
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/129683/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Liu, Han and Chen, Shyi-Ming 2020. Heuristic creation of deep rule ensemble through iterative expansion
of feature space. Information Sciences 520 , pp. 195-208. 10.1016/j.ins.2020.02.001

Publishers page: https://www.sciencedirect.com/science/article/pii/...

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

1

Heuristic creation of deep rule ensemble through iterative

expansion of feature space

Han Liua, Shyi-Ming Chenb,*

a School of Computer Science and Informatics, Cardiff University,

Cardiff, United Kingdom

b Department of Computer Science and Information Engineering, National Taiwan

University of Science and Technology, Taipei, Taiwan

 *Corresponding Author.

E-mail addresses: liuh48@cardiff.ac.uk (H. Liu),

 smchen@mail.ntust.edu.tw (S.-M. Chen)

__

Abstract

 Rule learning approaches, which essentially aim to gerenate a decision tree or a

set of “if-then” rules, have been popularly used in practice for automatically building

rule-based models for prediction tasks, e.g., classification and regression. The key

strength of rule-based models is their ability to interpret how an output is obtained given

an input, in comparison with models trained by other machine learning approaches, e.g.,

neural networks. Moreover, ensemble learning approaches have been adopted as a

popular way for advancing the performance of rule-based prediction through producing

multiple rule-based models with diversity. Traditional approaches of ensemble learning

are typically designed to train a single ensemble. In recent years, there have been some

studies on creation of multiple ensembles towards increasing the diversity among rule-

based models and the depth of ensemble learning. In this paper, we propose a feature

expansion driven approach for automatic creation of deep rule ensembles, i.e., the

dimensionality of the feature space is increased at each iteration by adding features

newly created at the previous iteration. The proposed approach is compared with more

recent approaches of rule learning and ensemble creation. The experimental results

show that the proposed approach achieves improved performance on various data sets.

Keywords: Machine learning; Rule learning; Ensemble learning; Rule ensemble.

1. Introduction

In machine learning tasks, interpretability is one of important aspects that people

highly expect in practice [3, 19], i.e., it is crucial to interpret how a predictive model

built using a machine learning approach makes an output after being given an input. In

this context, rule learning approaches are considered to have the strength in the model

interpretation [3, 46], comparing with other popular learning approaches, e.g., neural

mailto:liuh48@cardiff.ac.uk
mailto:smchen@mail.ntust.edu.tw

2

networks. Therefore, rule learning approaches have been popularly adopted to build

rule-based models for knowledge discovery and predictions in some application

domains, e.g., medicine [42, 46].

In traditional machine learning tasks, a rule learning approach is usually used to

build a single rule-based model for classification or regression, through two typical

learning strategies, namely, divide and conquer (DAC) [5] and separate and conquer

(SAC) [16]. One of the main differences between the above two strategies is in terms

of the model representation. In particular, rule-based models which are generated by

taking the DAC strategy are automatically represented in the form of decision trees,

whereas models would be represented in the form of a set of “if-then” rules if the SAC

strategy is taken. In practice, rule-based models built through taking either one of the

two strategies tend to overfit training data [26, 29], leading to the worse performance

on unseen data. Therefore, several ways have been undertaken towards avoiding the

case of overfitting, where one popular way is to build multiple models in the setting of

ensemble learning [3].

Since the main aim of producing multiple models is to let the models collaborate

each other, it would be highly important to ensure that there is some diversity among

the models [50]. In general, there is not a commonly-accepted formal definition for the

term “diversity” [24, 49], and thus people usually design some heuristic ways of

diversity creation [50], e.g., diversification of features, samples, heuristic strategies of

learning or hyper-parameters of the same learning approaches. Some specific ways of

diversity creation that we design in this paper will be presented in Section 3.

Apart from the diversity creation, it is also important to ensure that each member

of an ensemble needs to have as high performance as possible [50], which indicates the

necessity to make the learning go deeper, i.e., increasing the depth of learning in

addition to increasing the width of learning (through diversity creation). In this paper,

we propose a deep rule ensemble creation approach that is driven by iterative expansion

of the feature space used for learning classifiers. The key contributions of this paper are

as follows:

(1) We propose a deep rule ensemble creation approach, which involves multiple

iterations of learning and an automatic creation of new features at each

iteration to increase the dimensionality of the feature space.

(2) The depth of learning is increased iteratively by adding new features, such that

deeper ensembles are produced at the next iteration by learning from a richer

set of features (i.e., the original features + the features created at the previous

iterations of learning). In other words, while the original features are regarded

as the prior knowledge, the features created at each iteration can be viewed as

3

newly learned knowledge and are added to the prior knowledge for further

learning in more depth.

(3) In the creation of new features, multiple ways are taken at each iteration to

produce diverse outputs, i.e., fusing the outputs of multiple ensembles created

at the current iteration in different ways, such that the new features which are

added at the next iteration contribute towards the production of deeper and

more diverse ensembles.

(4) The experimental results indicate that the proposed approach performs

considerably better than some recent methods [28, 31] of rule learning and

ensemble creation on various data sets.

 The remainder of this paper is organized as follows. Section 2 provides a review

of the related work on the creation of ensembles of rule-based classifiers. In Section 3,

we present the procedure of our proposed approach of deep rule ensemble creation in

details, where some relevant preliminaries are also included. In Section 4, the details

on conducting the experiments are provided and the experimental results are presented

with discussions. In Section 5, the contributions of this paper are highlighted and some

further directions are suggested.

2. Related work

Since rule learning can be operated in practice through two different strategies,

namely, DAC and SAC, there are thus two main families of learning algorithms that

aim to generate a decision tree and a set of “if-then” rules, respectively. In particular,

the DAC strategy is designed to involve a recursive selection of an attribute Ax out of a

set of candidate attributes in order to generate each non-leaf node of a decision tree,

whereas the SAC strategy is designed to involve an iterative selection of an attribute-

value pair (e.g., Ax = vxb， where vxb is the b-th value of attribute Ax) to generate a rule

and repeatedly perform the same procedure for generating the next rule, until a

complete set of “if-then” rules has been produced.

In general, the DAC strategy can be used to produce either binary trees or multi-

way trees, depending on the type of the attribute selected for each node and how to

handle a specific type of attributes. In other words, while all candidate attributes are of

the binary type, the adoption of the DAC strategy would automatically result in the

generation of a binary tree, which guarantees that each non-leaf node has two children.

However, when an attribute Ax selected for generating a non-leaf node is multi-valued,

the node may have n children (n is the number of possible values for Ax) by using some

decision tree learning algorithms, such as ID3 [36] and C4.5 [37]. It is also possible to

generate binary trees by learning from multi-valued attributes if the learning algorithm

is designed to binarize multi-valued attributes. In particular, when a multi-valued

4

attribute Ax is selected for a non-leaf node Nxy, some algorithms, such as CART [8], are

designed to generate two children of node Nxy, where one child results from taking the

attribute-value pair Ax = vxb and the other child results from taking the opposite attribute-

value pair Ax ≠ vxb.

In terms of generating a set of “if-then” rules, the SAC strategy can also be taken

in different manners. In particular, one way is to select a target class TC and then

iteratively select attribute-value pairs to become antecedents of a rule Rc, whereas

another way is to learn a rule Rc by iteratively selecting attribute-value pairs to become

antecedents of rule Rc, without the need to pre-select a target class TC. In other words,

the former way is designed essentially to learn a rule that can effectively identify the

instances of the target class TC, where a well-known example of such learning

algorithms is so-called “Repeated Incremental Pruning to Produce Error Reduction”

(RIPPER) [13]. In contrast, the essence of the latter way of taking the SAC strategy is

to achieve that a rule Rc is learned to be capable of discriminating one class from the

other classes, where a well-known example of such learning algorithms is so-called

“CN2” [12].

For both the DAC and SAC strategies of rule learning, the algorithms are typically

designed to induce rules heuristically from training data. The nature of heuristic

learning of rules is likely to result in unstable performance due to the greedy search of

attributes for generating decision trees or attribute-value pairs for generating “if-then”

rules [3]. In other words, the attribute selected at each iteration for generating a non-

leaf node of a decision tree is considered to be the locally (but not globally) best option,

based on a specifically employed heuristic, e.g., Gini-index [39]. The same issue may

also arise with learning algorithms that are designed for generating “if-then” rules [29].

Although there have been some more recent rule learning algorithms that involve

heuristic modifications of classic algorithms towards the reduction of the bias on

heuristic selection of attributes (or attribute-value pairs) through the greedy search, e.g.,

the PrismCTC algorithm [31] is a variant of the Prism algorithm [9], it is still

unavoidable to have unstable performance on various data sets, i.e., a rule-based model

may perform well on some data sets but the model may not generalize well on other

data sets [2, 34]. In order to achieve better stability and higher generalization

performance, it has become a popular way to train and fuse multiple rule-based models

that are reliable and diverse, where the above way is known as ensemble learning [49].

The majority of the popular ensemble approaches, e.g., Bagging [6], Boosting [40]

and Random Subspace [22], have been effectively used in the creation of decision

forests (i.e., ensembles of decision trees). These ensemble approaches each involve

specific ways of creating diversity among members of an ensemble (i.e., decision trees

in the case of a decision forest). In particular, the diversity creation through Bagging or

5

Boosting is achieved essentially by drawing diverse samples of training data for

building diverse decision trees. The Bagging approach is designed to draw each training

sample Si through Boostrap Sampling, i.e., each training sample Si has the same size as

the original training data D, where some instances (originally from D) may appear

multiple times in Si but some other instances (known as Out-of-Bag instances) may not

appear in Si at all. Since the production of n training samples {S1, S2, …, Sn} results in n

different sets of Out-of-Bag instances, the n training samples {S1, S2, …, Sn} drawn from

D are thus diverse leading to the production of a decision forest that consists of n diverse

decision trees. The Bagging approach also has some variants such as Dagging [45] and

Wagging [4].

In contrast to the Bagging approach, the Boosting approach involves assigning a

weight to each training instance at each iteration i of drawing a training sample Si from

D, such that different instances have different chances for being selected into the

training sample Si. In particular, at the first iteration (i=1), all the training instances are

given equal weights, i.e., they have the same chance for being selected into the training

sample S1. On this basis, the first decision tree DT1 is trained on S1, and some instances

in D may be misclassified by DT1, so these misclassified instances are given higher

weights than the other instances, which indicates that the misclassified instances are

more likely to be selected into S2 at the next iteration (i=2). The second decision tree

DT2 is thus trained on S2 and the same procedure for weighting of instances is repeated

until the pre-defined number of iterations has been reached. Since n different sets of

misclassified instances are normally obtained at n iterations, the n training samples {S1,

S2, …, Sn} drawn from D are thus diverse, which makes it achieveable to produce a

decision forest that consists of n diverse decision trees. A popular method of Boosting-

driven creation of decision forests is known as Gradient Boosted Tree (GBT) [15].

Random Subspace essentially involves n independent iterations of random

sampling of features to draw n feature subsets, which results in the possibility that

decision trees trained on different feature subsets are diverse [22]. The Random

Subsapce method has also been combined with the Bagging approach for creating

decision forests, given the motivation to avoid the case that a forest involves many

correlated trees produced from training samples drawn by the Bagging approach, due

to the high likelihood of selecting some common features into many of these trees for

generating non-leaf nodes, especially when these common features are strongly

predictive of the target output (i.e., the class). The above combination of Bagging and

Random Subspace has resulted in development of the so-called “Random Forest”

method [7]. In creating random forests, the Random Subspace method is adopted at the

node level instead of the model (tree) level, i.e., the Random Subspace method can

generally be used at the tree level to produce n feature subsets {FS1, FS2, …, FSn} on

6

which n decision trees DT1, DT2, …, DTn are trained as parts of a decision forest, but for

building a random forest, the production of a feature subset FSia is independently

undertaken at the node level for generating each non-leaf node Nia of a decision tree

DTi in the forest. The number of features selected in each feature subset FSia is generally

treated as a hyper-parameter of the Random Forest method, but the suggested number

of features in practice can be int(log2M+1) [7] or √𝑀 [21], where M is the number of

features in the original feature set FS. Overall, the design of the Random Forest method

involves two aspects of diversity creation through learning of mutliple decision trees

from various samples of training data and different feature subspaces.

There have also been some more recent methods of decision forest creation, such

as Rotation Forest [38], Extremely Randomized Trees (ExtraTree) [18], Random

Feature Weights for Decision Tree Ensemble Construction (RFW) [33], Forest by

Continuously Excluding Root Node (FCERN) [1], Forest by Penalizing Attributes

(FPA) [2], which have shown different ways of creating diversity on features used for

generating each decision tree. In particular, the Rotation Forest method [38] is designed

to employ the Principal Component Analysis (PCA) method [21] to combine features

in the original feature set FS for drawing a new feature set FSi at each iteration i of

building a decision tree DTi. The ExtraTree method [18] essentially involves the

creation of randomness in dealing with continuous attributes, i.e., while a numeric value

vxb of a continuous attribute Ax needs to be selected as a threshold (Ax ≥ vxb or Ax < vxb)

for spliting a training subset at a non-leaf node of a decision tree, the way designed in

the ExtraTree method [18] is to make a fully random selection. The other three methods

(i.e., the RFW method, the FCERN method and the FPA method) are all designed

essentially to involve specific ways of assigning weights to features at each iteration i

of training a decision tree DTi, such that different features have different chances to be

selected for generating non-leaf nodes of decision tree DTi at each iteration i, i.e., the

features which are selected at the n iterations for generating n decision trees are likely

to be different.

In recent years, it has been emphasized that the learning needs to go deeper [50],

which indicates the necessity to increase the depth of learning base classifiers in

addition to the creation of the diversity among the base classifiers in the setting of

ensemble learning. In particular, the so-called “Deep Forest” method has been

developed in [50], which involves multi-grained scanning for feature representation

learning from spatial data (e.g., images) or sequential data (e.g., text and signals) and

then learning a deep forest by using a cascade forest architecture that involves L levels

(i.e., multiple forests are produced at each level l and the deep forest model is gradually

getting deeper by producing further forests at the subsequent levels l+1, l+2,…, L),

where the value of L is self-adaptive, i.e., the value of L is initialized to 0 and will be

7

continuously increased by 1 until the learning performance measured using validation

data is not advanced any further.

Another approach, which is referred to as “Multi-Stage Mixed Rule Learning”

(MSMRL), has been proposed in [28] for creating rule ensembles that are gradually

getting deeper, through learning from general structured data (i.e., the features in the

data do not have spatial or sequential relationships). The MSMRL approach is designed

to have a pre-defined number of iterations towards granually increasing the depth of

learning rule ensembles, and also to involve multiple ways of diversity creation through

diversification of features and heuristics for learning different rule-based classifiers at

each iteration, while the C4.5 algorithm [37] and the Mixed Fuzzy Rule Formation

algorithm [17] are adopted in a collaboative manner for effectively dealing with data

sets that contain both discrete and continuous attributes (features), i.e., the C4.5

algorithm and the Mixed Fuzzy Rule Formation algorithm involve different heuristic

ways for dealing with continuous attributes, and the C4.5 algorithm can also effectively

deal with discrete attributes that can not be handled directly by the Mixed Fuzzy Rule

Formation algorithm. In the next section, we will show how our proposed approach

works in a different way for achiving the gradual increase of the depth of learning rule

ensembles from the general structured data, while multiple ways of diversity creation

are also heuristically designed and incorporated in the proposed approach.

3. The proposed approach of deep rule ensemble creation

In this section, we propose an approach for deep rule ensemble creation in a step-

by-step manner. The entire procedure of the proposed approach is shown in Fig. 1,

Fig. 2 and Fig. 3, where Fig. 1 and Fig. 2 show how a deep rule ensemble is built in the

training stage (i.e., the process of producing an ensemble committee EC that involves

multiple levels and multiple classification models in each level); Fig. 3 shows how each

test instance is classified by the deep rule ensemble produced in the training stage. The

proposed approach essentially involves four main steps shown as follows:

Step 1: Build classification models at iteration i, where i is initialized to 1.

Step 2: Generate new features which are added into the feature set for possible use at

the next iteration i+1.

Step 3: Determine whether the learning task continues, i.e., whether it is necessary to

go for the next iteration i+1 of the learning task. If Yes, then go to Step 1. Otherwise,

go to Step 4.

Step 4: Classify each of the test instances based on the procedure shown in Fig. 3.

Input: Data set D;

Output: Ensemble committee EC; /*EC is a committee that consists of multiple levels, where multiple

ensembles are involved in each level of the committee.*/

8

Let L = 0; /* Initialize the model depth L of EC (the number of levels that EC involves) */

Let i = L+1; /*Initialize the iteration index i */

Let max_Acc = 0; /* Initialize the maximum training accuracy max_Acc */

Initially select a set M = {M1, M2, …, Mn} of ensemble methods which are adopted at each iteration i;

Initially select a set FR = {FR1, FR2, …, FRq} of fusion rules which are adopted at each iteration i;

/* Acci is the training accuracy measured using the data set D at iteration i = L+1 */

While L= 0 or Acci > max_Acc Do

 If L > 0 Then

 max_Acc = Acci

 End If;

/*|M| is the number of methods adopted for creating ensembles at iteration i = L+1 */

 For j = 1 to |M| Do

 Create an ensemble Eij on D using method Mj at iteration i = L+1; /* Mj is the jth ensemble

 method that is initially selected into a set M = {M1, M2, …, Mn} of ensemble methods */

 Add Eij into an ensemble set ESi built at iteration i = L+1;

 End For

 Add ESi into ensemble committee EC;

 Increase the model depth L of EC by letting L = L+1;

/* |FR| is the number of fusion rules adopted for generating class vectors at iteration i= L+1 */

 For k =1 to |FR| Do

 For each training instance e Do

 Generate a class vector by letting Vecik = Generate_Class_Vector (D, e, i, k ,M, FRk),

 where the return value of Generate_Class_Vector (D, e, i, k, M, FRk) is obtained based

 on Fig. 2

 Update the feature set FS of the data set D by adding each dimension of Vecik as a new

 feature of e;

 End For

 End For;

 Let Acci = Learning_Performance_Validation (D, M), where the return value of

 Learning_Performance_Validation (D, M) is obtained through a K-fold cross validation or a

 hold-out validation;

End While.

Obtain the ensemble committee EC= {ES1, ES2, …, ESL} by collecting each ensemble set ESi

produced at a specific iteration i, where i = 1, 2, …, L.

Fig. 1. The training process of the proposed deep rule ensemble creation approach.

The proposed approach of deep rule ensemble creation is described as follows:

(1) At Step 1 of the proposed approach of deep rule ensemble creation, there are totally

n classification models built using n learning methods at each iteration i. In general,

a classification model can be in one of multiple forms, i.e., it can be an individual

classifier, an ensemble of individual classifiers or an ensemble of ensembles,

9

depending on the nature of the chosen learning methods. In this paper, we aim at

building the second and third forms of classification models at each iteration i. In

particular, four models are built at each iteration i. The first model is built by

adopting the Random Forest method [7], where multiple random trees are produced

as parts of the model. The second model is built by adopting the FPA method [2],

which consists of multiple decision trees produced heuristically by the CART

algorithm [8]. The third and fourth models are both built by jointly adopting the

Bagging approach [6] and the Random Subspace method [22]. In other words, the

Bagging approach is adopted to draw g samples from the original training data, and

then h feature subsets are drawn randomly on each training sample, which will need

to have g ∙ h base classifiers produced in total. The C4.5 algorithm [37] is used for

producing the base classifiers which form the third model, whereas the base

classifiers that form the fourth model are produced by the RIPPER algorithm [13].

The above-mentioned four models are produced in different settings of ensemble

creation in order to achieve the heuristic creation of the diversity. In particular, the

first and second models are essentially two ensembles of individual classifiers (i.e.,

two ensembles of decision trees), whereas the third and fourth models are

essentially two ensembles of ensembles (i.e., two ensembles of forests). Moreover,

four different algorithms are employed to train individual rule-based classifiers,

respectively, for producing the four models. Moreover, the Random Forest method

[7] involves adopting the Random Subspace method [22] when generating each

non-leaf node of a decision tree, in order to achieve feature diversification (i.e.,

different features are used for generating different trees). In contrast, the FPA

method [2] involves achieving the feature diversification in a different way, i.e., to

assign different weights to each specific feature when generating different trees,

such that each feature may have a higher chance to be selected for generating some

trees but will have a lower chance to be selected for generating other trees. In this

way, the two forests produced by the Random Forest method [7] and the FPA

method [2], respectively, are likely to be diverse, which means that the two

ensembles of trees are produced using diverse subsets of features. For producing

the third and fourth models, the way of adopting the Random Subspace method [22]

is heuristically different from the way taken for building the first model (i.e., the

random forest). In other words, in order to produce the third and fourth models, the

production of feature subsets by the Random Subspace method [22] only needs to

be undertaken at the beginning through the feature subsampling from the full feature

set of a training sample. In this context, once a feature subset is drawn from the full

feature set, a rule-based classifier is trained entirely on the drawn feature subset,

without the need to repeat the feature subset selection for generating each part of a

rule-based classifier (e.g., a non-leaf node of a decision tree). Therefore, involving

10

different ways of adopting the Random Subspace method [22] also increases the

effectiveness of the feature diversification. Besides, the adoption of the Bagging

approach [6] is involved in building each of the above-mentioned four models (i.e.,

each of the four ensembles), which essentially aims to achieve a heuristic creation

of the diversity through the diversification of samples in addition to the

diversification of features.

Input: Data set D, instance e, iteration i, a set of ensemble methods M = {M1, M2, …, Mn}, fusion rule

FRk, and index k of FRk;

Output: Class vector Vecik; /* Vecik is a p-dimensional vector, which represents p probability values

for p classes involved in the data set D*/

Initialize the number K of folds for K-fold cross validation (i.e., K is a hyper-parameter);

Initialize Vecik to a zero vector (e.g., Let Vecik = (0, 0, 0) if the data set D involves three classes);

Initially create an empty vector set VS for storing a class vector Vec’ikj generated at each fold f; where

j is the index of the ensemble method used for generating the class vector Vec’ikj;

For each fold f = 1 to K Do

 Get the training set TS = Get_Training_Set (D, f), where Get_Training_Set (D, f) is obtained

 by taking K-1 folds of the data set D, i.e., excluding fold f from the data set D;

 For j = 1 to |M| Do

 Build an ensemble E’ij on TS;

 If e ∈ TS Then

 Classify training instance e using E’ij to generate a class vector Vec’ikj;

 End If;

 Add Vec’ikj into a vector set VS

 End For;

If e ∈ TS Then

 Generate a class vector Vec’ik by combining the class vectors in VS using fusion rule FRk;

 Let Vecik = Vecik+ Vec’ik

End If

End For;

Let Vecik =
1

𝐾−1
 ∙ Vecik.

Fig. 2. Procedure of class vector generation for each training instance.

(2) At Step 2 of the proposed approach of deep rule ensemble creation, the aim is to

update the feature set FS by adding new features created at iteration i. In particular,

the new features are essentially represented by numeric values of class probability.

In other words, for each training instance e, a class vector can be generated after the

training instance has passed through a classification model. In this case, the

11

generated class vector has p dimensions representing the posterior-probability

values for p possible classes. When there are n classification models deployed for

classifying the training instance e, n class vectors will be generated. In order to

obtain the finalized class vectors contributing to the new features added into the

feature set FS, a further operation needs to be undertaken, i.e., to combine the

above-mentioned n class vectors by using a fusion rule FRk. As a result, while q

fusion rules are adopted for combining the above-mentioned n class vectors, there

will be q class vectors generated in total and the number of new features added into

FS is p∙q. In practice, as illustrated in Fig. 2, the generation of a class vector Vecik

which represents p new features of a training instance e can be operated in the

following way: a K-fold cross validation is undertaken on the training data set, such

that each training instance e will be used K-1 times for building K-1 models and one

time for validation of another model. In this context, there will be K-1 class vectors

generated for each training instance and the averaging of the K-1 class vectors will

produce the finalized class vector Vecik for the instance. The above way of class

vector generation for each training instance is recommended in [50] to avoid

overfitting in the training stage, i.e., it may result in the risk of overfitting if the

entire training data set is used for building a classification model to classify training

instance e to generate a class vector Vecik. In general, the dimensionality of the

feature space (i.e., the number of features in a feature set FSi) is increased iteratively

with the increase of the learning depth L. The general relationship between the

dimensionality |FSi| of the feature space updated at the end of each iteration i and

the learning depth L can be formulated as follows:

|𝐹𝑆𝑖| = |𝐹𝑆| + 𝐿 ∙ 𝑝 ∙ 𝑞, (1)

where |FS| denotes the number of features in the original feature set FS used at the

iteration i=1. Moreover, because the generation of a class vector aims to obtain a

numeric feature representation by probability values of classes, the chosen fusion

rules need to work in an algebraic manner using some popular rules of algebraic

fusion, including the “mean” rule (Eq. (2)), the “median” rule (Eq. (3)), the

“minimum” rule (Eq. (4)), the “maximum” rule (Eq. (5)) and the “product” rule (Eq.

(6)), shown as follows:

𝑃𝐹𝑅𝑘(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖
𝑒) =

1

𝑛
∑ 𝑃𝐸𝑖𝑗(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖

𝑒)𝑛
𝑗=1 , (2)

𝑃𝐹𝑅𝑘(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖
𝑒) = med

1<𝑗<𝑛
{𝑃𝐸𝑖𝑗(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖

𝑒)}, (3)

𝑃𝐹𝑅𝑘(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖
𝑒) = min

1<𝑗<𝑛
{𝑃𝐸𝑖𝑗(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖

𝑒)}, (4)

12

𝑃𝐹𝑅𝑘(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖
𝑒) = max

1<𝑗<𝑛
{𝑃𝐸𝑖𝑗(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖

𝑒)}, (5)

𝑃𝐹𝑅𝑘(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖
𝑒) = ∏ 𝑃𝐸𝑖𝑗(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖

𝑒)𝑛
𝑗=1 . (6)

More details of these fusion rules can be found in [23, 49]. In Eqs. (2)-(6),

“𝑃𝐸𝑖𝑗(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖
𝑒)” denotes the posterior probability of class = Ct given

the feature vector 𝐹𝑉𝑖
𝑒

 which represents training instance e at iteration i, which is

estimated by adopting ensemble Eij. “𝑃𝐹𝑅𝑘(𝑐𝑙𝑎𝑠𝑠 = 𝐶𝑡|𝐹𝑉𝑖
𝑒)” denotes the

posterior probability of class = Ct given the same feature representation 𝐹𝑉𝑖
𝑒

 of

training instance e at iteration i, which is obtained by combining n posterior

probability values estimated by n ensembles {Ei1, Ei2, …, Ein}. For the above rules

of algebraic fusion, the “minimum” rule is equivalent to the “maximum” rule for

two-class classification tasks [23]. Moreover, the “product” rule may result in the

veto mechanism problem [44] in practice, i.e., it is possible to occur that the

probability values of all the classes are zero. Therefore, only the three fusion rules,

namely, the “maximum” rule, the “mean” rule and the “median” rule, are adopted

for generating class vectors in the setting of the proposed approach, in order to avoid

generating zero-vectors by the “product” rule or generating identical vectors by the

“minimum” rule and the “maximum” rule. The aim of adopting multiple fusion

rules to generate multiple class vectors is to create more diverse features. In other

words, those different class vectors can be viewed as features from different views.

In particular, different fusion rules work in different ways to combine the class

probability values estimated by different members of an ensemble [23], which is

likely to lead to different impacts on the difference between the combined

probability value and the true probability value for each class. Moreover, each

fusion rule can have different impacts on different training instances [44], i.e., the

use of the same fusion rule may result in an increase of the chance of correctly

classifying some training instances but the chance of correctly classifying other

training instances may be decreased using the same fusion rule. From this point of

view, the feature representation of some training instances may be better improved

by adding class vectors generated using one fusion rule (say FR1), in comparison

with another fusion rule (say FR2), whereas the use of FR2 may lead to a better

improvement of the feature representation of other training instances, in comparison

with the use of FR1. Because rule learning methods [8, 37] essentially involve self-

selection of features for generating rule-based classifiers, the increase of the feature

space dimensionality is likely to provide more chance of achieving a better selection

of features during the learning process. While the Bagging approach [6] is used to

draw diverse training samples and multiple ways of feature diversification are

13

involved, adding multiple class vectors which are produced by using different

fusion rules is thus considered an effective strategy of achieving a further creation

of diversity in addition to the increase of the learning depth.

(3) At Step 3 of the proposed approach of deep rule ensemble creation, it is essential

to determine whether it is necessary to continue the learning task by going for the

next iteration i+1, i.e., whether or not the depth of learning is increased towards

producing further models on the basis of the updated feature set obtained at the end

of iteration i. In general, the above judgement depends on whether the learning

performance measured using the validation data can be advanced further as inspired

from [50], i.e., the learning task will be terminated automatically if the increase of

the learning depth L does not gain any further advances in the learning performance.

In practice, the measure of learning performance can be achieved by conducting a

K-fold cross validation [21] or a hold-out validation [21]. However, a K-fold cross

validation would be generally recommended, especially when the sample size of

the training data is not sufficiently large for taking a part of the training data as an

independent validation set. In the validation stage, each validation instance is

classified through a two-level fusion operation that we design heuristically as part

of the proposed approach. In particular, at the first level, each validation instance

would first be classified by each ensemble Eij (i.e., a part of ensemble set ESi)

produced at iteration i, so there would be n vectors of continuous-valued outputs

obtained by using the n ensembles in ESi. Each of the n vectors of continuous-valued

outputs essentially involves p probability values for p possible classes. In this case,

for each class Ct, the n probability values which are produced by n ensembles are

combined by using a fusion rule FRk. As a result, while q fusion rules are adopted

for combining the probability values, there would be q new vectors of continuous-

valued outputs obtained after the fusion operations. Furthermore, at the second level,

the q new vectors of continuous-valued outputs are fused further using the “mean”

rule, which is the most commonly used one in practice [25], i.e., for each class Ct,

the q values of the posterior probability are averaged to obtain the finalized posterior

probability value, where the p finalized probability values for the p possible classes

are used together for finally classifying a validation instance, i.e., the validation

instance is classified to the class that obtains the highest probability value.

(4) At Step 4 of the proposed approach of deep rule ensemble creation, each test

instance is classified through a level-by-level processing manner. As illustrated in

Fig. 3, a test instance u is classified to a class label Ctl at level l of an ensemble

committee EC by using an ensemble set ESl (i.e., an ensemble of ensembles in EC)

produced at iteration i of the training stage, where i = l. In the meantime, a weight

wl is assigned to class label Ctl, which indicates the confidence of ESl outputting Ctl

14

as the class label. The value of the weight wl is obtained in our setting by measuring

the classification accuracy of the ensemble set ESl on the validation data. Before

moving onto the next level l+1 of EC, the feature representation of the test instance

u needs to be updated by adding q generated class vectors into the feature set FSi+1.

In particular, the q class vectors are essentially obtained following a two-stage

operation in our setting of the proposed approach. At first, the test instance u passes

through the n ensembles in ESl, which results in n class vectors being generated.

Then, the n class vectors are combined using q rules of algebraic fusion,

respectively, leading to q new class vectors being obtained. The q new class vectors

represent p∙ q values of class probability obtained for the test instance u (i.e., p is

the number of classes), which are added into the feature set FSi+1 as new features

used at the next iteration i+1. The above procedure is repeatedly performed until

the ensemble set ESL at the last level (i.e., l = L) has been used to classify the test

instance. At this point, the test instance will have received L class outputs from the

L ensemble sets, where each of the L ensemble sets is involved in a specific one of

the L levels of the ensemble committee EC (i.e., the entire model built on the

training data). In this context, a final classification needs to be made as the output

of EC, which is operated by the weighted voting on the basis of the above-

mentioned L class outputs, shown as follows [34]:

 Vote(𝐶𝑡) = ∑ 𝑤𝑙
𝐿
𝑙=1,𝑙≠𝑧 , (7)

where ∃𝑧 ∈ [1, 𝐿]: ℎ𝐸𝑆𝑧
(𝑢) ≠ 𝐶𝑡, i.e., for some values of z between 1 and L, ESz

will classify a test instance u to another class rather than class Ct, “Vote(𝐶𝑡)”

represents the total (weighted) vote obtained for class Ct, wl is the weight of

ensemble set ESl involved at level l of Ensemble Committee EC, and u denotes a

test instance that needs to be classified by using EC,

 𝐶𝑜 = arg max
𝐶𝑡

Vote(𝐶𝑡), (8)

where Co is the final output of Ensemble Committee EC, which is made by choosing

the class Ct which obtains the highest total weighted vote “Vote(𝐶𝑡)” (Note: if there

are multiple classes that obtain the highest total weighted vote, the class with the

smallest index value will be chosen as the final output Co, e.g., while the two classes

C1 and C2 both obtain the highest total weighted vote, class C1 will be chosen due to

its smaller index value).

15

Input: Ensemble committee EC, test instance u; /* EC involves L levels, where an ensemble set ESl

is involved in each level l */

Output: Class label Co; /* Co is the class to which test instance u is classified by using EC*/

Let l =1; /* Initialize the level l of ensemble committee EC to 1 */

/* L is the number of levels involved in ensemble committee EC, where the value of L is determined

automatically in the training stage for the creation of EC */

For l =1 to L Do

 Classify test instance u to a class label Ctl by using ensemble set ESl;

/* wl is the accuracy of ESl measured in the training stage using the validation data */

Assign a weight wl to Ctl;

 /* |FR| is the number of fusion rules adopted for generating class vectors at level l */

For k=1 to |FR| Do

 Generate a class vector Veclk by using fusion rule FRk to combine the n class vectors (Veclk1,

 Veclk2, …, Veclkn) generated by n ensembles in ensemble set ESl;

 Update the feature representation of test instance u by adding each dimension of Veclk as a

 new feature of u;

End For

End For;

Determine the final output Co of the ensemble committee by choosing the class Ct which obtains the

highest total weighted vote, i.e., the selection of the class Ct is achieved by the weighted voting on the

basis of the L class outputs {Ct1, Ct2, …, CtL} predicted by L ensemble sets in EC.

Fig. 3. Procedure for classifying each test instance in the testing stage.

4. Experimental results

In this section, 20 data sets adopted from the UCI repository [27] are used for

conducting the experiments. The details of the 20 data sets are described in Table 1.

The characteristics of the data sets are diverse, e.g., some data sets contain both discrete

and continuous attributes, where the other data sets contain only one type of attributes

(i.e., either discrete attributes or continuous attributes). Moreover, some data sets aim

for binary classification tasks, whereas the other data sets aim for multi-class

classification tasks.

Table 1

Data sets used for experiments.

Data sets

Number of

discrete/continuous

attributes

Number of

instances

Number of

classes

16

Anneal

Balance-scale

Breast-cancer

Breast-w

Credit-a

Credit-g

Cylinder-

bands

Dermatology

Diabetes

Hepatitis

Ionosphere

Iris

Kr-vs-kp

Labor

Lymph

Sponge

Tae

Vote

Wine

Zoo

32/6

0/4

9/0

0/9

9/6

13/7

21/18

33/1

0/8

13/6

0/34

0/4

36/0

8/8

15/3

45/0

2/3

16/0

0/13

16/1

898

625

286

699

690

1000

540

366

768

155

351

150

3196

57

148

76

151

435

178

101

6

3

2

2

2

2

2

6

2

2

2

3

2

2

4

3

3

2

3

7

In the experimental setting of the proposed approach, at each iteration i of building

the ensemble committee EC (i.e., a deep rule ensemble architecture that consists of

multiple levels), there are four classification models built as parts of ensemble

committee EC by setting four ensemble creation methods. The first classification model

is built using the Random Forest method [7], where the built forest consists of 100

random trees. Each tree is trained by randomly selecting int(log2M+1) features as

candidates for evaluation towards generating each non-leaf node of the tree, where M

is the number of features in the full feature set obtained at iteration i. The second model

is built using the FPA method [2], where the built forest consists of 100 trees. Each tree

is trained heuristically by using the CART algorithm [8] alongisde the cost-complexity

pruning (CCP) method [8], where the number of pruning folds is set to 3, i.e., a 3-fold

cross validation is conducted on the training data set to obtain the pruned tree. The third

classification model is built by adopting jointly the Bagging approach [6] and the

Random Subspace method [22]. In particular, 10 data samples are drawn randomly

from the original training data set using the Bagging approach [6]. Then, 10 feature

subsets are drawn from the full feature set of each training data sample by adopting the

Random Subspace method [22], where the size of each subspace is set to 0.6. Finally,

17

100 decision trees are produced in total by using the C4.5 algorithm [37] alongside the

error-based pruning method [20]. In terms of pruning, the confidence factor is set to

0.25, alongside the consideration of the subtree raising operation. Moreover, the

minimum description length (MDL) correction [37] is used, in the case of selecting

continuous attributes for generating non-leaf nodes of a decision tree. Similar to the

way of building the third classification model, the fourth classification model is also

built by adopting jointly the Bagging approach [6] and the Random Subspace method

[22], but the only difference is that the RIPEER algorithm [13] is used instead of the

C4.5 algorithm [37] to produce 100 sets of “if-then” rules rather than 100 decision trees.

The RIPEER algorithm [13] is set to involve 2 runs of rule optimization and use 1/3

training data for rule pruning. At the end of each iteration i of building ensemble

committee EC, a 3-fold cross validation, which is based on the procedure shown in Fig.

2, is undertaken to generate class vectors for adding new features into the feature set

for each instance. After the 3-fold cross validation, it is also determined automatically

whether the learning task continues by going for the next iteration i+1, i.e., the learning

task would normally continue unless the learning performance (i.e., the classification

accuracy measured using the 3-fold cross validation on the training set) is not advanced

any further. The proposed approach is compared with a very recent approach MSMRL

[28] as well as all the other methods (i.e., the C4.5 method [37], the Prism method [9]

and the PrismCTC method [31]) that have been compared with the MSMRL method in

[28]. The settings of the hyper-parameters for these existing methods (i.e., the C4.5

method, the Prism method, the PrismCTC method and the MSMRL method) are kept

the same as the ones described in [28]. The experiments on the 20 data sets are

conducted through random splitting of data into training and test sets. In particular, 70%

of a data set is selected for training and the rest of the data set is taken for testing. For

each data set, the random data splitting is repeated 100 times and the average accuracy

obtained over the 100 runs is used for performance comparison among different

approaches. The results on classification accuracy for different methods are presented

in Table 2. In particular, the proposed approach shows the top performance among all

these existing approaches [9, 28, 31, 37] in 17 out of the 20 cases, i.e., the proposed

approach either outperforms all the other methods or performs the same as the best

performing one(s) among the other methods. In columns 4-7 of Table 2, the four

headers “PrismCTC1”, “PrismCTC2”, “PrismCTC3” and “PrismCTC4” represent that

the PrismCTC algorithm is adopted with four different settings of the hyper-parameter

named as “rule quality measure”, where the four selected measures of rule quality are

referred to as “confidence”, “J-measure”, “lift” and “leverage”, respectively, which are

explained in [31] in details. In comparison with the C4.5 algorithm [37], the proposed

approach performs better in 18 out of the 20 cases. In the remaining 2 cases, the

18

proposed approach performs the same as the C4.5 algorithm. In comparison with the

Prism algorithm [9], the proposed approach performs better in 18 out of the 20 cases.

In the remaining 2 cases, the proposed approach performs worse than the Prism

algorithm. In comparison with the PrismCTC1 algorithm [31], the proposed approach

performs better in 16 out of the 20 cases. In the remaining 4 cases, the proposed

approach performs the same as the PrismCTC1 algorithm in 1 case and performs worse

than the PrismCTC1 algorithm in 3 cases. In comparison with the PrismCTC2

algorithm [31], the proposed approach performs better in 14 out of the 20 cases. In the

remaining 6 cases, the proposed approach performs the same as the PrismCTC2

algorithm in 4 cases and performs worse than the PrismCTC2 algorithm in 2 cases. In

comparison with the PrismCTC3 algorithm [31], the proposed approach performs better

in 14 out of the 20 cases. In the remaining 6 cases, the proposed approach performs the

same as the PrismCTC3 algorithm in 3 cases and performs worse than the PrismCTC3

algorithm in 3 cases. In comparison with the PrismCTC4 algorithm [31], the proposed

approach performs better in 18 out of the 20 cases. In the remaining 2 cases, the

proposed approach performs worse than the PrismCTC4 algorithm. In comparison with

the MSMRL algorithm [28], the proposed approach performs better in 11 out of the 20

cases. In the remaining 9 cases, the proposed approach performs the same as the

MSMRL algorithm in 7 cases and performs worse than the MSMRL algorithm in 2

cases.

Table 2

Classification accuracy.

Data sets
C4.5

[37]

Prism

[9]

PrismCTC1

[31]

PrismCTC2

[31]

PrismCTC3

[31]

PrismCTC4

[31]

MSMRL

[28]

The

proposed

method

Anneal 0.98 0.98 0.99 0.99 0.99 0.98 0.97 0.99

Balance-

scale
0.78 0.83 0.85 0.85 0.84 0.85 0.80 0.82

Breast-

cancer
0.67 0.67 0.66 0.65 0.64 0.67 0.69 0.70

Breast-w 0.94 0.93 0.95 0.95 0.95 0.95 0.96 0.96

Credit-a 0.83 0.80 0.77 0.77 0.78 0.81 0.84 0.87

Credit-g 0.68 0.74 0.70 0.68 0.68 0.70 0.70 0.76

Cylinder-

bands
0.58 0.69 0.70 0.70 0.69 0.72 0.69 0.65

Dermatology 0.94 0.84 0.90 0.91 0.88 0.85 0.94 0.97

Diabetes 0.72 0.70 0.70 0.69 0.70 0.73 0.76 0.76

Hepatitis 0.76 0.76 0.82 0.81 0.78 0.83 0.81 0.84

Ionosphere 0.89 0.90 0.92 0.92 0.92 0.92 0.93 0.93

Iris 0.94 0.88 0.94 0.94 0.93 0.92 0.96 0.96

Kr-vs-kp 0.99 0.98 0.98 0.99 0.99 0.98 0.99 0.99

Labor 0.80 0.88 0.81 0.85 0.87 0.84 0.84 0.90

Lymph 0.76 0.78 0.79 0.77 0.78 0.76 0.76 0.82

Sponge 0.93 0.91 0.90 0.93 0.93 0.92 0.93 0.93

Tae 0.53 0.49 0.59 0.57 0.58 0.45 0.61 0.57

Vote 0.95 0.93 0.94 0.94 0.94 0.90 0.96 0.96

Wine 0.91 0.84 0.93 0.93 0.90 0.94 0.96 0.97

Zoo 0.92 0.61 0.80 0.86 0.63 0.86 0.92 0.93

19

In order to identify whether the degree to which the proposed approach

outperforms each of the other methods is statistically significant, we conduct statistical

analysis by taking the Wilcoxon signed-rank tests [14]. The results obtained through

the statistical analysis are shown in Table 3, which indicate that the proposed approach

performs significantly better than each of the other methods, given that the p-value

obtained for each pairwise comparison (e.g., C4.5 vs the proposed method) is less than

0.05.

Table 3

Statistical analysis using Wilcoxon signed-rank tests.

Compared

methods

Number

of

positive

cases

Number

of

negative

cases

Number

of ties
p-value Comments

C4.5 vs the

proposed

method

18 0 2 0%
Significantly

better than C4.5

Prism vs the

proposed

method

18 2 0 0%
Significantly

better than Prism

PrismCTC1 vs

the proposed

method

16 3 1 0.30%

Significantly

better than

PrismCTC1

PrismCTC2 vs

the proposed

method

14 2 4 0.30%

Significantly

better than

PrismCTC2

PrismCTC3 vs

the proposed

method

14 3 3 0.20%

Significantly

better than

PrismCTC3

PrismCTC4 vs

the proposed

method

18 2 0 0.20%

Significantly

better than

PrismCTC4

MSMRL vs the

proposed

method

11 2 7 3.40%

Significantly

better than

MSMRL

The results shown in Table 2 and Table 3 generally indicate that the adoption of

the proposed deep rule ensemble creation approach can achieve an improvement of the

performance of rule-based classification through iteratively increasing the learning

depth and involving multiple ways of the heuristic creation of the diversity. In particular,

Table 2 shows that a considerable improvement of the classification performance is

achieved by using the proposed approach for some data sets, such as “Credit-a”,

“Credit-g”, “Dermatology”, “Labor” and “Lympth”, in comparison with most or even

all of the other methods. Table 2 also shows some cases that the proposed approach

20

performs the same as some of the other methods, while all the other methods achieve

generally good performance (i.e., 90% or higher accuracy of classification) on the data

sets, such as “Anneal”, “Breast-w”, “Kr-vs-kp” and “Vote”. In addition, Table 2 shows

that the proposed approach outperforms the C4.5 algorithm [37] but performs worse

than some of the other methods [9, 28, 31] on the “Balance-scale”, “Cylinder-bands”

and “Tae” data sets. In the first two cases (i.e., on the “Balance-scale” and “Cylinder-

bands” data sets), the results show that the Prism algorithm [9] and all its variants [31]

(i.e., “PrismCTC1”, “PrismCTC2”, “PrismCTC3” and “PrismCTC4”) generally

perform better than the C4.5 algorithm [37], which indicate that the nature of decision

tree learning algorithms [7, 8, 37] may generally not suit well the characteristics of the

two data sets. As a result, the majority of the base classifiers that form ensemble

committee EC cannot perform sufficiently well on the two data sets, given that 75% of

the base classifiers in ensemble committee EC are produced by various algorithms [7,

8, 37] of decision tree learning. In comparison with the MSMRL method [28], the

proposed approach shows better performance on the “Balance-scale” data set, but the

performance obtained by the proposed approach is worse on the “Cylinder-bands” data

set. Moreover, we can see from Table 2 that the adoption of the MSMRL method [28]

leads to better performance than the use of the C4.5 algorithm [37], but the performance

improvement achieved on the “Cylinder-bands” data set is much larger than the

improvement achieved on the “Balance-scale” data set, i.e., an 11% increase of the

classification accuracy is achieved on the “Cylinder-bands” data set, whereas the

accuracy is increased by 2% on the “Balance-scale” data set. The above phenomenon

indicates that both the proposed approach and the MSMRL method [28] have the ability

to outperform the C4.5 algorithm [37] on the two data sets, but the MSMRL method

[28] is considered more effective for achieving a performance improvement on the

“Cylinder-bands” than for achieving an improvement on the “Balance-scale” data set,

where the effectiveness of the MSMRL method [28] is even better than the one of the

proposed approach in achieving a performance improvement on the “Cylinder-bands”

data set. Regarding the third case on the “Tae” data set that the proposed approach

performs worse than some of the other methods [9, 28, 31], the results shown in Table

2 indicate that the data set is generally not suitable for any of the methods to produce

rule-based classification models, given that all of the methods consistently get low

performance (i.e., no greater than 61%). In this case, the chance of a performance

improvement would be much limited, since it is generally necessary to avoid having an

individual base classifier of low performance, in order to achieve good classification

performance through deploying an ensemble committee produced by the proposed

approach.

21

In order to show how deep the ensemble model (i.e., ensemble committee EC)

produced on various data sets can be, we provide the statistics on the model depth (i.e.,

how many levels ensemble committee EC involves), as shown in Table 4. In particular,

while the experiment on each data set involves 100 runs, columns 2 and 3 of Table 4

indicate the minimum model length and the maximum model length, respectively,

among the model depth values obtained over 100 runs. Moreover, the last column of

Table 4 shows the average model depth obtained over 100 runs on each data set.

Table 4

Statistics on model depth (number of levels that a model involves).

Data sets
Minimum model

depth

Maximum model

depth

Average model

depth

Anneal 1 4 2.97

Balance-scale 2 4 2.14

Breast-cancer 2 5 3.19

Breast-w 2 5 3.28

Credit-a 3 5 3.33

Credit-g 2 3 2.47

Cylinder-bands 2 2 2.00

Dermatology 2 4 2.41

Diabetes 3 5 3.49

Hepatitis 2 4 2.53

Ionosphere 2 5 2.48

Iris 1 4 2.54

Kr-vs-kp 2 5 3.20

Labor 2 4 2.17

Lymph 2 5 2.63

Sponge 1 3 1.06

Tae 3 5 3.49

Vote 2 6 3.25

Wine 1 3 1.98

Zoo 1 4 2.36

The statistics shown in Table 4 indicate that the design of the proposed approach

generally leads to the generated ensemble model involving multiple levels. Since the

depth of the generated ensemble model EC is automatically determined during the

learning process, i.e., it is not a pre-defined hyper-parameter, the statistics on the model

depth indicate that updating the feature set FSi by importing newly created features at

the end of each learning iteration i generally results in the advances of the learning

22

performance achieved at the next iteration i+1. As a result, the learning depth is

increased automatically as expected leading to the production of a deep model that

consists of multiple levels, where multiple ensembles are involved in each level.

According to Table 4, the average model depth obtained on the vast majority of the 20

data sets is greater than 2. Moreover, the maximum model depth obtained on the data

sets is mostly greater than 3. The above statistics indicate that the ensemble model EC

produced by the proposed approach can naturally get deeper during the learning process.

However, we can see from column 2 of Table 4 that the minimum model depth obtained

on five data sets is 1, which indicates the possibility that the increase of the learning

depth may not be necessary in some specific cases, i.e., depending on the data

characteristics, the performance may already reach the optimal status at the first

learning iteration. Therefore, it is a more reasonable strategy to make the learning depth

self-adaptive to the data characteristics than to pre-define the learning depth as a hyper-

parameter of the proposed approach.

5. Conclusions

In this paper, we have proposed a feature expansion driven approach for deep rule

ensemble creation, which essentially involves multiple iterations of learning and an

automatic creation of new features at each iteration to increase the dimensionality of

the feature space used for building deeper rule ensembles at any subsequent iterations.

In the above setting, multiple methods of ensemble creation are adopted to produce

diverse ensembles at each iteration, and the number of iterations is increased towards

increasing the depth of learning for advancing the learning performance, i.e., the

increase of the number of iterations normally continues until the learning performance

measured using the validation data is not advanced any further. The proposed approach

has been compared with some existing methods [9, 28, 31, 37] of rule learning and

ensemble creation using various data sets. The experimental results show that our

proposed approach performs considerably better than the other approaches [9, 28, 31,

37] in the majority of the cases. Moreover, the statistical analysis also shows that the

extent to which the proposed approach outperforms each of the other methods [9, 28,

31, 37] is statistically significant. In the future, we will investigate the use of the fuzzy

set theory [47] to produce multiple fuzzy rule ensembles at each iteration of learning

and explore the effectiveness of creating new features at each iteration through the

fuzzification of the features obtained at the previous iterations. It is also worth to

conduct further studies on adopting multiple ways of constructing fuzzy membership

functions [32, 43] to enable the multi-channel creation of deep rule ensembles. In other

words, the adoption of each way of constructing fuzzy membership functions leads to

23

a specific channel for producing deep rule ensembles through multiple iterations of

learning, in order to create the further diversity among the deep rule ensembles

produced at different channels, while the depth of learning at each channel is increased

independently through involving multiple iterations. In addition, we will investigate

how granular computing techniques [10, 11, 30, 35, 41, 48] can be incorporated

effectively into the proposed approach of deep rule ensemble creation towards further

increasing the depth of learning.

Acknowledgements

The author would like to acknowledge the support from the School of Computer

Science and Informatics at the Cardiff University, United Kingdom.

References

[1] M.N. Adnan, M.Z. Islam, Forest CERN: A new decision forest building technique,

in: Proceedings of the 20th Pacific-Asia Conference on Knowledge Discovery and

Data Mining, Auckland, New Zealand, pp. 304-315, 2016.

[2] M.N. Adnan, M.Z. Islam, Forest PA: Constructing a decision forest by penalizing

attributes used in previous trees, Expert Systems with Applications 89 (2017) 389-

403.

[3] M. Azmi, G.C. Runger, A. Berrado, Interpretable regularized class association rules

algorithm for classification in a categorical data space, Information Sciences 483

(2019) 313-331.

[4] E. Bauer, R. Kohavi, An empirical comparison of voting classification algorithms:

Bagging, boosting, and variants, Machine Learning 36 (1-2) (1999) 105-139.

[5] H. Boström, L. Asker, Combining divide-and-conquer and separate-and-conquer

for efficient and effective rule induction, in: Proceedings of the 9th International

Workshop on Inductive Logic Programming, Bled, Slovenia, pp. 33-43, 1999.

[6] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123-140.

[7] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5-32.

[8] L. Breiman, J.H. Friedman, C.J. Stone, R.A. Olshen, Classification and Regression

Trees, Chapman and Hall/CRC, Monterey, California, U. S. A., 1984.

[9] J. Cendrowska, Prism: An algorithm for inducing modular rules, International

Journal of Man-Machine Studies 27 (4) (1987) 349-370.

[10] S.M. Chen, H.P. Chu, T.W. Sheu, TAIEX forecasting using fuzzy time series and

automatically generated weights of multiple factors, IEEE Transactions on Systems,

Man, and Cybernetics-Part A: Systems and Humans 42 (6) (2012) 1485-1495.

24

[11] S.M. Chen, G.M.T. Manalu, J.S. Pan, H.C. Liu, Fuzzy forecasting based on two-

factors second-order fuzzy-trend logical relationship groups and particle swarm

optimization techniques, IEEE Transactions on Cybernetics 43 (3) (2013) 1102-

1117.

[12] P. Clark, T. Niblett, The CN2 induction algorithm, Machine Learning 3 (4) (1989)

261-283.

[13] W.W. Cohen, Fast effective rule induction, in: Proceedings of the 12th

International Conference on Machine Learning, Tahoe City, California, U. S. A.,

pp. 115-123, 1995.

[14] J. Demšar, Statistical comparisons of classifiers over multiple data sets, Journal of

Machine Learning Research 7 (2006) 1-30.

[15] J.H. Friedman, Greedy function approximation: A gradient boosting machine, The

Annals of Statistics 29 (5) (2001) 1189-1232.

[16] J. Furnkranz, Separate-and-conquer rule learning, Artificial Intelligence Review

13 (1) (1999) 3-54.

[17] T.R. Gabriel, M.R. Berthold, Influence of fuzzy norms and other heuristics on

mixed fuzzy rule formation, International Journal of Approximate Reasoning 35

(2) (2004) 195-202.

[18] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees. Machine Learning

63 (1) (2006) 3-42.

[19] L.H. Gilpin, D. Bau, B.Z. Yuan, A. Bajwa, M. Specter, L. Kagal, Explaining

explainations: An overview of interpretability of machine learning, in:

Proceedings of 5th IEEE International Conference on Data Science and Advanced

Analytics, Turin, Italy, pp. 80-89, 2018.

[20] L.O. Hall, R. Collins, K.W. Bowyer, R. Banfield, Error-based pruning of decision

trees grown on very large data sets can work!, in: Proceedings of 14th IEEE

International Conference on Tools with Artificial Intelligence, Washington, DC,

U. S. A., 2002.

[21] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning,

Springer, New York, U. S. A., 2009.

[22] T.K. Ho, The random subspace method for constructing decision forests, IEEE

Transactions on Pattern Analysis and Machine Intelligence 20 (8) (1998) 832-844.

[23] L.I. Kuncheva, A theoretical study on six classifier fusion strategies, IEEE

Transactions on Pattern Analysis and Machine Intelligence 24 (2) (2002) 281-286.

25

[24] L.I. Kuncheva, C.J. Whitaker, Measures of diversity in classifier ensembles and

their relationship with the ensemble accuracy, Machine Learning 51 (2) (2003)

181-207.

[25] L.I. Kuncheva, J.C. Bezdek, R.P.W. Duin, Decision templates for multiple

classifier fusion: an experimental comparison, Pattern Recognition 34 (2) (2001)

299-314.

[26] R.G. Leiva, A.F. Anta, V. Mancuso, P. Casari, A novel hyperparameter-free

approach to decision tree construction that avoids overfitting by design, IEEE

Access 7 (2019) 99978-99987.

[27] M. Lichman, UCI Machine Learning Repository, http://archive.ics.uci.edu/ml,

2013.

[28] H. Liu, S.M. Chen, Multi-stage mixed rule learning approach for advancing

performance of rule-based classification, Information Sciences 495 (2019) 65-77.

[29] H. Liu, M. Cocea, Induction of classification rules by Gini-index based rule

generation, Information Sciences 436-437 (2018) 227-246.

[30] H. Liu, M. Cocea, Nature-inspired framework of ensemble learning for

collaborative classification in granular computing context, Granular Computing 4

(4) (2019) 715-724.

[31] H. Liu, S.M. Chen, M. Cocea, Heuristic target class selection for advancing

performance of coverage-based rule learning, Information Sciences 479 (2019)

164-179.

[32] S. Liu, Z. Xu, J. Gao, A fuzzy compromise programming model based on the

modified S-curve membership functions for supplier selection, Granular

Computing 3 (4) (2018) 275-283.

[33] J. Maudes, J.J. Rodriguez, C. Garcia-Osorio, N. Garcia-Pedrajas, Random feature

weights for decision tree ensemble construction, Information Fusion 13 (1) (2012)

20-30.

[34] R. Polikar, Ensemble based systems in decision making, IEEE Circuits and

Systems Magazine 6 (3) (2006) 21-45.

[35] J. Qi, L. Wei, Q. Wan, Multi-level granularity in formal concept analysis, Granular

Computing 4 (3) (2019) 351-362.

[36] J.R. Quinlan, Induction of decision trees, Machine Learning 1 (1) (1986) 81-106.

[37] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann

Publishers, San Francisco, California, U. S. A.,1993.

[38] J.J. Rodriguez, L.I. Kuncheva, C.J. Alonso, Rotation Forest: A new classifier

ensemble method, IEEE Transactions on Pattern Analysis and Machine

Intelligence 28 (10) (2006) 1619-1630.

26

[39] L. Rokach, O. Maimon, Top-down induction of decision trees classifiers - a survey.

IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and

Reviews 35 (4) (2005) 476-487.

[40] R.E. Schapire, Y. Freund, P. Bartlett, W.S. Lee, Boosting the margin: A new

explanation for the effectiveness of voting methods, The Annals of Statistics 26 (5)

(1998) 1651-1686.

[41] Y. Shi, Y. Huang, C. Wang, Q. He, Attribute reduction based on the Boolean

matrix. Granular Computing 4 (3) (2019) 313-322.

[42] M. Sikora, Ł. Wróbel, A. Gudyś, GuideR: A guided separate-and-conquer rule

learning in classification, regression, and survival settings. Knowledge-Based

Systems 173 (2019) 1-14.

[43] P.K. Singh, Concept lattice visualization of data with m-polar fuzzy attribute,

Granular Computing 3 (2) (2018) 123-137.

[44] D.M.J. Tax, R.P.W. Duin, M.V. Breukelen, Comparison between product and

mean classifier combination rules, in: Proceedings of the 1st International

Workshop on Statistical Techniques in Pattern Recognition, Prague, Czech

Republic, pp. 165-170, 1997.

[45] K.M. Ting, I.H. Witten, Stacking bagged and dagged models, in: Proceedings of

the Fourteenth International Conference on Machine Learning, Morgan Kaufmann

Publishers Inc, San Francisco, California, U. S. A., pp. 367-375, 1997.

[46] Ł. Wróbel, A. Gudy´s, M. Sikora, Learning rule sets from survival data, BMC

Bioinformatics 18 (2017) 1-13.

[47] L. Zadeh, Fuzzy sets, Information and Control 8 (3) (1965) 338-353.

[48] W. Zhang, X. Wang, X. Yang, X. Chen, P. Wang, Neighborhood attribute

reduction for imbalanced data, Granular Computing 4 (3) (2019) 301-311.

[49] Z.H. Zhou, Ensemble Methods: Foundations and Algorithms, CRC, Boca Raton,

Florida, U. S. A., 2012.

[50] Z.H. Zhou, J. Feng, Deep Forest: Towards an alternative to deep neural networks,

in: Proceedings of the Twenty-Sixth International Joint Conference on Artificial

Intelligence, Melbourne, Australia, pp. 3553-3559, 2017.

