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____________________________________________________________________ 

Abstract 

    Rule learning approaches, which essentially aim to gerenate a decision tree or a 

set of “if-then” rules, have been popularly used in practice for automatically building 

rule-based models for prediction tasks, e.g., classification and regression. The key 

strength of rule-based models is their ability to interpret how an output is obtained given 

an input, in comparison with models trained by other machine learning approaches, e.g., 

neural networks. Moreover, ensemble learning approaches have been adopted as a 

popular way for advancing the performance of rule-based prediction through producing 

multiple rule-based models with diversity. Traditional approaches of ensemble learning 

are typically designed to train a single ensemble. In recent years, there have been some 

studies on creation of multiple ensembles towards increasing the diversity among rule-

based models and the depth of ensemble learning. In this paper, we propose a feature 

expansion driven approach for automatic creation of deep rule ensembles, i.e., the 

dimensionality of the feature space is increased at each iteration by adding features 

newly created at the previous iteration. The proposed approach is compared with more 

recent approaches of rule learning and ensemble creation. The experimental results 

show that the proposed approach achieves improved performance on various data sets. 

Keywords: Machine learning; Rule learning; Ensemble learning; Rule ensemble. 

_____________________________________________________________________ 

1. Introduction  

In machine learning tasks, interpretability is one of important aspects that people 

highly expect in practice [3, 19], i.e., it is crucial to interpret how a predictive model 

built using a machine learning approach makes an output after being given an input. In 

this context, rule learning approaches are considered to have the strength in the model 

interpretation [3, 46], comparing with other popular learning approaches, e.g., neural 
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networks. Therefore, rule learning approaches have been popularly adopted to build 

rule-based models for knowledge discovery and predictions in some application 

domains, e.g., medicine [42, 46]. 

In traditional machine learning tasks, a rule learning approach is usually used to 

build a single rule-based model for classification or regression, through two typical 

learning strategies, namely, divide and conquer (DAC) [5] and separate and conquer 

(SAC) [16]. One of the main differences between the above two strategies is in terms 

of the model representation. In particular, rule-based models which are generated by 

taking the DAC strategy are automatically represented in the form of decision trees, 

whereas models would be represented in the form of a set of “if-then” rules if the SAC 

strategy is taken. In practice, rule-based models built through taking either one of the 

two strategies tend to overfit training data [26, 29], leading to the worse performance 

on unseen data. Therefore, several ways have been undertaken towards avoiding the 

case of overfitting, where one popular way is to build multiple models in the setting of 

ensemble learning [3]. 

Since the main aim of producing multiple models is to let the models collaborate 

each other, it would be highly important to ensure that there is some diversity among 

the models [50]. In general, there is not a commonly-accepted formal definition for the 

term “diversity” [24, 49], and thus people usually design some heuristic ways of 

diversity creation [50], e.g., diversification of features, samples, heuristic strategies of 

learning or hyper-parameters of the same learning approaches. Some specific ways of 

diversity creation that we design in this paper will be presented in Section 3. 

Apart from the diversity creation, it is also important to ensure that each member 

of an ensemble needs to have as high performance as possible [50], which indicates the 

necessity to make the learning go deeper, i.e., increasing the depth of learning in 

addition to increasing the width of learning (through diversity creation). In this paper, 

we propose a deep rule ensemble creation approach that is driven by iterative expansion 

of the feature space used for learning classifiers. The key contributions of this paper are 

as follows: 

(1) We propose a deep rule ensemble creation approach, which involves multiple 

iterations of learning and an automatic creation of new features at each 

iteration to increase the dimensionality of the feature space. 

(2) The depth of learning is increased iteratively by adding new features, such that 

deeper ensembles are produced at the next iteration by learning from a richer 

set of features (i.e., the original features + the features created at the previous 

iterations of learning). In other words, while the original features are regarded 

as the prior knowledge, the features created at each iteration can be viewed as 
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newly learned knowledge and are added to the prior knowledge for further 

learning in more depth. 

(3) In the creation of new features, multiple ways are taken at each iteration to 

produce diverse outputs, i.e., fusing the outputs of multiple ensembles created 

at the current iteration in different ways, such that the new features which are 

added at the next iteration contribute towards the production of deeper and 

more diverse ensembles. 

(4) The experimental results indicate that the proposed approach performs 

considerably better than some recent methods [28, 31] of rule learning and 

ensemble creation on various data sets. 

  The remainder of this paper is organized as follows. Section 2 provides a review 

of the related work on the creation of ensembles of rule-based classifiers. In Section 3, 

we present the procedure of our proposed approach of deep rule ensemble creation in 

details, where some relevant preliminaries are also included. In Section 4, the details 

on conducting the experiments are provided and the experimental results are presented 

with discussions. In Section 5, the contributions of this paper are highlighted and some 

further directions are suggested. 

2. Related work 

Since rule learning can be operated in practice through two different strategies, 

namely, DAC and SAC, there are thus two main families of learning algorithms that 

aim to generate a decision tree and a set of “if-then” rules, respectively. In particular, 

the DAC strategy is designed to involve a recursive selection of an attribute Ax out of a 

set of candidate attributes in order to generate each non-leaf node of a decision tree, 

whereas the SAC strategy is designed to involve an iterative selection of an attribute-

value pair (e.g., Ax = vxb， where vxb is the b-th value of attribute Ax) to generate a rule 

and repeatedly perform the same procedure for generating the next rule, until a 

complete set of “if-then” rules has been produced. 

In general, the DAC strategy can be used to produce either binary trees or multi-

way trees, depending on the type of the attribute selected for each node and how to 

handle a specific type of attributes. In other words, while all candidate attributes are of 

the binary type, the adoption of the DAC strategy would automatically result in the 

generation of a binary tree, which guarantees that each non-leaf node has two children. 

However, when an attribute Ax selected for generating a non-leaf node is multi-valued, 

the node may have n children (n is the number of possible values for Ax) by using some 

decision tree learning algorithms, such as ID3 [36] and C4.5 [37]. It is also possible to 

generate binary trees by learning from multi-valued attributes if the learning algorithm 

is designed to binarize multi-valued attributes. In particular, when a multi-valued 
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attribute Ax is selected for a non-leaf node Nxy, some algorithms, such as CART [8], are 

designed to generate two children of node Nxy, where one child results from taking the 

attribute-value pair Ax = vxb and the other child results from taking the opposite attribute-

value pair Ax ≠ vxb.  

In terms of generating a set of “if-then” rules, the SAC strategy can also be taken 

in different manners. In particular, one way is to select a target class TC and then 

iteratively select attribute-value pairs to become antecedents of a rule Rc, whereas 

another way is to learn a rule Rc by iteratively selecting attribute-value pairs to become 

antecedents of rule Rc, without the need to pre-select a target class TC. In other words, 

the former way is designed essentially to learn a rule that can effectively identify the 

instances of the target class TC, where a well-known example of such learning 

algorithms is so-called “Repeated Incremental Pruning to Produce Error Reduction” 

(RIPPER) [13]. In contrast, the essence of the latter way of taking the SAC strategy is 

to achieve that a rule Rc is learned to be capable of discriminating one class from the 

other classes, where a well-known example of such learning algorithms is so-called 

“CN2” [12]. 

For both the DAC and SAC strategies of rule learning, the algorithms are typically 

designed to induce rules heuristically from training data. The nature of heuristic 

learning of rules is likely to result in unstable performance due to the greedy search of 

attributes for generating decision trees or attribute-value pairs for generating “if-then” 

rules [3]. In other words, the attribute selected at each iteration for generating a non-

leaf node of a decision tree is considered to be the locally (but not globally) best option, 

based on a specifically employed heuristic, e.g., Gini-index [39]. The same issue may 

also arise with learning algorithms that are designed for generating “if-then” rules [29]. 

Although there have been some more recent rule learning algorithms that involve 

heuristic modifications of classic algorithms towards the reduction of the bias on 

heuristic selection of attributes (or attribute-value pairs) through the greedy search, e.g., 

the PrismCTC algorithm [31] is a variant of the Prism algorithm [9], it is still 

unavoidable to have unstable performance on various data sets, i.e., a rule-based model 

may perform well on some data sets but the model may not generalize well on other 

data sets [2, 34]. In order to achieve better stability and higher generalization 

performance, it has become a popular way to train and fuse multiple rule-based models 

that are reliable and diverse, where the above way is known as ensemble learning [49]. 

The majority of the popular ensemble approaches, e.g., Bagging [6], Boosting [40] 

and Random Subspace [22], have been effectively used in the creation of decision 

forests (i.e., ensembles of decision trees). These ensemble approaches each involve 

specific ways of creating diversity among members of an ensemble (i.e., decision trees 

in the case of a decision forest). In particular, the diversity creation through Bagging or 
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Boosting is achieved essentially by drawing diverse samples of training data for 

building diverse decision trees. The Bagging approach is designed to draw each training 

sample Si through Boostrap Sampling, i.e., each training sample Si has the same size as 

the original training data D, where some instances (originally from D) may appear 

multiple times in Si but some other instances (known as Out-of-Bag instances) may not 

appear in Si at all. Since the production of n training samples {S1, S2, …, Sn} results in n 

different sets of Out-of-Bag instances, the n training samples {S1, S2, …, Sn} drawn from 

D are thus diverse leading to the production of a decision forest that consists of n diverse 

decision trees. The Bagging approach also has some variants such as Dagging [45] and 

Wagging [4]. 

In contrast to the Bagging approach, the Boosting approach involves assigning a 

weight to each training instance at each iteration i of drawing a training sample Si from 

D, such that different instances have different chances for being selected into the 

training sample Si. In particular, at the first iteration (i=1), all the training instances are 

given equal weights, i.e., they have the same chance for being selected into the training 

sample S1. On this basis, the first decision tree DT1 is trained on S1, and some instances 

in D may be misclassified by DT1, so these misclassified instances are given higher 

weights than the other instances, which indicates that the misclassified instances are 

more likely to be selected into S2 at the next iteration (i=2). The second decision tree 

DT2 is thus trained on S2 and the same procedure for weighting of instances is repeated 

until the pre-defined number of iterations has been reached. Since n different sets of 

misclassified instances are normally obtained at n iterations, the n training samples {S1, 

S2, …, Sn} drawn from D are thus diverse, which makes it achieveable to produce a 

decision forest that consists of n diverse decision trees. A popular method of Boosting-

driven creation of decision forests is known as Gradient Boosted Tree (GBT) [15].  

Random Subspace essentially involves n independent iterations of random 

sampling of features to draw n feature subsets, which results in the possibility that 

decision trees trained on different feature subsets are diverse [22]. The Random 

Subsapce method has also been combined with the Bagging approach for creating 

decision forests, given the motivation to avoid the case that a forest involves many 

correlated trees produced from training samples drawn by the Bagging approach, due 

to the high likelihood of selecting some common features into many of these trees for 

generating non-leaf nodes, especially when these common features are strongly 

predictive of the target output (i.e., the class). The above combination of Bagging and 

Random Subspace has resulted in development of the so-called “Random Forest” 

method [7]. In creating random forests, the Random Subspace method is adopted at the 

node level instead of the model (tree) level, i.e., the Random Subspace method can 

generally be used at the tree level to produce n feature subsets {FS1, FS2, …, FSn} on 
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which n decision trees DT1, DT2, …, DTn are trained as parts of a decision forest, but for 

building a random forest, the production of a feature subset FSia is independently 

undertaken at the node level for generating each non-leaf node Nia of a decision tree 

DTi in the forest. The number of features selected in each feature subset FSia is generally 

treated as a hyper-parameter of the Random Forest method, but the suggested number 

of features in practice can be int(log2M+1) [7] or √𝑀 [21], where M is the number of 

features in the original feature set FS. Overall, the design of the Random Forest method 

involves two aspects of diversity creation through learning of mutliple decision trees 

from various samples of training data and different feature subspaces. 

There have also been some more recent methods of decision forest creation, such 

as Rotation Forest [38], Extremely Randomized Trees (ExtraTree) [18], Random 

Feature Weights for Decision Tree Ensemble Construction (RFW) [33], Forest by 

Continuously Excluding Root Node (FCERN) [1], Forest by Penalizing Attributes 

(FPA) [2], which have shown different ways of creating diversity on features used for 

generating each decision tree. In particular, the Rotation Forest method [38] is designed 

to employ the Principal Component Analysis (PCA) method [21] to combine features 

in the original feature set FS for drawing a new feature set FSi at each iteration i of 

building a decision tree DTi. The ExtraTree method [18] essentially involves the 

creation of randomness in dealing with continuous attributes, i.e., while a numeric value 

vxb of a continuous attribute Ax needs to be selected as a threshold (Ax ≥ vxb or Ax < vxb) 

for spliting a training subset at a non-leaf node of a decision tree, the way designed in 

the ExtraTree method [18] is to make a fully random selection. The other three methods 

(i.e., the RFW method, the FCERN method and the FPA method) are all designed 

essentially to involve specific ways of assigning weights to features at each iteration i 

of training a decision tree DTi, such that different features have different chances to be 

selected for generating non-leaf nodes of decision tree DTi at each iteration i, i.e., the 

features which are selected at the n iterations for generating n decision trees are likely 

to be different. 

In recent years, it has been emphasized that the learning needs to go deeper [50], 

which indicates the necessity to increase the depth of learning base classifiers in 

addition to the creation of the diversity among the base classifiers in the setting of 

ensemble learning. In particular, the so-called “Deep Forest” method has been 

developed in [50], which involves multi-grained scanning for feature representation 

learning from spatial data (e.g., images) or sequential data (e.g., text and signals) and 

then learning a deep forest by using a cascade forest architecture that involves L levels 

(i.e., multiple forests are produced at each level l and the deep forest model is gradually 

getting deeper by producing further forests at the subsequent levels l+1, l+2,…, L), 

where the value of L is self-adaptive, i.e., the value of L is initialized to 0 and will be 
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continuously increased by 1 until the learning performance measured using validation 

data is not advanced any further. 

Another approach, which is referred to as “Multi-Stage Mixed Rule Learning” 

(MSMRL), has been proposed in [28] for creating rule ensembles that are gradually 

getting deeper, through learning from general structured data (i.e., the features in the 

data do not have spatial or sequential relationships). The MSMRL approach is designed 

to have a pre-defined number of iterations towards granually increasing the depth of 

learning rule ensembles, and also to involve multiple ways of diversity creation through 

diversification of features and heuristics for learning different rule-based classifiers at 

each iteration, while the C4.5 algorithm [37] and the Mixed Fuzzy Rule Formation 

algorithm [17] are adopted in a collaboative manner for effectively dealing with data 

sets that contain both discrete and continuous attributes (features), i.e., the C4.5 

algorithm and the Mixed Fuzzy Rule Formation algorithm involve different heuristic 

ways for dealing with continuous attributes, and the C4.5 algorithm can also effectively 

deal with discrete attributes that can not be handled directly by the Mixed Fuzzy Rule 

Formation algorithm. In the next section, we will show how our proposed approach 

works in a different way for achiving the gradual increase of the depth of learning rule 

ensembles from the general structured data, while multiple ways of diversity creation 

are also heuristically designed and incorporated in the proposed approach.  

3. The proposed approach of deep rule ensemble creation 

In this section, we propose an approach for deep rule ensemble creation in a step-

by-step manner. The entire procedure of the proposed approach is shown in   Fig. 1, 

Fig. 2 and Fig. 3, where Fig. 1 and Fig. 2 show how a deep rule ensemble is built in the 

training stage (i.e., the process of producing an ensemble committee EC that involves 

multiple levels and multiple classification models in each level); Fig. 3 shows how each 

test instance is classified by the deep rule ensemble produced in the training stage. The 

proposed approach essentially involves four main steps shown as follows: 

Step 1: Build classification models at iteration i, where i is initialized to 1. 

Step 2: Generate new features which are added into the feature set for possible use at 

the next iteration i+1.  

Step 3: Determine whether the learning task continues, i.e., whether it is necessary to 

go for the next iteration i+1 of the learning task. If Yes, then go to Step 1. Otherwise, 

go to Step 4. 

Step 4: Classify each of the test instances based on the procedure shown in Fig. 3. 

 

Input: Data set D; 

Output: Ensemble committee EC; /*EC is a committee that consists of multiple levels, where multiple 

ensembles are involved in each level of the committee.*/ 
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Let L = 0; /* Initialize the model depth L of EC (the number of levels that EC involves) */ 

Let i = L+1; /*Initialize the iteration index i */ 

Let max_Acc = 0; /* Initialize the maximum training accuracy max_Acc */ 

Initially select a set M = {M1, M2, …, Mn} of ensemble methods which are adopted at each iteration i; 

Initially select a set FR = {FR1, FR2, …, FRq} of fusion rules which are adopted at each iteration i; 

/* Acci is the training accuracy measured using the data set D at iteration i = L+1 */ 

While L= 0 or Acci > max_Acc Do 

 If L > 0 Then 

   max_Acc = Acci  

 End If; 

/*|M| is the number of methods adopted for creating ensembles at iteration i = L+1 */ 

 For j = 1 to |M| Do 

     Create an ensemble Eij on D using method Mj at iteration i = L+1; /* Mj is the jth ensemble  

     method that is initially selected into a set M = {M1, M2, …, Mn} of ensemble methods */ 

     Add Eij into an ensemble set ESi built at iteration i = L+1; 

 End For 

    Add ESi into ensemble committee EC; 

    Increase the model depth L of EC by letting L = L+1; 

/* |FR| is the number of fusion rules adopted for generating class vectors at iteration i= L+1 */ 

 For k =1 to |FR| Do 

    For each training instance e Do 

       Generate a class vector by letting Vecik = Generate_Class_Vector (D, e, i, k ,M, FRk),   

       where the return value of Generate_Class_Vector (D, e, i, k, M, FRk) is obtained based     

       on Fig. 2 

           Update the feature set FS of the data set D by adding each dimension of Vecik as a new  

           feature of e; 

    End For 

 End For; 

     Let Acci = Learning_Performance_Validation (D, M), where the return value of  

     Learning_Performance_Validation (D, M) is obtained through a K-fold cross validation or a  

     hold-out validation;   

End While. 

Obtain the ensemble committee EC= {ES1, ES2, …, ESL} by collecting each ensemble set ESi 

produced at a specific iteration i, where i = 1, 2, …, L. 

Fig. 1. The training process of the proposed deep rule ensemble creation approach. 

 

 

The proposed approach of deep rule ensemble creation is described as follows: 

(1) At Step 1 of the proposed approach of deep rule ensemble creation, there are totally 

n classification models built using n learning methods at each iteration i. In general, 

a classification model can be in one of multiple forms, i.e., it can be an individual 

classifier, an ensemble of individual classifiers or an ensemble of ensembles, 
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depending on the nature of the chosen learning methods. In this paper, we aim at 

building the second and third forms of classification models at each iteration i. In 

particular, four models are built at each iteration i. The first model is built by 

adopting the Random Forest method [7], where multiple random trees are produced 

as parts of the model. The second model is built by adopting the FPA method [2], 

which consists of multiple decision trees produced heuristically by the CART 

algorithm [8]. The third and fourth models are both built by jointly adopting the 

Bagging approach [6] and the Random Subspace method [22]. In other words, the 

Bagging approach is adopted to draw g samples from the original training data, and 

then h feature subsets are drawn randomly on each training sample, which will need 

to have g ∙ h base classifiers produced in total. The C4.5 algorithm [37] is used for 

producing the base classifiers which form the third model, whereas the base 

classifiers that form the fourth model are produced by the RIPPER algorithm [13]. 

The above-mentioned four models are produced in different settings of ensemble 

creation in order to achieve the heuristic creation of the diversity. In particular, the 

first and second models are essentially two ensembles of individual classifiers (i.e., 

two ensembles of decision trees), whereas the third and fourth models are 

essentially two ensembles of ensembles (i.e., two ensembles of forests). Moreover, 

four different algorithms are employed to train individual rule-based classifiers, 

respectively, for producing the four models. Moreover, the Random Forest method 

[7] involves adopting the Random Subspace method [22] when generating each 

non-leaf node of a decision tree, in order to achieve feature diversification (i.e., 

different features are used for generating different trees). In contrast, the FPA 

method [2] involves achieving the feature diversification in a different way, i.e., to 

assign different weights to each specific feature when generating different trees, 

such that each feature may have a higher chance to be selected for generating some 

trees but will have a lower chance to be selected for generating other trees. In this 

way, the two forests produced by the Random Forest method [7] and the FPA 

method [2], respectively, are likely to be diverse, which means that the two 

ensembles of trees are produced using diverse subsets of features. For producing 

the third and fourth models, the way of adopting the Random Subspace method [22] 

is heuristically different from the way taken for building the first model (i.e., the 

random forest). In other words, in order to produce the third and fourth models, the 

production of feature subsets by the Random Subspace method [22] only needs to 

be undertaken at the beginning through the feature subsampling from the full feature 

set of a training sample. In this context, once a feature subset is drawn from the full 

feature set, a rule-based classifier is trained entirely on the drawn feature subset, 

without the need to repeat the feature subset selection for generating each part of a 

rule-based classifier (e.g., a non-leaf node of a decision tree). Therefore, involving 
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different ways of adopting the Random Subspace method [22] also increases the 

effectiveness of the feature diversification. Besides, the adoption of the Bagging 

approach [6] is involved in building each of the above-mentioned four models (i.e., 

each of the four ensembles), which essentially aims to achieve a heuristic creation 

of the diversity through the diversification of samples in addition to the 

diversification of features.  
 

Input: Data set D, instance e, iteration i, a set of ensemble methods M = {M1, M2, …, Mn}, fusion rule 

FRk, and index k of FRk; 

Output: Class vector Vecik; /* Vecik is a p-dimensional vector, which represents p probability values 

for p classes involved in the data set D*/ 

Initialize the number K of folds for K-fold cross validation (i.e., K is a hyper-parameter); 

Initialize Vecik to a zero vector (e.g., Let Vecik = (0, 0, 0) if the data set D involves three classes); 

Initially create an empty vector set VS for storing a class vector Vec’ikj generated at each fold f; where 

j is the index of the ensemble method used for generating the class vector Vec’ikj; 

For each fold f = 1 to K Do 

  Get the training set TS = Get_Training_Set (D, f), where Get_Training_Set (D, f) is obtained   

  by taking K-1 folds of the data set D, i.e., excluding fold f from the data set D;  

  For j = 1 to |M| Do  

   Build an ensemble E’ij on TS; 

   If e ∈ TS Then 

     Classify training instance e using E’ij to generate a class vector Vec’ikj; 

   End If;  

   Add Vec’ikj into a vector set VS 

   End For;  

If e ∈ TS Then 

  Generate a class vector Vec’ik by combining the class vectors in VS using fusion rule FRk; 

  Let Vecik = Vecik+ Vec’ik 

End If 

End For; 

Let Vecik = 
1

𝐾−1
 ∙ Vecik. 

Fig. 2. Procedure of class vector generation for each training instance. 

(2) At Step 2 of the proposed approach of deep rule ensemble creation, the aim is to 

update the feature set FS by adding new features created at iteration i. In particular, 

the new features are essentially represented by numeric values of class probability. 

In other words, for each training instance e, a class vector can be generated after the 

training instance has passed through a classification model. In this case, the 



 

11 

 

generated class vector has p dimensions representing the posterior-probability 

values for p possible classes. When there are n classification models deployed for 

classifying the training instance e, n class vectors will be generated. In order to 

obtain the finalized class vectors contributing to the new features added into the 

feature set FS, a further operation needs to be undertaken, i.e., to combine the 

above-mentioned n class vectors by using a fusion rule FRk. As a result, while q 

fusion rules are adopted for combining the above-mentioned n class vectors, there 

will be q class vectors generated in total and the number of new features added into 

FS is p∙q. In practice, as illustrated in Fig. 2, the generation of a class vector Vecik 

which represents p new features of a training instance e can be operated in the 

following way: a K-fold cross validation is undertaken on the training data set, such 

that each training instance e will be used K-1 times for building K-1 models and one 

time for validation of another model. In this context, there will be K-1 class vectors 

generated for each training instance and the averaging of the K-1 class vectors will 

produce the finalized class vector Vecik for the instance. The above way of class 

vector generation for each training instance is recommended in [50] to avoid 

overfitting in the training stage, i.e., it may result in the risk of overfitting if the 

entire training data set is used for building a classification model to classify training 

instance e to generate a class vector Vecik. In general, the dimensionality of the 

feature space (i.e., the number of features in a feature set FSi) is increased iteratively 

with the increase of the learning depth L. The general relationship between the 

dimensionality |FSi| of the feature space updated at the end of each iteration i and 

the learning depth L can be formulated as follows: 

|𝐹𝑆𝑖| = |𝐹𝑆| + 𝐿 ∙ 𝑝 ∙ 𝑞,                      (1) 

where |FS| denotes the number of features in the original feature set FS used at the 

iteration i=1. Moreover, because the generation of a class vector aims to obtain a 

numeric feature representation by probability values of classes, the chosen fusion 

rules need to work in an algebraic manner using some popular rules of algebraic 

fusion, including the “mean” rule (Eq. (2)), the “median” rule (Eq. (3)), the 

“minimum” rule (Eq. (4)), the “maximum” rule (Eq. (5)) and the “product” rule (Eq. 

(6)), shown as follows: 

𝑃𝐹𝑅𝑘(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖
𝑒) =

1

𝑛
∑ 𝑃𝐸𝑖𝑗(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖

𝑒)𝑛
𝑗=1 ,           (2) 

𝑃𝐹𝑅𝑘(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖
𝑒) = med

1<𝑗<𝑛
{𝑃𝐸𝑖𝑗(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖

𝑒)},        (3) 

𝑃𝐹𝑅𝑘(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖
𝑒) = min

1<𝑗<𝑛
{𝑃𝐸𝑖𝑗(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖

𝑒)},          (4) 
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𝑃𝐹𝑅𝑘(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖
𝑒) = max

1<𝑗<𝑛
{𝑃𝐸𝑖𝑗(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖

𝑒)},           (5) 

𝑃𝐹𝑅𝑘(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖
𝑒) = ∏ 𝑃𝐸𝑖𝑗(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖

𝑒)𝑛
𝑗=1 .           (6) 

More details of these fusion rules can be found in [23, 49]. In Eqs. (2)-(6), 

“𝑃𝐸𝑖𝑗(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖
𝑒)” denotes the posterior probability of class = Ct given 

the feature vector 𝐹𝑉𝑖
𝑒

 which represents training instance e at iteration i, which is 

estimated by adopting ensemble Eij. “𝑃𝐹𝑅𝑘(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖
𝑒)” denotes the 

posterior probability of class = Ct given the same feature representation 𝐹𝑉𝑖
𝑒

 of 

training instance e at iteration i, which is obtained by combining n posterior 

probability values estimated by n ensembles {Ei1, Ei2, …, Ein}. For the above rules 

of algebraic fusion, the “minimum” rule is equivalent to the “maximum” rule for 

two-class classification tasks [23]. Moreover, the “product” rule may result in the 

veto mechanism problem [44] in practice, i.e., it is possible to occur that the 

probability values of all the classes are zero. Therefore, only the three fusion rules, 

namely, the “maximum” rule, the “mean” rule and the “median” rule, are adopted 

for generating class vectors in the setting of the proposed approach, in order to avoid 

generating zero-vectors by the “product” rule or generating identical vectors by the 

“minimum” rule and the “maximum” rule. The aim of adopting multiple fusion 

rules to generate multiple class vectors is to create more diverse features. In other 

words, those different class vectors can be viewed as features from different views. 

In particular, different fusion rules work in different ways to combine the class 

probability values estimated by different members of an ensemble [23], which is 

likely to lead to different impacts on the difference between the combined 

probability value and the true probability value for each class. Moreover, each 

fusion rule can have different impacts on different training instances [44], i.e., the 

use of the same fusion rule may result in an increase of the chance of correctly 

classifying some training instances but the chance of correctly classifying other 

training instances may be decreased using the same fusion rule. From this point of 

view, the feature representation of some training instances may be better improved 

by adding class vectors generated using one fusion rule (say FR1), in comparison 

with another fusion rule (say FR2), whereas the use of FR2 may lead to a better 

improvement of the feature representation of other training instances, in comparison 

with the use of FR1. Because rule learning methods [8, 37] essentially involve self-

selection of features for generating rule-based classifiers, the increase of the feature 

space dimensionality is likely to provide more chance of achieving a better selection 

of features during the learning process. While the Bagging approach [6] is used to 

draw diverse training samples and multiple ways of feature diversification are 
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involved, adding multiple class vectors which are produced by using different 

fusion rules is thus considered an effective strategy of achieving a further creation 

of diversity in addition to the increase of the learning depth. 

(3) At Step 3 of the proposed approach of deep rule ensemble creation, it is essential 

to determine whether it is necessary to continue the learning task by going for the 

next iteration i+1, i.e., whether or not the depth of learning is increased towards 

producing further models on the basis of the updated feature set obtained at the end 

of iteration i. In general, the above judgement depends on whether the learning 

performance measured using the validation data can be advanced further as inspired 

from [50], i.e., the learning task will be terminated automatically if the increase of 

the learning depth L does not gain any further advances in the learning performance. 

In practice, the measure of learning performance can be achieved by conducting a 

K-fold cross validation [21] or a hold-out validation [21]. However, a K-fold cross 

validation would be generally recommended, especially when the sample size of 

the training data is not sufficiently large for taking a part of the training data as an 

independent validation set. In the validation stage, each validation instance is 

classified through a two-level fusion operation that we design heuristically as part 

of the proposed approach. In particular, at the first level, each validation instance 

would first be classified by each ensemble Eij (i.e., a part of ensemble set ESi) 

produced at iteration i, so there would be n vectors of continuous-valued outputs 

obtained by using the n ensembles in ESi. Each of the n vectors of continuous-valued 

outputs essentially involves p probability values for p possible classes. In this case, 

for each class Ct, the n probability values which are produced by n ensembles are 

combined by using a fusion rule FRk. As a result, while q fusion rules are adopted 

for combining the probability values, there would be q new vectors of continuous-

valued outputs obtained after the fusion operations. Furthermore, at the second level, 

the q new vectors of continuous-valued outputs are fused further using the “mean” 

rule, which is the most commonly used one in practice [25], i.e., for each class Ct, 

the q values of the posterior probability are averaged to obtain the finalized posterior 

probability value, where the p finalized probability values for the p possible classes 

are used together for finally classifying a validation instance, i.e., the validation 

instance is classified to the class that obtains the highest probability value. 

(4) At Step 4 of the proposed approach of deep rule ensemble creation, each test 

instance is classified through a level-by-level processing manner. As illustrated in 

Fig. 3, a test instance u is classified to a class label Ctl at level l of an ensemble 

committee EC by using an ensemble set ESl (i.e., an ensemble of ensembles in EC) 

produced at iteration i of the training stage, where i = l. In the meantime, a weight 

wl is assigned to class label Ctl, which indicates the confidence of ESl outputting Ctl 
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as the class label. The value of the weight wl is obtained in our setting by measuring 

the classification accuracy of the ensemble set ESl on the validation data. Before 

moving onto the next level l+1 of EC, the feature representation of the test instance 

u needs to be updated by adding q generated class vectors into the feature set FSi+1. 

In particular, the q class vectors are essentially obtained following a two-stage 

operation in our setting of the proposed approach. At first, the test instance u passes 

through the n ensembles in ESl, which results in n class vectors being generated. 

Then, the n class vectors are combined using q rules of algebraic fusion, 

respectively, leading to q new class vectors being obtained. The q new class vectors 

represent p∙ q values of class probability obtained for the test instance u (i.e., p is 

the number of classes), which are added into the feature set FSi+1 as new features 

used at the next iteration i+1. The above procedure is repeatedly performed until 

the ensemble set ESL at the last level (i.e., l = L) has been used to classify the test 

instance. At this point, the test instance will have received L class outputs from the 

L ensemble sets, where each of the L ensemble sets is involved in a specific one of 

the L levels of the ensemble committee EC (i.e., the entire model built on the 

training data). In this context, a final classification needs to be made as the output 

of EC, which is operated by the weighted voting on the basis of the above-

mentioned L class outputs, shown as follows [34]:  

         Vote(𝐶𝑡) = ∑ 𝑤𝑙
𝐿
𝑙=1,𝑙≠𝑧 ,                                    (7)  

where ∃𝑧 ∈ [1, 𝐿]: ℎ𝐸𝑆𝑧
(𝑢) ≠ 𝐶𝑡, i.e., for some values of z between 1 and L, ESz 

will classify a test instance u to another class rather than class Ct,  “Vote(𝐶𝑡)” 

represents the total (weighted) vote obtained for class Ct, wl is the weight of 

ensemble set ESl involved at level l of Ensemble Committee EC, and u denotes a 

test instance that needs to be classified by using EC,   

          𝐶𝑜 = arg max
𝐶𝑡

Vote(𝐶𝑡),                                      (8) 

where Co is the final output of Ensemble Committee EC, which is made by choosing 

the class Ct which obtains the highest total weighted vote “Vote(𝐶𝑡)” (Note: if there 

are multiple classes that obtain the highest total weighted vote, the class with the 

smallest index value will be chosen as the final output Co, e.g., while the two classes 

C1 and C2 both obtain the highest total weighted vote, class C1 will be chosen due to 

its smaller index value).  
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Input: Ensemble committee EC, test instance u; /* EC involves L levels, where an ensemble set ESl 

is involved in each level l */ 

Output: Class label Co; /* Co is the class to which test instance u is classified by using EC*/  

Let l =1; /* Initialize the level l of ensemble committee EC to 1 */ 

/* L is the number of levels involved in ensemble committee EC, where the value of L is determined 

automatically in the training stage for the creation of EC */ 

For l =1 to L Do 

   Classify test instance u to a class label Ctl by using ensemble set ESl; 

/* wl is the accuracy of ESl measured in the training stage using the validation data */ 

Assign a weight wl to Ctl;  

    /* |FR| is the number of fusion rules adopted for generating class vectors at level l */ 

For k=1 to |FR| Do 

   Generate a class vector Veclk by using fusion rule FRk to combine the n class vectors (Veclk1,   

     Veclk2, …, Veclkn) generated by n ensembles in ensemble set ESl; 

   Update the feature representation of test instance u by adding each dimension of Veclk as a  

   new feature of u;           

End For 

End For; 

Determine the final output Co of the ensemble committee by choosing the class Ct which obtains the 

highest total weighted vote, i.e., the selection of the class Ct is achieved by the weighted voting on the 

basis of the L class outputs {Ct1, Ct2, …, CtL} predicted by L ensemble sets in EC. 

Fig. 3. Procedure for classifying each test instance in the testing stage.                                                                   

4. Experimental results 

In this section, 20 data sets adopted from the UCI repository [27] are used for 

conducting the experiments. The details of the 20 data sets are described in Table 1. 

The characteristics of the data sets are diverse, e.g., some data sets contain both discrete 

and continuous attributes, where the other data sets contain only one type of attributes 

(i.e., either discrete attributes or continuous attributes). Moreover, some data sets aim 

for binary classification tasks, whereas the other data sets aim for multi-class 

classification tasks. 

 

Table 1  

Data sets used for experiments. 

Data sets 

Number of 

discrete/continuous 

attributes 

Number of 

instances 

Number of 

classes 
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Anneal 

Balance-scale 

Breast-cancer 

Breast-w 

Credit-a  

Credit-g 

Cylinder-

bands 

Dermatology 

Diabetes 

Hepatitis 

Ionosphere 

Iris  

Kr-vs-kp 

Labor  

Lymph 

Sponge  

Tae 

Vote 

Wine 

Zoo 

32/6 

0/4 

9/0 

0/9 

9/6 

13/7 

21/18 

33/1 

0/8 

13/6 

0/34 

0/4 

36/0 

8/8 

15/3 

45/0 

2/3 

16/0 

0/13 

16/1 

898 

625 

286 

699 

690 

1000 

540 

366 

768 

155 

351 

150 

3196 

57 

148 

76 

151 

435 

178 

101 

6 

3 

2 

2 

2 

2 

2 

6 

2 

2 

2 

3 

2 

2 

4 

3 

3 

2 

3 

7 

In the experimental setting of the proposed approach, at each iteration i of building 

the ensemble committee EC (i.e., a deep rule ensemble architecture that consists of 

multiple levels), there are four classification models built as parts of ensemble 

committee EC by setting four ensemble creation methods. The first classification model 

is built using the Random Forest method [7], where the built forest consists of 100 

random trees. Each tree is trained by randomly selecting int(log2M+1) features as 

candidates for evaluation towards generating each non-leaf node of the tree, where M 

is the number of features in the full feature set obtained at iteration i. The second model 

is built using the FPA method [2], where the built forest consists of 100 trees. Each tree 

is trained heuristically by using the CART algorithm [8] alongisde the cost-complexity 

pruning (CCP) method [8], where the number of pruning folds is set to 3, i.e., a 3-fold 

cross validation is conducted on the training data set to obtain the pruned tree. The third 

classification model is built by adopting jointly the Bagging approach [6] and the 

Random Subspace method [22]. In particular, 10 data samples are drawn randomly 

from the original training data set using the Bagging approach [6]. Then, 10 feature 

subsets are drawn from the full feature set of each training data sample by adopting the 

Random Subspace method [22], where the size of each subspace is set to 0.6. Finally, 



 

17 

 

100 decision trees are produced in total by using the C4.5 algorithm [37] alongside the 

error-based pruning method [20]. In terms of pruning, the confidence factor is set to 

0.25, alongside the consideration of the subtree raising operation. Moreover, the 

minimum description length (MDL) correction [37] is used, in the case of selecting 

continuous attributes for generating non-leaf nodes of a decision tree. Similar to the 

way of building the third classification model, the fourth classification model is also 

built by adopting jointly the Bagging approach [6] and the Random Subspace method 

[22], but the only difference is that the RIPEER algorithm [13] is used instead of the 

C4.5 algorithm [37] to produce 100 sets of “if-then” rules rather than 100 decision trees. 

The RIPEER algorithm [13] is set to involve 2 runs of rule optimization and use 1/3 

training data for rule pruning. At the end of each iteration i of building ensemble 

committee EC, a 3-fold cross validation, which is based on the procedure shown in Fig. 

2, is undertaken to generate class vectors for adding new features into the feature set 

for each instance. After the 3-fold cross validation, it is also determined automatically 

whether the learning task continues by going for the next iteration i+1, i.e., the learning 

task would normally continue unless the learning performance (i.e., the classification 

accuracy measured using the 3-fold cross validation on the training set) is not advanced 

any further. The proposed approach is compared with a very recent approach MSMRL 

[28] as well as all the other methods (i.e., the C4.5 method [37], the Prism method [9] 

and the PrismCTC method [31]) that have been compared with the MSMRL method in 

[28]. The settings of the hyper-parameters for these existing methods (i.e., the C4.5 

method, the Prism method, the PrismCTC method and the MSMRL method) are kept 

the same as the ones described in [28]. The experiments on the 20 data sets are 

conducted through random splitting of data into training and test sets. In particular, 70% 

of a data set is selected for training and the rest of the data set is taken for testing. For 

each data set, the random data splitting is repeated 100 times and the average accuracy 

obtained over the 100 runs is used for performance comparison among different 

approaches. The results on classification accuracy for different methods are presented 

in Table 2. In particular, the proposed approach shows the top performance among all 

these existing approaches [9, 28, 31, 37] in 17 out of the 20 cases, i.e., the proposed 

approach either outperforms all the other methods or performs the same as the best 

performing one(s) among the other methods. In columns 4-7 of Table 2, the four 

headers “PrismCTC1”, “PrismCTC2”, “PrismCTC3” and “PrismCTC4” represent that 

the PrismCTC algorithm is adopted with four different settings of the hyper-parameter 

named as “rule quality measure”, where the four selected measures of rule quality are 

referred to as “confidence”, “J-measure”, “lift” and “leverage”, respectively, which are 

explained in [31] in details. In comparison with the C4.5 algorithm [37], the proposed 

approach performs better in 18 out of the 20 cases. In the remaining 2 cases, the 
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proposed approach performs the same as the C4.5 algorithm. In comparison with the 

Prism algorithm [9], the proposed approach performs better in 18 out of the 20 cases. 

In the remaining 2 cases, the proposed approach performs worse than the Prism 

algorithm. In comparison with the PrismCTC1 algorithm [31], the proposed approach 

performs better in 16 out of the 20 cases. In the remaining 4 cases, the proposed 

approach performs the same as the PrismCTC1 algorithm in 1 case and performs worse 

than the PrismCTC1 algorithm in 3 cases. In comparison with the PrismCTC2 

algorithm [31], the proposed approach performs better in 14 out of the 20 cases. In the 

remaining 6 cases, the proposed approach performs the same as the PrismCTC2 

algorithm in 4 cases and performs worse than the PrismCTC2 algorithm in 2 cases. In 

comparison with the PrismCTC3 algorithm [31], the proposed approach performs better 

in 14 out of the 20 cases. In the remaining 6 cases, the proposed approach performs the 

same as the PrismCTC3 algorithm in 3 cases and performs worse than the PrismCTC3 

algorithm in 3 cases. In comparison with the PrismCTC4 algorithm [31], the proposed 

approach performs better in 18 out of the 20 cases. In the remaining 2 cases, the 

proposed approach performs worse than the PrismCTC4 algorithm. In comparison with 

the MSMRL algorithm [28], the proposed approach performs better in 11 out of the 20 

cases. In the remaining 9 cases, the proposed approach performs the same as the 

MSMRL algorithm in 7 cases and performs worse than the MSMRL algorithm in 2 

cases. 

Table 2  

Classification accuracy. 

Data sets 
C4.5 

[37] 

Prism 

[9] 

PrismCTC1 

[31] 

PrismCTC2 

[31] 

PrismCTC3 

[31] 

PrismCTC4 

[31] 

MSMRL 

[28] 

The 

proposed 

method 

Anneal 0.98 0.98 0.99 0.99 0.99 0.98 0.97 0.99 

Balance-

scale 
0.78 0.83 0.85 0.85 0.84 0.85 0.80 0.82 

Breast-

cancer 
0.67 0.67 0.66 0.65 0.64 0.67 0.69 0.70 

Breast-w 0.94 0.93 0.95 0.95 0.95 0.95 0.96 0.96 

Credit-a 0.83 0.80 0.77 0.77 0.78 0.81 0.84 0.87 

Credit-g 0.68 0.74 0.70 0.68 0.68 0.70 0.70 0.76 

Cylinder-

bands 
0.58 0.69 0.70 0.70 0.69 0.72 0.69 0.65 

Dermatology 0.94 0.84 0.90 0.91 0.88 0.85 0.94 0.97 

Diabetes 0.72 0.70 0.70 0.69 0.70 0.73 0.76 0.76 

Hepatitis 0.76 0.76 0.82 0.81 0.78 0.83 0.81 0.84 

Ionosphere 0.89 0.90 0.92 0.92 0.92 0.92 0.93 0.93 

Iris 0.94 0.88 0.94 0.94 0.93 0.92 0.96 0.96 

Kr-vs-kp 0.99 0.98 0.98 0.99 0.99 0.98 0.99 0.99 

Labor 0.80 0.88 0.81 0.85 0.87 0.84 0.84 0.90 

Lymph 0.76 0.78 0.79 0.77 0.78 0.76 0.76 0.82 

Sponge 0.93 0.91 0.90 0.93 0.93 0.92 0.93 0.93 

Tae 0.53 0.49 0.59 0.57 0.58 0.45 0.61 0.57 

Vote 0.95 0.93 0.94 0.94 0.94 0.90 0.96 0.96 

Wine 0.91 0.84 0.93 0.93 0.90 0.94 0.96 0.97 

Zoo 0.92 0.61 0.80 0.86 0.63 0.86 0.92 0.93 
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In order to identify whether the degree to which the proposed approach 

outperforms each of the other methods is statistically significant, we conduct statistical 

analysis by taking the Wilcoxon signed-rank tests [14]. The results obtained through 

the statistical analysis are shown in Table 3, which indicate that the proposed approach 

performs significantly better than each of the other methods, given that the p-value 

obtained for each pairwise comparison (e.g., C4.5 vs the proposed method) is less than 

0.05. 

 

Table 3 

Statistical analysis using Wilcoxon signed-rank tests. 

Compared 

methods 

Number 

of 

positive 

cases 

Number 

of 

negative 

cases 

Number 

of ties 
p-value Comments 

C4.5 vs the 

proposed 

method 

18 0 2 0% 
Significantly 

better than C4.5 

Prism vs the 

proposed 

method 

18 2 0 0% 
Significantly 

better than Prism 

PrismCTC1 vs 

the proposed 

method 

16 3 1 0.30% 

Significantly 

better than 

PrismCTC1 

PrismCTC2 vs 

the proposed 

method 

14 2 4 0.30% 

Significantly 

better than 

PrismCTC2 

PrismCTC3 vs 

the proposed 

method 

14 3 3 0.20% 

Significantly 

better than 

PrismCTC3 

PrismCTC4 vs 

the proposed 

method 

18 2 0 0.20% 

Significantly 

better than 

PrismCTC4 

MSMRL vs the 

proposed 

method 

11 2 7 3.40% 

Significantly 

better than 

MSMRL 

 

The results shown in Table 2 and Table 3 generally indicate that the adoption of 

the proposed deep rule ensemble creation approach can achieve an improvement of the 

performance of rule-based classification through iteratively increasing the learning 

depth and involving multiple ways of the heuristic creation of the diversity. In particular, 

Table 2 shows that a considerable improvement of the classification performance is 

achieved by using the proposed approach for some data sets, such as “Credit-a”, 

“Credit-g”, “Dermatology”, “Labor” and “Lympth”, in comparison with most or even 

all of the other methods. Table 2 also shows some cases that the proposed approach 
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performs the same as some of the other methods, while all the other methods achieve 

generally good performance (i.e., 90% or higher accuracy of classification) on the data 

sets, such as “Anneal”, “Breast-w”, “Kr-vs-kp” and “Vote”. In addition, Table 2 shows 

that the proposed approach outperforms the C4.5 algorithm [37] but performs worse 

than some of the other methods [9, 28, 31] on the “Balance-scale”, “Cylinder-bands” 

and “Tae” data sets. In the first two cases (i.e., on the “Balance-scale” and “Cylinder-

bands” data sets), the results show that the Prism algorithm [9] and all its variants [31] 

(i.e., “PrismCTC1”, “PrismCTC2”, “PrismCTC3” and “PrismCTC4”) generally 

perform better than the C4.5 algorithm [37], which indicate that the nature of decision 

tree learning algorithms [7, 8, 37] may generally not suit well the characteristics of the 

two data sets. As a result, the majority of the base classifiers that form ensemble 

committee EC cannot perform sufficiently well on the two data sets, given that 75% of 

the base classifiers in ensemble committee EC are produced by various algorithms [7, 

8, 37] of decision tree learning. In comparison with the MSMRL method [28], the 

proposed approach shows better performance on the “Balance-scale” data set, but the 

performance obtained by the proposed approach is worse on the “Cylinder-bands” data 

set. Moreover, we can see from Table 2 that the adoption of the MSMRL method [28] 

leads to better performance than the use of the C4.5 algorithm [37], but the performance 

improvement achieved on the “Cylinder-bands” data set is much larger than the 

improvement achieved on the “Balance-scale” data set, i.e., an 11% increase of the 

classification accuracy is achieved on the “Cylinder-bands” data set, whereas the 

accuracy is increased by 2% on the “Balance-scale” data set. The above phenomenon 

indicates that both the proposed approach and the MSMRL method [28] have the ability 

to outperform the C4.5 algorithm [37] on the two data sets, but the MSMRL method 

[28] is considered more effective for achieving a performance improvement on the 

“Cylinder-bands” than for achieving an improvement on the “Balance-scale” data set, 

where the effectiveness of the MSMRL method [28] is even better than the one of the 

proposed approach in achieving a performance improvement on the “Cylinder-bands” 

data set. Regarding the third case on the “Tae” data set that the proposed approach 

performs worse than some of the other methods [9, 28, 31], the results shown in Table 

2 indicate that the data set is generally not suitable for any of the methods to produce 

rule-based classification models, given that all of the methods consistently get low 

performance (i.e., no greater than 61%). In this case, the chance of a performance 

improvement would be much limited, since it is generally necessary to avoid having an 

individual base classifier of low performance, in order to achieve good classification 

performance through deploying an ensemble committee produced by the proposed 

approach. 



 

21 

 

In order to show how deep the ensemble model (i.e., ensemble committee EC) 

produced on various data sets can be, we provide the statistics on the model depth (i.e., 

how many levels ensemble committee EC involves), as shown in Table 4. In particular, 

while the experiment on each data set involves 100 runs, columns 2 and 3 of Table 4 

indicate the minimum model length and the maximum model length, respectively, 

among the model depth values obtained over 100 runs. Moreover, the last column of 

Table 4 shows the average model depth obtained over 100 runs on each data set. 

Table 4  

Statistics on model depth (number of levels that a model involves). 

Data sets 
Minimum model 

depth 

Maximum model 

depth 

Average model 

depth 

Anneal 1 4 2.97 

Balance-scale 2 4 2.14 

Breast-cancer 2 5 3.19 

Breast-w 2 5 3.28 

Credit-a 3 5 3.33 

Credit-g 2 3 2.47 

Cylinder-bands 2 2 2.00 

Dermatology 2 4 2.41 

Diabetes 3 5 3.49 

Hepatitis 2 4 2.53 

Ionosphere 2 5 2.48 

Iris 1 4 2.54 

Kr-vs-kp 2 5 3.20 

Labor 2 4 2.17 

Lymph 2 5 2.63 

Sponge 1 3 1.06 

Tae 3 5 3.49 

Vote 2 6 3.25 

Wine 1 3 1.98 

Zoo 1 4 2.36 

 

The statistics shown in Table 4 indicate that the design of the proposed approach 

generally leads to the generated ensemble model involving multiple levels. Since the 

depth of the generated ensemble model EC is automatically determined during the 

learning process, i.e., it is not a pre-defined hyper-parameter, the statistics on the model 

depth indicate that updating the feature set FSi by importing newly created features at 

the end of each learning iteration i generally results in the advances of the learning 



 

22 

 

performance achieved at the next iteration i+1. As a result, the learning depth is 

increased automatically as expected leading to the production of a deep model that 

consists of multiple levels, where multiple ensembles are involved in each level. 

According to Table 4, the average model depth obtained on the vast majority of the 20 

data sets is greater than 2. Moreover, the maximum model depth obtained on the data 

sets is mostly greater than 3. The above statistics indicate that the ensemble model EC 

produced by the proposed approach can naturally get deeper during the learning process. 

However, we can see from column 2 of Table 4 that the minimum model depth obtained 

on five data sets is 1, which indicates the possibility that the increase of the learning 

depth may not be necessary in some specific cases, i.e., depending on the data 

characteristics, the performance may already reach the optimal status at the first 

learning iteration. Therefore, it is a more reasonable strategy to make the learning depth 

self-adaptive to the data characteristics than to pre-define the learning depth as a hyper-

parameter of the proposed approach. 

5. Conclusions 

In this paper, we have proposed a feature expansion driven approach for deep rule 

ensemble creation, which essentially involves multiple iterations of learning and an 

automatic creation of new features at each iteration to increase the dimensionality of 

the feature space used for building deeper rule ensembles at any subsequent iterations. 

In the above setting, multiple methods of ensemble creation are adopted to produce 

diverse ensembles at each iteration, and the number of iterations is increased towards 

increasing the depth of learning for advancing the learning performance, i.e., the 

increase of the number of iterations normally continues until the learning performance 

measured using the validation data is not advanced any further. The proposed approach 

has been compared with some existing methods [9, 28, 31, 37] of rule learning and 

ensemble creation using various data sets. The experimental results show that our 

proposed approach performs considerably better than the other approaches [9, 28, 31, 

37] in the majority of the cases. Moreover, the statistical analysis also shows that the 

extent to which the proposed approach outperforms each of the other methods [9, 28, 

31, 37] is statistically significant. In the future, we will investigate the use of the fuzzy 

set theory [47] to produce multiple fuzzy rule ensembles at each iteration of learning 

and explore the effectiveness of creating new features at each iteration through the 

fuzzification of the features obtained at the previous iterations. It is also worth to 

conduct further studies on adopting multiple ways of constructing fuzzy membership 

functions [32, 43] to enable the multi-channel creation of deep rule ensembles. In other 

words, the adoption of each way of constructing fuzzy membership functions leads to 
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a specific channel for producing deep rule ensembles through multiple iterations of 

learning, in order to create the further diversity among the deep rule ensembles 

produced at different channels, while the depth of learning at each channel is increased 

independently through involving multiple iterations. In addition, we will investigate 

how granular computing techniques [10, 11, 30, 35, 41, 48] can be incorporated 

effectively into the proposed approach of deep rule ensemble creation towards further 

increasing the depth of learning.  
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