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Abstract—Accurately determining the location of DC 

pole-to-pole short-circuit faults in modular multilevel converter 

(MMC) based multi-terminal HVDC (MTDC) systems is key 

issue in ensuring fast power recovery. This paper proposes an 

effective DC fault location scheme for the MMC-MTDC that uses 

an estimated R-L representation of the transmission lines. By 

using the measured voltage and current data from both ends of 

the faulted DC line, the proposed fault location formulas can 

calculate the location of the fault with high accuracy. The sim-

plified R-L representation greatly reduces the computation 

burden of the fault detection algorithm. Electromagnetic tran-

sient (EMT) simulations of a four-terminal MMC-MTDC system 

on PSCAD/EMTDC are used to confirm the effectiveness of the 

proposed approach. The results verify that the proposed scheme 

is robust and almost not affected by the transmitted power or the 

fault resistance. 

Index Terms—Modular multilevel converters (MMC), fault 

location scheme, multi-terminal HVDC system; simplified 

transmission line representation. 

I. INTRODUCTION 

IGH Voltage Direct Current (HVDC) transmission sys-

tem employing modular multilevel converter (MMC) is 

an effective solution to transfer the fluctuating renewable 

source energies through long distance overhead lines [1]-[3]. 

Due to its advanced features such as almost harmonic free 

waveforms and better scalability, MMC has been applied in 

building large scale multi-terminal HVDC (MTDC) grid [4]. 

The DC fault protection schemes such as fault detection, iso-

lation, location, fault clearance, and fast recovery can ensure 

continuous operation and desired performance of the MTDC 

grid. Among these aspects, the DC fault location scheme is 

beneficial to accelerate the fault clearance and power recovery 

processes and will reduce the duration of power interruption 

[5]. 

In recent years, a large number of methods to detect and 
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locate DC faults have been proposed, which can be classified 

into two categories, respectively, the travelling-wave methods 

[6]-[10] and time-domain location methods [11]-[14]. The 

basic principle of traveling-wave method is to determine the 

measurement point and calculate the propagation distance 

based on the arrival time of the wave front and the propagation 

velocity [15]. The time-domain location method calculates the 

voltage and current distributions along the transmission line by 

using voltage and current measured at both ends [16]. Then the 

fault location can be obtained by using the wave equation and 

the electrical characteristics of the fault point. 

The travelling-wave based methods can be applied to both 

AC and DC lines to locate faults and are usually considered as 

powerful techniques for the latter [17]. Extensive studies have 

proven that it is feasible to locate fault merely by using the 

arrival time of travelling waves at different locations. Refer-

ence [6] only needs the initial time that the traveling waves 

reach all terminals to determine the fault occurring time (FOT) 

of the shortest paths between any two terminals, and the 

smallest one indicates the fault location. Thanks to the global 

positioning system (GPS), all the MMC terminals can share a 

common clock signal with a time synchronization accuracy of 

less than 0.1μs [7]. In those methods, high sampling frequency 

is needed to identify the wave head accurately which is a key 

issue to locate the fault. However, it is hard to detect the fault if 

the fault resistance is large or the fault is caused by a gradually 

changing fault resistance, due to the fact that the travelling 

waves become too weak under these circumstances [28]. 

In order to exclude the influences of the fault and disturb-

ance characteristics of power system, the Wavelet Transform 

(WT), as an effective method for analyzing sudden changes in 

input signals, has been widely applied [8]-[9], with the aim of 

improving the accuracy of detecting the arrival of travelling 

waves. Reference [10] proposed a two-terminal fault location 

approach which analyses aerial mode travelling waves and 

incident ground without using propagation velocity of travel-

ling wave and the data synchronization. However, the appli-

cation of the algorithm is limited to ground faults only. The 

WT-based methods can be of high accuracy, with most of the 

relative error within 1% [6], [7], [10]. As stated above, the 

accuracy of these location schemes largely depends on the 

accurate detection of the surge arrival time and the wave speed 

[16]. However, the wave head is hard to capture and the 
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propagation velocity can be affected by transmission line 

parameters [18]. 

The time-domain fault location methods, which use the 

distributed parameter model of the DC transmission lines, can 

obtain correct fault point from collected data [11], [12]. Due to 

the use of voltage and current signals, the location accuracy is 

affected by the differences in the transfer characteristics of the 

voltage transformer (VT) and the current transformer (CT), 

and thus the secondary voltage and current cannot strictly 

satisfy the differential equation, which will reduce the accu-

racy of the fault location [15]. Reference [13] applies the WT 

method and principal component analysis to extract the char-

acteristics information from local DC current measurement as 

input to the genetic fuzzy system. It can reduce the impact of 

the transmission error of the transformer to some extent. Ref-

erence [14] applies the Pearson correlation coefficient to 

measure the similarity between the newly sampled voltage 

signals and the existing ones for DC fault location. Although 

these algorithms do not improve the model accuracy substan-

tially, the ranging result can be corrected. Therefore, more 

accurate time-domain location schemes are required. The 

simplified representation of the transmission lines is important 

input for accurate theoretical analysis of HVDC system, e.g. 

[24] and [27] used such lumped parameters for DC-side 

short-circuit fault current calculation of MMC-HVDC grid. 

Although the results seen to be accurate within several milli-

seconds after the fault, the method to obtain these equivalent 

parameters of the transmission line are not provided, thus 

limits their application for other purposes such as the fault 

location in this paper. 

To address this issue, this paper proposes a DC fault loca-

tion method for MMC based MTDC systems, which is based 

on the estimated R-L model of the frequency dependent 

transmission line (FDTL). Compared with traveling wave 

methods requiring a high sampling frequency [29], [30], the 

proposed algorithm can achieve similar accuracy with a lower 

sampling frequency. When comparing with the exiting time 

domain methods, the new approach only needs the voltage and 

current information from two terminals of the faulted line and 

no need for the additional algorithms of large complexity to 

improve the location accuracy, hence the algorithm is simple 

and reliable. 

II. FOUR-TERMINAL MMC-HVDC SYSTEM AND THE FAULT 

LOCATION SCHEME 

A. The Topology of MMC and MTDC System 

The classical half-bridge MMC shown in Fig. 1 is used as 

basic converter topology. The four-terminal and true bipolar 

MMC-MTDC system shown in Fig. 2 is used as the bench-

mark model [19], with the transmission lines based on the 

FDTL model [20]. 
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Fig. 1 The half-bridge MMC. 
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Fig. 2  The four-terminal MMC-MTDC system. 
 

B. Fault Location Scheme 

In Fig. 2, DC short-circuit faults can occur at any location of 

the arbitrary DC lines, and the faults can be either single-pole 

or pole-to-pole faults. The proposed fault location scheme in 

this paper is suitable for both types of DC faults, and the 

pole-to-pole fault will be used to exemplify the basic location 

algorithms. The entire flow chart of the algorithm is shown in 

Fig. 3, which includes three blocks. 
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Fig. 3  The flowchart of the proposed DC fault location scheme. 

The DC short-circuit faults are continuously detected, and 

the DC voltage and current data from both ends of any line are 

continuously stored in a sliding window manner. Then the 

following three blocks will implement the location algorithm. 

⚫ Block 1: Detection of Fault Initiation Algorithm.  



 3 

( ) ( ) ( )
3 6

_ _
1 4

j mn j mn j
i i

U k U k i U k i
= =

 = − − −    (1) 

 ( ) ( )set set&p nU k U U k U       (2) 

The voltage data Umn_j will be fed into the voltage gradient 

algorithm [21] and if the voltage gradients Up and Un ex-

ceed the preset value Uset, it is determined that pole-to-pole 

fault has occurred. Note that k represents the sampling point, 

k-i is the ith sampling point prior to the present moment, j=p,n. 

⚫ Block 2: Fault Type Classification.  
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Current-deviations ΔImn and ΔInm can be calculated by 

using fault current Imn, Inm and pre-fault currents Imn0, Inm0. 

Feeding ΔImn and ΔInm into the included angle cosine Cia, if 

Cia is close to “-1”, internal fault is distinguished. n repre-

sents the number of sampling points. In this paper as the 

sampling frequency is 50 kHz and the data window is 5ms, 

the size of 'n' is 250. 

⚫ Block 3: Identification of Fault Location. The voltage and 

current data are fed into the proposed location coefficient to 

calculate the fault location. During the calculation, the es-

timated R-L model parameters of transmission line will be 

used, which are obtained from preset fault test. 

The main contribution of this paper relies on Block 3, which 

will be described in detail in Section III and Section IV.  

III. IDENTIFICATION OF FAULT LOCATION 

There are three stages in the development of pole-to-pole 

faults, with the capacitors fast discharging being the first [23]. 

At this stage, the individual MMC can be equivalent to a 

second-order RLC circuit. However, obtaining the analytical 

solution of the voltage and current data in the MMC-MTDC 

system is extremely difficult due to the strong coupling of the 

discharging processes of all the terminals [24]. 

To address this issue, the measurement values of the volt-

ages and currents from each terminal are used for fault location, 

which are captured from the FDTL model-based DC network 

and has considered the detailed characteristics of the actual 

transmission lines. The equivalent circuit of the estimated R-L 

model-based DC fault discharging process is shown in Fig. 4. 

The actual voltage and current data are filtered by a first-order 

lag to eliminate the influence of high frequency components 

caused by distributed capacitance parameters. Hence the dis-

tributed capacitance is not included in the calculation.  
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Fig. 4  The estimated R-L equivalent circuit in first stage of pole-to-pole 

short-circuit fault. 

In Fig. 4, u1(t) and u2(t) represent the actual measurement 

values of DC voltages at the DC bus bars of the converters; the 

variables i1(t) and i2(t) represent the discharging currents of the 

MMC capacitors from both terminals; The variables um1(t) and 

um2(t) indicate the actual measurement values of the voltage 

drop on smoothing reactors at both ends of the line; Lm1 and 

Lm2 are respectively smoothing reactors close to terminal “1” 

and “2”; Zf represents the fault resistance; x1 and x2 respec-

tively indicate the distances from the fault point to the left and 

right ends of the inverter bus bar; The variable r0 is the re-

sistance per unit length of the line and l0 is the inductance per 

unit length. Note that r0 and l0 are the equivalents derived from 

the FDTL model which are used for fault location analysis and 

will be provided in later subsection. 

In Fig. 4, the internal structures of the two terminal con-

verters are not considered, instead the terminal voltage and 

current are measured in real time, hence the equivalent circuit 

in Fig. 4 and the following equations are both applicable to 

other VSC configurations. Based on the equivalent circuit in 

Fig. 4, apply KVL and KCL to both circuits, equations (5) and 

(6) can be obtained: 
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Subtracting of the above two equations can eliminate the 

effect of fault resistance, and thus (7) is obtained: 
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Let L be the total length of the faulted line, then 

 1 2x x L+ =   (8) 

Define 1x

L
 = to be the ratio of the distance from the fault 

point to the corresponding terminal over the total length of the 

DC line, then substituting (8) to (7) yields 
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In order to decrease the rate of rising of the DC fault current, 

the MTDC systems are usually equipped with smoothing re-

actors, then voltage drop across the reactor can be expressed as 
 

 ( )
( )1,2

1,2 1,2m m

di t
u t L

dt
=   (10) 

 

Thus, the current derivative can be calculated by the voltage 

change of the smoothing reactor without substitution errors 

caused by differential calculations [25], i.e. 
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m
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Substituting (11) to (9), the time domain expression of λ can 

be obtained as (12), which depends on the actual measurement 

values and the estimated DC line parameters to locate faults. 
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Three short-circuit fault locations are applied on Line 1 of 

the FDTL model based MMC-MTDC system shown in Fig. 2, 

the fault occurs at time t = 1s, and the fault distances from the 

converter station S1 are respectively 10%, 50%, and 90% of 

the total line length. The corresponding voltage and current 

simulation results for each fault point are independently used 

to calculate λ after passing through the first-order filter, with 

the results shown in Fig. 5. 
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Fig. 5  The calculated λ for different fault locations. 

The first-order filter can eliminate the interference caused 

by high-frequency components, it cannot completely remove 

the ripples of the voltages and currents, which will make the 

calculated λ fluctuate along the time axis. Fortunately, as 

shown in Fig. 5, the calculated λ fluctuates around the refer-

ence value within 2ms to 5ms after the fault. In order to ac-

count for this issue, a fault location coefficient η is defined to 

obtain the averaged value of fluctuations, which is the value 

with the minimum square sum of distances to the calculated λ 

corresponding to all the sampling times. According to the 

physical meaning, η is within the range of 0 to 1 and satisfies 

(13). 

 ( )
2

1

min
n

k

k 
=

−     (13) 

The location algorithm uses the calculated η to 

quantitatively determine the fault location. 

IV. THE ESTIMATED R-L MODEL 

Formulas (12)-(13) need both the measured voltage, current 

data and the equivalent line parameters r0 and l0 which form 

the estimated R-L model. r0 and l0 can be determined through a 

fault test.  

Referring to Fig. 4, the preset fault is set to be a pole-to-pole 

short-circuit fault occurring at the midpoint of the line without 

fault resistance. (14) gives the estimation method of the DC 

line parameters r0, l0, which applies KVL to the loop circuit 

formed by one terminal of the line and the fault point. 

 ( ) ( ) ( )
( )1

1 1 0 1 02 2 2m test test

di t
u t u t r L i t l L

dt
− = +  (14) 

Ltest represents the distance between the preset fault location 

and the terminal of the line. The r0 and l0 parameters of the line 

can be readily calculated by (14) written in different time 

intervals [26], and the matrix form containing r0 and l0 is given 

in (15). 
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(15) 

In (15), ∆t represents the time interval and all the voltage 

and current data have passed through the first-order lag first. 

Both r0 and l0, which are in the time domain, are calculated 

off-line. By setting pole-to-pole faults at the midpoint of the 

Line, the calculated r0 and l0 using (15) are shown in Fig. 6. 
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Fig. 6  Calculated r0 and l0 for the transmission line with different time inter-

vals. 

Similar to Fig. 5, the waveforms in Fig. 6 fluctuate around a 

certain value, and data fluctuation becomes small after 15ms. 

Then the data from 15ms to 20ms are used to obtain more 

stable and accurate r0 and l0. In order to wait for sufficiently 

long time until the data fluctuation decreases so that accurate 

r0 and l0 of the RL model can be obtained, the DCCBs are 

disabled in the process of identifying the RL model. 

Time intervals value is a key parameter to equation (15) and 

for the fault location method. By comparison, the time interval 

is selected as 1.5ms, a relatively minimum location error can 

be obtained. After calculation, the results of r0 and l0 are re-

spectively 3.3597×10-5 Ω/m and 1.2751×10-6 H/m. 

To verify the model accuracy, values of r0, l0 are varied and 

associating location errors are calculated. Here the calculated 

line parameters in Section IV are used as reference values, i.e. 

r0=3.3597×10-5 Ω/m and l0=1.2751×10-6 H/m. Fig. 7 and Fig. 

8 show the test results corresponding to different fault loca-

tions (f1- f4) of Line 1.  
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Fig. 7  Location error varies with r0 
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Fig. 8  Location error varies with l0 

The test results show that only when the r0 and l0 take values 

near the calculated value, they have the lowest location error 

which can be controlled within 1%. Perform the same test on 

Line 4 can get the similar results. It is enough to show that the 

R-L model has high accuracy, and r0, l0 can accurately reflect 

the short-circuit fault characteristics of the transmission line. 

The DC system has no fundamental frequency, so it is dif-

ficult to use the phasor form to calculate the equivalent im-

pedance of the fault. Also, the AC transmission line parameter 

acquisition method is not applicable to DC system. In view of 

this, the proposed usage of full-frequency electrical quantities 

is a new attempt to calculate DC line parameters and locate 

faults. 
 

V. VALIDATION AND STUDY RESULTS  

In the four MMC stations shown in Fig. 2, the converter 

station 3 uses constant DC voltage control and constant reac-

tive power control, and the remaining converter stations adopt 

constant real power control and constant reactive power con-

trol. Note that, in order to limit the fault current and improve 

the fault ride-through capability of the DC grid, the smoothing 

reactors are installed at both ends of the DC lines. More de-

tailed system parameters are given in Table I. 

TABLE I 

 PARAMETERS OF THE VALIDATION SYSTEM AND MODEL 

System parameters Value 

Line length  (km) 

Line 1:  227 

Line 2:  126 

Line 3:  219 

Line 4:    66 

DC voltage  (kV) ±500 

Capacitance of SM  (μF) 15000 

Number of submodules 233 

Smoothing reactor  (mH) 150 

Rated power of S1 and S2 (MW) 1500 

Rated power of S3 and S4 (MW) 3000 

r0 (Ω/m) 3.3597×10-5 

l0  (H/m) 1.2751×10-6 

The required settings include, fault occurs at 1.0s, the data 

sampling frequency is 50kHz synchronized at both ends, and 

the fault locations are from f1 to f11 as marked in Fig. 2. The f1- 

f4 are internal fault points which locate at 20%, 40%, 60%, 

80% of Line 1, f6- f10 are also internal fault points which locate 

at 10%, 30%, 50%, 70% and 90% of Line 4, f5 and f11 are 

respectively external faults of Line 1 and Line 4. The total data 
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window needed in this paper is 5ms. 

The use of the first-order lag (low-pass filter) is to obtain a 

simplified and mathematical model of transmission lines (as 

shown in Fig. 4), which facilitates the derivation and analysis 

of the subsequent location algorithm. In the subsequent veri-

fication of the model accuracy and location algorithm, simu-

lation studies (as shown Figs. 5-16) were carried out using the 

detailed model of the overhead lines representing the effects of 

frequency-varying characteristics and distributed capacitance, 

which was not simplified. 

A. Validation of the Voltage Gradient Algorithm 

When the MMC-MTDC system is running, the voltage data 

of two DC poles at the MMC bus bars are continuously de-

tected, calculated and compared with the threshold value. Fig. 

9 shows the values of the voltage gradient corresponding to 

pole-to-pole faults occurring at different locations of Line 4 

and a negative-pole-to-ground (N-G) fault occurring at the 

midpoint of Line 4. Considering that after the pole-to-pole 

fault, the positive and negative voltages change in a consistent 

trend, hence Fig. 9 only shows the voltage gradient value of the 

positive pole, which is also the non-faulty pole when occurring 

N-G faults. 
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Fig. 9  The voltage gradient of positive pole corresponding to different faults. 

It can be seen that the voltage gradient value of the faulted 

pole will reach a large value after fault occurrence compared to 

the healthy pole. The peak time varies slightly depending on 

the locations of the fault. Without loss of generality, the 

midpoint of the line is selected to test pole-to-pole faults under 

different operating conditions, aiming to find the proper 

threshold of the improved method. Fig. 10 shows the changing 

trend of the maximum value of the voltage gradient of positive 

pole with the changing of fault resistance, smoothing reactor 

size and transmitted real power of MMC. 
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Fig. 10   The maximum value of the voltage gradient of positive pole: (a) fault 

resistance, (b) the smoothing reactors, (c) real power. 

From Fig. 10, it is observed that the change of each param-

eter will change the maximum value of the voltage gradient, 

and among which the fault resistance having the greatest im-

pact. For Line 4, the threshold of the voltage gradient method 

is chosen to be 400 kV, which can be applied to equation (1) to 

initiate the fault location algorithm when a pole-to-pole fault 

occurs. Different lines should be configured with specific 

thresholds due to different line lengths and transmitted power. 

The confirmation method of these threshold values is similar 

to Line 4. 

B. Validation of the Proposed Included Angle Cosine 

Section IV proposed the concept of included angle cosine, 

which uses current data from both ends to identify internal and 

external faults. Assuming pole-to-pole fault respectively oc-

curs at internal fault points of Line 4 (f6- f10) and external fault 

point (f11), the calculated results of the included angle cosine 

corresponding to different operating conditions are given in 

Table II. 
 

TABLE II (A) 

 CALCULATED INCLUDED ANGLE COSINE 

 Fault resistance (Ω) 

Fault location 0 300 500 

f6 -1 -0.97 -0.99 

f7 -1 -0.98 -0.99 

f8 -1 -0.99 -0.99 

f9 -1 -0.99 -0.98 

f10 -1 -0.97 -0.99 

f11 1 0.95 0.91 

TABLE II(B) 

 CALCULATED INCLUDED ANGLE COSINE 

 Smoothing reactor (mH) Transmitted power (p.u.) 

 90 130 170 1.0 0 -1.0 

f6 -0.99 -1 -0.99 -1 -1 -1 

f7 -0.98 -0.98 -0.98 -1 -0.99 -1 

f8 -1 -1 -1 -1 -1 -1 

f9 -1 -1 -0.98 -1 -0.99 -1 



 7 

f10 -1 -0.99 -1 -1 -0.98 -1 

f11 0.98 0.96 0.99 1 0.99 0.98 

It can be found that the values correspond to internal faults 

are close to ‘-1’ while the values correspond to external faults 

are close to ‘1’. Therefore, by calculating the included angle 

cosine of current-deviations, it is possible to accurately iden-

tify the internal and external faults in the DC system. 

Once the fault is determined to be an internal pole-to-pole 

type, the fault location coefficient algorithm proposed in this 

paper will be started. The voltage and current data will pass 

through a first-order lag represented as 
1

G

ST+
 (G = 1 and T = 

0.002s).  

C. The Validation of Pole-to-ground Short-circuit Fault 

Location Coefficient at Different Fault Points 

The proposed fault location procedure also applies to P-G 

faults. The equivalent network after P-G fault is shown in Fig. 

11. 
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Fig.11  Model used for pole-to-ground fault location 

The location coefficient η under P-G fault can be derived 

from the derivation of P-P fault, which is 
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Using equations (16) and (17) and the calculated parameters 

r0 and l0, the fault location coefficient can be obtained, and 

location error is calculated by: 

 1 100%
x

Error
L

= −    (18) 

Setting positive P-G faults at different locations of Line 1, 

the location results are shown in Table III. 

TABLE III 

 P-G FAULT LOCATION RESULTS 

Fault location 20% 40% 60% 80% 

Location error(%) 1.1 0.5 0.3 0.7 

P-G and P-P faults have similar fault equivalent networks, 

the same derivation process and approximate location expres-

sion. The test results show that the proposed location algo-

rithm has good applicability to P-G faults. Due to space limi-

tations, this paper mainly proposes formula derivation and 

simulation verification for pole-to-pole faults. 

D. The Validation of Pole-to-pole Short-circuit Fault Loca-

tion Coefficient at Different Fault Points 

Fig. 12 shows the corresponding results. The abscissa rep-

resents the actual fault locations, specifically the ratio of the 

distance between the fault point and one terminal of the line 

over the total line length. It includes nine internal fault points 

of two DC lines, which are f1- f4 and f6- f10 respectively set 

within Line 1 and Line 4. The ordinate indicates the location 

error. 
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Fig. 12  Location errors of different short-circuit fault points. 

It is seen that the location errors are smaller than 0.8%, 

which means location coefficients can accurately represent the 

actual fault location. Therefore, the location algorithm is suf-

ficiently accurate, and not affected by the fault locations and 

the length of the DC lines. 

 

E. Validation of the Location Accuracy under Various System 

Aspects 

As indicated before, the fault resistance, smoothing reactor 

size and the transmitted real power have influences on the 

measured voltage and current data from both terminals of the 

DC lines. Therefore, it is necessary to check the impact of 

these aspects on the location accuracy. In this scenario, DC 

Lines 1 and 4 are used for the validations. 
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Fig. 13  Fault location error of different short-circuit fault points: (a) fault 

resistance, (b) smoothing reactors, (c) transmitted power. 

Fig. 13(a) shows the location coefficient of nine 
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pole-to-pole short-circuit faults in Line 1 and Line 4 under 

different fault resistance and the effect of smoothing reactors is 

shown in Fig. 13(b). The results in Fig. 13(c) are obtained by 

changing the transmitted real power of the MMC station S1.  

When these parameters change, the location errors do not 

change much and keep in a relatively small range. As indicated 

in the theoretical analysis, the use of two-terminal voltage and 

current data can eliminate the effects of fault resistance. Ap-

plying the measured voltage values from positive and negative 

poles, measured current values from the DC lines and the 

voltage drops across the smoothing reactors, the impact from 

the smoothing reactors and transmitted power can be mini-

mized.  

F. Validation of the Location Accuracy under Various System 

Aspects 

Table IV and V show the location errors of faults at Line 

1 and Line 4 respectively when the four-terminal system is 

under normal, n-1 and n-2 modes. 

TABLE IV  

EFFECTS OF VARIOUS OUTAGE MODES ON LOCATION ERRORS 

OF LINE 1 

  Fault location 

 Location 

error (%)  
20% 40% 60% 80% 

D
is

co
n

n
ec

te
d

 l
in

e 
 

non 0.2 0.2 0.7 0.6 

Line 2 0.6 0.4 0.2 0.3 

Line 3 0.1 0.2 0.2 0.5 

Line 4 0.1 0.2 0.1 0.1 

Line 2, Line 3 0.5 0.7 0.8 0.5 

Line 2, Line 4 1.0 0.9 0.7 0.8 

Line 3, Line 4 0.3 0.5 0.2 0.3 

TABLE V  

EFFECTS OF VARIOUS OUTAGE MODES ON LOCATION ERRORS 

OF LINE 4 

  Fault location 

 Location 

error (%)  
10% 30% 50% 70% 90% 

D
is

co
n

n
ec

te
d

 l
in

e non 0.3 0.8 0 0.6 0.1 

Line 1 0.3 0.7 0 0.4 0.3 

Line 2 0.5 0.8 0.1 0.5 0.8 

Line 3 1.2 1.9 0.1 0.6 0.8 

Line 1, Line 2 1.0 0.7 0 0.2 0.4 

Line 1, Line 3 0.7 1.2 0.1 0.9 0.7 

Line 2, Line 3 0.5 1.1 0 0.5 0.9 

It can be found that under different outage modes, the 

algorithm can accurately locate faults at different locations of 

different lines, with the location error less than 1% in general. 

Therefore, the fault location algorithm is not affected by states 

of other lines. As this is an offline algorithm, all the status of 

system circuits, including breakers, have already been known 

by the control center and the algorithm has the function of fault 

detection, it is not necessary to communicate status of breakers 

to each controller. 

G. The Effects of Synchronization Error and Sampling Fre-

quency 

The algorithm proposed in this paper needs to use the dou-

ble-ended synchronous voltage and current data after sampling, 

so it is necessary to study the effects of synchronization error 

and sampling frequency on location accuracy. Taking faults of 

Line 1 as an example, Fig. 14 and Fig. 15 show the results. 
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Fig. 14  Effects of synchronization error 
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Fig. 15  Effects of sampling frequency 

The location error increases as synchronization error in-

creases, which exceeds 1% when the time difference of the 

double-ended signal is greater than 20μs. However, since the 

current GPS system can provide a common clock signal with a 

time synchronization accuracy of less than 0.1μs [7], the 

synchronization error is acceptable for the proposed method. 

It can be seen from Fig. 15, the location error decreases as 

the sampling frequency increases, and has dropped below 1% 

at 50 kHz. Continue to increase the sampling frequency has a 

limited effect on improving location accuracy. Therefore, the 

sampling frequency in this paper is set to 50 kHz. 

H. Noise Influence on Location Accuracy 

Noise can cause fluctuations and randomness in the 

measured electrical quantity, taking the actual measurement of 

bipolar DC voltages (u1) as an example to show the effect of 

30dB noise, as shown in Fig.16. 

u
1
 (

k
V

)

0.999 1 1.001 1.002 1.003 1.004 1.005 1.006
0

200

400

600

800

1000

1200

t (s)

------- 30dB

-------  0dB

 
Fig.16  Measured DC voltage at the DC bus bars with noise 

To investigate the influence of noise on location accuracy, 

the measured voltage and current data are contaminated with 

different levels of white Gaussian noise. In the test, the 



 9 

intensity of the white Gaussian noise applied to voltage is six 

times the amount of current. Table VI gives the test results. 

TABLE VI   

EFFECTS OF NOISE ON LOCATION ACCURACY 

  White Gaussian Noise (dB) 

 
Location 

error(%) 
0 5 10 15 20 25 30 

F
au

lt
 l

o
ca

-

ti
o

n
 

20% 0.2 0.3 0.3 0.5 0.4 0.7 0.8 

40% 0.2 0.4 0.5 0.2 0 0.4 0.9 

60% 0.7 0.8 0.7 0.6 0.2 0.6 0.3 

80% 0.6 0.5 0.4 0.7 0.7 0.6 0.4 

The increase in the intensity of white Gaussian noise does 

not necessarily cause an increase in the location error. This is 

because the white Gaussian noise itself has a certain 

randomness. In general, the presence of white Gaussian noise 

does not significantly affect the accuracy of the location 

algorithm. It can be seen that the location algorithm proposed 

in this paper has strong anti-noise ability. 

The proposed method has the following advantages: it 

has strong tolerance to fault resistance and is almost unaffected 

by line boundary components, which are the drawbacks of 

travelling wave method. The limitations are as follows: preci-

sion of the proposed location method is not much higher than 

the travelling wave method and relatively lower sampling 

frequency seems not to significantly reduce the cost. The lo-

cation algorithm of cable lines or transmission-cable hybrid 

lines has not been included yet and needs further study. Also, 

the proposed method and the traveling wave method require a 

comprehensive and in-depth comparison in terms of compre-

hensive technical and economic aspects. 

VI. CONCLUSIONS  

This paper proposes a location scheme with reduced com-

putation to accurately identify fault type and location in a DC 

grid. Also, a simplified R-L representation is proposed to 

model a detailed frequency dependent transmission line by 

calculating the RL parameters for fault location. In this paper, 

the location algorithm of cable lines or transmission-cable 

hybrid lines has not been concluded, which needs further 

study. 

The simplified representation does not need complicated 

algorithms to extract specific frequency components. And the 

sampling frequency is much lower than the traveling wave 

method and does not need to capture the travelling wave head. 

The proposed algorithms are proven to be robust under 

various fault locations and are almost not affected by fault 

resistance, smoothing reactors, and the transmitted power.  
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