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Abstract 

A number of mutations in a gene encoding RNA-binding protein FUS have been linked to the 

development of a familial form of amyotrophic lateral sclerosis known as FUS-ALS. C-terminal 

truncations of FUS by either nonsense or frameshift mutations lead to the development of FUS-

ALS with a particularly early onset and fast progression. However, even in patients bearing these 

highly pathogenic mutations the function of motor neurons is not noticeably compromised for at 

least a couple of decades, suggesting that until cytoplasmic levels of FUS lacking its C-terminal 

nuclear localisation signal reaches a critical threshold, motor neurons are able to tolerate its 

permanent production.  

In order to identify how the nervous system responds to low levels of pathogenic variants of FUS 

we produced and characterised a mouse line, L-FUS[1-359], with a low neuronal expression level 

of a highly aggregation-prone and pathogenic form of C-terminally truncated FUS. In contrast to 

mice that express substantially higher level of the same FUS variant and develop severe early onset 

motor neuron pathology, L-FUS[1-359] mice do not develop any clinical or histopathological signs 

of motor neuron deficiency even at old age. Nevertheless, we detected substantial changes in the 

spinal cord transcriptome of these mice compared to their wild type littermates. We suggest that at 

least some of these changes reflect activation of cellular mechanisms compensating for the 

potentially damaging effect of pathogenic FUS production. Further studies of these mechanism 

might reveal effective targets for therapy of FUS-ALS and possibly, other forms of ALS.  
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Introduction 

Mutations in the gene encoding FUS are among the most frequent causes of familial ALS 

(fALS) and many of these mutations lead to partial change of FUS localisation from the nucleus to 

the cytoplasm of motor neurons.  Mislocalised FUS aggregates forming large cytoplasmic 

inclusions, and negatively affects various important cell functions [1-4]. Aggregation of FUS has 

also been observed in the cytoplasm of neurons in a subset of patients with sporadic form of ALS 

(sALS) and in patients with certain variants of frontotemporal lobar degeneration (FTLD-FUS) in 

the absence of any mutations or polymorphisms of the gene encoding FUS [5-9]. 

Various invertebrate and vertebrate animal models of FUS malfunction, including several 

transgenic FUS mouse lines, have been produced and characterised in order to shed light on 

molecular mechanisms of ALS-FUS and FTLD-FUS but the results and conclusions of these 

studies were not always consistent (reviewed in [10-12]). This might reflect a complex combination 

of intrinsic (e.g. differences, even subtle, in genetic background) and environmental factors (e.g. 

type of animal diet) that affect the manifestation of pathology in animals with genetic alterations of 

FUS structure or expression. However, the course of the disease development in all animal models 

and in ALS patients is common in one aspect: motor neurons of transgenic mice expressing 

pathogenic variants of human FUS, as well as motor neurons of ALS patients carrying germ line 

mutations of FUS, survive and function normally for a relatively long period of time. This suggests 

that motor neurons successfully employ certain intracellular defence systems that prevent damaging 

effects of the pathogenic protein when its level is still low. An ability to artificially boost the 

activity of these systems, either directly or via modulation of their regulatory pathways, can help 

counteracting pathogenic effects of FUS and potentially other ALS-linked proteins, even when they 

accumulate in the neuronal cytoplasm beyond a certain threshold and the intrinsic neuronal defence 

systems become overloaded. Therefore, it is important to identify how the nervous system responds 

to low levels of pathogenic variants of FUS and prevents potentially damaging consequences of its 

permanent production.  
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Previously we have described production and characterisation of a transgenic mouse line FUS 1-

359 clone 19 (S-FUS[1-359]) with neurospecific expression of a C-terminally truncated form of 

human FUS (tr-hFUS) lacking its nuclear localisation signal (NLS) and arginine/glycine rich 

(RGG) domains [13]. This modification recapitulates consequences of FUS gene mutations in 

certain forms of familial ALS [14-17] typified histopathologically by mislocalisation of modified 

FUS and clinically by an aggressive disease with young onset and rapid progression [18]. Although 

hemizygous mice of the S-FUS[1-359] line express tr-hFUS at a lower level than the endogenous 

mouse FUS, accumulation of tr-hFUS in the cytoplasm of neurons leads to its aggregation and the 

development of FUS-proteinopathy, characterised by the presence of large inclusions, neuronal 

dysfunction and death. These pathological changes are most pronounced in the motor neurons of the 

spinal cord, causing the development of severe and fast progressing motor neuron disease in young 

adult S-FUS[1-359] mice and death of animals within one to three weeks from the onset of clinical 

signs [13].  

Here we assessed changes in the spinal cord transcriptome of L-FUS[1-359] mice, another 

transgenic mouse line produced along with S-FUS[1-359] line using the same transgenic construct. 

Although these mice have substantially lower levels of tr-hFUS expression in the spinal cord and do 

not develop clinical or histopathological signs of motor neuron deficiency, we found a significant 

number of transcripts that differentially regulated in the spinal cord of L-FUS[1-359] mice when 

compared to their wild type littermates.  

 

Materials and Methods 

Animals 

The L-FUS[1-359] mouse line was produced by pronuclear microinjection of a transgenic 

cassette for expression of human FUS under control of regulatory elements of the mouse Thy-1 

gene as described in our previous publications [13,19]. The cassette was identical to the cassette 

used for production of S-FUS[1-359] mouse line and therefore, the same mouse genotyping 
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protocol was employed [13]. Mice were maintained under 12/12 hour dark/light cycle with free 

access to food and water.  

Comparison of transgene copy number by quantitative PCR 

Genomic DNA from ear biopsies was purified with Wizard® SV Genomic DNA Purification 

System (Promega) and 0.1 µg was used for real-time qPCR amplification with primers 5’ – 

TCTTTGTGCAAGGCCTGGGT – 3’ and 5’ – TAATCATGGGCTGTCCCGTT – 3’ targeting 

human FUS in the transgenic cassette. Amplification of the GAPDH gene fragment with primers 5’ 

– CACTGAGCATCTCCCTCACA – 3’ and 5’ – GTGGGTGCAGCGAACTTTAT – 3’ was used 

as a reference when the relative number of transgenic cassettes in DNA samples was assessed. The 

CFX96 real-time PCR detection system (Biorad) and CYBR GreqPCR protocol were employed 

with the cycle parameters: 10 min at 95°C followed by 40 cycles of 15 s at 95°C and 60 s at 60°C. 

Motor behaviour testing 

Animal motor performance was assessted on the inverted grid and accelerating rotarod as 

described previously [20,21]. 

A locomotor activity was monitored in a square 30 x 30 cm activity camera under 25 lux 

illumination using the TRU SCAN Activity Monitoring System (Coulbourn Instruments, Whitehall, 

PA, USA). 

RNA extraction 

Total RNA was extracted from thoracic spinal cords of 9-week old male mice using RNeasy Plus 

Mini Kit with genomic DNA eliminator columns (Qiagen). For quantification and the quality 

control of RNA samples Qubit fluorimetry and TapeStation analysis were employed. 

Quantitative RT-PCR  

1 µg of total RNA was reverse transcribed in the presence of random hexamer primers according 

to manufacturer’s instructions (Eurogene, Russia) and resulting cDNA was used for qPCR reaction 

with GAPDH as a reference gene as previously described [22,23]. For analysis of FUS expression 

same primers and amplification protocol as for the genomic qPCR above were used. The following 
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combinations of primers were used for analysis of expression of selected transcripts identified in 

RNA sequencing experiment: 

Mpz:  5’ – TCAAGATGGACGCGACACAA – 3’  

  5’ – CAAAGGCCCAGAGTGTCTCA – 3’ 

Prx:   5’ – CTCAGCTTGCAAGAAGGGGA – 3’  

5’ – CAGGCGAAGTGCATCCTCAT – 3’ 

PPARA:  5’ – CTGCCTTCCCTGTGAACTGA – 3’  

5’ – ACAGAGCGCTAAGCTGTGAT – 3’ 

Gpr179:  5’ – CATGGTTGTGGCGGAAATGC – 3’  

5’ – TGTAGCGTGGTTCGTGGAAG – 3’ 

Fggy:   5’ – GCAAAGATCCAGTGTTTGTACCA – 3’  

5’ – GCTGAGCCTTCTTAATCAGATCC – 3’ 

Protein extraction and Western blot analysis  

Total proteins were extracted from the mouse spinal cords, separated by SDS-PAGE and 

transferred to PVDF membrane by semidry blotting as described elsewhere [13,19]. Human FUS 

protein was detected using rabbit polyclonal antibody 14080 (a kind gift from Don Cleveland) 

specific to its N-terminal epitope and endogenous mouse protein – with a rabbit polyclonal antibody 

specific to C-terminal epitope absent in human FUS[1-359] protein (NSJ Bioreagents).  Secondary 

anti-rabbit HRP-conjugated antibodies (GL Healthcare) and WesternBright TM Sirius 

chemiluminescent detection system (Advansta) were used for detection of specific protein bands. 

For loading control membranes were re-probed with mouse monoclonal antibody against beta-actin 

(clone AC-15, Sigma-Aldrich).  

Histology and immunohistochemistry 

The protocol for preparation of histological sections of the mouse spinal cord and 

immunodetection of human FUS with antibody 14080 was described previously [13]. The same 
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protocol was used to detect endogenous mouse FUS with an antibody specific to its C-terminal 

epitope. 

Nissl staining of transverse sections through thoracic and lumbar regions of the spinal cord was 

performed as described elsewhere [13, 22].  The number of large cell body containing Nissl 

granules, clear nuclear envelope and intensely stained nucleolus was counted for every 6th of 8µm 

thick sections. An average number from six sections per spinal cord region per animal was used for 

further statistical analysis.   

RNA sequencing  

cDNA libraries for the dual indexed single-end sequence analysis were prepared from equal 

amounts (270 ng) of each total RNA sample using Illumina TruSeq Stranded Total RNA LT 

Sample Prep Kit. Following libraries’ quality checks and normalisation, cDNA libraries were 

sequenced on Illumina NextSeq 500 to generate single end 75 bp reads.  

Sequencing data analysis 

Processing of RNA sequencing raw data included the adapter, length and quality trimming by 

Trimmomatic, mapping of reads to the mouse genome (release GRCm38) by STAR aligner, 

counting the overlap of reads with genes by featureCounts, implemented in PPLine script [24-27]. 

Differential gene expression analysis was performed with the edgeR package using a Fisher exact 

test between experimental groups [28]. We used the Benjamini-Hochberg method for multiple 

testing FDR correction. The genes with expression level ≥ 1 Log10 CPM (counts per million) and 

FDR ≤ 0.05 were taken into the account and considered as differentially expressed. 

Multidimensional scaling between all experimental samples were performed with limma package, 

pairwise distances were calculated using root-mean-square of Log2FoldChange values between 

experimental groups [29]. 

Sorting of microglial and neuronal genes of the whole spinal cord samples were performed using 

the published datasets of purified microglia and laser-microdissected ventral horns of mouse spinal 

cord [30,31]. We applied a 5-fold change cutoff of gene expression levels to discriminate neurons- 
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and microglia-specific genes as suggested previously [31,32]. These criteria were used to classify 

differentially expressing genes (DEGs) from our set as either neuron-specific or microglia-specific 

or shared, if the difference was less than 5 times. 

The analysis of enriched gene ontology (GO) terms was performed using DAVIDWebService 

package for R with a P-value = 0.05 (Fisher exact test) and Q-value = 0.05 (BH-corrected p-value) 

as cutoffs [33]. Only those GO terms that satisfied these criteria and also showed enrichment by 

differentially expressed genes ≥ 4 were taken for further analysis. Then, redundant GO terms were 

removed using REVIGO software [34].  

Differential expression analysis, data visualization, and GSEA (Gene Set Enrichment Analysis) 

were performed using R project for statistical computing [35]. Visualization of experimental data 

was made with ggplot2 and GOplot R packages [36,37]. 

RNA sequencing data were deposited in Gene Expression Omnibus (GEO) under the number 

GSE130604. 

 

Results 

Transgenic mice expressing low level of C-terminally truncated human FUS in their neurons do not 

develop motor neuron pathology  

A founder of L-FUS[1-359] transgenic mouse line was produced by pronucleus microinjection 

of the same transgenic construct as was used for production of the previously described S-FUS[1-

359] line, namely a linear DNA fragment containing human FUS cDNA encoding amino acids 1 to 

359 (tr-hFUS) under control of regulatory elements of mouse Thy-1 gene [13]. The L-FUS[1-359] 

line was first established on a C57Bl6J background and then transferred to CD1 genetic background 

by serial backcrosses (>5) with the wild type CD1 mice. Intercrosses of hemizygous animals 

produced homozygous L-FUS[1-359] mice and their wild type littermates that were used in some of 

experiments described below. Analysis of genomic DNA revealed that L-FUS[1-359] mice carry 

the same number of tandemly arranged repeats of the transgenic cassette as S-FUS[1-359] mice 



 9 

(Suppl. Fig. 1a). However, the localisation on different chromosomes (Suppl. Fig. 1b) and 

presumably, different chromatin organisation around the integration sites led to substantially 

different expression levels of the transgenic cassette in the neural tissues of these two mouse lines. 

In the spinal cord of 9-week old hemizygous L-FUS[1-359] mice weak predominantly cytoplasmic 

staining with antibody specifically recognising human FUS protein was detected in motor neurons 

(Suppl. Fig. 2a). Quantitative RT-PCR revealed that the level of tr-hFUS mRNA in the spinal cord 

of 9-week old L-FUS[1-359] mice is 20 times lower than in the spinal cord of presymptomatic S-

FUS[1-359] of the same age and maintained at the same CD1 genetic background (Fig. 1a). 

Consistently, Western blot analysis with human FUS specific antibody revealed substantially lower 

level of tr-hFUS protein in the spinal cords of L-FUS[1-359] mice when compared to S-FUS[1-359] 

mice (Fig. 1b, c). Accumulation of tr-hFUS in the cytoplasm of spinal motor neurons of 

hemizygous S-FUS[1-359] mice leads to its aggregation with formation of large cytoplasmic 

inclusions at the onset of clinical signs, i.e. at the age of 13 to 20 weeks (Fig. 1e and Ref. 13). 

However, tr-hFUS remains diffusely distributed in the cytoplasm and is also present in the nucleus 

of spinal motor neurons of ageing homozygous L-FUS[1-359] mice (Fig. 1e). The latter observation 

is consistent with only partial cytoplasmic mislocalisation of FUS observed in neurons of mice that 

express low levels of human FUS variants carrying point mutations in the NLS or completely 

lacking this domain [38-40]. No obvious changes in localisation of endogenous mouse FUS in 

motor neurons (Suppl. Fig. 2b) or the level of expression of this protein in the spinal cord (Fig. 1b, 

d) of L-FUS[1-359] mice compared to their wild type littermates were observed (p>0.05).  

The low level of tr-hFUS expression is not sufficient for triggering obvious disease phenotypes 

even in homozygous L-FUS[1-359] mice – no changes in performance of these animals in the 

accelerating rotarod and inverted grid tests, and their locomotor activity in novel non-anxiogenic 

environment were found (Fig. 2). The lifespan of these animals was not different from the lifespan 

of their littermates (Suppl. Fig. 3) and even in ageing 18-month old animals no sign of spinal motor 

neuron loss was noted (Fig. 3). 
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Changes of spinal cord transcriptomes caused by expression of C-terminally truncated human FUS 

To assess whether a low level of expression of a pathogenic variant of FUS affects gene 

expression in the spinal cord of transgenic mice we employed RNA sequencing to compare spinal 

cord transcriptomes of four 9-week old hemizygous L-FUS[1-359] mice and four of their wild type 

littermates. As a result of deep-sequencing, we obtained from 13 to 17 million reads for each library 

produced from an individual mouse thoracic spinal cord. 

Our analysis of sequencing data revealed 272 DEGs with the false discovery rate (FDR) < 0.05 

that clearly distinguish gene expression profiles of L-FUS[1-359] and WT mice on 

multidimensional scaling (Fig. 4a, b, Supplementary table 1). To validate results of RNA 

sequencing analysis we carried out real-time qRT-PCR analysis of two of three most upregulated 

(Mpz and Prx) and two of three most downregulated (Gpr179 and FGGY) transcripts, as well as one 

randomly selected transcript that did not show differential expression (PPARA). Results of qRT-

PCR analysis appeared consistent with results of RNA sequencing analysis (Suppl. Fig. 4).  In order 

to discriminate DEGs that are intrinsic for neurons and glial cells we used the published datasets of 

purified microglia and laser-microdissected ventral horns of mice spinal cord applying a 5-fold 

change cutoff of gene expression levels [30,31]. As a result, we obtained 200 genes (> 73% of 

DEG, FDR < 0.05) that are more specific for spinal cord neurons than for microglial cells and only 

7 genes (< 3% of DEG, FDR < 0.05) that are intrinsic to microglia (Fig. 4c). Remaining 65 genes (~ 

24% of DEG) were shared by both types of cells (Fig. 4c). Thus, the observed gene expression 

changes in the spinal cord of L-FUS[1-359] mice take place predominantly in neurons. 

The gene ontology (GO) enrichment analysis of genes differentially expressed in L-FUS[1-359] 

spinal cord revealed several groups of genes encoding proteins involved in biological processes 

important for normal function of the nervous system. The largest group, in terms of percentage of 

involved genes to a number of total genes in a group, includes upregulated genes for claudin 19 

(Cldn19), tenascin XB (Tnxb), stabilin 1 (Stab1), basal cell adhesion molecule (Bcam), collagens 
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(Col14a1, Col15a1, Col18a1), collagen-binding proteins (Tgfbi, Nid2), semaphorins (SEMA3G, 

SEMA4B and SEMA5A) and several other genes involved in cell adhesion and organisation of 

extracellular matrix (green and yellow groups in Fig. 4d).  

A significant number of genes involved in negative regulation of neuronal differentiation is also 

upregulated in the spinal cord of L-FUS[1-359] mice, however genes encoding transcriptional 

factor SOX2 and OLIG2 that play a central role in neuronal cell differentiation and spinal motor 

neuron specification, respectively are significantly downregulated (red group in Fig. 4d).  

The circadian rhythm related genes are highly represented between DEGs – all three paralogs of 

the “core” clock activator gene period – Per1, Per2 and Per3, genes encoding the circadian 

transcriptional repressors CIART and BHLHE40, and transcription factor DBP are upregulated in 

the spinal cord neurons of L-FUS[1-359] mice, whereas genes encoding transcriptional activators 

ARNTL and NPAS2, and transcriptional repressor NFIL3 are significantly downregulated (blue 

group in Fig. 4d).  

Expression of genes encoding the proteins assisting protein folding in the endoplasmic reticulum 

such as chaperones and chaperonins Hspa2, Hsp90b1, Dnajb11, Cryab, Mkks, protein disulfide 

isomerases Pdia4, Pdia6 as well as calreticulin (Calr) are decreased in the spinal cord of L-FUS[1-

359] mice (lilac group in Fig. 4d).  

We also observed the altered expression levels of genes encoding several actin-binding proteins 

(Gas2l3, Flna, Coro6, Diaph and Ermn), a myosin (Myh11) and members of dynein family (Dnah5, 

Dync1i1, Dynll1, Dnaic1, Dnah8) (Fig. 4d, Supplementary table 1).  

 

Discussion 

Familial forms of ALS with mutations in the FUS gene are characterised by a relatively early 

onset and a fast progression of the disease (reviewed in Refs. 4,12,18). Even so, despite a constant 

production of a pathogenic variant of FUS, spinal motor neurons of FUS-ALS patients function 

normally for decades (average age of FUS-ALS onset is ~43 years [12]). This suggest that by 
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activating certain compensatory mechanisms neurons are able to neutralise toxicity of pathogenic 

variants of FUS until their accumulation reaches a critical threshold, particularly when it is coupled 

with mislocalisation, or the cell defence machinery is compromised by an external or internal stress. 

Mouse models of FUS-ALS display the same pattern of the disease progression: animals are 

presymptomatic for a long period of their postnatal life (3-12 months, depending of the introduced 

genetic modification), but after manifestation of the first clinical signs of pathology the disease 

progresses rapidly, mice develop severe motor dysfunction and die within several days (reviewed in 

Refs. 10-12). However, this phenotype is typical for mouse lines expressing high levels or/and 

highly pathogenic variants of human FUS. In several recently produced models a problem of 

artificially high levels of endogenous FUS expression was solved by using knock-in techniques 

[40,41], a relevant promoter [38] or selection of mouse lines with an appropriate level of transgene 

expression [42]. Although the common trend for later onset and longer disease duration was 

observed in these studies, each model displayed distinct behavioural and histopathological 

characteristics.   

Expression of human FUS carrying point mutations in the NLS (either FUSR521C or FUSR521H) at 

the level comparable with that of the endogenous mouse FUS caused progressive motor dysfunction 

due to the deficiency in muscle innervation, loss of spinal motor neurons and their axons in the 

absence of FUS mislocalisation to the cytoplasm and formation of inclusions [38]. In the spinal 

cord of ageing symptomatic transgenic mice lacking endogenous mouse FUS the most prominent 

changes revealed by RNA sequencing analysis were downregulation of mRNA encoding proteins 

involved in protein synthesis and synaptic function, and upregulation of mRNA encoding chaperons 

and proteins involved in RNA metabolism although no changes in a global splicing pattern were 

observed [38]. 

In another recent study, human FUS lacking NLS was expressed under control of Thy-1 

promoter in the nervous system of transgenic mice at the level of around 80% of the endogenous 

mouse FUS expression [42]. These mice developed a progressive motor impairment from the age of 
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12 weeks and their lifespan was significantly decreased. Cytoplasmic accumulation of deltaNLS 

FUS and formation of large inclusions were observed in upper motor neurons before the onset of 

clinical signs, but in the spinal motor neurons, only at the age of one year. Neuroinflammation and 

the loss of upper but not lower motor neurons was prominent in one-year old mice. At the same age, 

cerebral cortex transcriptome analysis identified a large number of genes up- and downregulated as 

the consequence of deltaNLS FUS expression but again, no notable changes of splicing pattern 

were found [42].  

To reveal changes in gene expression taking place in the nervous system of mice carrying ALS-

related modifications of FUS before they develop any clinical signs of pathology, Humphrey et al. 

[43] compared results of transcriptomic analysis of neural tissues from homozygous late-gestation 

embryo (E17.5 spinal cord or E18.5 brain) of two independent FUS knock-in mouse lines 

expressing FUS lacking NLS [40,41,44]. These data were compared to data obtained in the same 

studies by RNA sequencing analysis of similar neural samples of FUS knockout mice, which 

allowed discrimination of changes caused by the loss of FUS function and the gain of function by 

FUS lacking NLS and therefore partially mislocalised to the cytoplasm. A substantial overlap of 

DEGs in knockout and knock-in models suggested that at the presymptomatic stage the effects of 

the substitution of endogenous FUS to deltaNLS FUS on gene expression is due to the loss of 

function, i.e. an inadequate functionality of deltaNLS FUS that remains nuclear in neurons of 

studied mice. Between identified DEGs, the most prominent changes common for knockout and 

knock-in, as well as specific for homozygous knock-in mice were upregulation for those that code 

for proteins involved in RNA metabolism and downregulation of those that code for proteins 

involved in synaptic transmission [43]. This is consistent with considerable changes of splicing 

pattern identified in these studies and the growing body of evidence that defects of synaptic 

transmission, particularly in the neuromuscular junctions, are very early events in the development 

of pathology in animal models and FUS-ALS.  
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In our previously described model, S-FUS[1-359] transgenic mouse line, expression of highly 

aggregation-prone and pathogenic tr-hFUS protein caused a relatively early onset (at the age of 

~13-18 weeks) and severe and fast progressing motor pathology, despite its level in neural tissues at 

presymptomatic stage being lower than the level of endogenous FUS [13]. In the spinal cord of 

mice of a new L-FUS[1-359] transgenic line described here, the level of Thy-1 promoter-driven 

expression of the same tr-hFUS protein was even lower than in the spinal cord of S-FUS[1-359] 

transgenic line. Consequently, these animals did not develop motor deficiency, had the same 

lifespan as their wild type littermates and were phenotypically indistinguishable from them. We 

suggested that when the abundance of this pathogenic protein is low, neurons are able to neutralise 

its damaging effects by adjusting certain intracellular mechanisms and pathways. In an attempt to 

identify these adjustments, we analysed changes in the spinal cord transcriptomes of young adult L-

FUS[1-359] mice. Importantly, in this model no pathology-driven changes in gene expression take 

place and therefore, any observed expression changes should be linked to adaptation to production 

of tr-hFUS.  

Substantial changes in the gene expression profile (272 of DEGs, FDR < 0.05) were found in the 

spinal cord of L-FUS[1-359] mice although for most DEGs fold changes were  relatively subtle 

(average log2 fold change for upregulated DEGs was 0.8 and for downregulated DEGs – 0.6). The 

majority of identified DEGs represented neuron-specific genes or genes expressed in neurons and 

other types of cells, suggesting that gene expression changes is direct effect of tr-hFUS expression 

in neurons. C-terminally truncated tr-hFUS lacks the ability to bind target RNAs and be recruited 

into physiological RNA granules due to the deletion of main RNA-binding motifs, namely RGG, 

Zn-finger and a part of RRM [45-49], and therefore cannot directly affect RNA metabolism. 

Therefore, it was not surprising that mRNA encoding proteins involved in RNA metabolism were 

barely represented in L-FUS[1-359] DEGs in contrast to high representation of these mRNA in 

DEGs identified in studies of mouse lines expressing low levels of FUS variants with intact RNA-

binding domains [38,40,43]. 
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Between gene clusters identified in our analysis of RNA sequencing data, the most prominent 

were upregulated expression of genes encoding proteins involved in cell adhesion and structural 

organisation of the extracellular matrix. These proteins function as regulators of cell migration, 

axon guidance and structuring of synaptic contacts, and therefore play important roles in the 

assembly and function of neuronal networks. Despite being predominantly a nuclear protein, FUS 

has important functions in axonal and synaptic processes [50-55]. It is feasible that the presence of 

tr-hFUS in these neuronal compartments might have a dominant negative effect on these functions 

of the endogenous FUS. Increased production of proteins that can provide additional stabilisation of 

neuronal networks might be a compensatory mechanism that efficiently prevents potentially 

damaging effects of tr-hFUS. Consistently, we also found modified expression of several genes 

encoding proteins involved in organisation of actin cytoskeleton and motor proteins, indicating that 

the remodeling of cytoskeletal structures and cellular transport take place in the spinal cord of L-

FUS[1-359]  mice. 

Unexpectedly, expression of tr-hFUS protein did not prompt upregulation of genes encoding 

proteins involved in protein folding. Moreover, several chaperone or chaperonine encoding genes 

appeared to be downregulated in the spinal cord of L-FUS[1-359]  mice, although only slightly. It is 

feasible that because at this level of expression tr-hFUS does not reach a concentration threshold 

required for its efficient aggregation, activation of protein folding mechanisms is not required.  

Further detailed studies are required to explain prominent changes in expression of several genes 

encoding proteins involved in circadian rhythms because of different directions of these changes 

and complex feedback loops regulating expression of these genes. 

Overall, we found that the pattern of gene expression changes in the spinal cord of asymptomatic 

mice expressing a low level of cytoplasmically mislocalised, aggregation-prone and deficient in 

RNA binding variant of human FUS, is substantially different from patterns previously reported for 

either symptomatic or presymptomatic mice expressing various human FUS variants at similarly 

low levels. Observed changes may reflect efficient adaptation of spinal motor neurons to expression 
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of a potentially pathogenic protein and therefore, molecular mechanisms and pathways affected by 

these changes might be considered as valid targets for preventive therapy of FUS-ALS. 
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Figure legends 

Figure 1. Expression of tr-hFUS in the thoracic spinal cord of L-FUS[1-359] and S-FUS[1-

359] mice. a) Relative mRNA levels quantified by real-time qRT-PCR with primers specific for 

human FUS mRNA. Total RNA samples from four 9-week old hemizygous male animals were 

analysed in triplicates (*p<0.01, Mann-Whitney U-test). b) Western blot analysis of total protein 

samples extracted from spinal cords of two hemizygous male L-FUS[1-359] , two hemizygous male 

S-FUS[1-359] and two wild type mice (all 9-week old) with antibodies that specifically recognise 

human FUS (tr-hFUS panel) or full-length mouse FUS (fl-mFUS) or neurofilament-L (NF-L). Anti-

beta-actin antibody was used as a loading control. c, d) Relative levels of tr-hFUS and endogenous 

mouse FUS proteins quantified by Western blot analysis of total spinal cord proteins of four animals 

per genotype with antibody that specifically recognise human FUS (c) or mouse FUS (d)  as illustrated 

in the panel c (*p<0.05, Mann-Whitney U-test). e) Immunohistochemical staining of transverse 

section through the spinal cord of 18-month old hemizygous male L-FUS[1-359] mouse and 4-month 

old early symptomatic hemizygous male S-FUS[1-359] with antibody specific for human FUS. Note 

accumulation of tr-hFUS in large cytoplasmic and small nuclear inclusions in an anterior horn motor 

neuron of the S-FUS[1-359] mouse and diffuse distribution of tr-hFUS in the cytoplasm and the 

nucleus of the L-FUS[1-359] mouse. Scale bars, 50 µm. 

 

Figure 2. Animal performance in motor behaviour tests and their locomotor activity in novel 

non-anxiogenic environment. Bar charts show means±SEM of values obtained by testing one-year 
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old homozygous male L-FUS[1-359] and wild type (WT) mice (10-12 per genotype). a) The latency 

to fall from the accelerating rotarod. No significant difference between performance of two groups of 

mice were found (p>0.05, Mann-Whitney U-test). b) The latency to fall from the inverted grid. Note 

that all animals in each group successfully completed this 60-second test. c) Total distance covered 

by an animal over the 5-minute test in the activity camera. No significant difference between 

performance of two groups of mice were found (p>0.05, Mann-Whitney U-test). 

 

Figure 3. No loss of spinal motor neurons in ageing L-FUS[1-359] mice. Nissl stained 

transverse section through the spinal cord of 18-month old hemizygous male L-FUS[1-359] mouse, 

its wild type littermate and 5-month old symptomatic hemizygous male S-FUS[1-359] mouse. Note 

that while few motor neurons remained in the anterior horn of S-FUS[1-359] mice (arrowheads) are 

either pale stained or shrinked, the anterior horn of ageing L-FUS[1-359] mice have the same 

complement and morphology of motor neurons as anterior horn of wild type animals. The bar chart 

shows means±SEM of the number of motor neurons in anterior horns per section (averaged from 6 

section separated from each other by 40 µm, per animal) separately for thoracic and lumbar spinal 

cord of 6 L-FUS[1-359] and 6 wild type mice (p>0.05, Mann-Whitney U-test). 

 

Figure 4. Gene expression profile changes in the spinal cord of 9-week old hemizygous L-

FUS(1-359) mice compared to wild type littermates. a) Multidimensional scaling plot of RNA 

sequencing data for L-FUS[1-359] mice (L, in purple) and wild type mice (WT, in green). b) Volcano 

plot demonstrating an amount of DEGs in the spinal cord of L-FUS[1-359] mice compared to wild 

type mice. Only DEGs with statistically significant (FDR < 0.05) difference between studied groups 

are shown. c) Distribution of DEGs between neuron-specific and microglia-specific groups of genes. 

The sorting of genes was carried out as described in Materials and Methods. d) Gene ontology 

analysis of DEGs. The most enriched GO terms of biological processes are present (p < 0.05) and 
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sorted by their expression level (Log2FC, FDR < 0.05) in L-FUS[1-359] mice in comparison to WT 

mice. 


