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Highlights 

• Aspirin use is associated with severe gastrointestinal side-effects. 

• Identifying a true aspirin prodrug to overcome this limitation is challenging. 

• Mutual prodrugs of aspirin have been explored to reduce toxicity. 

• Mutual prodrugs of aspirin have been explored to enhance anti-cancer properties. 

Abstract 

Aspirin is a widely used medicine for a variety of indications. It is unique amongst non-steroidal anti-

inflammatory drugs (NSAIDs) in that it causes irreversible acetylation of COX enzymes. Like all NSAIDs 

however, aspirin causes severe gastrointestinal side-effects, in particular with chronic administration. 

Prodrugs of aspirin have been proposed as a solution to these side-effects. However, identifying true 

prodrugs of aspirin, rather than salicylic acid, has proven challenging. This review details the 

challenges and highlights recent progress in the development of such prodrugs. 

Graphical Abstract 

 



Introduction 

Since being marketed by Bayer in 1899, aspirin has continued to be one of the most widely used drugs 

in the world.  It belongs to the class of non-steroidal anti-inflammatory drugs (NSAIDs) and has a 

number of therapeutic uses: analgesic, anti-inflammatory, anti-platelet and anti-pyretic [1-3]. 

The most serious and well-known side-effects observed with aspirin and other NSAIDs are 

gastrointestinal (GI) ulceration and bleeding [4-6]. They can be attributed to the systemic effects of 

the NSAID on prostaglandin (PG) synthesis, as well as local irritation caused by the carboxylic acid [7]. 

Aspirin use results in a reduction in the level of PGs that protect the membrane of the stomach from 

its acidic environment, making it susceptible to lesions [8]. Low-dose everyday use of aspirin is known 

to be beneficial in reducing risk of secondary heart-attacks [9] and preventing certain cancers [10], but 

the associated GI side-effects limit its usefulness [11], making a solution to this issue very desirable. 

COX-2 selective inhibitors (Coxibs) were subsequently developed and marketed in an attempt to 

reduce GI side-effects, but some have since been removed from the market due to cardiovascular 

safety concerns [12, 13]. Because of the cardiovascular risk, they are not compatible with chronic use. 

Another approach has been to use enteric-coated (EC) aspirin tablets, however their effectiveness is 

controversial. While numerous studies have demonstrated that acute administration of EC-aspirin 

reduces GI damage [14-16], a number of meta-analyses and observational studies have found there 

to be no statistically significant reduction [4, 17], notably for chronic administration [11, 18]. EC-aspirin 

increases the exposure of the intestines to the drug by allowing it to pass through the stomach, 

prompting concerns that they increase irritation here instead, where symptoms are harder to detect 

[19]. EC-aspirin may also not be appropriate for use in the treatment of coronary heart disease [20]. 

The delayed absorption clearly also delays its therapeutic action. One approach considered to address 

these issues has been the use of prodrugs. Reviews of prodrugs of other NSAIDs have been recently 

published [21, 22] and this review will focus particularly on developments towards “true” prodrugs of 

aspirin as an especially challenging case, as well as emerging medical applications of these prodrugs. 

A prodrug is an ideally inactive compound that is metabolised within the body to give the active, 

parent drug. Whilst prodrugs of aspirin have been reported since the 1980’s [23], the difficulty in 

synthesising so-called ‘true prodrugs’ of aspirin lies in the fact that it contains another labile ester 

group which can also be hydrolysed (Figure 1). Furthermore, esterification of the carboxylic acid group 

makes this acetyl group even more susceptible to enzymatic cleavage [24]. Therefore, a true aspirin 

prodrug must be hydrolysed at the promoiety before hydrolysis of the acetyl group, which is inherently 

challenging. It is worth noting that the absolute rates of the two hydrolysis pathways are not the 

defining factor, but rather their ratio with respect to the other. As a result, one proposed strategy is 

to attempt to select a promoiety that slows the rate of deacetylation, thus promoting aspirin 

formation [25]. 



 

Figure 1: The two competing pathways by which an aspirin prodrug 1 can be hydrolysed to salicylic acid 4. Hydrolysis usually 

occurs at the acetyl group first to give a salicylate ester 3. For a prodrug to release aspirin 2, k1 must be greater than k2.  

Towards “True” Aspirin Prodrugs 

In 1979 Hussain et al. claimed to have synthesised a novel aspirin prodrug 5 (Figure 2) [23]. They 

measured the rate of hydrolysis in buffer solutions of varying pH, with detection of aspirin formation 

by HPLC. Their experiments found that the reaction was first order with respect to prodrug 

concentration, and that aspirin was formed in a quantitative conversion. Similarly, in 1989 Ankersen 

and Senning concluded that they had synthesised exclusive aspirin prodrugs, such as compound 6 

(Figure 2) on the basis of hydrolysis experiments in buffer solutions [26]. While the buffer solutions 

they used are able to simulate the broad range of physiological conditions the prodrug will encounter, 

they only give an insight into non-enzymatic hydrolysis. To consider them as true prodrugs at this stage 

is therefore premature. 

Loftsson et al. attempted to synthesise prodrugs of aspirin using methylthiomethyl-based esters as 

the promoiety, such as compound 7 (Figure 2) [27]. They rationalised that these protecting groups, 

which had previously been shown to be removable under mild conditions, could be used to 

temporarily mask the carboxylic acid of aspirin. Their experiments were conducted in 80% human 

plasma, which is rich in esterase enzymes, and the levels of aspirin, salicylate ester, and salicylic acid 

release was determined by HPLC analysis. Two of their candidates resulted in quantitative conversion 

to aspirin, while another was metabolised via both pathways. All three potential prodrugs were then 

evaluated in vivo in dogs. Of these, compound 7 was shown to produce high levels of aspirin in the 

dog, and they thus concluded that it was indeed a true prodrug. The remaining two were metabolised 

to salicylic acid so rapidly that they could not determine the route of their in vivo hydrolysis.  



 

Figure 2: Structures of some of the first aspirin prodrugs synthesised, with reported stability data in various media. 

Though the work of Loftsson et al. was far more extensive than previous studies, their results were 

still the subject of some debate. In 1989 Nielsen and Bundgaard conducted human plasma hydrolysis 

analysis of their glycolamide ester prodrugs, including compound 8 (Figure 2), in addition to analysis 

of prodrugs previously reported in the literature [25]. In their hands, compound 7 hydrolysed to give 

only 30% aspirin in plasma rather than a quantitative conversion, but no explanation was proposed 

for the discrepancy. Two glycolamide esters, including 8, were found to produce around 60% aspirin. 

This made 8 one of the most promising true prodrugs of aspirin at that time, with a balance of stability 

at physiologically relevant pH ranges coupled with rapid hydrolysis to mainly aspirin in human plasma. 

Bowden et al. reported on the alkaline and neutral hydrolysis of a series of formylphenyl esters 

(exemplified by compound 9, Figure 2) of aspirin, including a study of the effect of electron 

withdrawing groups on the formylphenyl ester on the rate of hydrolysis. Although under alkaline 

conditions the prodrugs where shown to be true prodrugs of aspirin, and the prodrugs were shown to 

have some anti-inflammatory effects in vivo, evidence of systemic aspirin release in vivo was not 

provided [28, 29]. 

More recently, in 2008 Moriarty et al. claimed the most successful true aspirin prodrug yet, with 

almost complete conversion in human plasma [30]. Their isosorbide diaspirinate (ISDA) prodrug 10 

(Figure 3) was stable across various pH ranges but underwent rapid  hydrolysis  in  human  plasma 

solution releasing 40-60% aspirin, as well as a complex mix of aspirin and salicylate esters [31]. It also 

showed sustained anti-platelet activity in dogs, characteristic of aspirin release [32]. ISDA can in theory 

be hydrolysed in four positions, leading to a complex mixture of aspirin, aspirinate-salicylate esters, 

salicylic acid and isosorbide. Through careful monitoring of metabolite formation over time they 

determined which metabolic route was actually responsible for productive hydrolysis and aspirin 

release. Two of the aspirinate-salicylate ester metabolites were then also incubated in human plasma, 

with compound 11 producing ~70% aspirin. It is therefore a metabolite of ISDA rather than ISDA itself 

that can be considered the true prodrug of aspirin. Moriarty et al. also confirmed 

ButyrylCholinesterase (BuChE) as a key esterase responsible for enzymatic hydrolysis of aspirin 



prodrugs in the human plasma model, with aspirin levels produced decreasing in the presence of a 

BuChE inhibitor. The authors proposed that the prodrug interacted in a specific manner with BuChE 

so that the normal preference for acetyl hydrolysis was overcome.  

 

Figure 3: Structures of ISDA prodrug 10 and metabolic intermediate 11. 

In 2016, Foley et al. attempted to develop a PepT1 targeting prodrug of aspirin [33], building upon 

their earlier work with the NSAID nabumetone [34]. The hypothesis was that such transporter 

targeting prodrugs would be likely to retain high oral bioavailability, which can be an issue for aspirin 

prodrugs as esterification often reduces aqueous solubility and hence fraction absorbed. Indeed, 

several of the early aspirin prodrugs illustrated in Figure 2 were assed for stability only in the presence 

of quite high volumes of organic co-solvents. However, whilst the nabumetone prodrugs showed 

affinity for and were substrates of PepT1 in vitro, the aspirin prodrug 12 (Figure 4) was too unstable 

in the assay buffer (pH 6.5) to be assessed further in vitro. 

 

Figure 4: Transporter targeting aspirin prodrug 12, comprising PepT1 substrate (red) and triethylene glycol spacer (blue). 

NO-releasing prodrugs of aspirin 

Nitric oxide (NO) is an endogenous molecule that is known to protect the GI tract by maintaining the 

integrity of gastric mucosa, and repair the damage induced by NSAIDs [35, 36]. Numerous attempts 

have therefore been made to incorporate NO-releasing groups onto NSAID structure frameworks to 

counteract their associated GI side-effects. In particular, one NO-releasing derivative of aspirin (NCX-

4016), compound 13 (Figure 5), was studied extensively in the early 2000s [37-39]. It was shown to 

almost entirely eliminate gastric damage in healthy human volunteers while maintaining anti-platelet 

activity, demonstrating proof of concept for this approach [40]. It was taken on as a project by the 

French pharmaceutical company NicOx, though it was later discontinued when one of its metabolites 

14 was found to be mutagenic [41, 42]. Rat liver microsomes were used to assess the metabolism of 

NCX-4016, and it was concluded that the acetyl group was the most labile, making it a prodrug of 

salicylic acid [43]. Efforts have since been made to develop mutual prodrugs that upon metabolism 

would release both aspirin and NO.  



 

Figure 5: Structure of NCX-4016 (13) and its mutagenic NO-releasing metabolite (14). 

Isosorbide derivatives were believed to be a promising starting point, based on the results obtained 

by Moriarty et al. previously [30]. Starting from the prodrug 10 previously identified (Figure 3), Jones 

et al. first simply substituted a nitro-oxy group in place of the salicylate ester, yielding compound 15 

(Figure 6) [44]. Upon finding that this produced only 8% aspirin in human plasma, the same position 

was esterified with a wide range of substituents to elucidate their effects on aspirin formation. Nitro-

oxy groups were then incorporated onto the promising candidate frameworks. Two of these 

compounds, including compound 16 (Figure 6), were shown to release 30% and 55% aspirin from 

human plasma by HPLC analysis. LCMS was utilised to confirm the presence of the expected 

metabolites, but the hydroxymethyl products which would be expected if NO was released could not 

be seen. They rationalised this by commenting that alkyl nitrates degrade very slowly in plasma, thus 

concluding that their prodrugs generate aspirin and a possible NO-releasing moiety. 

 

Figure 6: Initial isosorbide -based NO dual prodrug (15) and an optimised analogue (16). 

Gund et al. claimed in 2014 to have synthesised a unique NO-releasing true prodrug of aspirin [45]. 

Their metabolism studies were conducted in simulated gastric and intestinal fluids, as well as 100% 

human plasma. Under simulated physiological conditions, aspirin was indeed generated quantitatively 

from the (nitro-oxy) alkyl ester prodrug 17 (Figure 7), demonstrating that it was hydrolysed via the 

productive route non-enzymatically, albeit extremely rapidly. However, in the plasma study only 9% 

aspirin was detected, suggesting that enzymatic hydrolysis was dominated by the non-productive 

pathway to generate the salicylate ester and then salicylic acid, indicating that in human plasma their 

molecule was not a true aspirin prodrug. Regardless, they also conducted an in vivo study to 

investigate gastric tolerance of the prodrug compared to parent aspirin in rats. No significant gastric 

lesions were observed with the prodrug, which they attribute to masking of the carboxylic acid and 

the function of the released NO. Their work does therefore further highlight the potential for NO-

aspirin to be used to reduce gastrointestinal toxicity.  



 

Figure 7: Alkyl nitrate based NO-releasing prodrug of aspirin (17).  

Lazzarato et al. have synthesised a number of promising NO-releasing aspirin prodrugs [46]. They 

analysed the hydrolysis of a variety of aliphatic and aromatic nitro-oxy acyloyl derivatives of aspirin in 

physiological buffer solutions and human serum (for example compound 18, Figure 8). Nearly all were 

stable to non-enzymatic hydrolysis at various pH ranges, but the amount of aspirin generated in serum 

varied considerably. Notably, all of the aliphatic derivatives were poor prodrugs of aspirin. However, 

five of the aromatic derivatives resulted in >58% aspirin formation, with the best candidate, 

compound 18 (Figure 8) releasing 70% aspirin. Formation of the metabolites was followed temporally 

by HPLC analysis, with the final metabolic products being salicylic acid and the NO-releasing moieties. 

Due to slow degradation of alkyl nitrates, release of the NO could not be confirmed in this way, as also 

found by Jones et al. [44]. However, they investigated the vasodilator activity of the nitro-oxy 

metabolites in vitro, which is instigated by binding of NO to the soluble guanylyl cyclase (sGC) receptor. 

The potencies decreased in the presence of an sGC inhibitor, confirming that activation by NO was 

responsible for the observed responses. These results suggest that the prodrug is capable of releasing 

both aspirin and NO and is a genuine mutual prodrug.   

 

Figure 8: Structures of NO-releasing acyloyl prodrugs of aspirin. 19 was synthesised to improve aqueous solubility. 

A disadvantage of the prodrugs synthesised by Lazzarato et al. [46] in 2009 was their poor water 

solubility, thus affecting their suitability for drug formulation. In order to try and develop prodrugs 

more suitable for clinical application, in 2013 they aimed to modify some of their structures with 

solubilising moieties [47]. The aromatic acyloyl derivative (18) previously reported had the nitro-oxy 

moiety at the para position, so they elected to functionalise at the meta position with aminoacyl-oxy 

groups (compound 19, Figure 8). Many of these derivatives displayed greater aqueous solubility than 

aspirin itself, and could still act as true prodrugs in the human serum model, with 50-57% aspirin 



generated. The most promising of their candidates, compound 19 (Figure 8), was analysed further and 

was shown to display vasodilator activity characteristic of NO release, and caused no gastric damage 

in vivo in rats. In addition, it was also found to produce anti-inflammatory and anti-platelet activity 

comparable to aspirin. They thus concluded that this class of prodrug was an improvement on those 

previously developed due to the improved aqueous solubility.   

 

Figure 9: Alternative NO-releasing prodrugs, diazenium-diolates (20) or furoxans (21). These compounds did not release 

significant levels of aspirin in human plasma stability studies. 

Rather than using alkyl nitrates as the NO-releasing moiety, there has also been interest in the use of 

diazenium-diolate groups, such as 20 (Figure 9) [48-51]. Whereas alkyl nitrates require a 3-electron 

reduction to release NO, the diazenium-diolates can liberate it far more easily via an esterase-

mediated hydrolysis [50]. In addition, the efficiency of alkyl nitrate metabolism can decrease on 

continued use resulting in nitrate tolerance, so alternatives may be advantageous [49]. However, 

while they facilitate NO release, there is limited evidence to show that any of the diazenium-diolate 

derivatives of aspirin reported in the literature are true prodrugs. The derivatives synthesised by 

Basudhar et al. including compound 20 (Figure 9) were shown to hydrolyse at the non-productive 

acetyl group first [48], while Velazquez et al. did not perform any experiments to assess metabolism 

[49, 50]. Instead, they suggested that aspirin would likely be released in vivo based on comparable 

anti-inflammatory activity of the prodrugs to aspirin in the carrageenan-induced rat paw edema test. 

However, this could be attributed to differences in bioavailability, and it is worth noting that salicylic 

acid also possesses some anti-inflammatory activity.  

An alternative approach to NO release employed furoxans (compound 21, Figure 9) as the source of 

NO [52]. In human plasma, most of the prodrugs were rapidly degraded, but free aspirin was not 

detected from any prodrug, meaning they did not behave as true aspirin prodrugs. Although the 

compounds had anti-inflammatory activities and anti-platelet action consistent with an ability to 

release NO, their lack of acute gastrotoxicity was attributed principally to the masking of the acid by 

the ester rather than NO release in the GI tract. 

 

Figure 10: Planned, but not synthesised, proline-tyrosyl NO-aspirin prodrug (22). The intermediate (23) was shown to have 

reduced gastrotoxicity despite lacking an NO releasing moiety, however no stability data was reported for (23). 

A debate has recently arisen in the literature as to whether NO-releasing mutual prodrugs of NSAIDs, 

including aspirin, offer any additional gastroprotection over simple esterification of the NSAID acid. 



Originally aiming to synthesise some new NONO-NSAIDs that incorporated an NO-releasing group 

derived from L-proline and protected by acetylglucose, connected to an NSAID by way of a tyrosyl 

spacer (compound 22 Figure 10), Jain et al. first assessed the ulcerative index of the tyrosyl ester 

intermediate (23 Figure 10)  in rats [53]. They determined that this ester, lacking any NO-releasing 

moiety, still had gastroprotective effects. This implies that simple esterification of aspirin, provided it 

is a true prodrug of aspirin, could be sufficient to overcome the GI side effects of aspirin use. However, 

the fact that (23) had activity against the COX enzymes, along with the fact that the intended NO-

releasing molecule (22, Figure 7) was not actually synthesised and tested alongside (23) as well as a 

lack of metabolic stability data for (23) makes interpretation of this observation difficult.  

Despite considerable research into NO-releasing mutual prodrugs of aspirin, the difficulty of 

developing a true prodrug still poses a great challenge. There are also still examples in the literature 

of poorly supported claims of prodrugs of aspirin [45, 49]. Even when promising candidates are 

identified in vitro, their clinical utility may be hindered due to poor physicochemical properties e.g. 

solubility [46]. However, even though not all of the NO-releasing aspirin derivatives reported are 

genuine prodrugs of aspirin, they still display promise in their potential to reduce GI side-effects (e.g. 

NCX-4016), although it is debatable as to whether NO release or simply the masking of the acidic group 

is responsible for the gastroprotective effects [53]. The advancement also of NO-releasing prodrugs 

of other NSAIDs, such as Naproxen (compound 24, Figure 11) into late-stage clinical evaluation [54] 

illustrates the potential application of NO-releasing aspirin prodrugs if such a compound could be 

identified. Indeed, in 2015 compound 24 secured orphan drug designation from the FDA as a potential 

treatment for Duchenne Muscular Dystrophy [55, 56]. 

 

Figure 11: Structures of Naproxen (24) and NO-Naproxen (25), which advanced to Phase III clinical trials. 

Prodrugs of aspirin for anti-cancer applications 

Continued use of aspirin has also been reported to lower the risk of developing certain cancers, but 

questions remain over the long-term risk-benefit [57-63], particularly the gastrointestinal side-effects 

of long-term aspirin use [10, 63]. Prodrugs have therefore been proposed as a strategy to overcome 

this. Zhu et al. investigated resveratrol-based mutual prodrugs of aspirin (26, Figure 12), with the aim 

of capitalising on the chemopreventive properties of both moieties [64]. Resveratrol is a dietary 

compound found in peanuts, berries and red wine, and is reported to have gastroprotective properties 

[65]. It was therefore considered an ideal candidate to alleviate the side-effects of aspirin, while 

retaining anti-cancer and anti-inflammatory activity. These prodrugs were shown to display more 

cytotoxic activity in vitro than resveratrol and aspirin individually, as well as a combination of both 

compounds. The metabolism of the prodrugs was first examined in vitro in cancer cells, then in vivo in 

mice. The in vitro results indicated that deacetylation occurred first to give the salicylate ester, 

suggesting it is not a true prodrug of aspirin. The authors commented on the difficulty of detecting 

aspirin in vivo in mice due to its rapid hydrolysis and short half-life, meaning that its lack of detection 

did not necessarily confirm its absence. However, given that the salicylate ester could be detected, 

this in combination with the in vitro results suggests that if any aspirin was released it would not be in 

high quantity.  



 

Figure 11: Structures of prodrugs of aspirin for anti-cancer applications. 

High dose aspirin is reported to be able to inhibit the NFκβ signalling pathway [66, 67], which when 

activated can promote cancer growth and metastasis. Kastrati et al. investigated whether ester 

prodrugs of aspirin, including compound 27 (Figure 11) could be synthesised to increase their cell 

permeability and therefore lower the dose required, while also preventing the associated GI side-

effects [68]. Their most promising candidate could potently inhibit NFκβ signalling in breast cancer 

cells, but it was found that this activity was not reproducible with any of the expected metabolites, 

including aspirin. This indicated that the prodrug was only active in its intact form, and would be 

ineffective once metabolised in vivo. No metabolism studies were conducted to identify whether 

aspirin or salicylate would be released from the prodrug, so the potential of the compound to act as a 

gastric-sparing anti-inflammatory agent is not known.  

In addition to designing prodrugs to mask the toxicity of aspirin, efforts have also been made to 

synthesise mutual prodrugs for anti-cancer applications. Because inflammation caused by cancer can 

lead to metastasis, it has been proposed that combining chemotherapy and anti-inflammatory 

strategies can be effective in managing aggressive cancers. Pathak et al. synthesised the platinum (IV) 

prodrug Platin-A (28, Figure 11), which when reduced releases both aspirin and cisplatin [69]. The 

release of aspirin from the prodrug was measured by HPLC and showed initial production of aspirin, 

followed by degradation to salicylic acid. However, this reduction experiment was conducted in a 

water/acetonitrile solution, so it is possible that no or very little aspirin would be seen in the presence 

of esterases in vivo. Regardless, in vitro studies demonstrated that Platin-A displayed better anti-

cancer and anti-inflammatory activity than a combination of both drugs. 

Phospho-aspirin (PA) (29, Figure 11), also known as MDC-22 or PA-2, has been reported as having 

activity in numerous in vitro and in vivo anti-cancer studies [70-72], as well as in arthritis [73]. 

However, the only metabolic data reported for the compound, employing liver microsomes from mice, 

rats and humans demonstrates that it is not a true prodrug of aspirin, with the first step being 

hydrolysis of the acetate group to give phospho-salicyclic acid [74]. 



Similarly to the development of NO-releasing mutual prodrugs of aspirin, the development of 

prodrugs of aspirin specifically to improve its anti-cancer properties remains a challenge, with limited 

evidence of any true aspirin prodrug showing enhanced anti-cancer activity. 

Conclusion 

Reducing the gastrointestinal toxicity of NSAIDs is a challenge that still needs to be effectively 

addressed. It is of particular importance for aspirin, which has significant potential in cardioprotective 

and chemopreventive applications, but this usefulness is limited by its toxicity even at low doses. 

Shifting this risk/reward balance would therefore have considerable clinical value. Considering that 

the anti-platelet, cardioprotective activity of aspirin is derived from its unique, irreversible acetylation 

of COX enzymes [2, 75, 76], it is important that drug candidates for this indication are prodrugs of 

aspirin rather than salicylic acid.  

However, developing true prodrugs of aspirin to prevent GI side-effects remains inherently 

challenging, due to the preference for hydrolysis at the acetyl position once the carboxylate has been 

esterified. Many examples exist of prodrugs that hydrolyse non-enzymatically to give aspirin as the 

exclusive product, but in the presence of esterases are found not to be prodrugs of aspirin at all. While 

there have been notable examples that hydrolyse via the productive pathway enzymatically and in 

vivo, these derivatised compounds have different physicochemical properties to that of parent aspirin, 

and thus may not be suitable for clinical application without further modification. The most promising 

of these compounds would appear to be compounds 8 and 10, and synthetic routes to these molecules 

are shown in Figure 12. 

 

Figure 12 Synthetic routes [25, 31] to the most promising “true” aspirin prodrugs, which show good stabilities at various 

physiologically relevant pH ranges with rapid cleavage in human plasma to release significant quantities of aspirin. Yields 

were not quoted for the synthesis of 8 and 10. 

Mutual prodrugs of aspirin have also gained much attention, whereby the promoiety (e.g. NO) can 

directly display gastroprotective activity, although questions remain as to whether NO release or 

masking of the acidic functionality by the ester is the true driving force behind the gastroprotective 

effects. The most advanced of these compounds, NCX-4016 (13), progressed into clinical evaluation 

which was halted only because of a mutagenic metabolite. Metabolic studies also suggest that NCX-

4016 is not a true aspirin prodrug. 



Furthermore, the possibility of utilising aspirin in a prodrug alongside an anti-cancer agent has been 

explored. In this case, the anti-inflammatory effects of aspirin can potentiate the anti-cancer activity 

and may be useful in managing aggressive tumour growth.  

A genuine, true prodrug of aspirin must undergo productive hydrolysis under both enzymatic and non-

enzymatic conditions. The susceptibility of any prodrug candidate to hydrolysis should first be 

assessed in buffer solutions simulating physiological conditions. Metabolism should then be assessed 

in an enzymatic model such as human plasma, which contains a variety of esterases. Microsomal 

stability can also be employed, but hydrolysis of the prodrug in plasma should be preferred instead of 

relying on liver metabolism. Promising candidates can then be progressed to in vivo studies, however 

the choice of species chosen for study may be crucial to the detection of relevant metabolites of the 

prodrug, including aspirin itself. To date, very few examples exist that satisfy all of these conditions. 

The importance of synthesising and evaluating all of the possible metabolites of a prodrug at an early 

stage should not be ignored. Not only does it hold value in understanding the metabolic pathway, but 

it can also highlight potential toxicity pitfalls.   

Though simple esterification of aspirin to form a prodrug is a valid approach to protect against its local 

gastric irritation, it offers no protection against the systemic effects of aspirin on PGs. It is possible 

that chronic administration of such prodrugs might still lead to GI side-effects, because the gastric 

mucosa would be subjected to long-term vulnerability as synthesis of protective PGs are inhibited. 

Mutual prodrugs containing a gastroprotective moiety (e.g. NO) may therefore offer more promise in 

this regard, but questions remain over potential carcinogenicity risks. 

Despite examples reaching the later stages of clinical evaluation, there are currently no commercial 

prodrugs of aspirin or any of the NSAIDs. The fact that esterification of aspirin alone may be sufficient 

to offer a solution to the gastric side-effects of aspirin use makes it imperative to continue to search 

for true aspirin prodrugs. Given the uncertainty that remains around the safety of the coxib class of 

COX-2 inhibitors and the long-term gastroprotection of enteric formulations, there remains a 

potentially fruitful gap in the market to be exploited as well as considerable synthetic and DMPK 

challenges to be solved. A true gastro-sparing aspirin prodrug has the potential to bring real clinical 

benefit to chronic aspirin patients in particular. 
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