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ON DEFICIENT PERFECT NUMBERS WITH FOUR DISTINCT PRIME
FACTORS

PARAMA DUTTA AND MANJIL P. SAIKIA

ABSTRACT. For a positive integer n, if o(n) denotes the sum of the positive divisors of n, then
n is called a deficient perfect number if o(n) = 2n — d for some positive divisor d of n. In this
paper, we prove some results about odd deficient perfect numbers with four distinct prime
factors.

1. INTRODUCTION

For a positive integer n, the functions o(n) and w(n) denote the sum and number of distinct
positive prime divisors of n respectively. Such an n is called a perfect number if o(n) = 2n.
These type of numbers have been studied since antiquity and several generalizations of these
numbers have appeared over the years (see [LSS] and the references therein for some of them).
In fact, one of the most outstanding problems in number theory at the moment is to determine
whether an odd perfect number exists or not.

Let d be a proper divisor of n. We call n a near perfect number with redundant divisor d
if o(n) = 2n + d; and a deficient perfect number with deficient divisor d if o(n) = 2n — d. If
d = 1, then such a deficient perfect number is called an almost perfect number. Several results
have been proved about these classes of numbers: for instance, Kishore [K] proved that if n is
an odd almost perfect number then w(n) > 6, Pollack and Shevelev [PS] found upper bounds on
the number of near perfect numbers and characterized three different types of such numbers for
even values, Ren and Chen [RG] found all near perfect numbers with two distinct prime factors,
Tang, and Ren and LI [TRL] showed that no odd near perfect number exists with three distinct
prime factors and determined all deficient perfect numbers with two distinct prime factors. In a
similar vein, Tang and Feng [TE] showed that no odd deficient perfect number exists with three
distinct prime factors. Recently, Tang, Ma and Feng [TMF] showed that there exists only one
odd near perfect number with four distinct prime divisors. The smallest known odd deficient
perfect number with four distinct prime factors is 9018009 = 32.72.112.132, and it is the only
such number until 2.10'2.

In this paper, we extend the work of Tang and Feng [TE|] and prove the following main result.

Theorem 1.1. If n is an odd deficient perfect number with four distinct prime factors p1,p2, p3
and py such that n = p{*.p52.p5®.py* with p1 < pa < ps < ps and a1,az2,as3,as > 1, then

(1) p1 =3, and

(2) 5<ps <T.

This paper is organized as follows: in Section [2| we state and prove several lemmas which will
be used in proving Theorem finally in Section [3| we state other results that can be obtained
by our methods and state a few conjectures.
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2 P. DUTTA AND M. P. SAIKIA

2. PROOF OF THEOREM [L.1]

‘We shall prove Theorem as a series of lemmas in this section. Before, we state our results,
we note the following result from Tang and Feng [TF].

Lemma 2.1 (Lemma 2.1, [TE]). Let n = H?le;“ be the canonical prime factorization of n. If
n is an odd deficient perfect number, then all the a;’s are even for all i.

Before we proceed with our results, let us fix a few notations. Throughout this paper, unless
otherwise mentioned we take n = p{*.p32.ps®.py* with p1 < p2 < p3 < py distinct odd primes
and a;’s to be natural numbers. In light of Lemma all the a;’s are even. If a is any integer
relatively prime to m such that k is the smallest positive integer for which a* = 1 (mod m) then,
we say that k is the order of @ modulo m and denote it by ord,,(a). We also define the following
function which we shall use very often in this paper

=11 1 1 1 1 1 1 1

Most of the time, we shall skip specifying the p;’s and the a;’s if they are evident from the
context.

Assuming that n is an odd deficient perfect number with deficient divisor d = p?l .pé’? .pr .pi“,
then we have

(2.1) o(p4.p32 . p3e pit) = 2.p50 .p52 3 pit — phr pl2.phe pht,

where b; < a;. Also write D = p§1 =0 pg2=b2 poa=bs paa=bi Then we have
on) d on) 1

2.2 g  d_on) 1

(22) n + n n + D

An inequality which we will use without commentary in the following is
o(n) < P1-P2-P3-P4 _
n (p1 = 1).(p2 = 1).(ps = 1).(pa — 1)
Lemma 2.2. Ifn is an odd deficient perfect number of the form in Theorem[I.1] then p; = 3.
Proof. If p; > 5, then from equation we have
on) d 571113 1

2=ty o9
n nm Sdei01z 57

which is impossible. So, p; = 3. O

Lemma 2.3. If n is an odd deficient perfect number of the form in Theorem[I.1], then ps < 23.

Proof. If pa > 29, then we have

o(n) n d - 3.29.31.37 +1 <9
n n  2.28.30.36 3 ’

which is impossible. Hence py < 23.
O

We shall now, look at various cases for ps in the following series of lemmas. The techniques
are always similar, so for the sake of brevity we omit few details, but we will always specify how
we can check them.

Lemma 2.4. If n is an odd deficient perfect number of the form in Theorem[I.1], then ps # 23.
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Proof. If po = 23, then using similar methods like before, we can conclude that p3 < 31. This
gives us two choices for p3, namely 29,31. We shall look into them separately.

Case 1. p3 = 29.

In this case, we can conclude that p; < 47 using similar techniques.

Let D > 9, then we have

5 _ a(n) L 1 < 3.23.29.31 +1 <9
T oon D 2222830 9 ’
which is impossible. So, D = 3 in this case, which means a; —b; =1 and a; = b;, i = 2,3,4.

Thus,

(2.3) o(3%1.23%2 29% pit) = 5.3%1 71 2392 99%s pi4.

We note that ords(3) = ords(23) = ords(37) = ords(43) = ords(47) = 4, ords(29) = 2 are all
even; but a; =0 (mod 2), i = 1,2, 3,4, which means that 5 does not divide the left hand side of
equation , and this is a contradiction. Further if py = 31, then ords; (3) = 30,0rd31(23) =
10, ords;(29) = 10 are all even and a; = 0 (mod 2),i = 1,2, 3,4, so equation cannot hold.
Again, if py = 41, then ordy;(3) = 8,0rdy;(23) = 10,0rdy;(29) = 40 are all even and again
equation cannot hold.

Hence, p3 # 29.

Case 2. ps = 31.

Let py > 37, then we have

27M+i< 3.23.31.37+1<2
n D " 2223036 3
which is impossible. So, this case is not possible.
Combining the two cases together, we conclude that py # 23

O
Lemma 2.5. If n is an odd deficient perfect number of the form in Theorem[I.1], then ps # 19.

Proof. If p; = 19, then like before we can conclude that p3 < 37. This gives us the choices
l

23,29, 31 and 37 for ps. Using the elementary inequality b 1 > f_—;_ 1 for positive integers
p—= p -

p and [ we see that D > 9 cannot occur in this case, if D > 9 cannot occur when p3 = 23. And

indeed this is the case, since

o a(n) N 1 _ 3.19.23.29 N 1 _s
T on D 2182228 9 ’

is impossible. So, D = 3 in all these cases, and analogous to equation (2.3]) we have the following

(2.4) o(3%1.19%2.p%° p§*) = 5.391 711972 pg3 pis.

Let us use the function f defined earlier; which is this case is

1 1 1 1
=\l )\ qoma )\ ) (- s )
f(a17a27a37a4) ( 3a1+1> < 19a2+1> ( p§3+1> < pZ4+1)

We also introduce the following function

22.5. —1). —1
g(alv az,as, a4) = (pig p3)p(4p4 ) .

From equation (2.4)), it is clear that in this case

flai,a2,a3,a4) = g(ai,az,as,as).
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If a; = 2, then 13 divides the left hand side of , but it does not divide the right hand side
of equation , so this is a contradiction. Similarly, if a; = 4, then 11 divides the left hand side
of (2.4), but it does not divide the right hand side of equation (2.4), so this is a contradiction.
So aq Z 6.

Case 1. 23 < py < 37.

We have here,

1 1 1 1
oz (1-3) (35) (- ) )

=0.999274-- -,

and

22.5.36.40
< —_— . e,
g(a17a27a’37a4) = 193741 0.999202

Clearly, this is not possible.

Since, we want to check only inequalities of the form f(aq,as,as,a4) > Q and g(aq, as, as, aq) <
R and then compare the values of Q and R, so we need to only verify for the smallest possible
values of p;’s for f(a1,as,as,a4) and the largest possible values of p;’s for g(ay,as,as, aq). So,
the above verification need not be done for all sets of possible values of p;’s. This observation
will be used later without commentary.

Case 2. ps = 41.

If py > 43, then we have

o(n) d 3194143 1

2= —4+—<—+-<2
n o n 218404z 37
which is not possible.
Case 3. ps = 43.
If py > 47, then we have
.19.43.4 1
2:U(n) d 3937_~_7<2

n 2184246 3 7
which is not possible.

The proof of the following is very similar to Lemma [2.5]
Lemma 2.6. Ifn is an odd deficient perfect number of the form in Theorem[I.1], then py # 17.

Proof. If p; = 17, then like before we have ps < 47, so the choices of p3 are 19, 23,29, 31, 37,41, 43
l

and 47. Nothing again the elementary inequality P 1 > —Ti—l’_ 1 for positive integers p and [
p— p -

we see that D > 9 cannot occur in this case, if D > 9 cannot occur when p3 = 19. And indeed

this is the case, since

o a(n) N 1 _ 3.17.19.23 +1 _ 5
T on D " 2.16.1822 9 ’

is impossible. So, D = 3 in all these cases, and analogous to equation ([2.3)) we have the following

(2.5) o (3711792 % p§t) = 5.3 711792 %% pie.

Let us use the function f defined earlier; which is this case is

1 1 1 1
(1 — V(1 — V(1 — ) (1-——).
f(al’a2’a3’a4) ( 3a1+1) < 17a2+1> < p§3+1) < pZ4+1)
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We also introduce the following function

2°5.(p3 —1).(ps — 1)
32.17.p3.p4

g(al7 az, az, a’4) =

From equation ([2.5)), it is clear that in this case

f(ala asz, as, 0,4) = g(ala ag,as, 04).

If a; = 2, then 13 divides the left hand side of (2.5)), but it does not divide the right hand side
of equation (2.5)), so this is a contradiction. Similarly, if a; = 4, 11 divides the left hand side of
(2.5)), but it does not divide the right hand side of equation (2.5)), so this is a contradiction. So
al Z 6.

Case 1. 19 < p3z < 41.

For this case, we have

1 1 1 1
o= (=) (-8 (- ) -

= 0.999111 - - ,
and 5
2°.5.40.42
< ———— =10.996519-- - .
9lar, a2, a3,04) < 2392773
Clearly, this is not possible, so this case cannot occur.
Case 2. p3 = 43.

If py > 53, then we have

o(m)  d _3174353 1 _,
n | on 2164252 3 7

which is not possible. So, py = 47. However, we have ords(3) = ords(17) = ords(43) =
ords(47) = 4, hence 5 cannot divide the left hand side of equation . Hence, this case is not
possible.

Case 2. ps = 47.

If py > 53, then we have

9 _ M n d _ 3.17.47.53 . 1 <9
n n  2.16.46.52 3 ’
which is not possible. So, this case is impossible.
Combining the two cases above, we have py # 17.

O
Lemma 2.7. If n is an odd deficient perfect number of the form in Theorem[I.1], then ps # 13.

Proof. If po = 13 and p3 > 79 then we have

o_oln) d_313798 1 _,
T n n 2127882 307

which is impossible. So, p3 < 73.
Therefore, the choices of p3 lies in the set

{17,19,23,29,31,37,41,43,47,53,59, 61,67, 71, 73}.

l
Nothing again the elementary inequality P > Pt for positive integers p and [ we see

p—1" p+il-1
that D > 9 cannot occur in this case, if D > 9 cannot occur when p3 = 17. And indeed this is
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the case, since

o a(n) N 1 _ 3.13.17.19 +1 _
on D 2121818 9 ’

is impossible. So, D = 3 in all these cases, and analogous to equation ([2.3)) we have the following

(2.6) o (3911392 p3 pit) = 5.3 711392 3% ple.

Let us use the function f defined earlier; which is this case is

1 1 1 1
flay,as,a3,a4) = (1—a +1) (1—a +1> (1—a3+1> (1—a4+1).
3ot 1342 D3 Py

We also introduce the following function

23.5. —1). -1

From equation (2.6)), it is clear that in this case
f(a17 a2, as, a4) = g(ala az,as, a4)'

Case 1. 17 < p3 < 29.

‘We note that
1 1 1 1
f(a17a27a37a4) Z <]- - 33> (1 - 133> <1 — 173) (]_ — 193)
=0.962188- - -,

and
< 23.5.28.30
— 3.13.29.31
which is not possible. So, this case is not possible.
Case 2. p3 > 31
If a1 = 2 and p3 > 31, then we have

o(n) d o(3%).13.31.37 1
2= L o L S o9
n ' n S 32123036 37

g(a17a27a37a4) =0.95833 - - - s

which is not possible.

If a; = 4, then 11 divides the left hand side of equation , but not the right hand side. So,
this is not possible.

Let a; > 6. Then we have

1 1 1 1
flai,a2,a3,a4) > <1—37> (1—133> (1_ 313> (1_373>

=0.999035- - -,

and

23.5.72.78
< 22200 .
9lar, az, a3,a14) < g7a—g = 0998786,
which is not possible. So, this case is not possible.

Combining the two cases above, we conclude that py # 13.
O

Lemma 2.8. Ifn is an odd deficient perfect number of the form in Theorem[I.1], then py # 11.
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Proof. If p; =11 and p3 > 199 then we have

9 _ o(n) n d 3.11.199.211 n 1 <9

on n  2.10.198.210 3 7
which is impossible. So, ps < 197.

Case 1. p3 > 17.

. . . . D p+1 e
Nothing again the elementary inequality 1 > y— for positive integers p and | we
p— p -

see that D > 9 cannot occur in this case, if D > 9 cannot occur when p3 = 17. And indeed this
is the case, since

o a(n) N 1 _ 3.11.17.19 +1 _ s
T on D " 2.10.18.18 9 '

is impossible. So, D = 3 in all these cases, and analogous to equation (2.3]) we have the following

(2.7) o(3%1.11%2.p%° p§*) = 5.3%1 711192 p§3 p3e.

We note here that, if a; = 2, then 13 divides the left hand side of equation , but not the
right hand side. So, a; > 4.

Subcase 1.1. p3 < 127.

Let us use the function f defined earlier; which is this case is

1 1 1 1
o= () () () (- )

We also introduce the following function

22,52 (p3 — 1).(ps — 1)
32.11.p3.p4

g(a1,a27a37a4) =

From equation (2.7)), it is clear that in this case

f(al,(lg,(lg,a4) = g(ala g, as, a4)‘

If ps < 127, then we have

1 1 1 1
flar,az,a3,a4) > (1—35> (1—113) (1— 173) (1_193)

= 004789 - - -

and
22 52.126.130

= 32.11.127.131
which are incompatible with each other. Hence, this subcase cannot occur.

Subcase 1.2. 127 < p3 < 137.

If as = 2, then we find that 19 divides the left hand side of equation 7 but not the right
hand side. So, ay > 4.

g(a1,az,a3,a4) =0.994497 - - - ;

‘We have
1 1 1 1
> (1) (15 ) (1= ) (1 s

f(a'17a'27a'37a’4) = ( 35) ( 115) ( 1273) ( ]_3]_3)

= 0.995878 - - - |

and 2 K2
22.5°.136.138
9(a1, 02,03, 04) < g3 a7 139 ’
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which are incompatible with each other. Hence, this case cannot occur.
Subcase 1.3. 139 < p3 < 181.
If a; = 4, then we have

_o(n) n d - o(3%).11.139.149 +1 <9
S n o on 3410.138.148 3 7
which is not possible. So, a; > 6 in this case. If ao = 2, then we find that 19 divides the left

hand side of equation (2.7]), but not the right hand side. So, as > 4.

We have
1 1 1 1
f(a17a27a37a4) Z (1 - 37> (]. - 115) (1 — 1393> (]_ — 1493)

=0.999536 - - -,
and
22.52.180.190
— 32.11.181.191
which are incompatible with each other. Hence, this case cannot occur.
Subcase 1.4. ps = 191 or 193.
If p4 > 211 then we have

glay,az, a3, ay) = 0.999261 - - - ;

o) d 311191211 1 _,
n n  2.10.190.210 3 ’
which is not possible. So, ps < 197.

If a; = 4, then we have

_o(n) d o(34).11.191.193 1 9
~Tn Th S 3010z 357
which is not possible. So, a; > 6 in this case.
If a; = 6, then 1093 divides both sides of equation , which means py, = 1093, which is
impossible. So, a; > 8.
If ay = 2, then we find that 19 divides the left hand side of equation (2.7), but not the right
hand side. So, as > 4.

We have
1 1 1 1
>(l-5 ) (1) (13 ) (1~ 1oms
fla1,az,a3,a4) > ( 39) ( 115) ( 1913) ( 1933)
=0.999943 - - - |
and 2 2
22.52.192.196
< —— =0.999766 - - - :
9(a1,02,03,04) < 557705 107 ’

which are incompatible with each other. Hence, this case cannot occur.
Subcase 1.5. ps = 197.
If py > 211 then we have

o(n) , d _311197211 1 _,
n T n 210196210 3 7
which is not possible. So, ps = 199.
We have ords(197) = ord;1(197) = 2,0rd5(197) = 4 and ordyge(197) = 198 are all even.
Hence, none of the factors of the left hand side of equation divides ¢(1973), which is a

contradiction.
Combining the five subcases, we conclude that ps < 17.



DEFICIENT PERFECT NUMBERS 9

Case 2. ps = 13.
. . . . P p+l e
Nothing again the elementary inequality 1 > 1 for positive integers p and [ we
p— p -
see that D > 13 cannot occur in this case, if D > 11 cannot occur when ps = 17. And indeed
this is the case, since

o o(n) N 1 _ 3.11.13.17+ 1 _
T on D ~ 210.11.16 11 ’

is impossible. So, D = 3 or 9 in all these cases.
Subcase 2.1. D = 3.
We have the following equation in this case

(2.8) o(3%1.11%2.13% pa+) = 539171 1192 3% pt4,

Let us use the function f defined earlier; which is this case is

1 1 1 1
o= (52 (1 ) (- ) ()

We also introduce the following function
21.5%.(py — 1)

g(a1,az2,a3,a4) = 3.11.13.p4

From equation ({2.8]), it is clear that

f(al,a2,a3aa4) = g(ala a2, as, a4)‘

Clearly
1 1 1 1
flay,az2,a3,a4) > (1 — 33> (1 — 113) (1 — 133) (1 _ 173)
=0.961606- - - ,
and
452
< =0.
g(ai,az, a3, as) < 31113 0.932401 ;

which are incompatible with each other. Hence, we get a contradiction.
Subcase 2.2. D = 9.
In this case, if py > 19, then we have

o_ o(n) N d 3111319 +1
T on n  2.10.12.18 9

which is not possible. So, py = 17. Observing that, ord;7(3) = 16 = ord;7(11) and ord;7(13) = 4,
we can conclude that this case cannot occur.

Combining the two subcases we conclude that ps # 13.

Combining the two cases above, we conclude that py # 11.

<2,

O
Lemma 2.9. Ifn is an odd deficient perfect number of the form in Theorem[I], then 5 < ps < 7.

Proof. Collecting Lemmas and gives us the result. O

Proof of Theorem[I.1 The first part is proved in Lemma [2.2] while the second part in proved in
Lemma
(I
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3. OTHER RESULTS AND OPEN PROBLEMS
Numerical evidence as quoted in Section [1| encouraged us to make the following conjectures.
Conjecture 3.1. There is only one odd deficient perfect number with four distinct prime factors.

Conjecture 3.2. For any positive integer k > 3, there are only finitely many odd deficient
perfect numbers with exactly k distinct prime factors.

The case k = 3 in Conjecture corresponds to the main result of Tang and Feng [TE].
Theorem|[I.1]gives some evidence in support of Conjecture[3.1]and the case for k = 4 in Conjecture
by eliminating several candidates of primes. The only cases to eliminate now are ps = 5 or 7.

We should note that our methods although works for providing bounds in support of Conjec-
ture however a lot of work is required to give very explicit values of primes. As an example
of the type of results we are referring to, we present the following theorem.

Theorem 3.3. Ifn is an odd deficient perfect number with five distinct prime factors, p1 < pa <

as

p3 < pa < ps such that n = p{*.ps2.pse.py*.ps® with positive integers a;, then 3 <p; <5

o(n)

d
Proof. Indeed, if this is the case, then we have 2 = ——= 4+ — where d is the deficient divisor.
n n
Clearly if p; > 7, we have
on) d 711.13.17.19 1

S o
n o n S610121618 (7 -7

which is impossible. So, 3 < p; <5. O

Remark 3.4. A case by case analysis of py = 3 and py = 5 in Theorem as we have done in
Section [4 would help in finding bounds for pa, as well as eliminate some of the choices. But, we
do not explore this further. It is our belief that some other method must come into place to say
something about these type of results. We hope to discuss the cases for po = 5,7 in a subsequent

paper.

Note Added. The case for p = 7 is discussed by the second author [S], where he proves that
there is only one such deficient perfect number when 7 divides n.

Acknowledgements. The second author is supported by the Austrian Science Foundation
FWF, START grant Y463.
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