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Abstract
A variation of the Zamolodchikov–Faddeev algebra over a finite-dimensional Hilbert
spaceH and an involutive unitary R-Matrix S is studied. This algebra carries a natural
vacuum state, and the corresponding Fock representation spaces FS(H) are shown to
satisfyFS�R(H⊕K) ∼= FS(H)⊗FR(K), where S�R is the box-sumof S (onH⊗H)
and R (on K ⊗K). This analysis generalises the well-known structure of Bose/Fermi
Fock spaces and a recent result of Pennig. These representations are motivated from
quantum field theory (short-distance scaling limits of integrable models).

Keywords Yang-Baxter · Representation theory · GNS construction · Fock space ·
R-Matrices · Zamolodchikov-Faddeev algebra

Mathematics Subject Classification 16T25 · 16G99 · 30H20
1 Introduction

The Zamolodchikov–Faddeev algebras were introduced by the Zamolodchikov and
Faddeev as a tool to describe integrable quantum field theories in which the full S-
matrix factorises into products of 2-particle S-matrices [8,25]. These algebras (called
ZFalgebras for short) are generated by “creation” and “annihilation” operators obeying
quadratic exchange relations given by the 2-particle S-matrix. ZF algebras generalise
the familiar CCR and CAR algebras [3] and are closely related to Wick algebras that
allow normal ordering [11]. Hilbert space representations of ZF algebras are of central
importance in integrable quantum field theory (see, for example, [1,5,14,18,24] for a
few sample publications from a very large body of literature) as well as in other fields
such as q-deformations [20,22] or anyonic statistics [15].
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The central datum defining the relations in a ZF algebra is a solution of the Yang–
Baxter equation. In the QFT context, this solution plays the role of elastic two-particle
scattering matrix and depends on a spectral parameter (rapidity), i.e. it is a matrix-
valued function R � θ �→ S(θ) ∈ End(H ⊗ H), where H is a finite-dimensional
Hilbert space.

The present work has its background in an ongoing research project about short-
distance scaling limits of integrable quantum field theories on two-dimensional
Minkowski space [23]. At finite scale, the QFTs that we have in mind are spec-
ified in an inverse scattering approach in terms of a mass parameter m > 0
and a Fock (vacuum) representation of the ZF algebra given by a two-particle S-
matrix R � θ �→ S(θ) ∈ End(H ⊗ H), subject to the usual constraints of unitarity,
Poincaré invariance,Hermitian analyticity, and crossing symmetry.Under suitable reg-
ularity assumptions, a quantum field theory which has S as its two-particle S-matrix
exists and can be constructed in the framework of algebraic quantum field theory [10]
from m and S alone, without reference to a Lagrangian (see [14] for a review of this
construction).

It is then an interesting question to study the conformal chiral short-distance scaling
limit of these theories, generalising previous work on scalar (meaningH = C) models
[2]. In our inverse scattering approach, field operators that are localised in Rindler
wedges can be constructed explicitly in terms of the Fock representation of the ZF
algebra, but the physical fields are characterised only indirectly. Hence, it is not clear
for which S the scaling limit exists as a local QFT or what its properties are (although
this is investigated in many specific models [9]).

It is known, however, that existence of the two limits S± := limθ→±∞ S(θ) is a
necessary condition for the existence of the scaling limit, and local chiral fields have
to satisfy specific commutation relations with representations (of the symmetric or
braid groups) derived from S±. Furthermore, the value S0 := S(0) of the S-matrix at
zero rapidity transfer determines the (anti-)commutation relations between the chiral
theories on the two opposite lightrays. Thus the three θ -independent unitary solutions
S0, S+, S− of the Yang–Baxter equation (we will refer to unitary solutions to the
Yang–Baxter equation as “R-matrices” in this article) derived from S govern essential
properties of the scaling limit theories.

This motivates a closer study of representations of ZF algebras built from R-
matrices, which is the subject of this article. The properties of two-particle S-matrices
imply that S0 is involutive (meaning S20 = 1) and S∗+ = S−. In many examples (such
as diagonal S-matrices or the S-matrix of the O(N ) sigma models), the limits S±
are involutive as well. Although our arguments in this article are completely inde-
pendent of QFT models, we take this physical background into account and mostly
consider ZF algebras built from involutiveR-matrices. This enables us to use and apply
recently established tools and results about the mathematical structure of the space of
all involutive R-matrices [16], denoted R0(H) for base space H.

In Sect. 2, we define ZF algebras as abstract unital ∗-algebras and their natural
normalised vacuum functional ω. Section 3 is then devoted to an analysis of Fock
representations. If ω is positive as a functional (hence a state), these Fock representa-
tions coincide with the representations given by the general Gelfand–Naimark–Segal
(GNS) construction applied to the ZF algebra w.r.t. ω. However, in general it is not
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initially clear that ω is positive, and an independent construction has to be given. We
do this by adapting a concrete representation known from quantum field theory to our
setting and verify the GNS property afterwards (Theorem 3.4). Given the ZF algebra
based on an involutive R-matrix S ∈ R0(H), this provides us with an S-symmetric
Fock representation space FS(H). For special choices of S, this coincides with the
Bose or Fermi Fock space over H.

In Sects. 4 and 5, we study the dependence of FS(H) on S. Adopting the box-
sum operation � on

⋃
HR0(H) from [16] (which yields R � S ∈ R0(H ⊕ K) for

R ∈ R0(H), S ∈ R0(K)), we prove

FR�S(H ⊕ K) ∼= FR(H) ⊗ FS(K) (1.1)

in Theorem 5.3 as our main result. It is interesting to note that for the case that all
resulting Fock spaces are finite-dimensional (which requires R, S to have “Fermionic”
behaviour), such an isomorphism was recently proven by Pennig [21] with quite dif-
ferent methods as part of his classification of polynomial exponential functors on the
category of finite-dimensional Hilbert spaces. As required for applications in quantum
field theory, our result holds for infinite-dimensional Fock spaces and does not only
give an isomorphism of Hilbert spaces, but also an isomorphism of representations of
ZF algebras.

Isomorphism (1.1) is of particular interest because up to a natural notion of equiv-
alence, every involutive R-matrix can be written as an iterated box-sum of finitely
many very simple (±1) R-matrices [16]. In the QFT context, these correspond to free
field theories, and the resulting decomposition of the Fock spaces and representations
of ZF algebras could turn out to be a tool to investigate whether the scaling limit is
isomorphic to a free field theory. As a first step in this direction, we investigate in
Sect. 5 under which conditions we may identify our Fock representation with tensor
products of simpler ones, providing examples and counterexamples.

Applications of our findings to the mentioned quantum field theoretic models and
an analysis of their short-distance scaling limits will appear in a future work.

2 An abstract ZF algebra

We begin by abstractly defining a variation of the well-known Zamolodchikov–
Faddeev algebra [8,25]. Let L be a (separable) Hilbert space and S be a set of
d4 (d ∈ N) complex numbers whose elements are labelled by symbols Sαβ

δγ where
α, β, δ, γ ∈ {1, . . . , d}. We then define the unital ∗-algebra Z(S,L) as the algebra
generated by the symbols 1Z(S,L), Z1( f ), Z2( f ), . . . , Zd( f ) for all f ∈ L which
obey the following exchange relations:

Zα( f )Zβ(g) = Sβα
δγ Zγ (g)Zδ( f ), (2.1)

Zα( f )Z∗
β(g) = Sαγ

βδ Z
∗
γ (g)Zδ( f ) + δα

β · 〈 f , g〉L1Z(S,L), (2.2)
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where we understand that the repeated indices in an expression imply the sum over all
possible values (Einstein summation convention).

We may view S as a linear map over the tensor square of a Hilbert space H of
dimension d. Then the numbers Sαβ

δγ can be viewed as the matrix elements 〈eα ⊗
eβ, S(eδ ⊗ eγ )〉, where (eα)

dH
α=1 is an orthonormal basis ofH.

A class of algebras related toZFalgebras, the so-calledWickalgebras, are definedby
omitting (2.2) from the definition. Their representations have been studied in [6,11,12].

At this stage it is not at all clear whether or not there exist Hilbert space represen-
tations of Z(S,L)—for example, in [11, p. 18] it is shown that for certain choices
of S the corresponding Wick algebra admits no Hilbert space representations. As we
will see, under certain assumptions on S a GNS representation of Z(S,L) can be
constructed.

The notion of Wick ordering (sometimes also known as “normal” ordering) is a
prolific and useful concept in the analysis of these algebras. To write an element
X ∈ Z(S,L) in Wick ordered form means to apply the governing relation (2.2) such
that X becomes of the form

∑

η,ξ

ζη,ξ Z
∗
η( fη)Zξ (gξ ) (2.3)

where ζη,ξ ∈ C. The multi-index notation we have adopted here can be read as, for
example,

Z∗
η( fη) = Z∗

η1
( fη1)Z

∗
η2

( fη2) · · · Z∗
ηN

( fηN ),

where all fηn ∈ L and |η| = N ∈ N0 and in case |η| = 0, we take Z∗
η( fη) = 1Z(S,L).

We also remark that for the case of |η| = |ξ | = 0 we have just a multiple of the identity
in (2.3). Every element of Z(S,L) can be written in Wick ordered form. The Wick
ordered form is typically not unique as we may exchange any two Z or Z∗ elements
in the expression using (2.1). However, the term with |η| = |ξ | = 0 is unique.

This discussion facilitates the definition of a linear functional over Z(S,L) and in
particular proves it to be uniquely defined by the properties specified in the following
definition.

Definition 2.1 We define a normalised linear functional ω : Z(S,L) → C by the
properties

(i)

ω(1Z(S,L)) = 1, (2.4)

(ii)

ω(Z∗
α( f ) · X) = 0, (2.5)

123



Fock representations of ZF algebras and R-matrices 1627

(iii)

ω(X · Zα( f )) = 0, (2.6)

for all α ∈ {1, . . . , d}, f ∈ L any X ∈ Z(S,L).

Defining a second functional as λ(X) := ω(X∗) and applying uniqueness, we see
that ω is Hermitian, but it is not necessarily positive.

Example 2.2 We consider here some simple examples of Z(S,L).
If we take first Sβα

δγ = ±δα
δ δ

β
γ , where δ is the Kronecker delta, relations (2.1) and

(2.2) now read (for f , g ∈ L)

Zα( f )Zβ(g) = ±Zβ(g)Zα( f ), (2.7)

Zα( f )Z∗
β(g) = ±Z∗

β(g)Zα( f ) + δα
β · 〈 f , g〉L (2.8)

Choosing an orthonormal basis (eα)dα=1 of Cd , one realises that the elements a(·)
defined as a(eα ⊗ f ) := Zα( f ) satisfy the governing relations of the CCR(Cd ⊗ L)

(+) and CAR(Cd ⊗ L) (−) algebras [3,7], respectively. We will note more on their
representations in the next section. If we instead take Sαβ

δγ = −δα
δ δ

β
γ , the governing

relations become

Zα( f )Zβ(g) = −Zα(g)Zβ( f ) (2.9)

Zα( f )Z∗
β(g) = δα

β

(

−
∑

δ

Z∗
δ (g)Zδ( f ) + 1Z(1,L)

)

. (2.10)

This example is interesting in the context of Fock representations (which we will
discuss in the next section), but for now we simply note that this example is also
explored for the case ofL = C in [11, p. 48] in aWick algebraic setting as a “degenerate
case”.

3 Fock representations

We now consider (pre-)Hilbert space representations of Z(S,L). To this end, we take
the tensor product H̃ := H ⊗ L (we reserve the notation of the tilde signifying the
tensor product with L) of a Hilbert space H (of finite dimension dH) and the second
internal space L for which we do not specify (or require) finite dimensionality. As
mentioned previously, we may fix an orthonormal basis (eα)

dH
α=1 of H and view the

parameters Sαβ
δγ in (2.1,2.2) as the matrix elements Sαβ

δγ = 〈eα ⊗ eβ, S(eδ ⊗ eγ )〉 of a
linear map S : H ⊗ H → H ⊗ H.

As discussed in Introduction, construction in quantum field theory motivates us to
consider the case that S solves the Yang–Baxter equation and is involutive. Note that
S solving the Yang–Baxter equation implies that Z(S,L) is associative.
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Definition 3.1 Let H be a Hilbert space. An involutive R-matrix on H is a unitary,
involutive map S ∈ B(H ⊗ H) that solves the Yang–Baxter equation. That is

S = S∗ = S−1,

(S ⊗ 1H) (1H ⊗ S) (S ⊗ 1H) = (1H ⊗ S) (S ⊗ 1H) (1H ⊗ S) . (3.1)

We also denote by R0(H) the set of all involutive R-matrices onH.

We will mostly be interested in the case whereH is finite-dimensional (which we will
always explicitly state), otherwise we always take H to be separable.

Before beginning the discussion of representations of Z(S,L), it is necessary to
extend the definition of S to involve the space L and to do so we introduce the unitary
operator Un : (H ⊗ L)⊗n → H⊗n ⊗ L⊗n defined by

Un

(
n⊗

i=1

(hi ⊗ fi )

)

=
(

n⊗

i=1

hi

)

⊗
(

n⊗

i=1

fi

)

, hi ∈ H, fi ∈ L. (3.2)

We can easily see that Un is unitary from the above expression and it can be
thought of as “disentangling” contributions from both Hilbert spaces, which induces
an isomorphism between the domain and codomain of Un ; hence, we will explicitly
describe data acting only onH⊗n ⊗L⊗n in this section. Employing the bounded linear
operator B(L ⊗ L) � F := FL (the tensor flip), we write

SF := S ⊗ F : H⊗2 ⊗ L⊗2 → H⊗2 ⊗ L⊗2,

which one readily checks is still unitary, involutive and a solution to the Yang–Baxter
equation. Though this is the explicit operator used in the construction, the interest is
mostly in the contributions from S, and so we will avoid using SF in further notation
where possible.

We would like to consider the GNS representation of Z(S,L) with respect to
the functional ω, but at this stage it is unclear whether ω is positive. Instead, we will
independently construct a representation ofZ(S,L) and show it has theGNS property.

We choose an orthonormal basis (eα)
dH
α=1 of H and also make use of multi-index

notation where we take eα ∈ H⊗n to mean eα1 ⊗ · · · ⊗ eαn .
Let S ∈ R0(H), then we recall the structure of a Hilbert space representation of

Z(S,L) as laid in a field theoretic setting in [17]. Denote by Sk,n := 1⊗(k−1) ⊗ S ⊗
1⊗(n−k−1) (where S(eα ⊗ eβ) = Sγ δ

αβeγ ⊗ eδ) then we construct unitary operators on
H⊗n ⊗ L⊗n :

DS
n (τi ) = Si,n ⊗ Fi (3.3)

where τi ∈ Sn (the symmetric group of n letters) is a transposition, swapping nearest
neighbour i and (i + 1)th elements. It is straightforward to see that these operators
generate a unitary representation of Sn on H⊗n ⊗ L⊗n , and then we can define an
orthogonal projection [17] by taking their mean:
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Fock representations of ZF algebras and R-matrices 1629

PS
n := 1

n!
∑

π∈Sn

DS
n (π) ∈ B(H⊗n ⊗ L⊗n). (3.4)

Define now the spaces

H̃n := U∗
n P

S
n UnH̃⊗n

then the S-symmetrised Fock space is given by

FS(H̃) :=
⊕

n≥0

H̃n .

For (3.3) to be a unitary representation of Sn , involutivity of S is a crucial
property. Dropping involutivity, unitary R-matrices only give representations of the
Braid groups. The concept of an S-symmetric Fock space can be generalised to non-
involutive S [19], but it won’t play a role in the current work.

On this space, we have a vacuum vector S = 1 ⊕ 0 ⊕ ..., and a dense subspace
F0
S (H̃) (consisting of vectors of “finite particle” number, meaning they are terminating

direct sums of elements in increasing tensor powers). There is a natural unitaryU from
FS(H̃) to the “disentangled Fock space”

⊕
n P

S
n (H⊗n⊗L⊗n) =: ⊕

n Dn(H̃), namely
U = ⊕

n Un is the second quantisation of the unitaries Un (3.2). We may therefore
treat operators on FS(H̃) and UFS(H̃) on the same footing. To discuss the Fock
representation of Z(S,L), it is more convenient to work on the latter space, and we
define

z∗S(eξ ⊗ g)vn ⊗ fn := √
n + 1PS

n+1

(
eξ ⊗ vn ⊗ g ⊗ fn

)
, (3.5a)

zS(eξ ⊗ g) := (
z∗S(eξ ⊗ g)

)∗
, (3.5b)

for vn ∈ H⊗n, fn ∈ L⊗n, g ∈ L.

Remark 3.2 We can write the explicit action of zS in terms of the scalar product on
H̃n by

〈wn−1 ⊗ hn−1, zS(eξ ⊗ g)vn ⊗ fn〉 = √
n〈eξ ⊗ wn−1 ⊗ g ⊗ hn−1, vn ⊗ fn〉,

zS(eξ ⊗ g)S = 0,

for wn−1 ⊗ hn−1 ∈ H⊗(n−1) ⊗ L⊗(n−1). These operators then restrict to the sym-
metrised spaces Dn(H̃). In bra-ket notation, (3.5a) simply reads

zS(eξ ⊗ g)vn ⊗ fn = √
n〈eξ ⊗ g|vn ⊗ fn . (3.6)

We have defined z∗S, zS with basis vectors of H as arguments; however, we can
extend the definition to operators z∗S(ψ), ψ ∈ H̃ by linearity in their arguments (care
to be taken when doing the same to zS as it is anti-linear in its argument).

For ease of notation, we will use the shorthand zS(eα ⊗ g) = zS,α(g), and the
polynomial algebra generated by all zS,α( f ), z∗S,β(g), 1H̃ we will denote by PS .
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Proposition 3.3 The vacuum vector S is cyclic for the algebra PS, that is, PSS ⊂
UFS(H̃) is dense.

Proof Let ψ ∈ FS(H̃) such that ψ is orthogonal to PS. For any n ∈ N0, and vectors
f1, . . . , fn ∈ L, α1, . . . , αn ∈ {1, . . . , dH} we then have

0 = 〈ψ, z∗S,α1
( f1) · · · z∗S,αn

( fn)S〉
= √

n!〈ψ, PS
n (eα1 ⊗ · · · ⊗ eαn ⊗ f1 ⊗ · · · ⊗ fn)〉

= √
n!〈ψ, eα1 ⊗ · · · ⊗ eαn ⊗ f1 ⊗ · · · ⊗ fn〉

where we have used that the projection PS
n is self-adjoint and leaves the symmetrised

vector ψ invariant. Since vectors of the form eα1 ⊗ · · · ⊗ eαn ⊗ f1 ⊗ · · · ⊗ fn form a
total set inH⊗n ⊗ L⊗n , we conclude that ψ = 0. Thus S is cyclic for PS . ��
Before moving to the next result, we note specific elements ofSn as they will play an
important role in the following proof—define σn := τn−1τn−2...τ1 ∈ Sn which acts
by taking the first element and moving it to the n-th position.

Theorem 3.4 Let H be a finite-dimensional Hilbert space and S ∈ R0(H). Then the
map πS : Z(S,L) → PS given by

πS(1Z(S,L)) := 1H̃, πS(Zα( f )) := zS,α( f ) (3.7)

extends to a unital ∗-representation of Z(S,L) on F0
S (H̃) with cyclic vector S and

ω(X) = 〈S, πS(X)S〉. (X ∈ Z(S,L)) (3.8)

Proof We show first that the operators zS,α( f ), z∗S,α( f ) satisfy (2.1) and (2.2) for all

f ∈ L, α ∈ {1, . . . , dH}. Let vn ⊗ hn ∈ Dn(H̃), f , g ∈ L then taking into account
PS
n+2 = PS

n+2S1,n+1 ⊗ F1

z∗S,α( f )z∗S,β(g)vn ⊗ hn = √
n + 1

√
n + 2PS

n+2

(
eα ⊗ eβ ⊗ vn ⊗ f ⊗ g ⊗ hn

)

= √
n + 1

√
n + 2PS

n+2

(
Sγ δ
αβeγ ⊗ eδ ⊗ vn ⊗ g ⊗ f ⊗ hn

)

= Sγ δ
αβ z

∗
S,γ (g)z∗S,δ( f )vn ⊗ hn .

Given that n and vn ⊗ hn were arbitrary, we read off

z∗S,α( f )z∗S,β(g) = Sγ δ
αβ z

∗
S,γ (g)z∗S,δ( f )

as operators on F0
S (H̃). Taking adjoints of both sides and applying both the unitarity

and involutivity of S, we arrive at equation (2.1).
For showing (2.2), we first compute the action of the first term right-hand side on

some vn ⊗ hn ∈ Dn(H̃). It is enough to do so on vectors of the form vn = ei ⊗ vn−1,
hn = a⊗ hn−1 (a ∈ L, vn−1 ⊗ hn−1 ∈ Dn−1(H̃)) as they form a total set inH⊗n and
L⊗n , respectively. We have:
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Sαγ
βδ z

∗
S,γ (g)zS,δ( f )vn ⊗ hn = √

nSαγ
βδ z

∗
S,γ (g)〈eδ ⊗ f |(ei ⊗ vn−1 ⊗ a ⊗ hn−1)

= nSαγ
βδ δδ

i 〈 f , a〉PS
n

(
eγ ⊗ vn−1 ⊗ g ⊗ hn−1

)

= nSαγ

βi 〈 f , a〉PS
n

(
eγ ⊗ vn−1 ⊗ g ⊗ hn−1

)
.

Since vn−1 and hn−1 are correctly symmetrised, the action of the projection PS
n in the

final line simplifies. Namely, we need only sum over the permutations that shift the
eγ and g terms such that they appear in each tensor slot [13]; PS

n = 1
n

∑n
k=1 D

S
n (σk) ·

1 ⊗ PS
n−1. The above now reads

Sαγ
βδ z

∗
S,γ (g)zS,δ( f )vn ⊗ hn = Sαγ

βi 〈 f , a〉
n∑

k=1

DS
n (σk)

(
eγ ⊗ vn−1 ⊗ g ⊗ hn−1

)
.(3.9)

Recall that the left-hand side also depends on ei anda via the definitionsvn = ei⊗vn−1,
hn = a ⊗ hn−1. To compute the left-hand side of (2.2), we now consider its scalar
product with a wn ⊗ bn := e j ⊗ wn−1 ⊗ c ⊗ bn−1 ∈ Dn(H̃) in the scalar product:

〈wn ⊗ bn, zS,α( f )z∗S,β(g)vn ⊗ hn〉 = 〈z∗S,α( f )wn ⊗ bn, z
∗
S,β(g)vn ⊗ hn〉

= (n + 1)〈eα ⊗ wn ⊗ f ⊗ bn, P
S
n+1

(
eβ ⊗ vn ⊗ g ⊗ hn

)〉.

Since vn and hn are correctly symmetrised, the projection PS
n+1 again simplifies as

before. Noting further that σ1 = 1, this gives:

〈wn ⊗ bn, zS,α( f )z∗S,β(g)vn ⊗ hn〉

=
〈

eα ⊗ wn ⊗ f ⊗ bn,
n+1∑

k=1

DS
n+1(σk)

(
eβ ⊗ vn ⊗ g ⊗ hn

)
〉

=
〈

eα ⊗ wn ⊗ f ⊗ bn,

[

1 +
n+1∑

k=2

DS
n+1(σk)

]
(
eβ ⊗ vn ⊗ g ⊗ hn

)
〉

= δα
β 〈 f , g〉〈wn ⊗ bn, vn ⊗ hn〉

+
〈

eα ⊗ wn ⊗ f ⊗ bn,
n+1∑

k=2

DS
n+1(σk)

(
eβ ⊗ ei ⊗ vn−1 ⊗ g ⊗ a ⊗ hn−1

)
〉

.

To shift the index of the sum
∑n+1

k=2 D
S
n+1(σk), we note that it sums over the per-

mutations shifting the eβ term through each tensor slot with the first term being the
permutation given by just S1,n+1 ⊗ F1 = DS

n+1(τ1). If we extract this term from the
sum, we can read the remaining terms as taking the second tensor slot and permuting
through the remaining n slots with the first slot being untouched [13]. Concretely, this
means that we can write this as

n+1∑

k=2

DS
n+1(σk) =

(
n∑

k=1

1 ⊗ DS
n (σk)

)

DS
n+1(τ1),
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which we use and continue in the calculation:

〈wn ⊗ bn, zS,α( f )z∗S,β (g)vn ⊗ hn〉 = δα
β 〈 f , g〉〈wn ⊗ bn, vn ⊗ hn〉

+ Sξγ

βi

〈

eα ⊗ e j ⊗ wn−1 ⊗ f ⊗ bn,
n∑

k=1

1 ⊗ DS
n (σk)

(
eξ ⊗ eγ ⊗ vn−1 ⊗ a ⊗ g ⊗ hn−1

)
〉

= δα
β 〈 f , g〉〈wn ⊗ bn, vn ⊗ hn〉

+ Sαγ

βi 〈 f , a〉
〈

wn ⊗ bn,
n∑

k=1

DS
n (σk)

(
eγ ⊗ vn−1 ⊗ g ⊗ hn−1

)
〉

.

Since all elements involved were arbitrary, we now read off what we have computed
by comparing the right-hand slot of the scalar product:

zS,α( f )z∗S,β(g)vn ⊗ hn = δα
β 〈 f , g〉vn ⊗ hn

+Sαγ

βi 〈 f , a〉
n∑

k=1

DS
n (σk)

(
eγ ⊗ vn−1 ⊗ g ⊗ hn−1

)
.

(3.10)

We can now read that (up to the contraction term) we have equality between (3.9)
and (3.10), and thus, (2.2) is satisfied so πS is indeed a representation of Z(S,L) on
UF0

S (H̃).
Moreover, S is cyclic for this representation by Proposition 3.3, and then, the

GNS property follows once we realise that the functional defined by the right-hand
side of (3.8) satisfies the properties of ω as outlined in Definition 2.1 since S is a
normalised vector and zS annihilates it. ��
Remark 3.5 It is now apparent that ω is positive (for S ∈ R0(H)). For any X ∈
Z(S,L):

ω(X∗X) = 〈S, πS(X
∗X)S〉

= 〈S, πS(X)∗πS(X)S〉
= 〈πS(X)S, πS(X)S〉
= ‖πS(X)S‖2 ≥ 0.

Revisiting the examples outlined in the previous section, we see that for Sαβ
δγ = ±δα

γ δ
β
δ

we arrive at the totally symmetric (+) or totally anti-symmetric (−) Fock space over
H̃, usually known as the Bosonic and Fermionic Fock spaces, respectively.

The case of Sαβ
δγ = −δα

δ δ
β
γ (S = −1) results in a very small space for L = C: For

this particular choice of S, the projection simplifies greatly to

PS
n =

∑

π∈Sn

sgn(π) =
{
1, n = 1

0, n > 1
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where sgn(π) is the sign of the permutation π . There then only exists a zero-particle
space (multiples of the vacuum) and the single particle space H̃:

FS(H̃) = S ⊕ H̃.

The other extreme is given by S = 1 and L = C, which generates the full unsym-
metrised (or “Boltzmann”) Fock space

FS(H) =
⊕

n≥0

H⊗n .

In general, FS(H) “interpolates” between these two extreme cases.

4 Operations on R-matrices and equivalences

In this work, we aim to generalise the following notion (sometimes referred to as
an “exponential relation”, see, for example, [4] and references therein): Let H,K be
Hilbert spaces, and denote by F±(H) the Bosonic/Fermionic Fock space over H. To
keep touch with our earlier constructions, this corresponds to the Fock representation
of the algebra Z(±FH,C), where FH is the tensor flip onH⊗2 (we simplify notation
here using± as a subscript tomean S = ±FH to remain familiar with notation existing
in the literature). Then it is well known that there exists a natural isomorphism

F±(H ⊕ K) ∼= F±(H) ⊗ F±(K). (4.1)

This isomorphism does not only hold as a Hilbert space isomorphism (which is
trivial for the case of infinite-dimensional separable Hilbert spaces), but also as an
isomorphism of representations of the CCR/CAR algebras.

In the following, we will explore to which extent (4.1) generalises to our setting
of S-symmetric Fock spaces. As a prerequisite for doing so, we need to compare R-
matrices on tensor products and direct sums of Hilbert spaces. The relevant notions
are recalled below.

Definition 4.1 [16] Let H,K be Hilbert spaces, and S ∈ R0(H), R ∈ R0(K). Then
we define

(i) S � R : (H ⊕ K) ⊗ (H ⊕ K) → (H ⊕ K) ⊗ (H ⊕ K) as

S � R := S ⊕ R ⊕ F, on

(H ⊕ K) ⊗ (H ⊕ K) = (H ⊗ H) ⊕ (K ⊗ K) ⊕ (H ⊗ K) ⊕ (K ⊗ H).

(ii) S � R : H ⊗ K ⊗ H ⊗ K → H ⊗ K ⊗ H ⊗ K as

S � R = F2(S ⊗ R)F2

where F2 exchanges the second and third tensor factors.
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We use the terminology box-sum and box-product, respectively, for these opera-
tions.

These two operations preserve unitarity, involutivity and if S, R are solu-
tions to the Yang–Baxter equation, then S � R, S � R are also solutions, and
hence, we have that S � R ∈ R0(H ⊕ K) and S � R ∈ R0(H ⊗ K)

[16].
A generalisation of (4.1) that we will show in this work (for now setting L = C)

now reads as

FS�R(H ⊕ K) ∼= FS(H) ⊗ FR(K), (4.2)

where S ∈ R0(H), R ∈ R0(K) for Hilbert spaces H,K. Setting S = FH, R =
FK, then S � R = FH⊕K and the above reads the same as (4.1) for the
Bose case, so we at least realise immediately this is consistent with existing
results.

Under the assumption that all resulting Fock spaces are finite-dimensional,
isomorphism (4.2) has recently been established by Pennig using exponential
functors [21]. This assumption of finite dimensionality is satisfied, for example,
by S = −1 or S = −FH, and more generally for all R-matrices hav-
ing only “Fermionic” Thoma parameters. For applications to quantum field the-
ory, however, it is essential to have an infinite-dimensional Hilbert space, and
our setup and arguments in the following will be quite different from that of
[21].

In addition, the analysis of equivalent functors in [21] also yielded an equiva-
lence between functors when there is a natural equivalence between the R-matrices
associated with them. We may also wonder if it is possible to formulate such an iso-
morphism in our setting and to this end, we recall the notion of equivalent R-matrices.

Definition 4.2 [16] Let H,K be Hilbert spaces, S ∈ R0(H), R ∈ R0(K), then they
are said to be equivalent - denoted as S ∼ R—if and only if, for each n ∈ N the
representations DS

n and DR
n are unitarily equivalent.

Let S ∈ R0(H), R ∈ R0(K). If S ∼ R, this definitionmeans that there exists a unitary
intertwining operator Y S,R

n : Hn → Kn such that

Y S,R
n DS

n (π) = DR
n (π)Y S,R

n . (π ∈ Sn) (4.3)

In general, the form of Y S,R
n is unknown, but we can provide a few examples [16] of

when we may write down its action explicitely.

• Type 1: There exists a unitary Q onH such that (Q⊗ Q)S(Q∗ ⊗ Q∗) = R. Then
S ∼ R and we may choose

Y S,R
n = Q⊗n .
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• Type 2: There exists a unitary Q onH such that [S, Q⊗Q] = 0 and (1⊗Q)S(1⊗
Q∗) = R. Then S ∼ R and we may choose

Y S,R
n = 1 ⊗ Q ⊗ · · · ⊗ Qn−1.

• Type 3: Let F : H⊗2 → H⊗2, F(x ⊗ y) = y ⊗ x, (x, y ∈ H) be the “flip”
operator, such that FSF = R. Then S ∼ R and we may choose

Y S,R
n = DFSF

n (ιn)
−1DF

n (ιn)

where ιn is the total inversion permutation in n letters.

The significance of the equivalence relation ∼ stems from the fact that every
S ∈ R0(H) is equivalent to a very simple R-matrix, namely an R-matrix of so-
called normal form: It was shown in [16] that for any S ∈ R0(H), there exists
N ∈ N, dimension parameters d1, . . . , dN ∈ N with d1 + · · · + dN = dH and
signs ε1, . . . , εN ∈ {+1,−1}, such that

S ∼
N

�
i=1

εi1d2i
. (4.4)

From this definition, we can read off that the tensor flip FH = �dH
i=1 1 is a normal

form, and also the identity (take N = 1 and ε1 = +1), as examples. Considering now
two equivalent R-matrices S ∼ R, we may wonder whether we have an isomorphism

FS(H) ∼= FR(K), (4.5)

where this could simply be an isomorphism of Hilbert spaces, or even an isomorphism
of representations of ZF algebras.

Since any R-matrix S is equivalent to a normal form (4.4), the combination of the
anticipated isomorphisms (4.5) and (4.2) would allow us to split FS(H) into a tensor
product of Fock spaces of the simple form F±1

d2i
(Hi ).

As a preparatory step to the next section where we cement these ideas, we note the
following results.

Lemma 4.3 LetH,K be separableHilbert spaces, and S ∈ R0(H), R ∈ R0(K). Then
the representation of the symmetric group, DS�R

n , generated by S � R is unitarily
equivalent to DS

n ⊗ DR
n for any n ∈ N.

Proof We show the result for only the generating elements τk , of Sn . Let (hα)α∈N
and (kβ)β∈N be orthonormal bases of H and K respectively. Employing the
operator Un , an element in the domain of DS�R

n is mapped to an element
in the domain of DS

n ⊗ DR
n and the action of the latter operator is given

by
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DS
n (τk) ⊗ DR

n (τk)

(
n⊗

i=1

hαi

)

⊗
(

n⊗

i=1

kβi

)

= Sαkαk+1
δγ Rβkβk+1

ηξ

((
k−1⊗

i=1

hαi

)

⊗ hδ ⊗ hγ ⊗
(

n⊗

i=k+2

hαi

))

⊗
((

k−1⊗

i=1

kβi

)

⊗ kη ⊗ kξ ⊗
(

n⊗

i=k+2

kβi

))

,

where the implicit sums converge in norm topology. Applying the linear operator U∗
n

to the above gives the action of DS�R
n as stated. ��

Corollary 4.4 Let H1,H2, K1,K2 be Hilbert spaces, S1 ∈ R0(H1), R1 ∈ R0(K1),
S2 ∈ R0(H2), R2 ∈ R0(K2) such that S1 ∼ S2 and R1 ∼ R2 . Then an intertwiner
for S1 � R1 ∼ S2 � R2, Y S1�R1,S2�R2 , is given by

Y S1�R1,S2�R2
n = U∗

n

(
Y S1,S2
n ⊗ Y R1,R2

n

)
Un

with Y S1,S2 , Y R1,R2 intertwiners between S1, S2 and R1, R2, respectively.

Proof This is clear from the definition of Un and Lemma 4.3. ��
We mention as an aside that an analogue of Corollary 4.4 also holds for box-sums

S1 � R1 ∼ S2 � R2. As we will not need this here, we omit the details.

5 Isomorphisms between polynomial algebras and equivalences of
representations

We now go on to discuss generalisations of (4.1), and in particular, we consider (4.2)
with the addition of the Hilbert space L appearing in a tensor product with bothH,K.
For S ∈ R0(H), R ∈ R0(K), define S � F =: S̃ ∈ R0(H̃), for F the tensor flip
on L ⊗ L, and similarly for R. As mentioned previously, the tilde appearing above
R-matrices always signifies a box-product with F , and above a Hilbert space always
means a tensor product with the same space L. With this notation, we will now aim
to show the following:

FS̃�R̃(H̃ ⊕ K̃) ∼= FS̃(H̃) ⊗ FR̃(K̃). (5.1)

On the left-hand side, the GNS representation is already described in Sect. 3, where
we have a space symmetrised by the operator S̃� R̃, but so far we have not considered
representations of Zamolodchikov operators on FS̃(H̃) ⊗ FR̃(K̃). We will first build
data on this space—most notably the analogue of the creation/annihilation operators
and vacuum vector. The exchange relations between the former and the cyclicity of
the latter will be shown, before a GNS-type argument will prove that they are in fact
equivalent representations of the same algebra Z(S � R,L).
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We begin with the algebra Z(S � R,L) as given in Sect. 1, with S ∈ R0(H), R ∈
R0(K) and note a property regarding distributivity of the box-product over the box-
sum. Generally, the distributivity property is only known up to equivalence, but in the
specific cases considered in this work, we show that we in fact have equality.

Lemma 5.1 LetH,K be finite-dimensional Hilbert spaces, S ∈ R0(H), R ∈ R0(K).
Then

(S � R) � F = S̃ � R̃. (5.2)

Proof On the level of the spaces they act on, we first note that

D ((S � R) � F) = ((H ⊕ K) ⊗ L)⊗2

∼= (H̃ ⊕ K̃)⊗2 = D(S̃ � R̃),

where by D(S) we mean the domain of S.
To show they do indeed map vectors in their respective domains to the same vec-

tor, we consider each orthogonal component of their domains and discuss how each
operator acts.

Firstly, the case of (H ⊗ L)⊗2, the left-hand side of (5.2) first applies F2 and then
acts as a flip in the L⊗2 parts, and as S � R on H⊗2 which by definition simply acts
as just S, and finally applies a second F2. More simply put, it flips the contributions
from L and acts as S on the contributions fromH. The same occurs on the right-hand
side of (5.2), where we see that it simply acts as only S̃ by definition of the box-sum,
which flips the contributions from L and acts as S on the contributions from H.

Similarly, for the case of (K⊗L)⊗2, the left-hand side of (5.2) flips on L and acts
as R on K. Identically, the right-hand side of (5.2) acts just as R̃ which again flips on
L and acts as K and so we equality again.

The remaining cases to consider areH⊗L⊗K⊗L andK⊗L⊗H⊗L. However,
since we have a single contribution from both H and K appearing, each operator
simply reduces to a combination of flips acting on the appropriate spaces and it is easy
to realise that F2(FH⊕K ⊗ F)F2 = FH̃⊗K̃ and F2(FK⊕H ⊗ F)F2 = FK̃⊗H̃.

Both sides of (5.2) then act in the same way on each orthogonal part of their
isomorphic domains, therefore they are equal. ��

The algebra of interest in this section, Z(S � R,L), is described by the operator
(S � R) � F , but now Lemma 5.1 allows us to work instead with S̃ � R̃.

Weconsider theFock spaceFS̃�R̃(H̃⊕K̃)onwhichwehave a vacuumvectorS̃�R̃
and creation/annihilation operators z∗

S̃�R̃
, zS̃�R̃ . The latter obey exchange relations

involving the operator S̃ � R̃, which we note here for convenience. We adopt the
shorthand notation H̃ � fα := eα ⊗ f for f ∈ L and basis vectors eα of H, and
K̃ � gξ := kξ ⊗ g for g ∈ L and basis vectors kξ of K. Then

zS̃�R̃( fα ⊕ 0)zS̃�R̃(gβ ⊕ 0) = Sβα
δγ zS̃�R̃(gγ ⊕ 0)zS̃�R̃( fδ ⊕ 0), (5.3)

zS̃�R̃( fα ⊕ 0)z∗
S̃�R̃

(gβ ⊕ 0) = Sαγ
βδ z

∗
S̃�R̃

(gγ ⊕ 0)zS̃�R̃( fδ ⊕ 0) + δα
β 〈 f , g〉 · 1H̃⊕K̃, (5.4)
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zS̃�R̃(0 ⊕ fξ )zS̃�R̃(0 ⊕ gη) = Rηξ
επ zS̃�R̃(0 ⊕ gπ )zS̃�R̃(0 ⊕ fε), (5.5)

zS̃�R̃(0 ⊕ fξ )z
∗
S̃�R̃

(0 ⊕ gη) = Rξπ
ηε z

∗
S̃�R̃

(0 ⊕ gπ )zS̃�R̃(0 ⊕ fε) + δξ
η〈 f , g〉 · 1H̃⊕K̃, (5.6)

zS̃�R̃( fα ⊕ 0)zS̃�R̃(0 ⊕ gη) = zS̃�R̃(0 ⊕ gη)zS̃�R̃( fα ⊕ 0) (5.7)
zS̃�R̃( fα ⊕ 0)z∗

S̃�R̃
(0 ⊕ gη) = z∗

S̃�R̃
(0 ⊕ gη)zS̃�R̃( fα ⊕ 0) (5.8)

These operators along with the identity 1H̃⊕K̃ generate the polynomial algebra PS̃�R̃
and form our natural Fock representation of the algebra Z(S � R,L).

We now consider a tensor product of Fock spaces

FS̃(H̃) ⊗ FR̃(K̃),

and on each Fock space, we have creation/annihilation operators z∗
S̃
, zS̃, z

∗
R̃
, z R̃ act-

ing endomorphically on F0
S̃
(H̃),F0

R̃
(K̃) respectively; vacuum vectors S̃,R̃ define

similar data on FS̃(H̃) ⊗ FR̃(K̃) :

zS̃,R̃

(
fα ⊕ gξ

) := zS̃,α
( f ) ⊗ 1K̃ + 1H̃ ⊗ z R̃,ξ

(g), f , g ∈ L, (5.9)

S̃,R̃ := S̃ ⊗ R̃ . (5.10)

The polynomial algebraPS̃,R̃ is then defined as the algebra generated by the operators
1H̃ ⊗ 1K̃, z∗

S̃,R̃
, zS̃,R̃ .

Lemma 5.2 The vacuum vector S̃,R̃ is cyclic for the polynomial algebra PS̃,R̃ . That

is, PS̃,R̃S̃,R̃ is dense in FS̃(H̃) ⊗ FR̃(K̃).

Proof Let ψ ∈ FS̃(H̃) ⊗ FR̃(K̃) be orthogonal to PS̃,R̃S̃,R̃ . Then for any i, j ∈ N0

and vectors f1, . . . , fi ∈ H̃, g1, . . . , g j ∈ K̃

〈ψi, j , z
∗
S̃,R̃

( f1 ⊕ 0) · · · z∗
S̃,R̃

( fi ⊕ 0)z∗
S̃,R̃

(0 ⊕ g1) · · · z∗
S̃,R̃

(0 ⊕ g j )S̃ ⊗ R̃〉
= √

i ! j !〈ψi, j , P
S̃
i ⊗ P R̃

j

(
f1 ⊗ · · · ⊗ fi ⊗ g1 ⊗ · · · ⊗ g j

)〉
= √

i ! j !〈ψi, j , f1 ⊗ · · · ⊗ fi ⊗ g1 ⊗ · · · ⊗ g j 〉

where ψi, j is the i, j th component of ψ , each letter corresponding to each tensor

slot in FS̃(H̃) ⊗ FR̃(K̃) and we have used that the self-adjoint projection P S̃
i ⊗ P R̃

j
leaves the vector ψ invariant. By the definition of the tensor product, the vectors
f1 ⊗ · · ·⊗ fi ⊗ g1 ⊗ · · ·⊗ g j form a total set in H̃⊗i ⊗ K̃⊗ j , and hence, we conclude
that ψ = 0. ��
We are now ready to prove the claimed isomorphism of Fock spaces as representations
of Z(S � R,L).

Theorem 5.3 Let H,K be Hilbert spaces of finite dimensions dH, dK, respectively,
and S̃ ∈ R0(H̃), R̃ ∈ R0(K̃), then:
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a) The map πS̃,R̃ : Z(S � R,L) → PS̃,R̃

πS̃,R̃

(
1Z(S�R,L)

) := 1H̃⊗K̃,

πS̃,R̃(Zα( f )) :=
{
zS̃,R̃( fα ⊕ 0), α ∈ {1, . . . , dH}
zS̃,R̃(0 ⊕ fα−dH), α ∈ {dH + 1, . . . , dH + dK}

extends to a unital ∗-representation of Z(S � R,L) on F0
S̃
(H̃) ⊗ F0

R̃
(K̃) with

cyclic vector S̃,R̃ and

ωS̃,R̃(X) = 〈S̃,R̃, πS̃,R̃(X)S̃,R̃〉, X ∈ Z(S � R,L). (5.11)

b) There exists a unitary V : FS̃�R̃(H̃ ⊕ K̃) → FS̃(H̃) ⊗ FR̃(K̃) such that

VS̃�R̃ = S̃,R̃, VπS̃�R̃(X)V ∗ = πS̃,R̃(X), (X ∈ Z(S � R,L)). (5.12)

Proof a) We show first that the operators z∗
S̃,R̃

, zS̃,R̃ satisfy the same relations as

z∗
S̃�R̃

, zS̃�R̃ as outlined in (5.3)–(5.8), firstly noting that

zS̃,R̃( fα ⊕ 0) = zS̃,α
( f ) ⊗ 1K̃, zS̃,R̃(0 ⊕ fξ ) = 1K̃ ⊗ z R̃,ξ

( f ), ( f ∈ L),

and similarly for z∗
S̃,R̃

.

Furthermore, the operators z∗
S̃
, zS̃ and z

∗
R̃
, z R̃ satisfy exchange relations (2.1), (2.2)

governed by S and R, respectively. Let f , g ∈ L then

zS̃,R̃( fα ⊕ 0)zS̃,R̃(gβ ⊕ 0) = zS̃,α
( f )zS̃,β

(g) ⊗ 1K̃
= Sβα

δγ zS̃,γ
(g)zS̃,δ

( f ) ⊗ 1K̃
= Sβα

δγ zS̃,R̃(gγ ⊕ 0)zS̃,R̃( fδ ⊕ 0),

which gives (5.3). Relation (5.5) follows in an analogous way on the second tensor
factor applying (2.1) for z R̃ . Similarly

zS̃,R̃( fα ⊕ 0)z∗
S̃,R̃

(gβ ⊕ 0) = zS̃,α
( f )z∗

S̃,β
(g) ⊗ 1K̃

= Sαγ
βδ z

∗
S̃,γ

(g)zS̃,δ
( f ) ⊗ 1K̃ + δα

β 〈 f , g〉1H̃ ⊗ 1K̃
= Sαγ

βδ z
∗
S̃,R̃

(gγ ⊕ 0)zS̃,R̃( fδ ⊕ 0) + δα
β 〈 f , g〉1H̃ ⊗ 1K̃.

As for (5.7), (5.8), we see that since zS̃,R̃( fα ⊕ 0) and zS̃,R̃(0 ⊕ gη) operate on
different tensor slots they commute. Cyclicity of the vacuum vector is shown in
Lemma 5.2, and we note that the annihilation of the normalised vector S̃,R̃ by
zS̃,R̃ shows that the functional defined by the right-hand side of (5.11) satisfies the
properties listed in Definition 2.1 and therefore coincides with ω.
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b) Let X ∈ Z(S � R,L). Then

‖πS̃,R̃(X)S̃,R̃‖2 = 〈πS̃,R̃(X)S̃,R̃, πS̃,R̃(X)S̃,R̃〉
= 〈S̃,R̃, πS̃,R̃(X∗X)S̃,R̃〉
= ω(X∗X)

= ‖πS̃�R̃(X)S̃�R̃‖2.
This shows that the map V : PS̃�S̃S̃�R̃ → PS̃,R̃S̃,R̃ , VπS̃�R̃(X)S̃�R̃ :=
πS̃,R̃(X)S̃,R̃ (X ∈ Z(S � R,L) is well defined and isometric. Moreover, for
X ,Y ∈ Z(S � R,L)

VπS̃�R̃(X)V ∗πS̃,R̃(Y )S̃,R̃ = VπS̃�R̃(X)πS̃�R̃(Y )S̃�R̃

= VπS̃�R̃(XY )S̃�R̃

= πS̃,R̃(XY )S̃,R̃

= πS̃,R̃(X)πS̃,R̃(Y )S̃,R̃ .

Since S̃�R̃ is cyclic for the representation πS̃�R̃ and S̃,R̃ is cyclic for πS̃,R̃ , it

follows that V extends to a unitary FS̃�R̃(H̃⊕ K̃) → FS̃(H̃)⊗FR̃(K̃) satisfying
(5.12).

��
As a corollary, we note the simple form of S-symmetrised Fock spaces in the case of
S a normal form as previously anticipated.

Corollary 5.4 Let S ∈ R0(H) be an involutive R-matrix of normal form (4.4). Then
there is a unitary

V : FS̃(H̃) →
N⊗

i=1

Fε̃i (H̃i ),

where H = ⊕N
i=1Hi .

By the results of [16], we know that any involutive R-matrix is equivalent to an R-
matrix of normal form. This motivates to ask what we can say about the relation of
the Hilbert spaces and the representations of Z(S,L),Z(R,L) for two equivalent

R-matrices S ∼ R. If they are equivalent, we have unitary intertwiners Y S̃,R̃
n (4.3),

and their direct sum Y S̃,R̃ = ⊕
n Y

S̃,R̃
n defines a unitary FS̃(H̃) → FR̃(K̃).

In some cases, this Hilbert space isomorphism also intertwines the actions of the
Zamolodchikov operators as we now discuss in two examples.

Example 5.5 Let S̃ ∈ R0(H̃), R̃ ∈ R0(K̃) with S ∼ R (in the type 1 sense) such that
we may choose their intertwiner to be of the form

Y S,R
n =

(
Y S,R
1

)⊗n
. (5.13)
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Then

Y S̃,R̃πS̃(Zα( f ))
(
Y S̃,R̃

)∗ = πR̃

(
Y S̃,R̃
1 Zα( f )

)
. (5.14)

Indeed, we can check by calculation—let f ∈ L, then by Corollary 4.4 we have the
expression Y S̃,R̃ = U∗ (

Y S,R ⊗ 1
)
U where we note that the intertwiner acts trivially

on L. This gives

U∗ (
Y S,R ⊗ 1

)
UzS̃,α

( f )U∗ ((
Y S,R

)∗ ⊗ 1
)
U

= U∗ (
Y S,R ⊗ 1

)
zS(eα) ⊗ zF ( f )

((
Y S,R

)∗ ⊗ 1
)
U

= U∗ (
Y S,RzS(eα)

(
Y S,R

)∗ ⊗ zF ( f )
)
U

What remains to be shown is to calculate the action of Y S,RzS(eα)
(
Y S,R

)∗
. Let ψ ∈

FS(H) then

Y S,R
n+1z

∗
S(eα)

(
Y S,R
n

)∗
ψn = Y S,R

n+1P
S
n+1eα ⊗

([
Y S,R
1

]∗)⊗n
ψn

= PR
n+1

(
Y S,R
1

)⊗(n+1)
(

eα ⊗
([

Y S,R
1

]∗)⊗n
ψn

)

= PR
n+1

(
Y S,R
1 eα

)
⊗ ψn

= z∗R
(
Y S,R
1 eα

)
ψn .

Thus the adjoint action of Y S̃,R̃ results in an isomorphism between elements of the
polynomial algebras PS̃,PR̃ .

It must be mentioned, however, that the isomorphism of the Hilbert spaces given by
Y S̃,R̃ does not always give an isomorphism of Zamolodchikov representations. As a
counter example, we restrict to dimension two and consider S = −FH ∼ −1�−1 =
R. In the Fock representation of Z(S,L), we have anti-commutation between all
annihilation operators, i.e.

{
zS̃,α

( f ), zS̃,β
(g)

}
= 0

for α, β ∈ {1, 2} and all f , g ∈ L. If an isomorphism between the representations of
Z(S,L) and Z(R,L) existed, this anti-commutation would be preserved; however,
for some choices of α and β, we actually have commutation in the representation of
Z(R,L)

[
z R̃,1( f ), z R̃,2(g)

]
= 0
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for all f , g ∈ L. A quick calculation shows the product z R̃,1( f )z R̃,2(g) is not zero,
and thus, the representations πS̃, πR̃ are not isomorphic in this case.
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