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Sparse Graph Regularized Mesh Color Edit

Propagation
Bo Li, Yu-Kun Lai, Paul L. Rosin

Abstract—Mesh color edit propagation aims to propagate the
color from a few color strokes to the whole mesh, which is useful
for mesh colorization, color enhancement and color editing, etc.
Compared with image edit propagation, luminance information
is not available for 3D mesh data, so the color edit propagation is
more difficult on 3D meshes than images, with far less research
carried out. This paper proposes a novel solution based on sparse
graph regularization. Firstly, a few color strokes are interactively
drawn by the user, and then the color will be propagated
to the whole mesh by minimizing a sparse graph regularized
nonlinear energy function. The proposed method effectively
measures geometric similarity over shapes by using a set of
complementary multiscale feature descriptors, and effectively
controls color bleeding via a sparse ℓ1 optimization rather than
quadratic minimization used in existing work. The proposed
framework can be applied for the task of interactive mesh
colorization, mesh color enhancement and mesh color editing.
Extensive qualitative and quantitative experiments show that the
proposed method outperforms the state-of-the-art methods.

Index Terms—Mesh color edit propagation, colorization, color
bleeding, sparse graph constraint

I. INTRODUCTION

Color edit propagation is a popular research topic in 2D

image processing, such as image colorization, image restora-

tion and interactive color editing. With the development of 3D

scanning techniques, e.g., Microsoft Kinect, the acquisition of

3D models with color texture maps has become convenient and

commonplace, and has many applications such as virtual and

augmented reality, digitizing historical artifacts for heritage

preservation, design of cartoons and film production, etc.

However, the quality of color acquired by low-cost, Kinect-

type, handheld RGB-D cameras may not be satisfactory, due

to hardware limitations, and so color editing for 3D models is

becoming increasingly popular for such applications. Color

editing also makes it possible to colorize existing scanned

objects without captured color information, or adjust the colors

of objects to suit the needs of downstream applications. In

addition, physical color degradation on the scanned objects

themselves, typical in many heritage preservation applications,

inherently leads to poor color models. Therefore, it is a useful

addition to the 3D acquisition pipeline, and a topic of interest

to the 3D vision community.

There are three typical color edit propagation tasks on mesh

data, namely mesh colorization, color enhancement and inter-

active color editing, as shown in Fig. 1. A typical application
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is that the paint has worn off some heritage sculptures after

centuries of deterioration, such as shown in Fig. 1(a), or the

object has become discolored, such as the wooden sculpture

shown in Fig. 1(c). The task of mesh colorization is to restore

the original color by propagating the strokes scribbled by the

experts according to the description in historic documents

to the whole mesh (Fig. 1(b)), while color enhancement

should remove noise while respecting the geometric features

(Fig. 1(d)). Interactive color editing is a key process in 3D

cartoon design, such as shown in Fig. 1(e). The designer can

change the color of some components by just scribbling a few

strokes with the desired color (Fig. 1(f)).

In this paper, a novel sparse graph regularized mesh col-

or edit propagation framework is developed. The proposed

method is related to image color edit propagation and mesh

colorization [1], [2]. The extension of color edit propagation

method from 2D images to 3D mesh data is not straightfor-

ward, as analyzed in [1]. One of the fundamental differences

is that image colorization is performed in a color space such

as YUV with the luminance channel Y fixed, while for a 3D

mesh to be colorized, no luminance information is available.

In addition, some edge detection or salience detection methods

are often incorporated to address the color bleeding problem

in image colorization, but either edge detection or salience

detection is more difficult on 3D meshes than images, with

far less research carried out.

Mesh color edit propagation is little researched. The first

mesh colorization work was proposed by Leifman et al. [1],

and then it was extended for patterned surfaces in [2] with the

same color propagation model. In [1], the vertex similarity

is measured by the diffusion distance based on the spin

image descriptor [3], and then mesh colorization is formulated

as a constrained quadratic optimization problem. In order

to reduce color bleeding, a feature line field is introduced.

The method [1] can produce plausible colorization results

(Fig. 2(b)), however, the color bleeding effects (evident in

the magnified image in Fig. 2(b)) cannot be avoided due to

the following reasons. On one hand, the similarity between

vertices is measured by spin images, which are isotropic and

lose essential clues for propagation. In addition, each vertex is

processed equally without taking into account some important

geometric properties, such as concavity. On the other hand,

the quadratic optimization will result in obvious color bleed-

ing around boundaries due to its low-pass characteristic [4].

Although a feature line field technique is introduced to detect

the boundaries, the mechanism of quadratic diffusion still leads

to obvious color bleeding around the detected boundaries (Fig.

2(b)).

Compared with existing work, the main contributions of this
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(a) (b) (c) (d) (f)

(e)

Fig. 1. Three typical color edit propagation tasks on meshes. (a) mesh colorization, (c) mesh color enhancement, (e) mesh color editing, (b), (d) and (f) are
the corresponding processing results by the proposed method.

(a) (b) (c)

Fig. 2. Color edit propagation comparison. (a) input mesh with color strokes
(the color strokes are provided by [1]), (b) result of method [1], (c) result of
proposed method.

paper include:

1) The proposed sparse graph regularized mesh color edit

propagation method respects the structure of mesh surfaces

by combining local geometric features and multiscale feature

descriptors.

2) The proposed propagation method can effectively con-

trol the color bleeding via a sparse ℓ1 optimization rather

than quadratic minimization used in [1] (as demonstrated in

Fig. 2(c)).

3) The proposed framework can be applied to the tasks of

mesh colorization, color enhancement and interactive mesh

color editing. As far as we know, it is the first study of

interactive mesh color editing.

In the following sections, we first review related work in

Sec. II. We describe our method in detail in Sec. III, followed

by experimental results both qualitatively and quantitatively in

Sec. IV. Finally conclusions are drawn in Sec. V.

II. RELATED WORK

Image Colorization and Editing: Image colorization is the

computer assisted process of assigning suitable chrominance

values to a monochrome image such that it looks natural. It

can be used for colorizing historic photographs to improve

the aesthetics of the image, or converting black and white

movies to color, etc. The first image colorization framework

was proposed by Levin et al. [5]. Given a few color scribbles

by the user, the colors were then propagated through the

image by means of minimizing a quadratic cost function.

However, the final results contained numerous color bleeding

effects. In order to reduce color bleeding, various improve-

ments have been studied [4], [6]–[19]. For example, salient

contours were introduced in [6] to cope with color bleeding

artifacts caused by weak object boundaries. Lu et al. [19]

proposed a multiview video color correction framework by uti-

lizing textures structural information and the spatio-temporally

consistent color constraints. Bugeau et al. [10] proposed an

image colorization method based on an edge-preserving total

variation formulation, which helps to better preserve edge

structures in the colorized images. Pierre et al. [11] proposed

an improved variational method with regularization involving

both luminance and chrominance information, which helps to

better preserve edge structures in the colorized images. As far

as we are aware, this is the state-of-the-art variational image

colorization method. However, compared with 2D images,

edge detection or salience detection is much more difficult

for mesh data.

The colorization framework proposed by Levin et al. [5]

can be extended to more general image editing tasks, such

as object recoloring, image matting and video editing. As the

energy function in [5] is only defined on scribbles given by

the user, it is hard to propagate the color to pixels far away

from these strokes. To enable long-range propagation, all-pair

constraints were employed in [20], but this resulted in very

high computational complexity. Numerous methods [21]–[32]

have been proposed to construct the affinity matrix with a finite

number of neighbors, making it sparse and solvable.
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Benefiting from the powerful learning ability of deep learn-

ing on huge datasets, data-driven methods [33]–[43] achieve

state-of-the-art performance on the tasks of image colorization

and image editing. There are billions of color images available

for training the colorization network, so the performance has

been improved dramatically. However, compared with image

colorization, there are not enough 3D meshes with high-quality

color for training a deep neural network.

Mesh Colorization: Motivated by [5], Leifman et al. [1]

proposed the first mesh colorization method. The underlying

assumption is that nearby vertices, whose geometry is similar,

should have the same color. The algorithm is composed of

two steps. First, a similarity measure between neighboring

vertices is computed and assigned to the corresponding edges.

Then, given the scribbles and the above similarities, the colors

are propagated to the whole mesh by solving the following

quadratic optimization as in [5]:

min
u

∑

i

(

ui −
∑

j∈N (i)
wijuj

)2

(1)

where u is the color of each vertex, N (i) is the neighborhood

of the i-th vertex and wij is the similarity measure. The edit

propagation model (1) is in fact a low-pass filter, and the

final color of each vertex will be a linear combination of

neighborhood vertices. Although a feature line field is intro-

duced to constrain the color propagation, due to the mechanism

of the quadratic optimization, color bleeding effects cannot

be avoided, as shown in Fig. 2(b) and more examples in

Sec. IV. In [2], Leifman et al. extended the method to surfaces

with patterns whereby the user only needs to scribble a few

color strokes on one instance of each pattern, and the system

proceeds to automatically colorize the whole surface. The

same color propagation model (1) is adopted.

Compared with [1], a sparse graph regularized nonlinear

propagation model is proposed in this paper, and the color

bleeding effects are reduced effectively via minimizing the

proposed ℓ1 optimization rather than quadratic minimization,

as demonstrated in Fig. 2(c) and more examples in Sec. IV.

Color processing on point clouds: There are several works

studying the process of colors on point clouds [44]–[49].

These methods utilize the morphological partial differential

equation (PDE) operators on graphs, and treat the color

operation on point clouds as an iterative diffusion process.

III. MESH COLOR EDIT PROPAGATION VIA SPARSE GRAPH

REGULARIZATION

In this section, a novel mesh color edit propagation method

is proposed based on sparse graph regularization. Note that

we introduce the proposed algorithm on the task of mesh

colorization, and it can be easily extended to cope with mesh

color enhancement and interactive color editing as discussed

in Sec. III-C.

To address the color bleeding problem of existing work [1],

[2], we propagate user specified edits from a few marked faces

to the whole mesh. Unlike existing work that uses vertex-

wise propagation, our method is based on face-wise color

edit propagation as faces are more robust to represent local

feature 

extraction

dihedral angle

heat kernel signature

concavity

color propagation 

via sparse graph 

regularization

affinity matrix final result

Fig. 3. The pipeline of the proposed method.

geometric relationships than vertices, i.e., the dihedral angle

between two faces can be used to detect edges, by which

the color bleeding can be effectively reduced. In addition, a

sparse ℓ1 regularization term based on geometric similarity

is proposed, which can reduce the color bleeding effects

dramatically compared with the least-squares based method

used in [1].

The pipeline of the proposed method is shown in Fig. 3.

Firstly, a few color strokes are drawn on the input mesh by

the user. Then a graph is constructed with each face as a

node, and the edge weight is computed by a combination

of measurements of local geometry and a multiscale feature.

Finally, a nonlinear sparse graph regularized energy function

is defined to guide the color propagation.

A. Graph construction

We assume the input mesh is triangular. A sparse graph

G = (V,E) is first constructed, which is the dual graph of the

input mesh, i.e. the set of nodes V consists of the mesh faces

{fi}, and an edge exists to join two nodes, if the corresponding

faces are adjacent. For each edge eij joining fi and fj , a

similarity measurement Wij will be defined to measure their

closeness.

Similar to the basic idea of image edit propagation [5], [50]

and the existing mesh colorization work [1], we assume that

adjacent faces with similar features should have similar color.

How to measure the similarity between adjacent faces is key

to the final performance. In [1], a single shape descriptor

(spin images) is used to estimate the similarity between

adjacent patches. However, the spin image descriptor loses

significant information including the distribution around the

normal direction of a vertex treated as the rotation axis of the

spin image, as well as other useful clues such as concavity.

In this paper, we propose to estimate the similarity between

faces by using a combination of different features, including

local dihedral angle, multiscale heat kernel signature (HKS)

and concavity.

Dihedral angle. Given a pair of adjacent faces, fi and

fj , we compute a measurement related to the dihedral angle

between them [51]

d1(fi, fj) = 1− cos(dihedral(fi, fj)) =
1

2
‖ni − nj‖

2 (2)

where ni and nj are the normal vectors of faces fi and fj . If

the dihedral angle between two adjacent faces is small, the

distance d1 will be small, which implies that the adjacent

faces have strong geometry consistency, and the color can
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(a) (b) (c) (d) (e) 

Fig. 4. Illustration of anisotropic HKS. (a) original mesh, (b)-(e) HKS
features at time 1, 10, 50 and 100 respectively.

be propagated from the current face to the adjacent face.

Otherwise, when the distance d1 is big enough, it means that

the two adjacent faces have different directions, and the color

propagation should be restrained.

Anisotropic HKS. The heat kernel signature (HKS) [52]

is a popular shape descriptor due to its intrinsic and multi-

scale property. HKS is constructed based on the isotropic heat

diffusion process, which propagates the temperature uniformly

on manifolds. However, it ignores directional information,

which may often carry important cues about the local structure

of the surface. In this paper, we adopt a variant of HKS [53]

named anisotropic HKS, which considers that diffusion is

driven at each point by an angle θ, which in practice can be

determined by principal curvatures, leading to anisotropic dif-

fusion. Finally, the discrete anisotropic HKS can be obtained

by sampling along the time domain.

hαθt(x, ξ) =
∑

k≥0

e−tλαθkφαθk(x)φαθk(ξ) (3)

where {φαθk, λαθk}k≥0 are the eigen functions and

eigenvalues of the anisotropic Laplacian-Beltrami operator

∆α,θf(x) = −divX(RθDα(x)R
T
θ ∇Xf(x)), Rθ is the

rotation operator and Dα is the thermal conductivity tensor

constructed by principal curvatures at each vertex. For details

of anisotropic HKS refer to [53], [54].

For each face fi, we denote the anisotropic HKS feature at

time t as hfi,t. Some examples with different t are shown in

Fig. 4. The HKS feature at face fi is represented as a vector

hfi = (hfi,1, hfi,2, . . . , hfi,T ) including features at multiple

scales. T = 100 is used in our experiments. We define the

multiscale measurement d2 as follows

d2(fi, fj) = ‖hfi − hfj‖
2
2. (4)

Concavity property. Following the minima rule [55], con-

cave edges are much more likely to indicate object boundaries

and therefore provide a stronger clue for constraining color

propagation, which is widely used in mesh segmentation [56].

Let ei,j be the vector of the shared edge between fi and fj ,

in the counter clockwise orientation in fi, then the edge is

concave if

(ni × nj) · ei,j < 0, (5)

and convex otherwise.

d3(fi, fj) =

{

1, if ei,j is concave

α, if ei,j is convex
(6)

In this paper, we set the concavity weight for the convex

edges as α = 0.1. It shows that when the edge between two

faces is concave, the distance between these two faces will be

large, which will prevent the color from propagating from the

current face to the adjacent face. Therefore, the color bleeding

will be reduced effectively.

Finally, we compute the edge weight between adjacent faces

by the combination of the above three measures

Wij = e−d1(fi,fj)/s1 · e−d2(fi,fj)/s2 · e−d3(fi,fj)/s3 (7)

where s1, s2, s3 are respectively the mean value of each type

of measurement. Wij = 0 if fi and fj are not adjacent.

B. Color propagation via sparse graph regularization

The task of mesh color edit propagation is to diffuse the

color information from user scribbles to the whole mesh

while respecting the geometric property. In this paper, a novel

mesh colorization method based on sparse graph regularization

is proposed. The proposed color propagation model can be

formulated as the following energy function

min
u

∫

Ω

λ

2
(u− u0)

2dx+

∫

Ψ

‖∇Wu‖1dx (8)

where u0 is the initial face color with specified user scribbles

in region Ω of the whole mesh domain Ψ, u is the final

color propagation result, and λ is the balance parameter. ∇Wu

denotes the gradient operator defined on the graph G(V,E).
For the i-th face, the gradient operator of the color is defined

as ∇Wui = {
√

Wij(ui − uj), j ∈ N (i)}, where N (i) refers

to the neighboring faces of the i-th face. In this paper we select

the 1-ring neighborhood. The norm of the gradient operator is

computed by

‖∇Wu‖1 =

√

∑

j∈N (i)

Wij(ui − uj)2. (9)

The sparse graph regularization |∇Wu| can be seen as a

generalization of the nonlocal total variation [57] method from

2D grid images to irregular 3D meshes.

The discrete formulation of (8) can be written as

min
u

λ

2

∑

i∈Ω

(ui − u0i)
2 +

∑

i

√

∑

j

Wij(ui − uj)2 (10)

The first term is the data fidelity term, which ensures the

final results are close to the user specified colors u0 on the

subset Ω. The second term is the sparse graph regularization,

which ensures that adjacent faces with similar geometric prop-

erties will have similar colors while preventing color bleeding

around boundaries. Numerous works on image restoration and

mesh reconstruction have shown that the ℓ1 form constraint

‖∇Wu‖1 can preserve edges or boundaries better than the ℓ2
form quadratic constraint ‖∇Wu‖22 which is used in related
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work [1]. See also the example in Fig. 2 which demonstrates

this.

The optimization problem (10) can be solved by the split

Bregman algorithm as introduced in [58]. Since the graph

weight matrix W is sparse, i.e., for each row of W, only

the 1-ring neighbors are nonzeros, the optimization of (10)

can be computed efficiently. For a mesh with 200,000 faces,

the algorithm takes 10–20 seconds (2.8 GHz Intel Core i7).

C. Applications

The proposed mesh color edit propagation framework can

be used not only for mesh colorization, but can also be easily

extended for mesh color enhancement and interactive mesh

color editing.

Mesh color enhancement. It is useful to enhance the color

already present on the input mesh, which may contain noise,

or is partially destroyed [59], [60]. The color on every face

will be regarded as a “color stroke”, which means that the

subset Ω in Eq. (10) will be the whole mesh. Unlike mesh

colorization, there is prior color information available for the

task of color enhancement. Therefore, in the construction of

the edge weight matrix W, an additional term with respect to

color similarity is included, so the similarity matrix is updated

to

W̃ij = Wij · e
−dc(fi,fj)/sc (11)

where dc(fi, fj) = ‖u0,i − u0,j‖
2, u0,i refers to the initial

color on the i-th face, and sc is the mean value of dc on the

whole mesh. The remaining settings are the same as for mesh

colorization.

Interactive mesh color editing. For the task of interactive

color editing, the user scribbles a few strokes on the mesh

with the desired color, and then the color will be propagated

through the mesh based on the sparse graph constraint. For

color editing, the edge weight matrix Ŵ is composed of two

terms, the first term is geometric similarity, which is the same

as used in mesh colorization, and the second term is based on

color similarity and geometric closeness between a scribble

face fi ∈ Ω and face fj , where Ω is the set of stroke faces

scribbled by the user:

Ŵij = Wij + e−dc(fi,fj)/sc · e−dg(fi,fj)/sg

·1(fi ∈ Ω||fj ∈ Ω), (12)

dc(fi, fj) refers to the distance between the original colors

of fi and fj on the mesh as defined above, and dg(fi, fj) is

the geodesic distance from face fi to fj , sc and sg are mean

values for dc and dg over the whole mesh, and 1(·) is an

indication function which gives 1 if the condition is true and

0 otherwise. Note that Ŵ is sparse and compared with W, it

only has additional nonzero entries at the corresponding rows

or columns related to stroke faces. The sparse constraint Ŵ

ensures that the editing will be propagated to faces which have

similar initial color as the initial color of the stroke faces with

the regularization of geodesic distances.

(a)

(b) (c) (d)

(e) (f) (g) (i)

(h)

Fig. 5. Ablation study. (a) color strokes, from (b) to (g) are the corresponding
results by using different features or their combinations. (b) dihedral angle, (c)
anisotropic HKS, (d) concavity, (e) dihedral angle + concavity, (f) anisotropic
HKS + concavity, (g) dihedral angle + anisotropic HKS, (h) and (i) are the
corresponding results with the combination of these three features by using
model (1) and the proposed model (10).

IV. EXPERIMENTS

In this section, experiments are conducted to evaluate the

performance of the proposed method. First, an ablation study

is performed to assess the effectiveness of each key component

of the proposed method, and then we compare the performance

on three tasks (mesh colorization, mesh color enhancement

and interactive mesh color editing) against the state-of-the-art

methods.

A. Ablation Study

There are three different features used in our sparse

graph construction: dihedral angles between adjacent faces,

anisotropic HKS and concavity features. Except for features,

the sparse graph regularized propagation model plays an

important role for the final performance. In order to assess

the effectiveness of each component, ablation studies are

performed for each item, and the experimental results are

shown in Fig. 5.

Firstly, we evaluate the performance of each different fea-

ture and combinations of every two features by using the

proposed edit propagation model (10). We can see that the

dihedral angle between adjacent faces indicates boundaries

effectively as shown in Fig. 5(b), however, there are still

numerous color bleeding effects around the boundaries, e.g.,

the regions below the hand. Compared with dihedral angles,

the anisotropic HKS feature is good at measuring the similarity

between faces, which leads to smooth color propagation as

shown in Fig. 5(c). However, the HKS feature does not

work well around the boundaries and results in numerous

instances of color bleeding. Fig. 5(d) is the result of using the

concavity feature. Although concavity is not a good metric

to measure the similarity between faces, it is effective at



ACCEPTED BY IEEE TRANSACTIONS ON IMAGE PROCESSING 6

preventing color propagation across boundaries. Figs. 5(e -

f) are the corresponding results of using the dihedral angle

and anisotropic HKS combined with the concavity feature. We

can see the benefit from the concavity feature is that less color

bleeding effects are generated around the boundaries compared

with Figs. 5(b - c). The result of using the dihedral angle and

HKS feature is shown in Fig. 5(g). Although the performance

is better than using each single feature, it suffers from color

bleeding effects. Finally, the result of feature (Eq. (7)) used

in this paper is shown in Fig. 5(i). It is demonstrated that

by combining these three features, we produce smooth color

propagation while effectively preserving boundaries.

In order to evaluate the role of the proposed edit propagation

model (10), we perform color edit propagation by using the

model (1), which is used in related mesh colorization work [1]

and image colorization [5], with the same combined feature

descriptor used in this paper. The colorization result is shown

in Fig. 5(h). We find that much better performance has been

gained compared to the result of [1] (Fig. 2(b)) benefiting from

the feature used in this paper. However, many color bleeding

effects around boundaries cannot be avoided with the feature

alone.

B. Mesh Colorization

The performance of the proposed mesh color edit prop-

agation scheme for mesh colorization is evaluated in this

subsection. We compare the performance against the most

related work [1] with the code provided by the authors.1

The proposed mesh colorization algorithm is conducted in

RGB color space since unlike grayscale images, there is no

predefined luminance information on meshes.

Fig. 6 shows two examples of historic statues. We see

that obvious color bleeding effects arise in the results of

method [1], while the proposed method produces more natural

results. To highlight the differences between [1] and the pro-

posed method, some regions of the second example in Fig. 6

are magnified and shown in Fig. 7. We see that the colorization

result of [1] suffers from numerous color bleeding, e.g., the

color of the hand is transferred to the book, and the color of

the blue shoes is propagated across the strong boundary as

shown in Fig. 7(a). Although a feature line field method is

used to reduce color bleeding, the mechanism of least squares

optimization used in [1] produces oversmoothing and color

bleeding. Compared with [1], the proposed method produces

more reasonable results while preserving object boundaries

well, as shown in Fig. 7(b). We analyze the reasons as follows.

On one hand, the similarity between vertices is measured by

spin images in [1], which has limited representation capabili-

ties and loses useful clues. In contrast, the proposed method

is more robust by using a combination of complementary

local features (dihedral angle and concavity) and a multiscale

feature descriptor (anisotropic HKS). As shown in the ablation

study in Sec. IV-A, the multiscale HKS feature can measure

the similarity between faces well while the local dihedral angle

and concavity features are critical to identify the boundaries.

1http://cgm.technion.ac.il/Computer-Graphics-
Multimedia/Software/Colorization/

(a) (b) (c)

Fig. 6. Comparison of mesh colorization. (a) color strokes, (b) results of
[1], (c) results of the proposed method.

(a) (b)

Fig. 7. Colorization results with magnified local regions. (a) result of [1],
(b) result of the proposed method.

On the other hand, instead of using a quadratic optimization,

a sparse graph regularized color edit propagation model is

proposed. Benefiting from the characteristic of ℓ1 optimization,

the model prefers to stop color propagation around strong

boundaries rather than propagate the color smoothly across

the boundaries.

Another experiment is performed to evaluate the robustness

to mesh density, and the colorization results are shown in

Fig. 8. The first row shows the results on a dense mesh with

500,000 faces while the mesh in the second row is simplified to
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250,000 faces. From Fig. 8(b) we can see that the method [1]

produces a satisfactory result on the dense mesh except for

some small regions, but suffers from numerous color bleeding

effects on the downsampled mesh as shown in the second

row, which are highlighted in red frames. Compared with [1],

our method achieves robust performance under varying mesh

densities due to the multiscale feature descriptor, as shown in

Fig. 8(c).

C. Mesh Color Enhancement

The color information present in historical objects is easily

damaged from rain and wind, and an example is shown in

Fig. 9(a). We can see that there are numerous discolored areas

on the scanned wooden sculpture model. It is an important

task to enhance the color of the model while following the

geometric properties. As there is little related work on this

topic, we compare our algorithm with the traditional heat

diffusion method. The heat equation on the mesh can be

defined as ∂u
∂t = −L̃u, where u is the initial RGB color

for each vertex, and L̃ is the cotangent Laplacian matrix of

the mesh. The heat diffusion will smooth the initial color

according to geometric adjacency. The color enhancement

result from the heat diffusion is shown in Fig. 9(b). The

proposed color edit propagation method in this paper can be

easily generalized to cope with mesh color enhancement by

adopting the edge weight matrix defined in Eq. (11). The final

color enhancement result is shown in Fig. 9(g).

We can see that there are heavy oversmoothing effects on

the result generated by the heat diffusion on the mesh. The

whole model is blurred, and the colors for some important

geometric components are lost, e.g., the eyebrow and the eyes

as shown in Fig. 9(b). The result of heat diffusion sharing

the same weight matrix (11) used in the proposed model is

shown in Fig. 9(c). We can see that the proposed weight ma-

trix dramatically improves the performance of the traditional

heat diffusion model with the cotangent Laplacian matrix of

the mesh (Fig. 9(b)), which shows the effectiveness of the

proposed weight matrix. However, oversmoothing effects are

still obvious in the result of heat diffusion, as shown e.g. in

the region highlighted in the red dash frame in Fig. 9(c).

We also compare the result with another related work [45].

Although [45] explores the application on conventional images

and point cloud data, it can also be applied to mesh data, by

applying the method to mesh vertices. Since the code of the

method in [45] is not provided by the authors, the experiment

is based on our own implementation. Following the paper [45],

we set the feature of each vertex to be the position of the vertex

(Fig. 9(d)) and the color of the vertex (Fig. 9(e)). As can be

seen, the resulting colorization results look blurred, especially

for the choice of using color as the feature. We also experiment

with setting the feature to be the HKS feature (Fig. 9(f)),

similar to ours, as dihedral angles used in our method cannot

be computed at vertices. It can be seen that the result of [45]

with HKS feature is better than position and color features.

Compared with heat diffusion and [45], the proposed model

in this paper can reduce the color bleeding effects dramatically

by using sparse ℓ1 optimization as shown in Fig. 9(g).

For a quantitative study of the performance, two extra

experiments are shown in Fig. 10. Given the ground truth mesh

Fig. 10(a), the RGB color of each face is contaminated by

Gaussian noise at different levels with the mean set to 0 and the

variance set to 0.001, 0.005 and 0.01 respectively. The noisy

meshes are shown in Fig. 10(b). We choose heat diffusion

using the cotangent Laplacian matrix and the proposed weight

matrix (11) as the baseline due to that these methods can be

compared under the same condition as the proposed model.

The color enhancement results of the heat diffusion using the

cotangent Laplacian matrix and the proposed weight matrix

(11) are respectively shown in (c) and (d), while the results of

the proposed method are shown in (e). From visual inspection,

it is obvious that the proposed method and the heat diffusion

method with the proposed weight matrix can preserve the

sharp white boundaries near the neck of the duck well for

small scale noise, while they are heavily blurred by the heat

diffusion with cotangent Laplacian matrix. However, in the

case of heavy noise, heat diffusion will generate oversmoothed

results even when equipped with the proposed weight matrix,

e.g., the color of duck’s eyes is blurred. Similar effects are

found in the second example.

In addition to visual inspection, we also make quantitative

comparisons for the results shown in Fig. 10. In this paper,

we use the Peak Signal to Noise Ratio (PSNR) and Structural

SIMilarity (SSIM) as the measurements. Although these two

measurements are designed for evaluating images, they are

easily extended to measure the color distortion on mesh data.

As PSNR does not utilize the neighborhood structure of the

pixels, it can be directly used for evaluating color differences

on a mesh. For the computation of SSIM, the mean color

and variance of each pixel within a neighborhood need to

be computed. Compared with the regular grid structure of

an image, the connectivity of vertices on a mesh is irregular.

In this paper, we compute the mean color of each vertex by

averaging the colors of vertices within its 3-ring neighborhood,

µ(i) =
1

|N3(i)|

∑

j∈N3(i)

uj

where µ(i) is the mean colour of the i-th vertex, |N3(i)| is

the number of neighbors within its 3-ring neighborhood N3,

and uj is the color of the j-th vertex. The variance can also

be computed similarly. Finally, the PSNR and SSIM scores

for different algorithms are shown in Table I. The quantitive

measurements are generally in line with the visual inspection,

and the proposed method gains higher scores in all of the

experiments.

D. Mesh Color Editing

For interactive mesh color editing, a user draws scribbles

with desired colors at certain faces, such as shown in Fig. 11

(top row), and then the edit will be propagated through the

mesh by using the edge weight matrix defined in Eq. (12).

According to the definition of the edge weight matrix Ŵ,

the edit will be propagated with high probability to faces

which have similar color to the original color of the stroke

faces. In addition, the spatial geodesic distance and other
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(a) (b) (c)

Fig. 8. Colorization results with different mesh resolutions. The number of faces is 500,000 in the first row and 250,000 in the second row. (a) color strokes,
(b) results of [1], (c) results of the proposed method.

(a) (b)

(g)(d)

(c)

(e) (f)

Fig. 9. The result of color enhancement. (a) original scanning data, (b)-(c) results of Laplacian filtering with cotangent Laplacian matrix and the proposed
weight matrix (11), (d) result of method [45] using position as the feature, (e) result of [45] using color as the feature, (f) result of [45] using the HKS feature,
(g) result of the proposed method.
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(a) (c) (e)(b) (d)

Fig. 10. The color enhancement results with increasing noise levels (from top to bottom). From left to right: (a) ground truth, (b) models with different level
of noise, (c) results of Laplacian filtering, (d) results of Laplacian filtering with the proposed weight matrix (11), (e) proposed method.

geometric constraints defined in mesh colorization prevent the

color propagating across boundaries, such as shown in Fig. 11

(bottom row). Note that YCbCr color space is adopted in the

application of mesh color editing in order to guarantee the

color consistency of the edited regions with respect to the

whole mesh. As far as we are aware, the proposed method is

the first work on interactive mesh color editing.

E. Complexity analysis

We carried out experiments on an Intel Core i7 2.8GHz CPU

with 16GB memory. Both our implementation and method

[1] are MATLAB based. For a mesh with 301,563 faces (the

first example in Fig. 1), the proposed algorithm for mesh

colorization takes 218.34 seconds, where the data loading and

the precomputation of HKS features cost 185.31s, and the

propagation process costs 33.03s. The previous method [1]

takes 193.25 seconds on the same machine using the authors’

precompiled executable. For a smaller mesh with 16,350 faces

(the example shown in Fig. 2), [1] takes 1.27 seconds, while

TABLE I
QUANTITATIVE COMPARISONS OF HEAT DIFFUSION AND THE PROPOSED

METHOD FOR MESH COLOR ENHANCEMENT.

Model 1 (The first model in Fig. 10)

Noise level PSNR SSIM

0.001 19.4309 / 24.6672 / 27.0913 0.4693 / 0.6655 / 0.7329

0.005 19.0508 / 24.2569 / 25.5632 0.4588 / 0.6115 / 0.6543

0.01 18.9575 / 22.8528 / 23.8235 0.4450 / 0.5029 / 0.5842

Model 2 (The second model in Fig. 10)

0.001 25.3212 / 29.7340 / 30.5549 0.7058 / 0.7964 / 0.8323

0.005 24.6484 / 26.6061 / 28.1453 0.6825 / 0.7014 / 0.7448

0.01 23.4172 / 24.9734 / 26.1999 0.6566 / 0.6790 / 0.6926

our proposed algorithm takes 1.80 seconds. Although our

method is slightly slower than [1], it produces significantly

better results.
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Fig. 11. The color editing results of our method (top row: input models; bottom row: our results).

V. CONCLUSION

A novel mesh color edit propagation framework based on

sparse graph regularization is proposed in this paper. The

framework is applied to three typical color edit tasks on

meshes, including mesh colorization, mesh color enhancement

and interactive mesh color editing. First, a sparse graph is cre-

ated by using local geometric features and multiscale feature

descriptors. Then the color is propagated from color strokes to

the whole mesh based on the constraint of the defined sparse

graph. Compared with existing work, the proposed method

better characterizes geometric properties by using multiscale

feature descriptors, and effectively controls the color bleeding

via a sparse ℓ1 optimization. Extensive experiments show that

the proposed method outperforms the state-of-the-art methods.

The main limitation of the proposed method is the computa-

tional complexity of feature extraction. In future work, graph

convolutional neural networks (GCNNs) can be employed to

extract intrinsic features automatically and more efficiently.
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