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Abstract

Dynamic malware analysis is fast gaining popularity over static analysis since it is

not easily defeated by evasion tactics such as obfuscation and polymorphism. During

dynamic analysis, it is common practice to capture the system calls that are made to

better understand the behaviour of malware. System calls are captured by hooking

certain structures in the Operating System. There are several hooking techniques that

broadly fall into two categories, those that run at user-level and those that run at kernel-

level. User-level hooks are currently more popular despite there being no evidence

that they are better suited to detecting malware. The focus in much of the literature

surrounding dynamic malware analysis is on the data analysis method over the data

capturing method. This thesis, on the other hand, seeks to ascertain if the level at

which data is captured affects the ability of a detector to identify malware. This is

important because if the data captured by the hooking method most commonly used is

sub-optimal, the machine learning classifier can only go so far. To study the effects of

collecting system calls at different privilege levels and viewpoints, data was collected

at a process-specific user-level using a virtualised sandbox environment and a system-

wide kernel-level using a custom-built kernel driver for all experiments in this thesis.

The experiments conducted in this thesis showed kernel-level data to be marginally

better for detecting malware than user-level data. Further analysis revealed that the

behaviour of malware used to differentiate it differed based on the data given to the

classifiers. When trained on user-level data, classifiers used the evasive features of

malware to differentiate it from benignware. These are the very features that malware
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uses to avoid detection. When trained on kernel-level data, the classifiers preferred to

use the general behaviour of malware to differentiate it from benignware. The implic-

ations of this were witnessed when the classifiers trained on user-level and kernel-level

data were made to classify malware that had been stripped of its evasive properties.

Classifiers trained on user-level data could not detect malware that only possessed ma-

licious attributes. While classifiers trained on kernel-level data were unable to detect

malware that did not exhibit the amount of general activity they expected in malware.

This research highlights the importance of giving careful consideration to the hook-

ing methodology employed to collect data, since it not only affects the classification

results, but a classifier’s understanding of malware.
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Chapter 1

Introduction

Over the last two decades, worldwide Internet usage has grown at a remarkable rate.

As of 2018 there were 3.8 billion users worldwide [11]. All of these users are able

to share data with one another with minimal effort. While this provides countless op-

portunities, it also can be problematic. This is because the breakdown of borders also

allows malicious software, otherwise known as ‘malware’, to spread without hindrance

between users. Understandably, this provides the potential for malware to have a con-

siderable impact in the world. In the past, the payload of malware would take the form

of a practical joke making the user very aware of its presence [61]. For example, when

a computer was infected with the Cascade virus, it would cause the characters on the

screen to drop to the bottom of the screen [2]. While this was an annoyance, it was not

explicitly harmful. Malware has evolved considerably since then. With the introduc-

tion of Internet banking and the increase in the amount of sensitive information being

stored online, malware authors have far greater incentive to steal data. To complement

that, malware stopped making its presence known to the victim and even attached it-

self to legitimate programs to trick the user into downloading it [106]. However, as

malware was getting more complex, paradoxically, it was also getting easier to create

through the introduction of toolkits capable of automatically producing malware with

just a click such as the Virus Creation Laboratory (VCL) [17] and PS-MPC [13]. To

counter the growing threat of malware, security measures such as two-factor authen-

tication became the norm. In response, malware authors varied their tactics. One of

the more successful methods by which malware authors obtain capital is through the
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use of ransomware. Ransomware is a class of malware that prevents a user from ac-

cessing a core component on their machine and demands a payment for the release

of that component [101]. The locked component in question can range from a user’s

personal files to the entire machine. Ransomware falls into two categories; Locker

and Crypto [138]. Locker ransomware simply blocks access to the installed Operating

System (OS), typically by altering the boot loader in order to force the computer to

boot into a constrained interface that only allows the user to enter a code to release

their machine (which is provided after the exchange of money in some form). Crypto

ransomware generally encrypts the files in a user’s home directory and demands a pay-

ment from the user in exchange for the decryption key. Locker ransomware typically

locks the user’s machine without actually altering any of their files, making it trivial for

a user to get access to their original files. In contrast, crypto ransomware can be chal-

lenging to recover from, particularly if a sophisticated encryption algorithm is used.

This strain of malware alone has caused financial losses in the millions [184].

Malware’s impact is not limited to financial. In 2010 the potential threat of malware

was further emphasised with the discovery of Stuxnet [85]. Unlike malware before it,

Stuxnet did not attempt to cause financial damage or steal information, it was created

to cause physical damage. Specifically, it was a piece of malware written to target and

damage industrial control systems [85]. It did not stop there as the discovery of Stuxnet

inspired a number of other malware families such as Duqu and Flame [45]. Currently

malware is growing at alarming rates, with 350,000 new samples released everyday

[31].

Malware analysts initially responded to the threat of malware by employing simple

static analysis techniques. Static analysis refers to the analysis of a sample (usually

its code) without ever actually running the sample. An example of such a technique

is doing a simple string scan to find identifying byte patterns whilst maintaining some

flexibility by allowing for a certain number of mismatches [241]. The identifying sig-

nature created from static analysis is syntactic in nature. The advantage of this is that it
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is relatively quick to scan a sample which is imperative given the speed at which new

malware is produced. The Sapphire worm, for example, was able to infect 90% of its

targets within 10 minutes [170]. However, static analysis struggled significantly with

the introduction of toolkits such as the Mutation Engine (ME) [3] that could automat-

ically obfuscate code within malware by adding junk code for example. The release

of such toolkits made obfuscation techniques much more commonplace in malware

[39]. To overcome this, techniques such as smart scanning were used where ineffect-

ive instructions (such as NOP instructions) were removed/ignored when scanning the

malware sample [241]. The biggest challenge came when malware authors started

encrypting their samples. Malware analysts relied on the malware author using a re-

cognisable encryption algorithm with an insecure key or that the decryption routine

within the sample was easily decipherable. Unless a sample is decrypted, it is difficult

for an antivirus to find identifying bytes in its code [162, 171]. A prime example was

Lexotan32 [21]. Though it has been around since 2002, only 12.6% of samples were

identified by 40 virus scanners in 2009 [151]. In addition, though static analysis has the

benefit of speed when it comes to producing signatures, it lacks robustness. The storm

worm took advantage of this. Its writer produced many short lived variants on a daily

basis [119]. Antivirus companies struggled to keep up with it as for each variant, they

needed to produce another signature [128]. Subsequently as the amount of obfuscation

being added to malware grew, it became clear to analysts that static analysis contained

limitations that could not be overcome.

Therefore, behavioural analysis was proposed as a remedy to the shortcomings of static

analysis. Behavioural or dynamic analysis involves running the binary and observing

its behaviour. Since code obfuscation does not alter the general behaviour of malware,

behavioural detection is not affected by such techniques. Further, since the behaviour

of malware is analysed, the signatures produced are much more generic (since there are

some behavioural patterns common to many malware samples) [128]. However, with

the introduction of dynamic analysis, malware started employing features to evade dy-

namic analysis as well. The main aim with these techniques was to avoid displaying the
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malicious behaviour when being analysed. This would prevent analysts from making

representative signatures of the malicious sample. An example of a method malware

could use to achieve this is by not executing for 24 hours after it has been run. This is

effective because typically dynamic analysis does not run for more than a few minutes

(given the amount of malware being produced), therefore, delaying execution prevents

an analyst from observing any malicious behaviour. Alternatively malware could at-

tempt to detect peculiarities in the environment it’s being executed in since dynamic

analysis is normally performed on a virtual or emulated machine, and if malware de-

tects artefacts indicative of a virtual environment, it can simply not run. Additionally,

malware can attempt to subvert the data collection mechanism used within dynamic

analysis to capture a sample’s behaviour. The most popular way to capture a sample’s

behaviour is by collecting the system calls made. A system call is a request made to the

OS for some functionality. This could include reading or writing to a file or displaying

something on the screen, amongst many other things. Ultimately, for a sample to do

anything significant, it needs to use system calls. Therefore if malware can prevent

having its calls monitored and logged, it can hide its behaviour from the monitoring

tool. System calls are captured using whats known as a hook. A hook modifies the

standard execution pathway by inserting an additional piece of code into the pathway

[208]. There are a number of methods by which hooks can be performed. Broadly

speaking, those methods fall into two categories, those that run in user-mode and those

that run in kernel-mode. The terms user and kernel mode are labels assigned to specific

Intel x86 privilege rings built into their microchips. Privilege rings relate to hardware

enforced access control. Traditionally, there are four privilege rings and they range

from ring 0 to ring 3 [219]. Windows only uses two of these rings, ring 0 and ring 3.

Ring 0 has the highest privileges and is referred to as kernel mode (this is the privilege

most drivers run at) by the Windows OS. Ring 3 has the least privileges and is referred

to as user mode (and is the level of privileges that most applications run at) [210]. The

focus of this research is on Windows because it is still the most targeted OS by malware

as reported in [30, 100, 239].
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User-mode hooks tend to only record system/API calls made by a single process since

they usually hook one process at a time, whilst kernel-mode hooks are capable of

recording calls made by all the running processes at a global, system level. This is an

important difference as malware may choose to inject its code into a legitimate process

and carry out its activities from there (where it is less likely to be blocked by the

firewall). Alternatively, malware could divide its code into a number of independent

processes as proposed by [202] so that no single process in itself is malicious, but

collectively, they succeed in achieving a malicious outcome. Therefore the choice of

hooking methodology could affect the quality of the data gained. Another difference

between kernel and user level hooks is that each one hooks into a different Application

Programming Interface (API). For example, one type of kernel level hook intercepts

calls within the SSDT whose calls are similar to those found in the native API, which

is mostly undocumented, whilst user mode hooks typically hook the Win32 API which

is documented [174]. Although methods in the Win32 API essentially call methods

in the native API, there may be some methods in the native API that are unique to

it (since it is only supposed to be used by Windows developers) [49], likewise, there

are some user level methods that do not make calls into the kernel. Therefore, it is of

paramount importance that the difference in utility between data collected at each level

is objectively studied so that analysts can make an informed choice on which type of

data collection method to use.

As is evident, if malware intends to prevent a monitoring tool from capturing it’s beha-

viour via system calls, the technique it chooses to use will differ depending on which

hooking methodology it intends to evade [220]. Consequently, if a piece of malware

is focused on avoiding a particular type of hooking methodology, it is likely that any

analysts using that methodology to monitor malware will see a very different picture to

those using another methodology. Though the data collection method may seem trivial,

the choice of method can have a significant impact on results as evasive methods are

not uncommon; in fact, one study found evasive behaviour in over 40% of the samples

they analysed [65].
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From studying the existing literature, it has been made evident that the majority of the

literature captures user level calls as shown in table 2.1 in chapter 2. This suggests that

researchers believe that user level data has more utility than kernel level data, or that

they are yet to consider there to be a significant difference between either type of data

for the purposes of detecting malware. Although there are kernel level tools available,

they are not as popular as user level tools. Thus, given the aforementioned evasion

concerns and fundamental differences in each class of hooking methodology, one of

the motivations of this thesis is to study the differences in data collection at kernel

and user level, and consider whether it effects a machine learning method’s ability to

classify the data.

As malware has undergone a number of transformations over the years, and continues

to evolve and adapt, particularly with regard to evasion techniques, it is not feasible

to expect experts to continuously update heuristics for detecting malware. Therefore,

both static and dynamic analysis have moved towards using machine learning classifi-

ers to detect malware since they can automatically update themselves when presented

with new samples. Machine learning methods are not without weaknesses though, it’s

important that their learning is monitored to ensure that the features they are using to

differentiate malicious from benign are sensible and not due to chance. This is im-

portant because if they are identifying malware using a feature not common amongst

malware but common amongst the dataset they have been trained with, they are likely

to perform poorly when placed in a real environment. For example, it is likely that

malware would exhibit many more evasive properties within a training/virtual environ-

ment than when encountered in a real environment. Therefore, it is not enough to view

a classifier’s accuracy when assessing it’s performance, it must be dissected in order to

understand its reasoning.



1.1 Contributions 7

1.1 Contributions

The main contribution from this thesis is the study of the differences in data collection

at kernel and user level, and its effect on a machine learning algorithm’s ability to clas-

sify the data. This motivates the hypothesis that the features of malware that are used to

differentiate it from benignware1 will differ based on the data capturing method used.

This will provide insights into the utility of the different forms of data collected from a

machine when observing potentially malicious behaviour. Furthermore, given that the

majority of malware is likely to first assess the environment it is running in before ex-

hibiting malicious behaviour, and that machine learning classifiers are typically trained

on a few minutes of activity, this research evaluates whether machine learning classifi-

ers are identifying malware through their evasive and anti-vm behaviour as opposed to

malicious behaviour. This is particularly important in the cyber-security domain where

the focus tends to be on the data analysis method over the data capturing method.

In order to test the hypothesis, a Kernel Driver was implemented that hooks the entire

SSDT with the exception of one call as its internal behaviour prevented it from being

hooked safely. A tailor-made kernel driver had to be used since many of the existing

tools that hook the SSDT only monitor calls in a specific category (such as calls relat-

ing to the file system or registry) and provide no objective justification as to why they

chose the calls they did (if they even make that information available). Therefore, the

kernel driver used in this research hooks all the calls in the SSDT to ensure that no

subtle details regarding malware behaviour are missed and in order to make an object-

ive recommendation on the most important calls to hook when detecting malware. The

kernel driver used is also unique in that it collects the SSDT data at a global system-

wide level as opposed to a local process-specific level. In doing this, this research can

answer the question of whether collecting data at a global level assists in detecting mal-

ware or whether it is simply adding noise. In order to gather user level data to compare

with the driver, Cuckoo Sandbox is used since it is the most popular malware analysis

1Benignware refers to any software that behaves as advertised without any malicious intent
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tool operating at a user level (as shown in Table 2.1 in chapter 2). The data gathered

from the driver and Cuckoo is then used to experiment with state of art machine learn-

ing techniques to better understand the implications of monitoring machine activity

from different perspectives. Alongside the general insights gained from classifying the

data, specialised feature ranking methods are employed to provide insights concerning

the behaviour of malware that is utilised by the classifiers in order to distinguish it. In

the interests of transparency and reproduce-ability, the source code of the kernel driver

has been made available at [176] and the data from the experiments available at [175].

The driver can be installed on any system running Windows XP 32-bit as this was the

platform targeted. However it can also easily be extended to run on Windows 7.

The research questions that this thesis aims to answer are the following:

RQ1 Does data collected at different privilege levels during dynamic malware analysis

affect classification results?

RQ2 Is data collected at a global level more beneficial for dynamic malware analysis

than that collected at a local level?

RQ3 How does the understanding of malware differ at a kernel and a user level?

RQ4 Does the traditional Dynamic Malware Analysis process create a bias in the data

collected and subsequently classified?

RQ5 How much malicious behaviour can a malware sample exhibit before it is detec-

ted?

RQ6 Are high-level languages such as Java suitable for emulating malware to test

system call monitoring tools?

RQ7 How can the dynamic malware analysis process be amended to prevent uninten-

ded security flaws from emerging?

In answering these questions, the following contributions are made:
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C1 This thesis contributes an extensive survey and review of dynamic malware ana-

lysis tools used or proposed in the literature. Such a survey (despite its import-

ance) has never been conducted before, particularly in such depth. This survey

provides information such as the progress made with regards to each hooking

methodology, the most popular hooking methodology, and the most popular tool

for dynamic analysis.

C2 This thesis contains the first objective comparison on the effectiveness of kernel-

and user-level calls for the purposes of detecting malware.

C3 This research assesses the usefulness of collecting data for malware detection at

a global system-wide level as opposed to a local individual process level, giving

novel insights into data science methods used within malware analysis.

C4 This research assesses the benefits, or otherwise of combining kernel and user

level data for the purposes of detecting malware.

C5 This research studies and identifies the features contributing to the detection of

malware at kernel and user level and the number of features necessary to get sim-

ilar classification results, providing valuable knowledge on the forms of system

behaviour that are indicative of malicious activity.

C6 This research assesses whether popular classifiers can generalise to detect ransom-

ware that does not contain the most distinguishing features that were found in

chapter 3.

C7 This research assesses whether kernel-level or user-level data is better at gener-

alising towards malware that does not contain the distinguishing features found

in chapter 3.

C8 This research determines the sensitivity of classifiers trained in the traditional

dynamic malware analysis process to changes in system calls made.
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C9 This research contributes a driver that hooks all but one call in the SSDT and

gathers calls at a global level.

C10 The findings from this research are generalised to inform the general dynamic

malware analysis process.

1.2 Thesis Structure

The outline for the remainder of this thesis is as follows:

Chapter 2 — Background: This section contains the motivation for the remainder of

the thesis. It provides a description of static and dynamic analysis; the motivation for

moving towards dynamic analysis over static analysis; a summary of the data collection

methods within dynamic analysis; the favoured methodology and a summary of the

progress made for each methodology; and a summary of the place of machine learning

in the dynamic analysis process, the most common algorithms employed, and their

limitations. The contribution found in this chapter is C1.

Chapter 3 — Comparison of User-level and kernel-level data for dynamic mal-

ware analysis: This chapter compares the utility of user level and kernel level data for

detecting malware in the traditional dynamic malware analysis process. In addition,

the features contributing most towards the results are analysed to determine how the

classifiers are making their predictions. This chapter contributes C2, C3, C4, C5 and

C9.

Chapter 4 — Assessing the effectiveness of classifiers to detect non-evasive mal-

ware: Building on the previous chapter, this chapter assesses the robustness of clas-

sifiers that are created using the traditional dynamic malware analysis process. To

assist with this, a Java based program called Amsel is used to emulate malware lacking

evasive properties. This chapter contributes C6 and C7.
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Chapter 5 — Testing the robustness of emulated ransomware results: Inspired

by the results of the previous chapter, this chapter assess the correctness of emulated

malware that is written in high-level languages such as Java. In addition, this chapter

determines how sensitive classifiers trained on system calls are to small changes in

system calls. This chapter contributes C8.

Chapter 6 — Discussion: This chapter generalises the lessons learned from chapter 3,

chapter 4 and chapter 5 to provide recommendations regarding how dynamic malware

analysis should be carried out going forward. This chapter also discusses the limita-

tions with this work and the next steps. The contribution in this chapter is C10.

Chapter 7 — Conclusion: This chapter summarises the research conducted in this

thesis.
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Chapter 2

Background

This chapter introduces the field of malware analysis and describes the state of the art

tools in the field. Importantly, this chapter contains our first contribution:

C1 This thesis contributes an extensive survey and review of dynamic malware ana-

lysis tools used or proposed in the literature. Such a survey (despite its import-

ance) has never been conducted before, particularly in such depth. This survey

provides information such as the progress made with regards to each hooking

methodology, the most popular hooking methodology, and the most popular tool

for dynamic analysis.

2.1 The Problem of Malware

Malware, short for Malicious Software, is the all-encompassing term for unwanted

software such as Viruses, Worms, and Trojans. The problem of malware is significant;

AVTEST register 350,000 new malware samples every day and recorded a total of

885.24 million malware samples in 2018 [31]. The prime target for malware in 2018

was the Windows OS, with 64% of the samples targeting it [30]. Therefore the focus

of this research is on defending Windows against malware. The volume of malware

produced for this OS alone is far too much for a human analyst to analyse manually.

This also creates an incredible challenge for antivirus companies since their solutions

are only as secure as their databases are up-to-date [148]. Therefore, there is a need for
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solutions capable of automatically analysing and classifying unseen malware samples

without being overly reliant on signature databases or heuristics.

Malware can be analysed in one of two ways; statically and dynamically. The main

difference between the two methods is that static analysis involves studying a binary

without executing it. Whereas dynamic analysis consists of executing the binary and

analysing its behaviour while it is running [227].

2.2 Static Analysis

Static code analysis involves studying the suspicious file and looking for patterns in its

structure that might be indicative of malicious behaviour without ever actually running

the file. In most cases, the file being studied during static analysis is the compiled file,

since malware authors seldom share the source code of the binary [80, 266]. There-

fore, the typical features that are extracted during static analysis include system calls,

strings, header information, opcodes and byte n-grams [266]. System calls are calls

made to the OS when a binary requires it to perform some operation for it such as

opening and writing to a file. Strings refers to all the strings extracted from a sample

by interpreting every byte of the binary as a string. While this can produce a lot of

noise, it can also reveal a lot about a file such as the function names used by the mal-

ware author, names of directories and even IP addresses. Header information refers

to the structural information of the sample-specific to its file-type. Opcodes (short for

Operation Codes) refers to the assembly instructions within the sample. Similarly, byte

n-grams are sequences of n bytes extracted from the binary and used as features. The

most popular tool used to extract this information is IDA Pro [116].

The main benefit of performing static analysis is efficiency. Since feature extraction

only consists of going through the code of the binary, analysis is rapid. This is ideal

for real-world scenarios where security solutions need to operate in real-time. It is

for this reason that static analysis is frequently used in Antivirus solutions [148]. An-
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other benefit of static analysis is that the analyst can observe the entirety of the sample,

whereas, with dynamic analysis, the portion of the sample analysed is the portion dis-

played for the duration of the execution [266]. The final main benefit provided by static

analysis is safety. The chances of cross-contamination occurring during static analysis

are extremely slim since the binary file does not need to be run to be analysed.

However, static analysis has been losing popularity due to its inability to deal with

obfuscated and polymorphic malware [171, 162]. Polymorphic malware is malware

that encrypts itself and changes the key it uses to encrypt itself every time it propag-

ates. Some of the polymorphic malware samples even alter the decryption routine

used on each propagation [20]. Obfuscation refers to strategies used by malware au-

thors to make their code seem more benign. Obfuscation techniques include code

integration, code transposition, dead code insertion, instruction substitution, register

reassignment, and subroutine reordering [269]. Broadly speaking, these techniques

alter the code (source or compiled) so that the malware sample’s signature changes

significantly while ensuring that the malware sample behaves in the same way. The

main challenge with statically analysing obfuscated or polymorphic malware is that

unless the obfuscation technique or encryption algorithm can be detected and reversed,

the information extracted from the binary file is likely to be heavily skewed [162]. The

problem is further compounded by the fact that it is relatively easy for malware authors

to add polymorphism and obfuscation to their samples due to the prevalence of tools

available to automate the task [266]. One study found that 92% of malware samples

contained obfuscation of some sort [53].

The problems with static analysis have been studied in great depth in the literature.

[171] showed that commercial antivirus solutions were unable to deal with malware

with very simple obfuscation applied to it. To remedy this [72] proposed semantics-

aware static analysis. Semantics aware analysis defines a blueprint for general beha-

viours (such as a decryption loop) that can be compared to specific instructions within

a binary to check for a match. This has the benefit of not being reliant on specific re-
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gisters or instructions since it is looking for behaviours rather than exact code matches.

This makes it resilient to obfuscation techniques such as register reassignment (where

the registers used in malware are changed to evade detectors). However, [171] showed

that even semantic aware static analysis could be evaded by adding complex obfusca-

tions to important constants so that their values could only be determined at run-time.

Recently, [75] compared the performance of static, dynamic, and hybrid (combination

of static and dynamic data) techniques of gathering data when classifying malware,

and found that a fully dynamic approach produced the best classification results. As

a result, research (including this thesis) is now focused on dynamic analysis due to its

potential. While there is still some research in semantic-aware static analysis, given

that semantic-aware static analysis attempts to recognise the behaviour of malware, it

is undoubtedly more reliable to simply observe the behaviour of malware as dynamic

analysis does.

2.3 Dynamic Analysis

Dynamic behavioural analysis involves running the binary in a controlled environment,

such as on an emulator, or Virtual Machine (VM), and searching for patterns of OS calls

or general system behaviours that are indicative of malicious behaviour. Behavioural

analysis has gained popularity over static analysis since it runs malware in its preferred

environment making it harder to evade detection completely. Dynamic analysis can be

deployed as part of an anti-malware solution much like static analysis. However, it can

also be used to complement traditional analysis techniques when those techniques are

unable to confidently classify a sample.

Due to the fact that dynamic analysis involves running malware samples, there is a

risk of cross-contamination. To mitigate that risk, samples tend to be run within an

isolated/semi-isolated environment, where it is easy to revert the system back to a
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clean state when necessary. This can be achieved using virtualisation or emulation.

Virtualisation allows a user to run multiple machines, referred to as ‘Virtual Machines’

on the same hardware [36]. A Virtual Machine Monitor (VMM) or Hypervisor is re-

sponsible for sharing resources between each of the VMs. The key with virtualisation

is that instructions are run on the hardware itself [149]. Whereas with emulation, the

hardware or OS is implemented in software [149]. Each method has its advantages and

disadvantages. Virtualisation provides the benefit of good performance since instruc-

tions are run on the actual hardware [149]. Emulation, on the other hand, allows an

analyst to gather detailed information regarding the execution of a sample since it is

implemented in software.

Finally, in order to conduct behavioural analysis, data relating to the sample’s beha-

viour must be extracted and logged during or after its execution. The type of data that

can be useful to gather includes CPU load, memory usage, disk accesses, and system

calls. The most popular mechanism in the literature for understanding malware’s beha-

viour during execution is through capturing the calls made to the OS, i.e. system calls

[203]. In broad terms, to capture system calls, a tool must create a hook into the OS or

monitored process. A hook modifies the standard execution pathway by inserting an

additional piece of code into the pathway [208]. This is done to interrupt the normal

flow of execution that occurs when a process makes a system call in order to document

the event. There are several methods to intercept system calls in Windows and these

fall into two general categories: those that run in user mode and those that run in kernel

mode [208].

The terms ‘user’ and ‘kernel’ mode are labels assigned to specific Intel x86 privilege

rings built into their microchips. Privilege rings relate to hardware enforced access

control. There are four privilege rings and they range from ring 0 to ring 3 [219].

Windows only uses two of those rings, ring 0 and ring 3. Ring 0 has the highest

privileges and is referred to as kernel mode (this is the privilege most drivers run at) by

the Windows OS. Ring 3 has the least privileges and is referred to as user mode (and
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is the privilege level that most applications run at) [210]. The main purpose of this

stringently enforced access control is to protect user applications from modifying parts

of memory belonging to the Operating System and causing a complete system crash.

However, this also means that anything running in kernel mode has complete access to

system memory and therefore must be designed with the utmost care [210].

Though system calls can be invoked at user-mode, their functionality is implemented

in kernel-mode. An example of the normal pathway for a system call in Windows is

shown in figure 2.1. From user mode, a process may call createFileA, createFileW,

NtCreateFile, or ZwCreateFile, however, ultimately, they all lead to the NtCreateFile

method in the SSDT. In order to provide the requested functionality, the processor

must move from Ring 3 (user level) to Ring 0 (kernel level). It does this by issuing the

sysenter instruction. Although createFileA has been shown to call NtCreateFile/Zw-

CreateFile in figure 2.1, strictly speaking, it calls createFileW. However, as they are

provided by the same library, they are shown at the same level. Figure 2.1 also shows

that, in the case of createFile, to get the same information in user-mode as kernel-mode,

more methods need to be hooked.

createFileA

User Mode

createFileW

NtCreateFile/ZwCreateFile NtCreateFile

Kernel Mode

sysenter

Figure 2.1: System call visualisation

Within user-mode and kernel-mode there are a number of methods by which system

calls can be intercepted. This is shown in figure 2.2.
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Figure 2.2: Methodologies by which system calls can be intercepted

There are a plethora of tools used to perform dynamic analysis. All the tools used

in the literature are shown in table 2.1. Therefore table 2.1 excludes any novel tools

that have not yet been used/tested by other papers. Table 2.1 contains six columns;

“Name” which is the name of the tool, “Description” which describes the hooking

methodology used by the tool, “Kernel Hook” which is marked if the tool employs a

hook at kernel level, “User Hook” which is marked if the tool employs a hook at user

level, “Functions Hooked” which mentions the categories of functions hooked, and

“Used By” which lists the papers that used that tool. For each tool mentioned in Table

2.1, if the tool was available online, it was tested in order to understand how it was

intercepting API-calls. Where the tool was not available, documentation was used to

determine the type of hook being used. To limit the length of the table, Table 2.1 only

contains tools that had been used at least once in the literature (i.e., at least one entry

in their “Used By” column).
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Table 2.1 shows that the majority of the tools used in the literature hook at the user-

level. The most popular tool of all is Cuckoo Sandbox [111] which employs an inline

hook to intercept API-calls. The most popular tool for monitoring at a kernel level

is Sysinternal’s Process Monitor [209]. However, two of the most well-known tools

for monitoring at a kernel level, TTAnalyze and CWSandbox, are now commercial

products called LastLine and ThreatAnalyzer [178]. In the following sections, we

describe each hooking methodology in more detail.

2.3.1 IAT Hook

An IAT hook modifies a particular structure in a Portable Executable (PE) file. The PE

file format refers to the structure of executable files, Dynamic Link Libraries (DLLs),

and similar files in Windows [195]. IAT hooks exploit a feature of the PE file format,

the imports that are listed in a PE file after compilation. Typically the IAT contains

a list of the external DLLs and functions that a program requires from the OS. When

the PE file is loaded into memory, each function listed in the IAT is mapped to an

address in memory. An IAT hook modifies the address in memory so that the import

points to an alternative piece of code rather than the required function [154, 49, 71].

Usually, after the alternative piece of code has done what it needs (such as log the call),

it calls the real import on behalf of the original code. Detecting the presence of an IAT

hook is quite trivial as one only needs to check that the addresses in the IAT actually

point to the correct module [118]. In addition, if malware wants to hide the names

of the functions it is using, it can simply import the LoadLibrary and GetProcAddress

functions supplied by Kernel32.dll to import DLLs and load the required functions on

demand. Due to its limitations, IAT hooks are not often used in the literature. One well

known tool employing an IAT hook is MicS [127], an automated malware analysis

system. In addition, an IAT hook is also used by STraceNT, a tool built to mimic the

functionality provided by the Unix tool ‘strace’.
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2.3.2 Inline Hook

An inline hook modifies the target function’s code within memory by adding a jump to

another piece of code belonging to an analysis engine for example. Once the analysis

engine has finished doing what it needs to (such as logging the call), it jumps back to

the original code in a process known as trampolining [124, 118]. When performing

this hook, the analysis engine must be careful not to overwrite important functionality

in the target function. The easiest way to avoid this is by overwriting the preamble

of a function as generally the first five bytes of a function in Windows is always the

same. The reason for this is that it allows the OS to be hot patched. Hot patching refers

to when fixes are made to a module within memory meaning that a system restart is

not required to enact the change [118]. Inline hooks suffer similar weaknesses to IAT

hooks in that they can be detected quite easily by scanning the code of the system

functions in memory and checking if they match the code on disk. However, inline

hooks are the most popular hooking methodology employed in the literature and are

used by the most popular tools, Cuckoo Sandbox [111] and CWSandbox [259]. Its

uptake was helped by the fact that Microsoft published the library they used to perform

inline hooking (in the context of hot-patching) known as Detours [124].

2.3.3 MSR Hook

An MSR hook essentially hooks the sysenter instruction. More specifically, it involves

changing the value of a processor-specific register referred to as the SYSENTER_EIP_MSR

register. This register normally holds the address of the next instruction to execute

when sysenter is called (which is called every time a system call is made). Therefore

if this value is altered, the next time the sysenter instruction is called, the new value in

the register will be the next instruction that is executed (which in this case can point

to the analysis engine). Since an MSR hook modifies a processor specific register, de-

velopers need to ensure that they modify the registers on each processor (since most
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systems nowadays contain multiple processors) [210]. There are few examples of an

MSR hook being used as a standalone method in the literature. Usually, it is employed

in the context of VMI solutions.

VMI solutions refer to those in which the malware analysis engine resides at the same

level as the Hypervisor or VMM. They tend to use Breakpoints or Page Faults to per-

form MSR hooks [99]. Breakpoints are placed in ‘interesting’ locations and whenever

one is reached, the VMM and thereby malware analysis engine are notified.

Since VMI solutions operate at the same level as the Hypervisor, this can provide be-

nefits such as the ability to monitor a VM without having a large presence on the VM

(and thereby making it harder for malware to detect the presence of the analysis en-

gine). The difficulty with monitoring at this level is that a “semantic gap” must be

bridged in some way. The semantic gap refers to the fact that when monitoring at

the VMM layer, much of the data available is very low level (such as register values).

This data is not at a level of granularity that is easy to interpret. Therefore, in order

to bridge that, solutions use a number of techniques to convert these values to more

abstract values. For example, as mentioned previously, VMI solutions use a variation

of the MSR hook whereby instead of placing the address of the analysis solution into

the SYSENTER_EIP_MSR register, an invalid value is placed into that register. As a

result, every time a system call is made and sysenter is called, a page fault will occur.

This will in turn lead to the VMEXIT instruction being called which will pass con-

trol to the VMI tool (since it operates at the same level as the hypervisor). The VMI

tool must then examine the value of the EAX register in order to find out the system

call made. Since monitoring system calls in this manner can have a significant impact

on performance, VMI tools usually limit their monitoring to a particular process. To

achieve this, the tool must monitor for any changes in the CR3 register. The CR3 re-

gister contains the base address of the page directory of the currently running process,

therefore, if the page directory address of the process of interest is known, then system

calls can be filtered to only those emanating from the process of interest.
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Unlike the previous two hooking methods, the VMI solutions in the literature are quite

varied in how they monitor malware and how they attempt to address some of the is-

sues inherent to VMI. The most well known VMI tool is TTAnalyze [38]. TTAnalyze

executes malware in an emulated environment (QEMU [43]) as opposed to a virtual

one. [38] argue that an emulated environment is harder for malware to detect since a

real system can be mimicked perfectly. However, this comes at the expense of per-

formance, as samples are executed significantly slower. Another well known tool in

this domain is Panorama [268]. Panorama is built on top of TEMU [235] (the dynamic

analysis component of BitBlaze [235] that can perform whole-system instruction-level

monitoring), and performs fine-grained taint analysis. Taint analysis refers to the act

of monitoring any data touched by the executable being analysed. The name stems

from the fact that data touched by the executable is subsequently considered ‘tainted’.

[235]’s contribution lies in the fine-grained taint tracking it performs, even recording

keystrokes among many other things. Ether [78] is also a popular tool employing VMI

that differs by exploiting Intel VT [250] which enables in-built processor support for

virtualisation and provides a significant performance boost when running a VM. Ether

is also particularly focused on not being detectable by malware and, as such, has very

little presence on the guest machine. Osiris [60] is similar to Ether, however, it man-

ages to perform an even more complete analysis by also monitoring any processes the

original process injects its code into. [155] propose DRAKVUF which focuses more on

reducing the presence of an analysis engine from the guest machine as normally there

is some code present on the guest to run the process being monitored or help the VMI

solution with the analysis. However, DRAKVUF employs a novel method to execute

malware using process injection and therefore doesn’t require any additional software

to be present on the guest. In addition, it monitors calls at both user and kernel level.

[188] take a different approach to VMI by using invalid opcode exceptions instead of

breakpoints to intercept system calls. Invalid opcode exceptions are raised if system

calls are disabled and a system call is then called. This, they argue, performs better. In

addition, their monitoring solution is not paired with a hypervisor but exploits a vul-
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nerability ([211]) to virtualise a live system, forgoing the need for a reboot to install

the monitoring solution.

While it’s clear that significant progress has been made with VMM solutions, there is

still a delay overhead incurred from the mechanism (breakpoints/page faults) that is

typically used to monitor API-calls. Ether, a well-known tool in this genre, was shown

to have approximately a 3000 times slowdown [264]. This, among other things, makes

it easier for malware to detect the presence of a monitoring tool by simply timing

how long it takes to execute an instruction. Furthermore, while some solutions have

managed to remove much of the presence of the analysis component from the machine

being monitored, this has the unfortunate effect of making it even more challenging to

bridge the semantic gap.

2.3.4 DBI

Instrumentation refers to the insertion of additional code into a binary or system for the

purpose of monitoring behaviour. Dynamic instrumentation implies that this occurs at

runtime [230]. Dynamic Binary Instrumentation is usually implemented using a JIT

compiler. In DBI, code is executed in basic blocks, and the code at the end of each

block is modified so that control is passed to the analysis engine where it can perform

a number of checks, such as whether a system call is being executed [54, 198]. Two of

the most popular frameworks for achieving dynamic instrumentation in Windows are

DynamoRIO [54] and Intel Pin [166].

The main limitation in solutions using JIT compilation is Self-Modifying and Self-

Checking (SM-SC) since DBI solutions can be detected by the modifications they make

to the code. Therefore, SPiKE [253] was proposed as an improvement to such tools

since it uniquely did not use a JIT compiler, but breakpoints in memory. Specifically,

it employs “stealth breakpoints” [252], that retain many of the properties of hardware

breakpoints, but don’t suffer from the limitation that pure hardware breakpoints do of
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only allowing the user to set between two and four. Through using such breakpoints,

it is harder to detect the presence of the monitoring tool and the tool is more immune

to SM-SC code. Reportedly, this even brought a performance gain. [198] built their

solution, Arancino, on top of Intel Pin which is focused on countering all known anti-

instrumentation techniques that are employed by malware to evade detection.

The problems that solutions in this space suffer from is performance and remaining

undetectable by malware. Though [198] make a considerable effort towards improving

this, they admit their solution is unlikely to be undetectable.

2.3.5 SSDT Hook

SSDT hooks modify a structure in kernel memory known as the System Service Descriptor

Table (SSDT). The SSDT is a table of system call addresses that the OS consults when

a process invokes a system call in order to locate the call. An SSDT hook replaces

the system call addresses with addresses to alternative code [208] [49]. SSDT hooks

have been used in a number of solutions proposed in the literature [158, 143, 109, 59],

however, the tools created have never hooked the entirety of the SSDT and therefore

the full potential of such a hook has never been truly studied. This may be because

while SSDT hooks provide the benefit of giving unprecedented access to the internals

of the kernel (allowing one to access system calls and argument values), they are not

supported by Windows and therefore are very challenging to implement (requiring a

great deal of reverse engineering). In addition, not only are SSDT hooks implemented

as kernel drivers, but they require a developer to alter parts of memory belonging to

the OS, therefore there is no room for error as any errors lead to immediate system

crashes.
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2.3.6 IRP Hook/Filter Driver

In IRP hooking, the analysis engine intercepts another driver’s IRPs [49, 208]. IRPs,

are used to communicate requests to use I/O to drivers. This is similar to filter drivers

which are drivers that essentially sit on top of another driver for a device intercepting

all the IRPs intended for that driver [256]. Filter drivers do not directly communic-

ate with the hardware but sit on top of lower-level drivers and intercept any data that

comes their way. The most well-known tools using filter drivers are Procmon [209]

and CaptureBAT [15]. Other examples in the literature where filter drivers are used are

[125] and [271].

The limitation with using filter drivers is that they cannot intercept the same breadth of

API-calls that other hooking methodologies can. They focus on the major operations

in particular categories (such as file system and registry).

2.3.7 Dynamic Analysis Limitations

Dynamic analysis is not without its weaknesses, it is common for malware to hide its

malicious behaviour if it detects that it is being analysed. A study of 4 million samples

found that 72% of the samples contained techniques to detect that they were being run

in a virtual environment [50]. There are a number of methods by which malware can do

this, however, essentially, all of them boil down to attempting to detect features unique

to the dynamic analysis process. An example of a method by which malware does

this is through detecting the environment it is being run in. Since dynamic analysis

is frequently carried out in a virtual or emulated environment, malware can look for

artefacts unique to those environments (in a process known as fingerprinting [179])

and alter its behaviour accordingly. An example of this would be a malware sample

looking for drivers or devices specific to a VM or emulator [98]. Another method

exploits the fact that in dynamic analysis, typically, a binary is not run for more than
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a few minutes, therefore, in order to evade detection, malware could simply delay

performing malicious activities for a few minutes (or even 24 hours). There are a

plethora of additional techniques by which malware can detect whether it is being

analysed or not, all of which are extensively documented in numerous places: [24,

179, 225, 65, 57, 98, 50].

In addition to those, more novel methods have been proposed that take advantage of

the manner in which calls are gathered and then analysed. [202] noticed that most ana-

lysis tools classified processes as malicious or benign one process at a time. Therefore,

they divided a chosen malicious sample into a number of processes that individually

would not be malicious, however, together, these processes could cooperate to achieve

the malicious outcome. They analysed the divided malicious sample using 43 differ-

ent Antiviruses and seven dynamic analysis tools (including Anubis [40], JoeBox [55],

and Norman Sandbox [234]) and found that it evaded detection in every case. [167]

automate the theory of the technique employed by [202] by producing a tool that when

given the source of a malicious sample is able to split it into a number of samples, spe-

cifically splitting the source whenever a potentially incriminating system call is used.

In addition, the tool added the required communication code between the samples cre-

ated. The resulting malware produced by their tool was tested on CWSandbox [259]

and Norman Sandbox [234] and succeeded in evading analysis. [236] evade system call

analysing tools by only ever calling a single system call from their malicious process

that tells a custom-made driver the actual system call the process wants called. Since

the driver runs at kernel mode, it can then call the system call directly (bypassing any

monitoring tools). In doing this, any tools gathering system calls only observe a single

system call coming from the malicious process.

2.3.8 Discussion

Unlike static analysis, in dynamic analysis the number of methods by which the same

information can be extracted (i.e. system calls) is significant. Therefore, the first de-
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cision an analyst must make when performing dynamic analysis is the method by which

they are going to extract system calls. The argument for hooking in user mode is that

the code analysing the sample is “closer” to the application being analysed since the

APIs hooked are the ones that developers are encouraged to use. More technically

speaking, within Windows, kernel-mode hooks tend to hook into what’s known as the

native API, which is mostly undocumented, whilst user mode hooks typically hook the

Win32 API which is documented since it is what Windows encourages developers to

use [174]. Therefore, the advantage of hooking into the Win32 API is that the analyst

is likely to observe the methods that the sample was programmed to call. Whereas,

with the native API, the analyst is likely to observe the methods that are called by the

methods the sample calls. Therefore, the calls made at the Win32 API are likely to

be easier to interpret since they provide more details. In addition, user-mode hooks

lend themselves naturally to hooking and monitoring a single process whereas with

kernel-mode hooks, additional code must be written in order to limit the information

to the process under investigation. This is illustrated in figure 2.3. Figure 2.3, though

simplistic, shows why a kernel-mode hook is better suited to monitoring at a global,

multi-process level. Obviously, there are many features missing from figure 2.3 (such

as communication with the Hardware), however, the main purpose of the diagram is

to show why kernel- and user-level hooks observe a different picture of the system.

Ultimately, despite it’s advantages, the main limitation with user-mode hooks is that

they operate at the same privilege level as the process being examined and therefore,

are much easier for the process being examined to evade and feed misinformation.

The main argument for hooking at kernel mode is that due to the heightened priv-

ilege, it is a lot harder for a malware sample to evade the analysis code. Further, while

user-level hooks can only hook a single process, a kernel-level analysis tool is capable

of observing much more since it has a system-wide view. This is an important dif-

ference as malware may choose to inject its code into a legitimate process and carry

out its activities from there (where it is less likely to be blocked by the firewall). Al-

ternatively, malware could divide its code into a number of independent processes as
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User-mode Hook

Process #1 Process #2 Process #3

NTDLL.DLL

Kernel-mode Hook

SSDT

Kernel Mode
User Mode

Figure 2.3: The different views of kernel and user-mode hooks illustrated

proposed by [202] so that no single process in itself is malicious, but collectively, they

succeed in achieving a malicious outcome. Therefore the choice of hooking method-

ology could affect the quality of the data gained. In addition, hooking the native API

has it’s advantages since malware may decide to directly call methods in the kernel to

evade user-level hooks. While methods called in the native API may not be as easy to

label as a particular behaviour, the advantage of hooking into the native API is that the

analyst mainly sees the important methods.

Regardless of the benefits of each data gathering method, it is clear that the manner in

which data is gathered is more than likely to affect the data obtained. Even methods

gathering data at the same privilege level may gather different data since each method

has its own weakness and is evaded differently [220]. This can be a significant concern

given the pervasiveness of evasive techniques in malware. Its important to emphasise,

that when the word “evasive” is used in this thesis, it is specifically referring to the

behaviours of malware that are used to prevent the data capturing component (hooking
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methodology) from capturing accurate information regarding the behaviour of mal-

ware whilst it is being run. Therefore, if two methods are gathering data at different

privilege levels, hooking into different APIs, and collecting data from different view-

points (local vs global), they are undoubtedly going to get very different views of the

malware sample and the system. Despite this, the focus in the literature of malware

analysis tends to be on the method used to classify the data rather than the actual data

itself. While the detection method is important, unless the data gathered is optimal, the

detection method can only go so far. This is also important because if the literature only

treats the detection method as the variable within malware analysis, it will be difficult

to assess whether an improvement in results is due to the novel detection method used

or the manner in which the data was gathered. Furthermore, while the majority of the

literature uses user-level tools to gather data, there is no evidence for their supremacy

or otherwise over kernel-level tools, despite the significant differences between them.

This provides the motivation for the first three research questions:

RQ1 Does data collected at different privilege levels during dynamic malware analysis

affect classification results?

RQ2 Is data collected at a global level more beneficial for dynamic malware analysis

than that collected at a local level?

RQ3 How does the understanding of malware differ at a kernel and a user level?

2.4 Classifying System Calls

Once system calls have been gathered, the patterns within them need to be extrac-

ted and converted into rules that can be used to distinguish malicious from benign.

While this can be performed manually by experts, the sheer volume of malware be-

ing produced makes this impossible. To obtain complete coverage over all malware

samples produced, an expert would have to analyse each new malware sample within
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1.6 seconds [218]. Therefore, rather than manually extracting patterns to identify mal-

ware from system calls, the process must be automated using machine learning.

In order to do this, the system calls that have been gathered must be be represented

in a form that can be understood by machine learning classifiers. The most common

method is to convert the data into numeric form. This can be as simple as representing a

sample as a frequency histogram showing how many times each system call was made

by that sample. Alternatively, it can be more complex, taking context into consideration

by using call sequences [186]. Regardless, once the data is represented numerically, it

can be passed to a machine learning classifier. Machine learning refers to the process

by which a machine automatically learns how to perform a task (such as distinguishing

malware from benignware). While machines can be manually programmed to perform

a task, some tasks can be very difficult to solve, and are therefore difficult to teach a

machine to perform in a robust manner that generalises well. Machine learning can

help with this.

Classification is the machine learning process in which a machine learning algorithm

is provided with input data and it predicts the category that the data belongs to based

on patterns within the data. In this case, the input data is the API calls made and

the output from the classifier is the label, ‘malicious’ or ‘benign’. There are a wide

range of classifiers that a malware analyst can use to analyse malware. They fall into

two general categories, supervised, and unsupervised. With supervised algorithms,

the classifier is trained on labelled data. In this case, that means that the classifier is

told which data comes from benign and which comes from malicious samples. With

unsupervised algorithms, the classifier is not told the class that the data belongs to

beforehand, it is up to the classifier to decide which data comes from which sources.

For the purposes of this study, however, this research will only focus on supervised

classifiers since they are better suited to this specific task, particularly given that the

number of classes is already known.

The focus of this thesis is to not only assess if there is a difference in the classifica-
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tion results but to understand the features causing the difference. It is for this reason

that deep learning is disregarded for the study. Deep learning is a machine learning

algorithm inspired by the structure of the brain and consists of a large array of neural

networks (similar to neurons in the brain) [104]. Deep learning algorithms are ex-

tremely complex and while deep learning produces promising results, the main aim of

this research is not to obtain exceptional results, but to better understand the difference

in the results. Given these conditions, the main classifiers used within dynamic mal-

ware analysis are summarised in table 2.2. Table 2.2 lists each classifier used within

the recent literature of dynamic malware analysis, provides a short description of the

classifier, and lists the papers that have used that classifier.

Table 2.2: Popular classifiers in Malware analysis

Classifier Description Used By

AdaBoost [91]

AdaBoost is a collection of weak classifi-

ers (frequently Decision Trees) on which

the data is repeatedly fitted with adjus-

ted weights (usually weighting misclassi-

fied samples more heavily) until, together,

the classifiers produce a suitable classific-

ation score or a certain number of itera-

tions are complete.

[244, 130, 133,

126, 273]

Decision Trees [52]

create if-then rules using the training data

which they then use to make decisions on

unseen data.

[244, 89, 25, 169,

95, 130, 120, 126,

132]

Gradient Boosting [92]

A more general version of AdaBoost that

uses a collection of weak learners (De-

cision Trees) and at each stage adds a new

learner to model by fitting the new learner

on the previous learner’s errors

[223, 126]
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Continuation of table

Hidden Markov Model

(HMM)s

HMMs predict the values of some hid-

den state using only the current state (and

nothing before it)

[132]

Logistic Regression

One of the simplest classification al-

gorithms. It attempts to separate the data

using a linear boundary and therefore can

only be used if the output variable is cat-

egorical.

[126, 223]

Support Vector Ma-

chine (SVM) [74]

SVMs separate the data by finding the

hyperplanes that maximise the distance

between the nearest training points in

each class.

[244, 89, 25, 169,

95, 248, 130,

223, 165, 132,

226, 275, 242]

K-Nearest Neighbours

K-Nearest Neighbours picks representat-

ive points in each class and when presen-

ted with a new observation calculates its

proximity to the points and assigns it to

whichever is closest.

[130]

Naive Bayes [168]

Uses Bayes’ Theorem to predict the prob-

ability that a sample belongs to each cat-

egory (malicious or benign) and then as-

signs it the category with the highest

probability. It’s described as naive due to

the fact that it assumes that features are

independent [41]

[130, 275]
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Continuation of table

Random Forest [51]

Random Forest, like AdaBoost, is a col-

lection of classifiers, and, like AdaBoost,

the classifiers are all decision trees. How-

ever, AdaBoost tends to employ shallow

decision trees while Random Forest tends

to use deep decision trees. Random Forest

splits the dataset between all the decision

trees and then averages the result.

[95, 213, 115,

244, 133, 120,

223, 165, 126,

197, 232, 132]

2.4.1 Limitations of Machine Learning

While machine learning equips a machine to automatically distinguish malicious from

benign without having to manually construct heuristics, it can still be exploited by

attackers in the form of adversarial attacks. An adversarial attack is a technique in

which confidently classified samples are altered using small, but tactical perturbations

in order to cause the classifier to incorrectly classify the sample with confidence. Ad-

versarial attacks first emerged in the field of image recognition, where the alterations

made to images was so slight that there was no observable difference between the ori-

ginal and altered images, however, state of the art classifiers incorrectly classified them

with extremely high confidence [240]. Adversarial attacks work by estimating the de-

cision boundaries of the classifier and then selectively altering input samples using the

smallest number of perturbations necessary so that they fall outside the decision bound-

ary. They can be white-box attacks, in which the attacker has complete access to the

classifier, its hyper-parameters, and the input samples it was trained on. Alternatively,

they can be black-box attacks where the attacker does not have access to the internals

of the classifier but can still view the final classification decision it makes [207, 270].

With white-box attacks, it is relatively trivial to find the classifier’s decision boundary
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due to all the information available to the attacker. However, with black box attacks,

the attacker must create a surrogate classifier that is trained on the classification de-

cisions made by the original classifier being attacked. Samples are then modified to

evade the surrogate classifier in the hope that they will also evade the classifier being

attacked [207]. These attacks have been quite successful as adversarial samples have

been found to be transferable between classifiers trained to make the same decision

[182]. The success of adversarial attacks in general is attributed to the linear behaviour

of some classifiers in high dimensions [103]. Within the field of image recognition,

adversarial attacks are performed through the use of minor perturbations to pixel val-

ues in images. In malware analysis, the general trend is to alter the API-calls called.

Attackers must take care when altering API-calls made by malware as they could un-

intentionally alter the behaviour such that it no longer executes. Therefore, most of the

literature does not subtract or remove system calls made, rather they only add calls to

avoid altering any of the malware’s existing behaviour. However, attackers still need

to be vigilant when adding calls to the feature space, as if a call to ExitProcess is ad-

ded, it would immediately end execution when called thereby significantly altering the

malicious sample’s behaviour.

[47] focus on adversarial attacks against Linear SVMs and Neural Networks using

malware embedded in PDF files. They consider two attack scenarios, one in which

the attacker has perfect knowledge of the model being attacked and one in which the

attacker has a limited knowledge of the model being attacked. They use gradient des-

cent as their attack strategy but they bias it by adding a ‘mimicry component’. The

mimicry component pushes the gradient descent towards the largest cluster of legit-

imate samples. They found that regardless of the information available to the attacker

regarding the target model, they were able to evade it with near identical probability.

In addition, they were able to evade Linear SVM models with as few as five to ten

modifications to a malicious file, whereas neural networks were slightly more robust.

[110] apply adversarial attacks to the field of malware analysis by attacking a neural
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network trained to detect malware that targets the Android platform. Specifically, they

train a neural network to obtain the current state-of-the-art performance that has been

achieved when classifying the DREBIN dataset [28] — a dataset consisting of mal-

ware for Android. The features used are API-calls gathered statically from malware

which are represented as a binary vector where ‘1’ means the corresponding call was

imported whilst a ‘0’ indicates otherwise. Adversarial samples are crafted by adding

features once they have deciphered which feature, when modified, would produce the

most change in the classifier’s output. They identify these features using the method

employed by [183] who take the derivative of the trained neural network with respect to

its input features. Through this they manage to make 63% of the previously detectable

malware samples undetectable.

[122] propose MalGAN, a adversarial neural network, which takes malware samples

and produces adversarial samples that can evade classifiers. They perform a black

box attack, assuming that access to the machine learning classifier’s internals is not

available. They tested MalGAN on a number of classifiers, namely, Random Forest,

Logistic Regression, Decision Tree, Support Vector Machine, Multi-Layer Perceptron,

and a voting based ensemble of these classifiers. They manage to alter malware samples

such that the accuracy of many of the classifiers fell from above 90% to 0%.

2.4.2 Discussion

It is clear that classifiers are not impenetrable, therefore, it’s imperative to understand

how the classifiers used are working and what their predictions are based on. This is

the motivation of the fourth and fifth research questions:

RQ4 Does the traditional dynamic malware analysis process create a bias in the data

collected and subsequently classified?
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To answer this question, this research studies the features that the classifiers favour

when distinguishing malicious from benign (as stated in RQ3). This is done for both

the kernel-level and user-level data in order to better understand the differences in

viewpoints. This will also provide an understanding of the picture of malware that is

built up by classifiers. Using that, this research will test whether classifiers will be able

to correctly classify malware falling outside that picture. For example if classifiers

are distinguishing malware largely through its Internet usage, what happens when it

encounters malware that does not use the Internet? Alternatively, given the prevalence

of evasive features in malware, if solutions and classifiers are robust enough to detect

malware with evasive features, does that come at the cost of being able to detect other

features of malware that have nothing to do with evasion? This is investigated in the

fifth research question:

RQ5 How much malicious behaviour can a malware sample exhibit before it is detec-

ted?

2.5 Emulating Malware

To answer RQ5, an emulated malware generator is used to create malware that is mali-

cious but does not possess properties of malware that the classifiers rank highly. How-

ever, malware emulation is an extremely understudied field, with very few published

solutions.

Malware emulation/simulation suites are used for one of two purposes. To educate a

user to recognise malware, or to test an anti-virus [105]. One of the first educational

suites was the Virus Simulation Suite [117] written by Joe Hirst. It simulated the visible

and audible symptoms of malware. Virlab [84] is another well known educational

malware simulator. It simulates and visualises the spread of DOS viruses for users.

More recently, Spamulator [33] was created to educate students on spyware and bulk-

mailing spam. This was extended to also simulate drive-by download attacks [34].
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Threat Tracer [137] was proposed to demonstrate the risks of Advanced Persistent

Threats (APT). APTs are sophisticated attacks with a long term goal [63]. Threat

Tracer was recently extended to also simulate the Mirai Botnet [262]. However these

solutions represent the extent of malware simulators for educational purposes.

The literature on malware simulators for the testing of Anti-Viruses is also quite scarce.

The Rosenthal Virus Simulator [83] was the first in this category. It is capable of

producing harmless programs that contain virus signatures. Trojan Simulator [164]

goes slightly further, simulating a property of malware that ensures it is run every time

the machine is powered on. However, again, it simulates no malicious symptoms. More

recently, MalSim [156] was proposed. MalSim, written in Java Agent DEvelopment

framework (JADE) [44], is capable of simulating a rich set of malware variants in

addition to generic behaviours seen in malware. However it is careful not to do any

actual harm to the system. Unfortunately malware simulators that do not do any harm

to the system are quite limiting since the full extent of a malware detector cannot be

tested. For this reason, none of the proposed solutions are suitable in this research.

The solution chosen is Amsel [190], a Java-based malware emulator. It is described in

more detail in chapter 4.

One of the observations made from reviewing malware emulators is that Java [107] is

a common choice as a programming language [190, 156, 137, 262]. Java is a general

purpose programming language that is platform independent. In keeping with that, Java

provides the developer with generic methods, which the Java Virtual Machine (JVM)

then translates to more specific methods depending on the platform that the program is

being run on. The JVM is what every Java application runs inside (with a new instance

created for each application) [255]. In addition to running the Java program specified,

the JVM performs a number of jobs on behalf of the developer. For example, the JVM

carries out what is known as “Garbage Collection”. Garbage collection refers to the

free-ing of any memory no longer used by the Java program [255]. In lower-level

languages (such as C), tasks such as these would have to be performed manually by
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the programmer, and if the task is not carried out correctly, it can lead to errors that are

challenging to debug. Therefore, Java and the JVM in general allows the programmer

to focus more on implementing the functionality of the program without having to

worry about the minutiae of how that functionality is achieved.

While Java may provide convenience for programmers and lead to fewer errors in code

[194], there are questions around its suitability to emulate malware for the dynamic

malware analysis process. This is because, when using Java, the developer has very

little control over the exact system calls being made. Therefore, though Java can be

used to faithfully reproduce the effects of a malware infection, the developer has little

control over how the effects are executed. This is essential when monitoring solutions

are monitoring at a low level of abstraction. Furthermore, besides the lack of control on

how the specifics of the functionality are executed, the calls made by the JVM are also

mixed in with the calls made by the program being monitored (emulated malware in

this case). This means that calls made for benign purposes are mixed in with calls made

for a malicious purpose. For example, the garbage collector must periodically check

for any memory to free. This can throw off a machine learning classifier trained on

system call data. Conversely, in the C programming language, this must be performed

manually by the developer. As a result, the developer can minimise the amount of

interference from tasks such as these. Therefore this research also tests the robustness

of Java as a malware emulator. This is summarised in RQ6:

RQ6 Are high-level languages such as Java suitable for emulating malware to test

system call monitoring tools?

Finally, the findings made in this thesis are evaluated and generalised into principles,

that, if followed when performing dynamic malware analysis, will ensure that the res-

ults produced from the process are much more robust. This is summarised in the final

research question:

RQ7 How can the dynamic malware analysis process be amended to prevent uninten-
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ded security flaws from emerging?
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Chapter 3

Comparison of User-level and

Kernel-level data for dynamic

malware analysis

3.1 Introduction

In this chapter, data is collected on malware at the kernel and user level, and then passed

through a number of classifiers. The aim of this is to determine if there is a significant

difference in the ability of the same classifiers to detect malware when provided with

data at different privilege levels. Through doing this, the following research questions

will be answered in this chapter:

RQ1 Does data collected at different privilege levels during dynamic malware ana-

lysis affect classification results?

RQ2 Is data collected at a global level more beneficial for dynamic malware analysis

than that collected at a local level?

RQ3 How does the understanding of malware differ at a kernel and a user level?

In answering these questions, the following contributions are made:
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C2 This thesis contains the first objective comparison on the effectiveness of kernel

and user level calls for the purposes of detecting malware.

C3 This research assesses the usefulness of collecting data for malware detection at

a global system-wide level as opposed to a local individual process level, giving

novel insights into data science methods used within malware analysis.

C4 This research assesses the benefits, or otherwise of combining kernel and user

level data for the purposes of detecting malware;

C5 This research studies and identifies the features contributing to the detection

of malware at kernel and user level and the number of features necessary to

get similar classification results, providing valuable knowledge on the forms of

system behaviour that are indicative of malicious activity;

C9 This research contributes a driver that hooks all but one call in the SSDT and

gathers calls at a global level.

The remainder of this chapter is structured as follows; the ‘Method’ section describes

the experiments carried out, the ‘Results’ section describes and interprets the results

obtained from those experiments, and the ‘Conclusion’ section summarises the find-

ings.

3.2 Method

In order to conduct the experiments required for this study, 2500 malicious samples

were obtained from VirusShare [18] and 2500 benign samples were obtained from

SourceForge [14] and FileHippo [6]. This sample size correlates with dataset sizes

used in previous literature [245, 70, 75, 97]. The categories of malware collected for

the experiments are shown in table 3.1. Extracting categories for malware is a chal-

lenging task as there is no agreed naming convention for malware [135]. In order to
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obtain this information, VirusTotal [246] was used. VirusTotal scans any files a user

submits to it using over 60 different Antiviruses. It then reports the findings (amongst

a plethora of other information) from each of the antivirus products. If a file is found

to be malicious, VirusTotal shows the label attached to the file by each of the antivirus

products. Developers can access this information via VirusTotal’s API. One of the ob-

servations made during this research is that the Antiviruses within VirusTotal do not

often agree on the label they assign to malware. Furthermore, the naming conventions

used also tend to differ. Therefore, in order to get the most balanced view of the cat-

egories of malware, the labels given to a malware sample by each antivirus are used.

The labels don’t just identify the category of the malware sample, but also it’s family,

the Operating System it’s compatible with, the file format, the programming language,

the variant, and any additional information. Therefore, in order to obtain the category

of each malware sample, the label had to be split on a selection of punctuation char-

acters such as ‘:’ and ‘.’ since each antivirus product used such characters to separate

each piece of information. Then a number of heuristics were used to remove informa-

tion such as the platform or programming language and isolate the category assigned

to the malware sample by each antivirus. Finally, the category assigned to the malware

sample by the majority of vendors was used as the final category. Benign samples were

also run through VirusTotal to ensure that they were not malicious.
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Category Quantity

Trojan 1846

Virus 458

Worm 86

Rootkit 34

Ransomware 23

Adware 22

Keylogger 2

Spyware 2

Table 3.1: Quantity of each category of malware in the dataset

Due to the lack of agreement over the use of each of the terms in table 3.1, it is difficult

to objectively define each category. However, in general, the following is meant by

each category:

Trojan: Malicious samples disguised as benign samples are referred to as Trojans. A

user typically willingly downloads the infected file believing it to only perform the

benign function it advertises [134].

Virus: Viruses differ from Trojans in that they usually obtain access to the victim’s ma-

chine via a vulnerability. On infecting a host, they usually attempt to infect additional

files on the victim’s machine [134].

Worm: A worm is a self-replicating program capable of infecting multiple machines

via a network connection (unlike viruses). Worms are often employed in targeted at-

tacks where a particular user is the intended victim [134].

Rootkit: A rootkit is rarely found on its own but as part of another piece of mal-

ware. This is because the sole purpose of a rootkit is to hide the presence of a malware

sample. In addition, it is responsible for ensuring that the attacker continues to have ac-

cess to the machine. In order to hide the attackers presence from the antivirus, rootkits
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sometimes employ hooking techniques to control the output/feedback being given to

the antivirus by the OS. Therefore, it is quite common for rootkits to work in kernel-

mode due to the privileges it brings. This is important because if a monitoring solution

is only monitoring at a user-level, anything bypassing user-mode and going straight to

kernel-mode will not be recorded [49].

Ransomware: Ransomware takes a user’s files or machine hostage by preventing the

user from accessing them and then demands payment (usually in the form of a crypto-

currency) for their safe release.

Adware: Unlike many forms of malware, Adware make their presence known to a

user by bombarding them with advertisements [32]. Adware is delivered in a number

of ways, including as a hidden add-on to a program a user installs or as a drive-by

download [68].

Keylogger: Keyloggers silently record all keys pressed by a user and the application

they were pressed in. Keyloggers can come in the form of a hardware device or be

implemented in software. Within software, they can be implemented at user-mode or

kernel-mode.

Spyware: Spyware is known for its silent invasive monitoring of user activity and be-

haviour. Spyware is frequently paired with Adware and therefore has similar delivery

mechanisms to Adware.

To gather calls made at a kernel level, a Windows Kernel Driver was written to hook all

but one kernel call in the SSDT since none of the tools available currently provide this.

The only call the driver does not hook, NtContinue, was not hooked due to the fact that

hooking it produced critical system errors. A bespoke kernel driver had to be created

for this task since many of the existing tools that hook the SSDT only monitor calls

in a specific category (such as calls relating to the file system or registry) and have no

objective justification as to why they monitor those calls. Therefore, a bespoke kernel

driver was written to hook all the calls in the SSDT to ensure that it can detect any
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subtle details regarding malware behaviour. This also allows it to provide a more ob-

jective recommendation on the most important calls to hook when detecting malware.

Hooking all system calls is quite challenging as it requires exceptional performance on

the part of the kernel driver since as soon as its loaded, it is inundated with calls made

to the kernel. Therefore, if it cannot handle these rapidly, the system will crash. In

addition, due to the number of times some system calls are made, memory use must

be limited as much as possible, even ensuring each string is not taking up more space

then needed. Errors caused to the system by the driver are relatively easy to spot since

even the smallest of errors cause a blue screen of death. However, these can be quite

difficult to locate in the driver source code since the details about the cause of the error

are only made available through a memory dump. The driver was further stress-tested

using Driver Verifier [82]. Driver Verifier is a tool supplied by Windows that runs a

number of tests on a selected kernel-mode driver. Driver Verifier can check for er-

rors such as memory leaks and insufficient error handling (particularly with regards

to resource usage) amongst many other things. If Driver Verifier discovers an error,

it throws a system error (Blue Screen of Death), and provides details of the error in a

memory dump. In order to ensure correctness, the driver created in this research was

run through all the tests provided by Driver Verifier. In addition, the driver has been

written carefully to ensure that it does not gather data regarding its own behaviour, but

only behaviour external to it. The driver is unique in that it collects the SSDT data at

a global system-wide level as opposed to a local process-specific level. This has been

done to determine whether collecting data at a global level assists in detecting malware

or whether it is simply adding noise. Therefore, the data from the tool can be used to

predict whether the machine’s state is malicious or not.

While SSDT hooks have been used in drivers previously, they have not had as com-

prehensive a coverage of calls as the kernel driver used in this research has. [158]

employed an SSDT hook to automatically build infection graphs and construct signa-

tures for their system, AGIS (Automatic Generation of Infection Signatures). AGIS

then monitors a program to see if it contravenes a security policy and matches a signa-
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ture. Therefore, it only focuses on calls from a specific process and ignores all other

calls. [143] propose BareBox to counter the problems associated with malware cap-

able of detecting that it is being run in a virtual environment. BareBox runs malware

in a real system and is capable of restoring the state of a machine to a previous snap-

shot within four seconds. BareBox monitors what the authors perceive to be important

system calls using an SSDT hook. However, as the number of devices attached to the

machine increase, the time it takes BareBox to restore the system to a benign state

increases considerably. [109] propose BehEMOT (Behavior Evaluation from Malware

Observation Tool) which analyses malware in an emulated environment first, then in

a real environment if it does not run within the emulated environment. They use an

SSDT hook to monitor API calls relating to certain operations. However, by perform-

ing analysis on a real environment, BehEMOT suffers a similar problem to BareBox

in relation to restoration time. Furthermore, the focus with BehEMOT seems to be

producing human-readable and concise reports after each analysis and therefore, only

small-scale tests were conducted on a handful of samples.

As mentioned previously, the kernel driver created for this research differs from other

solutions using SSDT hooks in that they only log calls made to certain API calls by

certain processes. The bespoke kernel driver logs all calls (except one) by all processes

in order to determine their utility in classification. TEMU is the only tool to offer sim-

ilar functionality, however, where it differs is that it runs in an emulated environment

(which is easier for malware to detect [57]) and is focused on providing instruction-

level details as opposed to high-level system calls.

To gather user level data, a third party tool that is readily available was used since

there are already well established solutions providing this. Specifically, the tool used is

the one that is most frequently mentioned in the existing literature - Cuckoo (specific-

ally, Cuckoo 2.0.3). Cuckoo is a sandbox capable of performing automated malware

analysis. Cuckoo provides a whole host of features from simulated user interactions
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with the desktop to VM hiding techniques to prevent malware from detecting its en-

vironment. In addition, since Cuckoo is open source, it integrates with a number of

other tools such as inetsim [123], volatility and many others. When given a sample,

Cuckoo can return the VirusTotal [246] results, a memory dump, the network capture

and system calls, amongst many other things. For the purposes of this research, only

the system calls returned are used. As mentioned previously, Cuckoo intercepts system

calls using an inline hook.

The experiments for this research were carried out on a virtual machine with Windows

XP SP3 installed. The reason for choosing Windows XP was that writing a kernel

driver, particularly one delving in undocumented parts of Windows, is frustratingly

challenging. However, this is made slightly easier in Windows XP due to the fact

that it has slowly become more documented through reverse engineering. Another

reason for choosing XP is that all 64 bit systems are backwards compatible with 32

bit binaries [112] and the most commonly prevailing malware samples in the wild are

also 32 bit [62] (with not a single 64-bit sample appearing in the top ten most common

samples). As of 2016, AVTEST found that 99.69% of malware for Windows was 32

bit [31]. The reason for the popularity of 32 bit malware samples over 64 bit is that

its scope is not limited to one architecture. Therefore, given the current prevalence of

32 bit malware, it did not seem that using Windows XP would make the results any

less relevant especially since the method used could be repeated on other versions of

Windows and it would simplify the already challenging engineering task. The host

OS was Ubuntu 16.04 and the Hypervisor used was VirtualBox [12]. Both the host

and guest machine had a connection to the Internet. In order to ensure fairness and

to provide automation, the simulated user interaction features present within Cuckoo

were implemented for the kernel driver. Aside from the sample being investigated and

simulated user behaviour, the only other processes running on the guest machine were

the standard Windows processes. Figure 3.1 shows the system diagram used for this

research describing the entire experimental process in order to obtain the results.
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Figure 3.1: Workflow Diagram of the proposed system’s pipeline

The kernel driver creates one Comma-Seperated Values (CSV) file for each system

call. A new line is written to each file every time the system call associated with the

file is called. The logs are placed in a directory under the Windows directory since that

seemed the safest location given that programs are unlikely to modify files essential

for the OS to function. In fact, it has also been known to be used by malware to hide

its files due to the safety it provides [227]. After the analysis, a shared folder is used

to transfer over the CSV files to the analysis machine. This folder is wiped after each

run. Cuckoo uses a network connection to transfer over analysis files from the VM

to the host machine, after which we transfer the JSON file to the analysis machine.

The output produced from each of the monitoring tools is encoded using a frequency

histogram of calls within a two minute period. This feature representation is used to fit

a classification model for virus detection.

3.2.1 Initial Experiments

The transformed data (frequency histograms) from Cuckoo and the kernel driver was

then classified using a selection of machine learning algorithms provided by scikit-

learn [56]. The machine learning algorithms chosen were drawn from the existing liter-

ature, as the focus of this research was on the utility of different views of machine-level

actions (user vs kernel) rather than new classification algorithms. The classification al-

gorithms used were AdaBoost, Decision Tree, Linear SVM, Nearest Neighbours, and

Random Forest. The reason these algorithms were chosen is that they are used widely

in the literature as shown in table 2.2. In addition, Random Forest frequently achieved

impressive results [95, 213, 115, 244] as has AdaBoost [244]. Finally, Nearest Neigh-
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bours was chosen due to its simplicity in order to set a baseline.

For each classifier, the data was split using 10-fold cross-validation as it is also the

standard in this field [46, 244, 25, 97]. 10-fold cross-validation (an implementation

of k-fold cross-validation) is a statistical method for splitting data in a manner that

minimises bias. 10-fold cross-validation randomly splits the data into 10 subsets and

then trains the classifier on 9 subsets and tests it on 1. Each subset gets a chance to be

the test set. In addition, to increase confidence in the results, 10-fold-cross-validation

was run 100 times, providing 1000 classification results for each classifier. To measure

a classifier’s performance a number of metrics can be obtained. The metrics used

in this research are Area Under the Receiver Operating Characteristic (ROC) Curve

(AUC), Accuracy, Precision, and F-Measure since these are the metrics commonly

reported in the literature [169, 115, 245, 25, 133] and they provide a complete view of

the performance of the classifier without missing out on subtle details. To understand

these measures in this context, it is important to define a few basic terms. For this

research True Positives (TP) are interpreted as malicious samples that are correctly

labelled by the classifier as malicious. False Positives (FP) are benign samples that

are incorrectly predicted to be malicious. True Negatives (TN) are benign samples

that are correctly classified as benign. False Negatives (FN) are malicious samples

that are incorrectly classified as benign. With regards to the actual measures used,

AUC relates to ROC curves. ROC curves plot True Positive Rate (TPR) against False

Positive Rate (FPR). FPR is the fraction of benign samples misclassified as malicious,

while TPR represents the proportion of malicious samples correctly classified. A ROC

curve shows how these values vary as the classifier’s threshold is altered. Therefore the

AUC is a good measure of a classifier’s performance. Accuracy can be described as the

sum of all the correct predictions (malicious and benign) divided by the sum of all the

predictions. Precision refers to the correctly labelled malware divided by the sum of

the correctly labelled malicious samples, and the benign samples incorrectly labelled

( TP
TP + FP ). This gives the proportion of correctly labelled malware in comparison to all

samples labelled as malware. Recall is the correctly labelled malicious samples divided
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by correctly labelled malicious samples, and malicious samples incorrectly labelled as

benign ( TP
TP + FN ). This gives the proportion of malicious samples that are correctly

identified. Precision has been included since false positives are a common issue in

malware detection. Recall was not included for brevity and since it can be quickly

deduced from the F-Measure (which is included) which is the harmonious mean of

precision and recall.

In order to confirm whether the differences in classification results were statistically

significant or due to randomness, the 1000 classification results (specifically AUC val-

ues) obtained from running 10-fold cross-validation 100 times were utilised. These val-

ues were plotted using Q-Q Plots against a normal distribution. The Q-Q plot provides

a visual comparison of a dataset’s distribution with a chosen theoretical distribution.

In this case the theoretical distribution being compared against is the normal distribu-

tion. Provided the Q-Q plots show the data as being normally distributed, the required

prerequisites for using Welch’s T-Test [258] are satisfied. Welch’s T-Test tests whether

two populations have equal means. In this case Welch’s T-Test is used to determine

whether the differences between the classification results from Cuckoo and the ker-

nel driver are statistically significant or not (with the significance level, α, set to 5%).

Welch’s T-Test was chosen due to its robustness and widespread recommendation in

the literature [76, 212].

In addition, in order to gain insight into whether collecting data at a global level is

more beneficial for classifying malware, the API calls logged by the kernel driver were

reduced to just those coming from the process that was being monitored (and any child

processes that it spawned). It’s important to note that though the data from the kernel

driver is limited to mimic the scope of the data that Cuckoo provides, it will still not

provide the same data as Cuckoo. This is due to a number of reasons. Importantly,

the localised kernel driver is still monitoring a different API to Cuckoo. Therefore,

there are a number of Windows calls that the driver is able to observe that Cuckoo is

not able to and vice versa. Furthermore, rootkits typically operate at kernel-mode and
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therefore would still only be visible to the kernel driver. Therefore it will be useful

to determine how the effectiveness of the data from the kernel driver differs when its

scope is limited.

Finally, the data from Cuckoo and the kernel driver was combined and then classified.

This was done to determine if the combination of user- and kernel-level data would

improve classification results.

To further understand the data recorded from the kernel and user level, and confirm

whether the features being used differ depending on the data collection method used,

the features were ranked by importance using two metrics, the independent feature

ranking metric and the inbuilt feature ranking metric, for the classifier that had the best

classification results.

3.2.2 Independent Feature Ranking

For the independent feature ranking metric, the classifier is only given the data from

one feature (or API-call) at a time. The classifier therefore uses only one feature to

differentiate malicious and benign. The AUC scores obtained from each feature are

noted. This method can give an indication of the strength of individual features. Where

it lacks, however, is in its ability to account for the relationship between features. For

example, a feature on its own may not be that strong, but when paired with another, may

be very strong. Therefore, to account for that, an additional feature ranking method is

used.

3.2.3 Inbuilt Feature Ranking

This feature ranking method ranks features using each classifier’s inbuilt feature rank-

ing mechanism. This ranking mechanism works in different ways depending on the

classifier used. For Decision Trees scikit-learn uses the Gini importance as described
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here [52]. The same is true for Random Forests and AdaBoost since they are composed

of a multitude of Decision Trees. The only difference being that, as they are composed

of multiple Decision Trees, the importance is averaged over each one. Finally, with

Linear SVMs, the coefficients assigned to each feature is used to rank them. In the

case of K-Nearest Neighbour, there is no inbuilt feature ranking mechanism, therefore,

it is not included in this measure.

3.2.4 Global Feature Ranking

The independent and inbuilt feature ranking mechanism show the most influential fea-

tures one classifier at a time. While this is useful in showing how each classifier in-

dividually chose to recognise malware, where it lacks is in providing a overarching

narrative showing the commonalities between each of the classifiers. This can be par-

ticularly difficult to manually determine if many classifiers are used. Therefore to bet-

ter understand the commonalities between classifiers when it came to distinguishing

malware, a new aggregate measure was created.

The purpose of the aggregate measure is to rank features across all the classifiers for

both the inbuilt and independent feature ranking methods. This would highlight which

features are robust since the previous measure only shows the top ten for a chosen

classifier — which could arguably be skewed in its favour. The aggregate measure was

calculated as follows. For each classifier, the features were ranked according to the

score they were given by the independent or inbuilt feature ranking method. Then, the

rank was plotted on the x-axis from 0 (the best rank) to the total number of API-calls

(the worst rank) for each feature. On the y-axis was a score from 0 to 1 and at each rank
1

number of classifiers
was added to the score. Once this was done, the area under the curve

was found which represented the total strength of the features across all classifiers.

This global feature ranking method can be used with any local feature ranking method.

Figure 3.2 shows an example of this global feature ranking method on a dataset with

250 features. In figure 3.2, the feature in question has got the ranks 0, 20, 50, and
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200 in the four classifiers it was used with. At each rank, the value has gone up by

1/4 (since there are four classifiers). If a feature was ranked as the most useful feature

across all classifiers, its ranks would be 0, 0, 0, and 0, and therefore the area under the

curve for it is 1 as shown in figure 3.3.
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Figure 3.2: Example graph of feature ranking mechanism
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Figure 3.3: Example graph of feature ranking mechanism with perfect score

The pseudocode of the global feature rank method that is used to find the global rank

of a particular feature is detailed in Algorithm 1.
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Algorithm 1: Find global rank for a given feature
Input : An integer array ranks_obtained containing the ranks obtained by

a feature from each classifier

Output: The global rank (auc) for the feature

1 curve_array← [0]× number_of_features;

2 for rank ∈ ranks_obtained do

3 curve_array[rank]← curve_array[rank] + 1
number_of_classifiers ;

4 end

5 for i = 1 to number_of_features do

6 curve_array[i]← curve_array[i] + curve_array[i− 1];

7 end

8 total← sum(curve_array);

9 auc← total
number_of_features ;

10 return auc;

The function is provided with an array sorted in ascending order which contains the

ranks that has been assigned to a feature by each classifier used according to some

feature ranking methodology (such as inbuilt or independent). As seen in line 1,

curve_array is an array of size number_of_features in which every element is ini-

tialised to 0. In lines 2 and 3, the rank is used as an index into the array, and the value

at that index is added to 1
number_of_classifiers . The curve_array is then looped through

and every element in the array is equal to its current value added to the previous ele-

ment’s value. At this point the curve_array will represent curves such as those shown

in figures 3.2 and 3.3. Finally, the average of curve_array is found which represents

the feature’s global rank.
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3.2.5 Feature Ranking Evaluation

In order to verify that both of the feature ranking methods were selecting features

that are optimal, and that the results they produced could be relied on, an additional

experiment was conducted. In this experiment, the AUC was calculated using only the

top ‘x’ features where ‘x’ was gradually increased from 10 by increments of 10 up

to the total number of features. This will also show the minimum amount of features

necessary to obtain similar classification results to those obtained when using all the

features.

3.2.6 Additional Data Analysis

To gain insight into the differences in behaviour between malware and benignware,

the data is studied further using simple analysis techniques. To begin with, the mean

frequency with which each call is made by malware and benignware is plotted and

compared. This will reveal differences in both malicious and benign behaviour as well

as differences in Cuckoo and the kernel driver’s data collection methods.

In addition to studying the frequently called features, the features exclusive to malware

or benignware are also studied. In order to glean this data, a binary feature vector is

created where ‘1’ represents a feature being present and ‘0’ represents a feature being

absent. For each malicious sample, its call-histogram is iterated through, and for each

call that is called at least once by a malicious sample, a ‘1’ is added to the binary

feature vector. The same is done for the benignware data. Finally the binary feature

vector for malicious samples is subtracted from the binary feature vector for benign

samples. The resulting vector will contain ‘1’ for features present in benign samples

but not malicious samples and ‘-1’ for features present in malicious samples not present

in benign samples. If the unique feature only appears in a few samples (less than 15),

it is ignored as it is considered an outlier. This comparison is performed for the both

the Cuckoo and kernel data independently. In addition, this analysis is carried out to
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understand the differences between the different data collection methods (such as local

and global).

3.2.7 Sample Size Verification

In order to verify that the sample size chosen was suitable, the initial experiments

described above were conducted using different sample sizes. Specifically, 10-fold

cross-validation was conducted with the classifiers being used in this chapter, however,

the classifiers were gradually given larger subsets of the whole dataset. The sample

size was increased from 100 samples up to over 2000 in increments of 100. For each

sample size, 10-fold cross-validation was repeated 100 times and the average AUC was

recorded. The AUC values were plotted in order to observe when the curve plateaued

for each classifier.

3.3 Results

In this section, the results from classifying the data collected at a kernel and user level

are described. In order to understand the contributing factors to the results, additional

experiments are conducted using modified forms of the data. Feature ranking is used

(among other things) to analyse the ten most significant features in order to gain a better

understanding of what the machine learning algorithms are using to identify malware.

3.3.1 Initial Experiments

The results from classifying data collected using the kernel driver at a global level and

data collected from Cuckoo are shown in Table 3.2
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Machine Learning Algorithm
Kernel Driver Cuckoo

AUC Accuracy Precision F-Measure AUC Accuracy Precision F-Measure

AdaBoost 0.983 94.1 0.934 0.941 0.973 91.8 0.911 0.920

Decision Tree 0.944 92.3 0.906 0.925 0.943 87.8 0.918 0.913

Linear SVM 0.945 90.3 0.873 0.906 0.932 86.9 0.835 0.870

Nearest Neighbour 0.964 90.3 0.896 0.903 0.942 86.2 0.877 0.863

Random Forest 0.986 95.2 0.960 0.944 0.984 94.0 0.958 0.942

Table 3.2: Comparison of classification results of data from Cuckoo and kernel

driver.

On the whole, the results show that the data from the kernel driver is marginally better

for the purposes of differentiating between benign and malicious states regardless of

the machine learning algorithm used. The algorithm with the best performance for

both the kernel driver and Cuckoo was Random Forest, obtaining an AUC of 0.986

and 0.984, and an accuracy of 95.2 and 94.0 respectively. In addition, it was found

that on average, 93% of the samples were given the same label regardless of the data

used by the best performing classifier (Random Forest). This shows that while there

was agreement on a large number of samples, there were still some samples where data

from one was better than the other for detecting malware.

In order to verify whether the difference between the kernel and Cuckoo classification

results are statistically significant and not just occurring by chance, Welch’s T-Test was

performed on the AUC values as described earlier. A prerequisite for using Welch’s

T-Test is that the data must be normally distributed. This was verified using Q-Q plots

as shown in Figure 3.4.
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Figure 3.4: Q-Q Plots of AUC values from kernel data

The Q-Q plots show the distribution of the AUC values and how closely (or otherwise)

it relates to the normal distribution (shown as a red line). The plots show that the

AUC values barely deviate from the normal distribution, and therefore, Welch’s T-Test

would be an appropriate test to observe if the difference between the kernel and Cuckoo

values are statistically significant. Given that the Q-Q plots for the Cuckoo data were

very similar, they are not shown here for brevity.

In Welch’s T-Test, the null hypothesis is that the means are equal (i.e., H0: µ1 =
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µ2), and therefore the alternative hypothesis is that the means are not equal (i.e., Ha:

µ1 6= µ2). The threshold α value was set to 0.05 as it is an appropriate level for the

experiments. Therefore if the p-value returned from performing Welch’s T-Test is less

than α, the null hypothesis can be rejected. Table 3.3 shows the results of performing

Welch’s T-Test on the AUC values from each classifier.

Machine Learning Algorithm p-value

AdaBoost 1.80× e−208

Decision Tree 1.41× e−6

Linear SVM 8.41× e−78

Nearest Neighbour 9.29× e−290

Random Forest 2.29× e−10

Table 3.3: p-values returned from Welch’s T-Test using AUC values

As Table 3.3 shows, the p-values returned are considerably lower than the threshold,

0.05. Therefore, the null hypothesis is rejected meaning that the means of the kernel

and Cuckoo AUC values for each classifier are not the same. This shows that, at a

significance level of 0.05, the difference between the kernel and Cuckoo results are

statistically significant and not just due to chance. Therefore, it can be concluded that

the data collected at the kernel level produces slightly better classification results than

that collected at a user level.

3.3.1.1 Independent Feature Ranking

In order to further understand and confirm the differences between the data gathered

by Cuckoo and the kernel driver, the top ten features using the independent and inbuilt

feature ranking methods are compared. Table 3.4 compares the top ten features (in

order of score) using the independent feature ranking method for Cuckoo and the kernel

driver. The feature importance is shown only for Random Forest since it had the best
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performance. While it would have been ideal to show a comparison of all the calls

rather than simply the top ten, due to space restrictions, it was limited to ten.

Cuckoo Kernel Driver

GetSystemMetrics NtQueryDebugFilterState

LoadResource NtEnumerateKey

FindResourceExW NtQueryFullAttributesFile

NtQueryInformationFile NtReleaseSemaphore

SetFileTime NtEnumerateValueKey

NtUnmapViewOfSection NtReadVirtualMemory

NtOpenSection NtSetInformationProcess

NtWriteFile NtSetValueKey

FindResourceA NtOpenEvent

CreateDirectoryW NtNotifyChangeKey

Table 3.4: Top ten features using independent feature ranking with Random

Forest.

From table 3.4, it can be seen that there are no features in common between Cuckoo

and the kernel driver within the top ten using the independent feature ranking method.

This suggests that both views used very different indicators to distinguish malware. In

terms of the actual methods in the top ten for each tool, Cuckoo contains some highly

specific calls such as SetFileTime (to set MAC (modify, access, and create) times on

a file) and GetSystemMetrics (to get information about the system). The presence of

SetFileTime is not surprising as it is often used by malware to conceal its accesses of

a file (and thereby conceal its malicious activity) [227]. GetSystemMetrics is used by

malware to evaluate whether it is running in a virtual environment or a real one (since

virtual machines tend to have low memory and storage). NtUnmapViewOfSection (and

NtMapViewOfSection) can also be used to evade detection as malware can use it to

replace the code of a legitimate process in memory with its code so that the legitimate

process runs its code. This could be the reason why the kernel driver monitoring at
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a global level performed better than Cuckoo monitoring at a local level as it was able

to capture this behaviour better. The top ten also includes some methods relating to

resources (LoadResource and FindResourceExW), malware tends to hide its payload

inside the resource section of a PE file, and therefore these methods would be used

to extract it into memory. What is also noticeable in Cuckoo’s top ten is a mix of

calls from the native API (usually starting with Nt) and Win32 API. An example of

that is NtQueryInformationFile, used to obtain information about a file. The reason

for malware using this method over an equivalent Win32 call is that it provides more

information.

On the other hand, the kernel driver contains relatively generic calls relating to the re-

gistry, threading, memory, events, and processes. However, there are a few interesting

calls on the kernel side. There is the method NtSetInformationProcess, which has been

known to be used by malware to disable Data Execution Prevention (DEP). DEP is a

protection in memory which prevents malware from running code in non-executable

sections of memory [22]. Another method in the top ten likely to be directly related to

malware is NtNotifyChangeKey. This is used by a process to ask Windows to notify

it whenever any changes are made to the registry. This could be used by malware to

monitor what is being done on the system or even prevent any changes to the keys

that it created. On the whole, it’s clear that the vast majority of features favoured by

classifiers to distinguish malware in the Cuckoo data are the evasive features of mal-

ware, whereas the kernel driver uses differences in the general behaviour of malware

to distinguish it from benignware.

3.3.1.2 Inbuilt Feature Ranking

Table 3.5 shows the top ten features using the inbuilt feature selection method.
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Cuckoo Kernel Driver

GetSystemMetrics NtWriteFile

FindResourceA NtFlushVirtualMemory

LdrGetProcedureAddress NtReadFile

LoadResource NtUnlockFile

NtReadFile NtOpenMutant

NtQueryInformationFile NtLockFile

SetFileTime NtNotifyChangeDirectoryFile

GetFileAttributesW NtOpenEvent

NtOpenSection NtDeleteAtom

NtUnmapViewOfSection NtQueryValueKey

Table 3.5: Top ten features using inbuilt feature ranking with Random Forest

Much of the discussion about the top ten features in Cuckoo for table 3.4 applies to

the features of Cuckoo in table 3.5. However, unlike table 3.4, there is one method in

common between the kernel and Cuckoo features, NtReadFile. This suggests that this

feature is important regardless of the perspective from which data is being gathered.

Another interesting observation is that there are seven methods in common between

Cuckoo’s independent (Table 3.4) and inbuilt feature ranking (Table 3.5). This suggests

that many of the contributing features in Cuckoo’s case can be used alone to detect

malware (which is worth considering when selecting feature representation methods).

Due to this, many of the observations made about Cuckoo’s top ten in Table 3.4 apply

here (such as Cuckoo focusing more on malware’s evasive behaviour over the general

behaviour of malware). Aside from this, Cuckoo’s top ten in Table 3.5 also contains

LdrGetProcedureAddress. This is important as it can be used by malware to evade

static analysis and dynamic heuristic analysis by loading all the routines it needs at

runtime and therefore malware can achieve all that it intends to with only that method

linked at compile time.
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On the kernel side, there is one method in common between the inbuilt and independent

feature ranking method, NtOpenEvent. This is no surprise as this method can be used

to interact with Windows Events which malware could use to ensure it is run every day,

for example. In general, the top tens for the kernel data for both tables are more focused

on differences in general process behaviour with fewer methods directly related to

specific behaviour exhibited by malware. However, there are a few exceptions.

One such exception is NtNotifyChangeDirectoryFile, a completely undocumented method.

This method is used by a process to ask Windows to notify it when any changes oc-

cur in a directory. Malware could be using it to simply monitor system activity and

protect itself or to attach itself to any file moves. However, another possible reason

is that this method is responsible for a well publicised vulnerability [9] that could be

used to expose parts of kernel memory and defeat Address Space Layout Randomisa-

tion (ASLR). NtNotifyChangeDirectoryFile is not the only undocumented method in

the top ten; NtDeleteAtom and NtOpenMutant are also completely undocumented by

Windows. This could explain why the kernel data was able to better distinguish mal-

ware from benignware as it is able to capture behaviour that cannot be captured at user

level. Aside from that, the differences in general process behaviour are being used to

detect malware.

In conclusion, tables 3.4 and 3.5 demonstrate that Random Forest utilises different

behavioural aspects to identify malware . While Cuckoo and the kernel driver generally

monitor equivalent calls, the fact that the observed rankings are different suggests that

the scope (local or global) of the calls is an important factor. Another contributing

factor could be that malware evades or detects the inline API hooking technique used

by Cuckoo but not the SSDT hooking method employed by the driver (since it requires

a more sophisticated approach to evade).
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3.3.1.3 Call Frequencies

To gain a better understanding of the data and the differences in each data collection

method, the mean frequency with which each system call was called was plotted as

histograms in figures 3.5 and 3.6. In order to keep the graph neat, each system call

name has been replaced by an index, hence each number on the x-axis represents a

single system call.
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Figure 3.5: Mean call frequency (y-axis) for each call (x-axis) as recorded by the

kernel driver.
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Figure 3.6: Mean call frequency (y-axis) for each call (x-axis) as recorded in

Cuckoo.

These graphs show some of the overarching differences between each data collection

method. The data from Cuckoo only has two real peaks, interestingly, for both those

peaks, the mean value for malware is lower than that for benignware. On the other

hand, the kernel data has more peaks due to the fact that it is collected globally and

therefore representing all processes running on the system.

In order to better interpret the graphs, the top ten most frequently occurring calls in

malware and benignware are listed for Cuckoo and the kernel driver. Table 3.6 shows

the top ten for Cuckoo.
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Benignware Malware

NtReadFile NtReadFile

SetFilePointer SetFilePointer

GetSystemTimeAsFileTime NtClose

NtWriteFile GetSystemTimeAsFileTime

NtClose RegCloseKey

NtAllocateVirtualMemory NtDelayExecution

RegCloseKey RegOpenKeyExA

RegOpenKeyExW NtCreateFile

RegQueryValueExW RegQueryValueExA

LdrGetProcedureAddress GetAsyncKeyState

Table 3.6: Most frequently occurring features in benignware and malware for

Cuckoo.

Table 3.6 contains many features in common between benignware and malware (NtRead-

File, SetFilePointer, NtClose, GetSystemTimeAsFileTime and RegCloseKey), and some

interesting differences. NtDelayExecution is among the most frequent system calls

used by malware which is unsurprising since it is commonly used by malware to hide

it’s behaviour. Malware calls this method to sleep for a duration of time before finally

executing. This can be quite effective since most analysis tools only tend to run for a

few minutes at most [179]. Given how frequently it is called, this could suggest that

the malware samples being used are not showing much of their malicious behaviour.

Another method that is known to be used by malware is GetAsyncKeyState. This al-

lows malware, or, more specifically, keyloggers, to poll the state of keys to determine

what keys have been pressed [227].

Another interesting observation from table 3.6 is that malware calls the methods RegOpen-

KeyExA and RegQueryValueExA with high frequency, whereas, benignware calls

RegOpenKeyExW and RegQueryValueExW with a high frequency. These methods
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are essentially the same, as, within Windows, methods ending with ‘A’ refer to the

ASCII version of the call, whereas methods ending with ‘W’ refer to the Unicode ver-

sion of the call. The ASCII version of every call eventually calls the Unicode version.

To gain further insight into the extent of this difference in system calls, the frequency

with which all ASCII calls were used by benignware and malware have been plotted

as histograms. The same has been done for Unicode calls. This is shown in figures 3.7

and 3.8.
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Figure 3.7: Mean call frequency (y-axis) for ASCII calls (x-axis) from Cuckoo

data.
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Figure 3.8: Mean call frequency (y-axis) for Unicode calls (x-axis) from Cuckoo

data.

Figures 3.7 and 3.8 show that in general, malware tends to use the ASCII versions

of Windows methods whereas benignware tends to opt for the Unicode versions of

methods. There are many possible reasons for this, Windows recommends developers

use Unicode versions of system calls since Unicode supports more characters providing

support for more languages. Therefore, developers of legitimate applications are likely

to use Unicode versions of system calls since they are more extensible. However,

malware authors are unlikely to be concerned with supporting multiple languages and

ASCII strings tend to be simpler to use and more familiar.

Table 3.7 shows the ten most frequently occurring features for benignware and malware

as seen by the kernel driver.
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Benignware Malware

NtClose NtClose

NtQueryPerformanceCounter NtOpenKey

NtOpenKey NtQueryPerformanceCounter

NtYieldExecution NtQueryValueKey

NtWaitForSingleObject NtWaitForSingleObject

NtQueryValueKey NtDeviceIoControlFile

NtDeviceIoControlFile NtQueryInformationProcess

NtClearEvent NtClearEvent

NtWaitForMultipleObjects NtQueryInformationToken

NtQueryInformationToken NtDelayExecution

Table 3.7: Most frequently occurring features in benignware and malware for the

kernel driver.

There is less variation in top ten for benignware and malware here with eight features

in common. The two differing features of malware, NtDelayExecution and NtQueryIn-

formationProcess, are known to be used by malware. NtDelayExecution was discussed

previously as it was also in the most frequent features for Cuckoo. NtQueryInforma-

tionProcess is commonly used by malware to detect if its being debugged [88]..

3.3.1.4 Exclusive Features

Table 3.8 shows the system calls in malware samples not found in benign samples for

the kernel data and the number of samples they appeared in. The benignware data

did not contain any calls that were never called in the malicious data from the kernel

driver. In addition, the Cuckoo data did not contain any calls that were exclusive to

either benignware or malware and above the threshold defined in section 3.2.6.
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System call No. of samples

NtGetWriteWatch 64

NtResetWriteWatch 62

Table 3.8: System calls in malware not present in benignware for kernel driver

data.

Though there are not many features that are unique to malware, these two features

emphasise an interesting feature of malware behaviour. NtGetWriteWatch/NtReset-

WriteWatch can be used by malware to check if they are being debugged. It provides a

mechanism by which malware can monitor sections of memory they use and detect if

anything else tries to access it. Therefore, it is not unusual to see that it in the malware

data.

In conclusion, the additional data analysis has also suggested that anti-analysis features

are prominent in the data gathered on malware. Even a few have been seen in the kernel

data.

3.3.2 Localised Kernel Data Results

Currently it is still unclear if the kernel data’s results were assisted by the fact that

the data is being collected on a global scale and observing all processes. To gain

further clarification regarding whether collecting the data at a global level assisted the

classification process, the kernel data was limited to the data produced by the process

being analysed and any processes it created. The results from this are shown in Table

3.9.

From Table 3.9, it can be seen that the classification results have decreased when col-

lecting data from the kernel driver at a local, process-specific, level. For example,

with Random Forest the AUC has decreased from 0.986 to 0.978 and the accuracy

from 95.2% to 92.3%. The differences between global and local kernel data were also
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Machine Learning Algorithm
Localised Kernel Driver

AUC Accuracy (%) Precision F-Measure

AdaBoost 0.962 89.6 0.902 0.891

Decision Tree 0.901 83.8 0.855 0.825

Linear SVM 0.884 82.0 0.893 0.788

Nearest Neighbour 0.934 86.6 0.875 0.858

Random Forest 0.978 92.3 0.944 0.921

Table 3.9: Classification results of data from the kernel driver focusing on the

process under investigation.

found to be statistically significant. Therefore, it is evident that collecting data at a

kernel level is not the only contributing factor to the improved classification results,

the data must also be collected at a global-level to obtain better classification results.

It’s also interesting to note that, at a significance level of 0.05, the classification results

from localised kernel data are statistically significantly lower than the Cuckoo results

as well. This shows that if data is going to be collected at a process-specific level,

user-level hooks provide more value since they will also observe many of the process’

interactions that did not reach the kernel. In addition, this shows that simply collecting

at a kernel privilege is not enough. The scope of the collection (local vs global) is

also important. It may be possible to improve the localised kernel results slightly by

attempting to detect when malware injects its payload into benign software and runs

it from there. However, that data would be captured by a global kernel capture and

therefore the results are unlikely to improve beyond the global kernel results.

To gain further insight into the differences between a classifier’s view of the system at

a local kernel level and a global kernel level, the top ten features of the local kernel

data are compared with those obtained previously from the global kernel data. As

with the global kernel data, the random forest classifier was used since it was the best

performing classifier.
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3.3.2.1 Independent Feature Ranking

Table 3.10 compares the results of the independent feature ranking method on the local

kernel data and the global kernel data.

Local Kernel Driver Kernel Driver

NtQueryValueKey NtQueryDebugFilterState

NtQueryKey NtEnumerateKey

NtQueryAttributesFile NtQueryFullAttributesFile

NtQueryInformationProcess NtReleaseSemaphore

NtEnumerateValueKey NtEnumerateValueKey

NtQueryVirtualMemory NtReadVirtualMemory

NtProtectVirtualMemory NtSetInformationProcess

NtQueryDebugFilterState NtSetValueKey

NtOpenKey NtOpenEvent

NtOpenFile NtNotifyChangeKey

Table 3.10: Top ten features using independent feature ranking on local kernel

data with Random Forest.

There are quite a few similarities between the top ten features of the local kernel data

and global kernel data. They have two methods in common, NtEnumerateValueKey

and NtQueryDebugFilterState. In addition, they both have three methods relating to

the Windows registry and one method relating to processes. The local kernel data has

two methods regarding files in comparison to the global kernel data’s one method. The

same is true for the methods regarding virtual memory. The local kernel data contains

the method NtProtectVirtualMemory in its top ten. This method is normally used by

software to prevent triggering a major exception. The call itself is used to mark a page

in memory so that when it is accessed, an exception is triggered. That page is then

placed at the bottom of the stack so that software is prevented from popping an empty

stack. However, this can also be used as an anti-debug trick. Malware can mark a page
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as protected using NtProtectVirtualMemory, trigger an exception by accessing it, and

then watch to determine if a debugger intercepts the exception.

The main difference between the local and global kernel data is that there is more

diversity in the global kernel data’s top ten as it contains two methods in categories

not captured by the local kernel data’s top ten. These are NtReleaseSemaphore and

NtOpenEvent. Semaphores are sometimes used by malware to avoid reinfecting its

victim. This is achieved by creating a semaphore with a unique name and then when

assessing if a victim has already been infected, malware just needs to check for the

presence of that semaphore object [241]. Another observation that can be made is that

while each has the same amount of methods relating to the registry, there is one in

the global kernel data which is particularly important with regards to detecting mal-

ware that is not present in the local kernel data. That is NtNotifyChangeKey. NtNoti-

fyChangeKey can be used to monitor and prevent any changes to specific keys. This

can be used by malware to ensure that nothing else tampers with its data.

3.3.2.2 Inbuilt Feature Ranking

Table 3.11 compares the results of the inbuilt feature ranking method on the local kernel

data and the global kernel data.
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Localised Kernel Driver Kernel Driver

NtReadFile NtWriteFile

NtQueryVirtualMemory NtFlushVirtualMemory

NtOpenEvent NtReadFile

NtOpenMutant NtUnlockFile

NtQueryValueKey NtOpenMutant

NtFlushVirtualMemory NtLockFile

NtUnlockFile NtNotifyChangeDirectoryFile

NtAllocateVirtualMemory NtOpenEvent

NtClose NtDeleteAtom

NtQueryInformationProcess NtQueryValueKey

Table 3.11: Top ten features using inbuilt feature ranking with Random Forest

In table 3.11 there are even more similarities with a total of six methods in com-

mon (NtReadFile, NtOpenEvent, NtOpenMutant, NtQueryValueKey, NtFlushVirtual-

Memory, NtUnlockFile). An interesting method on the local kernel side is NtQuery-

InformationProcess. This method is commonly used by malware to detect if its being

debugged [88]. A notable absence in the local kernel top ten is NtNotifyChangeDirect-

oryFile, which, as discussed previously can be used to monitor changes to a directory.

This method is likely to be used by a kernel-mode rootkit. Since rootkits tend to be

installed silently (via process injection, for example), the local kernel method will not

detect its creation and therefore not monitor its activity.

Therefore, it can be observed that limiting the kernel data to that produced by the

process under investigation and its children has the effect of reducing the diversity in

the malware behaviour observed. The local kernel data misses out on any activity that

results from malware injecting its code into another process. In addition, limiting the

kernel data has increased the probability of classifiers using the more explicit evasive

features of malware to detect it. As a result, the local kernel data is not able to produce
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as strong classification results as the global kernel data.

3.3.2.3 Exclusive Features

To further understand the data that is lost at a local level, the features of malware that

were present in the global data but not the local data were analysed. This is shown in

table 3.12.

System call No. of samples

NtCreateToken 352

NtExtendSection 52

NtMakeTemporaryObject 2457

NtQuerySystemInformation 2456

NtSetEvent 2455

Table 3.12: System calls in malware recorded at global kernel level but not local

level.

As can be seen, there are a number of features that are not captured in the data gathered

at the local kernel level. Perhaps, the most crucial of them is NtQuerySystemInforma-

tion. This call is frequently used by malware to get information about the system such

as a list of running processes [159]. It can even be used by rootkits to hide a malware

sample from the user [118]. Another system call that would not be unusual to see in

malware is NtCreateTokens. Each process and thread in Windows has a token that

determines its privileges. Therefore it is quite common for rootkits to modify these

tokens to give a malware sample elevated privileges [118].

The missing features provide insight into some of the important behaviour not captured

by the local kernel driver. This further explains why the local kernel driver data was

unable to obtain similar results to the global kernel driver data.
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3.3.3 Combined User and kernel data results

Since limiting the data from the kernel driver did not improve results, and given that

Cuckoo and the kernel driver seemed to fail on different samples, the next step was to

combine the data from Cuckoo and the kernel driver to determine if the classification

results are improved by the combination of data. The results of this are also shown in

Table 3.13

Machine Learning Algorithm
Cuckoo and Kernel Driver

AUC Accuracy (%) Precision F-Measure

AdaBoost 0.990 94.9 0.956 0.960

Decision Tree 0.954 92.4 0.924 0.936

Linear SVM 0.952 91.5 0.916 0.915

Nearest Neighbour 0.960 90.3 0.873 0.888

Random Forest 0.990 96.0 0.962 0.942

Table 3.13: Classification results from combining Cuckoo and kernel data

Table 3.13 shows that combining data from both tools produces classification results

that are slightly stronger for the purposes of malware classification with an AUC of

0.990 for both AdaBoost and Random Forest. The only classifier with reduced results

was K-Nearest-Neighbours suggesting that it struggles to classify data beyond a cer-

tain number of dimensions. Again, as with all the data, the differences shown in this

table (improvements or otherwise) are statistically significant. Therefore, this further

validates the claim that there is a difference in the data between Cuckoo and the kernel

driver since the results would not have improved had this not been the case.
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3.3.4 Feature Ranking Evaluation

To confirm the correctness of both of the feature ranking methods employed throughout

this research, simple feature reduction (described in the method section) was performed

using the feature ranking methods. The results of this are shown in figures 3.9 and 3.10.

These graphs were created for both the data from the kernel driver, and the data from

the Cuckoo driver. However, since the graphs were a very similar shape, for brevity’s

sake, only the graphs for the data from the kernel driver are shown.

0 50 100 150 200 250

Number of Features

0.90

0.92

0.94

0.96

0.98

A
U
C

AdaBoost

Linear SVM

Decision Tree

Random Forest

Figure 3.9: Feature selection using inbuilt feature selection method
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Figure 3.10: Feature selection using independent feature selection method

For most of the plots in figures 3.9 and 3.10 the AUC is at its lowest with just ten

features, however, as the number of features that the machine learning algorithms use

increases, the AUC increases until it reaches its peak at around 50 features. After 50

features, the introduction of new features does not add any more useful information,

thereby reducing or not contributing to the difference in the AUC. This highlights that

the feature ranking method is correctly deciphering which features are important. In

addition, it shows that in most cases no more than 50 API-calls need to be hooked for

similar results.

3.3.5 Global Feature Ranking

Finally, the global feature ranking metric was applied to get a concise yet comprehens-

ive view of the features of malware that were consistently considered important by all

classifiers. The results from applying the global feature ranking for both the inbuilt and

independent feature selection methods are shown in Tables 3.14 and 3.15.
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Cuckoo Kernel Driver

GetSystemMetrics NtReleaseSemaphore

NtQueryInformationFile NtLockFile

LoadResource NtUnlockFile

RegQueryValueExW NtEnumerateKey

NtUnmapViewOfSection NtWriteFile

NtDuplicateObject NtOpenMutant

RegOpenKeyExW NtReadFile

RegCloseKey NtOpenThreadToken

NtOpenSection NtReplyWaitReceivePortEx

NtWriteFile NtQueryVirtualMemory

Table 3.14: Top ten features using independent feature selection considering all

classifiers.

Cuckoo Kernel Driver

NtOpenSection NtFlushVirtualMemory

InternetCloseHandle NtOpenMutant

LoadResource NtFilterToken

SetUnhandledExceptionFilter NtUnlockFile

SetFileTime NtAccessCheckByTypeAndAuditAlarm

LdrLoadDll NtQueryVirtualMemory

CreateActCtxW NtDeleteAtom

getaddrinfo NtWriteFile

LdrGetDllHandle NtReadFile

LdrGetProcedureAddress NtCompleteConnectPort

Table 3.15: Top ten features using inbuilt feature selection considering all classi-

fiers.
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These tables show which features perform best across all the classifiers that were used.

This provides a clearer picture of which features are extremely strong when it comes to

differentiating malware from benignware. With regards to the Cuckoo data, table 3.14

contains some of the features used to evade detection that are also in table 3.4 (GetSys-

temMetrics, NtUnmapViewOfSection, and NtOpenSection). There are also resource

related methods (LoadResource) and the native API method (NtQueryInformationFile)

that was observed in table 3.4. Of the new methods, NtDuplicateObject is interesting

because it is used by malware to evade antivirus heuristics, as antiviruses would ex-

pect malware to call the more commonly used DuplicateHandle to duplicate a process

handle to kill or inject into it and would therefore be less likely to flag a call to NtDu-

plicateObject as suspicious [224]. From this it can be concluded that, regardless of the

classifier used, when trained on data from Cuckoo, malware will be largely recognised

using its evasive features.

Cuckoo’s top ten in table 3.15 places an even stronger emphasis on the evasive be-

haviour of malware. For example, LdrLoadDll, LdrGetDllHandle and LdrGetProced-

ureAddress are in the top ten and are known to be used by malware to load DLLs

dynamically in order to import methods from them. This can also be used to avoid

being detected by IAT hooks. In addition, the method SetUnhandledExceptionFilter in

the Cuckoo top ten is also used as an anti-debugging trick by malware as this method is

used to specify a function to be called in the event of an exception occurring that is not

handled by any exception handler. However, the function specified will only be called

if the process that raised the exception is not being debugged. Therefore, malware can

register a function to deliver its payload and then throw an exception, and if the process

is being debugged, that function will not be called, and hence the malware will not dis-

play its malicious behaviour [88]. SetFileTime, which has been described previously,

is also used to curb suspicions. Finally, NtOpenSection, as mentioned previously, can

be used to embed malicious code in a benign process (however, it can also be used for

benign purposes). Therefore, as can be seen, much of the top ten for Cuckoo in table

3.15 suggest that classifiers utilise the evasive behaviour of malware to detect it.



3.3 Results 89

On the kernel side, each table contains methods from a wide range of categories (such

as file-system, threading, networking etc.), making it more general than the top ten calls

in the Cuckoo data. While many of the methods in these tables are likely to be used

by malware, they are not used solely by malware (as would be expected from a tool

monitoring at a global level). On the whole, it can be seen that with the Cuckoo data,

malware is detected through the techniques it uses to detect a monitoring or virtual

environment, whereas, with the data from the kernel driver, malware is differentiated

from benignware through how its general behaviour differs from the norm.

3.3.6 Sample Size Verification

To confirm that the dataset size used was suitable, the experiments described in section

3.2.7 were conducted. The results are shown in figure 3.11.
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Figure 3.11: How the AUC responds as sample size is increased

Figure 3.11 shows that after 1000 samples, the AUC values almost completely plateau.
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This suggests that after this point, adding more samples will not have a significant

effect on the classification results. Therefore, it is reasonable to conclude that 2000

samples is more than enough.

3.4 Conclusion

Motivated by a hypothesis that kernel level API calls and user level API calls do not

produce the same classification results, experiments were conducted to study the dif-

ferences. This was achieved by collecting data at different privilege levels within the

Windows Operating System. Data was collected at a user level using Cuckoo, and at

the kernel level using a custom made kernel driver since there are no existing tools

that hook all the calls in the SSDT on a global scale. The data collected was classi-

fied using several state-of-the-art machine learning algorithms to determine whether

collecting data at different levels altered classification results. The results showed ker-

nel data to be statistically significantly better for all classification algorithms despite

the fact that user level methods are significantly more popular in the literature. Ran-

dom Forest performed the best with an accuracy of 94.0% for Cuckoo and 95.2% for

the kernel driver. In addition, limiting the kernel data to that produced by the process

under observation (and its subprocesses) had a negative impact on the classification

results suggesting that the collection of data at a global, system-wide level aided the

classification process. The strongest classification results were observed by combining

the data from Cuckoo (user level) with that from the kernel driver; achieving an AUC

of 0.990 and accuracy of 96.0% for Random Forest.

In order to understand why the differences in data collection methods had contributed

to the different classification results, feature ranking was conducted for Random Forest

and collectively for all classifiers used, and it was found that the features focused on

by classifiers differed depending on the data used. The main observation from this was

that monitoring on a process specific level as Cuckoo does caused the machine learn-
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ing algorithm to detect malware using its evasive properties. Whereas, when trained on

data obtained from monitoring at a global, kernel level, the machine learning algorithm

used the more general behaviour of malware (and processes in general) to distinguish

it from benignware. Limiting the kernel data to that produced by the process under in-

vestigation and its sub-processes did not produce as strong a performance as the global

kernel data since it missed malicious activity carried out through process injection. In

addition, when the data was limited, classifiers placed more emphasis on the evasive

features to recognise malware. The differences resulting from collecting data at dif-

ferent privilege levels highlighted the benefit gained from collecting data at a kernel

level (or both levels) in order to detect malware and the importance of the literature

carefully detailing the data collection method that has been used since the results are

affected by it. Table 2.1 shows that while there exists a plethora of well established

tools for collecting data at a user level, there are only a handful of established tools to

collect data at a kernel level, and fewer still that are freely available. While the driver

used in this research is specific to Windows XP, the main contributions of this research

(a comparison of user and kernel level calls) will apply to future releases of Windows.

In conclusion, this chapter conducted the first objective, evidence-based comparison of

kernel level and user level data for the purposes of malware classification and found

that more thought must be given to the data collection method when conducting dy-

namic malware analysis as the most optimal tool does not yet exist.
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Chapter 4

Assessing the effectiveness of classifiers

to detect non-evasive malware

4.1 Introduction

One of the observations from the previous chapter was that malware possesses a signi-

ficant amount of evasive/anti-VM/anti-debug properties. Paradoxically, the classifiers

were using the very existence of those features to detect malware. Therefore, this

chapter assesses the degree to which this biases the classifiers’ results. This is the

inspiration behind the fourth research question:

RQ4 Does the traditional Dynamic Malware Analysis process create a bias in the data

collected and subsequently classified?

If found to be true, this question raises many issues. One being that if classifiers trained

in the traditional dynamic malware analysis process are placed in a real environment,

there is a possibility that many malware samples would go undetected since they would

not exhibit as many anti-VM features once they realise they are in a real environment.

To provide an example, many malware samples do not run if there is no internet con-

nection, as is commonly the case in an analysis environment. Therefore, if data from

an analysis environment without an internet connection is used to train a classifier,

the classifier would probably recognise malware by its inactivity. Subsequently, when
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that classifier is placed in a real environment, where it is highly likely that an internet

connection would exist, malware will go unnoticed [140].

This chapter aims to assess whether there is a threshold number of malicious symp-

toms that malware must exhibit to avoid detection from classifiers trained through the

standard dynamic malware analysis process. This is summarised in the fifth research

question:

RQ5 How much malicious behaviour can a malware sample exhibit before it is detec-

ted?

In answering these questions, this chapter will provide the sixth and seventh contribu-

tion of this research:

C6 This research assesses whether popular classifiers can generalise to detect ransom-

ware that does not contain the most distinguishing features that were found in

chapter 3.

C7 This research assesses whether kernel-level or user-level data is better at gener-

alising towards malware that does not contain the distinguishing features found

in chapter 3.

4.2 Background

The literature highlighted in Chapter 2 makes it clear that there are a significant number

of methods that malware can utilise to evade classifiers; furthermore, as an increasing

number of evasive methods are identified and defended against, malware authors re-

spond by adding new evasive techniques. As it becomes more common for malware

samples to contain evasive features, the classifiers trained on data obtained from run-

ning malware for a few minutes will only recognise malware from its evasive attributes

as opposed to its malicious properties. Therefore, while most of the literature looks



4.2 Background 94

at adding evasive features to malware to make it undetectable, this chapter attempts to

make malware undetectable by removing evasive behaviour. When referring to mal-

ware in this chapter, the category of malware being alluded to is Ransomware.

The reason for focusing on ransomware in this chapter is due to the surge in its pop-

ularity recently. In 2017, Symantec reported a 46% increase in the number of ransom-

ware variants. In addition, successful ransomware attacks have been quite costly, the

notable attack on the NHS by the ransomware variant called WannaCry was estim-

ated to cost £92 million [29]. Another reason to focus on ransomware in this study is

that its malicious behaviour is relatively simple to automate (without requiring human

intervention) and is very well documented. The tool used to simulate the malicious

symptoms of ransomware is called Amsel.

4.2.1 Amsel

Amsel [190] is a tool written in Java that is designed to simulate malware for research

purposes. Amsel is essentially composed of two libraries, the symptom injectors and

the models. The symptom injectors library consists of various malicious symptoms that

a user may want to emulate. Potential symptoms include the generation of suspicious

network traffic to the encryption of files on the host. Symptom injectors do not have

to be used in isolation but can be combined to create a complete attack chain. For

example, a complete attack chain may consist of connecting to a server, stopping a

running process, running a new process and then reconnecting to a server. The models

library consists of stochastic models, in particular, Continuous Time Markov Chains

(CTMC). The purpose of this library is to decide how long Amsel should spend in each

stage/symptom of the attack chain. It also determines how long to wait between each

symptom. Each symptom in itself may have random elements controlled by the model

library. For example, if one of the symptoms is to send network traffic to a server, the

models library can be used to define the size of the traffic in each iteration. Amsel

provides a user with complete control when creating a kill chain; nevertheless, a user
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may choose to relinquish some of that control if the addition of randomness makes for

a more accurate representation of an attack. The user can specify the exact order of

symptoms in an attack chain, or the user can assign a probability with which each step

may be taken and then leave it to Amsel to create the final kill chain. This has the

advantage of adding an element of randomness each time Amsel is run, as, in some

cases, Amsel may skip a step, or change the order in which steps are taken for each

run. This allows a user to thoroughly test the robustness of their security system and

determine if it can detect an attack regardless of the sequence. It is this mix of structure

with controlled randomness that allows for very realistic modelling of actual attacker

behaviour. More information regarding Amsel can be found at [191], [192] and [193].

4.3 Method

4.3.1 Initial Experiments

As the aim of this chapter is to assess if there are flaws in the traditional dynamic

malware analysis process, the first step is to conduct the standard dynamic analysis

experiments using real ransomware and benignware. To begin with, 2500 ransomware

samples were collected from VirusShare [18] and 2500 benign files were collected from

SourceForge [14] and FileHippo [6]. The ransomware samples used are all crypto-

ransomware as opposed to locker ransomware. The reason for this is that the locker

variants do not represent much of a threat since their actions are easily reversible [204].

Besides, they are relatively simple to detect since they almost immediately make their

presence known to the user. Furthermore, crypto-ransomware are more commonly

used [216]. The crypto-ransomware used was largely labelled as Trojan:W32/Ransom

[16].

Once the samples were collected, they were run for two minutes in a virtual machine

running Windows XP SP3. To increase the likelihood of the ransomware exhibiting
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malicious behaviour, real files (such as documents, presentations, images, and videos

etc.) were placed in the user’s home directory since this would make the environment

look more realistic. When a sample was run, the system calls it made were mon-

itored and extracted at both user-level and kernel-level separately. User-level system

calls were gathered using Cuckoo Sandbox [111]. Kernel-level calls were gathered

using the custom-built kernel driver described in the previous chapter. The calls made

by each sample were then represented numerically as frequency histograms. Before

passing the data to the classifiers, the frequency histograms were normalised using

L1-normalisation to reduce noise and overfitting. This was done separately for both

Cuckoo and the kernel driver. The classifiers that were used for this chapter are the

same as those used in the previous chapter (AdaBoost, Decision Tree, Linear SVM,

Nearest Neighbours, and Random Forest) with the addition of Gradient Boost. The

reason for including Gradient Boost is the impressive results it has obtained in previ-

ous research focused solely on ransomware [223, 272]. The classifiers were initially

trained and tested on the calls from the real ransomware and benignware using 10-fold-

cross-validation. The results from this are reported using the same metrics as in the

previous chapter, namely, AUC, accuracy, precision, and F-measure. This information

will give a clear picture of the classifiers’ performance when it comes to differentiating

ransomware from benignware.

4.3.2 Amsel Experiments

After analysing the results from the initial experiments, the next step is to observe

how those same classifiers perform when detecting ransomware emulated by Amsel.

The functionality required of Amsel for the experiments in this chapter is relatively

simplistic to reduce the possibility of the classifiers being biased by additional beha-

viours. The only symptom used was the file encryption symptom since that is the main

malicious symptom of ransomware that solutions try to prevent. The behaviour of this

symptom is to encrypt files in the directory specified (including all sub-directories).
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The encryption algorithm used by default is a simple XOR operation. There are sev-

eral parameters within the symptom’s settings that can be altered; however, for the

experiments carried out in this chapter, only one parameter is altered between each

run, the interarrival time. This parameter determines how long the emulated malware

sample should wait between encrypting each file in the directory specified. The in-

terarrival time was gradually incremented from 1.0 × 10−6 to just below 60 seconds.

The size of the increment was 0.01 initially. After reaching 1 second, the increment

was increased to 2 seconds. The reason for only altering a single parameter is that it

makes it a lot easier to interpret the results from the classifiers (since there is only one

variable). The reason the interarrival time, in particular, was chosen is that, depending

on its value, it makes it possible to emulate malicious and evasive behaviour.

When the time between encrypting each file, a.k.a the interarrival time, is set to a lower

value, the emulated ransomware is encrypting more frequently and thereby exhibiting

malicious behaviour much more frequently. Whereas when the interarrival time is at

higher values, the emulated malware is idle for more extended periods which, when

observing system calls, would look very similar to evasive malware. When the time

between encrypting files is set to its highest value (57 seconds), Amsel will only en-

crypt two files at most before analysis is complete. While it is true that all evasive

behaviour cannot be described by idleness, it encompasses a wide variety of evasive

behaviours. This is because the goal of most evasive techniques is to stall execution.

Therefore, a lack of behaviour is often the result of most evasive techniques. To provide

an example, the system call NtDelayExecution can be used by malware to delay ex-

ecuting its payload.

To ensure that the results obtained are not due to chance, each unique emulated sample

(unique because of the interarrival time value it is given) is replicated ten times. This

provides more than enough samples per unique time value to ensure that the results are

consistent rather than an accident. It is also not so high that the experiments become

infeasible due to the constraints of time. Finally, as with the traditional dataset, each
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emulated sample is run on the same virtual machine, and the system calls it makes are

recorded by Cuckoo and the kernel driver, and converted into frequency histograms.

Since the goal of these experiments is to evaluate how well classifiers trained on real

ransomware and benignware can detect malicious symptoms, the emulated ransom-

ware dataset is treated as an unseen test set. As a result, the classifiers are trained on

all the real ransomware and benignware data, and then those same classifiers are made

to classify the emulated ransomware. Since some of the classifiers used have a random

element (such as Decision Trees), each classifier is trained and tested 1000 times and

the mean accuracy is reported. The overall experimental process described so far is

summarised in figure 4.1.

Malicious,	
Clean	&	Amsel

samples

Run	and	monitor
samples	with
Cuckoo

JSON	file

Run	and	monitor
samples	using
Kernel	Driver

CSV	Files

Convert	calls	from	each
sample	to	frequency

vector

Evaluate	classifiers	using
10-fold	cross	validation
on	clean	&	malicious

samples

Train	classifiers	on	clean
&	malicious	data

Test	classifiers	on	Amsel
data

Figure 4.1: System Diagram

4.3.3 Misclassified Samples

An important aspect of this chapter is to determine the rate of encryption at which emu-

lated ransomware goes undetected and to ascertain if that value differs depending on

whether Cuckoo or the kernel data is used. This can be calculated using the prediction

results that are produced from the “Amsel Experiments” section (4.3.2). In the previous

subsection, the classifiers were tested against all emulated ransomware samples 1000

times. Using the data obtained from that, the mean prediction value for each emu-

lated ransomware sample can be found separately for each classifier. The reason that

the mean value must be used is that some classifiers show slightly different results on

every run due to the fact that they make use of a random element (Random Forest, for

example). Therefore, a sample may be correctly classified in one run but incorrectly

classified in the next even though the exact same data was used for both. Therefore,
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if the mean prediction value for a sample is below 0.5, that sample can be considered

incorrectly classified (since ‘1’ represents malicious and ‘0’ represents benign as in

the previous chapter). Once the incorrectly classified samples have been found, they

can be correlated to the interarrival time (i.e. time between encrypting each file). This

information is important as if it is found that a classifier trained on real ransomware

and benignware is better at detecting the emulated ransomware when it frequently ex-

hibits idle behaviour, it would suggest that a simple way to evade classifiers trained

using the traditional dynamic malware analysis process is to create malware without

evasive features. On the other hand, if the classifier is better at detecting the emulated

ransomware when it exhibits its malicious features (which in this case is file encryp-

tion) more frequently, this would suggest that the classifier is recognising malware by

its malicious activity (or activity in general).

4.3.4 Call Categories

A simple method through which data from multiple sources can be better understood

is by grouping the data into categories and comparing the distribution of categories in

each source. With system call data this presents a few challenges. There is no generally

accepted standard on the categories of system calls or the categories that each call

belongs to. Another challenge is that some calls can belong to multiple categories. For

example NtClose can be used to close a file handle or process handle amongst many

more. Furthermore, the list of all possible categories will differ between kernel- and

user-level data. In order to conduct the call category analysis as fairly as possible,

the categories for the Cuckoo data were taken from one of the configuration files in

the Cuckoo source code. For the kernel driver, there is the added challenge that some

calls are not documented at all and are therefore difficult to categorise. Therefore,

the categories for the kernel calls were taken from the “Windows NT/2000 Native

API Reference” [174]. This is the most comprehensive documentation available of

the kernel calls. The calls not listed in either category were manually placed into a
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category after careful research.

After the categories and the calls belonging to each category had been decided, the data

from Cuckoo and the kernel driver was split into the benign, malicious and emulated

data for both. For each call (NtCreateProcess, for example), the number of times it

was called by all samples belonging to a class (e.g., benign) was added to the category

the call belonged to (Process, for example). Once this was performed for each call, the

total number of times each category was called within each class (benign, malicious

and emulated) was produced and visualised as pie charts.

4.4 Results

4.4.1 Initial Results

Tables 4.1 and 4.2 show the results from classifying real ransomware and the accuracy

obtained when those same, trained classifiers are used to detect Amsel for the Cuckoo

and kernel data.

Machine Learning

Algorithm

Ransomware Amsel

AUC Accuracy (%) Precision F-Measure Accuracy (%)

AdaBoost 0.992 96.6 0.958 0.959 40.5

Decision Tree 0.959 95.7 0.976 0.950 76.7

Gradient Boost 0.996 97.3 0.969 0.967 64.0

Linear SVM 0.861 78.1 0.840 0.687 0.867

Nearest Neighbour 0.969 91.1 0.921 0.889 1.33

Random Forest 0.994 96.8 0.976 0.961 35.0

Table 4.1: Classification results using Cuckoo data
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Machine Learning

Algorithm

Ransomware Amsel

AUC Accuracy (%) Precision F-Measure Accuracy (%)

AdaBoost 0.996 97.7 0.981 0.973 4.0

Decision Tree 0.969 97.0 0.964 0.964 67.0

Gradient Boost 0.997 98.2 0.990 0.979 0.540

Linear SVM 0.557 57.4 0.0 0.0 0.20

Nearest Neighbour 0.975 92.1 0.926 0.905 3.87

Random Forest 0.995 97.7 0.990 0.973 48.6

Table 4.2: Classification results using kernel data

When differentiating real ransomware from benignware, the kernel data is shown to be

more useful for the task. Though the differences in results are small, they are similar to

what is expected, given the results from the previous chapter. The only classifier that

performs better using the Cuckoo data is Linear SVM. When using the kernel data,

Linear SVM obtains a precision (and therefore F-measure) of 0. Taking into consider-

ation the formula for precision, this means that Linear SVM classified all samples in

the kernel data as benign. This suggests that the kernel data is not as linearly separable

as the Cuckoo data. That being said, Linear SVM obtains the lowest performance in

comparison to the other classifiers for both sets of data. On the other hand, the clas-

sifier that obtained the strongest performance is Gradient Boost, obtaining accuracy

values of 98.2% and 97.3% for the kernel and Cuckoo data.

The last column in both tables shows the accuracy obtained when classifying the emu-

lated ransomware. These results do not bear much resemblance to the results obtained

when classifying real ransomware. On the Cuckoo side, the only classifiers with a

mildly respectable performance are Decision Tree with an accuracy of 76.7% and

Gradient Boost (64%). For the kernel data, the only classifier with an accuracy higher

than 50% is Decision Tree (67%). As can be seen, when classifying emulated ransom-

ware, the Cuckoo data seems to have produced a better performance than the data from
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the kernel driver. To obtain a better understanding of the results from classifying the

emulated ransomware, they have been illustrated in figure 4.2.

������ �	����

���	��!" ���	��!"


���!����� �� 
���!����� ��

� �����"�	��!" � �����"�	��!"

���� ���� ���� ����

��� �!"�������� ! ��� �!"�������� !

��� ��� ��� ��� ��� ���
���# ��$

���

���

���

���

����

� 
��

#�
��

$

��������� �!"

��� ��� ��� ��� ��� ���

��������� �!"

Figure 4.2: Results of classifying Amsel data 1000 times

The graphs above show the results from testing each of the classifiers on the emulated
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ransomware data 1000 times (as described previously). For most of the classifiers,

the accuracy obtained from each run was the same. However, when using the Cuckoo

data, Decision Tree and Random Forest are the only classifiers where the results vary

significantly. This is likely due to the random element within these two classifiers

that guides how the trees are constructed. Remarkably, Decision Tree is able to get

100% accuracy on occasion when using the Cuckoo data. However, as the results vary

so widely, that cannot be relied on. The modal value reveals a bit more information

regarding the classifier’s performance since it shows the most likely value that would

be obtained. The modal values for Decision Tree and Random Forest using the Cuckoo

data are 68% and 0.07%.

With regards to the kernel data, figure 4.2 shows that only Random Forest has a spread

of results. Its modal accuracy value is 67% . Therefore, when comparing modal val-

ues, there is little difference between the Cuckoo and kernel data. In addition, while

the Cuckoo data is seemingly more effective than kernel data when it comes to de-

tecting the emulated ransomware, neither have produced strong results. Therefore, the

next step is to ascertain the emulated ransomware samples that the classifiers failed to

correctly classify. By determining which emulated samples were incorrectly classified,

it will be possible to ascertain whether the classifiers are better at detecting emulated

malware when the interarrival time is higher or lower.

4.4.2 Misclassified Samples

In order to visualise the results per sample, two histograms had to be created due to

the large spread in times used for the experiments. For each new emulated ransom-

ware sample, the interarrival time was incremented very gradually between 0 and 1

second. After 1 second, the magnitude of the increment for each new sample was

increased. Figures 4.3 and 4.4 show how Decision Tree performed when classifying

emulated ransomware samples with times ranging from 1.0×10−6 to 2 seconds for the

Cuckoo and kernel data. The reason for selecting Decision Tree is that it obtained the
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best performance for both the kernel and Cuckoo data when classifying the emulated

ransomware produced from Amsel.

Figure 4.3: Results of classifying Amsel data (with time between encryption <=2s)

obtained by Cuckoo.

Figure 4.4: Results of classifying Amsel data (with time between encryption <=2s)

obtained by the kernel driver.
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Figure 4.3 shows the results using Cuckoo data. It can be seen that initially at ex-

tremely low time intervals between encrypting each file, Decision Tree is able to

identify some, but not all emulated ransomware samples. However, as the time ap-

proaches two seconds, the classifier’s performance in detecting emulated ransomware

using the Cuckoo data decreases significantly.

Figure 4.4 shows the results from Decision Tree attempting to detect emulated ransom-

ware using the kernel data. When using the kernel data, Decision Tree is able to cor-

rectly classify the emulated malware samples as malicious in almost every instance.

Figures 4.5 and 4.6 show the remaining results from classifying emulated ransomware

samples with the time between encrypting each file (interarrival time) ranging from 2

seconds to 57 seconds.

Figure 4.5: Results of classifying Amsel data (with time between encryption >2s)

obtained by Cuckoo.
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Figure 4.6: Results of classifying Amsel data (with time between encryption >2s)

obtained by the kernel driver.

Figure 4.5 shows a very different picture to the previous results, as, in this case De-

cision Tree is able to detect all the emulated ransomware samples using the Cuckoo

data. This suggests that the ability of the classifier to detect emulated ransomware

(when trained on real ransomware and benignware) improves as the evasiveness in its

behaviour increases.

Figure 4.6 is the complete opposite of figure 4.5 visually. When using the Cuckoo data,

Decision Tree’s performance improved as the evasiveness of the emulated samples in-

creased, whereas, as figure 4.6 shows, the opposite occurred when using the kernel

data. This shows that when a classifier is attempting to detect malware using global

kernel-level data, the presence of malicious activity (as opposed to inactivity) is re-

quired for the classifier to correctly classify it. This is, in part, to do with the fact that

the kernel driver is monitoring at a global level. Therefore as the activity of the mali-

cious sample reduces, it is much more likely to fade into the background (and get lost

amongst the general system activity).
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The results in this section have shown that the Decision Tree classifier obtains a stronger

performance using the Cuckoo data, provided that the delay between encrypting each

file is 2 seconds or more. Below 2 seconds, the kernel data is better suited to identifying

ransomware. This suggests that when monitored using Cuckoo (or another user-level

monitoring tool), the likelihood of ransomware being identified increases as the amount

of evasiveness in its behaviour increases. The opposite is true for the kernel-level data.

4.4.3 Hyper-parameter Results

Given that Gradient Boost was the best performing classifier on the training data, and

that it is quite closely related to Decision Tree (as it is composed of multiple regression

trees), its vastly different results when tested on the emulated ransomware was unex-

pected. The same can be said for Random Forest. Due to the fact that Gradient Boost

and Random Forest are composed of Decision Trees, they have many hyper-parameters

in common with Decision Tree. Therefore, a brief analysis of the hyper-parameters in

common is performed in order to gain more insight into the reasons behind the dif-

ferences. In all experiments for this thesis, the default parameters for each classifier

in sklearn are used. Of the parameters that Decision Tree and Gradient Boost have in

common, the only one where the default value differs is that of ‘max_depth’.

As its name suggests, max_depth defines how deep a tree can be. The deeper the tree,

the more minutiae it can capture, however, this also puts it at greater risk of over-fitting.

For Decision Trees, this parameter is set to “None” by default which means the tree

is expanded as much as possible (since there is no limit). With Gradient Boost, this

parameter is set to ‘3’ by default. Therefore, for this experiment we changed the value

of max_depth for Gradient Boost to match the default value for Decision Tree.

Likewise, Random Forest only differs with Decision Tree on one shared hyper-parameter,

‘max_features’. This parameter dictates the number of features that should be con-

sidered when making a split. For example, if a dataset consists of 100 features and
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max_features is set to 20, when the classifier is making a decision on which feature to

split on, it will consider 20 random features and choose the best amongst them. Again,

this can be set to lower values to guard against overfitting. For Decision Trees the

default value of this parameter is “None”, which means that at each split, all features

are considered for the split. For Random Forest this value is set to the square root of

the number of features. Therefore, for this experiment, the value of this parameter in

Random Forest is altered to match that of the value in Decision Tree.

The results from classifying emulated ransomware using the new hyper-parameter val-

ues for the Cuckoo and kernel data are shown in tables 4.3 and 4.4.

Classifier Amsel Accuracy

Decision Tree 76.7

Gradient Boost 78.5

Random Forest 75.0

Table 4.3: New emulated ransomware results on Cuckoo data after modifying

hyper-parameters.

Classifier Amsel Accuracy

Decision Tree 67.0

Gradient Boost 67.0

Random Forest 67.0

Table 4.4: New emulated ransomware results on kernel data after modifying

hyper-parameters.

As can be seen in tables 4.3 and 4.4, by simply modifying one hyper-parameter for

Gradient Boost and Random Forest the results have been rectified so that they are equi-

valent to that of Decision Tree. However, given the purpose of the hyper-parameters, it

also suggests that the behaviour exhibited by the emulated ransomware is only detected

if the classifiers are set to capture the subtler details within the training data. Both must
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be set to their maximum possible values as it were in order to ensure that the classifiers

correctly classify the emulated ransomware.

This also highlights the importance of careful hyper-parameter tuning, as the impact

it can have on the results is very significant. The modified versions of Gradient Boost

and Random Forest obtained the same results on the training data as their unmodified

counterparts. However, with regards to the testing data, as can be seen, the results were

affected.

4.4.4 Cuckoo Feature Ranking Results

To further understand the reasons behind the results, it can be helpful to look at the

features that the best performing classifier considers the most important. Given that

the best performing classifier on real ransomware (Gradient Boost) is not the same

as the classifier that performs best at detecting emulated ransomware (Decision Tree),

the best features for both are studied for the kernel and Cuckoo data. For the sake

of brevity, only the top ten features are discussed here. The feature ranking method

used here is the inbuilt feature ranking method described in the previous chapter in

section 3.2.3. For completeness, the top ten features of all classifiers used are shown in

table 4.5 (barring Nearest Neighbours since it has no inbuilt feature ranking method),

however, the focus of this section is on Decision Tree and Gradient Boost. Table 4.5

shows the top ten features for the Cuckoo data.
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AdaBoost Decision Tree Gradient Boost Linear SVM

NtTerminateProcess FindResourceA FindResourceA GetSystemMetrics

NtUnmapViewOfSection CreateDirectoryW CreateDirectoryW NtReadFile

CoInitializeEx NtProtectVirtualMemory NtProtectVirtualMemory LdrGetProcedureAddress

RemoveDirectoryA NtOpenKey NtOpenSection NtTerminateProcess

CreateActCtxW __exception__ WriteProcessMemory LdrGetDllHandle

NtProtectVirtualMemory WriteProcessMemory CreateActCtxW GetUserNameExW

LdrGetProcedureAddress CoUninitialize NtTerminateProcess CreateToolhelp32Snapshot

GetDiskFreeSpaceExW FindResourceExW NtOpenKey NtOpenSection

GetSystemMetrics CreateProcessInternalW LdrGetProcedureAddress GetVolumePathNameW

NtQueryDirectoryFile LdrGetDllHandle NtUnmapViewOfSection NtSetValueKey

Table 4.5: Top ten features using the inbuilt feature ranking method for Ada-

Boost, Decision Tree, Gradient Boost, and Linear SVM when considering the data

from Cuckoo .

With regards to the classifiers that did not obtain a strong performance, Linear SVM

placed a lot of importance on specific evasive calls that Decision Tree and Gradi-

ent Boost ignored such as GetUserNameExW, CreateToolhelp32Snapshot and Get-

VolumePathNameW. GetUserNameExW and GetVolumePathNameW are used to de-

tect the use of specific virtualisation tools. Whilst, CreateToolhelp32Snapshot is used

to obtain a list of running processes that malware can then terminate (if they are anti-

virus processes) or inject its code into [227]. On the other hand, AdaBoost does not

give as much focus to evasive calls and contains only one additional evasive call in its

top ten, GetDiskFreeSpaceExW. This is used by malware to obtain the hard-disk space

to determine if its running in a VM (since VMs tend to have smaller hard disks than

real machines).

Focusing on Gradient Boost and Decision Tree, there are five features in common

between the two classifiers in table 4.5. The reason for Decision Tree’s superior per-

formance over Gradient Boost is not immediately clear from just the features. Decision

Tree contains a few features that are known to be used by malware for evasive purposes.

WriteProcessMemory, for example, is commonly used by malware to write malicious



4.4 Results 111

code into a benign process’ memory space [227]. In addition, the calls NtProtectVir-

tualMemory and LdrGetDllHandle can be used for evasive purposes as discussed in

the previous chapter (in sections 3.3.2.1 and 3.3.5). Aside from that, the calls relate to

resources, processes and the registry.

Besides the features in common, Gradient Boost contains a few additional features that

can be used by malware to evade detection. The combination of NtOpenSection and

NtUnmapViewOfSection was seen in the previous chapter (section 3.3.1.1). Obviously

there are many legitimate uses for it, but it can also be used by malware to insert code

into another process’ memory. In addition, LdrGetProcedureAddress, can be used

to dynamically load an external call. This would evade any tool only looking at the

statically declared calls, or those monitoring using an IAT hook. The lack of file-related

calls in both classifiers’ top tens suggests that excessive levels of file activity is not

the distinguishing characteristic being observed of ransomware (as would have been

expected). This explains why the Cuckoo data was unsuitable for detecting emulated

ransomware when the frequency of encryption was high.

However, despite the differences, it is not obvious as to why Decision Tree performed

better than Gradient Boost when it comes to detecting the emulated ransomware. Both

classifiers only have one file related call in their top ten and therefore, it would seem,

that they have equal chance of detecting the emulated ransomware. In order to better

understand the reason for the differences in detecting the emulated ransomware, the top

ten features of the optimised version of Gradient Boost were extracted and analysed.

Interestingly, those top ten were exactly the same as the top ten features of Decision

Tree. Therefore to better understand the reason for the difference, the differences in

frequencies for each feature in the top ten are plotted for benignware, malware, and

emulated ransomware in a bar chart. This is shown in figures 4.7 and 4.8.
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Figure 4.7: Frequencies (y-axis) of the top ten features (x-axis) of Decision Tree in

order (from left to right) for malicious, clean, and Amsel data from Cuckoo.
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Figure 4.8: Frequencies (y-axis) of the top ten features (x-axis) of Gradient Boost

in order (from left to right) for malicious, clean, and Amsel data from Cuckoo.

The graph for Decision Tree is dominated by NtProtectVirtualMemory which is heav-
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ily used by beningnware. Gradient Boost is dominated by LdrGetProcedureAddress,

which is commonly used by malware to dynamically load calls and evade analysis.

Interestingly, Amsel seems to use LdrGetProcedureAddress frequently. This is a side-

effect from using Java to emulate ransomware. Java is likely to opt for dynamic linking

since it is platform independent and uses a JIT compiler.

However, the presence of features with extremely high frequencies makes it difficult

to view the trends in the remaining features. Therefore, to better understand the dif-

ferences between Decision Tree and Gradient Boost, the features that are in common

and dominant within the top ten are removed and the graphs redrawn. This is shown in

figures 4.9 and 4.10.
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Figure 4.9: Frequencies (y-axis) of the unique features (x-axis) within the top ten

of Decision Tree in order (from left to right) for malicious, clean, and Amsel data

from Cuckoo.
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Figure 4.10: Frequencies (y-axis) of the unique features (x-axis) within the top

ten of Gradient Boost in order (from left to right) for malicious, clean, and Amsel

data from Cuckoo.

As can be seen figure 4.10 contains features that separate benign and malicious well,

however, many of them are not used by the emulated ransomware, therefore they are

unlikely to assist Gradient Boost in classifying it. On the other hand, some of the

unique features of Decision Tree (which are the features Gradient Boost uses when

max_depth is altered) in figure 4.9 are used by the emulated ransomware. Interestingly,

the emulated ransomware makes use of LdrGetDllHandle. This is again due to the fact

that it is written in Java and Java tends to opt for dynamic linking.

The top ten features have shown that Cuckoo is very dependent on evasive features for

identifying ransomware (as in the previous chapter). Therefore, it is primarily identify-

ing emulated ransomware from the evasive behaviour it displays. In addition, it can be

seen that Decision Tree’s superior performance in detecting emulated ransomware is

in part due to some unforeseen functionality shown by the JVM, rather than any actual

malicious behaviour. In particular, the high rank given to LdrGetProcedureAddress by

the Gradient Boost and its use by the JVM seems to have impacted its performance.
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4.4.5 Kernel Feature Ranking Results

Moving on to the kernel data, table 4.6 shows the top ten features using the inbuilt

feature ranking method for all classifiers used (except Nearest Neighbours). As with

the Cuckoo data, the focus in this section is on Decision Tree and Gradient Boost.

AdaBoost Decision Tree Gradient Boost Linear SVM

NtOpenObjectAuditAlarm NtOpenObjectAuditAlarm NtOpenObjectAuditAlarm NtYieldExecution

NtFlushVirtualMemory NtRequestWaitReplyPort NtRequestWaitReplyPort NtCompactKeys

NtOpenMutant NtCreateDebugObject NtSetInformationThread NtCompareTokens

NtQuerySystemTime NtQueryAttributesFile NtFlushVirtualMemory NtCompressKey

NtReadFile NtReadFile NtAccessCheck NtCreateDebugObject

NtRequestWaitReplyPort NtRaiseHardError NtReadFile NtCreateJobSet

NtWriteFile NtUnmapViewOfSection NtCreateDebugObject NtCreateKeyedEvent

NtCompareTokens NtPulseEvent NtYieldExecution NtDebugActiveProcess

NtAcceptConnectPort NtCreateIoCompletion NtOpenMutant NtDebugContinue

NtAccessCheckByType NtQueryValueKey NtWriteFile NtDeleteBootEntry

Table 4.6: Top ten features using inbuilt feature ranking for AdaBoost, Decision

Tree, Gradient Boost and Linear SVM when considering the data from the kernel

driver.

From table 4.6, it is immediately clear why Linear SVM did not perform well. Many

of the features focused on are quite obscure and not known to be used by malware or

benignware. AdaBoost, on the other hand, has more in common with Decision Tree

and Gradient Boost. Uniquely, it contains NtQuerySystemTime, an operation that can

be used to detect delays caused by the presence of debuggers. Interestingly, although

AdaBoost ranks NtReadFile and NtWriteFile highly, this does not seem to help its

classification results.

From comparing Decision Tree and Gradient Boost, it can be seen that they four fea-

tures in common (NtOpenObjectAuditAlarm, NtRequestWaitReplyPort, NtCreateDebugOb-

ject and NtReadFile). NtCreateDebugObject is an interesting addition to both top tens

as it can be used in a very powerful anti-debug trick to detect a debugger [23]. In fact,
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NtCreateDebugObject had a very low mean frequency, however, it was still consider-

ably larger for malware than benignware. The remaining methods in common relate

to networking (NtRequestWaitReplyPort), file handling (NtReadFile), and monitoring

changes (NtOpenObjectAuditAlarm). Three of the calls in the top ten for Decision

Tree relate to file handling (NtQueryAttributesFile, NtReadFile and NtCreateIoCom-

pletion), whereas only two calls in the top ten of gradient boost relate to file handling

(NtReadFile and NtWriteFile). When using the kernel data, the classifiers are clearly

much more likely to focus on file-related behaviour than when data from Cuckoo is

used.

In order to further understand the reasoning for the differences in classification results,

the mean frequencies of the top ten calls are plotted for both Gradient Boost and De-

cision Tree. As with the Cuckoo data, when the max_depth hyper-parameter is altered,

the top ten features of Gradient Boost are exactly the same as Decision Tree. The

frequency plots are shown in figures 4.11 and 4.12.
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Figure 4.11: Frequencies (y-axis) of the top ten features (x-axis) of Decision Tree

in order (from left to right) for malicious, clean, and Amsel data from kernel

driver.
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Figure 4.12: Frequencies (y-axis) of the top ten features (x-axis) of Gradient Boost

in order (from left to right) for malicious, clean, and Amsel data from kernel

driver.

Figure 4.11 shows the mean frequencies of the top ten features for the kernel data.

The most prominent call, NtQueryValueKey is used heavily by both ransomware and

emulated ransomware. Again this is likely the Java Virtual Machine that checks the

registry for various configuration parameters. This is also the reason behind the pres-

ence of NtRequestWaitReplyPort in the emulated ransomware. This call is used by the

JVM to listen for connections.

Moving onto the calls relating to file-handling, an interesting phenomenon is that

NtReadFile is not called as frequently by ransomware as benignware. This is signi-

ficant since many solutions use file activity as an indicator of ransomware [217, 138,

73, 120, 223, 131, 139, 180]. However, ransomware calls NtQueryAttributesFile much

more frequently than benignware. This call is used to obtain information about a file

and can be used by ransomware for a number of purposes. One possibility is as an

anti-VM trick since when sandboxes are created, they tend to be populated with files

that are never again modified. Therefore this call can be used to examine files on the

system for those properties. Another possibility is that ransomware is using the call to

select what files to encrypt, since ransomware tends not to encrypt every file, but just
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those it deems invaluable to the user.

In figure 4.12, the main call that eclipses the others is NtYieldExecution. This is used to

stop execution of the current thread and start the execution of another. It is most prom-

inently used by the emulated ransomware. The presence of this call is a side-effect from

the emulated ransomware “sleeping” for a certain amount of time as NtYieldExecution

is used to stop executing the current thread and start executing a new one. The high

importance given to this call is very likely partially responsible for Gradient Boost’s

poor performance detecting emulated ransomware since real ransomware does not use

it much. Interestingly, as with NtReadFile, NtWriteFile is used even more rarely by

ransomware. In order to get an understanding of the behaviour of the remaining fea-

tures in the top ten, rather than simply removing the common features, the features

whose behaviourial trend is already obvious from these graphs are removed in order to

observe the trend in the less prominent features. The features that have been removed

are: NtRequestWaitReplyPort, NtReadFile, NtWriteFile, NtYieldExecution, NtQuery-

AttributesFile, NtUnmapViewOfSection and NtQueryValueKey. The new graphs are

shown in figures 4.13 and 4.14
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Figure 4.13: Frequencies (y-axis) of the less prominent features (x-axis) within

the top ten of Decision Tree in order (from left to right) for malicious, clean, and

Amsel data from the kernel driver.
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Figure 4.14: Frequencies (y-axis) of the less prominent features (x-axis) within

the top ten of Gradient Boost in order (from left to right) for malicious, clean, and

Amsel data from the kernel driver.
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Figure 4.13 shows the trends in call frequencies for some of the features for Decision

Tree. Again, the file-related call NtCreateIoCompletion is called more frequently by

benignware than ransomware. In figure 4.14, the feature NtSetInformationThread

stands out. Ransomware uses this call significantly more than benignware. One of

the parameters in this call contains the attribute ThreadHideFromDebugger, which,

as its name suggests can be used by malware to hide its actions from any debugger

[88, 50]. However, the emulated ransomware does not use it much, thereby making it

more difficult for gradient boost to correctly classify it.

The results from analysing the top ten features used by Decision Tree and Gradient

Boost show that the classifiers are still partially reliant on evasive features. However,

there is a larger proportion of file related calls compared to the Cuckoo top ten and also

a smattering of calls from other categories. Therefore, the classifiers are not completely

dependent on evasive features in order to detect ransomware. This is why Decision

Tree is more likely to correctly classify the emulated ransomware with shorter interar-

rival times when using kernel data. Gradient Boost performs worse than Decision Tree

on the emulated ransomware for a number of reasons, namely, its overemphasis on

evasive techniques (NtSetInformationThread) and interference from the JVM assisting

Decision Tree’s results (NtRequestWaitReplyPort and NtQueryValueKey). In addition,

the call NtYieldExecution, which is used both by the JVM and emulated ransomware to

encrypt files at regular time intervals seems to have played a part in damaging Gradient

Boost’s ability to detect emulated ransomware.

4.4.6 Combined Data Results

Having carefully studied the ability of classifiers to detect the emulated ransomware

using kernel-level and user-level data separately, the next approach is to determine how

well classifiers perform when the data is combined. This is particularly relevant as one

of the findings from the previous chapter (chapter 3) was that the combination of user

and kernel-level data produced the best classification results. Therefore the aim in this
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subsection is to see if that remains true when the dataset is different and whether the

combination of data improves the performance when detecting emulated ransomware.

The results from these experiments are shown in table 4.7 and figure 4.15.

Machine Learning

Algorithm

Ransomware Amsel

AUC Accuracy (%) Precision F-Measure Accuracy (%)

AdaBoost 0.998 98.6 0.985 0.979 0.07

Decision Tree 0.968 97.2 0.955 0.958 1.85

Gradient Boost 0.999 98.7 0.990 0.980 88.5

Linear SVM 0.539 66.0 0.0 0.0 0.0

Nearest Neighbour 0.973 91.6 0.908 0.871 32.4

Random Forest 0.996 98.0 0.987 0.969 43.0

Table 4.7: Classification results using Cuckoo and kernel data combined
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Figure 4.15: Results of classifying Amsel data using the Cuckoo and kernel data

together 1000 times.

Table 4.7 shows that combining the kernel and Cuckoo data improves the results in

distinguishing real ransomware from benignware, as expected. When it comes to de-

tecting emulated ransomware, the results differ significantly from the trend seen in the

previous set of results. Table 4.7 shows that while the maximum accuracy obtained in

detecting emulated ransomware has improved significantly by combining the Cuckoo

and kernel data (from 76% to 88%), the classifier that obtains the highest accuracy

has changed from Decision Tree to Gradient Boost. Unlike the previous results, the

only classifier that has obtained an accuracy detecting the emulated ransomware that

is higher than 50% is Gradient Boost. Even Decision Tree, which on the Cuckoo and

kernel data separately is the strongest, performs poorly when the data is combined.
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4.4.6.1 Feature Ranks

To try understand some of the reasoning behind the stark difference in results between

Decision Tree and Gradient Boost, the top ten features were found using the inbuilt

feature ranking method. These are shown in table 4.8.

Decision Tree Gradient Boost

FindResourceA NtOpenObjectAuditAlarm (Kernel)

NtOpenObjectAuditAlarm (Kernel) FindResourceA

CreateDirectoryW NtReadFile

NtQueryValueKey (Kernel) CreateDirectoryW

WriteProcessMemory GetSystemMetrics

NtLockFile (Kernel) WriteProcessMemory

NtWriteFile (Kernel) NtFlushVirtualMemory (Kernel)

NtDeleteKey (Kernel) NtYieldExecution (Kernel)

NtReadRequestData (Kernel) NtQueryValueKey (Kernel)

GetFileAttributesExW NtProtectVirtualMemory

Table 4.8: Top ten features using inbuilt feature ranking for Decision Tree and

Gradient Boost when considering the data from the kernel driver and Cuckoo

combined. The calls that came from the kernel data have been labelled as such.

Many of the features in table 4.8 are features that have been encountered previously.

Since the number of features have now doubled, it would seem from the top ten fea-

tures that Decision Tree is overfitting to the data (hence why it cannot correctly classify

the emulated ransomware). This is evidenced by calls like NtLockFile, NtReadRe-

questData and NtDeleteKey which are not known to be good distinguishing features

for ransomware. In addition, they are not heavily used (or used at all) by the emulated

ransomware. To further clarify the reasons behind the results, the frequency of the

features not in common have been plotted. In addition, NtYieldExecution has been re-

moved from the Gradient Boost plot since, as seen previously, it tends to dominate the
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plot making it difficult to see the trends in other calls. The trends are shown in figures

4.16 and 4.17.
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Figure 4.16: Frequencies (y-axis) of the unique features (x-axis) within the top ten

of Decision Tree in order (from left to right) for malicious, clean, and Amsel data

from the combination of the kernel driver and Cuckoo.
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Figure 4.17: Frequencies (y-axis) of the unique features (x-axis) within the top

ten of Gradient Boost in order (from left to right) for malicious, clean, and Amsel

data from the combination of the kernel driver and Cuckoo.

The most noticeable feature in figure 4.17 is NtReadFile. The call shown in this figure

is the one recorded by Cuckoo. What is remarkable about this call is that the frequency

with which it has been called by benignware far exceeds that of emulated ransomware.

Furthermore, the frequency with which it was called on average by emulated ransom-

ware is very similar to that of actual ransomware. In comparison in figure 4.16 the

most prominent feature is NtWriteFile. Here, the frequency with which it was called

by emulated ransomware far exceeds that of ransomware and is closer to that of be-

nignware (but still far beyond it). This gives additional insight as to why Gradient

Boost outperformed Decision Tree when it comes to detecting emulated ransomware.
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4.4.6.2 Misclassified Samples

In order to get a better understanding of the results from the best performing classi-

fier, the classification results per emulated ransomware sample are plotted. For each

sample, the time between encrypting each file is extracted and plotted. This is de-

scribed in more detail in section 4.3.3 - Misclassified Samples.

Figure 4.18: Results of classifying Amsel samples (with time between encryption

<=2s) using the combined data of Cuckoo and the kernel driver.
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Figure 4.19: Results of classifying Amsel samples (with time between encryption

>2s) using the combined data of Cuckoo and the kernel driver.

As can be seen from figures 4.18 and 4.19, in general, gradient boost is able to identify

the emulated ransomware as malicious regardless of the time spent between encrypt-

ing each file. However, interestingly, when the time intervals are very short (below

half a second), gradient boost is much more likely to classify the sample as benign.

This could be due to the fact that many benign tools that use similar calls to ransom-

ware (such as 7zip and WinRaR) tend to encrypt/zip the files requested as quickly as

possible. Therefore, the results are not necessarily problematic since it protects from

false positives. However, it is important to remember that ransomware could utilise

this knowledge to evade traditional classifiers.

The combination of Cuckoo and the kernel driver data can be seen to be more effect-

ive when it comes to detecting real and emulated ransomware. The classifiers still

rank evasive features highly, however, additional features are taken into account, in

particular, file-handling related calls, forming a more holistic picture of ransomware.

Gradient Boost showed the best performance classifying emulated ransomware, strug-

gling the most when the time between encrypting each file (interarrival time) was very
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low (almost zero).

4.4.7 Call Category Frequency

In order to better understand the data that the classifiers are being fed, a study of the

type of calls being made most frequently by ransomware, benignware, and emulated

ransomware (Amsel) was conducted. The frequency with which calls in each category

were made are depicted as pie charts. The spread of calls in the Cuckoo data are shown

in the pie charts in figures 4.20, 4.21 and 4.22.

certificate - 0.01 %
crypto - 2.13 %
exception - 0.01 %
file - 46.99 %
misc - 3.10 %
netapi - 0.00 %
network - 2.63 %
notification - 0.01 %
ole - 0.09 %
process - 6.73 %
registry - 12.88 %
resource - 1.31 %
services - 0.00 %
synchronisation - 14.85 %
system - 9.24 %

Figure 4.20: Distribution of call categories in data recorded by Cuckoo for clean

samples.
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certificate - 0.00 %
crypto - 0.19 %
exception - 0.06 %
file - 19.85 %
misc - 2.66 %
netapi - 0.00 %
network - 0.12 %
notification - 0.08 %
ole - 0.20 %
process - 38.60 %
registry - 9.04 %
resource - 1.83 %
services - 0.01 %
synchronisation - 1.25 %
system - 26.10 %

Figure 4.21: Distribution of call categories in data recorded by Cuckoo for

ransomware samples.

certificate - 0.00 %
crypto - 0.01 %
exception - 0.01 %
file - 88.66 %
misc - 0.04 %
netapi - 0.00 %
network - 0.02 %
notification - 0.00 %
ole - 0.00 %
process - 6.15 %
registry - 1.31 %
resource - 0.07 %
services - 0.07 %
synchronisation - 0.50 %
system - 3.18 %

Figure 4.22: Distribution of call categories in data recorded by Cuckoo for emu-

lated malware samples.
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An interesting observation when comparing figures 4.20 and 4.21 is that 46% of the

calls relate to file handling for benignware while only 19% of the calls relate to file

handling for ransomware. Given that the main aim of ransomware is to encrypt a

user’s files, the expectation is that it would contain a larger proportion of file calls.

While that may be the case in a real, unmonitored environment, a large proportion of

what a dynamic analysis tool observes when analysing malware is evasive behaviour

(as seen previously). The remaining categories of calls commonly used by benignware

relate to synchronisation and registry usage. Ransomware, on the other hand, consists

largely of calls relating to processes. 50% of the calls made in the process category for

ransomware come from one call, ReadProcessMemory. This can be used by malware

to read the memory of another process [227]. The purpose of ReadProcessMemory is

further confirmed when looking at the next most frequently made call in the process

category for ransomware, Process32NextW. This is used by malware to cycle through

a list of running processes (usually obtained by calling CreateToolhelp32Snapshot)

to find a process to inject its code into. The last major category of calls made by

ransomware samples is system. In system, 50% of the calls from ransomware belong

to LdrGetProcedureAddress. This call was also in the top ten features for Gradient

Boost as it has been known to be used to evade specific analysis mechanisms.

The category of calls used by emulated malware samples is largely dominated by calls

made to the file system. Hence, it can be seen that the emulated samples are, for the

most part, behaving in an expected manner.

The distribution of call categories within the kernel data is shown in figures 4.23, 4.24,

and 4.25.
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Figure 4.23: Distribution of call categories in the data recorded by the kernel

driver for clean samples.
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Figure 4.24: Distribution of call categories in the data recorded by the kernel

driver for ransomware samples.
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Figure 4.25: Distribution of call categories in the data recorded by the kernel

driver for emulated malware samples.

The pie charts of the call categories for the malicious and benign samples is quite

evenly distributed. This is partly down to the fact that the kernel driver records the

calls for all processes in the system. The largest difference between figures 4.23 and

4.24 is within the “time” category. The call in this category that contributes the most

to this difference is NtYieldExecution which has been seen previously (4.4.5). This

difference is possibly due to the fact that the main reason ransomware (and malware in

general) is likely to use the calls in this category is to detect whether they are running

in a virtual/emulated environment. Though there are many legitimate uses for the calls

in this category, they do not interest malware authors as much as general software

developers. In addition, calls relating to synchronisation are used more frequently by

benignware as would be expected given the previous observation.

Another category with an interesting difference is “Sections”. Whereas 3% of the calls

relate to sections in malware, only 0.8% of the calls relate to sections in benignware.

Looking deeper into the difference, it’s evident that it is due to the fact that malware
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makes much more use of NtMapViewOfSection and NtUnmapViewOfSection (whose

purpose has been described in section 3.3.1.1). On the other hand, the top two calls

in this category for benignware is NtMapViewOfSection and NtCreateSection. This

is because benignware is more likely to actually create its own sections, rather than

attempt to inject itself into another process’ memory.

The “processes” category contributes 4% of the calls for the average ransomware

sample and only 1% for the average benignware sample. The reason for this is that

ransomware (and malware in general) uses NtQueryInformationProcess much more

frequently than benignware since it can serve as anti-debugging method. While NtQuery-

InformationProcess contributes 66% to the processes category in ransomware, it only

contributes 53% to the equivalent for benignware.

Finally, the pie chart for emulated malware in figure 4.25 bears a strong resemblance

in shape to the equivalent chart from Cuckoo in figure 4.22. However, there is a major

difference. With Cuckoo the main category of calls were file related. On the kernel

side, the most dominant category of calls relate to time. The main reason for this is

that the two calls contributing to the most to the time category - NtQueryPerform-

anceCounter and NtYieldExecution - are not monitored by Cuckoo. This means that

Cuckoo misses out on a major element of a program’s behaviour. However, it can be

argued that it helps in stopping classifiers from learning unnecessary behaviours that

can lead to over-fitting. In fact, removing those two features from the kernel dataset

improves the base random forest accuracy (before hyper-parameter tuning) from 48.6%

to 51.0% when detecting emulated malware. With Gradient Boost, the accuracy jumps

from 0.540% to 67.1%. These calls are used very heavily by the emulated ransomware

to schedule the encryption of each file.

The call category data has further confirmed the pervasiveness of evasive techniques

in the ransomware data in addition to the relative lack of file handling calls. An inter-

esting observation is between the pie charts of the Cuckoo data and kernel data with

regards to the emulated ransomware data. The reason for the difference is mainly down
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to the fact that Cuckoo does not monitor some calls that the kernel driver does. These

calls can be considered important for detecting malware by some analysts (particularly

NtQueryPerformanceCounter), however, they can also be seen to be at risk of causing

overfitting. In addition, these visualisations have highlighted some unintended con-

sequences due to the manner in which the emulated ransomware was implemented,

some of which would be difficult to overcome completely.

4.4.8 Cuckoo Missing Calls

In most of the experiments performed in this thesis, the UI calls monitored by Cuckoo

are ignored. This is so that the comparison between the kernel driver and Cuckoo

are fair (since the UI calls are not monitored on the kernel side). In addition, if a

classifier is identifying malware by its UI activity (or lack of), it is unlikely to be robust

since malware can easily alter its UI activity as it is not its primary concern. This is

best evidenced in the change in results for the Cuckoo data in detecting the emulated

ransomware as shown in table 4.9 and figure 4.26.

Machine Learning

Algorithm

Ransomware Amsel

AUC Accuracy (%) Precision F-Measure Accuracy (%)

AdaBoost 0.992 96.6 0.959 0.959 1.80

Decision Tree 0.953 95.4 0.941 0.950 35.4

Gradient Boost 0.995 97.4 0.966 0.967 45.8

Linear SVM 0.863 75.3 0.860 0.687 1.07

Nearest Neighbour 0.969 91.4 0.927 0.889 1.47

Random Forest 0.994 97.0 0.975 0.961 60.0

Table 4.9: Classification results using Cuckoo data with UI features
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Figure 4.26: Results of classifying Amsel data from Cuckoo 1000 times

In distinguishing real ransomware from benignware using the additional calls provided

by Cuckoo, it can be seen from table 4.9 that there is barely any difference in the results.

Therefore, the additional calls neither add nor take away anything with regards to the

training data. However, when it comes to detecting the emulated ransomware, the drop

in results is significant. Without the additional features, Decision Tree was the best

performing classifier on the emulated ransomware data from Cuckoo with an accuracy

of 77%. In addition, two classifiers were able to obtain an accuracy higher than 50%.

When the UI features are added, however, only Random Forest is able to get above

50% on the Amsel data from Cuckoo with an accuracy of 60%. This is significantly

worse than the original classification results.



4.4 Results 136

This highlights the importance of feature selection, particularly with regards to the

Cuckoo data. When hooking at user-level, there is an abundance of calls available

to hook, some of which can be very specific. Therefore, care must be taken when

choosing which calls to hook to ensure that the calls chosen are not likely to result in

over-fitting as that can be easily evaded. This also shows that though certain calls were

removed from the default set provided by Cuckoo for this research, it has not had a

negative impact on the results.

4.4.8.1 Feature Ranks

In order to confirm that the UI calls are responsible for the significant dip in results

when detecting emulated ransomware, the top ten features using the inbuilt and inde-

pendent feature ranking methods were extracted. They are shown in table 4.10

Independent Feature Ranking Inbuilt Feature Ranking

DrawTextExA DrawTextExA

FindWindowA FindWindowA

CreateDirectoryW NtReadFile

FindResourceA DrawTextExW

LdrGetProcedureAddress FindResourceA

SetWindowsHookExA NtOpenSection

NtReadFile LdrGetProcedureAddress

DrawTextExW CreateDirectoryW

SetFileTime NtTerminateProcess

NtOpenSection GetForegroundWindow

Table 4.10: Top ten features for Random Forest on all Cuckoo data

As can be seen the top ten is now dominated by UI calls. Three calls in the independent

top ten (DrawTextExA, FindWindowA and DrawTextExW) and four in the inbuilt top

ten (DrawTextExA, FindWindowA, DrawTextExW and GetForegroundWindow) relate
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to UI. The decision making process is now centred around UI activity. This can be

easily evaded by malware, particularly Trojan horses which tend to attach themselves

to legitimate programs and therefore would not differ at all from benignware with

regards to UI calls.

4.5 Conclusion

The aim of this chapter was to assess whether the dynamic analysis process is biased

by the change in behaviour malware displays when under investigation. To help with

this, a tool called Amsel was used to generate samples that emulate the malicious

behaviour of ransomware without any evasive properties. To begin with, the initial ex-

periments were conducted using real ransomware and benignware. These revealed that

the data from the kernel driver is more effective than that from Cuckoo for differenti-

ating ransomware from benignware. The classifier that showed the best performance

was Gradient Boost, obtaining an accuracy of 97.3% on the Cuckoo data and 98.2%

on the kernel data. Using Amsel, emulated ransomware samples were created. These

same trained classifiers were then made to classify data from running 1500 variations

of emulated ransomware. Samples only varied on one parameter, the interarrival time

or the time spent waiting between encrypting each file. This time, the best perform-

ing classifier was Decision Tree, obtaining an accuracy of 76.7% on the Cuckoo data

and 67.0% on the kernel data. Further analysis revealed that, when trained on Cuckoo

data, Decision Tree showed the strongest performance when the interarrival time was

higher. In other words, when Decision Tree was trained on data from Cuckoo, it was

more likely to classify a sample as ransomware as the time it spent encrypting files

was reduced. The opposite was true for the kernel data. It was also found that by

modifying a single hyper-parameter of gradient boost and random forest, they were

able to get the same performance detecting emulated ransomware as that obtained by

decision tree. The hyper-parameter in question increased the risk of both classifiers

over-fitting, thereby suggesting that malicious behaviour of real ransomware is not the
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most distinguishing behavioural trait seen in ransomware when under analysis.

Through studying the ten most useful features for Decision Tree and Gradient Boost, it

was possible to identify the reasons behind the results. When identifying ransomware

using the Cuckoo data, the primary attribute used by classifiers to detect ransomware

were its evasive attributes. In addition, the reason for Decision Tree performing better

than Gradient Boost using the Cuckoo data was, in part, due to a unintended behavi-

oural side effect of the emulated ransomware. Using the kernel data, the classifiers

placed more emphasis on file-handling calls explaining why Decision Tree performed

better when the emulated ransomware had higher rates of encryption. Likewise, De-

cision Tree’s superiority to Gradient Boost on emulated ransomware was also due to

unintended behavioural traits present in Amsel’s design.

As with the previous chapter, the best performance came from combining the user and

kernel-level data. However, this time, the best performing classifier on real ransomware

and emulated ransomware was Gradient Boost. Its accuracy detecting real ransomware

was 98.7%, and its accuracy detecting emulated ransomware was 88.5%. With the

increase in features, Decision Tree overfitted to the training data, which, in this case,

did not help it in detecting emulated ransomware.

This research has shown that the dynamic analysis process, as is currently carried out,

encourages classifiers to identify malware using the evasive properties that they show.

This presents some risks, since, in a real environment, malware may not show as many

evasive properties once it establishes it is running in a real environment. In addition,

all it would require of a malware author to evade classifiers trained using the traditional

dynamic malware analysis approach is to remove all evasive behaviour from their mal-

ware. Another observation made from this research is the impact on performance that

the hyper-parameter values can have.

Despite not setting out to do so, this research discovered some of the limitations with

using Java to develop malware simulators to run on Windows. Its compatibility with

multiple OSes makes it a popular choice, even for malware simulators [156]. Though it
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allows for the quick development of complex algorithms, the JVM’s interference with

the system call data gathered is too large to be ignored. This highlights the sensitivity

of system call data and the importance of ensuring any additional tools present on the

monitoring system have little to no impact on the system call data gathered.

Finally, these experiments have highlighted the importance of taking due consideration

when selecting features to monitor. This will define what the classifiers use to identify

malware. As shown, if allowed to identify malware through the use of UI features,

classifiers are likely to. This would make them extremely susceptible to adversarial

attacks. Therefore, feature selection must be performed with the malicious behaviour

in mind that needs to be blocked.
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Chapter 5

Testing the robustness of emulated

ransomware results

The results in the previous chapter were affected by the interference from the JVM.

Therefore, the purpose of this chapter is to determine the results that would be obtained

if the experiments carried out in the previous chapter used an emulator that does not

suffer the same shortcomings. By using the same emulator but written in a different

language (C), it will be possible to either reject or further confirm the conclusions made

in chapter 4. This will provide the answer to the sixth research question:

RQ6 Are high-level languages such as Java suitable for emulating malware to test

system call monitoring tools?

In addition, through answering this question, this chapter tests the robustness of classi-

fiers to detect malware that is functionally exactly the same but different with regards

to the system calls used. This provides the eighth contribution:

C8 This research determines the sensitivity of classifiers trained in the traditional

dynamic malware analysis process to changes in system calls made.
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5.1 Method

The method employed in this chapter is exactly the same as that used in chapter 4 as it is

an extension of it. The only difference in this chapter is that the emulated ransomware

samples are written in C. The theory behind using C is that C provides more control

over the system calls made by the program. In addition, the developer can specifically

choose the system calls made.

Therefore, as mentioned previously, the functionality of Amsel employed in chapter 4

is implemented in C for this chapter. Much of the implementation is quite straightfor-

ward, as the program simply encrypts files in a specified directory and waits a specified

amount of time between encrypting each file. However, in order to test the robustness

of the trained classifiers, the delay between encrypting each file was implemented in

two different ways. The first set of emulated ransomware used the time function

provided by C. This function returns the number of seconds since January 1, 1970. It

is used to implement the delay as follows:

1 delay = time(0) + secondsToWait;

2 while(time(0) < delay);

Listing 5.1: Delay implemented using a standard C method

The function time() is defined in time.h. Behind the scenes, time calls

GetSystemTimeAsFileTime when run on Windows. The return value when

time(0) is called is the number of seconds since January 1, 1970 at that point in

time. The variable secondsToWait contains the user specified time to wait. This

is added to the current time. After that, on line 2, a while loop is used to prevent

progress until the current time exceeds the time in the future that it needs to wait until.

The second set of emulated ransomware was implemented using the delay function

provided by Windows. In C, this function is called Sleep and it goes on to call the

Windows system call NtDelayExecution. Implementing a delay with this is very

straightforward:
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1 Sleep(millisecondsToWait);

Listing 5.2: Delay implemented using a recommended Windows method

The reason for creating two types of emulated ransomware samples is to further test the

robustness of the classifiers. The use of NtDelayExecution by malware is already docu-

mented [179]. It has also been encountered in this research in the top ten most frequent

calls in tables 3.6 and 3.7. GetSystemTimeAsFileTime has not been encountered as

much, although it appeared in the top ten most frequent calls for benignware and mal-

ware in table 3.6. Despite the fact that both system calls can be used to implement the

same functionality, there is a possibility that the difference in behaviour of these calls

will affect the classification accuracy of the emulated ransomware.

The experiments carried out in this chapter are identical to those carried out in the

previous chapter. As with Amsel, 1500 emulated ransomware samples using the C time

function were generated with the same spread of time delays as Amsel. Likewise, 1500

emulated ransomware samples using the Windows Sleep function were also generated.

As before, the classifiers were trained on the real ransomware and benignware from

chapter 4 and then separately tested on each group of emulated ransomware. These

experiments were conducted for the Cuckoo and Kernel data.

5.2 Results

5.2.1 Standard C time method

The results from testing the classifiers on the emulated ransomware samples using the

C time function are shown in table 5.1
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Machine Learning Algorithm Kernel Driver Accuracy (%) Cuckoo Accuracy (%)

AdaBoost 83.1 0.0

Decision Tree 60.0 0.0

Gradient Boost 60.1 0.0

Linear SVM 0.0 0.0

Nearest Neighbour 6.07 2.27

Random Forest 48.6 3.54

Table 5.1: Classification accuracy of emulated ransomware with C time function

using data from Cuckoo and the Kernel driver.

On the Cuckoo side, the results are considerably worse compared to the results when

Java was used to emulate ransomware. Not a single classifier correctly classifies even

50% of the samples. On the other hand, using the kernel data, the classifiers obtain

much better results. AdaBoost gets the best results with 83.1%. Therefore the most

influential features are studied to determine what contributed to these results.

5.2.1.1 Influential features

To understand what contributed to the results, the most important features were ana-

lysed using the inbuilt feature ranking method described in section 3.2.3. Unlike

chapter 4, the top 20 features are analysed since the emulated ransomware samples

used in this chapter are very minimal with regards to the system calls they use. Given

that AdaBoost is the best performing classifier for the kernel data, the top 20 features

from this classifier are analysed. The same is used for the Cuckoo data since there

were no outstanding classifiers. The first top ten features and the frequencies with

which they were called are shown in figures 5.1 and 5.2
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Figure 5.1: Frequencies (y-axis) of the top ten features (x-axis) of AdaBoost in

order (from left to right) for malicious, clean, and emulated ransomware data

(using C time) from the kernel.
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Figure 5.2: Frequencies (y-axis) of the top ten features (x-axis) of AdaBoost in

order (from left to right) for malicious, clean, and emulated ransomware data

(using C time) from Cuckoo.
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Figure 5.1 shows the sheer volume of file-handling related calls made by the emulated

ransomware. The two peaks in the call frequency are due to NtReadFile and NtWrite-

File. The importance that AdaBoost has placed on file-handling calls when trained on

the kernel data is also quite evident from figure 5.1. As observed previously, these two

calls seem to be called more frequently by benignware than ransomware.

In contrast, figure 5.2 does not focus on features used by the emulated ransomware.

The only feature in figure 5.2 that emulated ransomware uses is NtQueryDirectory-

File. This is also used by ransomware to obtain information regarding files and dir-

ectories [227]. Besides that, the main focus in figure 5.2 is on features frequently

used for evasive purposes (NtUnmapViewOfSection, LdrGetProcedureAddress, Get-

SystemMetrics).

Already, some important differences can be seen between the graphs here and those

in chapter 4. In chapter 4, the calls LdrGetProcedureAddress and NtProtectVirtual-

Memory were also utilised by the emulated ransomware with a frequency similar to

that employed by ransomware. However, the presence of these calls in the emulated

ransomware was due to using Java as opposed to being intentional design choices.

Moving on to the next ten most influential features according to AdaBoost, figures 5.3

and 5.4 show their mean frequencies for the kernel data and Cuckoo data.
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Figure 5.3: Frequencies (y-axis) of the features ranked 10-20 (x-axis) by AdaBoost

in order (from left to right) for malicious, clean, and emulated ransomware (using

C time) data from the kernel.
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Figure 5.3 shows the next ten most important features according to AdaBoost when

using the kernel data. Of note is NtCreateFile, which, unlike the previous file-handling

calls, is called more frequently by ransomware than benignware, and even more fre-

quently by the emulated ransomware. The frequency of the remaining features for

emulated ransomware are not caused by its operation but are just due to the general

system activity.

Figure 5.4 shows the next ten most important features when using the Cuckoo data.

The most prominent peak comes from the emulated ransomware and is due to the time

function that it calls (which goes on to call GetSystemTimeAsFileTime). The only

other feature used by emulated ransomware is NtReadFile, whose call frequency is

similar to that of real ransomware.

5.2.1.2 Misclassified samples

The classification results of the best performing classifier are further dissected to de-

termine the time delay values at which the best performing classifier was able to

identify emulated ransomware samples. Since classifiers were only able to produce

an acceptable result using the kernel data, the Cuckoo data is not analysed here. The

method employed to obtain this data is described in section 4.3.3. Figures 5.5 and

5.6 breakdown AdaBoost’s performance based on the time delay between each file

encryption.
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Figure 5.5: Results from AdaBoost classifying emulated ransomware samples us-

ing C time (with time between encryption <=2s) with the data from the kernel

driver.

Figure 5.6: Results from AdaBoost classifying emulated ransomware samples us-

ing C time (with time between encryption >2s) using the data from the kernel

driver.
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The results show the misclassified samples to be spread across all the times. The main

cluster of misclassified samples is between 1 and 10 seconds. AdaBoost seems to

perform best at both extremes, either when the frequency of encryption is very high or

very low. By correlating these plots with the top twenty features, it becomes clear that

this is likely due to the fact that when the rate of encryption is average, the amount of

file-handling calls correspond quite closely to those made by benignware.

5.2.1.3 Call category frequencies

Finally, to get an understanding of the data behind the results, the distributions of the

categories of calls obtained from running the emulated ransomware are plotted into a

pie chart for both Cuckoo and the kernel driver. The process involved in creating the

pie charts is described in section 4.3.4. The distribution of call categories for the kernel

data and Cuckoo data is shown in figures 5.7 and 5.8.

Figure 5.7: Distribution of call categories in data recorded by the kernel driver

for emulated ransomware using C time function.
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Figure 5.8: Distribution of call categories in data recorded by Cuckoo for emu-

lated ransomware using C time function.

Figure 5.7 shows the call category distribution on the kernel side. The distribution

of calls are dominated by calls to the file-system. This is not surprising given the

volume of calls made by the emulated ransomware. Though the calls in the additional

categories are also used, that is because the kernel driver is monitoring at a system-wide

level.

Figure 5.8 shows the call category distribution on the Cuckoo side. There is even

less distribution in the pie chart in this case. However, in this case, it is because it is

dominated by synchronisation calls. Further analysis reveals that every single call in

the synchronisation category comes from one system call, GetSystemTimeAsFileTime.

The domination by synchronisation calls is unsurprising given that the time function

needs to be called repeatedly to get the current time and compare with the projected

end time within the while loop.
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5.2.1.4 Combined data results

Finally, the data from Cuckoo and the kernel driver was combined to determine if the

results would be aided by this. Due to the fact that only the kernel driver was able to

produce a suitable performance, it would be unusual for the results to improve by com-

bining the data since that would add more noise. Previously, the results improved from

combining the data due to the fact that the classifiers misclassified different samples

depending on whether they were given the Cuckoo or kernel driver data. In this case,

since the classifiers were barely able to classify any samples correctly when using the

Cuckoo data, it was unlikely that combining the data would help the results. In ad-

dition, the emulated ransomware in this chapter uses very few features, therefore the

addition of more features was likely to add too much noise. To verify this hypothesis

the classification experiments were performed using the data from Cuckoo and the

kernel driver. The results are shown in table 5.2.

Machine Learning Algorithm Accuracy

AdaBoost 21.3

Decision Tree 33.0

Gradient Boost 53.5

Linear SVM 0.0

Nearest Neighbour 1.17

Random Forest 53.7

Table 5.2: Classification accuracy of emulated ransomware with C time function

using data from Cuckoo and the kernel driver.

As expected, the results from combining the Cuckoo and kernel driver data have pro-

duced weaker classification results than when the kernel data was used on its own.

Though some classifiers suffered more than others with the addition of features, ulti-

mately, none were able to obtain an accuracy higher than 54%.

The experiments carried out in this section reveal the lack of robustness in the classi-
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fiers trained on system call data from Cuckoo. Even though the emulated ransomware

demonstrated a mix of malicious and evasive symptoms, the classifiers using Cuckoo

data were not even able to detect more than 10% of the samples. This is due to the fact

that many of the features that were ranked highly by the classifiers were not used at all

by the emulated ransomware. In addition, the feature used to create the time delay is

not commonly used for this purpose by malware. On the other hand, the classifiers us-

ing the kernel data had more success, but were unable to get up to 90% accuracy. The

classifiers did not perform as well when the amount of file-handling activity exhibited

by the emulated ransomware matched that exhibited by benignware. An analysis of

the data revealed that due to the manner in which the delay was implemented for the

emulated ransomware, the amount of synchronisation calls far exceeded the number of

file-handling calls recorded by Cuckoo. However, since these calls did not reach the

kernel, the kernel data was dominated by file-handling calls.

5.2.2 Windows C Sleep method

In this section, the emulated ransomware using the Windows ‘Sleep’ method to im-

plement delay is evaluated. Table 5.3 shows the results from classifying emulated

ransomware using the Windows Sleep function to implement the delay between en-

crypting each file.
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Machine Learning Algorithm Kernel Driver Accuracy (%) Cuckoo Accuracy (%)

AdaBoost 6.40 74.4%

Decision Tree 2.21 10.7%

Gradient Boost 2.33 0.0%

Linear SVM 0.0 0.0%

Nearest Neighbour 0.33 27.9

Random Forest 3.13 8.08

Table 5.3: Classification accuracy detecting emulated ransomware using Win-

dows Sleep function (NtDelayExecution) using data gathered by Cuckoo and the

kernel driver.

The results in table 5.3 show how a small change in the function used (but little change

in functionality) can dramatically change the results. This time, the classifiers were

unable to get more than 10% accuracy when using the kernel data. Whereas, using

the data from Cuckoo, AdaBoost was able to obtain an accuracy of 74.4%. To get an

understanding into why the results have changed so drastically, the top 20 features are

analysed.

5.2.2.1 Influential features

As the top 20 features are obtained using best performing classifier (AdaBoost) on the

training data (as described in section 3.2.3), they are the same as the top 20 features

shown for the emulated ransomware using the C time function (in section 5.2.1.1).

However, it is still useful to analyse the average frequencies of each call in the top 20

since they are likely to differ. The top ten for the kernel and cuckoo data are shown in

figures 5.9 and 5.10.
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Figure 5.9: Frequencies (y-axis) of the top ten features (x-axis) of AdaBoost in

order (from left to right) for malicious, clean, and emulated ransomware data

(using Windows Sleep) from the kernel.

NtTe
rm

ina
teP

roc
ess

NtUn
map

Vie
wOfSe

cti
on

Co
Ini

tia
lize

Ex

Re
mov

eD
ire

cto
ryA

Cre
ate

Ac
tCt

xW

NtPr
ote

ctV
irtu

alM
em

ory

Ldr
GetP

roc
ed

ure
Ad

dre
ss

GetD
isk

Fre
eS

pa
ceE

xW

GetS
yst

em
Metr

ics

NtQue
ryD

ire
cto

ryF
ile

0

2000

4000

6000

8000

10000 Emulated Ransomware (Sleep)
Clean
Ransomware

Figure 5.10: Frequencies (y-axis) of the top ten features (x-axis) of AdaBoost in

order (from left to right) for malicious, clean, and emulated ransomware data

(using Windows Sleep) from Cuckoo.
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The distribution of calls in figure 5.9 is quite similar to that seen when the C time

function was used. However, one difference is the amount of file-handling calls made.

With the Windows Sleep function, the amount of file-handling calls made is consid-

erably less. This is unusual given that the emulated ransomware using the Windows

Sleep function should function in exactly the same manner as the emulated ransomware

using the C time function. The only difference is in the method used to implement the

time delay. After careful analysis, it became clear that the reason for this difference is

within the time function itself. The C time function is documented to return the num-

ber of seconds since January 1, 1970, however, this is not guaranteed. It may return

the number of milliseconds, for example. In addition, due to the fact that it is run on

a virtual machine (that has just been restored from a snapshot) rather than directly on

the hardware, it is even less likely to function as expected. Furthermore, the manner

in which the delay is implemented with the time function is through the use of a while

loop. This is not as efficient or accurate as the Sleep function. The reason being that

the Sleep function suspends the running thread and interrupts the CPU when it requires

attention again. Whereas the while loop is constantly executing on the CPU meaning

that it’s more likely to be affected by CPU load. The Sleep function, however, did

call a hooked system call, so this would add some delay to the call being resolved

which could have also impacted its accuracy. When testing an emulated ransomware

sample with the C time function and giving it the same time delay value as an emulated

ransomware sample using the Windows Sleep function, it was observed that occasion-

ally they both had the same amount of file-related calls, but not always. The C time

emulated ransomware sample occasionally made more file-related calls than the Win-

dows Sleep emulated ransomware. This explains why the classifiers using data from

the kernel driver did not detect the emulated ransomware with the Windows Sleep as

effectively, since it did not make as many file-handling calls.

The frequencies for the top ten in the Cuckoo data in figure 5.10 are similar to that seen

when the C time function was used. This is due to the fact that most of the functions in

the top ten for Cuckoo are not used by the emulated ransomware. Therefore the next
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ten features must be analysed to obtain a better understanding of the results.

Figures 5.11 and 5.12 show the next ten most influential features and the frequency

with which they were called by malware, benignware, and the emulated ransomware

using the Windows Sleep function.
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Figure 5.11: Frequencies (y-axis) of the features (x-axis) ranked 10-20 of Ada-

Boost in order (from left to right) for malicious, clean, and emulated ransomware

data (using Windows Sleep) from the kernel.
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Figure 5.12: Frequencies (y-axis) of the features (x-axis) ranked 10-20 of Ada-

Boost in order (from left to right) for malicious, clean, and emulated ransomware

data (using Windows Sleep) from Cuckoo.

Figure 5.11 again highlights the reduction in file-handling calls made by the emulated

ransomware using the Windows Sleep function. The frequency of benignware is now

closer to the frequency of emulated ransomware.

Figure 5.12 differs significantly from the emulated ransomware using C time (figure

5.4) with regards to the frequency with which the delay function is called. Obviously,

the emulated ransomware using Windows Sleep does not call GetSystemTimeAsFile-

Time at all, rather, it calls NtDelayExecution (the function called by Sleep). Although,

it calls it significantly less than benignware and ransomware on average. This is be-

cause the Sleep function only needs to be called once to suspend execution unlike the

time function which is inside a while loop. Due to this, AdaBoost is able to correctly

classify a significant portion of the emulated ransomware samples correctly. To under-

stand what caused AdaBoost to incorrectly classify emulated ransomware samples, the

classification results per sample are analysed.
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5.2.2.2 Misclassified samples

The previous section showed how AdaBoost was able to detect the emulated ransom-

ware samples. However, it is not clear why AdaBoost did not detect all the emulated

samples. To understand this, the time delays of the samples that were correctly and

incorrectly classified are plotted. This is shown in figures 5.13 and 5.14.

Figure 5.13: Results from AdaBoost classifying emulated ransomware samples

using Windows Sleep function (with time between encryption <=2s) using the data

from Cuckoo.
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Figure 5.14: Results from AdaBoost classifying emulated ransomware samples

using Windows Sleep function (with time between encryption >2s) using the data

from Cuckoo.

From figure 5.13, it is immediately clear as to where AdaBoost misclassified samples.

The samples that had a large proportion of file activity compared to evasive activity

were not detected. Once the time delay between each encryption increased beyond

half a second, AdaBoost was able to correctly classify the samples. In other words,

as the evasive behaviour became more prominent in the Cuckoo data, the classification

accuracy of AdaBoost improved. The results here are similar to those seen in figure 4.3

when Java was used to emulate ransomware. However, the difference here (figure 5.13)

is that almost all samples with a delay below half a second went undetected, whereas

in figure 4.3 some samples were detected.

5.2.2.3 Call category frequencies

To get an understanding of the data seen by the classifiers and how it differs to the data

from the emulated ransomware using the C time function, the various categories of

calls made by the average sample is visualised in the form of a pie chart for the kernel
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and Cuckoo data in figures 5.15 and 5.16.

Figure 5.15: Distribution of call categories in data recorded by the kernel driver

for emulated ransomware using the Windows Sleep function.

Figure 5.16: Distribution of call categories in data recorded by Cuckoo for emu-

lated ransomware using the Windows Sleep function.
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The distribution of the categories of calls in figure 5.15 for the kernel data shows a re-

latively even distribution (unlike figure 5.7). The files category is the largest in the pie

chart, however, it does not show the same dominance as in figure 5.7 further showing

why AdaBoost was unable to correctly classify the Windows Sleep emulated ransom-

ware.

In the Cuckoo data, this time the dominant category is the file calls. Figure 5.16 shows

file calls make up 97% of an emulated ransomware sample. This is to be expected since

the call to Sleep does not need to be called as frequently as the C time call. In addition,

in this case, all the calls in the synchronisation category came from NtDelayExecution.

5.2.2.4 Combined data results

Finally, as with the C time emulated ransomware, the data from Cuckoo and the kernel

driver was combined. However, as before, it is not likely that the results will improve

since in this case, only the Cuckoo data was able to obtain an acceptable level of

accuracy. The results are shown in table 5.4.

Machine Learning Algorithm Accuracy

AdaBoost 0.20

Decision Tree 9.76

Gradient Boost 1.2

Linear SVM 0.0

Nearest Neighbour 0.07

Random Forest 15.4

Table 5.4: Classification accuracy of emulated ransomware using Windows Sleep

function from Cuckoo and Kernel driver.

As expected, the results are considerably worse when the data from Cuckoo and the

kernel driver is combined. Therefore, this chapter has revealed that it is not always
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appropriate to combine the Cuckoo data with the data from the kernel driver as it will

not always lead to improved results.

Studying emulated ransomware using the Windows Sleep function as opposed to the C

time function has revealed the lack of robustness within classifiers using system calls.

The data from the kernel driver was found to be insufficient for detecting the emulated

ransomware. While the data from Cuckoo was used to obtain an accuracy of 74.4%,

this was largely helped by the Sleep function used. When emulated ransomware slept

for very short time periods, and spent more time encrypting files, the Cuckoo data was

not suitable for detecting the emulated ransomware.

5.3 Conclusion

This chapter set out to determine whether Java is a suitable medium to use to emulate

malware and whether the classifiers trained on system calls are vulnerable to minor

changes in calls used. It tested this by re-implementing the emulated ransomware used

in chapter 4 in C. Two implementations were created that were identical except with

regards to the function used to create the delay between encrypting each file. One

implementation used the C standard time method to create the delay while the other

used the Windows Sleep function to achieve it. The results showed that when the

function used to implement the evasiveness/delay was the standard C time function,

the emulated samples went completely undetected using the Cuckoo data. However,

since the function commonly used by malware to implement evasiveness in that manner

is the Windows Sleep function, one classifier using Cuckoo data was able to detect

74.4% of the samples. The only samples it did not detect were those where the amount

of evasiveness was low relative to the file calls (or malicious behaviour). The results

provided further evidence that the features being focused on within the Cuckoo data

relate to the evasive behaviour of malware.

On the other hand, since the kernel data was focusing largely on the file activity, it
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was not changes in the delay function that affected it. Rather, it was the changes that

resulted from using a different delay function that affected it. When the emulated

ransomware was using the Windows Sleep function, it did not display as much file

activity as when the C time function was used. This is partially due to the manner

in which the Windows Sleep is implemented. Therefore, when using the kernel data,

AdaBoost was able to detect 83.1% of the emulated ransomware samples using the C

time function.

Therefore, it can be concluded that when using system-call data from Cuckoo, the

classifiers are particularly vulnerable to changes in the system calls used to achieve

the same functionality. This is partly down to the low level of abstraction at which

Cuckoo monitors programs. This is less of a problem in the kernel data where there

are fewer redundant calls. A simple remedy for this would be to represent features that

are practically identical as the same feature (for example, GetSystemDirectoryA and

GetSystemDirectoryW).

Another remedy is to gather the data at both levels, so that each can offset the short-

comings of the other. However, unlike chapter 4, this chapter has found that it must

not be blindly combined, or combined at all. Rather, each dataset should be consulted

independently since combining the data can cause one to bring down the accuracy of

the other.

Therefore this chapter has shown that while some of the general conclusions that were

made when using Amsel in chapter 4 are similar to those made in this chapter, the

interference from the JVM showed the classifiers to be much less vulnerable than they

are. In addition, Java does not provide the flexibility and control required to test a

classifier’s vulnerability to small changes in system calls. Java is more suitable to test

programs operating at higher levels of abstraction.
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Chapter 6

Discussion

This thesis looked at some of the assumptions within the field of dynamic malware

analysis to determine whether they needed rethinking. The findings indicate that the

process requires some refining. Therefore this chapter proposes some general prin-

ciples for dynamic malware analysis that have been extrapolated from the findings in

the previous chapters. This is detailed in the final research question:

RQ7 How can the dynamic malware analysis process be amended to prevent uninten-

ded security flaws from emerging?

In answering this question, the final contribution of this thesis is provided:

C9 The findings from this research are generalised to inform the general dynamic

malware analysis process.

In addition, this chapter discusses some of the limitations in this work as well as the

future directions for this research.

6.1 General Principles for Dynamic Malware Analysis

This thesis has studied some of the basic assumptions in the dynamic malware analysis

process and questioned the lack of theory behind them. In doing so, it has discovered
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some inherent flaws in the traditional dynamic malware analysis pipeline. Therefore,

to help future publications in this field, this section makes some recommendations to

strengthen the traditional dynamic malware analysis process. Each recommendation is

listed as a subsection.

6.1.1 Analyse the contributing features

When analysing the classification results from differentiating malware and benignware

in chapter 3 (table 3.2) and chapter 4 (table 4.1 and 4.2), it would seem that the classifi-

ers are extremely adept at detecting malware. However, from studying the contributing

features (table 3.4, 3.5, 4.5 and 4.6) and subsequently the results from the experiments

with emulated ransomware in chapter 4 and chapter 5 (table 4.1, 4.2, 5.1 and 5.3),

it became clear that the classifiers are not as robust as the original results suggested.

This realisation would not have occurred had the most influential features informing

the classifiers not been analysed. Studying them highlighted the dependence that the

classifiers had placed on evasive features. This also highlights the importance of hav-

ing an understanding of the features being provided to the classifiers. For example,

in knowing that GetSytemDirectoryA and GetSystemDirectoryW are essentially the

same feature, the analyst can consider combining them to avoid overfitting. Without

studying the features, a solution’s robustness cannot be guaranteed.

6.1.2 Document the analysis tool used

Within dynamic malware analysis, the tool being used to capture the data can have a

profound effect on the classification results. Chapter 3 illustrated this point by showing

the differences in classification results just from using different hooking strategies.

However, hooking strategies aside, tools can come with a variety of additional features

that can be enabled. Using Cuckoo as an example, in addition to gathering system calls,

it simulates user activity which includes clicking the mouse and pressing buttons on the



6.1 General Principles for Dynamic Malware Analysis 166

keyboard. In addition, it can be made to simulate network activity amongst many other

things. Therefore, it’s not enough to simply state the name of the tool being monitored,

but, any parameter values that were modified must be listed to aid reproduce-ability.

This is particularly important since much of the additional functionality mentioned can

significantly affect classification results. For example, malware frequently looks for

user activity before actually running. This includes mouse movements and recently

created files [179]. Furthermore, if a relatively new and undocumented tool is being

used, it’s essential that its functionality and, in particular, call capturing methodology

are carefully documented. Another important aspect that needs to be highlighted when

describing the tool being used is the level at which it gathers calls. Tools can gather

calls at a local process level (where they only monitor the process being investigated)

or a global system level (where they monitor the entire system). Within the local

level, however, tools could also monitor child processes created by the process under

investigation. In addition, they may be concerned with monitoring a process that the

process under investigation injected itself into. All of these can have a significant

effect on the calls captured and therefore must be documented. The reason for such

a strong emphasis on accurately documenting the methodology employed by the tool

being used is due to the fact that its effect on the results is significant (refer to table 3.2

and 3.9). This transparency will also allow other researchers to faithfully reproduce

the results.

6.1.3 Document the features used

In addition to analysing and discussing the influential features, chapter 4 showed the

importance of carefully considering the categories of calls being monitored (refer to

section 4.4.8). For the research in this thesis, the UI calls were ignored. Part of the

reason for this is the obvious risk from overfitting that can occur. Since UI activity

is non-essential, it is trivial to alter it to avoid detection. Section 4.4.8 analysed the

performance of Cuckoo with and without the addition of UI calls and while it did
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not change much for differentiating ransomware from benignware, when classifiers

were trained on data with UI calls, the ability to detect emulated ransomware dropped

considerably. Therefore, it is important to carefully select calls to monitor with the

help of expert knowledge in the domain.

6.1.4 Document the hyper-parameters

Chapter 4 briefly showed the effects of hyper-parameters on classification results (sec-

tion 4.4.3). Though brief, section 4.4.3 found that the values of the hyper-parameters

could have a significant effect on the results, particularly when it came to detecting

the emulated ransomware. The values of the hyper-parameters can also reveal whether

the classifier is more likely to overfit the data. Therefore, the hyper-parameters values

must be clearly documented to aid reproducibility.

6.1.5 Monitor at multiple levels of abstraction

The best classification results in chapter 3 and chapter 4 came from using system calls

gathered at both a user- and kernel-level (sections 3.3.3 and 4.4.6). Conversely, in

chapter 5 (sections 5.2.1.4 and 5.2.2.4) it was found that combining the data from both

levels caused the results to drop significantly. However, while combining the data

from different views can be dangerous, consulting the data from each independently

can be very beneficial. Chapter 5 also found that classifiers were able to detect different

types of emulated ransomware depending on what data was used, since each focused

on different elements of the malware’s behaviour. Therefore using an additional layer

of security is likely to be beneficial. In addition to monitoring at user- and kernel-

level, monitoring at a global as well as local level can be beneficial. Monitoring at a

local level allows the analysis tool to observe the minutiae of the sample’s behaviour,

however, this could miss malicious activity that malware forces benignware to perform

on its behalf. Therefore, monitoring at a global level can remedy this. Monitoring at
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a global level also allows a tool to observe changes in the general behaviour of the

system. In more general terms, when monitoring malware, it’s important not to rely on

only one data source since there is less chance of malware evading or compromising

multiple data capturing sources.

6.1.6 Evaluate available hooking methodologies

The results from chapters 3, 4 and 5 all unequivocally show that the choice of hooking

methodology affects the classification results obtained. Therefore, as alluded to in

section 6.1.2, the hooking methodology used must be carefully considered. Aside

from the general differences in data captured, a number of considerations must be

made when selecting an appropriate hooking methodology. At the kernel-level, the

three main distinctions between each hooking methodology is performance, scope and

difficulty. Performance is very important at a kernel-level and poor performance can be

exploited by malware to detect the presence of an analysis tool since it will affect the

performance of the whole system [65]. Scope refers to the categories of system calls

that are available to be intercepted by the hooking methodology chosen. Most of the

hooking methodologies have the potential to intercept all system calls, but not all. Filter

drivers for example, tend to observe events from specific categories (as mentioned in

section 2.3.6). In addition, as some hooking methodologies have a greater impact on

performance, the actual quantity of calls available to them is limited. Finally, another

important consideration is the difficulty of implementing the hook. With some hooking

methodologies (such as VMI), the implementation is complicated by the size of the

semantic gap that needs to be bridged to create a working solution. This is not trivial

as the location of the hook will determine whether the analysis tool has to decipher and

interpret register values or simple data structures.

In terms of user-level hooks, there is little difference between the inline and IAT hooks,

therefore, both are interchangeable. DBI, on the other hand, allows for an analyst to

obtain detailed information regarding a sample’s behaviour but unless that level of
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information is required, it is not worth the performance impact that it brings.

As can be seen, there are a number of factors that must be considered when selecting a

hooking methodology. Each of these factors can also have a small but noticeable affect

on the data gathered and therefore must be carefully evaluated within the context of the

tool they will be deployed in.

6.1.7 Conclusion

Much of the principles detailed in this section relate to transparency. The effects that

each component of the dynamic malware analysis pipeline can have is often underes-

timated or not anticipated. Therefore, by providing more information on the matter, it

makes it possible for both the authors and others to accurately verify the robustness of

the results produced from the research.

6.2 Limitations & Future work

Despite the extensive analysis conducted in this thesis, it is not without its limitations.

There are still many aspects within the dynamic malware analysis process that could

not be studied. However, these understudied areas provide plenty of opportunities for

future work.

The main limitation in this work relates to the platform chosen. While the work con-

ducted in this thesis can be generalised to other platforms, it would have been better to

have conducted the experiments in this thesis on each version of Windows that came

after XP as well. The reason for choosing XP over the latest version of Windows is

that, as explained previously, malware still targets older versions of Windows. Un-

supported versions tend to be the low hanging fruit in any organisation. This was

evidenced by the recent cyber-attack by WannaCry targeting NHS systems still using
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Windows XP [64, 81]. Therefore, ideally, it would be more beneficial to use each ver-

sion of Windows from XP onwards. This would show if the results differ on different

versions of Windows. Unfortunately, due to the constraints of time, this could not be

achieved. With each new version of Windows, the kernel is updated with additional

calls to support new functionality. Therefore a modified kernel driver would be needed

for each version. Furthermore, with the introduction of 64 bit versions of Windows

came PatchGuard [229]. PatchGuard provides Kernel Patch Protection for Windows

by triggering a blue screen of death as soon as it sees that structures within the kernel

(such as the SSDT) have been modified. Though there are ways to get around Patch-

Guard [231, 228], and methods provided by Microsoft to intercept kernel activity, it

would require a considerable development effort to create kernel drivers for both 32

and 64 bit versions of Windows.

Throughout the research in this thesis, the focus was on system calls made. For sim-

plicity’s sake, and due to the constraints of time, the arguments of each system call

were not considered. In addition, gathering the arguments from every system call in

the SSDT would have had a considerable effect on the system’s performance. Cuckoo

already provides this information, and the kernel driver could quite easily be modified

to supply this information (since it is already embedded in each system call). To work

around the performance issue, a reduced feature set using the results in chapter 3 in

section 3.3.4 could be used to guide the process. This is a potential future work.

The localised kernel results in chapter 3 - section 3.3.2 only included calls made by the

process under investigation and any child processes it created. However, malware is

known to inject its code into a benign process and execute it from there. The localised

kernel driver would not see any calls executed in this manner. This severely limits the

amount of data that can be captured as evidenced in a report by Pao Alto Networks

in 2013 that found injection techniques were being used in 13.5% of the samples they

analysed [181]. Therefore, a potential future work could be to compare the localised

kernel driver’s results with a version of the kernel driver that is also gathering calls from
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malware samples using process injection. The prevalence of process injection also

brings into question the suitability of user-level hooks in dynamic malware analysis

tools. Currently the only method by which user-level tools can combat injection is

if the designers of the tools are aware of the injection method beforehand. However,

process injection methods are on the rise. In 2019, Safebreach labs documented 26

techniques by which process injection can be achieved in Windows [144]. Therefore, it

would also be useful to study which hooking methodology suffers more from malware

employing unseen process injection techniques.

This thesis tested whether classifiers trained on malware and benignware could cor-

rectly classify malware that didn’t look like the typical malware sample and found them

lacking. However, it would also be useful to determine whether classifiers trained on

malware from the previous decade, for example, are able to detect malware in the cur-

rent decade. This is important since one of the claimed benefits of machine learning in

malware analysis is that solutions will not need to be constantly updated since the rules

learned will be generic enough to cover a wide range of malicious behaviours. There-

fore, it would be beneficial to determine how the accuracy of the classifiers changes

over time and how long the classifiers will be relevant.

Besides some of the basic defences against anti-analysis techniques provided by Cuckoo,

no additional techniques were applied to defeat anti-analysis techniques within mal-

ware. Though there have been a number of solutions proposed in the literature to

counter anti-analysis techniques [38, 143, 155], it was important in this research to fol-

low the most commonly used technique in dynamic malware analysis. This is because,

the aim of the thesis was to test flaws with the most commonly used technique which

is why Cuckoo was chosen. In the future, it would be interesting to compare how the

behaviours of malware learned by classifiers differ based on the environment that was

used (environment with anti-anti-analysis vs environment without anti-anti-analysis).

The malware datasets used in this thesis consist solely of Portable Executable files.

This is due to the fact that PE files are easier to run and determine the compatibility
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requirements for. However, it would be interesting to determine whether malware dis-

tributed through other means (for e.g. Word documents, PDF files) produce similar

results.

The dataset used in chapter 3 consisted of a random collection of malware. However,

the results may have been different had an equal amount of malware been gathered

for each category. The difficulty with doing this is that currently there is not a signi-

ficant amount of agreement amongst Anti-Virus vendors regarding the definitions of

categories or the category that the various malware samples belong to. The benefit of

having an equal spread of malware from each category is that it would show how user

and kernel level differ within each category. For example, rootkits tend to operate in

kernel mode to avoid user mode detectors, therefore, it would have been interesting to

determine whether rootkits are more likely to be detected by the kernel driver.

The research in this thesis compared one user-level hooking methodology against one

kernel-level hooking methodology. However, as chapter 2 showed, there are many

hooking methodologies within both categories. Therefore, it is not completely clear

that all kernel hooking methodologies would outperform all user level hooking meth-

odologies. As a result, the next potential avenue that could be explored is how each

hooking methodology differs in the information it gathers and whether there is one

particular method that stands above the others.

The research performed in chapter 4 and chapter 5 focused solely on ransomware,

however, the study can certainly be extended to other types of malware (some of which

may be more or less evasive than ransomware). This is important as the results may

differ for different malware families. This would be a more holistic test for classifiers

trained in the traditional dynamic malware analysis process.

In chapter 4, two of the hyper-parameters were found to have a significant effect on the

classifiers’ results on the test set. This highlighted the importance of carefully tuning

the hyper-parameters. However, there are many hyper-parameters that were not studied

that would could also have a significant impact on results. Therefore, in the future, this
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would be an interesting avenue to explore.

The research in this thesis aimed to study the differences in different hooking methodo-

logies rather than find the best machine learning method for dynamic malware analysis.

Therefore, the feature representation method used was quite simplistic (frequency his-

tograms). As mentioned in chapter 2, there are other feature representation methods

whose impact on the results could be compared. In future, it would be interesting to

compare the performance of each feature representation method when it comes to de-

tecting emulated malware. It’s possible that using a feature representation method at a

higher level of abstraction will help classifiers to detect emulated malware and reduce

their sensitivity to small changes in system calls.

Chapter 4 and chapter 5 studied the dependence of classifiers on evasive behaviour to

detect malware. Only one evasive technique was studied to ensure that the reasons

for the results would be easily interpretable. However, many more exist and they may

effect classification results differently. Therefore, in future, experiments in chapter 5

will be repeated using different evasion tactics to study their effects on classification

accuracy.

Chapter 4 and chapter 5 employed similar techniques to those used in adversarial learn-

ing, however, they do not fall directly under the banner of adversarial learning. This

will be an important avenue to explore in future particularly with regards to whether

kernel- or user-level data produces more vulnerable classifiers.
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Chapter 7

Conclusion

In this chapter, the research conducted in this thesis is summarised and the main con-

tributions are highlighted.

This thesis started by assessing the current state of the literature. This involved ex-

amining each of the tools used to conduct dynamic malware analysis to determine

their novelty. The findings from this were highlighted in chapter 2 - Background.

Chapter 2 found that the literature in the field of malware analysis was moving away

from static analysis due to its inherent weakness to obfuscation and polymorphism,

and moving towards dynamic analysis [171, 75]. Within dynamic analysis the general

trend was to gather and use system calls to identify malware since all behaviours are

ultimately expressed in system calls. System calls can be gathered using a number of

hooking methodologies. These can be broadly separated into two categories; those that

intercept calls at a user-level privilege, and those that intercept calls at a kernel-level

privilege. A number of different hooking methodologies seemed to be in use within the

literature and authors did not always justify why they chose the hooking methodology

that they did. Furthermore, the literature was not clear on the advantages and disad-

vantages of each hooking methodology. Rather, the focus in dynamic analysis seemed

to be on the machine learning method used to classify the data gathered as opposed to

the method by which the data was gathered. In fact, there was not much agreement on

the method by which system calls should be gathered for optimal results. In addition,

there did not seem to be an industry standard tool that was recommended.
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Table 2.1 shows the sheer volume of tools in use within the field of dynamic malware

analysis and this excludes single-use tools (tools used only in the paper they are pro-

posed in). The lack of consensus regarding the most appropriate hooking methodology

is reflected in the overabundance of tools available. Part of the reason for there being

so many tools is that as dynamic analysis experienced a surge in popularity, malware

authors started adding more evasive behaviours to their samples to escape analysis.

Therefore, new tools were proposed to defeat a new anti-analysis technique.

Table 2.1 did, however, show a growing consensus forming around Cuckoo Sand-

box [111]. Although table 2.1 did not show the reason behind the consensus around

Cuckoo. There are many reasons to prefer Cuckoo to other tools; it’s free, open source,

expandable, and easy to integrate with other tools. Though these are all valid reasons

to choose Cuckoo over another tool, they do not say anything about its ability to gather

reliable data regarding the behaviour of malware. The risk with using a tool that has not

been carefully analysed and compared to other tools is that it may not be most optimal

tool for the task. In particular, it could be missing essential information regarding the

behaviour of malware. If this data is never gathered, regardless of how powerful the

machine learning classifiers used are, a detection tool can only do so much.

This was the motivation behind chapter 3. Chapter 3 sets out to discover if the ability

of classifiers to distinguish malicious from benign differs significantly if the classifiers

are given data from different privilege levels in the OS. A collection of malware and

benignware totalling 5000 samples was gathered. Each sample was analysed by a tool

operating at user-level and a tool operating at kernel-level. The user-level tool used

was Cuckoo since this tool had the largest consensus around it. Tools monitoring at

a kernel-level were harder to source. Many of the respected tools appropriate for the

task had been commercialised. None of the tools available were able to monitor the

amount of system calls required. Therefore a kernel driver was written specifically for

this thesis (available here: [176]).

The data gathered was then used to train and test commonly used machine learning
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classifiers in the field. Of the classifiers, Random Forest produced the best performance

distinguishing malicious from benign. It obtained an accuracy of 94.0% using the

data from Cuckoo and 95.2% using the data from the kernel driver. This difference in

results was found to be statistically significant, thereby showing that data from different

privilege levels could not be used interchangeably.

To obtain an understanding into the reason behind the difference in the results from

chapter 3, the features contributing the most towards the results for the best perform-

ing classifier were analysed separately for the data from Cuckoo and the kernel driver.

This revealed that, when trained on data from Cuckoo, the main behavioural feature

of malware that was being used by the classifiers to distinguish malicious from benign

was the evasive behaviour of malware. In other words, the behavioural properties of

malware that were being used by classifiers to identify it was the very behaviour that

malware contained to evade detection. This observation was noted to a lesser degree

within the kernel-level data. When using the kernel data, classifiers also used the differ-

ences in general behaviour to distinguish malware from benignware. Therefore, since

the behavioural properties used to distinguish malicious from benign differed depend-

ing on the level that the data was gathered from, the data from the kernel driver and

Cuckoo was combined. As expected, this caused the classification results to improve

with the accuracy of Random Forest rising to 96.0%.

Given the behavioural properties of malware being used by the classifiers to distin-

guish it in chapter 3, chapter 4 sought to determine whether this presented a security

risk. The question that chapter 4 attempted to answer is that if classifiers are identi-

fying malware largely through their evasive behaviour, can they detect samples that

only present malicious behaviour? To answer this question, classifiers were trained in

the traditional dynamic malware analysis process as performed in chapter 3. Then, the

trained classifiers were tested against emulated malware that contained varying degrees

of evasive behaviour. The category of malware focused on in this chapter was ransom-

ware. Ransomware was chosen due to its recent surge in popularity. In addition, the
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malicious symptoms of ransomware are quite straightforward to emulate (since it is

simply the encryption of files) and extensively documented [101, 140, 177].

The emulated malware being used as a test set was written in Java. It essentially en-

crypts a file and then waits for a specified period of time before encrypting another

file. The file encryption represented the malicious behaviour while the wait represen-

ted the evasive behaviour (since evasive behaviour largely aims to stall the execution of

malicious behaviour). To determine how vulnerable classifiers were to such samples,

the rate of encryption of each emulated ransomware sample was varied. In total 1500

emulated ransomware samples were created.

The results from these experiments showed that while the classifiers had no trouble

distinguishing real ransomware from benignware, they were not able to detect the emu-

lated ransomware with the same confidence. Using the Cuckoo data, the highest ac-

curacy detecting real ransomware came from Gradient Boost at 97.3%. On the other

hand, the highest accuracy detecting the 1500 emulated ransomware samples using the

Cuckoo data came from Decision Tree at 76.7%. Similarly, using the Kernel data,

the highest accuracy detecting real ransomware (also from Gradient Boost) was 98.2%

and the highest accuracy detecting the emulated ransomware (also from Decision Tree)

was 67.0%. The accuracy values alone indicated that data gathered by Cuckoo was

better suited to detecting the emulated ransomware than data gathered by the kernel

driver. Analysing the influential features revealed some interference from the JVM

that might have assisted with the classification results, particularly given the features

ranked highly by classifiers using the Cuckoo data.

However, the real goal was not to simply compare accuracy values with regards to the

emulated ransomware. The goal was to determine the file encryption rate at which

classifiers can no longer detect the emulated ransomware. The results from this indic-

ated that when using data from Cuckoo, Decision Tree was unable to detect emulated

ransomware that frequently encrypted files with little time delay. In other words, as

the evasiveness of the emulated ransomware sample increased, so did the detection ac-
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curacy. When using the data from the kernel driver, the opposite was true. Decision

Tree was able to detect emulated ransomware with high file encryption rates, but as the

activity of the emulated sample dropped, it got lost amongst every other process being

monitored by the kernel driver. As with chapter 3, combining the Cuckoo and kernel

data produced the best results when detecting the emulated ransomware, obtaining an

accuracy of 88.5%.

As the emulated ransomware used in chapter 4 was written in Java, a high-level lan-

guage, there is not complete control over each system call made. Given that uninten-

ded activity from the emulated ransomware was observed in chapter 4 due to the JVM,

chapter 5 verifies the integrity of the emulated ransomware results. In chapter 5, the

emulated ransomware was recreated in C due to the level of control it provides. Two

variants of the emulated ransomware were recreated in C, one used the delay function

frequently seen in malware, NtDelayExecution. The other implemented the delay us-

ing the standard C time function. Apart from that, the experiments carried out were

identical to the experiments in chapter 4.

The results in chapter 5 showed that when the C time function was used to implement

the delay, the emulated ransomware was not detected by classifiers using the Cuckoo

data at all. However, it was detected when the kernel data was used with an accuracy of

83.1% by AdaBoost. The only time it was incorrectly classified was when the average

file activity of the emulated ransomware closely resembled that of real ransomware.

When using NtDelayExecution, AdaBoost performed much better with the Cuckoo

data, obtaining an accuracy of 74.4%. The only time AdaBoost was unable to detect

the emulated ransomware was when it had a high rate of encryption. Using the kernel

data, AdaBoost was unable to detect the emulated ransomware using NtDelayExecu-

tion. This seemed to be due to a reduction in average file activity caused by internal

differences between NtDelayExecution and the C time function. Finally, unlike previ-

ous chapters, combining the user- and kernel-level data did not improve results in this

case but caused them to drop.
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The results from chapter 5 further confirm that classifiers trained on user-level data use

evasive behaviour to identify malware. In addition, the huge swing in results after chan-

ging a single system call shows the lack of robustness in classifiers trained on system

calls. Finally, while some of the conclusions concur with those made in chapter 4, the

results from chapter 4 suggested that the classifiers were not as vulnerable as they are.

In addition, many of the results were not as convincing and interpretable in chapter 4

due to noise from the JVM. Therefore, using Java to emulate malware for the purposes

of testing detectors monitoring at a system call level is not appropriate.

Chapter 6 combined the findings from chapter 3, chapter 4 and chapter 5 into general

principles to abide by when performing dynamic malware analysis. For example, with

data collection, the recommendation is to gather data at multiple levels of abstraction

that are consulted independently. This adds an extra layer of security and provides

much better protection against malware with novel anti-analysis techniques. The re-

maining principles outlined aim to ensure that newly proposed detectors are robust to

trivial attacks. They also ensure that the manner in which new solutions function is

transparent to the rest of the research community, so that they can be peer-reviewed.

This will also allow for a fair comparison to existing solutions.

To conclude, this thesis looked at some of the assumptions within the field of dynamic

malware analysis to determine whether they needed rethinking. In particular, whether

the data deserves as much attention as the method. The findings indicate that the data

collection method requires much more study if the detectors produced are to be robust.

This thesis has shown that a detector cannot be evaluated on its classification results

alone. In a field as critical as security, the inner workings of the detector must also be

evaluated before it can be ratified.
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Copyright c© 2000, 2001, 2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. Preamble

The purpose of this License is to make a manual, textbook, or other functional and use-
ful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the docu-
ment must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. Applicability and Definitions

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of
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this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or
of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revis-
ing the document straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing ed-
itor, and that is suitable for input to text formatters or for automatic translation to a
variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LATEX input format, SGML or XML using a publicly available
DTD, and standard-conforming simple HTML, PostScript or PDF designed for human
modification. Examples of transparent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that can be read and edited only by pro-
prietary word processors, SGML or XML for which the DTD and/or processing tools
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are not generally available, and the machine-generated HTML, PostScript or PDF pro-
duced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may pub-
licly display copies.

3. Copying in Quantity

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
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back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which the
general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. Modifications

you may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under pre-
cisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.
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C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the pub-
lic permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Doc-
ument, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed in
the “History” section. You may omit a network location for a work that was pub-
lished at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.
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If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties — for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. Combining Documents

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”
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6. Collections of Documents

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. Aggregation with Independent Works

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Document’s
Cover Texts may be placed on covers that bracket the Document within the aggregate,
or the electronic equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.

8. Translation

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices
and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.
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If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

10. Future Revisions of this License

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your docu-
ments

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title
page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distrib-
ute and/or modify this document under the terms of the GNU Free Docu-
mentation License, Version 1.2 or any later version published by the Free

http://www.gnu.org/copyleft/
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Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section
entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.
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