2.2).

Definition and Theorem 1.1. We say that two potentials V (x), W (y) ∈ Pk
are orbifold equivalent, V ∼ W , if there exists a finite-rank graded matrix factori-
sation of W − V for which the left and right quantum dimensions are non-zero.
This defines an equivalence relation on Pk.

We shall prove the above statement, as well as Propositions 1.2 and 1.4, in
Section 2.2. The name ‘orbifold equivalence’ has its roots in the study of orbifolds
via defects in two-dimensional quantum field theories [FFRS2, DKR, CR3], see
also Remark 1.8.

The hard part of establishing an orbifold equivalence V ∼ W is to construct
an explicit matrix factorisation X of W − V that exhibits the equivalence. On
the other hand, checking a posteriori that a given X has non-zero quantum
dimensions is easy thanks to the formulas (1.3). In particular, to verify our
results on ADE singularities (or any other orbifold equivalence) all one has to
do is to apply the residue formulas to the explicit matrices we provide (however
laborious it may have been to construct them initially).

Two basic properties of orbifold equivalences are:

Proposition 1.2. Let U(z), V (x),W (y) ∈ Pk.

(i) (Compatibility with external sums) If V ∼ W , then V + U ∼ W + U .

(ii) (Knörrer periodicity) V ∼ V + u2 + v2.

To a potential V ∈ Pk one assigns a rational number, its central charge c(V ).
Namely, for V ∈ k[x1, . . . , xm] we have

c(V ) = 3
m∑
i=1

(
1− |xi|

)
. (1.4)

It follows that in the case of ADE singularities V the central charge of V is related
to the Coxeter number hV of the root system associated to the potential V via
c(V ) = 3 − 6

hV
. For example, if V = x d1 + x1x

2
2 , then |x1| = 2

d
, |x2| = 1 − 1

d

and c(V ) = 3 − 3
d
, which is the same as the central charge of W = y 2d

1 + y 2
2 .

The following proposition gives some simple necessary conditions for any two
potentials to be orbifold equivalent.
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Proposition 1.3. Suppose V,W ∈ Pk are orbifold equivalent. Then

(i) m− n is even, where V ∈ k[x1, . . . , xm] and W ∈ k[y1, . . . , yn].

(ii) c(V ) = c(W ).

Part (i) is trivial since the supertrace in (1.3) is zero for an odd matrix. Part
(ii) is proved in [CR3, Sect. 6.2].

We expect the converse of Proposition 1.3 to be false. For example, consider
the family of potentials x 3

1 + x 3
2 + x 3

3 + κx1x2x3 with κ ∈ C which all have
central charge 3 and whose zero locus is an elliptic curve in CP2. In analogy with
[FGRS, BBR] we expect the potentials for different values of κ to be orbifold
equivalent iff the complex structure parameters of the corresponding curves are
related by some GL(2,Q) transformation, resulting in infinitely many equivalence
classes for these potentials.

If V,W ∈ Pk are orbifold equivalent, then the corresponding categories of
matrix factorisations are closely related. Namely, let X = (X, dX) be a finite-rank
graded matrix factorisation of W (y)− V (x) with non-zero quantum dimensions.
Let further M = (M,dM) be a graded matrix factorisation of V (x). Then their
tensor product X ⊗M := (X ⊗k[x] M,dX ⊗ 1M + 1X ⊗ dM) is a graded matrix
factorisation of W (y) (which is necessarily of infinite rank, but still equivalent to
a finite-rank factorisation, for M 6= 0).

Proposition 1.4. Suppose that V (x), W (y) ∈ Pk are orbifold equivalent and
let X ∈ hmfgr(k[x, y],W − V ) have non-zero quantum dimensions. Then every
matrix factorisation in hmfgr(k[y],W ) occurs as a direct summand of X ⊗ M
for some M ∈ hmfgr(k[x], V ). This remains true if ‘hmfgr’ is replaced by ‘hmf’
everywhere.

1.2 Orbifold equivalence for simple singularities

Now we take k = C and consider the subset of potentials which define simple
singularities.2 These fall into an ADE classification and can be taken to be the
following elements of C[x1, x2] (see e. g. [Yos, Prop. 8.5]):

V (Ad−1) = x d1 + x 2
2 c = 3− 3 · 2

d
(d > 2)

V (Dd+1) = x d1 + x1x
2
2 c = 3− 3 · 2

2d
(d > 3)

V (E6) = x 3
1 + x 4

2 c = 3− 3 · 2
12

(1.5)

V (E7) = x 3
1 + x1x

3
2 c = 3− 3 · 2

18

V (E8) = x 3
1 + x 5

2 c = 3− 3 · 2
30

2As we shall see in Section 2.3 we can also work over the cyclotomic field k = Q(ζ) for an
appropriate root of unity ζ. This will allow us to relate non-isomorphic matrix factorisations
exhibiting a given orbifold equivalence via the Galois group, cf. Remarks 2.10, 2.12 and 2.13.
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From Proposition 1.3 we know that for two potentials to be orbifold equivalent,
their central charges have to agree. The preimages of the central charge function
on the potentials in (1.5) are precisely the sets{

V (Ad−1)
}

for d odd,{
V (Ad−1), V (Dd/2+1)

}
for d even and d /∈

{
12, 18, 30

}
, (1.6){

V (A11), V (D7), V (E6)
}
,
{
V (A17), V (D10), V (E7)

}
,
{
V (A29), V (D16), V (E8)

}
.

In fact, this list exhausts the relevant orbifold equivalences:

Theorem 1.5. The orbifold equivalence classes of the potentials (1.5) are pre-
cisely those listed in (1.6).

This is our main result (together with Corollaries 1.6 and 1.7 below), which
we prove in Section 2.3 by explicitly constructing graded matrix factorisations X
with non-zero quantum dimensions for the equivalences V (A2d−1) ∼ V (Dd+1) (al-
ready given in [CR3]), as well as V (A11) ∼ V (E6), V (A17) ∼ V (E7) and V (A29) ∼
V (E8).

Higher dimensional ADE singularities are obtained by adding squares of further
variables to the potentials in (1.5). Thus it immediately follows from Proposi-
tion 1.2(i) that Theorem 1.5 describes orbifold equivalences between general ADE
singularities in any dimension.

Proposition 1.4 and Theorem 1.5 can be strengthened to equivalences of cate-
gories by invoking the general theory of equivariant completion of [CR3]:

Corollary 1.6. For V,W and X as in Proposition 1.4 we have

hmfgr(k[y],W ) ∼= mod(X† ⊗X) . (1.7)

Here mod(X† ⊗ X) is the category of modules over X† ⊗ X, which is made
up of matrix factorisations of V together with a compatible action of the monoid
X†⊗X ∈ hmfgr(k[x, x′], V (x)−V (x′)). For more details we refer to [CR3], or to
[BCP, Car] for much shorter reviews.

In Section 2.3 we will explicitly compute X†⊗X for the matrix factorisations X
giving rise to the orbifold equivalences of simple singularities. For those involving
E-type singularities we find that X† ⊗X decomposes into sums of the so-called
permutation matrix factorisations PS of u′ d − u d introduced in [BR1]. For a
subset S ⊂ Zd we denote by Sc its complement in Zd. Then one has PS =
(C[u, u′]⊕ C[u, u′], dPS

) with

d1PS
=
∏
l∈S

(u′ − ζ ldu) , d0PS
=
∏
l∈Sc

(u′ − ζ ldu) , where ζd = e2πi/d . (1.8)
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Note that P{0} is nothing but the unit matrix factorisation. As shown in [BR1,
DRCR] the tensor product in the case of consecutive index sets is

P{m,m+1,...,m+a} ⊗ P{n,n+1,...,n+b} ∼=
min(a+b,2d−4−a−b)⊕
i=|a−b| , step 2

P{m+n− 1
2
(a+b−i),...,m+n− 1

2
(a+b−3i)}

(1.9)
and the quantum dimensions were computed in [CR2, Sect. 3.3] to be

diml(PS) =
∑
l∈S

ζ ld , dimr(PS) =
∑
l∈S

ζ−ld . (1.10)

Corollary 1.7. We have

hmfgr
(
C[x], V (E6)

) ∼= mod
(
P{0} ⊕ P{−3,−2,...,3}

)
,

hmfgr
(
C[x], V (E7)

) ∼= mod
(
P{0} ⊕ P{−4,−3,...,4} ⊕ P{−8,−7,...,8}

)
, (1.11)

hmfgr
(
C[x], V (E8)

) ∼= mod
(
P{0} ⊕ P{−5,−4,...,5} ⊕ P{−9,−8,...,9} ⊕ P{−14,−13,...,14}

)
.

Remark 1.8. (i) The construction of the equivalence relation can be repeated
in a number of slightly modified settings. For example, one can work with
ungraded matrix factorisations, or one can work over any commutative
ring k as in [CM2]. Or, instead of using a Q-grading, one can consider
matrix factorisations with R-charge in the sense of [CR2] (which is more
general).

The setting used in this paper was chosen to be on the one hand as simple
as possible – hence working over k ⊂ C – and on the other hand to be strong
enough for us to be able to prove the decomposition of simple singularities
into equivalence classes (1.6) – hence the homogeneous potentials and the
Q-grading. (In the ungraded setting we do not know how to exclude the
existence of equivalences beyond those in (1.6).)

(ii) The decompositions (1.6) and (1.11) are expected from two-dimensional
rational conformal field theory. According to the (conjectural) CFT/LG
correspondence, the infrared fixed point of the Landau-Ginzburg model
with potential V is a conformal field theory with central charge c(V )
[Mar, VW, HW]. Mathematically, this predicts a relation between the
graded matrix factorisations of a given potential and the representation
theory of a super vertex operator algebra. This relation is supported by
explicit computations on both sides in examples but not understood (or
even precisely formulated) in general.

For simple singularities, the fixed points are N = 2 supersymmetric min-
imal models. The classification of the latter contains the above ADE
series [Mar, VW, CV, Gan, Gra]. Matrix factorisations of the differ-
ence of two potentials are interpreted as line defects on the CFT side
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[BR1, BR2, CR1, CR2]. It is known in rational CFT [FFRS1, FFRS2]
that there are topological line defects with non-zero quantum dimensions,
linking the minimal models in the equivalence classes corresponding to (1.6).
We will compare this with our results in more detail in Section 3.

(iii) It was shown in [KST] that for a simple singularity V ∈ C[x], hmfgr(C[x], V )
is equivalent to Db(RepCQ), where Q is (any choice of) the associated
Dynkin quiver. Thus by Theorem 1.5 and [CR3] the derived representation
theory of ADE quivers enjoys orbifold equivalences analogous to (1.11).3

The monoids X† ⊗X ∼= P{0} ⊕ . . . translate into functors on Db(RepCQ)
whose actions on simple objects are easily computable.
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2 Proofs

In this section we provide proofs of the results summarised above, with the claims
of Sections 1.1 and 1.2 proven in Sections 2.2 and 2.3, respectively. The discussion
for simple singularities can also be viewed as showcasing methods that may prove
useful for constructing further orbifold equivalences between potentials.

The notion of orbifold equivalence actually makes sense between objects in any
pivotal bicategory. For context and completeness this is explained in Section 2.1,
after which we turn to concrete matrix factorisations.

2.1 Pivotal bicategories

In this section (only) we assume some familiarity with bicategories, referring to
[Bor] for an introduction. We shall adopt the notation and conventions of [CR3];
more detailed explanations of the properties of duals and dimensions stated below
can be found for example in [CR2, Sect. 2] and [CM2, Sect. 2.1].

3Such a relation between A- and D-type quivers was already proven in [RR] by different
methods.
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We denote the unit 1-morphism of an object a in a bicategory B by Ia, its
left action by λ, and the (horizontal) composition of 1-morphisms X ∈ B(a, b),
Y ∈ B(b, c) is written Y ⊗X ∈ B(a, c).

We say that B has left adjoints if for each X ∈ B(a, b) there is an X† ∈ B(b, a)
together with 2-morphisms

evX : X† ⊗X −→ Ia , coevX : Ib −→ X ⊗X† (2.1)

which are the counit and unit of an adjunction, see [GM]. Such a B is pivotal if
for all a, b ∈ B there are natural isomorphisms δa,b between the identity functor
and (−)†† restricted to B(a, b), compatible with ⊗, see e.g. [Sch, Def. 5.1.4]. In
this case X† is also right adjoint to X as exhibited by the maps

ẽvX : X ⊗X† −→ Ib , c̃oevX : Ia −→ X† ⊗X (2.2)

defined by evX† ◦(δa,bX ⊗ 1X†) and (1X† ⊗ (δa,bX )−1) ◦ coevX† , respectively.
From now on we assume that we are given a pivotal bicategory B. For every

X ∈ B(a, b) its left and right quantum dimensions are defined as

diml(X) = evX ◦ c̃oevX ∈ End(Ia) , dimr(X) = ẽvX ◦ coevX ∈ End(Ib) . (2.3)

One can show that the quantum dimensions only depend on the isomorphism
class of X, and that

diml(X
†) = dimr(X) . (2.4)

The left quantum dimension of X is the image of 1Ib under the map Dl(X) :
End(Ib)→ End(Ia) given by

Dl(X) = evX ◦ [1X† ⊗ (λX ◦ ((−)⊗ 1X) ◦ λ−1X )] ◦ c̃oevX , (2.5)

and similarly dimr(X) = Dr(X)(1Ia). One finds that for Y ∈ B(b, c) these oper-
ators satisfy

Dl(X) ◦ Dl(Y ) = Dl(Y ⊗X) , Dr(Y ) ◦ Dr(X) = Dr(Y ⊗X) . (2.6)

In our application to matrix factorisations, B is a pivotal k-linear bicategory
in which all quantum dimensions are multiples of the identity. For such a B the
definition of orbifold equivalence takes the form:

Definition 2.1. Two objects a, b ∈ B are orbifold equivalent, a ∼ b, if there is
X ∈ B(a, b) whose left and right quantum dimensions are non-zero multiplies of
the identity.

The following fact (whose proof is contained in Remark 2.3) shows that the
name makes sense:

Theorem 2.2. Orbifold equivalence is an equivalence relation.
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Remark 2.3. One may also consider the following slightly more general notion
of orbifold equivalence in any pivotal bicategory: a, b ∈ B are orbifold equivalent
if there is X ∈ B(a, b) such that

(i) X has invertible left and right quantum dimensions, and

(ii) Dl(X) and Dr(X) map invertible quantum dimensions to automorphisms.

Condition (ii) is needed for orbifold equivalence in this general setting to be
an equivalence relation. This condition may be hard to check directly, as it
requires knowing all invertible elements in End(Ia) and End(Ib) which arise as
quantum dimension of some 1-morphism. A special case where condition (ii) is
already implied by condition (i) is if B is such that every Hom-category B(a, b)
is R-linear for some fixed commutative ring R, and such that the left and right
quantum dimensions of every 1-morphism X ∈ B(a, b) are in R · 1Ia and R · 1Ib ,
respectively. In this case one may think of the left/right quantum dimension as
an element of R, and one can check that diml/r(X ⊗ Y ) = diml/r(X) · diml/r(Y ),
where the product on the right is in R. Graded finite-rank matrix factorisations
are an example of this R-linear setting (see Lemma 2.6 below).

Theorem 2.2 holds in the more general case: to see reflexivity a ∼ a one can
take X = Ia, for which Dl(Ia) = 1Ia = Dr(Ia). For symmetry and transitivity it
is helpful to expand condition (ii) of the equivalence relation in more detail:

(ii-r) for every e ∈ B and every Z ∈ B(e, a) such that dimr(Z) is invertible in
End(Ia), we have that Dr(X)(dimr(Z)) is invertible in End(Ib);

(ii-l) for every f ∈ B and every Z ′ ∈ B(b, f) such that diml(Z
′) is invertible in

End(Ib), we have that Dl(X)(diml(Z
′)) is invertible in End(Ia).

Of course, since (ii-r) holds for all Z, it also holds for all Z†, and hence Dr(X) also
maps invertible left quantum dimensions to automorphisms. The same applies
to (ii-l).

Symmetry a ∼ b⇔ b ∼ a follows by replacing X by X†. That X† satisfies (i)
follows from (2.4). To see (ii-r) for X†, use Dr(X

†) = Dl(X) and that (ii-l) holds
for X. Condition (ii-l) follows analogously.

To check transitivity, consider X ∈ B(a, b) and Y ∈ B(b, c) satisfying conditions
(i) and (ii). Then dimr(Y ⊗X) = Dr(Y )(dimr(X)) which is invertible by (i) for X
and (ii-r) for Y . Dito for diml. Next let Z ∈ B(e, a) be as in (ii-r) above. Then
Dr(Y ⊗X)(dimr(Z)) = Dr(Y )(dimr(X ⊗ Z)). Now dimr(X ⊗ Z) is invertible by
(ii-r) for X and therefore Dr(Y )(dimr(X ⊗ Z)) is invertible by (ii-r) for Y . That
Y ⊗X satisfies (ii-l) is seen similarly.

We conclude our brief general discussion with an implication of the existence
of orbifold equivalences in the setting of retracts and idempotent splittings. An
object S in some category is called a retract of an object U if there are morphisms
e : S → U and r : U → S such that r ◦ e = 1S. In particular, e is mono and so S
is a subobject of U .
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Proposition 2.4. Let a, b, c, d ∈ B and let X ∈ B(a, b), Y ∈ B(c, d) have invert-
ible left quantum dimensions. Every Z ∈ B(a, c) is a retract of Y † ⊗ F ⊗X for
some suitable (Z-dependent) F ∈ B(b, d).

Proof. We set F = Y ⊗ Z ⊗X† and define the maps e : Z → Y † ⊗ F ⊗X and
r : Y † ⊗ F ⊗X → Z by

e = c̃oevY ⊗ 1Z ⊗ c̃oevX ,

r =
(

diml(Y )−1 ⊗ 1Z ⊗ diml(X)−1
)
◦
(

evY ⊗1Z ⊗ evX
)
. (2.7)

Clearly, r ◦ e = 1Z .

Remark 2.5. If the Hom-categories of B are additive and if idempotent 2-
morphisms split, we can improve on Proposition 2.4 slightly: instead of Z just
being a retract, it now even occurs as a direct summand of Y † ⊗ F ⊗ X for a
suitable F . To see this, take the maps e, r from the proof, note that p = e ◦ r
is an idempotent endomorphism of Y † ⊗ Y ⊗ Z ⊗ X† ⊗ X, and consider the
decomposition 1 = p+ (1− p) into orthogonal idempotents.

2.2 Matrix factorisations

Potentials and (graded) matrix factorisations as defined in Section 1 form bicate-
gories that are ‘as good as’ pivotal,4 as explained in detail in [CM2]. Accordingly
we could present the results of this section as applications of a slight variant of
the previous one. We will however take a different route and give more direct
arguments.

Recall from [CR2, BFK, CM2] that every ungraded matrix factorisation X
of W (y1, . . . , yn) − V (x1, . . . , xm) has left and right adjoints. If we write X∨ =
Homk[x,y](X, k[x, y]) and set dX∨(ν) = (−1)|ν|+1ν ◦ dX for Z2-homogeneous ν ∈
X∨, then they are given by

†X = X∨[n] , X† = X∨[m] , (2.8)

respectively. These are (ungraded) matrix factorisations of V − W , and the
associated adjunction maps as in (2.1), (2.2) are known explicitly, see [CM2] for
details or [CM3] for a concise review. It follows that isolated singularities in
an even number of variables and ungraded matrix factorisations form a pivotal
bicategory LGeven.

A straightforward computation of counting degrees shows that in the case of a
graded matrix factorisation X its left and right adjunction maps of [CM2] are ho-
mogeneous of degree ±

∑n
j=1(1−|yj|) = ±1

3
c(W ) and ±

∑m
i=1(1−|xi|) = ±1

3
c(V ),

4One has pivotality ‘on the nose’ if one restricts to potentials in an even number of variables,
as we do in our discussion of simple singularities in Section 2.3.
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respectively, with respect to the adjoints in (2.8). Consequently the bicategory
of potentials in an even number of variables, graded matrix factorisations, and
their maps of arbitrary Q-degree form a pivotal bicategory LGgr,even.

We remark that allowing maps of arbitrary Q-degree is natural from the per-
spective of conformal field theory, where this degree corresponds to the R-charge.
On the other hand, derived equivalences connecting graded matrix factorisations
with representation theory [KST] or geometry [Buc, Orl] require restricting to
the subbicategory LGgr,even0 with 2-morphisms only of degree zero. (Categories of
graded matrix factorisations with maps of arbitrary degree are not even triangu-
lated as mapping cones can fail to be graded matrix factorisations.) It follows
that the full subcategories LGgr,even0 (c) ⊂ LGgr,even0 of potentials with fixed central
charge c ∈ Q are strictly pivotal if left and right adjoints in LGgr0 are taken to be

†X = X∨[n]{1
3
c(W )} , X† = X∨[m]{1

3
c(V )} , (2.9)

where {−} denotes the Q-grading shift.
Irrespective of the particular choice of bicategory, control over adjunctions

leads to the explicit expressions for the quantum dimensions given in (1.3). For
ungraded matrix factorisations these are polynomials, but in the graded case the
quantum dimensions are just numbers:

Lemma 2.6. Quantum dimensions of graded matrix factorisations take values
in k.

Proof. Let X be a graded matrix factorisation of W − V . Quantum dimensions
are elements of the k-algebra of endomorphisms of the unit matrix factorisation of
a potential. This algebra is isomorphic to the Milnor ring of the potential, and its
only degree-zero component is k. Hence the statement follows for LGgr0 by defini-
tion. For LGgr, diml/r(X) has degree ±1

3
(c(W )−c(V )), but by Proposition 1.3(ii)

the quantum dimensions are non-zero only for c(V ) = c(W ).

As a consequence of this lemma, in the graded case the statements “X has
non-zero quantum dimensions” and “X has invertible quantum dimensions” are
equivalent.

We may now proceed to prove the results advertised in Section 1.1.

Proof of Theorem 1.1. This is a corollary of [CM2, Prop. 8.5]: reflexivity and
symmetry follow analogously to Theorem 2.2, and transitivity follows from the
fact that the quantum dimensions (1.3) are manifestly multiplicative up to a
sign.

Proof of Proposition 1.2. From (1.3) it is clear that quantum dimensions are mul-
tiplicative (up to a sign) also for the external tensor product ⊗k, showing part (i).
Part (ii) is proven in [CR3, Sect. 7.2].
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Proof of Proposition 1.4. This is a direct consequence of the proof of Proposi-
tion 2.4 and Remark 2.5 as we are dealing with idempotent complete matrix
factorisation categories.

2.3 Simple singularities

Let W (y1, y2) be one of the potentials V (Dd/2+1), V (E6), V (E7), V (E8) in (1.5), and
let V (x1, x2) = V (Ad−1) = xd1 + x22 be the corresponding A-type potential of the
same central charge as W . To avoid too many indices, we rename

x1 ; u , x2 ; v , y1 ; x , y2 ; y . (2.10)

In this section we will give a finite-rank graded matrix factorisation ofW (x, y)−
V (u, v) of non-zero left and right quantum dimension in each case, thus proving
the results collected in Section 1.2. These matrix factorisations have all been
constructed along the following lines:

(i) Pick a matrix factorisation X0 of W (x, y)− v2 that is of low rank.

(ii) Thinking of u as a deformation parameter, add to each entry of the matrix
dX0 the most general homogeneous polynomial of the form u · p(u, v, x, y)
with the same total degree as the given entry. Let dXu be the resulting
matrix.

(iii) Reduce the number of free parameters in the polynomials p by absorbing
some of them via a similarity transformation dXu 7→ Φ ◦ dXu ◦ Φ−1.

(iv) Try to find a set of parameters (the remaining coefficients in the polynomi-
als p) such that dXu ◦ dXu = (W − V ) · 1.

Choosing a low-rank starting point in (i) and reducing the number of parameters
via (iii) only serves to simplify the problem in (iv). We will work through these
steps for W = V (Dd/2+1) and W = V (E6) in some detail, while our discussion will
be briefer for V (E7) and V (E8).

V (Dd/2+1) ∼ V (Ad−1)

We set b = d/2 > 3, so that W = xb + xy2 and V = u2b + v2, and we write
R = C[u, v, x, y]. As the starting point in step (i) we choose X0 = (X, dX0) with
Z2-graded R-module X = R2 ⊕R2 and twisted differential

dX0 =

(
0 d1X0

d0X0
0

)
with d1X0

=

(
x v
v xb−1 + y2

)
. (2.11)

Since det(d1X0
) = xb+xy2−v2, the component d0X0

is determined to be the adjunct
matrix, d0X0

= (d1X0
)#. Recall that the adjunct M# of an invertible matrix M has

entries which are polynomial in those of M and satisfies M−1 = (detM)−1 ·M#.
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The deformed matrix factorisation Xu has the same underlying R-module R2⊕
R2. For step (ii) we need to pick the most general homogeneous deformation of
d1X0

, which is

d1Xu
=

(
x+ u p11 v + u p12
v + u p21 xb−1 + y2 + u p22

)
where pij ∈ C[u, v, x, y] . (2.12)

The degrees of the variables are |u| = 1/b, |v| = 1, |x| = 2/b, and |y| = 1− 1/b.
Hence the total degrees of the pij have to be

|p11| = 1
b
, |p12| = 1− 1

b
, |p21| = 1− 1

b
, |p22| = 2− 3

b
. (2.13)

From this it follows that p11 = a1u for some a1 ∈ C, but the remaining pij will
contain of the order b many free coefficients.

Moving to step (iii), we will now use degree-preserving row and column oper-
ations on d1Xu

to reduce the number of free coefficients. By applying the inverse
operations to d0Xu

one produces in this way an isomorphic matrix factorisation.
The most general such row and column manipulations turn out to be(

1 0
f 1

)
d1Xu

(
1 g
0 1

)
=

(
x+ a1u

2 v + u p12 + g(x+ a1u
2)

v + u p21 + f(x+ a1u
2) ∗

)
(2.14)

where |f | = |g| = 1 − 2/b. We see that f, g can be used to remove any x-
dependence from p12 and p21, and we arrive at the following reduced ansatz: d1Xu

of the form (2.12) with

p11 = a1u , p12 = a2y + a3u
b−1 ,

p21 = a4y + a5u
b−1 , p22 = q1v + q2y + q3 , (2.15)

where ai ∈ C and qi ∈ C[u, x] with degrees |q1| = 1 − 3/b, |q2| = 1 − 2/b, and
|q3| = 2− 3/b.

Step (iv) amounts to the tedious task of trying to find conditions such that
dXu ◦ dXu = (W − V ) · 1. The second component of the twisted differential is
uniquely determined to be d0Xu

= q/ det(d1Xu
) ·(d1Xu

)# with q = xb+xy2−u2b−v2,
and we need to find values of the deformation parameters so that this matrix
has polynomial entries. Since q ∈ C[x, y, u, v] is irreducible, either q is a factor
of det(d1Xu

), or det(d1Xu
) has to cancel against the entries of (d1Xu

)#. Degree
considerations show that the latter is not possible, and in fact det(d1Xu

) equals q
up to a multiplicative constant. By rescaling d1Xu

if necessary, without restriction
of generality we can impose det(d1Xu

) = q. In solving this condition, one is lead
to distinguish between two cases, a2 = 0 and a2 6= 0. Setting a2 = 0 produces a
solution with zero left and right quantum dimension. On the other hand, keeping
s := a2 6= 0 forces

d1Xu
=

(
x− (su)2 v + y(su)

v − y(su) xb−(su)2b
x−(su)2 + y2

)
where s2b = 1 . (2.16)
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For s = 1 this is the solution given in [CR3, Sect. 7.3]. The quantum dimensions
are

diml(Xu) = −2s , dimr(Xu) = −s−1 . (2.17)

What remains to be done is to check that there exists a Q-grading on Xu =
(X, dXu) such that dXu has Q-degree 1. It is in fact easy to write down all such
gradings. The Q-grading on the ring R is fixed by |1| = 0, with the variables
u, v, x, y having degrees as stated below (2.12). Writing R[α], α ∈ Q, for R with
|1| = α, the possible gradings on X are

X0 = R[α]⊕R[α− 1 + 2
b
] , X1 = R[α− 1 + 2

b
]⊕R[α] , α ∈ Q . (2.18)

Equivalently, the grading data on X may be presented as a ‘U -matrix’,
cf. e. g. [CR2],

UX(β) = eiαβ · diag
(
1, e(2/b−1)iβ, e(2/b−1)iβ, 1

)
. (2.19)

This completes the proof that the potentials V (Ad−1) and V (Dd/2+1) are orbifold
equivalent. We can summarise the above discussion as follows.

Lemma 2.7. Let Y be a rank-twoQ-graded matrix factorisation of xb+xy2−u2b−
v2. Suppose that (i) Y has non-zero quantum dimensions and (ii) when setting u
to zero, Y is equal toX0 in (2.11). Then Y is isomorphic in hmfgr(C[u, v, x, y], xb+
xy2 − u2b − v2) to Xu in (2.16) for some choice of s.

Let us analyse the matrix factorisation Xu a bit further. The automorphism σ
of C[u] determined by σ(u) = ζdu leaves the potential ud invariant. Given a
matrix factorisation X of W − ud for some W ∈ C[x], twisting the C[u, x]-action
on X by σl (with σ extended to C[u, x] via σ(xi) = xi) results again in a matrix
factorisation of W −ud which we denote by Xσl . It follows from [CR1, Lem. 2.10]
that

Xσl
∼= X ⊗ P{−l} (2.20)

in hmfgr(C[u, x],W − ud), where P{−l} is a permutation matrix factorisation as
in (1.10).

Remark 2.8. The observation (2.20) together with the classification given in
Lemma 2.7 explains the 2b-th root of unity s appearing as a parameter in (2.16).
To wit, given any 1-morphism P : V → V of non-zero quantum dimensions, the
composition Xu ⊗ P : V → W also has non-zero quantum dimensions. Consider
the choice P = P{l} ⊗C Iv2 , where Iv2 the unit 1-morphism for the potential v2

with twisted differential ( 0 v′−v
v′+v 0 ). Then P is a 1-endomorphism of u2b + v2 and

Xu⊗P is again a rank-two factorisation satisfying the conditions in Lemma 2.7.
Hence Xu⊗P must be isomorphic to Xu for a possibly different choice of s. But
different choices of s precisely amount to twisting the u-action by some power of
the automorphism σ.
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It was checked in [CR3, Sect. 7.3] that for d ∈ {2, 3, . . . , 10}, and up to a trivial
factor of the unit Iv2 , the monoid X†u′ ⊗Xu is isomorphic to

P{0} ⊕ P{0,1,...,d−1}\{ d
2
} . (2.21)

Since P{0} = Iu2d and P{0,1,...,d−1}\{ d
2
}
∼= P{ d

2
}[1] acts as u 7→ −u via tensoring,

the matrix factorisation (2.21) precisely encodes a Z2-action, which also uniquely
fixes its monoid structure. This Z2-action was first discussed in the context of
Dynkin quivers in [RR]. We conjecture that (2.21) tensored with Iv2 is isomorphic
to X†u′ ⊗Xu for all d ∈ Z>2.

It is straightforward to compute an explicit basis for the endomorphisms of Xu

in the homotopy category, e. g. by using the Singular code of [CDR]. We have
done so for d ∈ {2, 3, . . . , 10}, with the result

End(Xu) ∼=
( d−2⊕

i=0

C[i · 2
d
]
)
⊕ C[d−2

d
] (2.22)

where as before C[j] denotes the one-dimensional subspace of maps of Q-degree j.
We expect (2.22) to be true for all d.

V (E6) ∼ V (A11)

Our starting point in step (i) now is the matrix factorisation X0 = (R2⊕R2, dX0)
of x3 + y4 − v2 with R = C[u, v, x, y] and twisted differential

d1X0
=

(
y2 − v −x
x2 y2 + v

)
, d0X0

= (d1X0
)# . (2.23)

This is one of the six indecomposable objects of hmfgr(C[v, x, y], V (E6)−v2) listed
in [KST, Sect. 5]. The variable degrees are

|u| = 1
6
, |v| = 6

6
, |y| = 3

6
, |x| = 4

6
. (2.24)

Carrying out steps (ii) and (iii) leads to the possibility

d1Xu
=

(
y2 − v + a1xu

2 + a2u
6 −x+ a3yu+ a4u

4

x2 + a5yxu+ a6xu
4 + a7vu

2 + q y2 + v + a8xu
2 + a9u

6

)
(2.25)

for the reduced ansatz, where ai ∈ C and q ∈ C[u, y] with |q| = 8/6. Of course a
different choice of similarity transformation may give a different (but isomorphic)
reduced ansatz. Here, the row and column manipulations were used to absorb
the terms yu3 in the diagonal entries.

By the same argument as used in the D-case, we now need to solve the condition
det(d1Xu

) = x3 + y4 − u12 − v2 under the extra constraint that Xu has non-zero
quantum dimensions. This leads to

d1Xu
=
(
a b
c d

)
with a = y2 − v + 1

2
x(su)2 + 2t+1

8
(su)6 ,
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b = −x+ y(su) + t+1
4

(su)4 ,

c = x2 + yx(su) + t
4
x(su)4 + 2t+1

4
y(su)5 − 9t+5

48
(su)8 ,

d = y2 + v + 1
2
x(su)2 + 2t+1

8
(su)6 , (2.26)

and d0X0
= (d1X0

)#. Here, s and t can be any solution of

t2 = 1
3
, s12 = −576 (26 t− 15) . (2.27)

Note that s can be modified by a 12-th root of unity – the interpretation of this
is as in Remark 2.8.

The quantum dimensions of Xu are

diml(Xu) = s , dimr(Xu) = 3 (1− t)s−1 , (2.28)

and all possible Q-gradings on Xu are again easily found: the underlying Z2-
graded R-module X = X0 ⊕X1 has components with Q-grading

X0 = R[α]⊕R[α− 1
3
] , X1 = R[α]⊕R[α− 1

3
] , α ∈ Q , (2.29)

equivalently described by the U -matrix

UXu(β) = eiαβ · diag
(
1, e−iβ/3, 1, e−iβ/3

)
. (2.30)

As in the D-case, we can summarise the above as:

Lemma 2.9. Let Y be a rank-two Q-graded matrix factorisation of x3+y4−u12−
v2. Suppose that (i) Y has non-zero quantum dimensions and (ii) when setting u
to zero, Y is equal toX0 in (2.23). Then Y is isomorphic in hmfgr(C[u, v, x, y], x3+
y4 − u12 − v2) to Xu in (2.26) for some solution s, t of (2.27).

Computing the endomorphism of Xu in the homotopy category one finds the
16-dimensional space

End(Xu) ∼=
( 10⊕

i=0

C[i · 2
12

]
)
⊕
( 7⊕

i=3

C[i · 2
12

]
)
. (2.31)

As mentioned in Section 1.2 and explained in detail in [CR3], a matrix fac-
torisation X of W (y) − V (x) with invertible quantum dimensions allows us
to describe all matrix factorisations of W in terms of modules over A :=
X† ⊗ X ∈ hmfgr(k[x, x′], V (x) − V (x′)). The matrix dX†⊗X also depends on
the y-variables, and hence the matrix factorisation A is of infinite rank. How-
ever, by the results of [DM] it is homotopy equivalent (and thus isomorphic in
hmfgr(k[x, x′], V (x)− V (x′))) to a finite-rank matrix factorisation.

The construction of this finite-rank factorisation and the explicit homotopy
equivalence can be implemented on a computer; this was done in [CM1], where it
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was used to compute Khovanov-Rozansky link invariants. In our present situation
we can use this implementation to find that X†u′ ⊗Xu is equivalent to the matrix
factorisation A′ ⊗k Iv2 , where the twisted differential of A′ is represented by a
4-by-4 matrix a′ with nonzero entries

a′13 = (76
3
− 44t)u8 + (136

3
− 80t)u′u7 + (44− 76t)u′2u6 + (152

3
− 88t)u′3u5

+ (208
3
− 120t)u′4u4 + (152

3
− 88t)u′5u3 + (20t− 12)u′6u2

+ (88t− 152
3

)u′7u+ (52t− 92
3

)u′8 ,

a′14 = (224− 384t)u5 + (832− 1440t)u′u4 + (1440− 2496t)u′2u3

+ (1440− 2496t)u′3u2 + (832− 1440t)u′4u+ (224− 384t)u′5 ,

a′23 = (5
3
− 19t

6
)u11 + (49

6
− 43t

3
)u′u10 + (287

18
− 28t)u′2u9 + (361

18
− 35t)u′3u8

+ (208
9
− 241t

6
)u′4u7 + (475

18
− 46t)u′5u6 + (64

3
− 223t

6
)u′6u5 + (23

6
− 7t)u′7u4

+ (65t
3
− 227

18
)u′8u3 + (74t

3
− 259

18
)u′9u2 + (65t

6
− 58

9
)u′10u+ (5t

3
− 19

18
)u′11 ,

a′24 = (16− 28t)u8 + (104− 180t)u′u7 + (908
3
− 524t)u′2u6 + (524− 908t)u′3u5

+ (1780
3
− 1028t)u′4u4 + (448− 776t)u′5u3 + (652

3
− 376t)u′6u2

+ (60− 104t)u′7u+ (20
3
− 12t)u′8 ,

a′31 = 3tu4

4
− 3u′u3

4
+ u′2u2

4
+ 3u′3u

4
+ (−3t

4
− 1

4
)u′4 ,

a′32 = 6u− 6u′ ,

a′41 = (−13t
32
− 3

16
)u7 + ( 7t

32
+ 1

8
)u′u6 + (−13t

32
− 31

96
)u′2u5 + ( 3t

32
+ 19

96
)u′3u4

+ ( t
8

+ 1
48

)u′4u3 + ( t
16
− 1

12
)u′5u2 + ( t

8
+ 11

96
)u′6u+ ( 3t

16
+ 13

96
)u′7 ,

a′42 = (3t
4
− 1

4
)u4 + 2u′u3 − 3u′2u2 + 5u′3u

2
+ (−3t

4
− 5

4
)u′4 . (2.32)

This is a graded matrix factorisation when accompanied by the U -matrix

UA′(β) = diag
(
1, e−iβ/2, eiβ/3, e−iβ/6

)
. (2.33)

In anticipation of the comparison to conformal field theory in Section 3 we
single out one of the roots of (2.27),

tcft = −1/
√

3 . (2.34)

Choosing t = tcft and performing a series of row and column manipulations
produces the isomorphism

φ 6 0 0
− 1

32
(12t+ 7) 0 0 0

0 0 1 0
0 0 ψ 1

 : A′ −→ P{0} ⊕ P{−3,−2,...,3} (2.35)

where φ = 1
4
(u + u′)(3tu2 − 3uu′ + u′2 + 3tu′2) and ψ = 1

24
(u3 − 3tu3 − 7u2u′ −

3t2u′ + 5uu′2− 3tuu′2− 5u′3− 3tu′3). This proves the first third of Corollary 1.7.
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Remark 2.10. One may wonder what the monoid X†u′ ⊗Xu reduces to for the
other solution t = 1/

√
3 of (2.27), i. e. what is the equivalent to the right-hand

side of (2.35). As we will see momentarily, the other solution can be related to
tcft via the action of an appropriate Galois group.

Define ζd = e2πi/d and consider the cyclotomic field k = Q(ζd), i. e. the field
obtained from Q by adjoining the d-th primitive root of unity ζd. The Galois
group is isomorphic to the group of units in Zd, Gal(k/Q) ∼= Z×d . Given ν ∈ Z×d
the action of the corresponding Galois group element σν is σν(ζ

a
d ) = ζνad .

Let now V ∈ Q[x] be a potential with rational coefficients and let M be a
finite-rank matrix factorisation of V over k[x]. We may take M = (k[x]2r, dM),
where dM is a matrix with entries in k[x]. Let σ ∈ Gal(k/Q) be an element
of the Galois group and denote by σ(dM) the matrix obtained by applying σ
to each entry. Since σ(V ) = V , σ(dM) is still a factorisation of V , and we set
σ(M) = (k[x]2r, σ(dM)). Analogously, if f : M → N is a morphism with entries
in k[x], then σ(f) is a morphism from σ(M) to σ(N).

Let us apply this to the isomorphism in (2.35). Write A′(t) for A′ to highlight
the t-dependence. We choose k = Q(ζ12) so that all PS are matrix factorisations
over k[u, u′]. Since

tcft = −1
3

(
ζ12 + ζ−112

)
, (2.36)

also A′(tcft) has entries with coefficients in k. The same holds for the iso-
morphism (2.35), and so we get an isomorphism from σ(A′(tcft)) to σ(P{0} ⊕
P{−3,−2,...,3}). Since the entries of A′(t) are polynomials in u, u′, t with rational
coefficients, we have σ(A′(tcft)) = A′(σ(tcft))), and σ(PS) = Pσ∗(S), where σ∗ is
the permutation of Z12 induced by the action of σ on the 12-th roots of unity.

It turns out that the orbit of tcft under Gal(k/Q) covers all, namely both, roots
of (2.27): we have σ5(tcft) = −1

3
(ζ512 + ζ−512 ) = 1/

√
3 and σ5∗({−3,−2, . . . , 3}) =

{−5,−3,−2, 0, 2, 3, 5} and so we obtain the isomorphism

X†u′ ⊗Xu
∼=
(
P{0} ⊕ P{−5,−3,−2,0,2,3,5}

)
⊗k Iv2 for t = σ5(tcft) . (2.37)

Note that by construction A′(tcft) and A′(σ5(tcft)) are Morita equivalent, i. e. the
category mod(X†u′⊗Xu) does not depend on the choice of solution t. The situation
is analogous for the E7- and E8-singularities, cf. Remarks 2.12 and 2.13.

V (E7) ∼ V (A17)

In step (i) we pick the matrix factorisation X0 = (R2 ⊕R2, dX0) of x3 + xy3 − v2
with twisted differential

d1X0
=

(
v −x

x2 + y3 −v

)
, d0X0

= (d1X0
)# , (2.38)

one of the seven indecomposable objects of hmfgr(C[v, x, y], V (E7) − v2) listed in
[KST]. In step (iii) we again choose a similarity transformation that removes the
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term xu3 in the diagonal entries. The result of step (iv) reads

d1Xu
=
(
a b
c d

)
with a = v − t2−10t+19

2
(su)9 + (t−2) y(su)5 + y2(su) ,

b = −x+ (2t−5) (su)6 + y(su)2 ,

c = x2 + y3 + (2t−5)2 (su)12 + (2t−5)x(su)6

+ 2(2t−5) y(su)8 + xy(su)2 + y2(su)4 ,

d = −v − t2−10t+19
2

(su)9 + (t−2) y(su)5 + y2(su) (2.39)

and d0X0
= (d1X0

)#. This time s and t can be any solution of

t3 − 21 t+ 37 = 0 , s18 = 26220 t2 + 67488 t− 376912 . (2.40)

We find that

diml(Xu) = −2s , dimr(Xu) = (−30 + 5 t+ 2 t2)s−1 , (2.41)

and the the possible Q-gradings on Xu are given by

UXu(β) = eiαβ · diag
(
1, e−iβ/3, 1, e−iβ/3

)
with α ∈ Q . (2.42)

Lemma 2.11. Let Y be a rank-three Q-graded matrix factorisation of x3 +
xy3 − u18 − v2. Suppose that (i) Y has non-zero quantum dimensions and (ii)
when setting u to zero, Y is equal to X0 in (2.38). Then Y is isomorphic in
hmfgr(C[u, v, x, y], x3 + xy3 − u18 − v2) to Xu in (2.39) for some solution s, t
of (2.40).

As before we compute the endomorphisms of Xu in hmfgr(C[u, v, x, y], x3 +
xy3 − u18 − v2) to be the 27-dimensional space

End(Xu) ∼=
( 16⊕

i=0

C[i · 2
18

]
)
⊕
( 12⊕

i=4

C[i · 2
18

]
)
⊕ C[ 8

18
] , (2.43)

and using the code of [CM1] together with row and column manipulations as in
the previous example, for the solution

tcft = 3
(
ζ18 + ζ−118

)
− 2
(
ζ218 + ζ−218

)
where ζd = e2πi/d , (2.44)

to (2.40) we find that X†u′ ⊗Xu is isomorphic, up to the factor Iv2 , to the rank-
three graded matrix factorisation

P{0} ⊕ P{−4,−3,...,4} ⊕ P{−8,−7,...,8} , (2.45)

proving the second third of Corollary 1.7.
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Remark 2.12. As in Remark 2.10 one can check that the other solutions t
to (2.40) form a single orbit under the Galois group Gal(Q(ζ18)/Q): the other
two solutions are

σ5(tcft) = 3
(
ζ518 + ζ−518

)
− 2
(
ζ1018 + ζ−1018

)
,

σ7(tcft) = 3
(
ζ718 + ζ−718

)
− 2
(
ζ1418 + ζ−1418

)
. (2.46)

Computing the actions of σ5∗ and σ7∗ on {−4,−3, . . . , 4} and {−8,−7, . . . , 8},
e. g. σ5∗({−4,−3, . . . , 4}) = {0,±2,±3,±5,±8}, one thus finds that

X†u′ ⊗Xu
∼=
(
P{0} ⊕ P{0,±2,±3,±5,±8} ⊕ P{−8,−7,...,8}

)
⊗k Iv2 for t = σ5(tcft) ,

X†u′ ⊗Xu
∼=
(
P{0} ⊕ P{0,±3,±4,±7,±8} ⊕ P{−8,−7,...,8}

)
⊗k Iv2 for t = σ7(tcft) .

(2.47)

V (E8) ∼ V (A29)

The E8-case is considerably more complicated than the cases already treated.
This starts already in step (i) as the smallest factorisations of V (E8) − v2 are of
rank four. Let us choose

d1X0
=


−v 0 x y
0 −v y4 −x2
x2 y −v 0
y4 −x 0 −v

 , d0X0
=


v 0 x y
0 v y4 −x2
x2 y v 0
y4 −x 0 v

 , (2.48)

see [KST, Sect. 5]. This is a matrix factorisation of x3 + y5 − v2.
In step (ii), the most generic homogeneous deformation of d1X0

(deforming also
the zero entries, of course) has 82 free parameters. Via the similarity transfor-
mation in step (iii) one can reduce this to 60 parameters. We refrain from giving
this general deformation explicitly.

For step (iv) one has to use a different method than in the other cases, because
now det(d1X0

) = (x3+y5−v2)2 and imposing det(d1Xu
) = (x3+y5−u30−v2)2 turns

out to be impractical as it results in too many non-linear conditions. Instead, we
make the ansatz d0Xu

= (x3 + y5 − u30 − v2)−1 · (d1Xu
)# and require that d0Xu

be
a matrix with polynomial entries. As before, this leads to a (very long) matrix
factorisation of x3 +y5−u30−v2 in terms of two parameters s, t, where t satisfies
an eighth order equation and s30 is equal to some polynomial in t. The eighth
order equation, however, is a product of two fourth order ones, and we select
one of these and use it to simplify the matrix factorisation. One is left with the
matrix m := d1Xu

, where with ς = su the matrix entries mij are as follows:

m11 = −v − (1+t)(3+t)(5+7t)
64

ς15 − 1+t
4
ς5x− 19+47t+25t2+5t3

192
ς9y − 1

2
ς3y2 ,

m12 = ς ,
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m13 = x+ (−1+t)(23+36t+5t2)
96

ς10 ,

m14 = y ,

m21 = −138089−562209t−600371t2−116355t3
11520

ς29 + −73−280t−285t2−50t3
160

ς19x

+ −29−25t+25t2+5t3

96
ς9x2 + −2107−8545t−9085t2−1735t3

960
ς23y

+ −33−57t−11t2+5t3

64
ς13xy + (5+7t)(13+36t+7t2)

384
ς17y2 − 3+4t

4
ς7xy2

+ −35−49t+7t2+5t3

96
ς11y3 − ςxy3 − 1

2
(1 + t)ς5y4 ,

m22 = −v + (1+t)(3+t)(5+7t)
64

ς15 + 1+t
4
ς5x+ 19+47t+25t2+5t3

192
ς9y + 1

2
ς3y2 ,

m23 = y4 + 3587+14687t+15785t2+3125t3

1920
ς24 + (1−t)(23+36t+5t2)

96
ς9v

+ 43+102t+67t2+12t3

96
ς14x− (1+t)(81+126t+17t2)

384
ς18y + 2+3t

4
ς8xy

+ (2+t)(7+6t−5t2
96

ς12y2 + ς2xy2 + 1+2t
4
ς6y3 ,

m24 = −x2 + (−1+t)(23+36t+5t2)
96

ς10x+ 2+21t+32t2+9t3

48
ς14y ,

m31 = x2 + (1−t)(23+36t+5t2)
96

ς10x− 2+21t+32t2+9t3

48
ς14y ,

m32 = y ,

m33 = −v + −37−39t+29t2+15t3

192
ς15 + 1+t

4
ς5x+ −65−73t+37t2+5t3

192
ς9y − 1

2
ς3y2 ,

m34 = (1−t)(23+36t+5t2)
96

ς11 + ςx+ 1+t
2
ς5y ,

m41 = y4 + 3587+14687t+15785t2+3125t3

1920
ς24 + (−1+t)(23+36t+5t2)

96
ς9v

+ 43+102t+67t2+12t3

96
ς14x− (1+t)(81+126t+17t2)

384
ς18y + 2+3t

4
ς8xy

+ (2+t)(7+6t−5t2)
96

ς12y2 + ς2xy2 + 1+2t
4
ς6y3 ,

m42 = −x+ (1−t)(23+36t+5t2)
96

ς10 ,

m43 = −569+2615t+2855t2+425t3

1920
ς19 + 17+t−37t2−5t3

96
ς9x+ −17−17t+13t2+5t3

64
ς13y

− 1+2t
4
ς7y2 − ςy3 ,

m44 = −v + 37+39t−29t2−15t3
192

ς15 − 1+t
4
ς5x+ 65+73t−37t2−5t3

192
ς9y + 1

2
ς3y2 .

The parameters s, t can be any solution of the equations

s30 = 1
4
(45308593275 t3 − 32199587625 t2 − 973905678975 t− 395277903075) ,

5 t4 − 110 t2 − 120 t− 31 = 0 . (2.49)

As already noted above, the matrix d0Xu
is given by (x3+y5−u30−v2)−1·(d1Xu

)#,
which has polynomial entries provided s, t solve (2.49). It is now straightforward
to determine the Q-gradings on Xu to be given by

UXu(β) = eiαβ · diag
(
1, e−14iβ/15, e−iβ/3, e−3iβ/5, 1, e−14iβ/15, e−iβ/3, e−3iβ/5

)
(2.50)

with α ∈ Q, and compute the quantum dimensions to be

diml(Xu) = 2s , dimr(Xu) = 5
16

(−27− 86 t− 3 t2 + 4 t3) s−1 , (2.51)
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which are indeed non-zero for all choices of s, t satisfying (2.49). This concludes
the proof of Theorem 1.5.

Because we have made a number of restricting assumptions before arriving at
(X, dXu), we cannot claim a statement analogous to Lemmas 2.7, 2.9 and 2.11.

Finally we compute the endomorphisms of Xu in hmfgr(C[u, v, x, y], x5 + y3 −
u30 − v2) to be the 60-dimensional space

End(Xu) ∼=
( 28⊕

i=0

C[i · 2
30

]
)
⊕
( 23⊕

i=5

C[i · 2
30

]
)
⊕
( 19⊕

i=9

C[i · 2
30

]
)
⊕ C[28

30
] . (2.52)

For the solution

tcft = −1
5

(
7 + 4

(
ζ30 + ζ−130

)
+ 8
(
ζ230 + ζ−230

)
− 16

(
ζ330 + ζ−330

))
(2.53)

of (2.49), X†u′ ⊗ Xu is isomorphic, up to the factor Iv2 , to the rank-four graded
matrix factorisation

P{0} ⊕ P{−5,−4,...,5} ⊕ P{−9,−8,...,9} ⊕ P{−14,−13,...,14} . (2.54)

This concludes the proof of Corollary 1.7.

Remark 2.13. The other solutions of (2.49) are found via the Galois group
Gal(Q(ζ30)/Q) to be

σ7(tcft) = −1
5

(
7 + 4

(
ζ730 + ζ−730

)
+ 8
(
ζ1430 + ζ−1430

)
− 16

(
ζ2130 + ζ−2130

))
,

σ11(tcft) = −1
5

(
7 + 4

(
ζ1130 + ζ−1130

)
+ 8
(
ζ2230 + ζ−2230

)
− 16

(
ζ330 + ζ−330

))
,

σ13(tcft) = −1
5

(
7 + 4

(
ζ1330 + ζ−1330

)
+ 8
(
ζ2630 + ζ−2630

)
− 16

(
ζ930 + ζ−930

))
. (2.55)

The corresponding decompositions of X†u′⊗Xu are, with Z = P{0}⊕P{−14,−13,...,14}
and up to the factor Iv2 ,

Z ⊕ P{0,±2,±5,±7,±9,±14} ⊕ P{0,±2,±3,±4,±5,±7,±9,±11,±12,±14} for t = σ7(tcft) ,

Z ⊕ P{0,±3,±5,±8,±11,±14} ⊕ P{0,±2,±3,±5,±6,±8,±9,±11,±13,±14} for t = σ11(tcft) ,

Z ⊕ P{0,±3,±4,±5,±8,±9,±13} ⊕ P{0,±1,±4,±5,±8,±9,±12,±13,±14} for t = σ13(tcft) .
(2.56)

Another method to construct orbifold equivalences

There is another way, slightly different from the one described at the begin-
ning of Section 2.3, of obtaining the orbifold equivalences V (Dd/2+1) ∼ V (Ad−1),
V (E6) ∼ V (A11), and V (E7) ∼ V (A17). Roughly, this method starts with a matrix
factorisation M of a potential W and computes the deformations [Lau, Siq] Mu
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of M . Then instead of setting the deformation parameters to be solutions of
the obstruction equations (which would give factorisations of W ), one tries to re-
interpret some of the parameters u as variables of another potential V while choos-
ing the remaining parameters such that Mu becomes a factorisation of W − V .

As this method may prove useful to construct further orbifold equivalences, we
illustrate it in more detail in the example of V (E6) ∼ V (A11):

(i) Start with the matrix factorisation (2.23) of W = V (E6) − v2 and compute
its deformations, using e. g. the implementation of [CDR].5

(ii) One obtains a 4-by-4 matrix D with polynomial entries in the variables
v, x, y and two deformation parameters u1, u2. By construction D squares
to W · 1 + R, where the matrix R vanishes if u1, u2 satisfy the obstruction
equations.

(iii) Interpret the parameter u1 as the (rescaled) variable u and choose u2 ∈ C[u]
such that D becomes a factorisation of V (E6) − u12 − v2. This turns out to
be isomorphic to Xu of (2.26) with t = −1/

√
3.

In the casesW+v2 ∈ {V (Dd/2+1), V (E6), V (E7)} this method is especially straight-
forward as the matrix D already squares to (W + f) · 1, where f is a poly-

nomial with leading term u
d/2
1 , u121 , u

18
1 , respectively. On the other hand, for

W = V (E8)− v2 the square of D is a more generic matrix, rendering the problem
D2 = (W − u30) · 1 much more computationally involved.

3 Comparison to conformal field theory

In this section we describe how the orbifold equivalences established in Theo-
rem 1.5 compare to – and are in fact predicted by – the correspondence between
N = 2 supersymmetric Landau-Ginzburg models (LG models) and N = 2 su-
perconformal field theories (CFTs) in two dimensions. We do not aim for a
self-contained discussion, but we provide pointers to the literature where more
details can be found.

One can argue that for a given LG model there is an associated CFT, namely
the infrared fixed point theory [Mar, VW, HW]. The Virasoro central charge of
the infrared CFT is computed from the potential of the LG model via (1.4). The
renormalisation group flow also provides a map from certain boundary conditions
and defects lines in the LG model to certain conformal boundary conditions
and defects lines in the CFT, see e. g. [KL, BHLS, BR1]. In general, charges
and correlators of fields in the LG model vary along the flow. However, by
N = 2 supersymmetry the charges and correlators in a subsector of the LG model

5Of course the indecomposable object (2.23) has no nontrivial deformations, but that does
not matter here.
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consisting of chiral primary fields are preserved and can be directly compared to
their CFT equivalents. Below, we will carry out this comparison for the defectsXu

of Section 2.3 and the charge spectrum of the chiral primary fields supported on
these defects.

Conformal field theories form a bicategory, where objects are CFTs, 1-
morphisms are topological defect lines and 2-morphisms are topological junc-
tion fields, see [DKR] for details. This bicategory has adjoints and is pivotal,
hence the general concept of orbifold equivalence is applicable. There cannot be
a topological defect joining two CFTs of different Virasoro central charge. As
a consequence, equality of central charges provides a necessary condition for an
orbifold equivalence to exist, cf. Proposition 1.3. Contrary to the matrix factori-
sation framework, for CFTs a useful sufficient condition is known for the existence
of an orbifold equivalence [FFRS2]:

Let V be a rational vertex operator algebra. Suppose two CFTs have
unique bulk vacua and their algebra of bulk fields contains V ⊗C V
as a subalgebra. Then these two CFTs are orbifold equivalent.

Here the bar over V indicates that the second factor is embedded in the anti-
holomorphic fields.

Those LG models whose potentials define simple singularities are believed to
renormalise to CFTs that contain the N = 2 minimal super Virasoro vertex
operator algebra with the same central charge. The latter are rational, so by the
above criterion all these CFTs of the same central charge are orbifold equivalent.

One may expect topological defects between two infrared CFTs to have ana-
logues already in the corresponding LG model. Furthermore, one may expect that
composition of topological defects commutes with renormalisation group flow. If
so, the orbifold equivalences of infrared CFTs should exist also for LG models.
This is the reason why Theorem 1.5 is expected from the above CFT criterion.

After these qualitative considerations, we now turn to quantitative, more tech-
nical comparisons. The correspondence between topological defect lines of LG
models of A-type singularities and those of the associated diagonal N = 2 CFTs
motivates the following conjecture, whose ingredients we explain directly after
stating it.

Conjecture 3.1. For any integer d > 3, consider the monoidal subcategory of
hmfgr(C[x, x′], xd − x′d) whose morphisms only have Q-degree zero, and which
is generated by {P{a,a+1,...,a+b} | a, b ∈ Zd} with respect to tensor products and

direct sums. This subcategory is monoidally equivalent to (Csu(2)d−2 � C
u(1)
2d )NS.

The matrix factorisations PS are those introduced in (1.8). The relevant Q-

grading on PS follows from the R-charge discussion in [CR1, Sect. 3.2]. By Csu(2)k

we denote the modular tensor category of integrable highest weight representa-
tions of the affine Lie algebra ŝu(2) at level k. It has simple objects labelled
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by {0, 1, . . . , k}. Cu(1)2d is the modular tensor category of representations of the
rational lattice vertex operator algebra built out of single free boson which has
simple objects labelled by {0, 1, . . . , 2d− 1}, and � denotes the Deligne product,
see e. g. [BK]. Details and references to the original literature can be found in
[CR1, App. A.2].

We set D = Csu(2)d−2 � C
u(1)
2d and denote the simple objects of D by Ul,m, where

l ∈ {0, 1, . . . , d − 2} and m ∈ {0, 1, . . . , 2d − 1}. The notation (−)NS refers to
passing to the full subcategory generated by the Ul,m with l + m even. Via
the coset construction, this describes the NS sector of the representations of
the N = 2 minimal super Virasoro vertex operator algebra at central charge
c = 3(1− 2/d), see again [CR1, App. A.2] for details and references.6

The status of Conjecture 3.1 is currently as follows.

- The functor which conjecturally provides the tensor equivalence acts on
simple objects as P{a,a+1,...,a+b} 7→ Ub,b+2a. It is verified in [BR1] that this is
compatible with the tensor product on the level of isomorphism classes.

- Some, but far from all, associativity isomorphisms were proved to be com-
patible in [CR1].

- For odd d, the conjecture is proved in [DRCR].

Comparison of algebra objects

According to [FRS, FFRS], the full conformal field theories (with unique bulk
vacuum) that can be constructed starting from a rational vertex operator alge-
bra V are parametrised by Morita classes of ∆-separable symmetric Frobenius
algebras in the modular tensor category of representations of V . The algebras
relevant for the CFT describing the infrared fixed point of an LG model with
ADE-type potential are predicted from [Gan, Gra] to be non-trivial only in the
su(2) factor of D. More specifically, they are representatives of the ADE classifi-

cation of Morita classes of such algebras in Csu(2)d−2 given in [Ost]. As objects in D
these algebras are

F (Ad−1) = U0,0 for d > 2 ,

F (Dd/2+1) = U0,0 ⊕ Ud−2,0 for d ∈ 2Z+ ,

F (E6) = U0,0 ⊕ U6,0 for d = 12 ,

F (E7) = U0,0 ⊕ U8,0 ⊕ U16,0 for d = 18 ,

F (E8) = U0,0 ⊕ U10,0 ⊕ U18,0 ⊕ U28,0 for d = 30 . (3.1)

6In [CR1] the (−)NS is missing in (A.38) and (A.45). This is a typo or an error, depending
on one’s disposition towards the authors.
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Topological defects between a diagonal, i. e. A-type, CFT and another CFT
from the above list with the same value of d given by some algebra F are described
by F -modules in D [FFRS1]. This is consistent with the point of view of orbifold
equivalences. There, the algebra describing the theory on one side of a topological
defect X in terms of the other is X† ⊗ X, see [CR3] for details. In the present
setting one has X = FF , X† = FF , and FF ⊗F FF ∼= F as algebras.

On the matrix factorisation side, the objects underlying the algebras describing
the D- and E-type singularities as orbifolds of A-type singularities are those in
(2.21), (2.35), (2.45) and (2.54) above. Under the tensor equivalence of Conjec-
ture 3.1, they are indeed mapped to the corresponding objects in the list (3.1).
(It would of course be enough to land in the same Morita class, but for our choices
of matrix factorisations we get the actual representatives chosen in (3.1).)

Comparison of defect spectra

Given the above observations on the objects underlying the algebras establishing
the orbifold equivalences, it is natural to expect that the matrix factorisations of
the potential differences described in Section 2.3 get mapped to the topological
defects described by the modules FF for F the corresponding algebra in (3.1).
This expectation can be tested by comparing the spectra of chiral primaries.

The chiral primaries in D are the ground states in the representations labelled
Ul,l with l ∈ {0, 1, . . . , d− 2}; their charge is l/d. The space of chiral primaries of
holomorphic and antiholomorphic labels l and m, respectively, on the defect FF
is isomorphic to the vector space

HomF (F ⊗ Ul,l ⊗ Um,−m, F ) ∼= Hom(Ul,l ⊗ Um,−m, F ) , (3.2)

where ‘HomF ’ comprises only F -module maps in D, and ‘Hom’ all maps in D.
We refer to [FFRS1] for an explanation of this formula. The total charge (as seen
on the LG side) of these chiral primaries is (l +m)/d.

Let us consider the example F = F (E6) in some detail. The first thing to note
is that Hom(Ul,l ⊗ Um,−m, Un,0) has dimension zero unless l = m. (Actually the

fusion rules in Cu(1)2d tell us that l −m ∼= 0 mod 2d, but for the given range on l
and m this just amounts to l = m.) For l = m, the space is one-dimensional

if n is even and n/2 6 l 6 d− 2− n/2, as follows from the fusion rules of Csu(2)d−2 .

From the summand U0,0 in F (E6) we therefore get one state at each charge l/6,
l ∈ {0, 1, . . . , 10}, and from the summand U6,0 another state of charge l/6 for
each l ∈ {3, 4, . . . , 7}. Hence the total dimension of the space of chiral primaries
is 16, and we have perfect agreement with (2.31).

It is straightforward to carry out the analogous computations for F = F (Dd/2+1),
F = F (E7) and F = F (E8), again consistent with the charges and multiplicities of
the matrix factorisation results listed in (2.21), (2.43) and (2.52), respectively.
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