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1 Preliminaries

This paper is divided into six sections. This section is devoted to stating few results
that will be used in the remainder of the paper. We also set the notations to be
used and derive few simple results that will come in handy in our treatment. In
Section 2, we charecterize numbers 5k + 2, which are primes with k being an odd
natural number. In Section 3, we prove more general results than given in Section
2. In Section 4, we define the period of a Fibonacci sequence modulo some number
and derive many properties of this concept. In Section 5, we devote to the study of
a class of generalized Fibonacci numbers and derive some interesting results related
to them. Finally, in Section 6, we define some generalized Fibonacci polynomial
sequences and we obtain some results related to them.

We begin with the following famous results without proof except for some related
properties.

Lemma 1.1 (Euclid). If ab ≡ 0 (mod p) with a, b two integers and p a prime, then
either p|a or p|b.

Remark 1.2. In particular, if gcd(a, b) = 1, p divides only one of the numbers a, b.

Property 1.3. Let a, b two positive integers, m,n two integers such that (|m|, |n|) =
1 and p a natural number. Then

ma ≡ nb (mod p)

if and only if there exists c ∈ Z such that

a ≡ nc (mod p)

and
b ≡ mc (mod p).

Proof. Let a, b two positive integers, m,n two integers such that (|m|, |n|) = 1 and
p a natural number.

If there exists an integer c such that a ≡ nc (mod p) and b ≡ mc (mod p), then
ma ≡ mnc (mod p) and nb ≡ mnc (mod p). So, we have ma ≡ nb (mod p).

Conversely, if ma ≡ nb (mod p) with (|m|, |n|) = 1, then from Bezout’s identity,
there exist three integers u, v, k such that

um+ vn = 1
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and

ma− nb = kp.

So, we have

ukpm+ vkpn = ma− nb

and

m(a− ukp) = n(b+ vkp).

Since |m|, |n| are relatively prime, from Lemma 1.1, it implies that there exist two
integers c, d such that

a− ukp = nc,

and

b+ vkp = md.

It results that mnc = mnd and so c = d. Therefore, we obtain

a = nc+ ukp ≡ nc (mod p),

and

b = mc− vkp ≡ mc (mod p).

Remark 1.4. Using the notations given in the proof of Property 1.3, we can see
that if there exists an integer c such that a ≡ nc (mod p) and b ≡ mc (mod p) with
(|m|, |n|) = 1 and p a natural number, then we have

ub+ va ≡ (um+ vn)c ≡ c (mod p)

Moreover, denoting by g the gcd of a and b, if a = gn and b = gm, then ub+ va =
(um+ vn)g = g, then g ≡ c (mod p).

Theorem 1.5 (Fermat’s Little Theorem). If p is a prime and n ∈ N relatively
prime to p, then np−1 ≡ 1 (mod p).

Theorem 1.6. If x2 ≡ 1 (mod p) with p a prime, then either x ≡ 1 (mod p) or
x ≡ p− 1 (mod p).

Proof. If x2 ≡ 1 (mod p) with p a prime, then we have

x2 − 1 ≡ 0 (mod p)

(x− 1)(x+ 1) ≡ 0 (mod p)

x − 1 ≡ 0 (mod p) or x + 1 ≡ 0 (mod p). It is equivalent to say that x ≡ 1
(mod p) or x ≡ −1 ≡ p− 1 (mod p).
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Definition 1.7. Let p be an odd prime and gcd(a, p) = 1. If the congruence x2 ≡ a
(mod p) has a solution, then a is said to be a quadratic residue of p. Otherwise, a
is called a quadratic nonresidue of p.

Theorem 1.8 (Euler). Let p be an odd prime and gcd(a, p) = 1. Then a is a

quadratic nonresidue of p if and only if a
p−1
2 ≡ −1 (mod p).

Definition 1.9. Let p be an odd prime and let gcd(a, p) = 1. The Legendre symbol
(a/p) is defined to be equal to 1 if a is a quadratic residue of p and is equal to −1
is a is a quadratic non residue of p.

Property 1.10. Let p an odd prime and a and b be integers which are relatively
prime to p. Then the Legendre symbol has the following properties:

1. If a ≡ b (mod p), then (a/p) = (b/p).

2. (a/p) ≡ a(p−1)/2 (mod p)

3. (ab/p) = (a/p)(b/p)

Remark 1.11. Taking a = b in (3) of Property 1.10, we have

(a2/p) = (a/p)2 = 1.

Lemma 1.12 (Gauss). Let p be an odd prime and let gcd(a, p) = 1. If n denotes
the number of integers in the set S =

{

a, 2a, 3a, . . . ,
(

p−1
2

)

a
}

, whose remainders
upon division by p exceed p/2, then

(a/p) = (−1)n.

Corollary 1.13. If p is an odd prime, then

(2/p) =

{

1 if p ≡ 1 (mod 8) or p ≡ 7 (mod 8),
−1 if p ≡ 3 (mod 8) or p ≡ 5 (mod 8).

Theorem 1.14 (Gauss’ Quadratic Reciprocity Law). If p and q are distinct odd
primes, then

(p/q)(q/p) = (−1)
p−1
2 · q−1

2 .

Corollary 1.15. If p and q are distinct odd primes, then

(p/q) =

{

(q/p) if p ≡ 1 (mod 4) or q ≡ 1 (mod 4),
−(q/p) if p ≡ q ≡ 3 (mod 4).

Throughout this paper, we assume k ∈ N, unless otherwise stated.
From (1) of Property 1.10, Theorem 1.14, Corollary 1.13 and Corollary 1.15, we

deduce the following result.
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Theorem 1.16.

(5/5k + 2) = −1.

Proof. Clearly (5/5k + 2) = (5k + 2/5) since 5 ≡ 1 (mod 4).
Again (5k + 2/5) = (2/5) since 5k + 2 ≡ 2 (mod 5).
Also it is a well known fact that (2/5) = −1 since 5 ≡ 5 (mod 8).

For proofs of the above theorems the reader is suggested to see [2] or [6].
Let p a prime number such that p = 5k + 2 with k an odd positive integer.

From Property 1.10 and Theorem 1.16 we have

(

5
5k+1

2

)2

≡ 1 (mod 5k + 2).

From Theorem 1.6, we have either

5
5k+1

2 ≡ −1 (mod 5k + 2)

or

5
5k+1

2 ≡ 5k + 1 (mod 5k + 2).

Moreover, we can observe that

5(2k + 1) ≡ 1 (mod 5k + 2).

Theorem 1.17.

5
5k+1

2 ≡ 5k + 1 (mod 5k + 2)

where 5k + 2 is a prime.

The proof of Theorem 1.17 follows very easily from Theorems 1.8, 1.16 and
Property 1.10.

Theorem 1.18. Let r be an integer in the set {1, 2, 3, 4}. Then, we have

(5/5k + r) =

{

1 if r = 1 or r = 4,
−1 if r = 2 or r = 3.

Proof. We have (5/5k + r) = (5k + r/5) since 5 ≡ 1 (mod 4).
Moreover, (5k + r/5) = (r/5) since 5k + r ≡ r (mod 5).
Or, we have
If r = 1, then using Theorem 1.14, (r/5) = 1.
If r = 2, then using Corollary 1.13, (r/5) = −1.
If r = 3, then using Theorem 1.14, (r/5) = −1.
If r = 4, then since (4/5) = (22/5) = 1 (see also Remark 1.11), (r/5) = 1.
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Theorem 1.19. Let r be an integer in the set {1, 2, 3, 4}. Then, if 5k + r is a
prime, we have

5
5k+r−1

2 ≡
{

1 (mod 5k + r) if r = 1 or r = 4,
−1 (mod 5k + r) if r = 2 or r = 3.

The proof of Theorem 1.19 follows very easily from Theorems 1.8, 1.18 and
Property 1.10.

We fix the notation [[1, n]] = {1, 2, . . . , n} throughout the rest of the paper. We
now have the following properties.

Remark 1.20. Let 5k + r with r ∈ [[1, 4]] be a prime number. Then

k ≡
{

0 (mod 2) if r = 1 or r = 3,
1 (mod 2) if r = 2 or r = 4,

or equivalently
k ≡ r + 1 (mod 2).

Property 1.21.
(

5k + 1

2l + 1

)

≡ 5k + 1 (mod 5k + 2),

with l ∈ [[0, ⌊ 5k
2 ⌋]] and 5k + 2 is a prime.

Proof. Notice that for l = 0 the property is obviously true.
We also have

(

5k + 1

2l + 1

)

=
(5k + 1)5k(5k − 1) . . . (5k − 2l + 1)

(2l + 1)!
.

Or,
5k ≡ −2 (mod 5k + 2),

5k − 1 ≡ −3 (mod 5k + 2),
...

5k − 2l + 1 ≡ −(2l + 1) (mod 5k + 2).

Multiplying these congruences we get

5k(5k − 1) . . . (5k − 2l + 1) ≡ (2l + 1)! (mod 5k + 2).

Therefore

(2l + 1)!

(

5k + 1

2l + 1

)

≡ (5k + 1)(2l + 1)! (mod 5k + 2).

Since (2l + 1)! and 5k + 2 are relatively prime, we obtain
(

5k + 1

2l + 1

)

≡ 5k + 1 (mod 5k + 2).
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We have now the following generalization.

Property 1.22.
(

5k + r − 1

2l + 1

)

≡ −1 (mod 5k + r),

with l ∈ [[0, ⌊ 5k+r−2
2 ⌋]] and 5k + r is a prime such that r ∈ [[1, 4]] and k ≡ r + 1

(mod 2).

The proof of Property 1.22 is very similar to the proof of Property 1.21

Property 1.23.

(

5k

2l + 1

)

≡ 5k − 2l ≡ −2(l + 1) (mod 5k + 2)

with l ∈ [[0, ⌊ 5k
2 ⌋]] and 5k + 2 is a prime.

Proof. Notice that for l = 0 the property is obviously true.
We have

(

5k

2l + 1

)

=
5k(5k − 1) . . . (5k − 2l + 1)(5k − 2l)

(2l + 1)!
.

Or
5k ≡ −2 (mod 5k + 2),

5k − 1 ≡ −3 (mod 5k + 2),
...

5k − 2l + 1 ≡ −(2l + 1) (mod 5k + 2).

Multiplying these congruences we get

5k(5k − 1) . . . (5k − 2l + 1) ≡ (2l + 1)! (mod 5k + 2).

Therfore

(2l + 1)!

(

5k

2l + 1

)

≡ (2l + 1)!(5k − 2l) (mod 5k + 2).

Since (2l + 1)! and 5k + 2 are relatively prime, we obtain

(

5k + 1

2l + 1

)

≡ 5k − 2l ≡ 5k + 2− 2− 2l ≡ −2(l + 1) (mod 5k + 2).

We can generalize the above as follows.
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Property 1.24.

(

5k + r − 2

2l + 1

)

≡ −2(l + 1) (mod 5k + r),

with l ∈ [[0, ⌊ 5k+r−3
2 ⌋]] and 5k + r is a prime such that r ∈ [[1, 4]] and k ≡ r + 1

(mod 2)

The proof of Property 1.24 is very similar to the proof of Property 1.23.
In the memainder of this section we derive or state a few results involving

the Fibonacci numbers. The Fibonacci sequence (Fn) is defined by F0 = 0, F1 =
1, Fn+2 = Fn + Fn+1 for n ≥ 0.

From the definition of the Fibonacci sequences we can establish the formula for
the nth Fibonacci number,

Fn =
ϕn − (1− ϕ)n√

5
,

where ϕ = 1+
√
5

2 is the golden ratio.
From binomial theorem, we have for a 6= 0 and n ∈ N,

(a+ b)n − (a− b)n =

n
∑

k=0

(

n

k

)

an−kbk(1− (−1)k) = 2

⌊n−1
2 ⌋
∑

l=0

(

n

2l + 1

)

an−(2l+1)b2l+1,

(1.1) (a+ b)n − (a− b)n = 2an
⌊n−1

2 ⌋
∑

l=0

(

n

2l + 1

)(

b

a

)2l+1

.

We set
a+ b = ϕ = 1+

√
5

2 ,

a− b = 1− ϕ = 1−
√
5

2 .

So

a =
1

2
, b =

2ϕ− 1

2
=

√
5

2
.

Thus
b

a
=

√
5.

We get from (1.1)

ϕn − (1− ϕ)n =

√
5

2n−1

⌊n−1
2 ⌋
∑

l=0

(

n

2l + 1

)

5l.

Thus we have,
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Theorem 1.25.

Fn =
1

2n−1

⌊n−1
2 ⌋
∑

l=0

(

n

2l + 1

)

5l.

Property 1.26.

Fk+2 = 1 +

k
∑

i=1

Fi.

Theorem 1.27.

Fk+l = FlFk+1 + Fl−1Fk

with k ∈ N and l ≥ 2.

The proofs of the above two results can be found in [6].

Property 1.28. Let m be a positive integer which is greater than 2. Then, we have

F3m+2 = 4F3m−1 + F3m−4.

The above can be generalized to the following.

Property 1.29. Let m be a positive integer which is greater than 2. Then, we have

F3m+2 = 4

m
∑

i=2

F3i−1.

The above three results can be proved in a straighforward way using the recur-
rence relation of Fibonacci numbers.

We now state below a few congruence satisfied by the Fibonacci numbers.

Property 1.30. Fn ≡ 0 (mod 2) if and only if n ≡ 0 (mod 3).

Corollary 1.31. If p = 5k + 2 is a prime which is strictly greater than 5 (k ∈ N

and k odd), then Fp = F5k+2 is an odd number.

In order to prove this assertion, it suffices to remark that p is not divisible by
3.

Property 1.32.

F5k ≡ 0 (mod 5)

with k ∈ N.

Property 1.33.

Fn ≥ n

with n ∈ N and n ≥ 5.

The proofs of the above results follows from the principle of mathematical in-
duction and Theorem 1.27 and Proposition 1.26. For brevity, we omit them here.
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2 Congruences of Fibonacci numbers modulo a

prime

In this section, we give some new congruence relations involving Fibonacci numbers
modulo a prime. The study in this section and some parts of the subsequent sections
are motivated by some similar results obtained by Bicknell-Johnson in [1] and by
Hoggatt and Bicknell-Johnson in [5].

Let p = 5k + 2 be a prime number with k a non-zero positive integer which is
odd. Notice that in this case, 5k ± 1 is an even number and so

⌊

5k ± 1

2

⌋

=
5k ± 1

2
.

We now have the following properties.

Property 2.1.

F5k+2 ≡ 5k + 1 (mod 5k + 2)

with k ∈ N and k odd such that 5k + 2 is prime.

This result is also stated in [5], but we give a different proof of the result below.

Proof. From Theorems 1.17 and 1.25 we have

25k+1F5k+2 =

5k+1
2
∑

l=0

(

5k + 2

2l + 1

)

5l ≡ 5
5k+1

2 ≡ 5k + 1 (mod 5k + 2)

where we used the fact that
(

5k+2
2l+1

)

is divisible by 5k + 2 for l = 0, 1, . . . , 5k−1
2 .

From Fermat’s Little Theorem, we have

25k+1 ≡ 1 (mod 5k + 2).

We get F5k+2 ≡ 5k + 1 (mod 5k + 2).

Property 2.2.

F5k+1 ≡ 1 (mod 5k + 2)

with k ∈ N and k odd such that 5k + 2 is prime.

Proof. From Theorem 1.25 and Property 1.21 we have

25kF5k+1 =

⌊ 5k
2 ⌋
∑

l=0

(

5k + 1

2l + 1

)

5l ≡ (5k + 1)

⌊ 5k
2 ⌋
∑

l=0

5l (mod 5k + 2).

We have
⌊ 5k

2 ⌋
∑

l=0

5l =
5⌊

5k
2 ⌋+1 − 1

4
.
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We get from the above

25k+2F5k+1 ≡ (5k + 1)
{

5⌊
5k
2 ⌋+1 − 1

}

(mod 5k + 2).

Since k is an odd positive integer, there exists a positive integer m such that k =
2m+ 1. It follows that

⌊

5k

2

⌋

= 5m+ 2.

Notice that 5k + 2 = 10m + 7 is prime, implies that k 6= 5 and k 6= 11 or
equivalently m 6= 2 and m 6= 5. Other restrictions on k and m can be given.

From Theorem 1.17 we have

55m+3 ≡ 10m+ 6 (mod 10m+ 7).

We can rewrite
∑⌊ 5k

2 ⌋
l=0 5l = 5⌊

5k
2

⌋+1−1
4 as

⌊ 5k
2 ⌋
∑

l=0

5l =
55m+3 − 1

4
.

Moreover, we have

(5k + 1)
{

5⌊
5k
2 ⌋+1 − 1

}

= (10m+ 6)
{

55m+3 − 1
}

.

Or,

(10m+6)
{

55m+3 − 1
}

≡ 55m+3
{

55m+3 − 1
}

≡ 510m+6−10m−6 (mod 10m+7).

We have
(10m+ 6)

{

55m+3 − 1
}

≡ 510m+6 + 1 (mod 10m+ 7).

From Fermat’s Little Theorem, we have 510m+6 ≡ 1 (mod 10m+ 7). Therefore

(10m+ 6)
{

55m+3 − 1
}

≡ 2 (mod 10m+ 7),

or equivalently

(5k + 1)
{

5⌊
5k
2 ⌋+1 − 1

}

≡ 2 (mod 5k + 2).

It follows that
25k+2F5k+1 ≡ 2 (mod 5k + 2).

Since 2 and 5k + 2 are relatively prime, so

25k+1F5k+1 ≡ 1 (mod 5k + 2).

From Fermat’s Little Theorem, we have 25k+1 ≡ 1 (mod 5k + 2). Therefore

F5k+1 ≡ 1 (mod 5k + 2).
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Property 2.3.

F5k ≡ 5k (mod 5k + 2)

with k ∈ N and k odd such that 5k + 2 is prime.

Proof. From Theorem 1.25 and Property 1.23 we have

25k−1F5k =

5k−1
2
∑

l=0

(

5k

2l + 1

)

5l ≡
5k−1

2
∑

l=0

(5k − 2l)5l (mod 5k + 2).

Also
5k−1

2
∑

l=0

(5k − 2l)5l =
5
[

3× 5
5k−1

2 − (2k + 1)
]

8
,

where we have used the fact that for x 6= 1 and n ∈ N we have

n
∑

l=0

lxl =
(n+ 1)(x− 1)xn+1 − xn+2 + x

(x− 1)2
.

So
25k+2F5k ≡ 5

(

3× 5
5k−1

2 − (2k + 1)
)

(mod 5k + 2).

Moreover since k = 2m+ 1, we have

3× 5
5k−1

2 − (2k + 1) = 3× 55m+2 − (4m+ 3).

Since 55m+3 ≡ 10m+ 6 (mod 10m+ 7), we have

3× 55m+3 ≡ 30m+ 18 ≡ 40m+ 25 (mod 10m+ 7).

Consequently
3× 55m+2 ≡ 8m+ 5 (mod 10m+ 7),

which implies

3× 55m+2 − (4m+ 3) ≡ 4m+ 2 (mod 10m+ 7),

or equivalently for k = 2m+ 1

3× 5
5k−1

2 − (2k + 1) ≡ 2k (mod 5k + 2),

25k+2F5k ≡ 2× 5k (mod 5k + 2).

Since 2 and 5k + 2 are relatively prime, so

25k+1F5k ≡ 5k (mod 5k + 2).

From Fermat’s Little Theorem, we have 25k+1 ≡ 1 (mod 5k + 2). Therefore

F5k ≡ 5k (mod 5k + 2).
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Property 2.4. Let 5k + 2 be a prime with k odd and let m be a positive integer
which is greater than 2. Then, we have

F3m ≡ 2

(

3m−1 +

m−1
∑

i=1

3m−1−iF3i−1

)

(mod 5k + 2).

Proof. We prove the result by induction.
We know that F6 = 8. Or, 2(3 + F2) = 2(3 + 1) = 2× 4 = 8. So

F6 = F3×2 = 2(3 + F2) ≡ 2(3 + F2) (mod 5k + 2).

Let us assume that F3m ≡ 2

(

3m−1 +

m−1
∑

i=1

3m−1−iF3i−1

)

(mod 5k+2) with m ≥ 2.

For m a positive integer, we have by Theorem 1.27

F3(m+1) = F3m+3 = F3F3m+1 + F2F3m = 2F3m+1 + F3m

= 2(F3m + F3m−1) + F3m = 2F3m−1 + 3F3m.

From the assumption above, we get

F3(m+1) ≡ 2F3m−1 + 2

(

3m +
m−1
∑

i=1

3m−iF3i−1

)

(mod 5k + 2)

≡ 2

(

3m +

m
∑

i=1

3m−iF3i−1

)

(mod 5k + 2).

Thus the proof is complete by induction.

Theorem 2.5. Let 5k+2 be a prime with k an odd integer and let m be a positive
integer which is greater than 2. Then

F5mk ≡ 5k

(

3m−1 +

m−1
∑

i=1

3m−1−iF3i−1

)

(mod 5k + 2)

and
F5mk+1 ≡ F3m−1 (mod 5k + 2).

Proof. We prove the theorem by induction.
We have, using Theorem 1.27

F10k = F5k+5k = F5kF5k+1 + F5k−1F5k = F5k(F5k+1 + F5k−1).
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Using Properties 2.1, 2.2 and 2.3 we can see that

F10k ≡ 20k (mod 5k + 2).

Also

5k

(

3 +

1
∑

i=1

31−iF3i−1

)

= 5k(3 + F2) = 20k ≡ 20k (mod 5k + 2).

So

F10k = F5×2k ≡ 5k

(

3 +
1
∑

i=1

31−iF3i−1

)

(mod 5k + 2).

Moreover, we have from Theorem 1.27, Property 2.2 and Property 2.3,

F10k+1 = F5k+5k+1 = F 2
5k+1 + F 2

5k ≡ 1 + 25k2 (mod 5k + 2).

We have

(5k + 2)2 = 25k2 + 20k + 4 ≡ 25k2 + 10k ≡ 0 (mod 5k + 2).

So
25k2 ≡ −10k ≡ 2(5k + 2)− 10k ≡ 4 (mod 5k + 2).

Therefore
F10k+1 ≡ F5 ≡ 5 (mod 5k + 2),

or equivalently
F5×2k+1 ≡ F3×2−1 ≡ 5 (mod 5k + 2).

Let us assume that

F5mk ≡ 5k

(

3m−1 +
m−1
∑

i=1

3m−1−iF3i−1

)

(mod 5k + 2)

and
F5mk+1 ≡ F3m−1 (mod 5k + 2).

Then, we have

F5(m+1)k = F5mk+5k = F5kF5mk+1 + F5k−1F5mk.

Using Property 2.3 and F5k−1 ≡ 3 (mod 5k + 2), from the assumptions above, we
have

F5(m+1)k ≡ 5kF3m−1 + 3× 5k

(

3m−1 +

m−1
∑

i=1

3m−1−iF3i−1

)

(mod 5k + 2).
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It gives

F5(m+1)k ≡ 5k

(

3m +
m
∑

i=1

3m−iF3i−1

)

(mod 5k + 2).

Moreover, we have

F5(m+1)k+1 = F5mk+5k+1 = F5k+1F5mk+1 + F5kF5mk.

Using Properties 2.2 and 2.3 and the assumptions above, and since 25k2 ≡ 4
(mod 5k + 2), we have

F5(m+1)k+1 ≡ F3m−1 + 25k2

(

3m−1 +

m−1
∑

i=1

3m−i−1F3i−1

)

(mod 5k + 2)

≡ F3m−1 + 4

(

3m−1 +

m−1
∑

i=1

3m−i−1F3i−1

)

(mod 5k + 2)

≡ F3m−1 + 2F3m (mod 5k + 2).

Or,

F3m−1 + 2F3m = F3m−1 + F3m + F3m = F3m+1 + F3m = F3m+2.

Therefore

F5(m+1)k+1 ≡ F3m+2 (mod 5k + 2),

or equivalently

F5(m+1)k+1 ≡ F3(m+1)−1 (mod 5k + 2).

This completes the proof.

Corollary 2.6. Let 5k + 2 be a prime with k an odd integer and m be a positive
integer which is greater than 2. Then

F5mk+2 ≡ F3m−1 + 5k

(

3m−1 +

m−1
∑

i=1

3m−1−iF3i−1

)

(mod 5k + 2),

F5mk+3 ≡ 2F3m−1 + 5k

(

3m−1 +
m−1
∑

i=1

3m−1−iF3i−1

)

(mod 5k + 2),

and

F5mk+4 ≡ 3F3m−1 + 10k

(

3m−1 +

m−1
∑

i=1

3m−1−iF3i−1

)

(mod 5k + 2).



16 Alexandre Laugier and Manjil P. Saikia

Theorem 2.7. Let 5k+2 be a prime with k an odd positive integer, m be a positive
integer which is greater than 2 and r ∈ N. Then

Fm(5k+r) ≡ FmrF3m−1 + 5kFmr−1

(

3m−1 +
m−1
∑

i=1

3m−1−iF3i−1

)

(mod 5k + 2).

Proof. For m, r two non-zero positive integers, we have by Theorem 1.27

Fm(5k+r) = F5mk+mr = FmrF5mk+1 + Fmr−1F5mk.

From Theorem 2.5, we have for m ≥ 2 and r ∈ N

Fm(5k+r) ≡ FmrF3m−1 + 5kFmr−1

(

3m−1 +

m−1
∑

i=1

3m−1−iF3i−1

)

(mod 5k + 2).

Remark 2.8. In particular, if r = 3, we know that

Fm(5k+3) ≡ 0 (mod 5k + 2).

This congruence can be deduced from Property 2.4 and Theorem 2.7. Indeed,
using Theorem 2.7, we have

Fm(5k+3) ≡ F3mF3m−1 + 5kF3m−1

(

3m−1 +

m−1
∑

i=1

3m−1−iF3i−1

)

(mod 5k + 2)

≡ F3mF3m−1 + 5kF3m−1

(

3m−1 +

m−1
∑

i=1

3m−1−iF3i−1

)

− (5k + 2)F3m−1

(

3m−1 +

m−1
∑

i=1

3m−1−iF3i−1

)

(mod 5k + 2)

≡ F3mF3m−1 − 2F3m−1

(

3m−1 +

m−1
∑

i=1

3m−1−iF3i−1

)

(mod 5k + 2).

Using Property 2.4 we get

Fm(5k+3) ≡ F3mF3m−1 − F3m−1F3m ≡ 0 (mod 5k + 2).

Corollary 2.9. Let 5k+2 be a prime with k an odd positive integer and m, r ∈ N.
Then

Fm(5k+r) ≡ FmrF3m−1 − Fmr−1F3m (mod 5k + 2).
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Lemma 2.10. Let 5k + 2 be a prime with k an odd positive integer and r ∈ N.
Then

F5k+r ≡ Fr − 2Fr−1 (mod 5k + 2).

Proof. We prove this lemma by induction. For r = 1, we have F5k+r = F5k+1 ≡ 1
(mod 5k + 2) and Fr − 2Fr−1 = F1 − 2F0 = F1 ≡ 1 (mod 5k + 2).

Let us assume that F5k+s ≡ Fs− 2Fs−1 (mod 5k+2) for s ∈ [[2, r]] with r ≥ 2.
Using the assumption, we have for r ≥ 2

F5k+r+1 ≡ F5k+r + F5k+r−1 (mod 5k + 2)

≡ Fr − 2Fr−1 + Fr−1 − 2Fr−2 (mod 5k + 2)

≡ Fr + Fr−1 − 2(Fr−1 + Fr−2) (mod 5k + 2)

≡ Fr+1 − 2Fr (mod 5k + 2).

Thus the lemma is proved.

We can prove Lemma 2.10 as a consequence of Corollary 2.9 by taking m = 1.

Corollary 2.11. Let 5k + 2 be a prime with k an odd positive integer, let m be a
positive integer and r ∈ N. Then

Fm(5k+r) ≡ FmrF3m+1 − Fmr+1F3m (mod 5k + 2).

The above corollary can be deduced from Corollary 2.9.

Lemma 2.12. Let 5k+ 2 be a prime with k an odd positive integer and let m be a
positive integer. Then

F5mk + F3m ≡ 0 (mod 5k + 2).

Proof. For m = 0, we have F5mk + F3m = 2F0 = 0 ≡ 0 (mod 5k + 2).
For m = 1, we have F5mk + F3m = F5k + F3 ≡ 5k + 2 ≡ 0 (mod 5k + 2).
So, it remains to prove that for m ≥ 2, we have F5mk +F3m ≡ 0 (mod 5k+2).
From Theorem 2.5, we have

F5mk ≡ 5k

(

3m−1 +

m−1
∑

i=1

3m−1−iF3i−1

)

(mod 5k + 2)

≡ 5k

(

3m−1 +

m−1
∑

i=1

3m−1−iF3i−1

)

− (5k + 2)

(

3m−1 +

m−1
∑

i=1

3m−1−iF3i−1

)

(mod 5k + 2)

≡ −2

(

3m−1 +
m−1
∑

i=1

3m−1−iF3i−1

)

(mod 5k + 2).

From Property 2.4, we have F5mk ≡ −F3m (mod 5k + 2).
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We can prove Corollary 2.11 as a consequence of Lemma 2.12.

Remark 2.13. We can observe that

F1×(5k+r) = F5k+r

and
F1×rF3×1+1 − F1×r+1F3×1 = FrF4 − Fr+1F3 = 3Fr − 2Fr+1.

By Properties 2.1, 2.2 and 2.3 we have

r = 1 : F5k+r = F5k+1 ≡ 1 (mod 5k + 2)

3Fr − 2Fr+1 = 3F1 − 2F2 = 1 ≡ 1 (mod 5k + 2)

r = 2 : F5k+r = F5k+2 ≡ 5k + 1 (mod 5k + 2)

3Fr − 2Fr+1 = 3F2 − 2F3 = −1 ≡ 5k + 1 (mod 5k + 2)

r = 3 : F5k+r = F5k+3 ≡ 0 (mod 5k + 2)

3Fr − 2Fr+1 = 3F3 − 2F4 = 0 ≡ 0 (mod 5k + 2)

r = 4 : F5k+r = F5k+4 ≡ 5k + 1 (mod 5k + 2)

3Fr − 2Fr+1 = 3F4 − 2F5 = −1 ≡ 5k + 1 (mod 5k + 2)

So, we have
F5k+r ≡ 3Fr − 2Fr+1 (mod 5k + 2)

or equivalently

F1×(5k+r) ≡ F1×rF3×1+1 − F1×r+1F3×1 (mod 5k + 2)

with r ∈ [[1, 4]].

Thus we have the following.

Property 2.14. Let 5k + 2 be a prime with k an odd positive integer, let m be a
positive integer and r ∈ N. Then

F5k+r ≡ 3Fr − 2Fr+1 (mod 5k + 2).

Proof. We have
F5k+0 = F5k ≡ 5k (mod 5k + 2)

and
3F0 − 2F1 = −2 ≡ 5k (mod 5k + 2).

So, F5k ≡ 3F0 − 2F1 (mod 5k + 2).
Moreover, we know that

F5k+1 ≡ 3F1 − 2F2 ≡ 1 (mod 5k + 2).
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Let us assume that

F5k+s ≡ 3Fs − 2Fs+1 (mod 5k + 2)

for s ∈ [[1, r]]. We have for r ∈ N,

F5k+r+1 = F5k+r + F5k+r−1 ≡ 3Fr − 2Fr+1 + 3Fr−1 − 2Fr (mod 5k + 2)

≡ 3(Fr + Fr−1)− 2(Fr+1 + Fr) (mod 5k + 2)

≡ 3Fr+1 − 2Fr+2 (mod 5k + 2).

Thus the proof is complete by induction.

Property 2.15. Let 5k + 2 be a prime with k odd and let m be a positive integer
which is greater than 2. Then, we have

F3m+1 ≡ 3m + 2

m−1
∑

i=1

3m−1−iF3i (mod 5k + 2).

Proof. We prove the result by induction.

We have for m = 2, F3m+1 = F3×2+1 = F7 = 13 and 3m + 2
m−1
∑

i=1

3m−1−iF3i =

32 + 2F3 = 9 + 2× 2 = 9 + 4 = 13. So, F7 ≡ 32 + 2F3 ≡ 13 (mod 5k + 2).
Let us assume that for m ≥ 2 the result holds. Using this assumption, we have

for m ≥ 2

F3(m+1)+1 = F3m+4 = F4F3m+1 + F3F3m = 3F3m+1 + 2F3m

≡ 3m+1 + 2

m−1
∑

i=1

3m−iF3i + 2F3m (mod 5k + 2)

≡ 3m+1 + 2
m
∑

i=1

3m−iF3i (mod 5k + 2).

Thus the induction hypothesis holds.

Corollary 2.16. Let 5k + 2 be a prime with k odd and let m be a positive integer
which is greater than 2. Then, we have

F3m+2 = 3m + 2

(

3m−1 +

m−1
∑

i=1

3m−1−iF3i+1

)

(mod 5k + 2).

Proof. It stems from the recurrence relation of the Fibonacci sequence which implies
that F3m+2 = F3m + F3m+1 and F3k+1 = F3k + F3k−1 and Properties 2.4 and
2.15.
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3 Some further congruences of Fibonacci numbers

modulo a prime

In this section we state and prove some more results of the type that were proved
in the previous section. These results generalizes some of the results in the previous
section and in [1] and [5].

Let p = 5k + r with r ∈ [[1, 4]] be a prime number with k a non-zero positive
integer such that k ≡ r+1 (mod 2). Notice that 5k+ r± 1 is an even number and
so

⌊

5k + r ± 1

2

⌋

=
5k + r ± 1

2
.

We have the following properties.

Property 3.1.

F5k+r ≡ 5
5k+r−1

2 ≡
{

1 (mod 5k + r) if r = 1 or r = 4,
−1 (mod 5k + r) if r = 2 or r = 3,

with r ∈ [[1, 4]] k ∈ N and k ≡ r + 1 (mod 2) such that 5k + r is prime.

This result is also stated in [5], here we give a different proof below.

Proof. From Theorems 1.17 and 1.25 we have

25k+r−1F5k+r =

5k+r−1
2
∑

l=0

(

5k + r

2l + 1

)

5l ≡ 5
5k+r−1

2 (mod 5k + r),

where we used the fact that
(

5k+r
2l+1

)

is divisible by 5k + r for l = 0, 1, . . . , 5k+r−3
2 .

From Theorem 1.5, we have

25k+r−1 ≡ 1 (mod 5k + r).

We get F5k+r ≡ 5
5k+r−1

2 (mod 5k + r). The rest of the theorem stems from
Theorem 1.19.

Corollary 3.2. Let p be a prime number which is not equal to 5. Then, we have

Fp ≡
{

1 (mod p) if p ≡ 1 (mod 5) or p ≡ 4 (mod 5),
p− 1 (mod p) if p ≡ 2 (mod 5) or p ≡ 3 (mod 5).

Proof. We can notice that F2 = 1 ≡ 1 (mod 2) and 2 ≡ 2 (mod 5). Moreover, we
can notice that F3 = 2 ≡ 2 (mod 3) and 3 ≡ 3 (mod 5). So, Corollary 3.2 is true
for p = 2, 3.

We can observe that the result of Corollary 3.2 doesn’t work for p = 5 since
F5 = 5 ≡ 0 (mod 5).
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The Euclid division of a prime number p > 5 by 5 allows to write p like 5k + r
with 0 ≤ r < 5 and k ≡ r+1 (mod 2). Then, applying Property 3.1, we verify that
the result of Corollary 3.2 is also true for p > 5.

It completes the proof of this corollary.

Property 3.3.

F5k+r−1 ≡
{

0 (mod 5k + r) if r = 1 or r = 4,
1 (mod 5k + r) if r = 2 or r = 3

with r ∈ [[1, 4]] k ∈ N and k ≡ r + 1 (mod 2) such that 5k + r is prime.

Some parts of this result is stated in [1] in a different form. We give an alternate
proof of the result below.

Proof. From Theorem 1.25 and Property 1.22 we have

25k+rF5k+r−1 = 4

⌊ 5k+r−2
2 ⌋
∑

l=0

(

5k + r − 1

2l + 1

)

5l ≡ 4(5k+ r− 1)

⌊ 5k+r−2
2 ⌋
∑

l=0

5l (mod 5k+ r).

It comes that

25k+rF5k+r−1 ≡ (5k + r − 1)
(

5⌊
5k+r−2

2 ⌋+1 − 1
)

(mod 5k + r).

From Theorem 1.5, we have

25k+r ≡ 2 (mod 5k + r).

So, since 5k+ r− 1 is even and since 2 and 5k+ r are relatively prime when 5k+ r
prime, we obtain

F5k+r−1 ≡ 5k + r − 1

2

(

5⌊
5k+r−2

2 ⌋+1 − 1
)

(mod 5k + r).

Since 5k + r − 1 is even and so 5k+r−1
2 is an integer, we can notice that

⌊

5k + r − 2

2

⌋

+ 1 =

⌊

5k + r − 1

2
− 1

2

⌋

+ 1 =
5k + r − 1

2
+

⌊

−1

2

⌋

+ 1

=
5k + r − 1

2
+

⌊

1− 1

2

⌋

=
5k + r − 1

2
+

⌊

1

2

⌋

=
5k + r − 1

2

where we used the property that ⌊n+ x⌋ = n+ ⌊x⌋ for all n ∈ N and for all x ∈ R.
It follows that

(3.1) F5k+r−1 ≡ 5k + r − 1

2

(

5
5k+r−1

2 − 1
)

(mod 5k + r).
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The case r = 2 was done above. We found (see Property 2.2) and we can verify
from the congruence above that

F5k+1 ≡ 1 (mod 5k + 2).

From Theorem 1.19, if r = 1, we have 5
5k+r−1

2 = 5
5k
2 ≡ 1 (mod 5k + 1). So, using

(3.1), we deduce that

F5k ≡ 0 (mod 5k + 1).

From Theorem 1.19, if r = 3, we have 5
5k+r−1

2 = 5
5k+2

2 ≡ −1 ≡ 5k+2 (mod 5k+3).
So, using (3.1), we deduce that

F5k+2 ≡ −(5k + 2) ≡ 1 (mod 5k + 3).

From Theorem 1.19, if r = 4, we have 5
5k+r−1

2 = 5
5k+3

2 ≡ 1 (mod 5k+4). So, using
(3.1), we deduce that

F5k+3 ≡ 0 (mod 5k + 4).

The following two results are easy consequences of Properties 3.1 and 3.3.

Property 3.4.

F5k+r−2 ≡
{

1 (mod 5k + r) if r = 1 or r = 4,
−2 (mod 5k + r) if r = 2 or r = 3,

with r ∈ [[1, 4]] k ∈ N and k ≡ r + 1 (mod 2) such that 5k + r is prime.

Property 3.5.

F5k+r+1 ≡
{

1 (mod 5k + r) if r = 1 or r = 4,
0 (mod 5k + r) if r = 2 or r = 3,

with r ∈ [[1, 4]] k ∈ N and k ≡ r + 1 (mod 2) such that 5k + r is prime.

The following is a consequence of Properties 3.1 and 3.5.

Property 3.6.

F5k+r+2 ≡
{

2 (mod 5k + r) if r = 1 or r = 4,
−1 (mod 5k + r) if r = 2 or r = 3,

with r ∈ [[1, 4]] k ∈ N and k ≡ r + 1 (mod 2) such that 5k + r is prime.

Some of the stated properties above are given in [1] and [5] also, but the methods
used here are different.
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4 Periods of the Fibonacci sequence modulo a pos-

itive integer

Notice that F1 = F2 ≡ 1 (mod m) with m an integer which is greater than 2.

Definition 4.1. The Fibonacci sequence (Fn) is periodic modulo a positive integer
m which is greater than 2 (m ≥ 2), if there exists at least a non-zero integer ℓm
such that

F1+ℓm ≡ F2+ℓm ≡ 1 (mod m).

The number ℓm is called a period of the Fibonacci sequence (Fn) modulo m.

Remark 4.2. For m ≥ 2 we have lm ≥ 2. Indeed, ℓm cannot be equal to 1 since
F3 = 2.

From Theorem 1.27 we have

F2+ℓm = FℓmF3 + Fℓm−1F2 ≡ 2Fℓm + Fℓm−1 (mod m).

Since Fℓm + Fℓm−1 = F1+ℓm , we get

F2+ℓm ≡ 2Fℓm + Fℓm−1 ≡ Fℓm + F1+ℓm ≡ Fℓm + F2+ℓm (mod m).

Therefore we have the following.

Property 4.3.

Fℓm ≡ 0 (mod m).

Moreover, from Theorem 1.27 we have

F1+ℓm = FℓmF2 + Fℓm−1F1 ≡ Fℓm + Fℓm−1 ≡ Fℓm−1 (mod m).

Since F1+ℓm ≡ 1 (mod m), we obtain the following.

Property 4.4.

Fℓm−1 ≡ 1 (mod m).

Besides, using the recurrence relation of the Fibonacci sequence, from Property
4.3 we get

Fℓm−2 + Fℓm−1 = Fℓm ≡ 0 (mod m).

Using Property 4.4 we obtain

Property 4.5.

Fℓm−2 ≡ m− 1 (mod m).
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Remark 4.6. From Theorem 1.27 we have for m ≥ 2

F2m = Fm+m = FmFm+1 + Fm−1Fm = Fm(Fm+1 + Fm−1),

and

F2m+1 = F(m+1)+m = FmFm+2 + Fm−1Fm+1

= Fm(Fm + Fm+1) + Fm−1(Fm−1 + Fm)

= Fm(2Fm + Fm−1) + Fm−1(Fm−1 + Fm)

= 2F 2
m + 2FmFm−1 + F 2

m−1 = F 2
m + F 2

m+1.

From this we get

F2m+2 = F2m+1 + F2m = F 2
m + F 2

m+1 + Fm(Fm+1 + Fm−1),

F2m+3 = F3F2m+1 + F2F2m = 2(F 2
m + F 2

m+1) + Fm(Fm+1 + Fm−1),

and

F2m+4 = F2m+3 + F2m+2 = 3(F 2
m + F 2

m+1) + 2Fm(Fm+1 + Fm−1).

Theorem 4.7. A period of the Fibonacci sequence modulo 5k + 2 with 5k + 2 a
prime and k odd is given by

ℓ5k+2 = 2(5k + 3).

Proof. Using the recurrence relation of the Fibonacci sequence, and from Properties
2.1, 2.2 and 2.3 we have

F5k+3 = F5k+2 + F5k+1 ≡ 5k + 2 ≡ 0 (mod 5k + 2).

Taking m = 5k + 2 prime (k odd) in the formulas of F2m+3 and F2m+4, we have

F10k+7 = 2(F 2
5k+2 + F 2

5k+3) + F5k+2(F5k+3 + F5k+1)

≡ 2(5k + 1)2 + 5k + 1 (mod 5k + 2)

≡ 50k2 + 20k + 2 + 5k + 1 ≡ 10k(5k + 2) + (5k + 2) + 1 (mod 5k + 2)

≡ 1 + (10k + 1)(5k + 2) ≡ 1 (mod 5k + 2),

and

F10k+8 = 3(F 2
5k+2 + F 2

5k+3) + 2F5k+2(F5k+3 + F5k+1)

≡ 3(5k + 1)2 + 2(5k + 1) (mod 5k + 2)

≡ 75k2 + 30k + 3 + 10k + 2 (mod 5k + 2)

≡ 15k(5k + 2) + 2(5k + 2) + 1 (mod 5k + 2)

≡ 1 + (15k + 2)(5k + 2) ≡ 1 (mod 5k + 2).
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Thus
F10k+7 ≡ F10k+8 ≡ 1 (mod 5k + 2),

or equivalently

F1+2(5k+3) ≡ F2+2(5k+3) ≡ 1 (mod 5k + 2).

We deduce that a period of the Fibonacci sequence modulo 5k + 2 with 5k + 2 a
prime is ℓ5k+2 = 2(5k + 3).

We can generalize the above result as follows.

Theorem 4.8. A period of the Fibonacci sequence modulo 5k + r with 5k + r a
prime such that r = 2, 3 and k ≡ r + 1 (mod 2) is given by

ℓ5k+r = 2(5k + r + 1).

Proof. Using the formula for F2m given in Remark 4.6, taking m = 5k + r + 1, we
have

F2(5k+r+1) = F5k+r+1(F5k+r + F5k+r+2).

From Properties 3.1, 3.5 and 3.6, we obtain

F2(5k+r+1) ≡
{

3 (mod 5k + r) if r = 1 or r = 4,
0 (mod 5k + r) if r = 2 or r = 3.

Using the formula for F2m+1 given in Remark 4.6, taking m = 5k + r + 1, we have

F2(5k+r+1)+1 = F 2
5k+r+1 + F 2

5k+r+2.

From Properties 3.1 and 3.5, we obtain

F2(5k+r+1)+1 ≡
{

5 (mod 5k + r) if r = 1 or r = 4,
1 (mod 5k + r) if r = 2 or r = 3.

Using the recurrence relation of the Fibonacci sequence, we have F2(5k+r+1)+2 =
F2(5k+r+1) + F2(5k+r+1)+1. So

F2(5k+r+1)+2 ≡
{

8 (mod 5k + r) if r = 1 or r = 4,
1 (mod 5k + r) if r = 2 or r = 3.

Therefore, when 5k+ r is prime such that r = 2, 3 and k ≡ r+ 1 (mod 2), we have
F2(5k+r+1) ≡ 0 (mod 5k + r) and F2(5k+r+1)+1 ≡ F2(5k+r+1)+2 ≡ 1 (mod 5k + r).
It results that if 5k + r is prime such that r = 2, 3 and k ≡ r + 1 (mod 2), then
2(5k + r + 1) is a period of the Fibonacci sequence modulo 5k + r.

Theorem 4.9. A period of the Fibonacci sequence modulo 5k + r with 5k + r a
prime such that r = 1, 4 and k ≡ r + 1 (mod 2) is given by

ℓ5k+r = 2(5k + r − 1).
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Proof. Using the formula for F2m given in Remark 4.6, taking m = 5k + r − 1, we
have

F2(5k+r−1) = F5k+r−1(F5k+r + F5k+r−2).

From Properties 3.1, 3.3 and 3.4, we obtain

F2(5k+r−1) ≡
{

0 (mod 5k + r) if r = 1 or r = 4,
−3 (mod 5k + r) if r = 2 or r = 3.

Using the formula for F2m+1 given in Remark 4.6, taking m = 5k + r − 1, we have

F2(5k+r−1)+1 = F 2
5k+r−1 + F 2

5k+r.

From Properties 3.1 and 3.3, we obtain

F2(5k+r−1)+1 ≡
{

1 (mod 5k + r) if r = 1 or r = 4,
2 (mod 5k + r) if r = 2 or r = 3.

Using the recurrence relation of the Fibonacci sequence, we have F2(5k+r−1)+2 =
F2(5k+r−1) + F2(5k+r−1)+1. So

F2(5k+r−1)+2 ≡
{

1 (mod 5k + r) if r = 1 or r = 4,
−1 (mod 5k + r) if r = 2 or r = 3.

Therefore, when 5k+ r is prime such that r = 1, 4 and k ≡ r+ 1 (mod 2), we have
F2(5k+r−1) ≡ 0 (mod 5k + r) and F2(5k+r−1)+1 ≡ F2(5k+r−1)+2 ≡ 1 (mod 5k + r).
It results that if 5k + r is prime such that r = 1, 4 and k ≡ r + 1 (mod 2), then
2(5k + r − 1) is a period of the Fibonacci sequence modulo 5k + r.

Corollary 4.10. A period of the Fibonacci sequence modulo 5k + r with 5k + r a
prime such that r = 1, 2, 3, 4 and k ≡ r + 1 (mod 2) is given by

ℓ5k+r =







10k if r = 1,
2(5k + 3) if r = 2 or r = 4,
2(5k + 4) if r = 3,

or more compactly

ℓ5k+r = 10k + 3(1 + (−1)r) + 2(r − 1)(1− (−1)r).

Corollary 4.10 follows from Theorems 4.8 and 4.9.

Corollary 4.11. A period of the Fibonacci sequence modulo p with p a prime which
is not equal to 5 is given by

ℓp =

{

2(p− 1) if p ≡ 1 (mod 5) or p ≡ 4 (mod 5),
2(p+ 1) if p ≡ 2 (mod 5) or p ≡ 3 (mod 5).



Some Properties of Fibonacci Numbers 27

Proof. The Euclid division of p by 5 is written p = 5k + r with 0 ≤ r < 5 and
k ≡ r + 1 (mod 2). Then, applying Corollary 4.10, it gives:

r = 1 p = 5k + 1 ℓp = ℓ5k+1 = 10k = 2p− 2 = 2(p− 1)
r = 2 p = 5k + 2 ℓp = ℓ5k+2 = 10k + 6 = 2p+ 2 = 2(p+ 1)
r = 3 p = 5k + 3 ℓp = ℓ5k+3 = 10k + 8 = 2p+ 2 = 2(p+ 1)
r = 4 p = 5k + 4 ℓp = ℓ5k+4 = 10k + 6 = 2p− 2 = 2(p− 1).

Property 4.12. A period of the Fibonacci sequence modulo 5 is 20.

Proof. From Property 1.32, we know that F5k ≡ 0 (mod 5) with k ∈ N. Using the
recurrence relation of the Fibonacci sequence, we have F5k+1 ≡ F5k+2 (mod 5). So,
it is relevant to search a period as an integer multiple of 5. Trying the first non-zero
values of k, it gives:

k = 1 F5k+1 = F6 ≡ 3 (mod 5) F5k+2 = F7 ≡ 3 (mod 5)
k = 2 F5k+1 = F11 ≡ 4 (mod 5) F5k+2 = F12 ≡ 4 (mod 5)
k = 3 F5k+1 = F16 ≡ 2 (mod 5) F5k+2 = F17 ≡ 2 (mod 5)
k = 4 F5k+1 = F21 ≡ 1 (mod 5) F5k+2 = F22 ≡ 1 (mod 5).

Property 4.13. Let k be a positive integer. Then, we have

F5k+1 ≡ F5k+2 ≡ 1 (mod 5) if k ≡ 0 (mod 4),
F5k+1 ≡ F5k+2 ≡ 3 (mod 5) if k ≡ 1 (mod 4),
F5k+1 ≡ F5k+2 ≡ 4 (mod 5) if k ≡ 2 (mod 4),
F5k+1 ≡ F5k+2 ≡ 2 (mod 5) if k ≡ 3 (mod 4).

Proof. Since F5k ≡ 0 (mod 5), using the recurrence relation of the Fibonacci se-
quence, we have F5k+2 = F5k+1 + F5k ≡ F5k+1 (mod 5).

If k ≡ 0 (mod 4) and k ≥ 0, then there exists a positive integer m such that
k = 4m. So, if k ≡ 0 (mod 4) and k ≥ 0, since 20 is a period of the Fibonacci
sequence modulo 5 (see Property 4.12), then we have F5k+1 = F20m+1 ≡ F1 ≡ 1
(mod 5).

If k ≡ 1 (mod 4) and k ≥ 0, then there exists a positive integer m such that
k = 4m+ 1. Using Theorem 1.27, it comes that

F5k+1 = F20m+6 = F6F20m+1 + F5F20m.

So, if k ≡ 1 (mod 4) and k ≥ 0, since F6 = 8 ≡ 3 (mod 5), F5 = 5 ≡ 0 (mod 5)
and since 20 is a period of the Fibonacci sequence modulo 5 (see Property 4.12),
then we have F5k+1 ≡ F6F1 ≡ 3 (mod 5).
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If k ≡ 2 (mod 4) and k ≥ 0, then there exists a positive integer m such that
k = 4m+ 2. Using Theorem 1.27, it comes that

F5k+1 = F20m+11 = F11F20m+1 + F10F20m.

So, if k ≡ 2 (mod 4) and k ≥ 0, since F11 = 89 ≡ 4 (mod 5), F10 = 55 ≡ 0 (mod 5)
and since 20 is a period of the Fibonacci sequence modulo 5 (see Property 4.12),
then we have F5k+1 ≡ F11F1 ≡ 4 (mod 5).

If k ≡ 3 (mod 4) and k ≥ 0, then there exists a positive integer m such that
k = 4m+ 3. Using Theorem 1.27, it comes that

F5k+1 = F20m+16 = F16F20m+1 + F15F20m.

So, if k ≡ 3 (mod 4) and k ≥ 0, since F16 = 987 ≡ 2 (mod 5), F15 = 610 ≡ 0
(mod 5) and since 20 is a period of the Fibonacci sequence modulo 5 (see Property
4.12), we have

F5k+1 ≡ F16F1 ≡ 2 (mod 5).

Property 4.14. Let k be a positive integer. Then, we have

F5k+3 ≡ 2 (mod 5) F5k+4 ≡ 3 (mod 5) if k ≡ 0 (mod 4),
F5k+3 ≡ 1 (mod 5) F5k+4 ≡ 4 (mod 5) if k ≡ 1 (mod 4),
F5k+3 ≡ 3 (mod 5) F5k+4 ≡ 2 (mod 5) if k ≡ 2 (mod 4),
F5k+3 ≡ 4 (mod 5) F5k+4 ≡ 1 (mod 5) if k ≡ 3 (mod 4).

Property 4.14 stems from the recurrence relation of the Fibonacci sequence and
Property 4.13.

Corollary 4.15. The minimal period of the Fibonacci sequence modulo 5 is 20.

Corollary 4.15 stems from Euclid division, Properties 4.12, 4.13 and 4.14.

Property 4.16. Let 5k + 1 be a prime with k a non-zero even positive integer.
Then, we have (m ∈ N)

F5mk ≡ 0 (mod 5k + 1),

and
F5mk+1 ≡ 1 (mod 5k + 1).

Proof. Let prove the property by induction on the integer m.
We have F0 = 0 ≡ 0 (mod 5k + 1) and F1 = 1 ≡ 1 (mod 5k + 1).
Moreover, from Properties 3.1 and 3.3, we can notice that

F5k ≡ 0 (mod 5k + 1)

and
F5k+1 ≡ 1 (mod 5k + 1).
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Let assume that for a positive integer m, we have

F5mk ≡ 0 (mod 5k + 1)

and
F5mk+1 ≡ 1 (mod 5k + 1).

Then, using the assumption, Theorem 1.27 and Properties 3.1 and 3.3, we have

F5(m+1)k = F5mk+5k = F5mkF5k+1 + F5mk−1F5k ≡ 0 (mod 5k + 1)

and

F5(m+1)k+1 = F5mk+1+5k = F5mk+1F5k+1 + F5mkF5k ≡ 1 (mod 5k + 1).

This completes the proof by induction on the integer m.

Property 4.17. A period of the Fibonacci sequence modulo 5k + 1 with 5k + 1
prime is 5k.

This is a direct consequence of Property 4.16.

Property 4.18. A period of the Fibonacci sequence modulo 5k + 4 with 5k + 4
prime and k a non-zero odd positive integer is 5k + 3.

Proof. From Properties 3.1, 3.3 and 3.5, we have

F5k+3 ≡ 0 (mod 5k + 4),

and
F5k+4 ≡ F5k+5 ≡ 1 (mod 5k + 4).

So
F1+5k+3 ≡ F2+5k+3 ≡ 1 (mod 5k + 4).

It results that 5k + 3 is a period of the Fibonacci sequence modulo 5k + 4.

Corollary 4.19. A period of the Fibonacci sequence modulo p with p a prime which
is not equal to 5 is given by

ℓp =

{

p− 1 if p ≡ 1 (mod 5) or p ≡ 4 (mod 5),
2(p+ 1) if p ≡ 2 (mod 5) or p ≡ 3 (mod 5).

Corollary 4.19 stems from Corollary 4.11 and Properties 4.17 and 4.18.

Property 4.20. Let 5k + 1 be a prime with k a non-zero even positive integer.
Then, for all m ∈ [[0, 5]]

(4.1) F5k−m ≡ (−1)m+1Fm (mod 5k + 1).
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Proof. We prove this result by induction on the integer m.
From Properties 3.3 and 3.4, we have

F5k ≡ 0 (mod 5k + 1),

and
F5k−1 ≡ 1 (mod 5k + 1).

So, we verify that (4.1) is true when m = 0 and m = 1. Notice that (4.1) is verified
when m = 5k since F0 = 0 ≡ F5k (mod 5k + 1).

Let us assume for an integer m ∈ [0, 5k − 1], we have F5k−i ≡ (−1)i+1Fi

(mod 5k + 1) with i = 0, 1, . . . ,m. Then, using the recurrence relation of the
Fibonacci sequence, we have (0 ≤ m ≤ 5k − 1),

F5k−m−1 = F5k−m+1 − F5k−m ≡ (−1)mFm−1 − (−1)m+1Fm (mod 5k + 1)

≡ (−1)m(Fm−1 + Fm) ≡ (−1)mFm+1 (mod 5k + 1)

≡ (−1)m+2Fm+1 (mod 5k + 1)

since (−1)2 = 1. It achieves the proof of Property 4.20 by induction on the integer
m.

Remark 4.21. Property 4.20 implies that we can limit ourself to the integer interval
[1, 5k

2 ] (knowing that the case m = 0 is a trivial case) in order to search or to rule
out a value for a possible period of the Fibonacci sequence modulo 5k + 1 with
5k + 1 prime (such that k is a non-zero even positive integer) which is less than
5k. Notice that 5k is not in general the minimal period of the Fibonacci sequence
modulo 5k + 1 with 5k + 1 prime (such that k is a non-zero even positive integer).
Indeed, for instance, if 5k + 1 = 101 (and so for k = 20), then it can be shown by
calculating the residue of Fm with m ∈ [1, 50] modulo 5k+1 = 101, that the minimal
period is 5k

2 = 50. Notice that in some cases as for instance k = 56, 84, the number
k is the minimal period of the Fibonacci sequence modulo 5k+1 with 5k+1 prime.

Theorem 4.22. Let 5k + 1 be a prime with k a non-zero even positive integer. If
k ≡ 0 (mod 4), then F 5k

2
≡ 0 (mod 5k + 1).

Proof. If k is a non-zero positive integer such that k ≡ 0 (mod 4), then the integer
5k
2 is a non-zero even positive integer. Using Property 4.20 and taking m = 5k

2 , we
have

F 5k
2
≡ −F 5k

2
(mod 5k + 1),

and
2F 5k

2
≡ 0 (mod 5k + 1).

Since 2 and 5k + 1 with 5k + 1 prime are relatively prime, we get

F 5k
2
≡ 0 (mod 5k + 1).
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Remark 4.23. We can observe that

F5k−1 = F5k+1 − F5k ≡ 1− 5k ≡ 3 ≡ F4 (mod 5k + 2),

F5k−2 = F5k − F5k−1 ≡ 5k − 3 ≡ 5k − F4 (mod 5k + 2),

and
F5k−3 = F5k−1 − F5k−2 ≡ 6− 5k ≡ 8 ≡ F6 (mod 5k + 2),

F5k−4 = F5k−2 − F5k−3 ≡ 5k − 11 ≡ 5k − (F4 + F6) (mod 5k + 2).

Using induction we can show the following two properties.

Property 4.24. Let 5k + 2 be a prime with k odd. Then, we have

F5k−(2l+1) ≡ F2(l+2) (mod 5k + 2)

with l a positive integer such that l ≤ ⌊ 5k−1
2 ⌋.

Property 4.25. Let 5k + 2 be a prime with k odd. Then, we have

F5k−2l ≡ 5k −
l−1
∑

i=0

F2(i+2) (mod 5k + 2)

with l ≥ 1 such that l ≤ ⌊ 5k
2 ⌋.

Remark 4.26. We can notice that

F5k+4 = F5k+3 + F5k+2 ≡ F5k+2 ≡ 5k + 1 (mod 5k + 2),

F5k+5 = F5k+4 + F5k+3 ≡ F5k+4 ≡ 5k + 1 (mod 5k + 2),

and
F5k+6 = F5k+5 + F5k+4 ≡ 10k + 2 ≡ 5k (mod 5k + 2).

And for l ≥ 1 we have

F5k+3l+2 = F3l+2F5k+1 + F3l+1F5k ≡ F3l+2 + 5kF3l+1 (mod 5k + 2)

≡ F3l + (5k + 1)F3l+1 ≡ F3l − F3l+1 + (5k + 2)F3l+1 (mod 5k + 2)

≡ F3l − F3l+1 ≡ −F3l−1 (mod 5k + 2).

Furthermore, we have for l ≥ 1

F5k+3l+1 = F3l+1F5k+1 + F3lF5k ≡ F3l+1 + 5kF3l (mod 5k + 2)

≡ F3l−1 + (5k + 1)F3l ≡ F3l−1 − F3l + (5k + 2)F3l (mod 5k + 2)

≡ F3l−1 − F3l ≡ −F3l−2 (mod 5k + 2).

Besides, we have for l ≥ 1

F5k+3l = F3lF5k+1 + F3l−1F5k ≡ F3l + 5kF3l−1 (mod 5k + 2)

≡ F3l−2 + (5k + 1)F3l−1 ≡ F3l−2 − F3l−1 + (5k + 2)F3l−1 (mod 5k + 2)

≡ F3l−2 − F3l−1 ≡ −F3l−3 (mod 5k + 2).



32 Alexandre Laugier and Manjil P. Saikia

We can state the following property, the proof of which follows from the above
remark and by using induction.

Property 4.27. F5k+n ≡ −Fn−3 (mod 5k + 2).

Theorem 4.28. Let 5k + 2 be a prime with k an odd positive number and let n a
positive integer. Then, we have

Fn(5k+3) ≡ 0 (mod 5k + 2).

Proof. The proof of the theorem will be done by induction. We have F0 ≡ 0
(mod 5k + 2). Moreover, we know that

F5k+3 ≡ 0 (mod 5k + 2).

Let us assume that

(4.2) Fn(5k+3) ≡ 0 (mod 5k + 2).

We have

F(n+1)(5k+3) = Fn(5k+3)+5k+3 = F5k+3Fn(5k+3)+1 + F5k+2Fn(5k+3).

Since F5k+3 ≡ 0 (mod 5k + 2), using (4.2), we deduce that

F(n+1)(5k+3) ≡ 0 (mod 5k + 2).

The following follows very easily from the above theorem.

Corollary 4.29. If 5k + 3|m, then Fm ≡ 0 (mod 5k + 2).

Property 4.30. Let 5k + 2 be a prime with k an odd positive integer. Then, for
all m ∈ [[0, 5k]]

(4.3) F5k−m ≡ (−1)m+1Fm+3 (mod 5k + 2).

Proof. Let us prove Property 4.30 by induction on the integer m.
From Properties 3.1 and 3.3, we have

F5k+2 ≡ −1 (mod 5k + 2),

and
F5k+1 ≡ 1 (mod 5k + 2).

Using the recurrence relation of the Fibonacci sequence, it comes that

F5k ≡ −2 (mod 5k + 2),
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and

F5k−1 ≡ 3 (mod 5k + 2).

So, we verify (4.3) is true when m = 0 and m = 1.

Notice that (4.3) is verified when m = 5k since F0 = 0 ≡ 0 (mod 5k + 2) and
F5k+3 ≡ 0 (mod 5k + 2).

Let assume for an integer m ∈ [[0, 5k − 1]], we have F5k−i ≡ (−1)i+1Fi+3

(mod 5k + 2) with i = 0, 1, . . . ,m. Then, using the recurrence relation of the
Fibonacci sequence, we have (0 ≤ m ≤ 5k − 1)

F5k−m−1 = F5k−m+1 − F5k−m ≡ (−1)mFm+2 − (−1)m+1Fm+3 (mod 5k + 2)

≡ (−1)m(Fm+2 + Fm+3) ≡ (−1)m+2Fm+4 (mod 5k + 2)

≡ (−1)m+2Fm+4 (mod 5k + 2)

since (−1)2 = 1. It achieves the proof of Property 4.30 by induction on the integer
m.

Notice that Property 4.30 is also true for m = −2,−1.

Remark 4.31. In general, the number 2(5k + 3) is not the minimal period of
the Fibonacci sequence modulo 5k + 2 with 5k + 2 prime such that k an odd
positive integer. Indeed, if k ≡ 0 (mod 3), then in some cases as for instance

k=9,21,69,111,135,195,219, it can be verified that the numbers 2(5k+3)
3 and 4(5k+3)

3
are periods of the Fibonacci sequence modulo 5k + 2 with 5k + 2 prime.

Theorem 4.32. Let 5k + 2 be a prime number with k an odd positive number. If
k ≡ 3 (mod 4), then F 5k+3

2
≡ 0 (mod 5k + 2).

Proof. Since 5k + 2 with k an odd positive number, is prime, the numbers 5k ± 3
are non-zero even positive integers. So, the numbers 5k±3

2 are non-zero positive
integers. Moreover, if k ≡ 3 (mod 4), then 5k − 3 ≡ 12 ≡ 0 (mod 4). So, the
integer 5k−3

2 is even.

Using Property 4.30 and taking m = 5k−3
2 , we have

F 5k+3
2

≡ −F 5k+3
2

(mod 5k + 2),

or,

2F 5k+3
2

≡ 0 (mod 5k + 2).

Finally,

F 5k+3
2

≡ 0 (mod 5k + 2),

since 2 and 5k + 2 with 5k + 2 prime are relatively prime.
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Theorem 4.33. Let 5k + 2 be a prime number with k an odd positive integer. If

k ≡ 0 (mod 3) and if the number 2(5k+3)
3 is a period of the Fibonacci sequence

modulo 5k + 2, then the congruence

F5k+3 ≡ 0 (mod 5k + 2)

is equivalent to the congruence

F 5k+3
3

≡ 0 (mod 5k + 2)

which is equivalent to the congruence

F 2(5k+3)
3

≡ 0 (mod 5k + 2).

Moreover, if k ≡ 0 (mod 3) and if

F 5k+3
3

≡ 0 (mod 5k + 2),

the number 2(5k+3)
3 is a period of the Fibonacci sequence modulo 5k+ 2 if and only

if
F 5k

3
≡ −1 (mod 5k + 2).

Proof. If k ≡ 0 (mod 3) and k an odd positive integer, then there exists a non-zero
positive integer m such that k = 3m. Notice that m is odd since k is odd. Since
F5k+3 ≡ 0 (mod 5k+2) with 5k+2 prime (k positive odd), we have also F15m+3 ≡ 0
(mod 15m+2) with 15m+2 prime (m positive odd). Using Theorem 1.27, we have

F15m+3 = F10m+2+5m+1 = F5m+1F10m+3 + F5mF10m+2.

Or, from Remark 4.6, we have

F10m+2 = F2(5m+1) = F5m+1(F5m + F5m+2) = F 2
5m+2 − F 2

5m,

and
F10m+3 = F2(5m+1)+1 = F 2

5m+1 + F 2
5m+2.

We have also
F10m+1 = F5m+5m+1 = F 2

5m+1 + F 2
5m.

So

F15m+3 = F5m+1(F
2
5m+1 + F 2

5m+2) + F5mF5m+1(F5m + F5m+2)

= F5m+1(F
2
5m+1 + F 2

5m+2 + F 2
5m + F5mF5m+2)

= F5m+1(3F
2
5m + 3F5mF5m+1 + 2F 2

5m+1)

= F5m+1(3F5mF5m+2 + 2F 2
5m+1).
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So, the congruence F15m+3 ≡ 0 (mod 15m+ 2) with m an odd positive integer
such that 15m+ 2 prime is satisfied if and only if either

F5m+1 ≡ 0 (mod 15m+ 2),

or
3F5mF5m+2 ≡ −2F 2

5m+1 (mod 15m+ 2).

If F5m+1 ≡ 0 (mod 15m+ 2), then from above, we have necessarily

F10m+2 ≡ 0 (mod 15m+ 2).

Using the recurrence relation of the Fibonacci sequence, it implies also that F5m ≡
F5m+2 (mod 15m+ 2). Moreover, we have

F10m+3 ≡ F 2
5m+2 ≡ F 2

5m (mod 15m+ 2).

Or, we have

F15m+2 = F10m+2+5m = F5mF10m+3 + F5m−1F10m+2.

Since F5k+2 ≡ 5k + 1 ≡ −1 (mod 5k + 2) with 5k + 2 prime (k positive odd) and
so if k = 3m such that m positive odd,

F15m+2 ≡ −1 (mod 15m+ 2)

with 15m+ 2 prime (m positive odd), since

F10m+3 ≡ F 2
5m (mod 15m+ 2)

and
F10m+2 ≡ 0 (mod 15m+ 2),

it implies that
F5mF10m+3 ≡ F 3

5m ≡ −1 (mod 15m+ 2).

We get

(4.4) F 3
5m + 1 ≡ 0 (mod 15m+ 2),

and
(F5m + 1)(F 2

5m − F5m + 1) ≡ 0 (mod 15m+ 2).

So, either
F5m + 1 ≡ 0 (mod 15m+ 2)

or
F 2
5m − F5m + 1 ≡ 0 (mod 15m+ 2).

If
F5m+1 ≡ 0 (mod 15m+ 2)
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and if
F5m + 1 ≡ 0 (mod 15m+ 2)

and so
F5m ≡ −1 (mod 15m+ 2),

then
F10m+3 ≡ 1 (mod 15m+ 2),

It results that the number 10m + 2 is a period of the Fibonacci sequence modulo
15m+ 2 with 15m+ 2 prime and m an odd positive integer.

If
F5m+1 ≡ 0 (mod 15m+ 2)

and if
F 2
5m − F5m + 1 ≡ 0 (mod 15m+ 2)

and so
F 2
5m ≡ F5m − 1 (mod 15m+ 2),

then since
F10m+3 ≡ F 2

5m (mod 15m+ 2),

F10m+3 ≡ F5m − 1 (mod 15m+ 2).

Notice that in this case, we cannot have

F5m ≡ −1 (mod 15m+ 2)

since 3 6≡ 0 (mod 15m+2) with m an odd positive integer such that 15m+2 prime
(and so 15m+ 2 > 3). Then, let assume absurdly that if

F 2
5m − F5m + 1 ≡ 0 (mod 15m+ 2),

then the number 10m + 2 is a period of the Fibonacci sequence modulo 15m + 2
with 15m+ 2 prime and m an odd positive integer. In such a case,

F10m+3 ≡ 1 (mod 15m+ 2)

which implies that
F5m ≡ 2 (mod 15m+ 2).

Since
F 2
5m ≡ F5m − 1 (mod 15m+ 2),

it gives
4 ≡ 1 (mod 15m+ 2).

But, since 15m + 2 is a prime number such that m is an odd positive integer, we
have 15m + 2 > 4 and so 4 6≡ 1 (mod 15m + 2). So, we reach to a contradiction
meaning that if

F 2
5m − F5m + 1 ≡ 0 (mod 15m+ 2)
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and so if
F5m 6≡ −1 (mod 15m+ 2),

the number 10m+2 is not a period of the Fibonacci sequence modulo 15m+2 with
15m+ 2 prime and m an odd positive integer.

Moreover, if
F5m+1 ≡ 0 (mod 15m+ 2)

and reciprocally if the number 10m+2 is a period of the Fibonacci sequence modulo
15m+ 2 with 15m+ 2 prime and m an odd positive integer, then

F10m+3 ≡ 1 (mod 15m+ 2)

which implies that
F 2
5m ≡ 1 (mod 15m+ 2).

So, either
F5m ≡ 1 (mod 15m+ 2)

or
F5m ≡ −1 (mod 15m+ 2).

Since we have (4.4), it remains only one possibility, that is to say

F5m ≡ −1 (mod 15m+ 2).

2(5k+3)
3 = 10m+2 is a period of the Fibonacci sequence, we must have F10m+3 ≡

F 2
5m ≡ 1 (mod 15m+ 2) in addition to the condition

F5m+1 ≡ 0 (mod 15m+ 2).

If
3F5mF5m+2 ≡ −2F 2

5m+1 (mod 15m+ 2),

then from Property 1.3, we can find an integer c such that
{

F5mF5m+2 ≡ −2c (mod 15m+ 2),
F 2
5m+1 ≡ 3c (mod 15m+ 2).

So
c ≡ F 2

5m+1 + F5mF5m+2 (mod 15m+ 2),

or equivalently (F5m+2 = F5m+1 + F5m and F10m+1 = F 2
5m+1 + F 2

5m)

c ≡ F 2
5m+1 + F5m+1F5m + F 2

5m (mod 15m+ 2)

≡ F10m+1 + F5m+1F5m (mod 15m+ 2).

So, if the number 10m+2 with m an odd positive integer is a period of the Fibonacci
sequence modulo 15m+ 2 with 15m+ 2 prime, we should have

F10m+2 ≡ 0 (mod 15m+ 2)
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and
F10m+1 ≡ F10m+3 ≡ 1 (mod 15m+ 2).

Since
F10m+2 = F 2

5m+2 − F 2
5m

and
c ≡ F10m+1 + F5m+1F5m (mod 15m+ 2),

it implies that
F 2
5m ≡ F 2

5m+2 (mod 15m+ 2)

and
c ≡ 1 + F5mF5m+1 (mod 15m+ 2).

So, either
F5m ≡ F5m+2 (mod 15m+ 2)

or
F5m ≡ −F5m+2 (mod 15m+ 2).

If
F5m ≡ F5m+2 (mod 15m+ 2),

then
F5m+1 ≡ 0 (mod 15m+ 2)

and
c ≡ 1 ≡ 0 (mod 15m+ 2)

where we used the fact that

3c ≡ F 2
5m+1 (mod 15m+ 2)

and (3, 15m+2) = 1 with 15m+2 prime. But, 1 6≡ 0 (mod 15m+2). So, we reach
a contradiction meaning that this case is not possible. Otherwise, if

F5m ≡ −F5m+2 (mod 15m+ 2),

then using the recurrence relation of the Fibonacci sequence, we must have

F5m+1 ≡ −2F5m (mod 15m+ 2)

and so
c ≡ 1− 2F 2

5m ≡ 3F 2
5m (mod 15m+ 2)

where we used the fact that

c ≡ F 2
5m+1 + F5mF5m+2 (mod 15m+ 2).

It implies that
5F 2

5m ≡ 1 (mod 15m+ 2)
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and using Theorem 1.5, it gives

F 2
5m ≡ 515m ≡ 6m+ 1 (mod 15m+ 2)

since 515m+1 ≡ 1 ≡ 30m + 5 (mod 15m + 2) which implies that 515m ≡ 6m + 1
(mod 15m+ 2) (reccall that 15m+ 2 is prime and so (5, 15m+ 2) = 1). Since

F5m+1 ≡ −2F5m (mod 15m+ 2),

F 2
5m+1 ≡ 3c (mod 15m+ 2)

and
c ≡ 3F 2

5m (mod 15m+ 2),

it results that
F 2
5m+1 ≡ 4F 2

5m ≡ 3c ≡ 9F 2
5m (mod 15m+ 2)

and so 4(6m + 1) ≡ 9(6m + 1) (mod 15m + 2). Since 4(6m + 1) = 24m + 4 ≡
9m + 2 (mod 15m + 2), it implies that 45m + 7 ≡ 0 (mod 15m + 2) and so 1 ≡ 0
(mod 15m + 2) which is not possible since 1 6≡ 0 (mod 15m + 2). So, we obtain
again a contradiction meaning that this latter case is not also possible.

Therefore, when 5k+2 = 15m+2 is prime with k = 3m and m an odd positive
integer, if 10m + 2 is a period of the Fibonacci sequence modulo 15m + 2 with
15m+ 2 prime, then

F15m+3 ≡ 0 (mod 15m+ 2)

if and only if
F5m+1 ≡ 0 (mod 15m+ 2).

Since
F15m+3 = F5k+3 ≡ 0 (mod 5k + 2)

is true when 5k + 2 is prime, we deduce that

F 5k+3
3

≡ 0 (mod 5k + 2)

is also true when k ≡ 0 (mod 3) and 5k + 2 prime.
Thus, if 10m + 2 is a period of the Fibonacci sequence modulo 15m + 2 with

15m+ 2 prime, then we have

F15m+3 ≡ 0 (mod 15m+ 2)

if and only if
F5m+1 ≡ 0 (mod 15m+ 2)

if and only if
F5m ≡ F5m+2 (mod 15m+ 2).

Besides,
F5m+1 ≡ 0 (mod 15m+ 2)
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implies that
F10m+2 ≡ 0 (mod 15m+ 2).

Reciprocally, if
F10m+2 ≡ 0 (mod 15m+ 2),

then
F 2
5m ≡ F 2

5m+2 (mod 15m+ 2).

So, either
F5m ≡ F5m+2 (mod 15m+ 2)

or
F5m ≡ −F5m+2 (mod 15m+ 2).

If
F5m ≡ −F5m+2 (mod 15m+ 2),

then
F5m+1 ≡ −2F5m (mod 15m+ 2)

and since
F5m+1 ≡ 0 (mod 15m+ 2),

using the fact that (2, 15m+2) = 1 with 15m+2 prime such that m an odd positive
integer (15m+ 2 > 2),

F5m ≡ 0 (mod 15m+ 2).

But, then, if
F10m+2 ≡ 0 (mod 15m+ 2),

we have
F15m+2 ≡ F10m+3F5m ≡ 0 (mod 15m+ 2).

Or,
F15m+2 ≡ −1 (mod 15m+ 2).

It leads to a contradiction meaning that

F5m ≡ −F5m+2 (mod 15m+ 2)

is not possible. So, if
F10m+2 ≡ 0 (mod 15m+ 2),

there is only one possibility, that is to say

F5m ≡ F5m+2 (mod 15m+ 2)

which implies the congruence

F5m+1 ≡ 0 (mod 15m+ 2)
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and so which translates the congruence

F15m+2 ≡ −1 (mod 15m+ 2)

into the congruence
F 3
5m ≡ −1 (mod 15m+ 2)

which has at least one solution. So, if 10m+2 is a period of the Fibonacci sequence
modulo 15m+ 2 with 15m+ 2 prime, then we have

F15m+3 ≡ 0 (mod 15m+ 2)

if and only if
F5m+1 ≡ 0 (mod 15m+ 2)

if and only if
F5m ≡ F5m+2 (mod 15m+ 2).

if and only if
F10m+2 ≡ 0 (mod 15m+ 2).

Since 10m+2 = 2(5m+1) = 2(5k+3)
3 with k = 3m andm an odd positive integer,

from above, we conclude that the number 2(5k+3)
3 is a period of the Fibonacci

sequence modulo 5k + 2 if and only if

F 5k
3
≡ −1 (mod 5k + 2).

Property 4.34. Let 5k + 3 be a prime with k an even positive integer. Then, for
all m ∈ [[0, 5k]]

(4.5) F5k−m ≡ (−1)mFm+4 (mod 5k + 3).

Proof. Let us prove Property 4.34 by induction on the integer m.
From Properties 3.1 and 3.3, we have

F5k+3 ≡ −1 (mod 5k + 3),

and
F5k+2 ≡ 1 (mod 5k + 3).

Using the recurrence relation of the Fibonacci sequence, it comes that

F5k+1 ≡ −2 (mod 5k + 3),

F5k ≡ 3 (mod 5k + 3),

and
F5k−1 ≡ −5 (mod 5k + 3).
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So, we verify (4.5) is true when m = 0 and m = 1.
Notice that (4.5) is verified when m = 5k since F0 = 0 ≡ 0 (mod 5k + 3) and

F5k+4 ≡ 0 (mod 5k + 3).
Let us assume for an integer m ∈ [[0, 5k − 1]], we have F5k−i ≡ (−1)iFi+4

(mod 5k + 3) with i = 0, 1, . . . ,m. Then, using the recurrence relation of the
Fibonacci sequence, we have (0 ≤ m ≤ 5k − 1)

F5k−m−1 = F5k−m+1 − F5k−m ≡ (−1)m−1Fm+3 − (−1)mFm+4 (mod 5k + 3)

≡ (−1)m−1(Fm+3 + Fm+4) ≡ (−1)2(−1)m−1Fm+5 (mod 5k + 3)

≡ (−1)m+1Fm+5 (mod 5k + 3)

since (−1)2 = 1. It achieves the proof of Property 4.34 by induction on the integer
m.

Notice that Property 4.34 is also true for m = −3,−2,−1.

Remark 4.35. It can be noticed that for k = 0, 5k + 3 = 3 is prime and it can be
verified that 2(5k+4) = 8 for k = 0 is the minimal period of the Fibonacci sequence
modulo 3. Nevertheless, in general, the number 2(5k+4) is not the minimal period
of the Fibonacci sequence modulo 5k + 3 with 5k + 3 prime such that k an even
positive integer. Indeed, if k ≡ 1 (mod 3) and k an even positive integer, then
in some cases as for instance k=22,52,70,112,148,244, it can be verified that the

numbers 2(5k+4)
3 and 4(5k+4)

3 are periods of the Fibonacci sequence modulo 5k + 3
with 5k + 3 prime.

Theorem 4.36. Let 5k + 3 be a prime number with k a non-zero even positive
number. If k ≡ 2 (mod 4), then

F 5k+4
2

≡ 0 (mod 5k + 3).

Proof. Since 5k+3 with k a non-zero even positive number, is prime, the numbers
5k ± 4 are non-zero even positive integers. So, the numbers 5k±4

2 are non-zero
positive integers. Moreover, if k ≡ 2 (mod 4), then 5k − 4 ≡ 2 (mod 4). So, the
integer 5k−4

2 is odd.

Using Property 4.34 and taking m = 5k−4
2 , it gives

F 5k+4
2

≡ −F 5k+4
2

(mod 5k + 3),

or,
2F 5k+4

2
≡ 0 (mod 5k + 3),

and finally,
F 5k+4

2
≡ 0 (mod 5k + 3),

since 2 and 5k + 3 with 5k + 3 prime are relatively prime.
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Theorem 4.37. Let 5k + 3 be a prime number with k an even positive integer. If

k ≡ 1 (mod 3) and if 2(5k+4)
3 is a period of the Fibonacci sequence modulo 5k + 3,

the congruence

F5k+4 ≡ 0 (mod 5k + 3)

is equivalent to the congruence

F 5k+4
3

≡ 0 (mod 5k + 3)

which is equivalent to the congruence

F 2(5k+4)
3

≡ 0 (mod 5k + 3)

Moreover, if k ≡ 1 (mod 3) and if

F 5k+4
3

≡ 0 (mod 5k + 3),

then the number 2(5k+4)
3 is a period of the Fibonacci sequence modulo 5k+ 3 if and

only if

F 5k+1
3

≡ −1 (mod 5k + 3).

Proof. If k ≡ 1 (mod 3) and k an even positive integer, then there exists a non-zero
positive integer m such that k = 3m+1. Notice that m is odd since k is even. Since

F5k+4 ≡ 0 (mod 5k + 3)

with 5k + 3 prime (k positive even), we have also

F15m+9 ≡ 0 (mod 15m+ 8)

with 15m+ 8 prime (m positive odd). Using Theorem 1.27, we have

F15m+9 = F3(5m+3) = F2(5m+3)+5m+3 = F5m+3F2(5m+3)+1 + F5m+2F2(5m+3)

= F5m+3F10m+7 + F5m+2F10m+6.

Or, from Remark 4.6, we have

F10m+6 = F2(5m+3) = F5m+3(F5m+4 + F5m+2) = F 2
5m+4 − F 2

5m+2,

and

F10m+7 = F2(5m+3)+1 = F 2
5m+3 + F 2

5m+4.

We have also

F10m+5 = F5m+2+5m+3 = F 2
5m+3 + F 2

5m+2.
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So

F15m+9 = F5m+3(F
2
5m+3 + F 2

5m+4) + F5m+2F5m+3(F5m+4 + F5m+2)

= F5m+3(F
2
5m+3 + F 2

5m+4 + F 2
5m+2 + F5m+2F5m+4)

= F5m+3(3F
2
5m+2 + 3F5m+2F5m+3 + 2F 2

5m+3)

= F5m+3(3F5m+2F5m+4 + 2F 2
5m+3).

So, the congruence

F15m+9 ≡ 0 (mod 15m+ 8)

with m an odd positive integer such that 15m + 8 prime is satisfied if and only if
either

F5m+3 ≡ 0 (mod 15m+ 8),

or
3F5m+2F5m+4 ≡ −2F 2

5m+3 (mod 15m+ 8).

If
F5m+3 ≡ 0 (mod 15m+ 8),

then from above, we have necessarily

F10m+6 ≡ 0 (mod 15m+ 8).

Using the recurrence relation of the Fibonacci sequence, it implies also that

F5m+2 ≡ F5m+4 (mod 15m+ 8).

Moreover, we have

F10m+7 ≡ F 2
5m+4 ≡ F 2

5m+2 (mod 15m+ 8).

Or we have,

F15m+8 = F10m+6+5m+2 = F5m+2F10m+7 + F5m+1F10m+6.

Since
F5k+3 ≡ 5k + 2 ≡ −1 (mod 5k + 3)

with 5k+3 prime (k positive even) and so if k = 3m+1 such that m positive odd,

F15m+8 ≡ −1 (mod 15m+ 8)

with 15m+ 8 prime (m positive odd), since

F10m+7 ≡ F 2
5m+2 (mod 15m+ 8)
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and

F10m+6 ≡ 0 (mod 15m+ 8),

it implies that

F5m+2F10m+7 ≡ F 3
5m+2 ≡ −1 (mod 15m+ 8).

It comes that

F 3
5m+2 + 1 ≡ 0 (mod 15m+ 8),

or,

(F5m+2 + 1)(F 2
5m+2 − F5m+2 + 1) ≡ 0 (mod 15m+ 8).

So, either

F5m+2 + 1 ≡ 0 (mod 15m+ 8),

or

F 2
5m+2 − F5m+2 + 1 ≡ 0 (mod 15m+ 8).

If

F5m+3 ≡ 0 (mod 15m+ 8)

and if

F5m+2 + 1 ≡ 0 (mod 15m+ 8)

and so

F5m+2 ≡ −1 (mod 15m+ 8),

then

F10m+7 ≡ 1 (mod 15m+ 8).

It results that the number 10m + 6 is a period of the Fibonacci sequence modulo
15m+ 8 with 15m+ 8 prime and m an odd positive integer.

If

F5m+3 ≡ 0 (mod 15m+ 8)

and if

F 2
5m+2 − F5m+2 + 1 ≡ 0 (mod 15m+ 8)

and so

F 2
5m+2 ≡ F5m+2 − 1 (mod 15m+ 8),

then since

F10m+7 ≡ F 2
5m+2 (mod 15m+ 8),

F10m+7 ≡ F5m+2 − 1 (mod 15m+ 8).

Notice that in this case, we cannot have

F5m+2 ≡ −1 (mod 15m+ 8)
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since 3 6≡ 0 (mod 15m+8) with m an odd positive integer such that 15m+8 prime
(and so 15m+ 8 > 3). Then, let us assume absurdly that if

F 2
5m+2 − F5m+2 + 1 ≡ 0 (mod 15m+ 8),

then the number 10m + 6 is a period of the Fibonacci sequence modulo 15m + 8
with 15m+ 8 prime and m an odd positive integer. In such a case,

F10m+7 ≡ 1 (mod 15m+ 8)

which implies that
F5m+2 ≡ 2 (mod 15m+ 8).

Since
F 2
5m+2 ≡ F5m+2 − 1 (mod 15m+ 8),

it gives 4 ≡ 1 (mod 15m+ 8). But, since 15m+ 8 is a prime number such that m
is an odd positive integer, we have 15m+ 8 > 4 and so 4 6≡ 1 (mod 15m+ 8). So,
we reach to a contradiction meaning that if

F 2
5m+2 − F5m+2 + 1 ≡ 0 (mod 15m+ 8)

and so if
F5m+2 6≡ −1 (mod 15m+ 8),

the number 10m+6 is not a period of the Fibonacci sequence modulo 15m+8 with
15m+ 8 prime and m an odd positive integer.

Moreover, if
F5m+3 ≡ 0 (mod 15m+ 8)

and reciprocally if the number 10m+6 is a period of the Fibonacci sequence modulo
15m+ 8 with 15m+ 8 prime and m an odd positive integer, then

F10m+7 ≡ 1 (mod 15m+ 8)

which implies that
F 2
5m+2 ≡ 1 (mod 15m+ 8).

So, either
F5m+2 ≡ 1 (mod 15m+ 8)

or
F5m+2 ≡ −1 (mod 15m+ 8).

Since we have also
F 3
5m+2 ≡ −1 (mod 15m+ 8)

(see above), it remains only one possibility, that is to say

F5m+2 ≡ −1 (mod 15m+ 8).
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2(5k+4)
3 = 10m+ 6 is a period of the Fibonacci sequence, we must have

F10m+7 ≡ F 2
5m+2 ≡ 1 (mod 15m+ 8)

in addition to the condition

F5m+3 ≡ 0 (mod 15m+ 8).

If 3F5m+2F5m+4 ≡ −2F 2
5m+3 (mod 15m + 8), then from Property 1.3, we can

find an integer c such that

{

F5m+2F5m+4 ≡ −2c (mod 15m+ 8),
F 2
5m+3 ≡ 3c (mod 15m+ 8)

So

(4.6) c ≡ F 2
5m+3 + F5m+2F5m+4 (mod 15m+ 8),

or equivalently (F5m+4 = F5m+3 + F5m+2 and F10m+5 = F 2
5m+3 + F 2

5m+2)

c ≡ F 2
5m+3 + F5m+3F5m+2 + F 2

5m+2 (mod 15m+ 8)

≡ F10m+5 + F5m+3F5m+2 (mod 15m+ 8).(4.7)

So, if the number 10m+6 with m an odd positive integer is a period of the Fibonacci
sequence modulo 15m+ 8 with 15m+ 8 prime, we should have

F10m+6 ≡ 0 (mod 15m+ 8)

and
F10m+5 ≡ F10m+7 ≡ 1 (mod 15m+ 8).

Since
F10m+6 = F 2

5m+4 − F 2
5m+2

and from the relations F10m+6 ≡ 0 (mod 15m+ 8) and F10m+6 = F 2
5m+4 − F 2

5m+2,
we have

F 2
5m+2 ≡ F 2

5m+4 (mod 15m+ 8)

and
c ≡ 1 + F5m+2F5m+3 (mod 15m+ 8).

So, either
F5m+2 ≡ F5m+4 (mod 15m+ 8)

or
F5m+2 ≡ −F5m+4 (mod 15m+ 8).

If
F5m+2 ≡ F5m+4 (mod 15m+ 8),
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then
F5m+3 ≡ 0 (mod 15m+ 8)

and
c ≡ 1 ≡ 0 (mod 15m+ 8)

where we used the fact that

3c ≡ F 2
5m+3 (mod 15m+ 8)

and (3, 15m+8) = 1 with 15m+8 prime. But, 1 6≡ 0 (mod 15m+8). So, we reach
a contradiction meaning that this case is not possible. Otherwise, if

F5m+2 ≡ −F5m+4 (mod 15m+ 8),

then using the recurrence relation of the Fibonacci sequence, we must have

F5m+3 ≡ −2F5m+2 (mod 15m+ 8)

and so
c ≡ 1− 2F 2

5m+2 ≡ 3F 2
5m+2 (mod 15m+ 8)

where we used (4.6). It implies that

5F 2
5m+2 ≡ 1 (mod 15m+ 8)

and using Theorem 1.5, it gives

F 2
5m+2 ≡ 515m+6 ≡ 9m+ 5 (mod 15m+ 8)

since
515m+7 ≡ 1 ≡ 45m+ 25 (mod 15m+ 8)

which implies that 515m+6 ≡ 9m+ 5 (mod 15m+ 8) (reccall that 15m+ 8 is prime
and so (5, 15m+ 8) = 1). Since

F5m+3 ≡ −2F5m+2 (mod 15m+ 8),

F 2
5m+3 ≡ 3c (mod 15m+ 8)

and
c ≡ 3F 2

5m+2 (mod 15m+ 8),

it results that

F 2
5m+3 ≡ 4F 2

5m+2 ≡ 3c ≡ 9F 2
5m+2 (mod 15m+ 8)

and so 4(9m + 5) ≡ 9(9m + 5) (mod 15m + 8). Since 4(9m + 5) = 36m + 20 ≡
6m+ 4 (mod 15m+ 8), it implies that 75m+ 41 ≡ 0 (mod 15m+ 8) and so 1 ≡ 0
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(mod 15m + 8) which is not possible since 1 6≡ 0 (mod 15m + 2). So, we obtain
again a contradiction meaning that this latter case is not also possible.

Therefore, when 5k + 3 = 15m + 8 is prime with k = 3m + 1 and m an odd
positive integer, if 10m + 6 is a period of the Fibonacci sequence modulo 15m + 8
with 15m+ 8 prime,

F15m+9 ≡ 0 (mod 15m+ 8)

if and only if
F5m+3 ≡ 0 (mod 15m+ 8).

Since
F15m+9 = F5k+4 ≡ 0 (mod 5k + 3)

is true when 5k + 3 is prime, we deduce that

F 5k+4
3

≡ 0 (mod 5k + 3)

is also true when k ≡ 1 (mod 3) and 5k + 3 prime.
Thus, if 10m + 6 is a period of the Fibonacci sequence modulo 15m + 8 with

15m+ 8 prime, then we have

F15m+9 ≡ 0 (mod 15m+ 8)

if and only if
F5m+3 ≡ 0 (mod 15m+ 8)

if and only if
F5m+2 ≡ F5m+4 (mod 15m+ 8).

Besides,
F5m+3 ≡ 0 (mod 15m+ 8)

implies that
F10m+6 ≡ 0 (mod 15m+ 8).

Reciprocally, if
F10m+6 ≡ 0 (mod 15m+ 8),

then
F 2
5m+2 ≡ F 2

5m+4 (mod 15m+ 8).

So, either
F5m+2 ≡ F5m+4 (mod 15m+ 8)

or
F5m+2 ≡ −F5m+4 (mod 15m+ 8).

If
F5m+2 ≡ −F5m+4 (mod 15m+ 8),
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then
F5m+3 ≡ −2F5m+2 (mod 15m+ 8)

and since
F5m+3 ≡ 0 (mod 15m+ 8),

using the fact that (2, 15m+8) = 1 with 15m+8 prime such that m an odd positive
integer (15m+ 8 > 2),

F5m+2 ≡ 0 (mod 15m+ 8).

But, then, if
F10m+6 ≡ 0 (mod 15m+ 8),

we have
F15m+8 ≡ F10m+7F5m+2 ≡ 0 (mod 15m+ 8).

Or,
F15m+8 ≡ −1 (mod 15m+ 8).

It leads to a contradiction meaning that

F5m+2 ≡ −F5m+4 (mod 15m+ 8)

is not possible. So, if
F10m+6 ≡ 0 (mod 15m+ 8),

there is only one possibility, that is to say

F5m+2 ≡ F5m+4 (mod 15m+ 8)

which implies the congruence

F5m+3 ≡ 0 (mod 15m+ 8)

and so which translates the congruence

F15m+8 ≡ −1 (mod 15m+ 8)

into the congruence
F 3
5m+2 ≡ −1 (mod 15m+ 8)

which has at least one solution. So, if 10m+6 is a period of the Fibonacci sequence
modulo 15m+ 8 with 15m+ 8 prime, then we have

F15m+9 ≡ 0 (mod 15m+ 8)

if and only if
F5m+3 ≡ 0 (mod 15m+ 8)
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if and only if
F5m+2 ≡ F5m+4 (mod 15m+ 8)

if and only if
F10m+6 ≡ 0 (mod 15m+ 8).

Since 10m + 6 = 2(5m + 3) = 2(5k+4)
3 with k = 3m + 1 and m an odd posi-

tive integer, from above, we conclude that the number 2(5k+4)
3 is a period of the

Fibonacci sequence modulo 5k + 3 if and only if F 5k+1
3

≡ −1 (mod 5k + 3).

Property 4.38. Let 5k + 4 be a prime with k an odd positive integer. Then, for
all m ∈ [[0, 5k]]

(4.8) F5k−m ≡ (−1)mFm+3 (mod 5k + 4).

Proof. From Properties 3.3 and 3.4, we have

F5k+3 ≡ 0 (mod 5k + 4),

and
F5k+2 ≡ 1 (mod 5k + 4).

Then, using the recurrence relation of the Fibonacci sequence, it comes that

F5k+1 ≡ −1 (mod 5k + 4),

F5k ≡ 2 (mod 5k + 4),

and
F5k−1 ≡ −3 (mod 5k + 4).

So, we verify (4.8) is true when m = 0 and m = 1.
Notice that (4.8) is verified when m = 5k since F0 = 0 ≡ 0 (mod 5k + 4) and

F5k+3 ≡ 0 (mod 5k + 4).
Let assume for an integer m ∈ [[0, 5k − 1]], we have F5k−i ≡ (−1)iFi+3

(mod 5k + 4) with i = 0, 1, . . . ,m. Then, using the recurrence relation of the
Fibonacci sequence, we have (0 ≤ m ≤ 5k − 1),

F5k−m−1 = F5k−m+1 − F5k−m ≡ (−1)m−1Fm+2 − (−1)mFm+3 (mod 5k + 4)

≡ (−1)m−1(Fm+2 + Fm+3) ≡ (−1)m−1Fm+4 (mod 5k + 4)

≡ (−1)2(−1)m−1Fm+4 ≡ (−1)m+1Fm+4 (mod 5k + 4)

since (−1)2 = 1. It achieves the proof of Property 4.38 by induction on the integer
m.

Notice that Property 4.38 is also true for m = −2,−1.
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Remark 4.39. Property 4.38 implies that we can limit ourself to the integer interval
[1, 5k+3

2 ] (knowing that the case m = 0 is a trivial case) in order to search or to rule
out a value for a possible period of the Fibonacci sequence modulo 5k+4 with 5k+4
prime (such that k is an odd positive integer) which is less than 5k+3. Notice that
5k+3 is not in general the minimal period of the Fibonacci sequence modulo 5k+4
with 5k + 4 prime (such that k is an odd positive integer). Indeed, for instance, if
5k + 4 = 29 (and so for k = 5), then it can be shown by calculating the residue of
Fm with m ∈ [1, 14] modulo 5k + 4 = 29, that the minimal period is 5k+3

2 = 14.

Theorem 4.40. Let 5k + 4 be a prime number with k an odd positive number. If
k ≡ 1 (mod 4), then

F 5k+3
2

≡ 0 (mod 5k + 4).

Proof. Since 5k + 4 with k an odd positive number, is prime, the numbers 5k ± 3
are non-zero even positive integers. So, the numbers 5k±3

2 are non-zero positive
integers. Moreover, if k ≡ 1 (mod 4), then 5k − 3 ≡ 2 (mod 4). So, the integer
5k−3

2 is odd.

Using Property 4.38 and taking m = 5k−3
2 , it gives

F 5k+3
2

≡ −F 5k+3
2

(mod 5k + 2),

or,
2F 5k+3

2
≡ 0 (mod 5k + 2),

finally,
F 5k+3

2
≡ 0 (mod 5k + 2)

since 2 and 5k + 4 with 5k + 4 prime are relatively prime.

Theorem 4.41. Let 5k + 1 be a prime with k a non-zero positive even integer. If
k ≡ 0 (mod 3) and if 10k

3 is a period of the Fibonacci sequence modulo 5k+1, then
the congruence

F5k ≡ 0 (mod 5k + 1)

is equivalent to the congruence

F 5k
3
≡ 0 (mod 5k + 1)

which is equivalent to the congruence

F 10k
3

≡ 0 (mod 5k + 1).

Moreover, if k ≡ 0 (mod 3) and if F 5k
3

≡ 0 (mod 5k + 1), then the number 10k
3 is

a period of the Fibonacci sequence modulo 5k + 1 if and only if

F 5k±3
3

≡ 1 (mod 5k + 1).
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Proof. If k ≡ 0 (mod 3) and k a non-zero positive even integer, then there exists
a non-zero positive integer m such that k = 3m. Notice that m is even since k is
even. Since F5k ≡ 0 (mod 5k+1) with 5k+1 prime (k positive even), we have also
F15m ≡ 0 (mod 15m + 1) with 15m + 1 prime (m positive even). Using Theorem
1.27, we have

F15m = F10m+5m = F5mF10m+1 + F5m−1F10m,

F10m−1 = F5m−1+5m = F 2
5m + F 2

5m−1.

From Remark 4.6, we have

F10m = F2×5m = F5m(F5m+1 + F5m−1) = F 2
5m+1 − F 2

5m−1,

F10m+1 = F2×5m+1 = F 2
5m+1 + F 2

5m.

So

F15m = F5m(F 2
5m+1 + F 2

5m) + F5m−1F5m(F5m+1 + F5m−1)

= F5m(F 2
5m+1 + F 2

5m + F5m−1F5m+1 + F 2
5m−1)

= F5m(3F 2
5m−1 + 3F5m−1F5m + 2F 2

5m)

= F5m(3F5m−1F5m+1 + 2F 2
5m).

So, the congruence F15m ≡ 0 (mod 15m + 1) with m an even positive integer
such that 15m+ 1 prime is satisfied if and only if either

F5m ≡ 0 (mod 15m+ 1)

or
3F5m−1F5m+1 ≡ −2F 2

5m (mod 15m+ 1).

If F5m ≡ 0 (mod 15m+ 1), then from above, we have necessarily

F10m ≡ 0 (mod 15m+ 1).

Using the recurrence relation of the Fibonacci sequence, it implies also that F5m+1 ≡
F5m−1 (mod 15m+ 1). Moreover, we have

F10m+1 ≡ F 2
5m+1 ≡ F 2

5m−1 (mod 15m+ 1).

Or, using Theorem 1.27, we have

F15m+1 = F5m+10m+1 = F10m+1F5m+1 + F10mF5m.

Since F5k+1 ≡ 1 (mod 5k+ 1) with 5k+ 1 prime (k non-zero positive even) and so
if k = 3m such that m non-zero positive even,

F15m+1 ≡ 1 (mod 15m+ 1)
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with 15m+ 1 prime (m non-zero positive even), since

F10m+1 ≡ F 2
5m+1 (mod 15m+ 1)

and
F10m ≡ 0 (mod 15m+ 1)

it implies that

F10m+1F5m+1 ≡ F 3
5m+1 ≡ 1 (mod 15m+ 1).

We get

(4.9) F 3
5m+1 − 1 ≡ 0 (mod 15m+ 1)

and
(F5m+1 − 1)(F 2

5m+1 + F5m+1 + 1) ≡ 0 (mod 15m+ 1).

So, either
F5m+1 − 1 ≡ 0 (mod 15m+ 1)

or
F 2
5m+1 + F5m+1 + 1 ≡ 0 (mod 15m+ 1).

If
F5m ≡ 0 (mod 15m+ 1)

and if
F5m+1 − 1 ≡ 0 (mod 15m+ 1)

and so
F5m+1 ≡ 1 (mod 15m+ 1),

then
F10m+1 ≡ 1 (mod 15m+ 1).

It results that the number 10m is a period of the Fibonacci sequence modulo 15m+1
with 15m+ 1 prime and m a non-zero positive even integer. If

F5m ≡ 0 (mod 15m+ 1)

and if
F 2
5m+1 + F5m+1 + 1 ≡ 0 (mod 15m+ 1)

and so
F 2
5m+1 ≡ −F5m+1 − 1 (mod 15m+ 1)

then since

F10m+1 ≡ F 2
5m+1 (mod 15m+ 1)

≡ −F5m+1 − 1 (mod 15m+ 1).
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Notice that in this case, we cannot have

F5m+1 ≡ 1 (mod 15m+ 1)

since 3 6≡ 0 (mod 15m+2) withm a non-zero positive even integer such that 15m+1
prime (and so 15m+ 1 > 3). Then, let us assume absurdly that if

F 2
5m+1 + F5m+1 + 1 ≡ 0 (mod 15m+ 1)

then the number 10m is a period of the Fibonacci sequence modulo 15m + 1 with
15m+ 1 prime and m a non-zero positive even integer. In such a case,

F10m+1 ≡ 1 (mod 15m+ 1)

which implies that
F5m+1 ≡ −2 (mod 15m+ 1).

Since
F 2
5m+1 ≡ −F5m+1 − 1 (mod 15m+ 1)

it gives
4 ≡ 1 (mod 15m+ 1).

But, since 15m+1 is a prime number such thatm is a non-zero positive even integer,
we have 15m + 1 > 4 and so 4 6≡ 1 (mod 15m + 1). So, we reach a contradiction
meaning that if

F 2
5m+1 + F5m+1 + 1 ≡ 0 (mod 15m+ 1)

and so if
F5m+1 6≡ 1 (mod 15m+ 1)

the number 10m is not a period of the Fibonacci sequence modulo 15m + 1 with
15m+ 1 prime and m a non-zero positive even integer. Moreover, if

F5m ≡ 0 (mod 15m+ 1)

and reciprocally if the number 10m is a period of the Fibonacci sequence modulo
15m+ 1 with 15m+ 1 prime and m a non-zero positive even integer, then

F10m+1 ≡ 1 (mod 15m+ 1)

which implies that
F 2
5m+1 ≡ 1 (mod 15m+ 1).

So, either
F5m+1 ≡ 1 (mod 15m+ 1)

or
F5m+1 ≡ −1 (mod 15m+ 1).
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Since we have (4.9), it remains only one possibility, that is to say

F5m+1 ≡ 1 (mod 15m+ 1)

10k
3 = 10m is a period of the Fibonacci sequence modulo 15m + 1, we must have

F10m+1 ≡ F 2
5m+1 ≡ 1 (mod 15m+ 1) in addition to the condition

F5m ≡ 0 (mod 15m+ 1).

If
3F5m−1F5m+1 ≡ −2F 2

5m (mod 15m+ 2)

then from Property 1.3, we can find an integer c such that

{

F5m−1F5m+1 ≡ −2c (mod 15m+ 1),
F 2
5m ≡ 3c (mod 15m+ 1),

or equivalently (F5m+1 = F5m + F5m−1 and F10m−1 = F 2
5m + F 2

5m−1)

c ≡ F 2
5m + F5m−1F5m+1 (mod 15m+ 1)

≡ F 2
5m + F5m−1F5m + F 2

5m−1

≡ F10m−1 + F5m−1F5m (mod 15m+ 1).

So, if the number 10m with m a non-zero positive even integer is a period of the
Fibonacci sequence modulo 15m+ 1 with 15m+ 1 prime, we should have

F10m ≡ 0 (mod 15m+ 1)

and
F10m−1 ≡ F10m+1 ≡ 1 (mod 15m+ 1).

Since
F10m = F 2

5m+1 − F 2
5m−1

and
c ≡ F10m−1 + F5m−1F5m (mod 15m+ 1)

it implies that
F 2
5m+1 ≡ F 2

5m−1 (mod 15m+ 1)

and
c ≡ 1 + F5m−1F5m (mod 15m+ 1).

So, either
F5m+1 ≡ F5m−1 (mod 15m+ 1)

or
F5m+1 ≡ −F5m−1 (mod 15m+ 1).



Some Properties of Fibonacci Numbers 57

If
F5m+1 ≡ F5m−1 (mod 15m+ 1)

then
F5m ≡ 0 (mod 15m+ 1)

and
c ≡ 1 ≡ 0 (mod 15m+ 1)

where we used the fact that

3c ≡ F 2
5m (mod 15m+ 1)

and (3, 15m+1) = 1 with 15m+1 prime. But, 1 6≡ 0 (mod 15m+1). So, we reach
a contradiction meaning that this case is not possible. Otherwise, if

F5m+1 ≡ −F5m−1 (mod 15m+ 1)

then using the recurrence relation of the Fibonacci sequence, we must have

F5m ≡ −2F5m−1 (mod 15m+ 1)

and so
c ≡ 1− 2F 2

5m−1 ≡ 3F 2
5m−1 (mod 15m+ 1)

where we used the fact that

c ≡ F 2
5m + F5m−1F5m+1 (mod 15m+ 1).

It implies that
5F 2

5m−1 ≡ 1 (mod 15m+ 1)

and using Theorem 1.5, it gives

F 2
5m−1 ≡ 515m−1 ≡ 12m+ 1 (mod 15m+ 1)

since 515m ≡ 1 ≡ 60m + 5 (mod 15m + 1) which implies that 515m−1 ≡ 12m + 1
(mod 15m+ 1) (recall that 15m+ 1 is prime and so (5, 15m+ 1) = 1. Since

F5m ≡ −2F5m−1 (mod 15m+ 1)

F 2
5m ≡ 3c (mod 15m+ 1)

and
c ≡ 3F 2

5m−1 (mod 15m+ 1)

it results that

F 2
5m ≡ 9F 2

5m−1 ≡ 3c ≡ 4F 2
5m−1 (mod 15m+ 1)
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and so 4(12m + 1) ≡ 9(12m + 1) (mod 15m + 1). Since 4(12m + 1) = 48m + 4 ≡
3m+ 1 (mod 15m+ 1), it implies that 105m+ 8 ≡ 0 (mod 15m+ 1) and so 1 ≡ 0
(mod 15m + 1) which is not possible since 1 6≡ 0 (mod 15m + 1)0. So, we obtain
again a contradiction meaning that this latter case is not also possible.

Therefore, when 5k + 1 = 15m + 1 is prime with k = 3m and m a non-zero
positive even integer, if 10m is a period of the Fibonacci sequence modulo 15m+1
with 15m+ 1 prime, then

F15m ≡ 0 (mod 15m+ 1)

if and only if
F5m ≡ 0 (mod 15m+ 1).

Since
F15m = F5k ≡ 0 (mod 5k + 1)

is true when 5k + 1 is prime, we deduce that

F 5k
3
≡ 0 (mod 5k + 1)

is also true when k ≡ 0 (mod 3) and 5k + 1 prime.
Thus, if 10m is a period of the Fibonacci sequence modulo 15m+1 with 15m+1

prime, then we have
F15m ≡ 0 (mod 15m+ 1)

if and only if
F5m ≡ 0 (mod 15m+ 1)

if and only if
F5m−1 ≡ F5m+1 (mod 15m+ 1).

Besides,
F5m ≡ 0 (mod 15m+ 1)

implies that
F10m ≡ 0 (mod 15m+ 1).

Reciprocally, if
F10m ≡ 0 (mod 15m+ 1)

then
F 2
5m+1 ≡ F 2

5m−1 (mod 15m+ 1).

So, either
F5m+1 ≡ F5m−1 (mod 15m+ 1)

or
F5m+1 ≡ −F5m−1 (mod 15m+ 1).

If
F5m+1 ≡ −F5m−1 (mod 15m+ 1)
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then
F5m ≡ −2F5m−1 (mod 15m+ 1)

and since
F5m ≡ 0 (mod 15m+ 1)

using the fact that (2, 15m+ 1) = 1 with 15m+ 1 prime such that m is a non-zero
positive even integer (15m+ 1 > 2),

F5m−1 ≡ 0 (mod 15m+ 1).

But, then, if
F10m ≡ 0 (mod 15m+ 1)

we have
F15m+1 ≡ F10m+1F5m+1 ≡ 0 (mod 15m+ 1).

Or,
F15m+1 ≡ 1 (mod 15m+ 1).

It leads to a contradiction meaning that

F5m+1 ≡ −F5m−1 (mod 15m+ 1)

is not possible. So, if
F10m ≡ 0 (mod 15m+ 1)

there is only one possibility, that is to say

F5m+1 ≡ F5m−1 (mod 15m+ 1)

which implies the congruence

F5m ≡ 0 (mod 15m+ 1)

and so which translates the congruence

F15m+1 ≡ 1 (mod 15m+ 1)

into the congruence
F 3
5m+1 ≡ 1 (mod 15m+ 1)

which has at least one solution. So, if 10m is a period of the Fibonacci sequence
modulo 15m+ 1 with 15m+ 1 prime, then we have

F15m ≡ 0 (mod 15m+ 1)

if and only if
F5m ≡ 0 (mod 15m+ 1)
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if and only if
F5m+1 ≡ F5m−1 (mod 15m+ 1)

if and only if
F10m ≡ 0 (mod 15m+ 1).

Since 10m = 10k
3 with k = 3m and m a non-zero positive even integer, from above,

we conclude that if F 5k
3

≡ 0 (mod 5k + 1), then 10k
3 is a period of the Fibonacci

sequence modulo 5k + 1 with 5k + 1 prime if and only if

F 5k±3
3

≡ 1 (mod 5k + 1).

Theorem 4.42. Let 5k + 4 be a prime with k an odd positive integer. If k ≡ 0

(mod 3) and if 2(5k+3)
3 is a period of the Fibonacci sequence modulo 5k + 4, then

the congruence
F5k+3 ≡ 0 (mod 5k + 4)

is equivalent to the congruence

F 5k+3
3

≡ 0 (mod 5k + 4)

which is equivalent to the congruence

F 2(5k+3)
3

≡ 0 (mod 5k + 4).

Moreover, if k ≡ 0 (mod 3) and if F 5k+3
3

≡ 0 (mod 5k+4), then the number 2(5k+3)
3

is a period of the Fibonacci sequence modulo 5k + 4 if and only if

F 5k
3
≡ 1 (mod 5k + 4)

Proof. The proof is very similar to the proof of Theorem 4.33.

The next theorem below is a generalization of Theorems 4.33, 4.37 and Theorem
4.41 and 4.42 given above. The number ℓ5k+r with 5k+r prime such that r ∈ [[1, 4]]
and k ≡ r + 1 (mod 2) is a period of the Fibonacci sequence modulo 5k + r. Its
expression is given in Corollary 4.10.

Theorem 4.43. Let 5k+ r be a prime such that r ∈ [[1, 4]] and k ≡ r+1 (mod 2).

If k ≡ (r−1)(r−2)
2 (mod 3) and if ℓ5k+r

3 is a period of the Fibonacci sequence modulo
5k + r, then the congruence

F ℓ5k+r
2

≡ 0 (mod 5k + r)

is equivalent to the congruence

F ℓ5k+r
6

≡ 0 (mod 5k + r)
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which is equivalent to the congruence

F ℓ5k+r
3

≡ 0 (mod 5k + r).

Moreover, if k ≡ (r−1)(r−2)
2 (mod 3) and if F ℓ5k+r

6

≡ 0 (mod 5k + r), then the

number ℓ5k+r

3 is a period of the Fibonacci sequence modulo 5k + r if and only if

F ℓ5k+r
6 −1

≡
{

1 (mod 5k + r) if r = 1 or r = 4,
−1 (mod 5k + r) if r = 2 or r = 3.

Proof. The results stated in Theorem 4.43 can be deduced from Theorems 4.33,
4.37 and Theorems 4.41 and 4.42 given above.

5 Some results on Generalized Fibonacci numbers

In this section, we deduce some small results related to the generalized fibonacci
numbers as defined below.

Definition 5.1. Let a, b, r be three numbers. The sequence (Cn,2(a, b, r)) is defined
by

Cn,2(a, b, r) = Cn−1,2(a, b, r) + Cn−2,2(a, b, r) + r, ∀n ≥ 2

with
{

C0,2(a, b, r) = b− a− r,
C1,2(a, b, r) = a.

In particular, we have

Fn = Cn,2(1, 1, 0), ∀n ≥ 0.

Remark 5.2. This sequence can be defined from n = 1 by setting C2,2(a, b, r) = b
as in [1].

Proposition 5.3. Let a, b, r be three numbers. The sequences (Cn,2(a, b, r)),
(Cn,2(1, 0,−1)), (Fn) satisfies

Cn,2(a, b, r) = aFn−2 + bFn−1 − rCn+1,2(1, 0,−1), ∀n ≥ 2.

Proof. Let a, b, r be three numbers. Let us prove Proposition 5.3 by induction on
the integer n ≥ 2. We have

C2,2(a, b, r) = b = a× 0 + b× 1 + r × 0 = a× F0 + b× F1 − r × C3,2(1, 0,−1)
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Let us assume that this proposition is true up to n ≥ 2. Using the recurrence
relations of sequences (Cn,2(a, b, r)), (Cn,2(1, 0,−1)) and (Fn), we have

Cn+1,2(a, b, r) =Cn,2(a, b, r) + Cn−1,2(a, b, r) + r

=(aFn−2 + bFn−1 − rCn+1,2(1, 0,−1))

+ (aFn−3 + bFn−2 − rCn,2(1, 0,−1)) + r

=a(Fn−2 + Fn−3) + b(Fn−1 + Fn−2)

− r(Cn+1,2(1, 0,−1) + Cn,2(1, 0,−1)− 1)

=aFn−1 + bFn − rCn+2,2(1, 0,−1).

Thus by induction, the proof is complete.

Proposition 5.4. The sequences (Cn,2(1, 0,−1)) and (Fn) satisfies

Cn,2(1, 0,−1) = Cn−2,2(1, 0,−1)− Fn−2, ∀n ≥ 2.

Cn,2(1, 0,−1) = −
n−3
∑

k=1

Fk, ∀n ≥ 4.

From Proposition 5.3, for any numbers a, b, r, it results that

Cn,2(a, b, r) = aFn−2 + bFn−1 + r

n−2
∑

k=1

Fk, ∀n ≥ 2

Cn,2(a, b, r) = aFn−2 + bFn−1 + r(Fn − 1), ∀n ≥ 2.

This result can be easily verifies using mathematical induction and Theorem
1.26 and Proposition 5.4. We shall omit the details here.

The theorem below appears in any standard linear algebra textbook.

Theorem 5.5. (i) A linear recurrence sequence (un)n≥0 of order 2 which satisfies
a linear recurrence relation as

un = α1un−1 + α2un−2, ∀n ≥ 2

with α1, α2 in a field K (K = R or K = C), is completely and uniquely determined
by its first terms u0 and u1.

(ii) If (un)n≥0, (vn)n≥0 are two linear recurrence sequences of order 2 such that

det

(

u0 v0
u1 v1

)

= u0v1 − u1v0 6= 0

then any linear recurrence sequence (wn)n≥0 of order 2 is uniquely written as

(wn)n≥0 = λ(un)n≥0 + µ(vn)n≥0

with λ, µ in a field K (K = R or K = C).
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Proof. The statement (i) is proved by induction.

The statement (ii) can be proved from (i) and from the Cramer’s rule for system of
linear equations.

Definition 5.6. Let k be an integer which is greater than 2 and let a0, . . . , ak−1 be
k numbers. The sequence (Fn,k(a0, . . . , ak−1)) for k ≥ 2 is defined by

Fn,k(a0, . . . , ak−1) = Fn−1,k(a0, . . . , ak−1) + Fn−k,k(a0, . . . , ak−1), ∀n ≥ k

with
Fi,k(a0, . . . , ak−1) = ai, ∀ i ∈ {0, . . . , k − 1}.

The sequence (Fn,k(a0, . . . , ak−1)) is called the k-Fibonacci sequence with initial
conditions a0, . . . , ak−1.

Proposition 5.7. Let a0, a1 be two numbers. The 2-Fibonacci numbers sequence
(Fn,2(a0, a1)) has general term

Fn,2(a0, a1) = αϕn + β(1− ϕ)n, ∀n ≥ 0

where ϕ = 1+
√
5

2 is the golden ratio and

α =
a0(ϕ− 1) + a1√

5
, β =

a0ϕ− a1√
5

.

In particular, we have

Fn = Fn,2(0, 1), Ln = Fn,2(2, 1).

Proof. Let a0, a1 be two numbers. Using the relation of recurrence of the sequence
(Fn,2(a0, a1)) and taking the Ansatz Fn,2(a0, a1) = zn, we have for n ≥ 2

zn = zn−1 + zn−2.

For z 6= 0, it gives (n ≥ 2) z2 − z − 1 = 0. The discriminant of this polynomial
equation of second degree is ∆ =

√
5. So, the roots of this equation are:

ϕ =
1 +

√
5

2
, 1− ϕ =

1−
√
5

2
.

We can notice that any linear combination of ϕn, (1 − ϕ)n for n ≥ 0 verifies the
equation zn = zn−1 + zn−2 for n ≥ 0. Since 0 = 0 · ϕn = 0 · (1 − ϕ)n, the
sequences which satisfy the recurrence relation of sequence (Fn,2(a0, a1)) form a
vector subspace of the set of complex sequences. Given a0, a1, from Theorem 5.5
above, since

det

(

1 1
ϕ 1− ϕ

)

= 1− 2ϕ = −
√
5 6= 0
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we deduce that there exist two numbers α, β such that

Fn,2(a0, a1) = αϕn + β(1− ϕ)n.

Since
F0,2(a0, a1) = a0 F1,2(a0, a1) = a1,

the coefficients α, β verify the matrix equation

(

1 1
ϕ 1− ϕ

)(

α
β

)

=

(

a0
a1

)

So:
(

α
β

)

=

(

1 1
ϕ 1− ϕ

)−1(
a0
a1

)

where
(

1 1
ϕ 1− ϕ

)−1

=
1√
5

(

ϕ− 1 1
ϕ −1

)

So:
(

α
β

)

=
1√
5

(

a0(ϕ− 1) + a1
a0ϕ− a1

)

.

Proposition 5.8. Let a0, a1 be two numbers. We have

Fn,2(a0, a1) = a0Fn+1 + (a1 − a0)Fn, ∀n ≥ 0.

Proof. From Proposition 5.7, we have

Fn,2(a0, a1) =
(a0(ϕ− 1) + a1)ϕ

n + (a0ϕ− a1)(1− ϕ)n√
5

=
a0 [(ϕ− 1)ϕn + ϕ(1− ϕ)n] + a1 [ϕ

n − (1− ϕ)n]√
5

= −a0

{

(1− ϕ)ϕn − ϕ(1− ϕ)n√
5

}

+ a1

{

ϕn − (1− ϕ)n√
5

}

= −a0

{

(1− ϕ)ϕn + (1− ϕ− 1)(1− ϕ)n√
5

}

+ a1Fn

= −a0

{

ϕn − (1− ϕ)n√
5

−
(

ϕn+1 − (1− ϕ)n+1

√
5

)}

+ a1Fn

= −a0(Fn − Fn+1) + a1Fn

= a0Fn+1 + (a1 − a0)Fn.
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Proposition 5.9. Let z be a real complex number such that ϕ|z| < 1. We have

+∞
∑

n=0

Fnz
n =

z

(1− ϕz)(1− z + ϕz)
=

z

1− z − z2

This is a standard result and we omit the proof here.

Example 5.10. Applying Proposition 5.9 when z = 1/2, we have

+∞
∑

n=0

Fn

2n
=

1/2
(

1− ϕ
2

) (

1
2 + ϕ

2

)

=
1/2

(

2−ϕ
2

) (

1+ϕ
2

)

=
2

2 + 2ϕ− ϕ− ϕ2
.

=
2

2 + ϕ− (ϕ+ 1)
.

= 2

Thus
+∞
∑

n=0

Fn

2n+1
= 1.

Proposition 5.11. Let z be a real complex number such that ϕ|z| < 1. Let a0 and
a1 be two numbers. We have the generating function

+∞
∑

n=0

Fn,2(a0, a1)z
n =

a0 + (a1 − a0)z

(1− ϕz)(1− z + ϕz)
=

a0 + (a1 − a0)z

1− z − z2
.

Proof. Let z be a real complex number such that ϕ|z| < 1. When z = 0, we have

(

+∞
∑

n=0

Fn,2(a0, a1)z
n

)

z=0

= F0,2(a0, a1) = a0

and
(

a0 + (a1 − a0)z

(1− ϕz)(1− z + ϕz)

)

z=0

= a0.

So, the formula of Proposition 5.11 is true for z = 0. In the following, we assume
that z 6= 0. From Proposition 5.8, we know that

Fn,2(a0, a1) = a0Fn+1 + (a1 − a0)Fn, ∀n ≥ 0.
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So, using Proposition 5.9, we have (ϕ|z| < 1 and z 6= 0)

+∞
∑

n=0

Fn,2(a0, a1)z
n = a0

+∞
∑

n=0

Fn+1z
n + (a1 − a0)

+∞
∑

n=0

Fnz
n.

Or (ϕ|z| < 1 and z 6= 0)

+∞
∑

n=0

Fn+1z
n =

1

z

+∞
∑

n=0

Fn+1z
n+1 =

1

z

+∞
∑

n=1

Fnz
n =

1

z

+∞
∑

n=0

Fnz
n

where we used the fact that F0 = 0.

It follows that (ϕ|z| < 1 and z 6= 0)

+∞
∑

n=0

Fn,2(a0, a1)z
n =

(a0
z

+ a1 − a0

)

+∞
∑

n=0

Fnz
n.

From Proposition 5.9, it results that (ϕ|z| < 1 and z 6= 0)

+∞
∑

n=0

Fn,2(a0, a1)z
n =

(

a0 + (a1 − a0)z

z

)

z

(1− ϕz)(1− z + ϕz)

=
a0 + (a1 − a0)z

(1− ϕz)(1− z + ϕz)
=

a0 + (a1 − a0)z

1− z − z2
.

Since this relation is also true for z = 0 (see above), this relation is true for
ϕ|z| < 1.

Example 5.12. Applying Proposition 5.11 when a0 = 2, a1 = 1 and z = 1/3, since
Fn,2(2, 1) = Ln for all n ≥ 0, we have

+∞
∑

n=0

Ln

3n
=

2− 1
3

(

1− ϕ
3

) (

1− 1
3 + ϕ

3

)

=
5
3

(

3−ϕ
3

) (

2+ϕ
3

)

=
15

6 + 3ϕ− 2ϕ− ϕ2

=
15

6 + ϕ− (ϕ+ 1)

=
15

5
= 3.

Therefore
+∞
∑

n=0

Ln

3n+1
= 1.
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Proposition 5.13. Let z be a real complex number such that ϕ|z| < 1. Let a, b, r
be three numbers. We have

+∞
∑

n=0

Cn,2(a, b, r)z
n = b− a− r + az +

z2 [(az + b)(1− z) + rz]

1− 2z + z3

or equivalently

+∞
∑

n=0

Cn,2(a, b, r)z
n =

a(1− z)(2z − 1) + b(1− z)2 + r(2z − 1)

1− 2z + z3
.

This result can be derived routinely using the results we have derived so far.
Although the proof is a little involved, but it follows essentially the same pattern
as the previous result. So for the sake of brevity we shall omit it here.

Example 5.14. Applying Proposition 5.13 when z = 1/2, we have

+∞
∑

n=0

Cn,2(a, b, r)

2n
=

b
4
1
8

= 2b.

So
+∞
∑

n=0

Cn,2(a, b, r)

2n+1
= b.

Applying Proposition 5.13 when a = −r = 1, b = 0 and z = 1/3, we have

+∞
∑

n=0

Cn,2(1, 0,−1)

3n
=

2
3

(

− 1
3

)

−
(

− 1
3

)

1− 2
3 + 1

27

=
− 2

9 + 1
3

1
3 + 1

27

=
1
9
10
27

=
3

10
.

So,
+∞
∑

n=0

Cn,2(1, 0,−1)

3n+1
=

1

10
.

Proposition 5.15. Let a0, a1 be two numbers. We have

Fk+l,2(a0, a1) = Fl,2(a0, a1)Fk+1 + Fl−1,2(a0, a1)Fk, ∀ k ≥ 0, ∀ l ≥ 1,

or equivalently

Fk+l,2(a0, a1) = Fk,2(Fl,2(a0, a1), Fl+1,2(a0, a1)), ∀ k ≥ 0, ∀ l ≥ 0.

Proof. Let a0, a1 be two numbers. From Proposition 5.8, we know that for k+ l ≥ 0
we have

Fk+l,2(a0, a1) = a0Fk+l+1 + (a1 − a0)Fk+l.
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Using Theorem 1.27, we have

Fk+l,2(a0, a1) = a0(Fl+1Fk+1 + FlFk) + (a1 − a0)(FlFk+1 + Fl−1Fk)

= (a0Fl+1 + (a1 − a0)Fl)Fk+1 + (a0Fl + (a1 − a0)Fl−1)Fk.

Using Proposition 5.8, we get

Fk+l,2(a0, a1) = Fl,2(a0, a1)Fk+1 + Fl−1,2(a0, a1)Fk

= Fk,2(Fl,2(a0, a1), Fl+1,2(a0, a1)).

In a similar way we can obtain the following result by using the corresponding
results dervide so far.

Proposition 5.16. Let a, b, r be three numbers. We have:

Ck+l,2(a, b, r) = Cl−1,2(a, b, r)Fk+Cl,2(a, b, r)Fk+1+r(Fk+2−1), ∀ k ≥ 0, ∀ l ≥ 1,

or equivalently

Ck+l,2(a, b, r) = Ck+2,2(Cl−1,2(a, b, r), Cl,2(a, b, r), r), ∀ k ≥ 0, ∀ l ≥ 1.

We now have the following more general results.

Theorem 5.17. Let a0, a1 be two numbers. We have

Fk,2(a0Fl−1,2(a0, a1) + a1Fl,2(a0, a1), a0Fl,2(a0, a1) + a1Fl+1,2(a0, a1))

= Fl,2(a0, a1)Fk+1,2(a0, a1) + Fl−1,2(a0, a1)Fk,2(a0, a1), ∀ k ≥ 0, ∀ l ≥ 1

The proof is an easy application of Proposition 5.9 and we shall omit it here.

Theorem 5.18. Let a, b, r be three numbers. We have

Ck,2(aCl−1,2(a, b, r)+bCl,2(a, b, r), (a+r)Cl,2(a, b, r)+b(Cl+1,2(a, b, r)−r), r(Cl+1,2(a, b, r)−r))

(5.1) = Cl,2(a, b, r)Ck+1,2(a, b, r) + Cl−1,2(a, b, r)Ck,2(a, b, r), ∀ k ≥ 0, ∀ l ≥ 1

Using Proposition 5.5 and the principle of mathematical induction the above
result can be verified. We omit the details here.

Remark 5.19. Using Proposition 5.4 and using Proposition 5.8, we can notice that

(5.2) Cn,2(a, b, 0) = Fn,2(b− a, a), ∀n ≥ 0

Indeed, we have (n ≥ 0)

Fn,2(b− a, a) = (b− a)Fn+1 + (a− b+ a)Fn = (b− a)Fn+1 + (2a− b)Fn
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Using the definition of the Fibonacci sequence, we have for n ≥ 2

Fn,2(b− a, a) = (b− a)(Fn + Fn−1) + (2a− b)(Fn−1 + Fn−2)

= (b− a)(2Fn−1 + Fn−2) + (2a− b)(Fn−1 + Fn−2)

= (2(b− a) + 2a− b)Fn−1 + (b− a+ 2a− b)Fn−2 = bFn−1 + aFn−2

= aFn−2 + bFn−1 = Cn,2(a, b, 0).

Since F0,2(b− a, a) = C0,2(a, b, 0) = b− a and F1,2(b− a, a) = C1,2(a, b, 0) = a,
the formula derived above for n ≥ 2 is also true for n = 0 and for n = 1.

Taking r = 0 in Theorem 5.18, it can be shown that Theorem 5.17 is a particular
case of Theorem 5.18. Indeed, since (l ≥ 1):

aCl,2(a, b, 0) + bCl+1,2(a, b, 0)− (aCl−1,2(a, b, 0) + bCl,2(a, b, 0))

= a(Cl,2(a, b, 0)− Cl−1,2(a, b, 0)) + b(Cl+1,2(a, b, 0)− Cl,2(a, b, 0))

and so (l ≥ 2):

aCl,2(a, b, 0) + bCl+1,2(a, b, 0)− (aCl−1,2(a, b, 0) + bCl,2(a, b, 0))

= aCl−2,2(a, b, 0) + bCl−1,2(a, b, 0)

using the relation (5.2), we have (k ≥ 0 and l ≥ 2):

Ck,2(aCl−1,2(a, b, 0) + bCl,2(a, b, 0), aCl,2(a, b, 0) + bCl+1,2(a, b, 0), 0)

= Fk,2(aCl−2,2(a, b, 0) + bCl−1,2(a, b, 0), aCl−1,2(a, b, 0) + bCl,2(a, b, 0))

= Fk,2((b− a)Cl−1,2(a, b, 0) + a(Cl−2,2(a, b, 0) + Cl−1,2(a, b, 0)), (b− a)Cl,2(a, b, 0)

+a(Cl−1,2(a, b, 0) + Cl,2(a, b, 0))).

So (k ≥ 0 and l ≥ 1):

Ck,2(aCl−1,2(a, b, 0) + bCl,2(a, b, 0), aCl,2(a, b, 0) + bCl+1,2(a, b, 0), 0)

= Fk,2((b− a)Cl−1,2(a, b, 0) + aCl,2(a, b, 0), (b− a)Cl,2(a, b, 0) + aCl+1,2(a, b, 0))

= Fk,2((b−a)Fl−1,2(b−a, a)+aFl,2(b−a, a), (b−a)Fl,2(b−a, a)+aFl+1,2(b−a, a)).

Moreover, from Theorem 5.18, we have (k ≥ 0 and l ≥ 1):

Ck,2(aCl−1,2(a, b, 0) + bCl,2(a, b, 0), aCl,2(a, b, 0) + bCl+1,2(a, b, 0), 0)

= Cl,2(a, b, 0)Ck+1,2(a, b, 0) + Cl−1,2(a, b, 0)Ck,2(a, b, 0)

= Fl,2(b− a, a)Fk+1,2(b− a, a) + Fl−1,2(b− a, a)Fk,2(b− a, a).

Therefore (k ≥ 0 and l ≥ 1):

Fk,2((b− a)Fl−1,2(b− a, a) + aFl,2(b− a, a), (b− a)Fl,2(b− a, a) + aFl+1,2(b− a, a))
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(5.3) = Fl,2(b− a, a)Fk+1,2(b− a, a) + Fl−1,2(b− a, a)Fk,2(b− a, a)

which is equivalent to Theorem 5.17 when a0 is replaced by b − a and when a1 is
replaced by a. Besides, taking a = b = 1 in the relation (5.3), using Theorem 1.27,
since Fn,2(0, 1) = Fn, for all n ≥ 0, we get (l ≥ 0):

Fk,2(Fl, Fl+1) = Fk+l, ∀ k ≥ 0

Definition 5.20. Let a, b, r be three numbers, let n ≥ 0 be a natural number and
let l be a non-zero positive integer. The sequences (xn,l(a, b, r)), (yn,l(a, b, r)) and
(zn,l(a, b, r)) are defined by (n ≥ 0 and l ≥ 1):

xn+1,l(a, b, r) = xn,l(a, b, r)Cl−1,2(xn,l(a, b, r), yn,l(a, b, r), zn,l(a, b, r))

+ yn,l(a, b, r)Cl,2(xn,l(a, b, r), yn,l(a, b, r), zn,l(a, b, r))

yn+1,l(a, b, r) = yn,l(a, b, r)Cl−1,2(xn,l(a, b, r), yn,l(a, b, r), zn,l(a, b, r)) + (xn,l(a, b, r)

+ yn,l(a, b, r) + zn,l(a, b, r))Cl,2(xn,l(a, b, r), yn,l(a, b, r), zn,l(a, b, r))

rn+1,l(a, b, r) = zn,l(a, b, r)(Cl−1,2(xn,l(a, b, r), yn,l(a, b, r), zn,l(a, b, r))

+ Cl,2(xn,l(a, b, r), yn,l(a, b, r), zn,l(a, b, r)))

and for l ≥ 1

x0,l(a, b, r) = aCl−1,2(a, b, r) + bCl,2(a, b, r)
y0,l(a, b, r) = bCl−1,2(a, b, r) + (a+ b+ r)Cl,2(a, b, r)
z0,l(a, b, r) = r(Cl−1,2(a, b, r) + Cl,2(a, b, r))

In the following, when there is no ambiguity and when it is possible, we will ab-
breviate the notations used for terms of sequences (xn,l(a, b, r)), (yn,l(a, b, r)) and
(zn,l(a, b, r)). More precisely, if a, b, r don’t take particular values, then we will
substitute xn,l, yn,l, zn,l for xn,l(a, b, r), yn,l(a, b, r), zn,l(a, b, r) respectively. Thus,
the recurrence relations which define the sequences (xn,l(a, b, r)), (yn,l(a, b, r)) and
(zn,l(a, b, r)) can be rewritten as (n ≥ 0 and l ≥ 1):

xn+1,l = xn,lCl−1,2(xn,l, yn,l, zn,l) + yn,lCl,2(xn,l, yn,l, zn,l)
yn+1,l = yn,lCl−1,2(xn,l, yn,l, zn,l) + (xn,l + yn,l + zn,l)Cl,2(xn,l, yn,l, zn,l)
rn+1,l = zn,l(Cl−1,2(xn,l, yn,l, zn,l) + Cl,2(xn,l, yn,l, zn,l)).

Proposition 5.21. Let n ≥ 0 be a natural number and let l be a non-zero positive
integer. We have

Ck,2(xn+1,l, yn+1,l, zn+1,l) = Cl,2(xn,l, yn,l, zn,l)Ck+1,2(xn,l, yn,l, zn,l)

+ Cl−1,2(xn,l, yn,l, zn,l)Ck,2(xn,l, yn,l, zn,l).
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Proof. This proposition is a direct consequence of Definition 5.1, Definition 5.20
and Theorem 5.18.

Proposition 5.22. Let n ≥ 0 be a natural number and let l be a non-zero positive
integer. We have (n ≥ 0 and l ≥ 1)

(yn,l − xn,l)(zn,lyn+1,l − yn,lzn+1,l) = (xn,l + zn,l)(zn,lxn+1,l − xn,lzn+1,l).

or equivalently (n ≥ 0 and l ≥ 1)

zn,l(xn,l+zn,l)xn+1,l+zn,l(xn,l−yn,l)yn+1,l−(xn,l(xn,l+yn,l+zn,l)−y2n,l)zn+1,l = 0.

Proof. In the following, n denotes a natural number (n ≥ 0) and l denotes a non-
zero positive integer (l ≥ 1). From Definition 5.20, we have (n ≥ 0 and l ≥ 1)

zn,lxn+1,l − xn,lzn+1,l = xn,lzn,lCl−1,2(xn,l, yn,l, zn,l) + yn,lzn,lCl,2(xn,l, yn,l, zn,l)

−xn,lzn,lCl−1,2(xn,l, yn,l, zn,l)− xn,lzn,lCl,2(xn,l, yn,l, zn,l).

So

(5.4) zn,lxn+1,l−xn,lzn+1,l = zn,l(yn,l−xn,l)Cl,2(xn,l, yn,l, zn,l), ∀n ≥ 0, ∀ l ≥ 1

Moreover, we have (n ≥ 0 and l ≥ 1):

zn,lyn+1,l−yn,lzn+1,l = yn,lzn,lCl−1,2(xn,l, yn,l, zn,l)+zn,l(xn,l+yn,l+zn,l)Cl,2(xn,l, yn,l, zn,l)

−yn,lzn,lCl−1,2(xn,l, yn,l, zn,l)− yn,lzn,lCl,2(xn,l, yn,l, zn,l).

So

(5.5) zn,lyn+1,l − yn,lzn+1,l = zn,l(xn,l + zn,l)Cl,2(xn,l, yn,l, zn,l) ∀n ≥ 0, ∀ l ≥ 1

Taking (xn,l + zn,l) (5.4)− (yn,l − xn,l) (5.5) side by side, we get

(xn,l + zn,l)(zn,lxn+1,l − xn,lzn+1,l)− (yn,l − xn,l)(zn,lyn+1,l − yn,lzn+1,l) = 0

and so

(xn,l + zn,l)(zn,lxn+1,l − xn,lzn+1,l) = (yn,l − xn,l)(zn,lyn+1,l − yn,lzn+1,l).

It proves the first part of Proposition 5.22. The second part of Proposition 5.22
follows from its first part. Indeed, from the first part of Proposition 5.22, we have
(n ≥ 0 and l ≥ 1)

(xn,l+zn,l)zn,lxn+1,l−(xn,l+zn,l)xn,lzn+1,l = (yn,l−xn,l)zn,lyn+1,l−(yn,l−xn,l)yn,lzn+1,l

zn,l(xn,l+zn,l)xn+1,l+zn,l(xn,l−yn,l)yn+1,l−((xn,l+zn,l)xn,l+(xn,l−yn,l)yn,l)zn+1,l = 0

zn,l(xn,l+zn,l)xn+1,l+zn,l(xn,l−yn,l)yn+1,l−(x2
n,l+zn,lxn,l+xn,lyn,l−y2n,l)zn+1,l = 0

zn,l(xn,l+zn,l)xn+1,l+zn,l(xn,l−yn,l)yn+1,l−(xn,l(xn,l+zn,l+yn,l)−y2n,l)zn+1,l = 0

It proves the second part of Proposition 5.22.



72 Alexandre Laugier and Manjil P. Saikia

Definition 5.23. Let K be a field. Let l be a non-zero positive integer (l ≥ 1). The
function Fl is defined on K

3 by (l ≥ 1 and (x, y, z) ∈ K
3)

Fl(x, y, z) = (xCl−1,2(x, y, z) + yCl,2(x, y, z), yCl−1,2(x, y, z)

+ (x+ y + z)Cl,2(x, y, z), z(Cl−1,2(x, y, z) + Cl,2(x, y, z))).

Remark 5.24. From Definition 5.20 and from Definition 5.23, we have (n ≥ 0
and l ≥ 1)

Fl(xn,l, yn,l, zn,l) = (xn+1,l, yn+1,l, zn+1,l)

So, from Proposition 5.21, we have

Ck,2(Fl(xn,l, yn,l, zn,l)) = Cl,2(xn,l, yn,l, zn,l)Ck+1,2(xn,l, yn,l, zn,l)

+ Cl−1,2(xn,l, yn,l, zn,l)Ck,2(xn,l, yn,l, zn,l).

Proposition 5.25. Let n ≥ 0 be a natural number and let l be a non-zero positive
integer. We have (n ≥ 0 and l ≥ 1)

xn,l(1/2, 1/2,−1/2) = yn,l(1/2, 1/2,−1/2) = 1/2

zn,l(1/2, 1/2,−1/2) = −1/2.

In other words, (1/2, 1/2,−1/2) is a fixed point of the function Fl for all l ≥ 1.

Proof. Let n ≥ 0 be a natural number and let l be a non-zero positive integer. Let
us prove Proposition 5.25 by induction on the integer n ≥ 0 for all l ≥ 1. Using
Definition 5.1, we have

C0,2(1/2, 1/2,−1/2) =
1

2
− 1

2
−
(

−1

2

)

=
1

2
.

Moreover, from Proposition 5.4, using the definition of the Fibonacci sequence,
we have (n ≥ 2)

Cn,2(1/2, 1/2,−1/2) =
Fn−2

2
+

Fn−1

2
− 1

2
(Fn − 1) =

Fn−2 + Fn−1 − Fn

2
+

1

2
=

1

2
.

So

(5.6) Cn,2(1/2, 1/2,−1/2) =
1

2
, ∀n ≥ 0.

Using Definition 5.20 and using Equation (5.6), it gives (l ≥ 1)

x0,l(1/2, 1/2,−1/2) = 1
2 × 1

2 + 1
2 × 1

2 = 1
2 ,

y0,l(1/2, 1/2,−1/2) = 1
2 × 1

2 +
(

1
2 + 1

2 − 1
2

)

1
2 = 1

2 ,
z0,l(1/2, 1/2,−1/2) = − 1

2

(

1
2 + 1

2

)

= − 1
2 .
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Hence, we verify that Proposition 5.25 is true for n = 0 and for all l ≥ 1. Let us
assume that Proposition 5.25 is true up to an integer n ≥ 0 and for all l ≥ 1. Using
again Definition 5.20 and using Equation (5.6), we have (n ≥ 0 and l ≥ 1)

xn+1,l(1/2, 1/2,−1/2) = 1
2 × 1

2 + 1
2 × 1

2 = 1
2 ,

yn+1,l(1/2, 1/2,−1/2) = 1
2 × 1

2 +
(

1
2 + 1

2 − 1
2

)

1
2 ,

zn+1,l(1/2, 1/2,−1/2) = − 1
2

(

1
2 + 1

2

)

= − 1
2 .

Thus, if Proposition 5.25 is true up to an integer n ≥ 0, then Proposition 5.25 is
true for n + 1. Thus we have proved Proposition 1.33 by induction on the integer
n ≥ 0 for all l ≥ 1. Using Remark 5.24, we get (l ≥ 1)

Fl(1/2, 1/2,−1/2) = (1/2, 1/2,−1/2).

Therefore, (1/2, 1/2,−1/2) is a fixed point of the function Fl for all l ≥ 1.

The results presented in this section can be further generalized to other class of
sequences. For one such aspect, the reader can refer to [3].

6 Some results on Generalized Fibonacci polyno-

mial sequences

In this section, we introduce some generalized Fibonacci polynomial sequences and
we give some properties about these polynomial sequences.

Definition 6.1. Let k be an integer which is greater than 2 and let a0, . . . , ak−1 be
k numbers.

The polynomial sequence (F
(1)
n,k(a0, . . . , ak−1;x)) in one indeterminate x is de-

fined by (k ≥ 2):

F
(1)
n,k(a0, . . . , ak−1;x) = F

(1)
n−1,k(a0, . . . , ak−1;x) + xF

(1)
n−k,k(a0, . . . , ak−1;x), ∀n ≥ k

with:

F
(1)
i,k (a0, . . . , ak−1;x) = ai, ∀ i ∈ {0, . . . , k − 1}

The k-Fibonacci numbers sequence (Fn,k(a0, . . . , ak−1)) with initial conditions
a0, . . . , ak−1 are obtained from this polynomial sequence by substituting x by 1 in the

sequence (F
(1)
n,k(a0, . . . , ak−1;x)). This polynomial sequence is called the k-Fibonacci

polynomial sequence of the first kind with initial conditions a0, . . . , ak−1.

Case k = 2
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Table of the first polynomial terms of sequence (F
(1)
n,2(0, 1;x))

F
(1)
0,2 (0, 1;x) = 0

F
(1)
1,2 (0, 1;x) = 1

F
(1)
2,2 (0, 1;x) = 1

F
(1)
3,2 (0, 1;x) = 1 + x

F
(1)
4,2 (0, 1;x) = 1 + 2x

F
(1)
5,2 (0, 1;x) = 1 + 3x+ x2

F
(1)
6,2 (0, 1;x) = 1 + 4x+ 3x2

Table of the first polynomial terms of sequence (F
(1)
n,2(1, 0;x))

F
(1)
0,2 (1, 0;x) = 1

F
(1)
1,2 (1, 0;x) = 0

F
(1)
2,2 (1, 0;x) = x

F
(1)
3,2 (1, 0;x) = x

F
(1)
4,2 (1, 0;x) = x(x+ 1)

F
(1)
5,2 (1, 0;x) = x(2x+ 1)

F
(1)
6,2 (1, 0;x) = x(x2 + 3x+ 1)

Property 6.2. Let n be a non-zero positive integer. We have

F
(1)
n,2(0, 1;x) =

⌊n−1
2 ⌋
∑

k=0

(

n− k − 1

k

)

xk,

F
(1)
n,2(1, 0;x) = xF

(1)
n−1,2(0, 1;x).

Proof. Let prove the first part of Property 6.2 by induction on the integer n > 0.
We have

F
(1)
1,2 (0, 1;x) = 1 =

(

n− 1

0

)

x0 =

0
∑

k=0

(

n− k − 1

k

)

xk.

Thus, we verify that the first part of Property 6.2 is true for n = 1. Let assume
that Property 6.2 is true up to an integer n > 0. Using Definition 6.1, we have

F
(1)
n+1,2(0, 1;x) = F

(1)
n,2(0, 1;x) + xF

(1)
n−1,2(0, 1;x).

Using the assumption, it gives:

F
(1)
n+1,2(0, 1;x) =

⌊n−1
2 ⌋
∑

k=0

(

n− k − 1

k

)

xk +

⌊n−2
2 ⌋
∑

k=0

(

n− k − 2

k

)

xk+1.
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Taking the change of label k → m = k+1 in the second sum of the right hand side of
the previous equation, after renamingm by k, we have (reccall that ⌊x+1⌋ = ⌊x⌋+1,
∀x ∈ R)

F
(1)
n+1,2(0, 1;x) =

⌊n−1
2 ⌋
∑

k=0

(

n− k − 1

k

)

xk +

⌊n
2 ⌋
∑

k=1

(

n− k − 1

k − 1

)

xk.

Or

⌊n
2
⌋ =







⌊n−1
2 ⌋+ 1 if n ≡ 0 (mod 2)

⌊n−1
2 ⌋ if n ≡ 1 (mod 2)

If n is odd, then ⌊n
2 ⌋ = ⌊n−1

2 ⌋ and we have

F
(1)
n+1,2(0, 1;x) = 1 +

⌊n
2 ⌋
∑

k=1

(

n− k − 1

k

)

xk +

⌊n
2 ⌋
∑

k=1

(

n− k − 1

k − 1

)

xk.

Rearranging the different terms of this equation, it comes that (n odd)

F
(1)
n+1,2(0, 1;x) = 1 +

⌊n
2 ⌋
∑

k=1

{(

n− k − 1

k

)

+

(

n− k − 1

k − 1

)}

xk.

Using the combinatorial identity
(

n− k − 1

k

)

+

(

n− k − 1

k − 1

)

=

(

n− k

k

)

if n is odd, then we have

F
(1)
n+1,2(0, 1;x) =1 +

⌊n
2 ⌋
∑

k=1

(

n− k

k

)

xk

=

⌊n
2 ⌋
∑

k=0

(

n− k

k

)

xk =

⌊n+1−1
2 ⌋
∑

k=0

(

n+ 1− k − 1

k

)

xk.

If n is even, then ⌊n
2 ⌋ = ⌊n−1

2 ⌋+ 1 and we have

F
(1)
n+1,2(0, 1;x) = 1+

⌊n−1
2 ⌋
∑

k=1

{(

n− k − 1

k

)

+

(

n− k − 1

k − 1

)}

xk+

(

n− ⌊n
2 ⌋ − 1

⌊n
2 ⌋ − 1

)

x⌊n
2 ⌋.

Using again the combinatorial identity
(

n− k − 1

k

)

+

(

n− k − 1

k − 1

)

=

(

n− k

k

)
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it gives

F
(1)
n+1,2(0, 1;x) = 1 +

⌊n−1
2 ⌋
∑

k=1

(

n− k

k

)

xk +

(

n− ⌊n
2 ⌋ − 1

⌊n
2 ⌋ − 1

)

x⌊n
2 ⌋.

Using the definition of binomial coefficients, it can be shown that (k > 0)

(

n− k

k

)

=
n− k

k

(

n− k − 1

k − 1

)

Or

n =







2⌊n
2 ⌋ if n ≡ 0 (mod 2)

2⌊n
2 ⌋+ 1 if n ≡ 1 (mod 2)

In particular, when n is even, n = 2⌊n
2 ⌋ and so n − ⌊n

2 ⌋ = ⌊n
2 ⌋. Accordingly, we

have
(

n− ⌊n
2 ⌋

⌊n
2 ⌋

)

=

(

n− ⌊n
2 ⌋ − 1

⌊n
2 ⌋ − 1

)

If n is even, then we have

F
(1)
n+1,2(0, 1;x) =1 +

⌊n−1
2 ⌋
∑

k=1

(

n− k

k

)

xk +

(

n− ⌊n
2 ⌋

⌊n
2 ⌋

)

x⌊n
2 ⌋

=

⌊n
2 ⌋
∑

k=0

(

n− k

k

)

xk =

⌊n+1−1
2 ⌋
∑

k=0

(

n+ 1− k − 1

k

)

xk.

So, the first part of Property 6.2 is proved by induction on the integer n > 0.

Afterwards, let prove the second part of Property 6.2 by induction on the integer
n > 0. We have

F
(1)
1,2 (1, 0;x) = 0 = xF

(1)
0,2 (0, 1;x).

Thus, we verify that the second part of Property 6.2 is true for n = 1. Let assume
that the second part of Property 6.2 is true up to an integer n > 0. Using Definition
6.1, we have

F
(1)
n+1,2(1, 0;x) = F

(1)
n,2(1, 0;x) + xF

(1)
n−1,2(1, 0;x).

Using the assumption, it gives:

F
(1)
n+1,2(1, 0;x) = x(F

(1)
n,2(0, 1;x) + xF

(1)
n−1,2(0, 1;x)) = xF

(1)
n+1,2(0, 1;x).

So, the second part of Property 6.2 is proved by induction on the integer n > 0.
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Property 6.3. The generating function of the polynomials F
(1)
n,2(0, 1;x) is given by

F
(1)
2 (0, 1;x, y) =

+∞
∑

n=0

F
(1)
n,2(0, 1;x)y

n =
y

1− y − xy2

where

y 6=
{

1 if x = 0
−1±

√
1+4x

2x if x 6= 0

Proof. The generating function of the polynomials F
(1)
n,2(0, 1;x) is defined by

F
(1)
2 (0, 1;x, y) =

+∞
∑

n=0

F
(1)
n,2(0, 1;x)y

n.

Since F
(1)
0,2 (0, 1;x) = 0 and since F

(1)
1,2 (0, 1;x) = 1, we have

F
(1)
2 (0, 1;x, y) =

+∞
∑

n=1

F
(1)
n,2(0, 1;x)y

n

=

+∞
∑

n=0

F
(1)
n+1,2(0, 1;x)y

n+1

=y +

+∞
∑

n=1

F
(1)
n+1,2(0, 1;x)y

n+1

where in the sum over n, we performed the change of label n → m = n− 1 and we
renamed m by n. Using Definition 6.1, it gives

F
(1)
2 (0, 1;x, y) = y +

+∞
∑

n=1

(F
(1)
n,2(0, 1;x) + xF

(1)
n−1,2(0, 1;x))y

n+1.

Expanding the sum over n of the right hand side of the previous equation, it comes
that

F
(1)
2 (0, 1;x, y) = y +

+∞
∑

n=1

F
(1)
n,2(0, 1;x)y

n+1 + x

+∞
∑

n=1

F
(1)
n−1,2(0, 1;x)y

n+1.

Or, performing again the change of label n → m = n− 1 in the second sum over n
of the right hand side of the previous equation, after renaming m by n, we have

F
(1)
2 (0, 1;x, y) =y +

+∞
∑

n=1

F
(1)
n,2(0, 1;x)y

n+1 + x

+∞
∑

n=1

F
(1)
n,2(0, 1;x)y

n+2

=y + y
+∞
∑

n=1

F
(1)
n,2(0, 1;x)y

n + xy2
+∞
∑

n=1

F
(1)
n,2(0, 1;x)y

n.
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Using the definition of the generating function F
(1)
2 (0, 1;x, y), we have

F
(1)
2 (0, 1;x, y) = y + yF

(1)
2 (0, 1;x, y) + xy2F

(1)
2 (0, 1;x, y).

Therefore
F
(1)
2 (0, 1;x, y) =

y

1− y − xy2

where

y 6=
{

1 if x = 0
−1±

√
1+4x

2x if x 6= 0

Property 6.4. Let a0, a1 be two integers. We have

F
(1)
n,2(a0, a1;x) = a0F

(1)
n,2(1, 0;x) + a1F

(1)
n,2(0, 1;x), ∀n ≥ 0,

F
(1)
n,2(a0, a1;x) = a0xF

(1)
n−1,2(0, 1;x) + a1F

(1)
n,2(0, 1;x), ∀n ≥ 1.

Proof. Let prove the first part of Property 6.4 by induction on the integer n ≥ 0.

The second part of Property 6.4 follows from Property 6.2. Since F
(1)
0,2 (0, 1;x) = 0

and since F
(1)
0,2 (1, 0;x) = 1, we have

F
(1)
0,2 (a0, a1;x) = a0 = a0F

(1)
0,2 (1, 0;x) + a1F

(1)
0,2 (0, 1;x).

Thus, we verify that the first part of Property 6.4 is true for n = 0. Let assume
that the first part of Property 6.4 is true up to an integer n ≥ 0. Using Definition
6.1, we have (n > 0)

F
(1)
n+1,2(a0, a1;x) = F

(1)
n,2(a0, a1;x) + xF

(1)
n−1,2(a0, a1;x).

Using the assumption, we have (n > 0)

F
(1)
n+1,2(a0, a1;x) =a0F

(1)
n,2(1, 0;x) + a1F

(1)
n,2(0, 1;x)

+ x(a0F
(1)
n−1,2(1, 0;x) + a1F

(1)
n−1,2(0, 1;x)).

Rearranging the different terms of the right hand side of the previous equation,
it gives (n > 0)

F
(1)
n+1,2(a0, a1;x) =a0(F

(1)
n,2(1, 0;x) + xF

(1)
n−1,2(1, 0;x))

+ a1(F
(1)
n,2(0, 1;x) + xF

(1)
n−1,2(0, 1;x)).

Using Definition 6.1, we obtain (n ≥ 0)

F
(1)
n+1,2(a0, a1;x) = a0F

(1)
n+1,2(1, 0;x) + a1F

(1)
n+1,2(0, 1;x).

So, the first part of Property 6.4 is proved by induction on the integer n.
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Remark 6.5. In particular, if a0 = a1 = 1, then using the recurrence relation of

the sequence (F
(1)
n,2(0, 1;x)) (see Definition 6.1), we obtain:

F
(1)
n,2(1, 1;x) = F

(1)
n+1,2(0, 1;x), ∀n ≥ 0.

Property 6.6. Let a0 and a1 be two numbers and let n be a positive integer. We
have (n ≥ 0)

F
(1)
n,2(a0, a1;x) =















a0

2n +
n(a1− a0

2 )
2n−1 if x = − 1

4

(

a0(ϕ(x)−1)+a1

2ϕ(x)−1

)

ϕ(x)n +
(

a0ϕ(x)−a1

2ϕ(x)−1

)

(1− ϕ(x))n if x 6= − 1
4

In particular, we have

F
(1)
n,2(0, 1;x) =







n
2n−1 if x = − 1

4

ϕ(x)n−(1−ϕ(x))n

2ϕ(x)−1 if x 6= − 1
4

F
(1)
n,2(1, 0;x) =











1−n
2n if x = − 1

4

x
(

ϕ(x)n−1−(1−ϕ(x))n−1

2ϕ(x)−1

)

if x 6= − 1
4

where

ϕ(x) =
1 +

√
1 + 4x

2

which verify
ϕ2(x) = ϕ(x) + x

or
ϕ(x)(ϕ(x)− 1) = x

Proof. Property 6.6 can be proved easily by induction or in the same way as Prop-
erty 5.7.

Theorem 6.7. Let a0 and a1 be two numbers and let n and m be two positive
integers. If x 6= − 1

4 , then we have

F
(1)
n,2(a0, a1;x)F

(1)
m+1,2(a0, a1;x) + xF

(1)
n−1,2(a0, a1;x)F

(1)
m,2(a0, a1;x)

= (a0ϕ(x)− a1)
2F

(1)
m+n,2(0, 1;x) + a0(2a1 − a0)ϕ(x)

m+n.

Otherwise, we have

F
(1)
n,2(a0, a1;−1/4)F

(1)
m+1,2(a0, a1;−1/4) + xF

(1)
n−1,2(a0, a1;−1/4)F

(1)
m,2(a0, a1;−1/4)
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=
a20(m+ n− 2)

2m+n+1
− a0a1(m+ n− 1)

2m+n−1
+

(m+ n)a21
2m+n−1

.

In particular, whatever x is, we have

F
(1)
n,2(0, 1;x)F

(1)
m+1,2(0, 1;x) + xF

(1)
n−1,2(0, 1;x)F

(1)
m,2(0, 1;x) = F

(1)
m+n,2(0, 1;x)

Proof. Theorem 6.7 stems from Property 6.6.

Case k = 3
Table of the first polynomial terms of sequence (F

(1)
n,3(0, 0, 1;x))

F
(1)
0,3 (0, 0, 1;x) = 0

F
(1)
1,3 (0, 0, 1;x) = 0

F
(1)
2,3 (0, 0, 1;x) = 1

F
(1)
3,3 (0, 0, 1;x) = 1

F
(1)
4,3 (0, 0, 1;x) = 1

F
(1)
5,3 (0, 0, 1;x) = 1 + x

F
(1)
6,3 (0, 0, 1;x) = 1 + 2x

F
(1)
7,3 (0, 0, 1;x) = 1 + 3x

F
(1)
8,3 (0, 0, 1;x) = 1 + 4x+ x2

Property 6.8. Let n be a non-zero positive integer. For n ≥ 2, we have (n ≥ 2)

F
(1)
n,3(0, 0, 1;x) =

⌊n−2
3 ⌋
∑

k=0

(

n− 2k − 2

k

)

xk

and (n ≥ 2)

F
(1)
n,3(0, 1, 0;x) = xF

(1)
n−2,3(0, 0, 1;x).

Moreover, for n ≥ 1, we have

F
(1)
n,3(1, 0, 0;x) = xF

(1)
n−1,3(0, 0, 1;x).

Proof. Property 6.8 can be proved in the same way as Property 6.2.

Property 6.9. The generating function of the polynomials F
(1)
n,3(0, 0, 1;x) is given

by

F
(1)
3 (0, 0, 1;x, y) =

+∞
∑

n=0

F
(1)
n,3(0, 0, 1;x)y

n =
y2

1− y − xy3

where
1− y − xy3 6= 0.

Proof. Property 6.9 can be proved in the same way as Property 6.3.
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Property 6.10. Let a0, a1, a2 be three integers. We have

F
(1)
n,3(a0, a1, a2;x) = a0F

(1)
n,3(1, 0, 0;x)+a1F

(1)
n,3(0, 1, 0;x)+a2F

(1)
n,3(0, 0, 1;x), ∀n ≥ 0.

Proof. Property 6.10 can be proved in the same way as Property 6.4.

Theorem 6.11. Let m be an integer which is greater than 2 and let n be a non-zero
positive integer. For n ≥ m− 1, we have

F (1)
n,m(0, . . . , 0, 1;x) =

⌊n−m+1
m

⌋
∑

k=0

(

n− (m− 1)(k + 1)

k

)

xk.

Moreover, for n ≥ 1, we have

F (1)
n,m(1, 0, . . . , 0) = xF

(1)
n−1,m(0, . . . , 0, 1;x)

and for n ≥ i with i ∈ {2, . . . ,m− 1} when m > 2, we have

F (1)
n,m(0, . . . , 0i−2, 1i−1, 0i, . . . , 0;x) = xF

(1)
n−i,m(0, . . . , 0, 1;x)

where 0l means al = 0 with l ∈ {i− 2, i} and 1i−1 means ai−1 = 1 in

F (1)
n,m(a0, . . . , ai−2, ai−1, ai, . . . , am−1;x).

Proof. Theorem 6.11 can be proved in the same way as Property 6.2.

Theorem 6.12. Let m be an integer which is greater than 2. The generating

function of the polynomials F
(1)
n,m(0, . . . , 0, 1;x) is given by

F
(1)
m (0, . . . , 0, 1;x, y) =

+∞
∑

n=0

F (1)
n,m(0, . . . , 0, 1;x)yn =

ym−1

1− y − xym

where
1− y − xym 6= 0.

Proof. Theorem 6.12 can be proved in the same way as Property 6.3.

Theorem 6.13. Let m be an integer which is greater than 2 and let a0, a1, . . . , am−1

be m integers. We have

F (1)
n,m(a0, a1, . . . , am−1;x) = a0F

(1)
n,m(1, 0, . . . , 0;x) + a1F

(1)
n,m(0, 1, 0, . . . , 0;x)

+ · · ·+ am−1F
(1)
n,m(0, . . . , 0, 1;x), ∀n ≥ 0.

Proof. Theorem 6.13 can be proved in the same way as Property 6.4.
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Definition 6.14. Let k be an integer which is greater than 2 and let a0, . . . , ak−1

be k numbers.
The polynomial sequence (F

(2)
n,k(a0, . . . , ak−1;x)) in one indeterminate x is de-

fined by (k ≥ 2)

F
(2)
n,k(a0, . . . , ak−1;x) = xF

(2)
n−1,k(a0, . . . , ak−1;x) + F

(2)
n−k,k(a0, . . . , ak−1;x), ∀n ≥ k

with
F

(2)
i,k (a0, . . . , ak−1;x) = ai, ∀ i ∈ {0, . . . , k − 1}.

The k-Fibonacci numbers sequence (Fn,k(a0, . . . , ak−1)) with initial conditions
a0, . . . , ak−1 are obtained from this polynomial sequence by substituting x by 1 in the

sequence (F
(2)
n,k(a0, . . . , ak−1;x)). This polynomial sequence is called the k-Fibonacci

polynomial sequence of the second kind with initial conditions a0, . . . , ak−1.

Case k = 2
Table of the first polynomial terms of sequence (F

(2)
n,2(0, 1;x))

F
(2)
0,2 (0, 1;x) = 0

F
(2)
1,2 (0, 1;x) = 1

F
(2)
2,2 (0, 1;x) = x

F
(2)
3,2 (0, 1;x) = x2 + 1

F
(2)
4,2 (0, 1;x) = x3 + 2x = x(x2 + 2)

F
(2)
5,2 (0, 1;x) = x4 + 3x2 + 1

F
(2)
6,2 (0, 1;x) = x5 + 4x3 + 3x

Table of the first polynomial terms of sequence (F
(2)
n,2(1, 0;x))

F
(2)
0,2 (1, 0;x) = 1

F
(2)
1,2 (1, 0;x) = 0

F
(2)
2,2 (1, 0;x) = 1

F
(2)
3,2 (1, 0;x) = x

F
(2)
4,2 (1, 0;x) = x2 + 1

F
(2)
5,2 (1, 0;x) = x3 + 2x = x(x2 + 2)

F
(2)
6,2 (1, 0;x) = x4 + 3x2 + 1

Property 6.15. Let n be an integer which is greater than 2. We have (n ≥ 2):

F
(2)
n,2(1, 0;x) =

⌊n−2
2 ⌋
∑

k=0

(

n− k − 2

k

)

xn−2k−2

and (n ≥ 0)

F
(2)
n,2(0, 1;x) = F

(2)
n+1,2(1, 0;x)
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or (n ≥ 1)

F
(2)
n−1,2(0, 1;x) = F

(2)
n,2(1, 0;x).

Proof. Let us prove the first part of Property 6.15 by induction on the integer n ≥ 2.
We have

F
(2)
2,2 (1, 0;x) = 1 =

0
∑

k=0

(

2− k − 2

k

)

x2−2k−2.

Thus, we verify that Property 6.15 is true for n = 2. Let assume that Property 6.15
is true up to an integer n ≥ 2. Using Definition 6.14, we have (n ≥ 1)

F
(2)
n+1,2(1, 0;x) = xF

(2)
n,2(1, 0;x) + F

(2)
n−1,2(1, 0;x).

So, using the assumption, it comes that

F
(2)
n+1,2(1, 0;x) =

⌊n−2
2 ⌋
∑

k=0

(

n− k − 2

k

)

xn−2k−1 +

⌊n−3
2 ⌋
∑

k=0

(

n− k − 3

k

)

xn−2k−3.

Performing the change of label k → m = k + 1, after renaming m by k, we have

F
(2)
n+1,2(1, 0;x) =

⌊n−2
2 ⌋
∑

k=0

(

n− k − 2

k

)

xn−2k−1 +

⌊n−1
2 ⌋
∑

k=1

(

n− k − 2

k − 1

)

xn−2k−1

=xn−1 +

⌊n−2
2 ⌋
∑

k=1

(

n− k − 2

k

)

xn−2k−1 +

⌊n−1
2 ⌋
∑

k=1

(

n− k − 2

k − 1

)

xn−2k−1.

Or

⌊n− 1

2
⌋ =







⌊n−2
2 ⌋ if n ≡ 0 (mod 2)

⌊n−2
2 ⌋+ 1 if n ≡ 1 (mod 2)

If n is even, then we have

F
(2)
n+1,2(1, 0;x) = xn−1 +

⌊n−1
2 ⌋
∑

k=1

{(

n− k − 2

k

)

+

(

n− k − 2

k − 1

)}

xn−2k−1.

Using the combinatorial identity
(

n− k − 2

k

)

+

(

n− k − 2

k − 1

)

=

(

n− k − 1

k

)

we obtain (n even)

F
(2)
n+1,2(1, 0;x) =xn−1 +

⌊n−1
2 ⌋
∑

k=1

(

n− k − 1

k

)

xn−2k−1

=

⌊n−1
2 ⌋
∑

k=0

(

n− k − 1

k

)

xn−2k−1 =

⌊n+1−2
2 ⌋
∑

k=0

(

n+ 1− k − 2

k

)

xn+1−2k−2.
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If n is odd, then we have

F
(2)
n+1,2(1, 0;x) = xn−1 +

⌊n−2
2 ⌋
∑

k=1

{(

n− k − 2

k

)

+

(

n− k − 2

k − 1

)}

xn−2k−1

+

(

n− ⌊n−1
2 ⌋ − 2

⌊n−1
2 ⌋ − 1

)

xn−2⌊n−1
2 ⌋−1.

Using again the combinatorial identity
(

n− k − 2

k

)

+

(

n− k − 2

k − 1

)

=

(

n− k − 1

k

)

it gives (n odd)

F
(2)
n+1,2(1, 0;x) = xn−1+

⌊n−2
2 ⌋
∑

k=1

(

n− k − 1

k

)

xn−2k−1+

(

n− ⌊n−1
2 ⌋ − 2

⌊n−1
2 ⌋ − 1

)

xn−2⌊n−1
2 ⌋−1.

Or (k > 0)
(

n− k − 1

k

)

=
n− k − 1

k

(

n− k − 2

k − 1

)

and

n− 1 =







2⌊n−1
2 ⌋+ 1 if n ≡ 0 (mod 2)

2⌊n−1
2 ⌋ if n ≡ 1 (mod 2)

In particular, when n is odd, we have n−1 = 2⌊n−1
2 ⌋ and so n−⌊n−1

2 ⌋−1 = ⌊n−1
2 ⌋.

Accordingly, we have

(

n− ⌊n−1
2 ⌋ − 2

⌊n−1
2 ⌋ − 1

)

=

(

n− ⌊n−1
2 ⌋ − 1

⌊n−1
2 ⌋

)

.

So, if n is odd (n > 2), then we have

F
(2)
n+1,2(1, 0;x) =xn−1 +

⌊n−2
2 ⌋
∑

k=1

(

n− k − 1

k

)

xn−2k−1 +

(

n− ⌊n−1
2 ⌋ − 1

⌊n−1
2 ⌋

)

xn−2⌊n−1
2 ⌋−1

=xn−1 +

⌊n−1
2 ⌋
∑

k=1

(

n− k − 1

k

)

xn−2k−1

=

⌊n−1
2 ⌋
∑

k=0

(

n− k − 1

k

)

xn−2k−1 =

⌊n+1−2
2 ⌋
∑

k=0

(

n+ 1− k − 2

k

)

xn+1−2k−2.

So, the first part of Property 6.15 is proved by induction on the integer n ≥ 2.
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Let us prove the second part of Property 6.15 by induction on the integer n ≥ 0.
We have

F
(2)
0,2 (0, 1;x) = 0 = F

(2)
1,2 (1, 0;x).

Thus, we verify that the second part of Property 6.15 is true for n = 0. Let assume
that Property 6.15 is true up to an integer n ≥ 0. Using Definition 6.14, we have
(n ≥ 1)

F
(2)
n+1,2(0, 1;x) = xF

(2)
n,2(0, 1;x) + F

(2)
n−1,2(0, 1;x).

Using the assumption, it gives (n ≥ 0)

F
(2)
n+1,2(0, 1;x) = xF

(2)
n+1,2(1, 0;x) + F

(2)
n,2(1, 0;x).

Using again Definition 6.14, we get (n ≥ 0)

F
(2)
n+1,2(0, 1;x) = F

(2)
n+2,2(1, 0;x).

So, the second part of Property 6.15 is proved by induction on the integer n ≥ 0.

Property 6.16. The generating function of the polynomials F
(2)
n,2(1, 0;x) is given

by

F
(2)
2 (1, 0;x, y) =

+∞
∑

n=0

F
(2)
n,2(1, 0;x)y

n =
1− xy

1− xy − y2

where

y 6= −x±
√
x2 + 4

2
.

Proof. The generating function of the polynomials F
(2)
n,2(1, 0;x) is defined by:

F
(2)
2 (1, 0;x, y) =

+∞
∑

n=0

F
(2)
n,2(1, 0;x)y

n.

Since F
(2)
0,2 (1, 0;x) = 1 and since F

(2)
1,2 (1, 0;x) = 0, we have

F
(2)
2 (1, 0;x, y) = 1 +

+∞
∑

n=2

F
(2)
n,2(1, 0;x)y

n.

Using Definition 6.14, we have

F
(2)
2 (1, 0;x, y) =1 +

+∞
∑

n=2

(xF
(2)
n−1,2(1, 0;x) + F

(2)
n−2,2(1, 0;x))y

n

=1 + x

+∞
∑

n=2

F
(2)
n−1,2(1, 0;x)y

n +

+∞
∑

n=2

F
(2)
n−2,2(1, 0;x)y

n.
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Or
+∞
∑

n=2

F
(2)
n−1,2(1, 0;x)y

n =

+∞
∑

n=1

F
(2)
n,2(1, 0;x)y

n+1

where we performed the change of label n → m = n − 1 and after we renamed m
by n. Moreover, we have

+∞
∑

n=2

F
(2)
n−2,2(1, 0;x)y

n =

+∞
∑

n=0

F
(2)
n,2(1, 0;x)y

n+2

where we performed the change of label n → l = n − 2 and after we renamed l by
n. It results that

F
(2)
2 (1, 0;x, y) =1 + xy

+∞
∑

n=1

F
(2)
n,2(1, 0;x)y

n + y2
+∞
∑

n=0

F
(2)
n,2(1, 0;x)y

n

=1 + xy(F
(2)
2 (1, 0;x, y)− 1) + y2F

(2)
2 (1, 0;x, y).

Therefore

F
(2)
2 (1, 0;x, y) =

1− xy

1− xy − y2

where

y 6= −x±
√
x2 + 4

2
.

Property 6.17. Let a0, a1 be two integers. We have

F
(2)
n,2(a0, a1;x) = a0F

(2)
n,2(1, 0;x) + a1F

(2)
n,2(0, 1;x), ∀n ≥ 0

F
(2)
n,2(a0, a1;x) = a0F

(2)
n,2(1, 0;x) + a1F

(2)
n+1,2(1, 0;x), ∀n ≥ 0.

Proof. Let us prove the first part of Property 6.17 by induction on the integer n ≥ 0.

The second part of Property 6.17 follows from Property 6.15. Since F
(2)
0,2 (1, 0;x) = 1

and since F
(2)
0,2 (0, 1;x) = 0, we have

F
(2)
0,2 (a0, a1;x) = a0 = a0F

(2)
0,2 (1, 0;x) + a1F

(2)
0,2 (0, 1;x).

Thus, we verify that the first part of Property 6.17 is true for n = 0. Let us assume
that the first part of Property 6.17 is true up to an integer n ≥ 0. Using Definition
6.14, we have

F
(2)
n+1,2(a0, a1;x) = xF

(2)
n,2(a0, a1;x) + F

(2)
n−1,2(a0, a1;x).
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Using the assumption, we have

F
(2)
n+1,2(a0, a1;x) =x(a0F

(2)
n,2(1, 0;x) + a1F

(2)
n,2(0, 1;x))

+ a0F
(2)
n−1,2(1, 0;x) + a1F

(2)
n−1,2(0, 1;x).

Rearranging the different terms in the right hand side of the previous equation,
it gives

F
(2)
n+1,2(a0, a1;x) =a0(xF

(2)
n,2(1, 0;x) + F

(2)
n−1,2(1, 0;x))

+ a1(xF
(2)
n,2(0, 1;x) + F

(2)
n−1,2(0, 1;x)).

Using again Definition 6.14, we get

F
(2)
n+1,2(a0, a1;x) = a0F

(2)
n+1,2(1, 0;x) + a1F

(2)
n+1,2(0, 1;x).

So, the first part of Property 6.17 is proved by induction on the integer n ≥ 0.

Property 6.18. Let a0 and a1 be two numbers and let n be a positive integer. We
have (n ≥ 0)

F
(2)
n,2(a0, a1;x) =











na1
(

x
2

)n−1 − (n− 1)a0
(

x
2

)n
if x = ±2i

(

a0(g(x)−x)+a1

2g(x)−x

)

g(x)n +
(

a0g(x)−a1

2g(x)−x

)

(x− g(x))n if x 6= ±2i

In particular, we have

F
(2)
n,2(0, 1;x) =











n
(

x
2

)n−1
if x = ±2i

g(x)n−(x−g(x))n

2g(x)−x if x 6= ±2i

F
(2)
n,2(1, 0;x) =











(1− n)
(

x
2

)n
if x = ±2i

g(x)n−1−(x−g(x))n−1

2g(x)−x if x 6= ±2i

where

g(x) =
x+

√
x2 + 4

2

which verify

g(x)2 = xg(x) + 1 g(x)(g(x)− x) = 1.

We have also

g(x)2 + 1 = g(x)(2g(x)− x) (x− g(x))2 + 1 = −(x− g(x))(2g(x)− x).
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Proof. Property 6.18 can be proved easily by induction or in the same way as
Property 5.7.

Theorem 6.19. Let a0 and a1 be two numbers and let n and m be two positive
integers. If x 6= ±2i, then we have

F
(2)
n,2(a0, a1;x)F

(2)
m+1,2(a0, a1;x) + F

(2)
n−1,2(a0, a1;x)F

(2)
m,2(a0, a1;x)

= (a0g(x)− a1)
2F

(2)
m+n,2(0, 1;x) + a0(2a1 − a0x)g(x)

m+n.

Otherwise, we have

F
(2)
n,2(a0, a1;x)F

(1)
m+1,2(a0, a1;x) + F

(2)
n−1,2(a0, a1;x)F

(2)
m,2(a0, a1;x)

= (m+ n− 2)a20

(x

2

)m+n+1

− 2(m+ n− 1)a0a1

(x

2

)m+n

+ (m+ n)a21

(x

2

)m+n−1

.

In particular, whatever x is, we have

F
(2)
n,2(0, 1;x)F

(2)
m+1,2(0, 1;x) + xF

(2)
n−1,2(0, 1;x)F

(2)
m,2(0, 1;x) = F

(2)
m+n,2(0, 1;x).

Proof. Theorem 6.19 stems from Property 6.18.

Case k = 3
Table of the first polynomial terms of sequence (F

(2)
n,3(1, 0, 0;x))

F
(2)
0,3 (1, 0, 0;x) = 1

F
(2)
1,3 (1, 0, 0;x) = 0

F
(2)
2,3 (1, 0, 0;x) = 0

F
(2)
3,3 (1, 0, 0;x) = 1

F
(2)
4,3 (1, 0, 0;x) = x

F
(2)
5,3 (1, 0, 0;x) = x2

F
(2)
6,3 (1, 0, 0;x) = 1 + x3

F
(2)
7,3 (1, 0, 0;x) = 2x+ x4 = x(2 + x3)

F
(2)
8,3 (1, 0, 0;x) = 3x2 + x5 = x2(3 + x3)

Property 6.20. Let n be an integer which is greater than 2. We have (n ≥ 3):

F
(2)
n,3(1, 0, 0;x) =

⌊n−3
3 ⌋
∑

k=0

(

n− 2k − 3

k

)

xn−3k−3

and (n ≥ 0)

F
(2)
n,3(0, 0, 1;x) = F

(2)
n+1,3(1, 0, 0;x) = F

(2)
n+2,3(0, 1, 0;x).
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Proof. Property 6.20 can be proved in the same way as Property 6.15.

Property 6.21. The generating function of the polynomials F
(2)
n,3(1, 0, 0;x) is given

by:

F
(2)
3 (1, 0, 0;x, y) =

+∞
∑

n=0

F
(2)
n,3(1, 0, 0;x)y

n =
1− xy

1− xy − y3

where
1− xy − y3 6= 0.

Proof. Property 6.21 can be proved in the same way as Property 6.16.

Property 6.22. Let a0, a1, a2 be three integers. We have

F
(2)
n,3(a0, a1, a2;x) = a0F

(2)
n,3(1, 0, 0;x)+a1F

(2)
n,3(0, 1, 0;x)+a2F

(2)
n,2(0, 0, 1;x), ∀n ≥ 0.

Theorem 6.23. Let m be an integer which is greater than 2 and let n be a non-zero
positive integer. For n ≥ m, we have

F (2)
n,m(1, 0, . . . , 0;x) =

⌊n−m
m

⌋
∑

k=0

(

n− (m− 1)k −m

k

)

xn−m(k+1).

Moreover, for n ≥ 0, we have

F
(2)
n+1,m(1, 0, . . . , 0) = F (2)

n,m(0, . . . , 0, 1;x)

and for n ≥ 0 with i ∈ {2, . . . ,m− 1} when m > 2, we have

F
(2)
n+i,m(0, . . . , 0i−2, 1i−1, 0i, . . . , 0;x) = F (2)

n,m(0, . . . , 0, 1;x)

where 0l means al = 0 with l ∈ {i− 2, i} and 1i−1 means ai−1 = 1 in

F (2)
n,m(a0, . . . , ai−2, ai−1, ai, . . . , am−1;x).

Proof. Theorem 6.23 can be proved in the same way as Property 6.15.

Theorem 6.24. Let m be an integer which is greater than 2. The generating

function of the polynomials F
(2)
n,m(1, 0, . . . , 0;x) is given by

F
(2)
m (1, 0, . . . , 0;x, y) =

+∞
∑

n=0

F (2)
n,m(1, 0, . . . , 0;x)yn =

1− xy

1− xy − ym

where
1− xy − ym 6= 0.

Proof. Theorem 6.24 can be proved in the same way as Property 6.3.
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Theorem 6.25. Let m be an integer which is greater than 2 and let a0, a1, . . . , am−1

be m integers. We have

F (2)
n,m(a0, a1, . . . , am−1;x) = a0F

(2)
n,m(1, 0, . . . , 0;x) + a1F

(2)
n,m(0, 1, 0, . . . , 0;x)

+ . . .+ am−1F
(2)
n,m(0, . . . , 0, 1;x), ∀n ≥ 0.

Proof. Theorem 6.25 can be proved in the same way as Property 6.4.

The results presented in this section can be related to other class of sequences
as in [4].
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