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Abstract  32 

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is predominantly caused by 33 

heterozygous missense variants in the cardiac ryanodine receptor, RYR2. However, many RYR2 34 

missense variants are classified as variants of uncertain significance (VUS). We systematically re-35 

evaluated all RYR2 variants in healthy individuals and those with CPVT or arrhythmia using the 2015 36 

American College of Medical Genomics guidelines. RYR2 variants were identified by the NW 37 

Genomic Laboratory Hub, from the published literature and databases of sequence variants. Each 38 

variant was assessed based on minor allele frequencies, in silico prediction tools and appraisal of 39 

functional studies and classified according to the ACMG-AMP guidelines. Phenotype data was 40 

collated where available. Of the 326 identified RYR2 missense variants, 55 (16.9%), previously 41 

disease-associated variants were re-classified as benign. Application of the gnomAD database of 42 

>140,000 controls allowed reclassification of 11 variants more than the ExAC database. CPVT-43 

associated RYR2 variants clustered predominantly between amino acid positions 3949-4332 and 44 

4867-4967 as well as the RyR and IP3R homology associated and ion transport domains (P < 0.005). 45 

CPVT-associated RYR2 variants occurred at more conserved amino acid positions compared to 46 

controls, and variants associated with sudden death had higher conservation scores (P < 0.005). 47 

There were five potentially pathogenic RYR2 variants associated with sudden death during sleep 48 

which were located almost exclusively in the C-terminus of the protein. In conclusion, control 49 

sequence databases facilitate reclassification of RYR2 variants but the majority remain as VUS. 50 

Notably, pathogenic variants in RYR2 are associated with death in sleep. 51 

 52 

KEYWORDS: Catecholaminergic ventricular tachycardia, cardiac ryanodine receptor, variant 53 

classification, arrhythmia.   54 

 55 
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Introduction 57 

The rare monogenic arrhythmogenic disorder catecholaminergic polymorphic ventricular 58 

tachycardia (CPVT, MIM 604772) is characterised by episodic ventricular dysrhythmia triggered by 59 

exercise or emotion in individuals without structural cardiac defects (1). CPVT can be inherited in 60 

both an autosomal dominant form caused by heterozygous pathogenic variants in the cardiac 61 

ryanodine receptor gene (RYR2) (MIM 180902)(2), less frequently in CALM1 (MIM 114180)(3) 62 

encoding calmodulin 1 and autosomal recessive form due to biallelic variants in CASQ2 (MIM 63 

114251)(4) encoding calsequestrin, TRDN (MIM 603283)(5) encoding triadin and TECRL (MIM 64 

617242)(6). Furthermore, CPVT can also be caused by rare deletions in exon 3 of RYR2 (7). However, 65 

in such cases CPVT is often accompanied by left ventricular non-compaction (7). It is estimated that 66 

one in 10,000 people are clinically affected by the condition, with sudden cardiac death being the 67 

first manifestation in some individuals (1, 8, 9). The phenotypic heterogeneity of CPVT can delay or 68 

obscure diagnosis. It has been reported that almost one in three individuals with CPVT are initially 69 

diagnosed with long QT syndrome (LQTS) despite a normal QT interval (2). Consequently, combined 70 

approaches of cardiac assessment including exercise stress testing and genetic analysis are used to 71 

confirm a diagnosis of CPVT.  72 

The large coding region of the cardiac ryanodine receptor (105 exons) previously made genetic 73 

testing costly and time consuming using conventional DNA sequencing methods. As a result, it 74 

became common practice to only screen the four regions considered to be mutation hotspots in 75 

RYR2 (10). Next generation sequencing has now become more widely available and all coding exons 76 

of RYR2 can be screened rapidly and cheaply. This has led to an increase in the number of RYR2 77 

variants being reported in individuals with cardiac dysrhythmia or associated symptoms of 78 

palpitations, syncope or sudden unexplained death. Concomitant with this has been the increase in 79 

RYR2 variants identified in apparently healthy individuals collated through international resources, 80 

including the Genome Aggregation Database (gnomAD)(11). The majority of RYR2 variants are 81 
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missense changes. When assayed in functional experiments a number of these lead to increased 82 

channel activity consistent with pathogenicity. However, the rarity of these variants and complexity 83 

of functional assays makes it difficult to determine their pathogenicity, and so the majority are 84 

classified as variants of uncertain significance (VUS). Recently the American College of Medical 85 

Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) proposed 86 

guidelines to standardise the classification of genetic variants (12). 87 

In this study we collate RYR2 variants reported in individuals with, or suspected of having CPVT, and 88 

classify them according to these ACMG guidelines and correlate the variants with clinical features.  89 

Methods 90 

A comprehensive search for RYR2 variants identified in individuals undergoing genetic testing for 91 

CPVT or an associated arrhythmia was performed. A total of 326 different RYR2 variants was 92 

obtained from the North West Genomic Laboratory Hub, UK (a service that has been undertaking 93 

clinical diagnostic testing of RYR2 for >10 years), the published literature and clinical variant 94 

databases, including ClinVar and the Human Gene Mutation Database (HGMD) (Supplementary 95 

Table 1) (13, 14). Allele frequencies of RYR2 variants in apparently healthy individuals were obtained 96 

from gnomAD as a comparator, accessed online from https://gnomad.broadinstitute.org (11).  97 

Phenotype-Genotype analysis 98 

All RYR2 variants both in control and CPVT populations were mapped to the domains, structural 99 

motifs and regions in which they are located in the RyR2 protein (using the universal protein 100 

resource (UniProt) accession number Q92736) with Mutation Mapper from the cBio Cancer 101 

Genomics Portal. For the purpose of our analysis RYR2 regions that were not associated with any 102 

known functional or structural domains were individually labelled as ‘no domain’ followed by a 103 

number ranging from 1 to 9 corresponding to their location.  The proportion of missense variants in 104 

each region/domain of RYR2 in control and CPVT populations were compared using the Fisher’s 105 
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exact test using GraphPad prism. To account for multiple testing a p-value < 0.005 was considered 106 

significant. 107 

Variant Classification 108 

RYR2 variants were classified based on the 2015 ACMG-AMP guidelines. As reported by Denham et 109 

al. (2019) 12 of the 27 criteria listed in the ACMG-AMP guidelines were excluded from this study as 110 

they were considered non-applicable (reasons for the exclusion of these criteria are included in 111 

Supplementary Table 2)  (15). The application of these guidelines has been previously reported 112 

(Supplementary Table 3 and 4)(15). 113 

Criteria for segregation 114 

The criteria for a variant to qualify for variant segregation (PP1) required that the variant was 115 

present in two or more members of the same family with a CPVT-like phenotype (arrhythmias, 116 

syncope, bradycardia or sudden death). The occurrence of affected individuals in whom the putative 117 

variant did not segregate was considered strong evidence for a benign classification (BS4).  118 

Criteria for functional studies 119 

Robust functional studies, including animal models, calcium imaging, cellular electrophysiology and 120 

single channel analysis showing either a significant reduction or gain of function, were considered 121 

strong evidence for pathogenicity (PS3). Conflicting functional data on variants was not considered 122 

as positive evidence of pathogenicity. Functional studies that reported no change in channel 123 

function were considered evidence for a benign classification (BS3). 124 

Criteria for variant frequency 125 

Variants that were absent from gnomAD were considered ultra-rare (PM2) and variants with an 126 

allele count of below 4 were considered rare.  127 
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The statistical framework used to identify variants that occur too frequently in the gnomAD 128 

database to be pathogenic has been described by Whiffin et al. (2017) (16). To summarize, it 129 

involves the determination of the maximum credible population allele frequency for a missense 130 

variant in RYR2 that causes CPVT. This was calculated based on CPVT as a dominant condition with a 131 

penetrance of approximately 60% (8). A binomial distribution of the maximum credible allele 132 

frequency was generated for our sample of CPVT cases (observed allele number) and the upper 133 

boundary of the 95% confidence interval (the maximum tolerated allele count) was used as the cut 134 

off frequency. Variants that occurred more frequently than the maximum tolerated allele count in 135 

gnomAD were considered common and this was strong evidence for a benign classification (BS1). 136 

Criteria for variant enrichment in CPVT cases 137 

Ultra-rare and rare variants were considered for variant enrichment analysis. The presence of an 138 

ultra-rare or rare variant in at least five or ten CPVT cases, respectively, was considered as strong 139 

evidence (PS4). 140 

Criteria for computational evidence 141 

To remain consistent with previously reported variant classification methods, five protein-level in 142 

silico prediction tools: SIFT, PolyPhen, Mutation Taster, Mutation assessor, FATHMM and three 143 

conservation tools GERP++, PhyloP conservation and SiPhy were used for the computational analysis 144 

of variants where DNA positional information was provided (GERP++, PhyloP, and SiPhy scores of 145 

4.4, 1.6, and 12.17, respectively were set as thresholds for conservation)(15). In addition, Consurf 146 

(http://consurf.tau.ac.il/), which uses advanced probabilistic evolutionary models to distinguish true 147 

conservation resulting from purifying selection and produces estimates for the credibility of the 148 

results, was used to measure conservation of amino acid positions of variants in controls and CPVT 149 

patients. The Consurf scores of the amino acid positions of control, CPVT and sudden death cases 150 

were compared using the Mann-Whitney test using GraphPad prism, p-value <0.005 was considered 151 

significant. 152 



7 
 

Criteria for critical functional domain 153 

The location of a missense variant in the transmembrane 4-6 region or ion-transport domain of the 154 

protein was considered as moderate evidence for a pathogenic classification, as the functional 155 

significance of these regions has been established (17, 18).  156 

Results 157 

Collation of RYR2 missense variants 158 

A total of 326 independent RYR2 single nucleotide, non-synonymous variants associated with CPVT 159 

or arrhythmia were identified. Of these variants 97 were present in both control and CPVT 160 

populations. Importantly, 104 (31.9%) of the CPVT-associated RYR2 variants were located outside of 161 

regions previously considered mutation hotspots. The hotspot regions with the most RYR2 variants 162 

were domains III and IV, where 21.5% and 21.2% of variants were located, respectively. The numbers 163 

of male and female cases were similar (Table 1). 164 

The most common amino acid position at which missense changes occurred was Arg420. Nineteen 165 

(19) of 440 (4.3%) independent cases were reported to have a missense change at this amino acid 166 

position, 10 cases carried the Arg420Trp variant and 9 carried the Arg420Gln variant. The second 167 

most common protein position for missense changes was Arg176, 8 of 440 (1.8%) cases carried the 168 

Arg176Gln variant.   169 

Genotype-Phenotype analysis 170 

Several domains or regions within RYR2 contained a significantly higher proportion of CPVT-171 

associated missense variants compared with controls (Figure 1 and Table 2). CPVT-associated 172 

missense variants occurred more frequently than expected between amino acid positions 3949-4332 173 

and 4867-4967 (No Domain regions 5 and 7). CPVT-associated RYR2 variants were also enriched in 174 

the RyR and IP3R homology-associated and ion transport domains when compared to control 175 

variants (p < 0.005). In contrast, control variants clustered between amino acid positions 2906-3826 176 
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and the SPRY and RYR domain when compared to CPVT-associated variants (p < 0.005). There was 177 

no clear relationship between sudden death and the location of CPVT-associated RYR2 variants 178 

(Figure 1A, Supplementary Table 5). However, five of the nine RYR2 variants associated with sudden 179 

death during sleep occurred in the C-terminus of the protein (Figure 1A, Supplementary Table 6). 180 

Conservation analysis 181 

CPVT variants occurred at positions with significantly higher Consurf scores than controls (P < 182 

0.0001), and variants identified in individuals or families with a history of sudden death had higher 183 

Consurf scores compared to variants in individuals and families without a history of sudden death (P 184 

< 0.0001) (Figure 2). This suggests variants with Consurf scores above 7 are more likely to be CPVT-185 

associated and of these variants those with Consurf scores above 8 are more likely to be associated 186 

with sudden death. 187 

Classification of RYR2 variants 188 

RYR2 variants were classified according to the ACMG-AMP guidelines and statistical methods were 189 

used to identify those variants that occurred too frequently in controls to be pathogenic, these 190 

variants were classified as benign (Supplementary Table 7). Using the statistical method described by 191 

Whiffin et al. (2017)(16), data on the most common CPVT-associated RYR2 variant c.1258C>T 192 

(Arg420Trp) and control populations from the ExAC or gnomAD databases, the maximum tolerated 193 

allele count for CPVT associated RYR2 variants was calculated (Supplementary Tables 8 and 9). 194 

The maximum tolerated allele count for pathogenic RYR2 variants was calculated to be two when 195 

using the ExAC database as a control population and three for the gnomAD database. Using the 196 

gnomAD database and the maximum tolerated allele count as a frequency threshold for 197 

pathogenicity 55 of 326 previously putative disease associated variants were re-classified as benign 198 

according to the ACMG guidelines, 11 fewer variants (44) were reclassified as benign using the ExAC 199 

database. A further 245 variants were classified as variants of uncertain significance, 14 as likely 200 
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pathogenic and 12 as pathogenic using gnomAD as the control comparator (Table 3). Both benign 201 

and pathogenic variants occurred most frequently outside of known functional domains. The ion 202 

transport domain contained the most (7 of the 26) pathogenic or likely pathogenic variants. The 203 

SPRY domain was found to be the domain containing the most benign variants; this domain did not 204 

contain any pathogenic variants. 205 

Sufficient functional data to aid classification was available for 50 of the 326 variants 206 

(Supplementary Table 10). The classification of the 26 variants deemed to be pathogenic/likely 207 

pathogenic was driven by absence from the gnomAD database (92%, P6), computational evidence 208 

(88%, P9), functional data (73%, P3) and de novo status (50%, P2). The classification of the 55 209 

variants classified as benign was largely driven by variant frequency in gnomAD exceeding the 210 

maximum tolerated allele count (100%, B2) and only one or none of the computational prediction 211 

tools indicating pathogenicity (11%, B5). 212 

Reason for referral and genetic testing outcome 213 

Cases referred for genetic testing at MCGM with a more confident diagnosis of CPVT based on 214 

clinical evaluation were tested using the CPVT genetic panel, whereas those cases with less 215 

diagnostic certainty were tested using either the arrythmia panel  (including 37 genes associated 216 

with inherited arrhythmia) or the molecular autopsy panel (61 genes associated with sudden cardiac 217 

death). The proportion of patients referred for genetic testing with the CPVT panel that carried RYR2 218 

variants was significantly greater than that of the patients tested with the arrhythmia panel (P < 219 

0.05) or molecular autopsy panel (P < 0.0005). Furthermore, these patients were more likely to carry 220 

pathogenic RYR2 variants (P < 0.05) (Table 4, Figure 3). 221 

Discussion 222 

The availability of sequence variant databases like gnomAD (11) and a statistical threshold to aid in 223 

the classification of pathogenicity for genetic variants (16) is aiding the robust classification of 224 
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sequence variants as associated, or not, with disease. The maximum tolerated allele count method 225 

was validated in individuals with hypertrophic cardiomyopathy using previous variant assessments 226 

and reports of pathogenicity in ClinVar (14). In the present study we used this method to calculate a 227 

maximum tolerated allele count for CPVT-associated RYR2 missense variants. Using this frequency 228 

threshold, 55 of 326 (16.9%) CPVT associated RYR2 variants were re-classified as benign. Thus, our 229 

data show a sizeable number of RYR2 variants are not disease-causing, in which case the proportion 230 

of CPVT cases attributable to RYR2 variants is likely to be over-estimated and the proportion of cases 231 

attributable to changes in other genes or to post-translational modifications is likely to be 232 

underestimated. The reclassification of VUS as benign variants is important as family members 233 

previously cascade tested to carry these variants may not be at increased risk and those without 234 

these variants may have been falsely reassured and remain at risk of arrhythmia or sudden cardiac 235 

death. Furthermore, this classification of benign variants offers the opportunity to find the real 236 

explanation for the CPVT phenotype in affected individuals. 237 

In the present study the maximum tolerated allele count for CPVT associated RYR2 missense variants 238 

was calculated using both the ExAC and gnomAD databases as control populations. Variants that 239 

occurred above the frequency threshold in each population where then reclassified accordingly. The 240 

ExAC database contains exome data from 60,706 unrelated apparently healthy individuals, whereas 241 

the gnomAD database contains combined exome and genome variant data from 141,456 individuals. 242 

Importantly 1600 of the 1975 (81%) RYR2 missense variants reported in gnomAD have a minor allele 243 

count below four. This not only highlights that a number of potentially healthy individuals have rare 244 

variants in RYR2 which may have a consequence in the context of a particular trigger e.g. exercise or 245 

emotion, but also that many benign RYR2 variants are rare. The utility of larger control datasets in 246 

reclassifying RYR2 variants was exemplified in this study. Comparison with the larger gnomAD 247 

database as a control population allowed the reclassification of 11 additional RYR2 variants as 248 

benign compared to ExAC. Further reclassification of VUSs may be achieved with larger sequence 249 
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datasets and by using data from individuals with more phenotype data and of older age to reduce 250 

the effects of non-penetrance. 251 

Applying Consurf, we found RYR2 variants present in CPVT patients occurred at amino acid positions 252 

that were significantly more conserved than those of control variants and the conservation of 253 

residues where CPVT sudden death variants occurred was even greater (Figure 2). The application of 254 

a frequency threshold in control datasets with the consideration of Consurf may be more 255 

informative than using each method independently and may be particularly useful for determining 256 

the probability of a rare variant being pathogenic or benign. 257 

Both RYR2 variants and CPVT are commonly associated with arrhythmias and/or sudden death 258 

triggered by exercise or stress. However, we noted RYR2 variants in individuals who died or 259 

experienced cardiac arrest while asleep. In these patients almost all of the RYR2 variants that were 260 

not classified as benign resulted in changes within the C-terminal of the protein, with the exception 261 

of one variant that occurred in the central domain. Although, limited by the small number of cases 262 

this data suggests pathogenic C-terminal RYR2 variants may pose a greater risk of sudden death at 263 

rest, particularly during sleep. This relationship between C- terminal variants and sudden death in 264 

sleep is novel and requires independent validation.  Sleep is considered a restful period but during 265 

rapid eye movement (REM) sleep, which accounts for approximately 20% of sleep time, sympathetic 266 

activity is increased and intense emotional states occur (19). Thus, sudden death during sleep in 267 

patients with RYR2 variants may be due to episodes triggered by increased sympathetic activity 268 

comparable to exercise or emotional stress. Contrastingly, specific RYR2 variants may exhibit 269 

properties that increase their sensitivity to other sleep related triggers like rises in hormones such as 270 

melatonin which has been shown to induce ventricular arrythmias (20, 21). Importantly in a recent 271 

prospective study of sudden cardiac death the majority of deaths occurred during sleep (22) and 272 

CPVT should be considered as a potential cause in this setting.  273 
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Our data shows that CPVT-associated RYR2 variants predominantly cluster in four regions/domains, 274 

namely the RyR and IP3R homology-associated domain; the ion transport domain; and two regions 275 

outside of known domains (No domain regions 5 and 7). Generally, these regions correspond to the 276 

previously-reported mutation hotspots. However, more than 30% of CPVT-associated RYR2 variants 277 

occurred outside of mutation hotspots, emphasising the importance of screening the entire coding 278 

region of RYR2 in patients suspected of having CPVT.  279 

The presence of functional data was a major driver of pathogenic classifications. However functional 280 

data was only available for 50 of the 326 CPVT associated variants. In addition to this the threshold 281 

of at least a 50% effect on channel function required for pathogenicity as applied by Denham et al. 282 

(2019) may not be applicable for RYR2 as there is no direct correlation between the magnitude of 283 

variant functional effect and disease phenotype in CPVT (15). Computational evidence and absence 284 

from control datasets were also major contributors to pathogenic classifications, similar to Denham 285 

et al. (2019), we used eight computational tools and applied a threshold of six tools predicting a 286 

pathogenic effect for pathogenic classification (15). This method was found to be more stringent and 287 

require more evidence for a pathogenic classification when compared to previous systems (15).  288 

A limitation of this study was the lack of systematically collected phenotype data and this will be 289 

required prospectively to identify effective means of combining clinical and genetic information to 290 

make accurate CPVT diagnoses. Nonetheless, based on the clinical indications considered our data 291 

shows specificity of testing (a surrogate for confidence in the underlying phenotype) correlates with 292 

the likelihood of identifying a relevant variant. Thus, although genetic testing is a useful aid in the 293 

diagnosis of CPVT rigorous clinical evaluations and the establishment of additional common 294 

phenotypic traits for CPVT is likely to increase the efficiency of genetic testing, identification of 295 

pathogenic variants and possibly improve the management of the condition.  296 

In summary, CPVT-associated RYR2 variants cluster in specific domains/regions, many of which are 297 

within, but not confined to, previously established mutation hotspots. CPVT-associated variants 298 
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occur at residues that are more evolutionarily conserved than controls, and RYR2 variants associated 299 

with sudden death occur at positions which are even more highly conserved. The application of a 300 

frequency threshold for pathogenicity, amino acid conservation scores and functional data aid 301 

distinguishing pathogenic and benign variants. However, the majority of CPVT variants remain 302 

classified as VUS. Therefore, additional approaches are required, including sharing of sequence data 303 

from affected individuals through Clinvar and other resources, generation of additional sequence 304 

data from healthy controls and use of sensitive high-throughput functional assays like saturation 305 

genome editing, with sufficient weight to drive pathogenic or benign classifications (23).  306 
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Titles and legends to figures 405 

Figure 1A. The distribution of missense variants in RYR2 in control population from the gnomAD 406 

database (A), CPVT (B), sudden death (C) and sudden death in sleep (D) populations. 407 

 408 

Figure 1B. Proportion of RYR2 variants in grouped domains in controls from the gnomAD database, 409 

CPVT, sudden death and sleep-associated sudden death populations. The number of cases in the 410 

sudden death and sleep-associated sudden death groups was limited, there were 47 sudden death 411 

cases and 7 sleep-associated sudden death cases.  412 

 413 

Figure 1C. Grouped domains of RYR2 in which the proportion of RYR2 variants was significantly 414 

different in controls from gnomAD compared to CPVT patients. **** and *** represent P < 0.0001 415 

and P < 0.005, respectively.  416 

 417 

Figure 2. A) Consurf scores of amino acid positions of CPVT variants compared to controls from 418 

gnomAD. B) Consurf scores of amino acid positions of non-sudden death CPVT variants compared to 419 

sudden death CPVT variants. **** represents P < 0.0001. 420 

 421 

Figure 3. A) Number of patients referred for genetic testing using the CPVT, arrhythmia or molecular 422 

autopsy panel with an RYR2 variant detected. B) Number of patients referred for genetic testing 423 

using the CPVT, arrhythmia or molecular autopsy panel with a pathogenic RYR2 variant detected. 424 



 

Table 1. Pre-established RyR2 variant hotspot regions in CPVT. 

Variant hotspot 
region 

Residues 
 (amino acids) 

variants  
(% of total) 

n=326

de novo variants 
(%) 

n=40

Male:Female  
Ratio (%) 

I 77-466 35 (10.7) 7 (17.5) 56:44

II 2246-2534 48 (14.7) 6 (15) 50:50 

III 3778-4201 70 (21.5) 13 (32.5) 42:58

IV 4497-4959 69 (21.2) 10 (25) 41:59

Non-hotspot regions  104 (31.9) 4 (10) 47:53 



 

 
Table 2. Proportion of RYR2 variants in individual RYR2 domains or regions in controls from gnomAD, 
CPVT, sudden death and sleep-associated sudden death populations. 
 
Protein domain or region Length of region 

(delimiting amino acids) 
Control 
population 
from gnomAD 
database (%) 

CPVT (%) Sudden 
death 
(%) 

Sleep 
(%) 

Inositol 1,4,5-
trisphosphate/ryanodine 
receptor  

212 (10-222) 100 (5.1) 18 (5.5) 1 (1.6) 0 

MIR domain  173 (226-399) 78 (3.9) 9 (2.8) 1 (1.6) 0 
No domain #1 51 (400-451) 31 (1.6) 15 (4.6) 4 (6.3) 0
RYDR_ITPR domain #1  203 (452-655) 89 (4.5) 9 (2.8) 1 (1.6) 0 
SPRY domain #1  137 (671-808) 75 (3.8) 4 (1.2) 0 0 
RyR domain #1  91 (862-953) 39 (2.0) 2 (0.6) 1 (1.6) 1 (11.1) 
RyR domain #2  93 (975 - 1068) 46 (2.3) 0 0 0 
SPRY domain #2  120 (1099 - 1219) 60 (3.0) 3 (0.9) 0 0
SPRY domain #3  135 (1424 - 1559) 59 (3.0) 4 (1.2) 1 (1.6) 1 (11.1) 
No domain #2 564 (1560-2122) 282 (14.3) 21 (6.4) 5 (7.9) 0 
RYDR_ITPR domain #2 208 (2123 - 2331) 52 (2.6) 29 (8.9) 12 (19) 1 (11.1)
No domain #3 367 (2332-2699) 160 (8.1) 38 (11.7) 3 (4.7) 0 
RyR domain #3  93 (2700 - 2793) 34 (1.7) 3 (0.9) 0 0 
RyR domain #4  85 (2820 - 2905) 26 (1.3) 0 0 0 
No domain #4 920 (2906-3826) 352 (17.8) 16 (4.9) 2 (3.2) 0 
RyR and IP3R Homology 
associated  

121 (3827 - 3948) 19 (1.0) 11 (3.4) 4 (6.3) 0

No domain #5 383 (3949-4332) 133 (6.7) 64 (19.6) 10 (15.9) 1 (11.1) 
Ryanodine Receptor TM 
4-6  

266 (4333 - 4599) 96 (4.9) 20 (6.1) 8 (12.7) 2 (22.2) 

No domain #6 130 (4600-4730) 38 (1.9) 16 (4.9) 3 (4.7) 2 (22.2) 
Ion_transport domain  135 (4731 - 4866) 19 (1.0) 18 (5.5) 2 (3.2) 0 
No domain #7 100 (4867-4967) 10 (0.5) 21 (6.4) 1 (1.6) 1 (11.1)



Table 3. RYR2 variant classification based on the ACMG-AMP guidelines 

ACMG classification Number of CPVT associated 
RYR2 variants total = 326 (%) 

Benign 55 (16.9)
Variant of uncertain significance 245 (75.6)
Likely pathogenic 14 (4.1)
Pathogenic 12 (3.7)
 

 



Table 4. Outcome of genetic testing for patients referred for CPVT, arrhythmia and molecular 
autopsy panels to the Manchester Laboratory (MCGM). 

 CPVT panel Arrhythmia panel Molecular autopsy panel 

Patients tested 98 130 166 

Patients with RYR2 
variants  

20 11 8 

Patients with pathogenic 
RYR2 variants 

10 2 1 
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