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Abstract12

Historically, hydrological models have been developed to represent land-atmosphere13

interactions by simulating water storage and water fluxes. These models, however,14

have their own unique characteristics (strength and weakness) in capturing different15

aspects of the water cycle, and their results are typically compared to or calibrated16

against in-situ observations such as river runoff measurements. As a result, there17

may be gross inaccuracies in the estimation of water storage states produced by18

these models. In this study, we present the novel approach of Dynamic Model Data19

Averaging (DMDA), which can be used to compare and merge multi-model water20

storage simulations with monthly Terrestrial Water Storage (TWS, a vertical summa-21

tion of surface and sub-surface water storage) estimates from the Gravity Recovery22

And Climate Experiment (GRACE) satellite mission. Here, the main hypothesis is23

that merging GRACE data with multi-model outputs likely provides more skillful24

hydrological estimations compared to a single model or data set. Theoretically, the25

proposed DMDA combines the benefits of the Kalman Filter (KF) and Bayesian26

Model Averaging (BMA) techniques and has the capability to deal with various ob-27

servations and models with different error structures. Based on the Bayes theory,28

DMDA provides time-variable weights for hydrological models to compute an aver-29

age of their outputs that are best fited to GRACE TWS estimates. Numerically,30

the DMDA method is implemented by integrating the output of six hydrological and31

land surface models (PCR-GLOBWB, SURFEX-TRIP, LISFLOOD, HBV-SIMREG,32

W3RA, and ORCHIDEE) and monthly GRACE TWS estimates (2002–2012) within33

the world’s 33 largest river basins, while considering the inherent uncertainties of34
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all inputs. Our results indicate that DMDA correctly separates GRACE TWS es-35

timates into surface water, soil moisture and groundwater compartments. Linear36

trends fitted to the DMDA-derived groundwater compartment are found to be dif-37

ferent from those of original models. This means that anthropogenic influences within38

the GRACE data, which are not well reflected by models, are introduced by DMDA.39

We also find that temporal correlation coefficients between the DMDA-derived in-40

dividual water storage estimations (surface water, soil moisture, and groundwater)41

and the El Niño Southern Oscillation (ENSO) index are considerably increased com-42

pared to those derived between individual model simulations and ENSO (e.g., an43

increase from -0.2 to 0.6 in the Murray River Basin). For the Nile River Basin, they44

changed from 0.1 to 0.4 for the soil moisture, and from 0.3 to 0.7 for the surface wa-45

ter compartment. Comparisons between the DMDA-derived surface water and those46

from independent satellite altimetry observations indicate that after implementing47

DMDA, temporal correlation coefficients within major lakes are increased. Based on48

these results, we have gained confidence in the DMDA water storage estimates to be49

used for improving the characterization of water storage over broad regions of the50

globe.51

Keywords: GRACE, Terrestrial Water Storage (TWS), Dynamic Model Data52

Averaging (DMDA), Kalman Filter (KF), Bayesian Model Averaging (BMA),53

Multi-Hydrological Models, Satellite Altimetry54

1. Introduction55

Studying global water storage changes and their relationships with climate vari-56

ability and exploring their trends are important to understand the interactions be-57

tween the Earth’s water, energy, and carbon cycles. It is also essential for managing58

water resources and understanding floods and food risks in a changing climate. In-59

situ and/or remote sensing observations provide estimates of different aspects of60

the Earth system, but they do not provide water cycle closure due to sampling61

and retrieval errors. In practice, hydrological models are used to quantify hydro-62

meteorological processes such as interactions between the global climate system and63

the water cycle (Sheffield et al., 2012), the contribution of land hydrology to global64

sea level rise (Boening et al., 2012), as well as to support applications related to wa-65

ter resources planning and management (Hanington et al., 2017). However, model66

simulations are prone to errors due to imperfect model structure, as well as errors in67

inputs and forcing data that are used to run model simulations. As a result, avail-68

able models operating at regional to global scales have limited skills to reflect human69
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impacts on water storage and runoff changes (Wada et al., 2012; Scanlon et al., 2018;70

Singer et al., 2018).71

Among available remote sensing techniques, the Gravity Recovery And Climate72

Experiment (GRACE, 2002–2017) satellite mission (Tapley et al., 2004) and its73

Follow-On mission (GRACE-FO, 2018–onward) provide an opportunity to assess74

the global water cycle by monitoring time-variable gravity fields. Global GRACE-75

derived time-variable gravity field data can be used to estimate changes in Terrestrial76

Water Storage (TWS), which is a vertical summation of canopy, surface water (lakes,77

rivers, and wetlands), as well as soil moisture and groundwater storage. Changes in78

TWS provide a critical measure of regional and global water balances, which cannot79

be measured by any other satellite mission. A review of GRACE applications in80

hydrology, and particularly for groundwater monitoring, can be found in Frappart81

and Ramillien (2018).82

GRACE data can be used in conjunction with hydrological models to maximize83

information gained from modelling with rationalisation and separation of GRACE84

TWS. Thus, the gravimetric data from GRACE can inject realism into regional hy-85

drological predictions, which are often poorly constrained in terms of TWS. Generally86

speaking, integrating GRACE data with hydrological models is important from two87

perspectives: (1) it can update (modify) water storage simulation within hydrologi-88

cal models and (2) it vertically separates GRACE TWS into storage compartments.89

The first point is of interest for hydrologists since most global models are not usually90

combined with water storage observations (Bai et al., 2018). Therefore, such updates91

may lead to more realistic water storage simulations, which makes these models more92

useful for water resource applications (see e.g., Werth et al., 2009; Mostafaie et al.,93

2018). Regarding the second point, it is important to state that any attempt to94

vertically separate GRACE-derived TWS into its individual components requires a95

priori information from other sources, such as, hydrological models, satellite altime-96

try observations to estimate surface water storage, and soil moisture remote sensing97

data to estimate shallow depth soil moisture storage changes (Forootan et al., 2014).98

Various studies have developed techniques to merge multi-resources and achieve99

vertical separation of surface and sub-surface water storage compartments by several100

methods outlined below.101

(a) Forward modeling techniques are used to evaluate different compartments of102

mass variations through a simple reduction process, relying on model and/or observa-103

tion data for other compartments, e.g., surface water and soil moisture, if groundwa-104

ter should be estimated (e.g., Tiwari et al., 2009; Rodell et al., 2009; Strassberg et al.,105

2009; Feng et al., 2013; Khandu et al., 2016). This method is relatively straightfor-106

ward, but it is not necessarily the most accurate way to separate GRACE signals,107
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due to the reflection of modeling error and/or observation errors on the final estima-108

tion of mass changes. Also, the spatial and temporal resolution of the observations109

(from satellites or in-situ) and model outputs, as well as their signal content are not110

necessarily consistent (see the discussions in, e.g., Forootan et al., 2014). Most of111

these limitations are taken into account by the methods described in what follows.112

(b) Statistical inversion techniques, which are formulated based on statistical sig-113

nal decomposition techniques, such as Principal Component Analysis (PCA, Lorenz ,114

1956) and its alternatives, e.g., Independent Component Analysis (ICA, Forootan115

and Kusche, 2012, 2013), have been used in previous studies to separate GRACE116

TWS into individual water storage estimates. For example, Schmeer et al. (2012)117

used PCA to generate a priori information about mass changes from global ocean,118

atmosphere, and land hydrology models. Then, they applied a least squares tech-119

nique to use GRACE TWS to modify their priori estimates. A statistical inversion,120

which works based on both PCA and ICA, was proposed in Forootan et al. (2014,121

2017) and Awange et al. (2014) to separate GRACE TWS using auxiliary data of sur-122

face water from satellite altimetry and individual sub-surface water storage estimate123

from a land surface model (Global Land Data Assimilation System (GLDAS, Rodell124

et al., 2004)). This inversion harmonizes the use of all available data sets within a125

single least squares framework. As a result, a more consistent mass estimate (than126

that of the forward modeling in (a)) for individual water storage components can be127

achieved.128

(c) Data Assimilation (DA) as well as simultaneous Calibration/Data Assimila-129

tion (C/DA) have been used in recent years to merge GRACE data with hydrological130

model outputs or other types of observations. These techniques rely on the model131

equations to relate water and energy fluxes to water storage changes. Therefore,132

unlike the inversion approach (b), combining information from observations (e.g.,133

GRACE TWS estimates) and a model is performed in a physically justifiable way.134

DA or C/DA can potentially increase physical understanding of the model and im-135

prove the model states by decreasing the simulation errors. For example, DA is used136

in Zaitchik et al. (2008); Girotto et al. (2016, 2017); Tian et al. (2017); Khaki et al.137

(2018d,e), while C/DA is applied in Schumacher et al. (2016, 2018) to improve global138

models such as GLDAS (Rodell et al., 2004), World-Wide Water Resources Assess-139

ment (W3RA, Van Dijk , 2010), WaterGap Global Hydrological Model (WGHM, Döll140

et al., 2003), and NOAH Multi Parameterization Land Surface Model (NOAH-MP141

LSM, Niu et al., 2011). Most of the previous DA and C/DA are implemented region-142

ally (except Van Dijk et al. (2014); Khaki et al. (2017a, 2018a)) for example over the143

Mississippi River Basin (Zaitchik et al., 2008; Schumacher et al., 2016), Bangladesh144

(Khaki et al., 2018d), the Middle East (Khaki et al., 2018e), and the Murray-Darling145
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River Basin (Tian et al., 2017; Schumacher et al., 2018). In addition, these studies146

rely on simulation from (only) one selected hydrological model, which could contain147

errors in the model structure such as biases in the model’s internal parameters and148

boundary conditions. In each of these studies, multiple realisations of the model-149

derived water storage simulations were generated by perturbing the input forcing150

data and/or model parameters. A sequential integration techniques such as the En-151

samble Kalman Filtering (EnKF, Evensen, 1994) or its extensions was then used to152

merge GRACE data with the (ensemble) outputs of a single model (e.g., Schumacher153

et al., 2016, 2018; Khaki et al., 2017b).Van Dijk et al. (2014) used EnKF to merge154

GRACE data with a priori data from models and other remote sensing techniques.155

Their study covered the period of 2003-2012 and focused on updating the individual156

water storage estimates rather than interpreting the water storage estimates in terms157

of trends or addressing the suitability of models used to perform the analyses.158

(d) In recent years, Bayesian-based techniques have been used to combine differ-159

ent observations with models and update their outputs. For example, Long et al.160

(2017) applied the Bayesian Model Averaging (BMA, Hsu et al., 2009) technique to161

average multiple GRACE TWS products and global hydrological models to analyse162

spatial and temporal variability of global TWS. However, their study did not as-163

sess the update of individual surface and sub-surface water storage estimates. Sha164

et al. (2018) used a model-data synthesis framework based on Bayesian Hierarchical165

Modelling (BHM, see e.g., Banerjee et al., 2004) to use GRACE TWS estimates to166

update land surface deformations derived from Glacial Isostatic Adjustment (GIA)167

models. Their study did not, however, address global hydrological mass changes.168

It is worth mentioning here that the Ensamble Kalman Filter used for DA and169

C/DA can also be classified as a Bayesian-based technique because the cost function170

for updating unknown state parameters condition on the measurement data, is for-171

mulated based on the Bayes theory (see e.g., Evensen, 2003; Schumacher , 2016; Fang172

et al., 2018). Methods, such as Particle Filter (PF) and Particle Smoother (PS) are173

also Bayesian (Särkkä, 2013), and have already been applied in a wide range of geo-174

physical and hydrological applications. For example, Weerts and El Serafy (2006)175

compared the capability of EnKF and PF to update a conceptual rainfall-runoff176

model using discharge and rainfall data. Plaza Guingla et al. (2013) also used the177

standard PF to assimilate a densely sampled discharge records into a conceptual178

rainfall-runoff model. However, Bain and Crisan (2008) and Del Moral and Miclo179

(2000) show that the rate of convergence of the approximate probability distribu-180

tion until attainment of the true posterior is inversely proportional to the number181

of particles used in the filter. This means that the filter perfectly approximates the182

posterior distribution when the number of particles tends to infinity. However, since183
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the computational cost of PF grows with the number of particles, choosing a specific184

number of particles in the design of filters is a key parameter for these methods. The185

rationale for introducing a new Bayesian data-model merging algorithm in this study186

is described in (e).187

(e) In this study, we present the Dynamic Model Data Averaging method (DMDA,188

i.e., a modified version of Dynamic Model Averaging (DMA) approach presented by189

Raftery et al., 2010) to merge multi-model derived water storage simulations with190

GRACE TWS estimates, as an alternative technique to that described in (d). Our191

main goal is to evaluate available model outputs against GRACE TWS and merge192

them in a sensible way to gain more realistic insights about global surface and sub-193

surface water storage changes. The main hypothesis behind the presented approach is194

that each global hydrological model has its own unique characteristics and strengths195

in capturing different aspects of the water cycle. Therefore, relying on a single196

model often leads to predictions that represent some phenomena or events well at197

the expenses of others. Scanlon et al. (2018) recently compared GRACE TWS with198

the outputs of global models, whose results indicated inconsistencies in long-term199

trends and cyclic (e.g., seasonal) components. Besides, many studies have concluded200

that effective combination of multiple models may provide more skillful hydrological201

simulations compared to a single model (Duan et al., 2007). Therefore, a multi-model202

choice is considered in this study.203

Our motivation to formulate the DMDA is based on its capability to deal with204

various observations and models with different structures. In summary, DMDA is205

based on the Bayes theory and provides time-variable weights to compute an average206

of hydrological model outputs, yielding the best fit to GRACE TWS estimates, while207

considering their errors (see section 3). These time-variable weights indicate which of208

the available models at a given point in time fits better to GRACE TWS estimates.209

These weights can then be used to separate the components of TWS and modify the210

estimation of water storage in these individual components. Therefore, the DMDA-211

derived ensemble is expected to yield more skillful (realistic) hydrological simulations212

compared to any individual model (see similar arguments in Duan et al., 2007). Here,213

we promote the use of DMDA over the previously introduced EnKF, PF, and PS214

methods because it is computationally more efficient in handling large dimensional215

problems such as the global integration implemented in this study. In addition, the216

DMDA’s time-variable weights can be used to assess the performance of hydrological217

models, whereas this aspect is missing in other merging techniques. More details218

about the computational aspects of DMDA are provided in section 3.219

To implement the DMDA method, surface and sub-surface water storage simu-220

lations of the six published global hydrological and land surface models (Schellekens221
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et al., 2017) are used. These models are structurally different but they are all forced222

by the same reanalysis data set (WATCH-Forcing-Data-ERA-Interim, WFDEI Wee-223

don et al., 2014) as inputs. GRACE-derived TWS estimates are then used in the224

DMDA method to compare their outputs and merge them. A challenging problem in225

merging GRACE TWS with the outputs from multiple hydrological models is related226

to their different spatial and temporal resolutions. To overcome the computational227

problem caused by the spatial and temporal mismatch, Schumacher et al. (2016)228

introduced spatial and temporal matching functions, which are able to avoid compu-229

tational problems. In this study, we did not implement the spatial/temporal operator230

because both model outputs and GRACE data were set at monthly (temporal) and231

basin-averaged (spatial). Handling the differences in spectral domain is described232

in section 2.2. A realistic synthetic example is presented in section 4.1 to test the233

performance of the DMDA method, where the true merged values are known and the234

method can be evaluated to provide the confidence that it can be applied to a real235

case study. Our numerical results cover the world’s 33 largest river basins (see Figure236

ESM.1 in Electronic Supporting Material, ESM) for the period of 2002–2012, during237

which both GRACE data and model simulations are available. Global hydrological238

model outputs are compared against GRACE TWS, using DMDA-derived temporal239

weights, within the largest river basins for the period of this study (see section 4.2).240

The DMDA-derived updates, which are assigned to the long-term trend of surface241

and sub-surface water storage components, are explored and interpreted (see section242

4.3).243

Among many climatic factors that influence inter-annual to decadal TWS changes,244

the El Niño Southern Oscillation (ENSO, Barnston and Livezey , 1987) events rep-245

resent a dominant impact on global precipitation and TWS changes (see, e.g., Hurk-246

mans et al., 2009; Chen et al., 2010; Zhang et al., 2015; Forootan et al., 2016; Ni et al.,247

2018; Anyah et al., 2018; Forootan et al., 2019). In this study, temporal correlation248

coefficients between model-derived storage outputs and the ENSO index are used as249

a measure to determine whether implementing the DMDA helps to derive realistic250

storage simulations (see section 4.3.1). In addition, independent surface water level251

observations from satellite altimetry within14 major lakes, located in different river252

basins around the world, are used to validate our results (see section 4.4). This paper253

contains an Electronic Supporting Material (ESM) document that provide auxiliary254

information to improve understanding of the performed investigations.255

2. Data sources256

The data used in this paper include the monthly GRACE data to compute Terres-257

trial Water Storage (TWS) and individual water storage estimates from global models258
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to provide a priori estimates to perform a Bayesian signal separation. GRACE TWS259

estimates are used in the DMDA to modify the multi-model water storage outputs.260

2.1. GRACE Data261

The latest release of the monthly GRACE level-2 (L2) product (RL06), expressed262

as dimensionless spherical harmonic coefficients up to degree and order 90, are down-263

loaded for the period of April 2002 to December 2012 from the Center for Space Re-264

search (CSR, http://www2.csr.utexas.edu/grace/RL06.html). A limited length265

of the GRACE data is used here since the global hydrological model outputs of266

Schellekens et al. (2017) were available until 2012.267

Recommended corrections are applied to generate monthly TWS fields from the268

GRACE product, i.e., degree 1 coefficients are replaced by those from Swenson et al.269

(2008) to account for the movement of the Earth’s center of mass. The zonal degree270

2 spherical harmonic coefficients (C20) are replaced by more stable ones derived from271

Satellite Laser Ranging (SLR) data (Chen et al., 2007). Surface deformations known272

as the Glacial Isostatic Adjustment (GIA) are reduced using the output of the model273

provided by Wahr and Zhong (2012). GRACE level-2’s correlated errors are reduced274

by applying the DDK2 an-isotropic de-correlation filter (Kusche et al., 2009). The275

application of smoothing filters causes a spatial leakage problem, which is evaluated276

in terms of TWS errors following the approach in Wahr et al. (1998); Khaki et al.277

(2018c) over the world’s 33 largest river basins as shown in Fig. ESM.1. An overview278

of the TWS’s strength and our error estimates is shown in ESM-section 2 (see Figure279

ESM.2).280

2.2. Global Hydrological Model (GHM) Outputs281

Monthly water balance components from six large-scale Global Hydrological Mod-282

els (GHMs) including PCR-GLOBWB (Van Beek et al., 2011; Wada et al., 2014),283

SURFEX-TRIP (Decharme et al., 2013), LISFLOOD (Van Der Knijff et al., 2010),284

HBV-SIMREG (Lindström et al., 1997), W3RA (Van Dijk , 2010), and ORCHIDEE285

(Polcher et al., 2011) are used in this study to provide a priori information about286

groundwater, soil moisture, surface water, canopy, and snow water storage com-287

ponents. The output of these models are published by the eartH2Observe Tier-1288

(Schellekens et al., 2017), and are available at 0.5◦ spatial resolution covering the pe-289

riod of 1979–2012 which can be downloaded from http://earth2observe.github.290

io/water-resource-reanalysis-v1.291

Although, these models are structurally different, i.e., they use different method-292

ology to simulate water changes, they are driven by the same reanalysis-based forcing293

data set, WFDEI (WATCH Forcing Data methodology applied to ERA-Interim re-294

analysis Weedon et al., 2014). In other words, all hydrological models that are used295
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in this study may represent the TWS, but their respective approaches for simulating296

TWS and its corresponding storage compartments are not identical. For example,297

Schellekens et al. (2017) state that PCR-GLOBWB and SURFEX-TRIP contain all298

surface and sub-surface water storage components in their TWS estimation. In con-299

trast, TWS derived from LISFLOOD, HBV-SIMREG, and W3RA are equal to the300

summation of groundwater, soil moisture, and snow, while that of ORCHIDEE is301

the summation of soil moisture, surface water, and snow storage components.302

An overview of the model outputs used in this study is provided in Table 1, and303

the linear trend (as a representative of monotonic long-term storage changes) fitted304

to the model outputs are shown in ESM-section 3.305

TABLE 1

To ensure that the TWS estimates from GRACE L2 data and model outputs have306

the same spectral content, 0.5◦ resolution hydrological model outputs are transformed307

into the spectral domain and truncated to the maximum degree and order 90. The308

conversion follows an ordinary integration while considering the Gibbs effect along309

the coast lines (for more details please see, e.g., Wang et al., 2006; Forootan et al.,310

2013). Basin averages of each model components and their errors in terms of water311

storage are obtained from the same procedure used to process GRACE L2 data, i.e.,312

implemented here following Wahr et al. (1998); Khaki et al. (2018c).313

2.3. El Niño Southern Oscillation (ENSO) Index314

The El Niño Southern Oscillation (ENSO, Barnston and Livezey , 1987) is a315

large-scale inter-annual climate variability phenomenon in the Tropical Pacific Ocean,316

which affects the climate of many regions of the Earth due to its ability to change317

the global atmospheric circulation, which influences temperature and precipitation318

across the globe (Trenberth, 1990; Forootan et al., 2016). The positive phase on319

ENSO is known as El Niño, and its opposite phase is known as La Nina. The320

ENSO index used in this study is derived from sea surface temperature in the Niño321

3.4 region (5◦N − 5◦S, 170◦E − 120◦W ). Monthly ENSO index (Niño 3.4 index),322

which is provided by the NOAA National Center for Environmental Information323

(NCEI) covering 1948 onward, is downloaded from https://www.esrl.noaa.gov/324

psd/data/correlation/nina34.data. This index will be used later in this study325

to demonstrate whether the DMDA-derived surface and sub-surface water storage326

estimates are closer to the reality than those from individual models.327

2.4. Satellite Altimetry of Major Lakes328

Water level measurement by satellite altimetry has been developed and optimised329

for open oceans, yet improved post-processing techniques can be used to obtain reli-330
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able satellite altimetry-derived height measurements within inland water bodies such331

as lakes, rivers, floodplains and wetlands (e.g., Moore and Williams , 2014; Uebbing332

et al., 2015). In this study, satellite altimetry-derived surface water observations333

are used to validate TWS changes of GRACE and models as well as surface wa-334

ter derived from GHMs and the DMDA method. Satellite altimetry time series of335

major global lakes are available from the U.S. Department of Agriculture (USDA)336

(https://ipad.fas.usda.gov/). Repeated observations of the TOPEX/Poseidon337

(T/P), Jason-1, and Jason2/OSTM altimetry missions are included in this database.338

USDA provides time series of lake water level variations from 1992 to the present-day339

within 81 lakes, and from 2008 to present-day within more than 280 lakes around340

the world. An assessment over 14 lakes located within 8 river basins of this study341

is presented in section 4.4 for the period of 2002–2012. Details of these lakes are342

reported in Table 2.343

TABLE 2

3. Dynamic Model Data Averaging (DMDA) Method344

In this section, we present the mathematical formulation of Dynamic Model Data345

Averaging (DMDA), which follows the method of Dynamic Model Averaging (DMA,346

Raftery et al., 2010) but with some modifications to achieve a recursive update of347

hydrological model outputs using GRACE TWS data (Fig. 1 summarises the DMDA348

method). It will also be shown that the implementation of DMDA combines the349

benefits of state-space merging techniques, such as Kalman Filtering (KF, Evensen,350

1994) or Particle Filtering (PF, Gordon et al., 1993), Markov Chain (MC, Metropolis351

et al., 1953; Chan and Geyer , 1994; Kuczera and Parent , 1998), and Bayesian Model352

Averaging (BMA, Hsu et al., 2009). DMDA can be applied in data assimilation353

applications that work with only one model, e.g., (Girotto et al., 2016; Khaki et al.,354

2017c,b; Schumacher et al., 2018), as well as in handling multi-model outputs as in355

Van Dijk et al. (2014).356

DMDA is formulated based on the representation of a state-space equation, which357

dynamically relates the GRACE TWS estimates and hydrological model outputs as:358

yt = ztθt + εt, (1)

θt = θt−1 + δt, (2)

Equation (1) is known as ‘observation equation’ and represents a linear regression359

between the observation yt (GRACE TWS estimates) and the vector of predictors360
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zt (model-derived water storage simulations). The unknown regression parameter361

θt, commonly known as the ‘state vector’ (Bernstein, 2005), is allowed to evolve in362

time, according to equation (2), and is known as the ‘state equation’. In equations363

(1) and (2), εt and δt can be interpreted as the residual of output vector and state364

parameters, respectively. They are usually defined using a normal distribution with365

the mean value of zero and a standard deviation, which will be computed during the366

DMDA procedure.367

It is worth mentioning here that the EnKF (Evensen, 1994) and PF are among368

popular algorithms that can be used to recursively update an estimate of the model369

states and produce corresponding innovation values given a sequence of observations370

in the state-space equation (similar to what introduced above). In theory, EnKF371

accomplishes this goal by linear projections, and the estimations in PF are performed372

through a Sequential Monte Carlo sampling. Comparing EnKF and PF, the latter373

includes a random element so it converges to the true posterior probability function374

if the number of samples is very large. While the strength of PF is in its ability to375

account for both Gaussian and non-Gaussian error distributions, it suffers from the376

curse of dimensionality, which means that the sample size increases exponentially377

with the dimension of the state-space in order to achieve a certain performance.378

This fact precludes the use of PF in high-dimensional data-model fusion problems379

(Bengtsson et al., 2008; Daum and Huang , 2003; Snyder et al., 2008). For linear and380

Gaussian-type state-space models, as presented in this study, the PF method will381

yield the same likelihood as EnKF when the number of simulations is large enough382

(this has been tested but the results are not shown to keep the focus of this study on383

presenting the DMDA). Therefore, the DMDA, which combines the benefits of the384

EnKF and it is mathematically rigorous like PF, is adopted for the global data-model385

integration of this study.386

Equations (1) and (2) are formulated with the main assumption that there is little387

physical knowledge about how the defined regression model and its parameters are388

likely to evolve in time. However, we will show that, by introducing two parameters389

of λ and α, which are referred to as ‘forgetting factors’, one can control the temporal390

dependency of the DMDA solutions. These two parameters provide the opportunity391

to treat model simulations and observations of each step temporally dependent on,392

or independent from, previous steps. Since changes in water storage depend on the393

history of hydrological processes, accounting for temporal dependency between water394

states sounds logical.395
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Formulating DMDA to Update Multi-Model Outputs using GRACE TWS396

Here the DMDA method is formulated to update the outputs of multi-hydrological397

models, Mk, (for six models: k = 1, ..., 6). It is worth mentioning that since available398

models have different storage definitions, the length of the state vector can change399

from one model to another. Additionally, the structure of each individual storage400

components can also be defined differently in different models (e.g., the number of soil401

layers does not remain constant in different hydrological models). These differences402

can be handled by DMDA.403

In the following, Yt = [y1, ..., yt] represents the vector of observations (i.e., GRACE404

TWS estimates in our study) up to the time step t. To use this vector to update the405

water storage simulation of a single-model, one can estimate the unknown (linear)406

regression parameters (θt) as407

θt−1|Yt−1 ∼ N(θ̂t−1, Σ̂t−1). (3)

The distribution of each parameter can be assumed to be normal with unknown408

mean θ̂t−1 and the variance Σ̂t−1. The regression coefficients at time t (θt) can then409

be obtained using θt−1 from equation (3) and by introducing δt ∼ N (0,Wt) to the410

state equation (equation (2)). Therefore, the desired parameters at time t are defined411

by412

θt|Yt−1 ∼ N(θ̂t−1, Rt), (4)

where413

Rt = Σ̂t−1 +Wt. (5)

In equation (5), Wt is the covariance matrix of the state innovation vector (δt414

in equation (2)) and it shows the dependency of the regression parameters at each415

time point to the previous time. However, in practice, there is no information about416

the temporal relationship between GRACE TWS estimates and hydrological model417

outputs to be used to define Wt. Therefore, to mathematically define a temporal418

dependency, Rt in equation (4) can be replaced by419

Rt = λ−1Σ̂t−1, (6)

where λ (0 < λ ≤ 1) controls the influence of previous observations on the regression420

value at time t, and is known as ‘forgetting factor’ in the DMDA method (see, e.g.,421

Fagin, 1964; Jazwinski , 2007).422

Hannan et al. (1989) indicated that in the recursive estimation of auto-regressive423

models, the covariance of previous steps is derived as a weighted product of the424

12



current step (i.e., weighted by λ−1 in equation (6)). By this assumption, the effective425

window size of temporal dependency is estimated by 1/(1 − λ). In our case, we426

choose λ to be 0.95, which means that for monthly data, the effective window size is427

equivalent to 18 months. This value is chosen experimentally because it minimized428

the Root Mean Square (RMS) of differences between TWS derived from DMDA and429

GRACE.430

To apply DMDA and update water storage simulated by K different models, the431

parameter prediction of equation (4) is extended as432

θ
(k)
t |Mt = k, Yt−1 ∼ N(θ̂

(k)
t−1, λ

−1Σ̂
(k)
t−1), k = 1, ..., K, (7)

where Mt = k denotes which model (from the k = 1, 2, ..., K available models)433

applies at time t, and the solution θ
(k)
t and Σ̂

(k)
t−1 can be obtained using a Kalman434

Filter (KF)-type update conditional on Mt = k for each sample. This (KF-type)435

update at time t is derived as436

θ
(k)
t |Yt ∼ N(θ̂

(k)
t , Σ̂t

(k)). (8)

Regression parameters to update multi-model storage simulations can be estimated437

as438

θ̂
(k)
t = θ̂

(k)
t−1 +R

(k)
t z

(k)
t (Vt + z

(k)
t (R

(k)
t +Q

(k)
t )z

(k)T
t )T (y

(k)
t − z

(k)
t θ̂

(k)
t−1), (9)

where Vt is the covariance matrix of GRACE TWS estimates (our observation), and439

Qt is the covariance matrix of predictor zt (see equation (1)). In this study, the440

leakage errors of model-derived TWS are estimated for the world’s 33 river basins441

(similar to those of GRACE). These errors are used to generate Qt, which is therefore442

a diagonal matrix in the DMDA implementation of this study. For a grid based443

implementation of DMDA, one can use the full covariance matrix of GRACE TWS444

similar to Schumacher et al. (2016). The covariance matrix Σ̂t in equation (8) can445

be estimated from446

Σ̂t
(k) = R

(k)
t −R

(k)
t z

(k)T
t (Vt + z

(k)
t (R

(k)
t +Q

(k)
t )z

(k)T
t )−1z

(k)
t R

(k)
t . (10)

It is evident from equations (9) and (10) that the estimation of regression parame-447

ter θ̂t is conditional on a particular model. Therefore, the DMDA solution to obtain448

unconditional results and update multi-model simulations involves calculating the449

posterior model probability P (Mt = k|Yt) as a weight for each model, which changes450

at each time step. In the following, we show that time-variable weights need to be451

computed for each model k by choosing a forgetting factor α in a recursive method,452
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where k = 1, ..., K. These weights are then used to average the models, which leads453

to the best fit to the GRACE TWS estimates. This justifies the term ‘Dynamic’ in454

the DMDA and makes the method different from other averaging techniques such as455

the Bayesian Model Averaging (BMA).456

Let us assume that P (Mt = k|Yt) = πt|t,k, then the posterior model probability457

for each model k at time t can be estimated as458

πt|t,k =
πt|t−1,kP (yt|Mt = k, Yt−1)∑K
l=1 πt|t−1,lP (yt|Mt = l, Yt−1)

, (11)

where, P (yt|Mt = k, Yt−1) is the density of the observation at time t, conditional on459

model k, as well as Yt−1 = [y1, y2, ..., yt−1], which is estimated by a normal distribution460

as461

yt|Mt = k, Yt−1 ∼ N(z
(k)
t θ̂

(k)
t−1, Vt + z

(k)
t (R

(k)
t +Q

(k)
t )z

(k)T
t ), (12)

and, πt|t−1,k is the model prediction equation, which is defined by462

πt|t−1,k = ΣK
l=1πt−1|t−1,kakl. (13)

In equation (12), θ̂
(k)
t−1 is estimated using the KF-type update as formulated in463

equations (9) and (10), while R
(k)
t is obtained from equation (6) by choosing a for-464

getting factor λ, i.e., between 0 and 1.465

In equation (13) akl = P (Mt = l|Mt−1 = k) is the element of the K×K transition466

matrix A(akl) between models, which can be onerous when the number of models is467

large, e.g., for K models and τ time steps, the number of combinations of models will468

be K2τ . In our study, we have 6 hydrological models, and 122 time steps over the469

entire period of the study (2002–2012), which leads to 6244 combinations of models.470

To specify the transition matrix A, one way is to use the Markov Chain Monte Carlo471

method (MCMC, Geyer , 2011), which will typically be computationally expensive.472

Therefore, in this study, we avoid the implicit specification of the transition matrix473

using the forgetting factor of 0 < α < 1, which has the same role as λ in equation474

(6). As a result, the model prediction equation (13) can be rewritten as475

πt|t−1,k =
παt−1|t−1,k∑K
l=1 π

α
t−1|t−1,l

. (14)

The posterior model probability, or weights, for each model at time t is estimated476

in a recursive solution between equations (11), (12), and (14). This process is initial-477

ized by setting π0|0,k = 1
K

for k = 1, ..., K, and assigning a prior values to the initial478
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condition of the states θ
(k)
0 ∼ N(0,Σ

(k)
0 ) and Σ

(k)
0 =Variance (y

(k)
t )/Variance (z

(k)
t ).479

The reason of choosing this prior value is that in a linear regression, a regression480

coefficient for a predictor zt is likely to be less than the standard deviation of the ob-481

servations yt divided by the standard deviation of predictors zt (for more information482

see e.g., Raftery , 1993). In our numerical evaluation of DMDA with six hydrological483

models, the optimum regression estimates are found when 0.85 < α < 0.9, because484

the RMS of differences between the DMDA-derived TWS and those of GRACE were485

at a minimum here. By choosing a forgetting factor α = 0.9, we assume a tem-486

poral smoothing window with 36 month time steps between 6 hydrological model487

ensembles to predict posterior probability values of each model k at time t. It means488

that the contribution of hydrological models at time t− 37 in to the posterior model489

probability of each model k at time t is negligible. The length of this smoothing490

window is reduced e.g., to 8 months if we choose α = 0.2.491

The multi-model predictions of yt is a weighted average of model specific pre-492

diction ŷt, using the posterior model probabilities, πt|t,k = Pr(Mt = k|Yt), as its493

weights, i.e.,494

ŷDMDA
t =

K∑
l=1

πt|t,lŷ
(l)
t , (15)

where ŷ
(k)
t = z

(k)
t θ̂

(k)
t .495

The posterior model probability for each model at time t, along with the estimated496

time-variable regression parameter θ
(k)
t from KF-type updating equation (9) are used497

to estimate the multi-model prediction of water storage components as498

ẑDMDA
j,t =

K∑
l=1

πt|t,lz
(l)
j,t θ̂

(l)
j,t , (16)

where j represents each of the water storage components, i.e. groundwater, soil499

moisture, surface water, canopy, and snow. To update the water storage simulations500

of a single-model using the GRACE TWS estimates and the DMDA approach, K501

needs to be set to 1, and the prediction step is limited to the conditional estimation502

of the parameter θ
(k)
t |M

(k)
t using equation (9).503

The posterior model probability can also be used to estimate unconditional prob-504

ability distribution of regression parameters Θt = (θ
(1)
t , ..., θ

(K)
t ) given by observation505

Yt following506

p(Θt|Yt) =
K∑
l=1

p(θ
(l)
t |Mt = k, Yt)P (Mt = k|Yt), (17)
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where p(θ
(k)
t |M

(k)
t , Yt) shows the conditional distribution of θ

(k)
t which is approxi-507

mated by a normal distribution as:508

θ
(k)
t |M

(k)
t , Yt ∼ N(θ̂

(k)
t , Σ̂

(k)
t ). (18)

The DMDA approach can be recovered to a standard Bayesian Model Averaging509

(BMA, Hoeting et al. (1999)) when α = λ = 1. Then the posterior model probability510

of model k is given by511

P (Mt = k|Yt) =
p(Yt|Mt = k)∑K
l=1 p(Yt|Mt = l)

, (19)

where p(Yt|Mt = k) is the marginal likelihood, obtained by integrating the product of512

the likelihood, P (Yt|θ(k),Mt = k), and the prior, P (θ(k)|Mt = k), over the parameter513

space (see also Hsu et al., 2009). Figure 1 summarises the work-flow of the DMDA514

approach.515

FIGURE 1

4. Results516

4.1. Setup a Simulation to Test the Performance of DMDA517

Before applying the DMDA method on real data, its performance is tested in a518

controlled synthetic simulation, where the results of the Bayesian update are known519

by definition. In the first step of our simulation, we aim to compare DMDA and BMA520

in terms of updating hydrological model outputs with respect to the observations (i.e.,521

GRACE TWS estimates in this study). In the second step, it will be shown that the522

DMDA-derived time-variable weights are the same as the expected values.523

To make the synthetic study simple, we assumed that TWS is defined as the524

summation of just groundwater and soil moisture components. By this definition,525

the time series of groundwater and soil moisture of two hydrological models, i.e., here526

selected as LISFLOOD (M1) and SURFEX-TRIP (M2), are introduced as predictors527

to the DMDA, and TWS derived from a third model, here selected to be PCR-528

GLOBWB, is considered as the observation (here standing in for GRACE derived529

TWS). By this choice, after applying DMDA to merge M1 and M2 with simulated530

observed TWS, we expect that the updated (DMDA-derived) groundwater and soil531

moisture storage estimates will be fitted to those of simulated observation. Here, we532

selected results within the Niger River Basin (id:20 in Fig. ESM.1), covering the pe-533

riod of 2002–2012. Figure 2 (A) shows the PCR-GLOBWB TWS as our observation,534

16



Fig. 2 (B) represents the time series of groundwater and soil moisture derived from535

M1 (B1, B3, blue curves) and M2 (B2, B4, green curves), while the expected value536

of DMDA-derived groundwater and soil moisture (simulated observation) are shown537

with the red color curves in these figures.538

The magnitude of minimum (Min), maximum (Max) and the Root Mean Square539

(RMS) of the signal for all simulated data sets can be found in Table 3. The uncer-540

tainty of these data sets are computed following a least squares error propagation,541

while considering the leakage error of GRACE TWS in the Niger River Basin. It542

is worth mentioning that the final results of the simulation do not depend on the543

selection of models and the adopted simplification. The RMS of differences between544

the simulated TWS and two selected models (reported in Table 3) indicates that M2545

(RMS of ∆TWS = 14.1 mm) had a better agreement with the observations compared546

to M1 (RMS of ∆TWS = 18.6 mm). Figure 2 (C1) shows the estimated weights for547

the first model (W1, Mean= 0.47) and second model (W2, Mean= 0.53) obtained548

using DMDA (equation (11)). These results show that the model which had a better549

agreement with observations gained higher weights.550

To compare DMDA and BMA methods to average hydrological components, we551

apply both of these methods on simulated data sets. The final results are shown in552

Fig. 2 (D1: groundwater) and (D2: soil moisture). Groundwater, soil moisture, and553

consequently TWS derived from DMDA shows better agreement with the expected554

values in comparison to the BMA results. The RMS of errors for both methods are555

reported in Table 3, which indicates that although TWS derived from BMA follow556

the expected value (RMS of error= 8.4 mm), the obtained individual components557

from this method are not close to the simulated values (RMS of errors of 20.4 mm and558

18.6 mm are found for groundwater and soil moisture, respectively). A considerable559

decrease in the differences between hydrological components and the expected values560

of DMDA shows that the method is suitable to update multi-model water storage561

estimates. Details of the numerical comparisons can be found in Table 3.562

In the second step of our simulation, we use the weights of the first step (W1, W2,563

Fig. 2 (C1)) plus a temporal white noise with standard deviation of 0.02 m (equal564

to the standard deviation of GRACE TWS error within the Niger River Basin)565

to simulate GRACE like TWS estimates. Reconstructed weights after applying the566

DMDA for the second time, using the new synthetic TWS observations, are shown in567

Fig. 2 (C2). The correlation coefficient between W1 and W2 with their reconstructed568

values is found to be 0.73 and the RMS of the reconstruction’s errors is found to be569

0.18. This indicates that the DMDA-derived weights are close to reality and further570

motivates us to apply it on real data sets.571
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FIGURE 2
572

TABLE 3

4.2. DMDA Weights to Compare Global Hydrological Models573

TWS derived from DMDA is a weighted average of selected models by estimating574

time varying weights based on the Bayes rule as in equation (15). Figure 3 shows the575

estimated weights for ten basins with the largest RMS of differences between TWS576

derived from individual models and GRACE TWS. Time-variable weights derived577

from DMDA allow us (1) to quantify the quality and compare individual water stor-578

age simulations derived from each global hydrological model against GRACE TWS579

for different periods of time, and (2) to separate GRACE TWS in a Bayesian frame-580

work, while considering different model structures and errors within and between581

model simulations and GRACE data. The average of weights during 2002–2012 is582

considered as the basis to select the best model in DMDA results over 33 river basins583

which is shown in the middle of Fig. 3. From our numerical results, PCR-GLOBWB584

is found to gain the largest weights during this period, thus, it contributed the most585

in the DMDA-derived TWS in North Asia, Central Africa, and North America.586

The weights computed for SURFEX-TRIP are found to be larger than other models587

within the snow-dominated regions, such as, the Yukon and Mackenzie in the north588

part of America and the Lena in the Northeast Asia. Our results confirm the inves-589

tigations by Schellekens et al. (2017), who compared the mentioned models against590

the Interactive Multi-sensor snow and Ice Mapping System (IMS, Ramsay , 1998).591

Apparently, multiple snow layers of SURFEX-TRIP helps it to better simulate snow592

dynamics during the cold seasons.593

We also find that SURFEX-TRIP received the highest averaged weights (com-594

pared to other models) within the Amazon and Brahmaputra River Basins during595

2002–2012. The explanation is that SURFEX-TRIP likely better accounts for (1)596

the snow coverage of the Brahmaputra River Basin, (2) the considerable contribution597

of surface water storage components in the TWS changes within the Amazon River598

Basin, and (3) the overall dry period within both basins (Chen et al., 2009; Khandu599

et al., 2016), specially the extreme hydrological droughts of 2005 and 2010 (Forootan600

et al., 2019). In the Amazon River Basin, we also find the highest performance for601

SURFEX-TRIP between 2009-2011. Chen et al. (2009) reported that in 2009 the602

Amazon River Basin experienced an extreme flood, which increased the magnitude603

of inter-annual TWS in this basin. TWS changes within the Amazon are also closely604

connected to the ENSO events in the tropical Pacific (Kousky et al., 1984; Ropelewski605
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and Halpert , 1987). Later we will show that surface water derived from SURFEX-606

TRIP shows the highest correlation with ENSO index in comparison with the other607

models of this study. This could be another reason that we derive the highest weights608

for SURFEX-TRIP between 2009-2011 within the Amazon River Basin.609

Our results (Fig. 3) indicate that within the river basins with considerable irriga-610

tion (such as the Indus, Euphrates, and Orange River Basins), the relatively highest611

weights are assigned to the LISFLOOD and ORCHIDEE, where both account for612

human water-use (Schellekens et al., 2017). ORCHIDEE is also found to perform613

well within the Brahmaputra, Ganges, and Murray River Basins, each of which expe-614

rienced a strong decline in rainfall over the entire period of our study (e.g., 9.0 ± 4.0615

mm/decade between 1994–2014 over Ganges and Brahmaputra Khandu et al., 2016).616

Specifically, ORCHIDEE contains 14 soil layers (see Table 1) that help it to better617

resolve vertical water exchange within the irrigated regions. In ESM-section 2, it is618

shown that GRACE TWS changes within the Murray River Basin are considerably619

influenced by ENSO events (see also Forootan et al., 2012, 2016), and the simulated620

outputs of ORCHIDEE reflects these changes better than the other tested models621

justifying the higher weights that are assigned to this model within the DMDA pro-622

cedure. In ESM-section 5, we show that after applying the DMDA, model-derived623

TWS simulations are tuned to GRACE TWS.624

FIGURE 3

4.3. DMDA-Derived Individual Water Storage Estimates625

The estimated weights for the six models of section 4.2 along with the computed626

regression coefficients θ̂t (see the flowchart of Fig. 1), are used to compute the627

DMDA-derived groundwater, soil moisture, and surface water. In order to interpret628

the monotonic changes of water storage changes within the river basins, a long-term629

linear trend is fitted to the DMDA results that are shown in Figure 4, and the630

numerical values are reported in Table 4.631

FIGURE 4
632

TABLE 4

Figure 4 (a1) and (a2) show the linear trend fitted to the DMDA-derived ground-633

water and its uncertainty. The results indicate a decrease in groundwater in 42% of634

the assessed river basis (i.e., 14 of 33). The largest decreasing trends are found in635

basins with large-scale irrigation such as the Ganges (-14.77 ± 0.25 mm/yr), Indus636

(-8.26 ± 0.16 mm/yr) and Euphrates (-5.36 ± 0.23 mm/yr). The results confirm637
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the findings by Khandu et al. (2016), Forootan et al. (2019), and Voss et al. (2013),638

respectively. The strongest increasing trends in groundwater are seen in the To-639

cantins basin (South America) at the rate of 2.41 ± 0.47 mm/yr, the Okavango640

(South Africa) with a rate of 1.74 ± 1.31 mm/yr, and the Lena (Northeast Asia)641

with 1.74 ± 0.11 mm/yr. However, all of these trends are not statistically significant.642

The positive trends in groundwater storage in these last two basins are associated643

to the heavy rainfalls, seasonal floods and the geographical location of the Okavango644

Delta (McCarthy et al., 1998), and underground ice melting caused by global warm-645

ing (Dzhamalov et al., 2012), respectively. Comparisons between the DMDA-derived646

groundwater and those of hydrological models indicate that after merging GRACE647

TWS with output from multiple hydrological models, the linear trend has changed648

considerably. This means that introducing GRACE data can successfully modify the649

anthropogenic effects, which are not well simulated by models (linear trends of the650

modelled groundwater are shown in ESM-section 3).651

The linear trend fitted to the DMDA-derived soil moisture and its uncertainty652

are shown in Fig. 4 (b1) and (b2). We find strongest increasing trends in soil653

moisture estimates within the Murray (Australia), Okavango, and Orinoco (South654

America) River Basins with rates of 6.66 ± 0.15, 3.92 ± 0.55, and 3.45 ± 0.26 mm/yr655

respectively, and largest decreasing trends in the Brahmaputra and Euphrates with656

rates of -7.00 ± 0.69 and -5.75 ± 0.39 mm/yr.657

Figure 4 (c1) and (c2) show the linear trends and their uncertainty fitted to658

the surface water storage estimated through the DMDA method. Linear trends of659

surface water within the 28 out of the 33 river basins are found to be statistically660

insignificant (values between -1 and +1 mm/yr). The strongest negative trends are661

found in the Euphrates, Murray, and Okavango River Basins with rates of -2.09 ±662

0.09, -1.47 ± 0.04, and -1.42 ± 0.37 mm/yr respectively. In contrast, the largest663

positive trends are found within the Amazon and Colorado, at the rate of 1.43 ±664

0.06 and 1.04 ± 0.04 mm/yr, respectively. The heavy flood during the summer of665

2008–2009 (Marengo et al., 2011; Chen et al., 2010), which was considerably bigger666

than the temporal mean, likely caused these positive trend in the Amazon River667

Basin. Negative trends in all three water storage compartments of the Euphrates668

River Basin (groundwater -5.36 ± 0.23 mm/yr, soil moisture -5.75 ± 0.39 mm/yr,669

and surface water -2.09 ± 0.09 mm/yr) can be associated to both irrigation and670

long-term drought as shown by Forootan et al. (2017).671

4.3.1. Contribution of ENSO in DMDA-Derived Water Storage Components672

To demonstrate that the DMDA-derived surface and sub-surface water storage673

estimates are closer to the reality than those from any individual model, we extract674
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the dominant ENSO mode from the DMDA estimates and compare them with climate675

indices (see e.g., Anyah et al., 2018) in terms of temporal correlation coefficients with676

the ENSO index (-Niño 3.4 index, Fig. 5, 6, and 7). The reason for this comparison677

is that GRACE captures considerable variability due to the ENSO events (Phillips678

et al., 2012; Forootan et al., 2018). Therefore, by merging multi-model outputs with679

GRACE data, their skill in representing water storage changes due to large-scale680

teleconnections would be improved.681

In order to extract the ENSO modes from the DMDA-derived water storage682

estimates and the original outputs of the six models (PCRGLOB-WB, SURFEX-683

TRIP, LISFLOOD, HBV-SIMREG, W3RA, and ORCHIDEE) Principal Component684

Analysis (PCA, Lorenz , 1956) method is applied after removing the long-term linear685

trend and seasonality from hydrological components. More details about PCA results686

and extracting ENSO modes from DMDA water storage components are reported in687

ESM-section 6.688

Figure 5 shows temporal correlations between the ENSO mode of groundwater689

(from DMDA and original models) and the ENSO index. Maximum and minimum690

correlation of 0.75 and 0.53 corresponding to a maximum lag of up to 2 months are691

found globally between the DMDA groundwater and the ENSO index, respectively.692

Smaller correlations are found between the original models and the ENSO index.693

Among these models, W3RA and HBV-SIMREG indicate stronger correlations (∼694

0.6 and ∼ 0.4 respectively) with the ENSO index with a maximum lag of 2 months.695

Other models such as LISFLOOD and SURFEX-TRIP indicate notably different696

correlations (compared to HBV-SIMREG and W3RA as well as that of DMDA)697

with ENSO in various basins. We find small positive correlations with a maximum698

value of 0.3 between original PCR-GLOBWB’s groundwater and the ENSO index.699

Although the maximum lag of 3 month is estimated in most of the 33 basins, a lag700

of 15 months is estimated for the Nile, Okavango, and Zambezi (Africa), Colorado701

and Nelson (North America), Ob, Lena, and Yellow (Asia) River Basins, which are702

likely not realistic (see, e.g., Awange et al., 2014; Anyah et al., 2018).703

FIGURE 5

Similar assessments are performed between the soil moisture and surface water704

storage changes with the ENSO index and the results are shown in Figs. 6 and705

7. Correlation coefficients of up to 0.8 are computed from the DMDA estimates706

with a maximum lag of up to 2 months. Among the six models, correlation in707

soil moisture of the SURFEX-TRIP and LISFLOOD models is found to be the708

highest, i.e., correlations of 0.6 to 0.8 within the 33 river basins examined here.709

PCR-GLOBWB and W3RA show a correlation of ∼ 0.5, while those from HBV-710
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SIMREG and ORCHIDEE are different from our other estimations, for example,711

less than 0.1 in the Niger and Nile River Basins, and greater than 0.75 in North712

Asia. Khaki et al. (2018b) indicate that over the Nile River Basin, all the three713

hydrological components, (i.e., groundwater, surface water, and soil moisture) are714

strongly influenced by ENSO. Therefore, the obtained correlation of 0.1 in the Nile715

River Basin from HBV-SIMREG is likely not realistic.716

FIGURE 6

The DMDA-derived surface water storage is compared with those of PCR-GLOBWB,717

SURFEX-TRIP, and ORCHIDEE, which contain the surface water storage compart-718

ment. The correlation coefficients are found to be generally smaller than those of soil719

moisture and groundwater components (with a maximum of 0.5), which likely shows720

that the modelling of surface water needs improvement because in reality surface wa-721

ter in lakes and rivers within regions like East Africa shows an immediate response to722

ENSO (e.g., Becker et al., 2010; Khaki et al., 2018b). Figure 7 shows that the surface723

water storage output of SURFEX-TRIP had the highest correlations with the ENSO724

index in all basins of America (values between 0.33 and 0.51) and Africa (values725

between 0.23 and 0.48), while ORCHIDEE shows the highest correlations (values726

between 0.32 and 0.58) in most parts of Asia. The correlations for PCR-GLOBWB727

are found to be relatively smaller, i.e., between 0.1 and 0.2 with lags of between 5-12728

months. Comparisons between the DMDA and original model outputs indicate that729

combining models with GRACE data improve the correlations with the ENSO index730

and the correlation lags are considerably reduced globally. It is worth mentioning731

that the DMDA results that are presented here are derived by setting the α value732

in equation (14) to 0.9. This means that we assume a 36 month temporal correla-733

tions between water storage simulations of the six models. This value guarantee an734

extraction of the ENSO modes within two PCA modes after merging GRACE and735

model outputs.736

FIGURE 7

4.4. Evaluating the DMDA Results with satellite altimetry observation737

To validate our results, TWS and surface water derived from DMDA and six738

hydrological models are compared with independent surface water observations from739

satellite altimetry. The results are shown for various regions with reliable satellite740

altimetry measurements such as the Nile, Niger, and Zambezi River Basins in Africa,741

Ob and Euphrates in Asia, St’ Lawrence and Nelson in North America, and Orinoco742

in South Africa. Here, we assessed 14 lakes located in the 8 mentioned river basins.743
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Comparisons are performed in terms of correlation coefficients between TWS and744

surface water estimates (within the river basins), and water mass variations within745

the lakes (i.e., lake level heights from satellite altimetry data are converted to mass746

variations following Moore and Williams (2014)). The numerical results are sum-747

marized in Table 5, which indicates that after implementing the DMDA method,748

correlation coefficients are increased in most of the lakes. High values are found in749

the Nile River Basin, e.g., Tana Lake (0.718), Euphrates (Tharthar Lake, 0.569), and750

Niger (Chad Lake, 0.558), while low values are found in the Kainiji Lake of the Niger751

River Basin (0.102) and Winnipegosis of the Nelson River Basins (0.249). It should752

be noted here that although low correlations are found for some lakes, the values are753

increased when compared with the original model simulations. More details can be754

found in ESM-section 7.755

TABLE 5

5. Summary and Conclusion756

In this study, the method of Dynamic Model Data Averaging (DMDA) is intro-757

duced, which can be used (1) to compare multi-model (individual) water storage758

simulations with GRACE-derived Terrestrial Water Storage (TWS) estimates; and759

(2) to separate GRACE TWS into horological water storage compartments. DMDA760

combines the property of Kalman Filter (equations (9), (10)) and a Bayesian weight-761

ing (equation (11)) to fit multi-model water storage changes to GRACE TWS esti-762

mates. The method is flexible in accounting for errors in observations and a priori763

information (equation 9 and equation 10), and can deal with state vectors of different764

length.765

The benefit of the DMDA method over the commonly used PF or PS methods766

are twofold: 1) these methods might not be efficient for high-dimensional fusion767

tasks (e.g., Snyder et al., 2008; Van Leeuwen, 2009) such as the global hydrological768

application presented here, but the DMDA’s computational load is lower than these769

techniques; 2) DMDA provides time-variable weights that can be used to under-770

stand the behavior of a priori information (here the output of hydrological models)771

against GRACE TWS estimates, while considering their errors. The advantage of772

the DMDA over the Ensemble Kalman Filter-based of techniques is that the poste-773

rior distributions are computed through a Bayesian rule that result in more reliable774

estimations of states and their errors, while avoiding the high computational loads775

of the PF techniques.776

A realistic synthetic example was defined to evaluate the performance of DMDA777

(Fig. 2), which showed that the method is able to correctly separate GRACE TWS778
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estimates into its individual hydrological components. We also showed that the779

DMDA’s estimation of temporal weights (for each model) was close to the real-780

ity, and can be used to assess the performance of available models. Based on the781

real data, we showed that the representation of linear trends and seasonality within782

global hydrological models, as well as their water storage changes due to the El Niño783

Southern Oscillation (ENSO) can be improved using DMDA, while considering the784

uncertainties of models and observations (see Fig. 1). Our results also showed that785

how the DMDA method is able to deal with models with different structures, and786

how it updates their water storage simulations while considering their errors. Consid-787

ering these arguments, we believe that the new water storage estimates, i.e., models788

combined with GRACE, are of great values and can be used for further hydrological789

and climate research investigations compared to model or GRACE only estimates.790

Therefore, the presented results can be considered as one step forward to improve791

model deficiencies following the insights of Scanlon et al. (2018). In what follows,792

the main conclusions and remarks of this study are summarized.793

• Estimated weights (Fig. 3) showed that the PCR-GLOBWB model gained the794

largest weights, thus, it contributed the most in the DMDA-derived TWS in795

North Asia, North America, and the center of Africa. SURFEX-TRIP per-796

formed best within basins with dominant surface water storage changes, as797

well as in snow-dominant regions. The LISFLOOD and ORCHIDEE models798

were found to perform well within irrigated basins, and those affected by ENSO799

events.800

• DMDA results in Fig. 4 (a1) showed that considerable trends exist in ground-801

water storage changes within the Ganges, Indus, and Euphrates basins during802

2002–2012. These changes are dominantly influenced by anthropogenic modi-803

fications. Trends in soil moisture (Fig. 4 (b1)) were found to be mostly related804

to meteorological prolonged drought events such as those in the Brahmaputra805

and Euphrates River Basins.806

• DMDA was able to modify the ENSO mode of water storage variability in807

most of the world’s 33 largest river basins (see Fig. 5, Fig. 6, and Fig. 7).808

DMDA assigned the biggest corrections of ENSO mode in groundwater to the809

Nile, Murray, Tocantins, Ob, Okavango and Orange River Basins. The highest810

corrections of the ENSO mode in soil moisture were found for the Nile, Niger,811

Zambezi, and Amur River Basins, and in surface water to Nile, Niger, Congo,812

Tocantins, and Murray River Basin. For example, the correlation coefficient813

between groundwater storage and ENSO in the Murray River Basin changed814
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from -0.2 to 0.6. For the Nile River Basin, they changed from 0.1 to 0.4 for soil815

moisture, and from 0.3 to 0.7 for the surface water compartment.816

• Comparison between TWS and surface water derived from DMDA with inde-817

pendent surface water observations from satellite altimetry (Fig. ESM.15 and818

Fig. ESM.16 in ESM-section 7) showed that, DMDA was able to correctly de-819

tect the best performing model and maximize its contribution in the dynamic820

averaging process which enhanced the reality of water storage estimates.821

• To implement the DMDA in this study a forgetting factor of 0.95 was con-822

sidered in equation (6), which is equivalent to the temporal dependency in823

estimating time variable regression parameters in equation (2). In section 3,824

it was shown that this selection is equivalent to 18 months temporal depen-825

dency between GRACE TWS observations and model simulations. This value826

is selected because the DMDA results were closest to that of GRACE. After827

selecting this value, we also obtained a distinguishable ENSO mode from the828

DMDA-derived TWS and individual water storage estimates. Therefore, we829

conclude that this temporal lag might be considered in other works that at-830

tempt to apply sequential mergers or smoothers to assimilate observed water831

storage data into models.832

• In order to reduce the computational load of this work, instead of implementing833

a Markov Chain Monte Carlo (MCMC) technique to estimate the transition834

matrix between models in equation (13), a forgetting factor of 0.9 was con-835

sidered in equations (14). This might be replaced with an efficient MCMC836

implementation in future.837

The DMDA method, introduced in this study, has the potential to be used in dif-838

ferent climate and hydrological applications to compare available models (which can839

be of various types of hydrological or climate models) against reliable observations.840

It can also be used to generate ensembles from multi-model outputs such as climate841

projections. The application of this study can also be extended by incorporating842

other types of remote sensing observations such as satellite based soil moisture or843

water level data beside those of GRACE. A secondary application of the DMDA844

can also be devoted to its application for predicting (or extrapolating) water storage845

estimates. To achieve this purpose, however, the DMDA’s formulation needs to be846

extended. For example, one approach can be to use the DMDA weights, which are847

computed for the period of study, to identify best models in different river basins cov-848

ering different seasons. By analysing this information and knowing the TWS in the849
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future, one can use a combination of different model runs (weighted by the DMDA850

outputs) and extrapolate the surface and sub-surface water storage estimates.851
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Figures and Tables1215
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Figure 1: Flowchart of the Dynamic Model Data Averaging (DMDA) method. The framework can
accept an arbitrary number of models and it can be extended to accept various type of observations.
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Figure 2: A synthetic example, where DMDA is applied in a controlled set up, to integrate 2
hydrological models (here selected as SURFEX-TRIP and LISFLOOD) with simulated observed
TWS to separate its compartments (i.e., groundwater and soil moisture). All data sets in this
simulation is related to the Niger River Basin and covering the period between 2002–2012; Figure
2 (A) shows TWS simulated from PCR-GLOBWB (here standing in for observed TWS); Figure
2 (B) shows the time series of groundwater and soil moisture derived from model 1 (B1, B3) and
model 2 (B2, B4), which are considered as the input predictors in DMDA; Figure 2 (C1) presents the
time varying weights estimated for two selected model,and Figure 2 (C2) shows the reconstructed of
weights in the second step of our simulation. Figure 2 (D1) and (D2) show the updated hydrological
components obtained from the DMDA and BMA method and comparison between the obtained
results and the expected values derived form simulated observation data.
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Figure 3: Posterior model probabilities for the six initially considered models, over 10 selected river
basins with the biggest RMSEs computed using GRACE and models-derived TWS. In the middle
of Fig 3 the most contributed models in the DMDA-derived TWS are shown over the world’s 33
largest river basins, covering the period of 2002–2012.
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Figure 4: Long-term (2002–2012) linear trend in the DMDA-derived groundwater (a1), soil moisture
(b1), and surface water (c1) components, expressed in mm/yr. The uncertainty of these fitted linear
trends are shown in (a2), (b2), (c2) respectively.
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Figure 5: Correlation coefficients and their lags between the ENSO (-Niño 3.4 index) and ground-
water estimates derived from the DMDA method and hydrological models used in this study for
the period of 2002–2012.

44



Figure 6: Correlation coefficients and their lags between the ENSO (-Niño 3.4 index) and soil
moisture estimates derived from the DMDA method and hydrological models used in this study for
the period of 2002–2012.
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Figure 7: Correlation coefficients and their lags between the ENSO (-Niño 3.4 index) and surface
water estimates derived from the DMDA method and hydrological models used in this study for
the period of 2002–2012.
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Table 1: Overview of models used in this study and their water storage components.

Water Storage Compartments
Model GroundWater Soil layer Surface

Water
Canopy Snow Snow

layer
Water Use

PCR-GLOBWB Yes 2 Yes Yes Yes 1 No
W3RA Yes 3 No No Yes 1 No

HBV-SIMREG Yes 1 No No Yes 1 No
SURFEX-TRIP Yes 14 Yes Yes Yes 12 No

LISFLOOD Yes 2 No No Yes 1 Yes
ORCHIDEE No 11 Yes No Yes 6 irrigation
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Table 2: An overview of satellite altimetry observation used to validate DMDA results.

Lake River Basin
Lake Latitude Satellite

Cyclemid range pass
point of pass

Nasser Nile
23.31◦N

[22.91◦N 23.66◦N] 94 48
32.83◦E

Tana Nile
12.11◦N

[11.95◦N 12.19◦N] 94 38
37.40◦E

chad Niger
13.01◦N

[12.94◦N 13.05◦N] 248 25
14.38◦E

Kainiji Niger
10.49◦N

[10.40◦N 10.50◦N] 135 21
4.50◦E

Malawi Zambezi
10.84◦S

[12.042◦S 9.70◦S] 44 4
34.40◦E

Tanganyika Zambezi
6.41◦S

[8.44◦S 4.461◦S] 222 11
29.23◦E

Guri Orinoco
7.37◦N

[7.06◦N 7.67◦N 152 69
117.12◦W

Winnipeg Nelson
53.18◦N

[52.82◦N 53.55◦N] 195 9
98.21◦W

Winnipegosis Nelson
51.91◦N

[51.85◦N 52.05◦N 195 17
100.01◦W

Erie St. Lawrence
42.11◦N

[41.60◦N 42.54◦N] 193 45
81.48◦W

Ontario St. Lawrence
43.56◦N

[43.35◦N 43.83◦N] 15 36
77.47◦W

Tharthar Euphrates
33.87◦N

[33.75◦N 34.00◦N] 133 70
43.37◦E

Urmia Euphrates
37.25◦N

[37.25◦N 37.31◦N] 133 4
45.45◦E

Chany Ob
54.96◦N

[54.94◦N 55.02◦N] 5 28
77.33◦E
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Table 3: Magnitude of simulated predictors, observations, and DMDA results in a controlled syn-
thetic simulation.

Hydrological Compartment Model name
Min Max RMS
[mm] [mm] [mm]

Groundwater (First model) LISFLOOD -10.5 16.1 7.9
Groundwater (Second model) SURFEX-TRIP -12.1 39.8 14.2
Groundwater (Expected value of DMDA) PCR-GLOBWB -39.5 70.4 24.2
Groundwater (DMDA result) DMDA Output -35.3 92.3 19.9
Groundwater (BMA result) BMA Output -46.0 130.2 43.8

Soil Moisture (First model) LISFLOOD -37.4 62.2 30.8
Soil Moisture (Second model) SURFEX-TRIP -45.7 79.9 41.5
Soil Moisture (Expected value of DMDA) PCR-GLOBWB -52.0 107.9 48.7
Soil Moisture (DMDA result) DMDA Output -58.5 113.8 51.2
Soil Moisture (BMA result) BMA Output -40.8 49.6 21.0

TWS (First model) LISFLOOD -46.8 75.5 37.2
TWS (Second model) SURFEX-TRIP -57.6 115.2 54.6
TWS (Expected value of DMDA results) PCR-GLOBWB -83.3 164.5 64.2
TWS (DMDA result) DMDA Output -77.8 153.8 63.2
TWS (BMA result) BMA Output -77.8 153.8 63.2

|∆|Groundwater |LISFLOOD− Expected value| 0 58.1 11.2
|∆|Groundwater |SURFEX− Expected value| 0 45.8 10.3
|∆|Groundwater |DMDA− Expected value| 0 31.2 5.3
|∆|Groundwater |BMA− Expected value| 0 87.6 20.4

|∆|Soil Moisture |LISFLOOD− Expected value| 0 46.8 9.6
|∆|Soil Moisture |SURFEX− Expected value| 0 29.3 5.7
|∆|Soil Moisture |DMDA− Expected value| 0 29.2 5.2
|∆|Soil Moisture |BMA− Expected value| 0 89.5 18.6

|∆|TWS |LISFLOOD− Expected value| 0 94.7 18.6
|∆|TWS |SURFEX− Expected value| 0 60.9 14.1
|∆|TWS |DMDA− Expected value| 0 24.2 6.2
|∆|TWS |BMA− Expected value| 0 31.4 8.4
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Table 4: The amplitude of linear trend [mm/yr] and its uncertainty, fitted to the DMDA-derived
groundwater, soil Moisture, and surface water, during 2002–2012.

Basin DMDA DMDA DMDA
ID Name GroundWater Soil Moisture Surface Water

1 Amazon 0.17 ± 0.12 -1.92 ± 0.09 1.43 ± 0.06
2 Amur 0.46 ± 0.06 2.61 ± 0.09 0.25 ± 0.03
3 Aral 0.02 ± 0.08 -1.43 ± 0.22 0.21 ± 0.12
4 Brahmaputra -0.44 ± 0.16 -7.00 ± 0.69 -0.13 ± 0.21
5 Caspian-Volga -2.06 ± 0.15 -2.98 ± 0.16 -0.02 ± 0.07
6 Colorado 0.80 ± 0.11 -0.75 ± 0.09 0.82 ± 0.08
7 Congo -0.72 ± 0.08 0.59 ± 0.03 0.06 ± 0.06
8 Danube -0.47 ± 0.18 -0.75 ± 0.21 -0.08 ± 0.04
9 Dnieper -0.5 ± 0.29 -2.27 ± 0.28 -0.03 ± 0.18
10 Euphrates -5.36 ± 0.23 -5.75 ± 0.39 -2.09 ± 0.09
11 Lake Eyre 0.55 ± 0.16 2.42 ± 0.19 0.77 ± 0.04
12 Ganges -14.77 ± 0.25 2.69 ± 0.40 0.29 ± 0.05
13 Indus -8.26 ± 0.16 1.10 ± 0.13 -0.06 ± 0.07
14 Lena 1.74 ± 0.11 1.94 ± 0.05 0.20 ± 0.08
15 Mackenzie 0.51 ± 0.06 0.12 ± 0.05 -0.05 ± 0.10
16 Mekong 1.58 ± 0.43 -0.79 ± 0.33 0.83 ± 0.17
17 Mississippi 1.25 ± 0.09 1.36 ± 0.09 0.33 ± 0.02
18 Murray 0.06 ± 0.06 6.66 ± 0.15 -1.47 ± 0.04
19 Nelson 0.70 ± 0.18 2.45 ± 0.15 0.11 ± 0.03
20 Niger -1.14 ± 0.15 0.75 ± 0.15 0.32 ± 0.05
21 Nile 0.45 ± 0.06 0.77 ± 0.06 -0.05 ± 0.02
22 Ob -1.42 ± 0.08 -1.54 ± 0.06 0.05 ± 0.07
23 Okavango 1.74 ± 1.31 3.92 ± 0.55 -1.42 ± 0.37
24 Orange 1.32 ± 0.05 1.28 ± 0.06 -0.85 ± 0.05
25 Orinoco 0.87 ± 0.11 3.45 ± 0.26 -0.22 ± 0.19
26 Parana 0.68 ± 0.08 0.03 ± 0.13 1.04 ± 0.04
27 St. Lawrence 1.49 ± 0.18 1.07 ± 0.07 0.48 ± 0.05
28 Tocantins 2.41 ± 0.47 2.37 ± 0.35 0.08 ± 0.21
29 Yangtze 0.55 ± 0.23 -0.30 ± 0.09 0.20 ± 0.02
30 Yellow -3.50 ± 0.14 -0.27 ± 0.05 0.08 ± 0.21
31 Yenisei -0.26 ± 0.07 1.79 ± 0.06 0.75 ± 0.11
32 Yukon -4.73 ± 1.08 -1.52 ± 0.20 -1.11 ± 0.23
33 Zambezi 1.19 ± 0.38 0.65 ± 0.31 0.35 ± 0.25
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Table 5: Correlation between satellite altimetery observation and: I) TWS , II) Surface Water
(SW) derived from GRACE, DMDA, and individual models, during 2002–2012.

Correlation between Altimetry Obs. and:
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Nile TWS 0.358 0.381 0.326 0.239 0.095 -0.082 0.001 0.180

(Nasser Lake) SW - 0.462 0.363 0.441 - - - -0.046

Nile TWS 0.682 0.718 0.602 0.569 0.517 0.302 0.231 0.635

(Tana Lake) SW - 0.492 0.340 0.603 - - - 0.455

St. Lawrence TWS 0.353 0.261 0.271 0.010 -0.121 -0.114 -0.087 -0.010

(Erie Lake) SW - 0.432 0.483 0.126 - - - 0.227

St. Lawrence TWS 0.410 0.364 0.353 0.110 -0.063 -0.064 -0.023 0.037

(Ontario Lake) SW - 0.582 0.572 0.273 - - - 0.239

Euphrates TWS 0.698 0.569 0.225 0.021 0.103 -0.057 0.043 0.182

(Tharthar Lake) SW - 0.236 0.127 0.093 - - - -0.282

Euphrates TWS 0.737 0.628 0.223 0.080 0.148 0.021 0.095 0.185

(Urmia Lake) SW - 0.172 0.170 0.131 - - - -0.325

Ob TWS 0.393 0.482 0.371 0.303 0.336 0.338 0.348 0.328

(Chany Lake) SW - 0.296 0.278 0.177 - - - -0.333

Zambezi TWS 0.552 0.632 0.362 0.277 0.346 0.225 0.246 0.391

(Malawi Lake) SW - 0.382 0.247 0.410 - - - 0.394

Zambezi TWS 0.414 0.365 0.231 0.192 0.121 0.117 0.128 0.160

(Tanganyika Lake) SW - 0.243 0.096 0.241 - - - -0.093

Niger TWS 0.576 0.558 0.436 0.318 0.308 0.065 0.188 0.519

(Chad Lake) SW - 0.657 0.511 0.616 - - - 0.689

Niger TWS 0.132 0.102 -0.002 -0.149 -0.174 -0.383 -0.278 0.079

(Kainiji Lake) SW - 0.282 0.126 0.200 - - - 0.214

Orinoco TWS 0.585 0.539 0.332 0.427 0.431 0.321 0.301 0.434

(Guri Lake) SW - 0.421 0.314 0.390 - - - 0.318

Nelson TWS 0.285 0.270 0.139 -0.185 -0.444 -0.440 -0.389 -0.279

(Winnipeg Lake) SW - 0.104 -0.290 0.072 - - - 0.012

Nelson TWS 0.216 0.249 0.238 0.135 -0.09 -0.164 -0.088 -0.065

(Winnipegosis Lake) SW - 0.098 -0.321 -0.015 - - - -0.480
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