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Abstract 

Lynch syndrome (LS) is characterised by predisposition to colorectal, endometrial 

and other cancers and is caused by inherited pathogenic variants affecting the DNA 

mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2.  It is probably the 

most common predisposition to cancer, having an estimated prevalence of between 

1/100 and 1/180.  Resources such as the International Society for Gastrointestinal 

Hereditary Cancer’s MMR gene variant database, the Prospective Lynch Syndrome 

Database (PLSD) and the Colon Cancer Family Register (CCFR), as well as 

pathological and immunological studies are enabling advances in the understanding 

of LS.  These include defined criteria by which to interpret gene variants, the function 

of DNA mismatch repair in the normal control of apoptosis, definition of the risks of 

the various cancers, and the mechanisms and pathways by which the colorectal and 

endometrial tumours develop, including the critical role of the immune system.  

Colorectal cancers in LS can develop along three pathways, including flat 

intramucosal lesions, which depend on the underlying affected MMR gene.  This 

gives insights into the limitations of colonoscopic surveillance and highlights the 

need for other forms of anti-cancer prophylaxis in LS.  Finally, it shows that the 

processes of autoimmunisation and immunoediting fundamentally constrain the 

development of tumours in LS and explains the efficacy of immune checkpoint 

blockade therapy in MMR deficient tumours. 
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1. Introduction 

Lynch syndrome (LS), previously called hereditary non-polyposis colorectal cancer 

(HNPCC), is probably the most common major cause of inherited susceptibility to 

cancer, with an estimated prevalence in the general population of between 1/100 and 

1/180.[1]  It is characterized by predisposition to a range of cancers, involving most 

frequently the colorectum and endometrium, and also many other organ sites including 

ovary, stomach, small intestine, hepato-biliary tract, pancreas, urinary tract, prostate, 

brain and sebaceous skin tumours.[2, 3]   

LS is caused by constitutional (germline) pathogenic variants affecting one of four 

genes encoding the DNA Mismatch Repair (MMR) system components: MLH1, MSH2, 

MSH6, and PMS2, and hence the current commonly accepted diagnostic definition of 

LS is carrying such a variant.[1, 4-8]  However, while we acknowledge there is an 

opinion that LS can only be diagnosed in such individuals once cancer has been 

diagnosed, this is contrary to the hereditary polyposes, which are characterised by the 

macroscopic syndromic feature of multiple pre-malignant tumours.[9]  Allied to this, a 

major purpose of diagnosis of a cancer predisposing condition is to identify those who 

would benefit from surveillance and prophylactic surgery to prevent cancer.[5]  Hence, 

our view is that it is inconsistent and to a degree cruel to discriminate against LS by 

expecting such individuals to develop cancer in order to be diagnosed with the 

condition, especially as cancer does not always occur.[2, 3, 10]  As we discuss later 

on, the definition of LS could, and perhaps should, therefore, move to one that 

incorporates recently identified specific microscopic and molecular pre-malignant 

syndromic features.   



5 
 

DNA MMR recognises and repairs mismatched bases (e.g. C opposite T) and 

insertions or deletions in repetitive sequences.  In LS patients, this MMR gene 

constitutional variant, when combined with an acquired second pathogenic variant due 

to somatic mutation in the wild-type allele of the same MMR gene, results in the 

complete loss of MMR pathway function in the affected cells.  Deficiency of MMR 

(dMMR) leads to hypermutability, resulting in an increase in the mutation rate by 100- 

to 1000-fold due to uncorrected base mismatches, and to microsatellite instability 

(MSI) due to variation in the lengths of repetitive sequences (e.g. AAAAAAA… or 

CACACACA…. or similar, known as microsatellites) due to uncorrected 

insertion/deletion loops that are prone to occur as DNA replication errors in repetitive 

sequences.[11]  However, crucially, dMMR does not simply fail to repair mismatches, 

it elicits a reduced susceptibility to apoptosis induced by DNA damage recognised by 

the MMR pathway.[11-14]   

The International Society for Gastrointestinal Hereditary Cancer (InSiGHT) was the 

first expert group to define pathogenicity of gene variants according to an agreed set 

of criteria based upon Bayesian probability, using the 5-tier classification system of 

Plon et al.[4, 15-17]  In this system Class 5 variants are pathogenic and Class 4 likely 

pathogenic, with Class 3 being variants of uncertain significance (VUS), and Classes 

2 and 1 being likely benign and benign respectively.  InSiGHT maintains the world 

reference database of variants observed in MMR genes (as Leiden Open Variation 

Databases (LOVD), which are now linked to ClinVar, as part of the ClinVar-ClinGen 

partnership), and accordingly, 82% of the Class 4 and 5 variants listed affect MLH1 

and MSH2, with 13% affecting MSH6 and 5% PMS2.[16, 18-20]  It should be noted 

that these pathogenic variants are mostly from cases ascertained by family history.  

As more cases of LS are ascertained from systematic testing of cancer cases and 
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incidentally from gene panel testing, more patients will be identified with pathogenic 

variants in MSH6 and PMS2 and thus the proportions due to the different MMR genes 

will alter.[6] 

All types of variants are seen as pathogenic: nonsense, frameshift, splice site, 

missense, insertion-deletion and large deletions/rearrangements, the largest so far 

being a 10 Mb inversion affecting MSH2 and which is visible cytogenetically.[21-23]  

Approximately 60% of all putative pathogenic missense mutations causing LS actually 

disrupt splicing and are thus, in effect, truncating.[24]  Up to 3% of Lynch syndrome 

cases are due to variants involving the 3′ end of the EPCAM gene (immediately 

adjacent to MSH2), that results in the hypermethylation of the MSH2 promoter or 

partial deletion of MSH2.[25, 26]  Another infrequent, but important cause of LS is 

constitutional methylation of the MLH1 promoter, which occurs in 1 – 2% of cases.[27-

29]  This is usually sporadic in nature, so neither inherited nor heritable, and relatives 

are therefore not at risk.  However, in a small number of patients the hypermethylation 

is secondary to a large deletion typically involving LRRFIP2, the gene upstream of 

MLH1, and it is the deletion which is the pathogenic variant: the methylation is 

secondary.[29]  Given the risks to relatives it is therefore important to distinguish such 

cases, and this is achieved by testing both the tumour and constitutional DNA, and 

finding MLH1 promoter methylation in both, perhaps in the context of a LS family 

history.  It has to be borne in mind that approximately 15% of sporadic colon cancers 

are also dMMR due to somatic, so acquired, epimutation of both MLH1 alleles by 

promoter hypermethylation.[30]  This is a function of such tumours arising from right-

sided serrated lesions.[31].  A similar proportion of sporadic endometrial cancers also 

have biallelic hypermethylation of MLH1, and as with colon cancers a small proportion 
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are due to constitutional methylation plus a somatic mutation in the normal MLH1 

allele.[27, 28, 32, 33] 

 

Other genetic conditions relating to Lynch syndrome 

Muir-Torre syndrome (MTS) is a descriptive diagnosis of an individual in which both 

skin sebaceous neoplasms (and keratoacanthoma-like lesions) and a “visceral” 

carcinoma of any sort has occurred.[34, 35]  It is a frequently seen combination in LS, 

indeed on close inspection many, perhaps most patients with LS who have suffered a 

carcinoma probably have a sebaceous skin lesion and thus MTS.[36, 37]  However, 

MTS is also seen in other heritable predispositions, e.g. MUTYH-associated 

adenomatous polyposis, or it may be sporadic, so while a marker of possible LS, MTS 

is not diagnostic.[38, 39]  Notably, although sebaceous lesions and hyperplasia are 

often rightly a cause for concern regarding LS and a patient with sebaceous lesions 

and a visceral cancer warrants testing, it should be noted that in the absence of a 

family or personal history of LS-associated cancer they are at low risk and do not 

warrant testing.[40, 41]   

Individuals may inherit pathogenic variants in both copies of a DNA MMR gene.  When 

both are in the same gene it causes Constitutional Mismatch Repair Deficiency 

(CMMR-D) syndrome.  CMMR-D is a classic recessive DNA repair disorder typically 

characterised by childhood onset leukaemia, lymphoma, colorectal and brain cancers, 

but also, in contrast to LS, some patients may have multiple colorectal adenomas.[42-

44]  Signs suggestive of neurofibromatosis type 1 also often occur, such as café-au-

lait macules and cutaneous neurofibromata, plus other features such as immune 

deficiency.[45]  In CMMR-D patients abnormal MMR IHC is seen in both normal and 
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tumour cells (hence the necessity always to test all four markers) and it is possible to 

detect constitutional MSI in e.g. blood.[46, 47]  Patients with CMMR-D due to MSH6 

or PMS2 variants may show milder disease and later onset.[48]  Comprehensive 

diagnostic criteria and care pathways have been published.[7, 45]   

Patients may also be found who have pathogenic variants in more than one MMR 

gene, so-called digenic LS.  It is not clear if this is more severe than LS due to a 

pathogenic variant in one gene, but has clear implications for clinical genetic 

counselling.  However, LS patients can and do co-inherit other forms of predisposition 

to cancer (or indeed any other genetic condition), and if this is suspected should be 

pursued.[49]   

Finally, Turcot syndrome, a combination of colorectal cancer or adenomas and central 

nervous system tumours, with dominant or recessive inheritance, is another historical 

descriptive diagnosis that has been related to LS.  However, it is now known that it 

can be due to CMMR-D, Familial Adenomatous Polyposis and probably other 

conditions, and so as an ambiguous term it should be abandoned.[42, 44, 50] 

 

2. DNA Mismatch Repair Mechanisms 

The MMR pathway is a highly evolutionarily-conserved mechanism responsible for the 

correction of base mismatches (e.g. C or G opposite T or A) and insertion/deletion 

loops (occurring in repetitive sequences such as AAAAAA … or CACACACA … due 

to insertion or deletion of an extra repeat unit during stalled DNA replication of these 

repetitive sequences).  Such stalling is probably mostly due to replication associated 
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errors, but is also caused by DNA damage due to oxidative stress, lipid peroxidation, 

base deamination, methylation, and alkylation.[51] 

A base mismatch or single nucleotide insertion/deletion error is recognized by the 

MutSα complex which is composed of MSH2 and MSH6 proteins.  Insertion/deletion 

loops of 2-8 nucleotides are recognized by the alternative complex MutSβ, composed 

of MSH2 and MSH3 proteins.  MutSα complex activation is characterized by ATPase 

activity, which is important for the interaction with the mismatched DNA and initiation 

of repair.  The binding of MutSα stimulates ATP-hydrolysis leading to a conformational 

change which subsequently triggers the recruitment of a second complex MutLα, 

composed of MLH1 and PMS2 proteins.  The tetrameric complex, by sliding on the 

DNA, searches for the single-strand DNA mismatch on the new strand (daughter 

strand).  This, in turn, activates proliferating cell nuclear antigen (PCNA) and 

Replication factor C (RFC). MutLα possesses an intrinsic ATP-stimulated 

endonuclease activity that requires activation by PCNA in order to create an incision 

in the recently synthesised daughter strand (containing the error).  The incision step 

is followed by the recruitment of exonuclease 1 (EXO1) that removes the newly-

synthesized DNA strand up to and beyond the mismatch or loop. DNA polymerase δ 

re-synthesizes the DNA, whilst Ligase 1 seals the remaining nick.[52] 

The MMR pathway is involved in a signalling cascade that leads to cell cycle arrest 

and / or apoptosis, if DNA damage has previously occurred.[53]  It has been observed 

that MMR-deficient cells fail to recruit ataxia-telangiectasia mutated (ATM) and ATM 

and Rad3-related (ATR); and this prevents p53 phosphorylation in response to DNA 

damage.[12, 54]  The underlying mechanisms by which MMR proteins promote DNA 

damage-induced cell cycle arrest and apoptosis have not been fully elucidated.  Two 
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models have been hypothesised: the futile cycling model and the direct damage 

signalling model.  In the futile cycling model, MMR recognizes the mismatches 

triggering the excision of the newly synthesized strand, although the persistent 

offending damage on the template strand cannot be excised. MMR initiates futile repair 

cycles, eventually resulting in the formation of DNA double-strand breaks and thus, 

activating the ATM/ATR/p53 signalling pathway to activate cell cycle arrest and / or 

apoptosis.[55]  In the direct damage signalling model, MutSα and MutLα directly recruit 

ATM/ATR and cause cell cycle arrest and / or apoptosis.[56] 

A crucial consequence of this is that the low background level of DNA damage in 

normal cells may stimulate MMR and thus inhibit the cell cycle, or if severe even 

stimulate apoptosis, and so net cell turnover does not reach its theoretical maximum.  

However, if MMR deficiency should occur in such cells there is then no such limitation 

by stalling of the cell cycle or activation of apoptosis and net cell division increases in 

an uncontrollable fashion, allied to which as a secondary phenomenon the mutation 

rate increases, which is manifest as MSI and/or abnormal MMR IHC.  This is very 

useful diagnostically, but it is important to appreciate that it is not the increased 

mutation rate per se that is driving the carcinogenic process, and neither does it make 

adenomas progress any quicker than usual.[14]  However, because mutations are 

strongly biased towards repetitive DNA sequences in dMMR cells this has profound 

consequences for the biology of such tumours and patients with LS due to the strong 

immunological responses this elicits.[57, 58]  The critical consequences of this are 

manifest in how LS tumours develop and potentially evade the immune system.[59] 

Notably, some MMR gene variants are associated with abnormal MMR IHC in 

tumours, but not MSI, and vice versa.[4, 15]  In addition, only one of 149 PMS2 
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pathogenic variants causative of LS is a missense mutation.[18]  However, many other 

PMS2 missense variants are seen in CMMR-D (a recessive DNA repair disorder), 

which is consistent with common, but not complete, overlap between loss of DNA 

(MMR-recognised) damage repair and apoptotic functions of MMR.[18, 60, 61] 

 

3. Lynch Syndrome Databases 

In addition to the MMR gene variant database maintained by InSiGHT, there are other 

phenotypic databases aimed at understanding the precise risks LS patients face.  

Initial risk estimates were liable to ascertainment bias and thus tended to overestimate 

by being necessarily retrospective.  The penetrance and expressivity of MMR 

pathogenic variants differs in LS patients according to the MMR gene, age, sex, and 

environmental / lifestyle factors.[62]  Several lifestyle factors, such as smoking, 

alcohol, obesity, are associated with an increased risk of sporadic cancer and have 

been suggested to have similar effects in LS patients.  Therefore, as it is fundamental 

to quantify accurately the risks of developing cancer for LS patients, then in order to 

provide adequate data for surveillance and care, as well as understand the underlying 

biology, the Prospective Lynch Syndrome Database (PLSD) was established in 2012 

by the Mallorca Group of InSiGHT.[2, 63]  The PLSD collects data on LS patients from 

Lynch Syndrome expert centres and registries worldwide, who are thus undergoing 

colonoscopic surveillance with polypectomy, and may also be having therapeutic or 

prophylactic surgery.  It therefore provides information on the natural history of the 

disease course and the effects of interventions and lifestyle factors.  The PLSD is 

linked to the InSiGHT MMR LOVD: all patients on the PLSD must have a Class 4 or 5 

MMR variant, so pathogenic or likely pathogenic according to the InSiGHT 
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classification.[4, 15]  The PLSD includes basic information on pathogenic genetic 

variants, sex, and age, plus information such as cancers or pre-cancers diagnosed, 

age at diagnoses, age at prophylactic surgical removal of organs and information on 

pre-cancers.  Every patient is followed as an individual, as the family history is ignored 

so as not to introduce bias, and the database now has >50,000 patient-years of 

observations.[10]  The PLSD website is public and allows anyone to determine the 

risks to an individual of an LS-associated cancer in an interactive graphical form 

according to their affected gene, age, gender and whether previously affected by 

cancer.[63]  Risks of LS-associated cancers to age 75 are summarised in Table 1; 

those for PMS2 affecting both sexes are combined due to the smaller numbers 

available and numbers have been rounded throughout for clarity.[10] 

Table 1. 

Important parallel efforts have been made in defining risks in Lynch syndrome by the 

Colon Cancer Family Registry (CCFR) and the International Mismatch Repair 

Consortium (IMRC).[64, 65]  The CCFR is an international consortium of six institutes 

in the United States, Canada and Australasia formed as a resource to support studies 

on the aetiology, prevention, and clinical management of colorectal cancer, and 

utilises a form of modified segregation analysis to minimise retrospective 

ascertainment bias.[65, 66]  It currently has data on >42,500 individuals from over 

15,000 families on its records and has made significant advances in demonstrating 

how environmental and lifestyle factors affect cancer risks in LS, such as smoking, 

raised body mass index and alcohol consumption.[67-69]  By contrast, reduced cancer 

risk is seen with, e.g. hormone replacement therapy, vitamin and mineral supplements, 

NSAID use, and parity, but there is no change in risk associated with oral contraceptive 
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use.[70, 71]  The IMRC is a worldwide collaboration of more than 115 investigators 

from 59 centres, with 20,000 individuals with LS from 8,800 families, facilitated by 

InSiGHT and the Collaborative Group of the Americas on Inherited Gastrointestinal 

Cancer (CGA-IGC).[64, 72] 

Lastly, is the initiative to determine the effects of aspirin prophylaxis on LS patients, 

although this is a series of clinical trials rather than a database.  Remarkably, the 

CAPP2 trial has shown that only two-four years of treatment with 600 mg/d of aspirin 

very significantly reduces the risk of colorectal cancer up to more than 10 years post 

treatment, and likely also reduces the risks of other LS cancers, although this is less 

certain.  Notably, side-effects possibly attributable to aspirin were at a low rate and 

actually slightly more common, though non-significantly, in the placebo compared to 

treatment arm.[73-75]  A follow on randomised double blind dose non-inferiority trial, 

CaPP3, is now in progress to determine the optimum dose of aspirin for long term 

prophylaxis.[76] 

 

4. Pathology of Lynch Syndrome Cancers 

Typical histological features of Lynch Syndrome tumours are best exemplified by 

colorectal cancer (CRC), which often shows a combination of the presence of 

prominent tumour-infiltrating lymphocytes, Crohn-like peritumoural lymphoid 

aggregates, poor differentiation, frequently with areas of mucinous and / or signet-ring 

cell patterns, sometimes with a medullary growth pattern.[77, 78]  These 

characteristics can be seen in both Lynch Syndrome CRC and sporadic dMMR bowel 

cancers, but are not sufficiently specific to distinguish them from pMMR cancers. 
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Less data have been published about non-colorectal LS-associated cancers.  LS-

associated endometrial cancers can be seen more frequently in the lower uterine 

segment than sporadic cancers, are mostly of endometrioid type, often with poor 

differentiation, solid or dyscohesive, with prominent tumour-infiltrating lymphocytes, 

and Crohn-like peritumoural lymphoid aggregates.[79-84]  LS-associated ovarian 

cancers are typically of endometrioid or clear cell type, with some tumour-infiltrating 

lymphocytes.[79, 80, 85, 86]  LS-associated gastric carcinomas are mostly of 

intestinal-type with fewer of diffuse-type, and rarely of mucinous type, and an 

associated immune gastritis is reported.[87-90]  LS-associated small intestinal 

adenocarcinomas often display mucinous, signet-ring cell or medullary differentiation, 

with tumour-infiltrating lymphocytes and Crohn-like reactions, as do ampullary 

adenocarcinomas.[91]  LS-associated pancreatic cancers are mostly acinar cell 

carcinomas and medullary carcinomas.[92] 

 

5. Testing for Lynch Syndrome Cancers 

Testing of (usually selected) patients with CRC, EC and/or other types of LS-

associated cancer is recommended by many guidelines and organizations, generally 

starting with testing the tumours for either the presence of MSI or the absence (or 

abnormal expression) of mismatch repair proteins.  There is no consensus regarding 

whether MMR immunohistochemistry or MSI testing is the better first test in colorectal 

cancers as they have similar test performance characteristics in detecting LS: 

sensitivity of MSI is 88 ~ 100% and IHC 73 ~ 100%, with specificity of MSI 68 ~ 84% 

vs IHC 78 ~ 98%.[93, 94]  They may be used serially, or in combination.[93-97]  

However, evidence is now emerging that IHC may be the preferred option when testing 
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endometrial cancers (systematic testing of which is now under consideration by NICE) 

as a recent UK study has shown that while MSI and IHC have similar specificity (83.7 

vs. 81%), MSI has only 56.3% sensitivity compared to 100% for IHC.[82, 83] 

MMR immunohistochemistry is the better option for small biopsies, cancers with a low 

tumour cell proportion or intense inflammatory reaction.  Subsequent testing for MLH1 

promoter hypermethylation and somatic (rather than constitutional / germline) 

mutations can be used to clarify the risk of inherited pathogenic variants in suspected 

Lynch Syndrome patients.  MLH1 promoter hypermethylation testing may be used as 

an alternative to BRAF V600E mutation analysis in colonic cancers.[98-100]  The use 

of larger targeted gene mutation panels (or whole exome / genome sequencing) that 

includes MMR tumour testing with mutation analyses is becoming more 

widespread.[101]  

Immunohistochemical staining for the four major DNA mismatch repair proteins 

(MLH1, MSH2, MSH6 and PMS2) is probably the most common test used to screen 

CRCs and other tumours for dMMR.[93, 95, 97]  The nuclear expression of all four 

proteins suggests mismatch repair proficiency with microsatellite stability.[102-104]  

Loss or abnormality of nuclear staining for any of the proteins indicates dMMR and 

suggests the most likely MMR gene involved.[103, 104]  Loss of MSH2 alone or loss 

of both MSH2 and MSH6 suggests a mutation or abnormality in MSH2 is most likely.  

Similarly, loss of MLH1 alone or loss of both MLH1 and PMS2 suggests an underlying 

mutation, abnormality or promoter methylation in MLH1.  Combined loss of both MSH2 

and MSH6 (or of both MLH1 and PMS2) reflects the heterodimeric binding of MSH2 

with MSH6 (or of MLH1 with PMS2) in the mismatch repair complex MutSα (or of 

MutLα), such that loss of the first protein partner generates instability and loss of the 
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second [37].  Usually, there is nuclear staining in the nuclei of both tumour cells and 

adjacent normal epithelial cells, stromal cells and lymphocytes.  

In a dMMR tumour due to MSH2 mutation there is loss of nuclear expression of MSH2 

and MSH6 and intact staining for MLH1 and PMS2.  In a dMMR tumour due to MLH1 

mutation there is loss of nuclear expression of MLH1 and PMS2 and intact staining for 

MSH2 and MSH6.  This pattern of combined MLH1 and PMS2 loss could be seen 

either in a sporadic tumour (most commonly due to MLH1 promoter methylation) or in 

LS due to constitutional MLH1 mutation.  Correct MMR IHC interpretation requires 

adequate internal control staining of the adjacent stromal and lymphoid cells to confirm 

good fixation of the tissue region.[102, 103]  Patchy intact nuclear staining may occur 

due to variable fixation, or tissue hypoxia, or unequal antibody diffusion.[105, 106]  

Cytoplasmic staining may occur, but if nuclear staining is lost this is considered 

abnormal indicating dMMR.[107]  Weak, patchy, nucleolar staining, or sometimes 

absence of MSH6 expression has been described in rectal tumours following 

neoadjuvant treatment without MSI or a mutation confirmed by molecular testing.[108, 

109]  Notably, heterogeneous staining or loss of MSH6 expression can be due to a 

secondary (non-germline) acquired somatic mutation in the MSH6 coding 

mononucleotide tract.[110, 111]  Approximately 3–10% of LS-associated dMMR 

tumours show no abnormality on immunohistochemical testing (presumably because 

of variants that disrupt normal MMR protein function, but nonetheless enable protein 

detection by IHC).[112] 

Testing DNA extracted from tumours for microsatellite instability (MSI), involves 

investigating for the presence of extra alleles (longer or shorter) at a microsatellite 

locus compared with normal microsatellite length (as determined from normal tissue 
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or blood) from the same individual.[113]  Microsatellites vary in their propensity to 

show instability, and thus the frequency with which the same microsatellite is altered 

varies in different tumour types.  Instability is more likely to be observed at 

mononucleotide repeats (e.g. AAAAA …), than at dinucleotide repeats (e.g. 

CACACA …).  Microsatellite loci or markers used in colonic cancer MSI testing are 

known to have reduced sensitivity at detecting MSI in non-colonic cancers, including 

endometrial, small intestinal, or gastric cancers, in tumours from LS patients with 

MSH6 or PMS2 mutations and in colonic adenomas.[114]  Therefore, a proportion of 

LS-associated tumours may not appear to have MSI using the standard MSI test (but 

might be identified by abnormal MMR immunohistochemistry). 

The efficacy of MMR IHC and MSI may be significantly enhanced by testing more than 

one tumour from the same individual or family, particularly if there are tumours that 

are multiple or rarely seen in LS (e.g. colorectal adenomas, small intestinal cancers, 

hepato-biliary, upper urinary tract and cutaneous sebaceous tumours).[15, 115]  

Consistent immunohistochemical abnormality of one mismatch repair protein in more 

than one tumour from an individual or family represents very good evidence for variant 

pathogenicity.[15, 116]  Some CRCs due to MUTYH-associated polyposis (MAP) or 

proof-reading polymerase-associated polyposis (PPAP) may exhibit MSI and/or 

abnormal immunohistochemistry due to somatically acquired MMR gene mutations. 

Approximately 13-15% of sporadic colonic cancers have dMMR, usually due to 

epigenetic silencing of both alleles of MLH1 by promoter hypermethylation.  Hence, 

while overall unselected dMMR colonic cancers have a relatively poor positive 

predictive value for LS, as the proportion of colonic cancers with MSI due to LS varies 

with age then this can be exploited clinically.  Under the age of 57 y, more than half of 



18 
 

all dMMR colonic cancers will be due to LS, whereas over this age less than half will 

be, although even at age 70 approximately 25% dMMR colonic cancers will be due to 

LS (Figure 1).[8, 104, 117]  In contrast, pMMR has a good negative predictive value 

for LS.  Further tests (BRAF mutation and MLH1 methylation tests) are required for 

MLH1-negative cancers to distinguish between LS and sporadic origin.[93, 94, 96]  

Another important practice point is that rectal cancers are distinct from colonic cancers 

in the diagnosis of LS.  Because sporadic colonic cancers with dMMR largely arise 

from right-sided serrated lesions, sporadic rectal cancers with dMMR are 

correspondingly rare, if they occur at all, and hence a rectal cancer with dMMR at any 

age must be considered to be due to LS until proven otherwise.[118, 119]  

(Figure 1) 

The activating missense variant BRAF p.V600E occurs in sporadic colonic cancers 

with dMMR, but not in those due to LS; therefore, BRAF p.V600E is highly predictive 

of the tumour being of sporadic origin rather than LS.[31, 93, 94, 96, 120]  However, 

sporadic tumours may occasionally occur in patients with LS, so the absence of BRAF 

p.V600E does not definitively diagnose LS, but it does indicate that LS is more likely.  

Alternatively, detection of MLH1 gene promoter hypermethylation in a colonic cancer 

provides good, although not unequivocal, evidence that the tumour is sporadic in 

origin, as occasional sporadic tumours do occur in LS and constitutional MLH1 

promoter methylation can be found in a small proportion of patients with LS.[28, 29]  

BRAF p.V600E testing is only of use in distinguishing colorectal cancers; it has no 

utility in e.g. endometrial cancer. 

LS is definitively diagnosed following tumour testing by constitutional/germline MMR 

gene sequencing to identify a pathogenic constitutional variant.[4-6, 121]  Patients with 
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digenic LS, who have inherited pathogenic variants in more than one MMR gene, are 

occasionally seen (and more will be as gene panel testing becomes prevalent), but it 

is unclear if their risks are increased over those patients with a pathogenic variant in 

one MMR gene.  It is often useful to have samples from more than one individual in 

the family, because case segregation studies may be required in order to determine 

pathogenicity or whether an individual is a phenocopy.[4, 15]  If the family shows 

evidence of hereditary transmission of LS, but no point mutation is found, then tests 

for large-scale mutations, such as deletion of a whole exon (or more), can be 

performed; some 12 – 40% of pathogenic variants are of this type.[21, 23, 122-127]  

LS-related tumour types that are rare in the general population, and thus have a high 

predictive value for LS, such as small intestinal and hepatobiliary cancer, upper urinary 

tract and bladder (under age 60y) transitional cell carcinoma, or skin sebaceous 

adenoma/carcinomas are therefore worth testing.[40]  Synchronous or metachronous 

bowel cancers are also significant, as is the development of any two LS-related 

tumours (e.g. CRC and endometrial cancer), and all such cases warrant testing for 

LS. 

 

6. Neoplastic Precursors in Lynch Syndrome 

When LS was being defined in the early 1990s the only known pathway to CRC was 

based on the work of Dukes, Bussey and Morson on Familial Adenomatous Polyposis: 

firstly Dukes’ concept of “simple tumours and cancer” in 1925 as part of his system for 

the staging of rectal cancer in FAP, followed by the adenoma to carcinoma pathway 

in 1958.[128-130]  Naturally, the reasonable assumption was made that the same 

pathway applied in LS and thus colonoscopic surveillance to remove premalignant 
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adenomas would be beneficial in LS.  When early data started to come in on the 

efficacy of surveillance in LS it became obvious that there was a large number of 

interval cancers, and moreover these occurred despite the interval between 

colonoscopies being steadily reduced to less than three years and sometimes even 

less than one year, because it appeared that LS cancers developed much more rapidly 

than sporadic ones, assuming they all arose from adenomas.[6, 131]  Moreover, 

because of the increased mutation rate, the MSI, observed in LS cancers allied to the 

prevailing concept that genomic instability characterised all cancer, it was further 

assumed that this must be what was driving a faster adenoma-carcinoma progression, 

although not all parties were convinced.[11, 14, 132]  In addition, although dMMR 

adenomas could be found in LS patients, further doubts were raised when aspirin 

treatment failed to reduce the incidence of adenomas (although it later reduced that of 

CRCs), and results from the PLSD became available.[2, 73, 116, 133, 134]  LS 

patients on colonoscopic surveillance at various intervals could finally be 

compared.[133]  Remarkably, within the limits measurable, colonoscopy did not 

appear to reduce the rate at which colorectal cancers were arising in LS patients, 

despite it being associated with a significant reduction in mortality and, in addition, 

stage was not related to the interval since last colonoscopy – completely the opposite 

of population screening programmes which are based primarily on adenoma 

removal.[2, 133-135]  What was going on?  Although LS patient survival is certainly 

improved by colonoscopic surveillance enabling earlier diagnosis and a degree of 

downstaging, together this mass of evidence was leading to the conclusion that a 

pathway independent of adenomas must be occurring and moreover a pathway in 

which precursors were less obvious on colonoscopy.[94]   
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At about the same time, it was discovered that LS patients harbour an enormous 

number of dMMR crypts in the colorectum (~1/cm2 mucosa, so ~10,000 

crypts/patient), which are not dysplastic, and yet LS patients only go on to eventually 

develop between zero and perhaps one, two or three cancers.[136, 137]  Could these 

be leading to cancers, perhaps by an occult route?  This was answered shortly 

afterwards by the finding of flat intra-mucosal cancers in which the wnt pathway was 

activated by mutations not in APC, as in classical adenomas, but in beta-catenin, 

indeed mutations in repetitive coding sequences, exactly as predicted would result 

from dMMR.[138]  Intriguingly, subsequent work to sequence LS cancers has shown 

that some 61% of APC mutations are predicted to occur after MMR deficiency occurs, 

as they are found in repetitive sequences, exactly as would be expected in dMMR 

tumours.  Hence, a proportion of these beta-catenin-mutant flat lesions acquire 

secondary APC mutations, thence to become polypoid adenomas and subsequently 

cancers.[139, 140]  Thus, it is now understood that there are at least three pathways 

to colorectal cancers in LS, not including the occasional sporadic colonic cancer due 

to a right-sided sessile lesion, which are occasionally observed (Figure 2).  The first 

pathway is via sporadic adenomas which acquire secondary dMMR.  The second 

pathway is via flat cancers within the mucosa that arise directly from dMMR crypts, 

and the third pathway is LS-specific adenomas that arise from these flat lesions due 

to secondary APC mutations.[139]  Hence, a proportion of LS colorectal cancers arise 

from flat lesions which are inherently more difficult to detect, let alone remove, on 

colonoscopy, explaining at least in part the apparent high rate of interval cancers, but 

also removing the need to invoke a faster progression rate in LS.  Building on this, it 

has been shown that the cancers in patients with LS due to PMS2 mutations arise 

largely along pathway 1, from sporadic adenomas, going further to explain why 
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patients with pathogenic PMS2 variants have only a small increased risk of CRC.[141]  

Intriguingly, very recently it has been found that pathway 2 predominates over pathway 

3 in patients with pathogenic MLH1 variants, but pathway 3 predominates over 

pathway 2 in those with MSH2 pathogenic variants.[142].  These fascinating findings 

have clear implications for future surveillance strategies, which of necessity must now 

also include modalities such as aspirin prophylaxis and vaccines to address the 

inherently limited efficacy of colonoscopy and increased risks of cancers in LS at sites 

other than the large bowel, which are becoming the predominant cause of mortality in 

LS patients under surveillance.[2, 3] 

(Figure 2) 

It is of note that a number of observers have now found dMMR glands in 

morphologically normal endometrium from LS patients, which in turn has implications 

for the understanding of LS carcinogenesis in that organ.[143] 

 

7. Immune Escape of Lynch Syndrome Neoplasms 

The early general observations of large local tumours and a lower rate of metastasis, 

together with a strong immune reaction to LS cancers, such as increased tumour 

infiltrating lymphocytes (TIL) and tertiary lymphoid structures (TLS; also termed Crohn-

like peritumoural lymphoid aggregates or follicles), later backed up by gene expression 

signatures characteristic of immune cell activation, all indicate an important role for the 

immune system in LS.[57, 144, 145]  However, this needs to be put in the context of 

the normal immune architecture in the bowel.  Gut-associated lymphoid tissue (GALT) 

comprises both isolated and aggregated lymphoid follicles in both the small and large 
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intestines.  Humans have approximately 30,000 isolated lymphoid follicles (ILF), 

scattered throughout the large and small intestine, but especially in the colon.[146]  

ILFs vary in their distribution within the large and small intestines, may be mucosal or 

sub-mucosal, and at their simplest may consist of a single follicle, with or without some 

T-cells.[147, 148]  They are considered to be the main source of immune priming in 

the colon and from where Crohn’s disease originates, and they have specialised 

follicle-associated epithelium (FAE), which overlies a subepithelial dome containing 

numerous macrophages, dendritic cells, T, B lymphocytes, and special antigen 

sampling microfold/M/cells.[149, 150]  The FAE has a crucial role in the initiation of 

the mucosal and systemic immune responses.[151]  However, the relationship 

between Crohn-like follicles in LS and ILF in normal colon is not completely clear.  In 

LS, the follicles are generally peritumoural and not located inside cancers, and, 

although they do not have FAE, they do have T cells, B cells and germinal centres.[58, 

152]  Whether they are induced de novo, as in chronic inflammation or develop from 

submucosal ILFs remains to be determined.[153]  Crohn-like follicles/TLS are found 

in CRCs apart from LS, however, the frequency/number is highest in LS patients 

compared to sporadic dMMR and pMMR CRCs which is not simply related to age.[58] 

In recent years, there has been a growing interest in TLSs in a variety of cancers 

including CRC, in particular as prognostic indicators of cancer progression and 

responses to immunotherapy.[150, 154]  In hepatocellular carcinoma, intratumoral 

TLSs correlated with a lower risk of early relapse after surgery.[155]  In sarcoma, 

melanoma and renal cell carcinoma, both intratumoural location and the presence of 

B cells (but not T cells) and particularly germinal centres correlate with improved 

outcomes to checkpoint blockade immunotherapy.[156-158]  Further studies of the 
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location, cellular composition and presence of germinal centres in TLS in hereditary 

dMMR may therefore shed light on their role in Lynch Syndrome. 

In dMMR cells predictable mutations can and do occur in repetitive protein coding 

sequences and result in frameshift peptides (FSP).[159-161]  Such FSPs are novel 

antigens and elicit both humoral and cellular immune responses, which are seen as 

TILs around the dMMR crypts in LS patients as well as in dMMR cancers, both 

sporadic and due to LS.[136, 160, 162, 163]  In the face of such responses how is it 

possible for tumours, let alone cancers, to develop in LS?  The answer lies in the 3-

step process of elimination, equilibrium and escape.[59, 164]  Cells generating FSPs, 

presented on their surface by MHC-I are subjected to attack by cytotoxic T-

lymphocytes (CTL), resulting in elimination.  However, such cells that randomly 

manage to acquire activating mutations in PD-L1 before they are eliminated can hold 

the immune system to a local standstill (activating the PD-1 – PD-L1 immune 

checkpoint) – the process of equilibrium.  Subsequently, if before being eliminated 

these cells manage to acquire inactivating mutations in MHC-I or MHC-II (HLA Classes 

I & II) that abrogate presentation of FSPs on their surface they are then able to escape 

the immune system, at least locally.  Given the huge number of dMMR crypts in an LS 

patient, but that the average LS patient manifests between zero and one, two or three 

CRCs, it is clear that the process of elimination must be highly efficient, giving a 

different perspective on cancer biology.[2, 139] 

A number of different escape mechanisms have been observed.  The commonest, 

seen in approximately 30% of dMMR CRCs, is mutation of beta-2-microglobulin (B2M) 

which prevents MHC-I presentation of FSPs.  This was an early observation, the full 

significance of which is only now apparent.[165-169]  The outgrowth of such B2M 
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mutant clones is a prime example of cancer immunoediting, which has been further 

related to variation in host immune function, e.g. mucosal density of FOXP3-positive 

T-cells, indicating that such factors may be additional modifiers of LS.[170]  

Importantly, B2M mutations in dMMR cancers are significantly associated with an 

almost zero rate of metastasis, and thus indicate highly favourable prognosis.[171, 

172]  In addition to mutations in B2M, mutations of CIITA or RFX5 are seen in 

approximately 20% of dMMR CRCs, and prevent MHC-II antigen presentation, while 

approximately 10% of dMMR CRCs have mutations of TAP1 or TAP2, which are 

antigenic peptide transporters responsible for antigen presentation, thus also 

preventing antigen presentation on the cell surface.[173, 174]  In such ways tumour 

cells escape the attentions of the host’s immune system, both locally and in the 

circulation, but are in turn liable to attack with help from immunotherapy, such as anti-

PD-1 or PD-L1 immune checkpoint blockade.[175, 176] 

The full variety of mechanisms by which tumours, and dMMR tumours in particular, 

manage to evade the immune system has yet to be determined.  Undoubtedly, the 

colorectal microbiome plays an important part in the process of CRC development in 

LS as well as sporadically.[177]  Intriguingly, the immune response to dMMR CRCs in 

the form of development of high endothelial venules (HEV) responsible for trafficking 

lymphocytes into lymphoid follicles/TLS is stronger in LS patients, than in sporadic 

dMMR colonic cancers, and especially high HEV densities in B2M-mutant tumours 

support the concept of immunoediting during tumour evolution.[58]  Such higher HEV 

densities in B2M-mutant tumours imply that under strong immunoselective pressure 

created by immune cells recruited via HEVs, tumour cells which have lost MHC class 

I antigens gain growth advantage due to immunoediting, thus revealing a major role 

of HEVs in enhancing the immunoselective pressure on highly immunogenic cancers.  
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Taken together with the high numbers of dMMR crypts in LS and the low numbers of 

CRCs that actualy manifest, these findings all point toward a longer process of 

immunoediting in Lynch syndrome CRCs, possibly due to the pre-existing dMMR 

crypts immunising LS patients against their own propensity to cancer, and explaining 

the higher proportion of B2M mutations in LS compared to sporadic CRCs.[58, 136, 

137]  However, these HEV generally recruit naïve lymphocytes from the blood in to 

tissues and HEV-containing Crohn-like aggregates are generally seen in a 

peritumoural location in both pMMR and dMMR cancers, so our understanding of HEV 

and TLS in LS is as yet incomplete.[58, 152, 178] 

 

8. Conclusions 

The major carcinogenic effect of dMMR is to reduce apoptosis and increase the net 

cell turnover rate.  The raised mutation rate per se is of little or no consequence, but 

the bias to frameshift mutations in repetitive sequences caused by dMMR is of 

considerable fundamental consequence, firstly in auto-immunising LS patients to 

FSPs and secondly in thus modifying the evolution of dMMR cancers by 

immunoediting. 

That some MMR gene variants are associated with abnormal MMR IHC in tumours, 

but not MSI, and vice versa, plus the observation of, for example, certain PMS2 

variants in cases of CMMR-D , but not LS, challenges the concept of in vitro functional 

tests in assessing variant pathogenicity.[4, 15, 18, 60, 61]  Which function should be 

tested: DNA repair, or apoptosis, or both?[4, 179-181]  We would therefore advise 

caution in the interpretation of such assays until this is clarified. 
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It is now understood that there are three main pathways to CRC in LS, including via 

sporadic adenomas, but also via occult intramucosal dMMR crypts and then Beta-

Catenin-mutant flat cancers which are directly invasive, some of which acquire 

secondary APC mutations to become polypoid.[138, 139]  Moreover, the likelihood 

that tumours follow particular pathways is related to the underlying gene affected by a 

pathogenic variant, and hence the variation in expression of LS starts to be explained 

and may lead to surveillance protocols becoming more tailored to genotype.[3, 10, 

141, 142] 

Currently, LS is defined by an individual carrying a pathogenic variant in an MMR gene, 

but of necessity to interpret variants as pathogenic often requires tests on tumours for 

dMMR.[4, 6]  As part of the interpretational process tests of MMR function may be 

performed in vitro, but this too is problematic and so interpretation cannot be based 

solely on such analyses.[4, 179-181]  However, the recent advances in understanding 

the pathways and responses to cancer in LS brings forward the possibility of 

alternative means to diagnose LS independent of cancer itself, indeed perhaps even 

an alternative definition involving the immune system.  The nature of the intense 

immune response to cancers in LS, manifest as the stronger HEV response seen in 

individuals with LS from an early age (16y), allied to specific T and B-cell responses 

to FSPs can be considered syndromic features characteristic of LS.[58, 160, 163]  In 

addition, the dMMR crypts seen in the normal large bowel mucosa, and the dMMR 

glands seen in normal endometrium can also be considered syndromic features 

characteristic of LS.[136]  So, all taken together we may be approaching a definition 

of LS in molecular terms, one in which the development of cancer, while of great 

importance clinically, is not necessary to achieve diagnosis.  This in turn may enable 
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the classification as pathogenic of many variants in MMR genes, and MSH6 and PMS2 

in particular, which is currently problematic due to their reduced penetrance. 
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Table 1 

Average Risks of Lynch syndrome-associated Cancers to age 75y  

Data from the Prospective Lynch Syndrome Database (PLSD).[10, 63]  Note that the 

individuals studied are under colonoscopic surveillance, and may have had 

prophylactic or therapeutic surgery, which is allowed for in the estimates. 

Males 

Cancer type MLH1 MSH2 MSH6 PMS2 

Any cancer 

71% 

[63 - 81%] 

75% 

[66 - 86%] 

42% 

[25 - 67%] 

See below 

Colorectal (bowel) 

57% 

[49 – 68%] 

51% 

[41 – 65%] 

18% 

[8 – 43%] 

See below 

Stomach, small bowel, 

bile duct, gallbladder 

and pancreas 

22% 

[16 – 30%] 

20% 

[14 – 28%] 

8% 

[3 – 30%] 

See below 

Ureter and kidney 

5% 

[3 – 10%] 

18% 

[13 – 25%] 

2% 

[<1 – 24%] 

See below 

Urinary bladder 

7% 

[4 – 13%] 

13% 

[8 – 21%] 

8% 

[3 – 30%] 

See below 
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Prostate 

14% 

[9 – 22%] 

24% 

[17 – 33%] 

9% 

[3 – 31%] 

5% 

[<1 – 68%] 

Brain 

0.7% 

[<1 – 5%] 

8% 

[4 – 15%] 

2% 

[<1 – 24%] 

See below 

 

Females  

Cancer type MLH1 MSH2 MSH6 PMS2 

Any cancer 

81% 

[74 – 88%] 

84% 

[77 – 91%] 

62% 

[47 – 78%] 

See below 

Colorectal (bowel) 

48% 

[41 – 57%] 

47% 

[39 – 55%] 

20% 

[12 – 41%] 

See below 

Endometrium 

37% 

[30 – 47%] 

49% 

[40 – 61%] 

41% 

[29 – 62%] 

3% 

[5 – 50%] 

Ovaries 

11% 

[7 – 20%] 

17% 

[12 – 31%] 

11% 

[4 – 39%] 

3% 

[<1 – 43%] 

Stomach, small bowel, 

bile duct, gallbladder 

and pancreas 

11% 

[7 – 17%] 

13% 

[9 – 19%] 

4% 

[3 – 30%] 

See below 
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Ureter and kidney 

4% 

[2 – 8%] 

19% 

[14 – 27%] 

6% 

[2 – 27%] 

See below 

Urinary bladder 

5% 

[3 – 11%] 

8% 

[5 – 14%] 

1% 

[<1 – 23%] 

See below 

Brain 

2% 

[<1 – 5%] 

3% 

[1 – 8%] 

1% 

[<1 – 23%] 

See below 

 

Both Sexes combined  

Cancer type PMS2 

Any cancer 

34% 

[19 – 60%] 

Colorectal (bowel) 

10% 

[3 – 41%] 

Stomach, small bowel, bile duct, gallbladder and pancreas 

4% 

[1 – 34%] 

Ureter and kidney 

4% 

[<1 – 34%] 
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Urinary bladder 

<1% 

[0 – 31%] 

Brain 

<1% 

[0 – 31%] 

 

Figure Legends  

Figure 1: Probability by Age that a Colonic Cancer with dMMR is due to Lynch 

Syndrome 

This graph shows the probability by age that a colonic cancer with dMMR is due to 

Lynch syndrome.[8, 104, 117]  Note that this does not apply to rectal cancers, because 

right-sided serrated lesions that give rise to sporadic dMMR colonic cancers do not 

occur in the rectum, and hence a rectal cancer with dMMR is due to Lynch syndrome 

until proven otherwise.[118, 119] 

 

Figure 2: Pathways to Colorectal Cancer in Lynch Syndrome 

There are three pathways to dMMR colorectal cancers in Lynch syndrome.[138, 139]  

Pathway 1: Classic sporadic adenomas, initiated by WNT pathway activation due to 

mutations in APC (APCm), acquire dMMR through somatic mutation of the remaining 

normal MMR allele (MLH1m, MSH2m, MSH6m or PMS2m).  This can occur at any stage 

of the adenoma, from early through to adenoma-carcinoma transition.  Pathway 3: 

crypts which have acquired dMMR due to somatic mutation of the normal MMR allele 
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are not dysplastic, but if they undergo somatic mutation of Beta-Catenin (CTNNB1m) 

which activates the WNT pathway they become flat carcinomas which later acquire 

mutations in TP53 (TP53m), an otherwise rare event in dMMR CRCs.[138, 182]  

Pathway 2: a proportion of Pathway 3 lesions acquire secondary APC mutations and 

thus become polypoid adenomas.  Because of this unique combination of somatic 

events these Pathway 2 adenomas are, as far as is known, specific to LS (hence 

“Lynch-specific dMMR Adenomas”).  Regarding Pathways 2 & 3 in their original 

proposal, Ahadova and colleagues remark: “For better visibility, pre-malignant lesions 

that do not develop into cancer are not included in the diagram, because their number 

greatly exceeds the number of carcinomas.”[139]  Pathway 1 predominates in patients 

with LS due to PMS2 pathogenic variants, while CTNNB1-mutant tumours are more 

likely in MLH1 patients and APC-mutant tumours are more likely in MSH2 and MSH6 

patients.[141, 142]  Note that sporadic colonic cancers that arise from serrated lesions 

with MLH1 deficiency due to somatic biallelic hypermethylation of the MLH1 promoter 

can and do occur in LS, albeit perhaps less often due to the enhanced immunity in LS 

patients against dMMR cells, because of chronic autoimmunisation from the novel 

frameshift peptides generated from dMMR crypts.[31, 57, 59, 136, 139, 162, 169] 
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