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Abstract 

This paper proposes a novel optimization algorithm called the Multi-Objective Volleyball 

Premier League (MOVPL) algorithm for solving global optimization problems with multiple 

objective functions. The algorithm is inspired by the teams competing in a volleyball premier 

league. The strong point of this study lies in extending the multi-objective version of the 

Volleyball Premier League algorithm (VPL), which is recently used in such scientific 

researches, with incorporating the well-known approaches including archive set and leader 

selection strategy to obtain optimal solutions for a given problem with multiple contradicted 

objectives. To analyze the performance of the algorithm, ten multi-objective benchmark 

problems with complex objectives are solved and compared with two well-known multi-

objective algorithms, namely Multi-Objective Particle Swarm Optimization (MOPSO) and 

Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D). Computational 

experiments highlight that the MOVPL outperforms the two state-of-the-art algorithms on 

multi-objective benchmark problems. In addition, the MOVPL algorithm has provided 

promising results on well-known engineering design optimization problems. 

 

Keywords: Multi-Objective Evolutionary Algorithm; Global optimization; Pareto solution; 

Engineering design optimization problems. 

1. Introduction 

The Volleyball Premier League algorithm (VPL) [1] is an evolutionary algorithm in which 

a population of highly competitive teams is represented. The VPL algorithm attempts to solve 
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global optimization problems by applying three volleyball metaphors, namely substitution, 

coaching, and learning. Like other metaheuristic algorithms, the VPL algorithm is initiated by 

creating random teams as initial solutions for a particular optimization problem. Each group in 

a solution contains specific possessions, including formation and substitutes. This algorithm 

applies the single-round robin (SRR) method to specify competitors during the iterations. To 

determine the winner of each game, the algorithm uses a power factor that is applied in a 

formulation to calculate the winning probability of each team. In the VPL algorithm, the 

coaching term is used with a knowledge sharing strategy to extract information from the game 

to train players and to substitute players during the match. Similar to any other Evolutionary 

Algorithms (EAs), VPL applies different neighborhood operators, such as repositioning and 

substitution strategies. These are used to alter the position of the current solution during the 

match based on their roles and match conditions for a better exploration and exploitation. In 

the VPL, each solution, which is called a team, is placed in the search space and calculated 

with regards to the predefined objective function. 

The most challenging engineering design problems often consider multiple objectives with 

complicated, several linear and nonlinear constraints. In reality, conflicting objectives often 

regarded simultaneously, and optimal solutions may not be reachable even for small-sized 

instances [2]. There are many difficulties in resolving real-world problems that require specific 

tools to cope with them. In such cases, while there is more than one objective to be optimized, 

multi-objective algorithms (MOAs) come into play [3]. MOA has turned into a prevailing trend 

in recent years, and many powerful algorithms have been proposed to handle these problems 

[4]. Moreover, MO problems are mostly considered as NP-hard, which means there is no 

consensus on an exact algorithm, which can be used to solve that kind of problem. Meanwhile, 

it has been accepted among scholars that metaheuristic algorithms are compelling for such 

optimization problems, and there are several works that sincerely reviewed these methods [5-

7].   

There are two standard ways of handling multiple objectives, namely a priori and a posteriori 

[8, 9]. All information is needed before making any decision for a priori method, whereas a 

posteriori methods provide many Pareto optimal solutions to the decision-maker who will then 

select their preferred one [10]. These approaches include the global criterion method, goal 

programming, goal-attainment method, lexicographic method, min-max optimization, the 

weighting method, the weighting method with normalization, 𝜖-constrained Method, hybrid 

method, and Pareto fronts [11]. Many studies have been conducted investigating and evaluating 

multi-objective evolutionary algorithms (MOEAs). Some of the most well-known stochastic 

optimization techniques include Multi-Objective Particle Swarm Optimization (MOPSO) [12], 

Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) [13], Non-

dominated Sorting Genetic Algorithm(NSGA) [14], Non-dominated Sorting Genetic 

Algorithm version two (NSGA-II) [14], Pareto Archived Evolution Strategy (PAES) [15], 

Pareto-frontier Differential Evolution (PDE) [16], Strength-Pareto Evolutionary Algorithm 

(SPEA) [17], Strength-Pareto Evolutionary Algorithm version two (SPEA-II) [18]. For more 

information regarding the MO techniques, interested readers are referred to the following 

studies [19-21] 

This paper presents an optimization algorithm based on the artificial physical process for 

the MOO problem, namely Multi-Objective Volleyball Premier League (MOVPL) algorithm. 

To the best of our knowledge, only two metaheuristic algorithms presented by Kashan [22] 

Moosavian [23]  have used  sports metaphor for this purpose. The performance of MOEAs can 

be measured with their capability to estimate true Pareto optimal solutions of multi-objective 

problems. In this regard, a well-known theorem, named No Free Lunch (NFL) [24], declared 

that there is no unique method for solving optimization problems entirely. Considering this 

theorem, there is no guarantee that an optimizer algorithm has the same performance in the 

various class of problems. According to this fact, we develop the multi-objective version of a 
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newcomer algorithm, which has interesting results in comparison with the state of art 

algorithms in the evolutionary computation context. Therefore, the contributions of this paper 

are multi-fold: 

(i) a new multi-objective optimization algorithm has been proposed, 

(ii) a new archive component has been incorporated into the algorithm to store non-

dominated solutions,  

(iii) top three teams, named rank1, rank2, and rank3, have been directed via a leader 

selection mechanism, 

(iv) a new mechanism based on grid partitioning method has been developed to store 

the solutions in the archive, 

(v) The MOVPL algorithm has been applied to both test and engineering design 

optimization problems and provides better solutions, compared to the ones in the 

literature. 

This paper is organized as follows. Section 2 provides a brief overview of the recent 

developments in MOEAs. Section 3 defines the investigated problem along with its technical 

definitions used in Volleyball literature. This section also provides a mathematical formulation 

for the MOVPL algorithm. Section 4 introduces various test functions and performance metrics 

applied in this research. Computational results are presented in Section 5. Finally, the last 

section presents a brief summary and future research direction. 

2. Literature review 

This section provides brief background information related to the perceptions of the MOO 

problems and proposed methods in the context of MOEAs.  

2.1 MO-based metaheuristic algorithms 

MOEAs have been implemented in many particular problems, such as transit network 

design [25], vehicle routing problem [26], disassembly line balancing problem [27], and 

location-allocation problem [28]. Generally, the most forerunner method among MOEAs was 

derived from the most well-known evolutionary algorithm such as NSGA-II which was 

proposed in [29]. For example, Fonseca and Fleming [30] introduced a new type of MOEA 

named Multi-Objective Genetic Algorithm (MOGA), where the rank of any solution in the 

current population is computed based on the number of dominated individuals. Hence, all non-

dominated individuals are assigned to the Pareto front, and population destiny is considered to 

penalize individuals, which are dominated by other solutions to determine their ranks. Having 

enhanced MOGA performance, its hybridization with neural networks was also proposed [31] 

in the literature. 

In another study, Srinivas and Deb [14] represented one of the best-known MOEA 

approaches named the Non-dominated Sorting Genetic Algorithm (NSGA), which was initially 

proposed by Goldberg [29]. Unquestionably, the updated version of NSGA, NSGA-II, is still 

the most prevalent MOEA. The execution of NSGA-II contains choosing the structure of 

solution representation and the basic parameters of the algorithm [32]. Lately, Niched-Pareto 

Genetic Algorithm (NPGA) which is based on a tournament selection, was proposed [33], and 

accordingly, its new version, using Pareto ranking, NPGA 2, was introduced by Erickson et al. 

[34]. Later, Knowles and Corne [35] proposed MOEA, including a particular procedure that 

partitioned search space in a recursive manner. This approach called Pareto Archived Evolution 

Strategy (PAES) introduces a new diversity approach (i.e., histogram). In the work of Zitzler 

and Thiele [17], the Strength Pareto Evolutionary Algorithm (SPEA) is proposed. The SPEA 

has been suffered several shortcomings which were later revised by Zitzler et al., [36] and the 

second version of SPEA (SPEA-II) is developed.  
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Another MOEA variation with the GA algorithm (i.e., Multi-objective Messy Genetic 

Algorithm (MOMGA)) was presented by Veldhuizen and Lamont [37] as an effort to develop 

the messy GA [38]. A new version of MOMGA (known as MOMGA-II) [39] which was 

integrated with the fast-messy GA was later introduced by Zydallis et al., [40]. Recently, the 

MOMGA-III was introduced to enhance the exploitation of the search space [41]. In another 

study, the Pareto Envelope-based Selection Algorithm (PESA) was proposed by Corne et al., 

[42], which includes integrated small internal and sizeable external populations. In this 

algorithm, a hyper-grid division is used to keep diversity throughout the MOEA run. An 

updated version of PESA (PESA-II) [43] has been proposed with the difference in selection 

strategy.  

We now briefly review other related metaheuristic algorithms, which are the most associated 

with MOVPL in terms of structures. Zabihi et al., [44] presented a new MOEA based on 

teaching–learning based optimization (TLBO), which is used a similar structure of NSGA-II 

to find optimal solutions. Wang et al., [45] proposed a multi-objective version of whale 

optimization algorithm, in which global grid ranking is used to enhance the performance 

presented MOEA. Pradhan and Panda [46] extended the new extension of cat swarm 

optimization (CSO) by applying an external archive to solve the MO problem. Sadollah et al., 

[47] presented a multi-objective water cycle algorithm (MOWCA), in which solutions are 

stored in an archive.  

Got et al., [48] proposed a multi-objective algorithm by incorporating Pareto dominance and 

an external archive into a recently published algorithm, named Whale Optimization Algorithm 

[49], to deal with multiple objectives. Liu et al., [50] embedded the quantum approach into the 

PSO algorithm to the extended new multi-objective of this algorithm, named Multi-Objective 

Quantum-behaved Particle swarm optimization, to obtain promising results, in which cultural 

evolution mechanism was used to obtain high-quality results in Pareto optimal solutions. Zhang 

et al., [51] proposed a new method in developing a multi-objective approach, named 

Exploration/exploitation Maintenance multi-objective Evolutionary Algorithm” (EMEA), in 

which various levels of the trade-off between exploration and exploitation has been balanced 

throughout the solving process. Cao et al., [52] presented a novel decomposition-based 

evolutionary dynamic multi-objective optimization using a different model (MOEA/D-DM), 

which is extended based on a centroid motion approach. Hultmann Ayala et al., [53] embedded 

Free search (FS) algorithm, inspired from animal behavioral, combined with differential 

evolution, named Multi Objective Fee Search based Differential Evolution (MOFSDE) to solve 

heat exchanger optimization problem. Zhang [54] presented a new multi-objective approach 

based on extending the immune optimization algorithm considering the interval number, 

named Micro Multi-objective Immune Optimization Algorithm (μMIOA). In this study, an 

uncertain programming model was used to deal with the uncertain environment of engineering 

problems, considering a non-dominated sorting approach. It has pointed out recently by [55] 

that the binary tree search procedure can be for solving multi-objective problems. In this study, 

a specific binary search, termed K-D tree, was combined to MOEA/D and used to tow operators 

including SelectRoot and SelectLeaf, to explore a higher level of neighborhoods in search 

space. Liang et al., [56] presented a multimodal multi objective Differential Evolution 

optimization algorithm (MMODE) in which diversity of obtained solutions were promoted 

thorough non-dominated sorting approach and crowding distance approach. Bora et al., [57] 

proposed new extension  of NSGA-II by incorporating  reinforcement techniques to solve 

multi-objective environmental/economic dispatch (EED) problem. Some recent studies have 

focused on specific real world application and presented extensive analysis to compare wide 

range of MOEAs.  In this regard, one of the most engineering problem, wind turbine blade 

design, which is considered by [58] concerning varied range of MOEAs comprising NSGA-II, 
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Quantum-inspired Multi-objective Evolutionary Algorithm (QMEA), MOEA/D, and Multi-

objective Optimization Differential Evolution Algorithm (MODE).  

The most well-known MOEAs are originated from GA, but many scholars turn their 

attention to hybrid MOEAs combining a specific local search technique within an MOEA. 

Table 1 shows the state of art MOEAs with various basic features where EVOPS denotes 

evolutionary operators including crossover (𝒞) and mutation (ℳ), Fitness is used to show the 

primary strategy of MOEAs to determine dominated solutions, and, the next column is used 

for real-value and binary representation, accordingly. 

Table 1: The state of the are MOEAs and their basic features 

MOEA EVOPS Fitness Representation Ref. 

VEGA 𝒞, ℳ Value of a single objective {0,1} [59] 

M-PAES ℳ (1+1) single grid ℝ, {0,1} [60] 

MOGA 𝒞, ℳ Linear interpolation ℝ, {0,1} [30] 

MOTLBO 𝒞, ℳ Rank dominance ℝ, {0,1} [61] 

MOCSO 𝒞, ℳ Pareto ranking ℝ, {0,1} [46] 

GENMOP 𝒞, ℳ Pareto ranking ℝ [62] 

MOGWO 𝒞, ℳ Leader selection strategy ℝ [3] 

MOPSO 𝒞, ℳ Leader selection strategy ℝ [63] 

PAES ℳ (1+1)single grid ℝ, {0,1} [35] 

MOCS 𝒞, ℳ Rank Dominance ℝ [2] 

PESA 𝒞, ℳ Pareto ranking {0,1} [64] 

PESA-II 𝒞, ℳ Region-based {0,1} [65] 

MOGSA 𝒞, ℳ Leader selection strategy ℝ [66] 

NPGA 𝒞, ℳ Tournament selection ℝ, {0,1} [67] 

NPGA II 𝒞, ℳ Rank dominance ℝ, {0,1} [32] 

NSGA 𝒞, ℳ Dummy fitness ℝ, {0,1} [14] 

NSGA-II 𝒞, ℳ Non-dominated sorting and crowding distance ℝ, {0,1} [68] 

SPEA 𝒞, ℳ Strength value based on dominance and clustering {0,1} [17] 

SPEA2 𝒞, ℳ Strength value based on dominance and clustering ℝ, {0,1} [69] 

MOSGA 𝒞, ℳ Linear interpolation {0,1} [70] 

µGA 𝒞, ℳ Pareto ranking {0,1} [71] 

µGA2 𝒞, ℳ Pareto ranking ℝ, {0,1} [72] 

OMOEA 𝒞 Based on sub-niche evolution ℝ [73] 

OMOEA-II 𝒞 Non-dominated sorting ℝ [74] 

GPAWOA 𝒞, ℳ Leader selection strategy ℝ [48] 

MOQPSO 𝒞, ℳ Leader selection strategy ℝ [50] 

EMEA 𝒞, ℳ 
Survivability-based Mechanism and   Survival Length 

Indicator 
ℝ [51] 

MOEA/D 𝒞, ℳ centroid locations ℝ [52] 

MOFSDE 𝒞, ℳ Non-dominated sorting and crowding distance ℝ [53] 

μMIOA 𝒞, ℳ Non-dominated sorting approach ℝ [54] 

KDT-

MOEA 
𝒞, ℳ select root and select leaf operators ℝ [55] 

MMODE 𝒞, ℳ Non-dominated sorting and crowding distance ℝ [56] 

NSGA-RL 𝒞, ℳ Non-dominated sorting and crowding distance ℝ [57] 

3. The Multi-Objective Volleyball Premier League Algorithm 

This section provides the main features of the presented MOVPL algorithm along with its 

mathematical expressions. Please note that proposed MOEA is based on VPL including many 

steps summarized in this section. Interested readers maybe refer to [1] for more details.  

The distinctive attribute of the algorithm is the solution structure, which is mostly different 

from other evolutionary algorithms. The structure of the MOVPL solution contains two 
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divisions named active and passive parts. The first one, the active part, signifies the position of 

the team comprising six players, which are positioned in the court. The objective function of 

each group is evaluated concerning the first part of the solution. The second part, the passive 

part, embraces variable information, which is summoned with a unique inspiration rule, like 

substitution strategy. In the volleyball game, a substitute has placed the position of the player 

who is departing the court as the coach has ordered. Figure 1 shows the relationship between 

the special team structure and solution representation.  

Substitutes

Formation
Team

Coach

Active Part

Passive Part

Team leader

 
Figure 1: The solution representation structure of the proposed MOEA 

As can be seen from Figure 1, the central part of the solution is affected by the team 

formation, whereas the second part of the solution is only affected by the substitutes. 

In the standard volleyball league, several factors might have an influence on the results. To 

grasp an overall form of the implementation, we will now present underlying assumptions that 

can be used for the design of the algorithm. The main assumptions of the MOVPL are: (i) the 

result of the match is only known after the game; (ii) the term ‘‘team power” refers to the 

strength of a team in the league. It is used to highlight the point that it is more likely a better 

team can beat its rival; (iii) a team only respects to its upcoming game and does not ruminate 

any other games. Concerning the prior results, the coach defines the new line-up of the team, 

which is based on the analysis of the current situation of the team and the probability of winning 

in the upcoming match. And finally, (iv) once team 𝑖 defeats team 𝑗, any strength aided team 𝑖 
to triumph is a weakness of team 𝑗 to miss the match. That is to say, a weakness of a team is 

determined as the absence of its strength.  

In the MOVPL algorithm, the term league is used as the population concept throughout this 

paper. What’s more, the term season number is performed as the number of iteration, which is 

used in the main loop of the proposed algorithm, a team signifies a specific solution, and team 

𝑖 denotes the ith member of the population. The term week indicates the league schedule. The 

following subsections will provide insights into the steps of the proposed algorithm.  

To perform the MOVPL effectively, we use two components that were also used in the 

MOPSO algorithm proposed by Coello [75]. In the proposed algorithm, we use two parts to 

obtain Pareto solutions, which are an archive to keep non-dominated Pareto and leader 

selection strategy to choose the top three teams as the best teams of the learning process from 

the archive with the hope to move the algorithm toward the global optimum. 

The archive of the proposed algorithm is quite similar to a simple storage unit that keeps 

non-dominated Pareto optimal solutions. The crucial element of the archive is an archive 

controller, which is used to determine whether the number of members is exceeded from the 

capacity of the archive.  

The other component of the proposed algorithm, leader selection mechanism, is connected 

with the top three teams. These are also identified as rank 1, rank 2, and rank 3. As known in 

the multi-objective context, it is hard to compare solutions based on Pareto optimality to reach 

the best-obtained final Pareto front. Therefore, this component is used to cope with this 

problem. For this reason, teams are directed to the best solutions to find favorable search space 

by using the leader selection component, which selects a segment of search space with 

minimum crowding distance. In order to calculate time complexity, we use big 𝑂 notation 

theory, where ℕ denotes the number of individuals in the population and ℳ expresses the 
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number of objectives. Therefore, the complexity of MOVPL is 𝑂(ℳℕ2), which is identical to 

other acknowledged MOEAs, such as MOGWO[3], MOPSO[76], and NSGA-II [68]. 

Similar to other MOEAs, after initialization, all non-dominated teams are duplicated to the 

archive set which has two components (i.e., archive controller and the grid). At any iteration, 

each team's properties (ℱ. 𝒮) and the best team information are updated. If any member of the 

archive dominates a solution, it will be added, and consequently dominated teams will be 

discarded from the archive. It is worthwhile mentioning here that regions dividing space of 

objective function may be changed based on the archive set, and the grid will be updated while 

a new solution was found at the outer side of current regions. The capacity of the archive is 

limited, and it will be checked throughout the solution process. The adaptive grid will be 

performed to achieve the Pareto fronts set. The steps of the MOVPL algorithm are iteratively 

repeated until the stop condition is reached. Algorithm 1 shows the pseudo-code of the 

proposed MOVPL algorithm.  

Algorithm 1: Pseudocode of the MOVPL algorithm 

Input: 𝑡 (Generation)=0, parameters, cost function 

Output: 𝑃𝐹 (Nondominated set) 

Initialization 

Record non-dominated teams in Archive  

Generate the grid (hypercube) 

While 𝑡 < 𝑇 

Generate a league schedule 

For i=1: (𝑁-1)×2 

Update Archive 

Best team =Select Best team (Archive) 

Apply Competition procedure between team A, and B 

Determine winner and loser teams 

Apply different strategies for winner and loser teams 

 𝑋𝑖
𝑔(𝑡 + 1)1= Select Best team (Archive) 

Exclude  𝑋𝑖
𝑔(𝑡 + 1)1 from the Archive 

 𝑋𝑖
𝑔(𝑡 + 1)2= Select Best team (Archive) 

Exclude  𝑋𝑖
𝑔(𝑡 + 1)2 from the Archive 

 𝑋𝑖
𝑔(𝑡 + 1)3= Select Best team (Archive) 

Exclude  𝑋𝑖
𝑔(𝑡 + 1)3 from the Archive 

For j=1: number of teams 

     Update the position of the team(j)  

End 

Apply Promotion and relegation process 

Apply the season transfer process 

Update grid 

If the number of Archive members > 𝑛𝐴𝑟𝑐ℎ𝑖𝑣𝑒 

     Delete extra members 

End if 

𝑡 = 𝑡 + 1 

     End 

End While 

 

It is worthwhile mentioning that the convergence of an algorithm should be proven by an 

operator, which makes an individual solution to change its movement abruptly. Referring to 

[77], this manner arising from an operator has assured of convergence of the algorithm during 

the search. In the original VPL, some operators like 𝑏, defined in the learning phase and linearly 

decreased from 𝛽 (a predefined constant) to 0, guarantees its convergence throughout the 

course of iterations. The convergence of MOVPL has proven due to the inheritance of all 

features of VPL, in which exploitation and exploration of search agents occur simultaneously. 
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3.1. Initialization stage 

The MOVPL algorithm begins with the initialization of the teams representing initial 

solutions to the problem. As mentioned earlier, formation and substitutes are the main 

properties of each team. For the sake of simplicity throughout the paper, ℱ and 𝒮 are used as 

the notations of formation and substitute properties respectively, and 𝑔 = {ℱ, 𝒮 } represents 

either one in the appropriate formula. We consider 𝑁 as the size of the initial population and 

terms ℱ and 𝒮 are assigned randomly between the lower 𝑙𝑏𝑗 and upper 𝑢𝑏𝑗bound of each 

variable 𝑗 using Eq.(1). 

𝑋𝑗

𝑔
= 𝑙𝑏𝑗 + 𝑟 × (𝑢𝑏𝑗 − 𝑙𝑏𝑗), (1) 

where 𝑔 = {ℱ, 𝒮 } and 𝑟 represents a uniformly distributed random number between 0 and 

1. The values of 𝐹and 𝑆  are considered as the main properties of initial solutions, where the 

number of columns and rows specify the number of dimensions and the number of teams, 

respectively. The matrix G is representing that of ℱ or that of  𝒮, is defined according to the 

following Eq.(2)  

𝐺 =

[
 
 
 
 
𝑋1.1

𝑔
𝑋1.2

𝑔
⋯ 𝑋1.𝑗

𝑔

𝑋2.1

𝑔
𝑋2.2

𝑔
… 𝑋2.𝑗

𝑔

⋮ ⋮ ⋱ ⋮

𝑋𝑖.1

𝑔
𝑋𝑖.2

𝑔
… 𝑋𝑖.𝑗

𝑔
]
 
 
 
 

, (2) 

3.2. League schedule 

Let 𝑁 indicates the number of teams and each team will play 𝑁 − 1 times, therefore 
(𝑁 − 1)𝑁/2 games will be occurred during throughout the tournament. Suppose that we have 

eight teams, namely A, B, C, D, E, F, G, H in the league. We apply a specific method, single 

round robin (SRR), to generate the league’s schedule randomly. The following example, 

including eight teams, is provided to show the implementation of the league schedule in our 

algorithm. In each round, every team will play to another team exactly once. In order to run 

SRR, a regular polygon that has  𝑁 − 1 vertices is drawn so that each vertex (seven vertices) 

and the spot located in the center indicate a team. As seen in Figure 2, we draw horizontal lines 

and then join the vertex that has been left out to the center. Each red line signifies a match in 

which two teams located on the line are playing in the first round. 

A

H

B

C

DE

F

G

A

H

B

G

C

F

D

E

Round 1  
Figure 2: The first round of the SSR method 

 

According to Figure 2, pairs (𝐴, 𝐻), (𝐵, 𝐺), (𝐶, 𝐹) and (𝐶, 𝐹) play in the initial round. For 

the sake of implementing league schedule in the succeeding rounds, the figure is switched 

clockwise. This operation will carry on until the figure earnings to its original position. 

3.3. Competition stage 

We now recommend a mathematical equation expressing the probability of a winning team 

and its strength to win the match in the interest of determining the winning team in a 

competition. We believe that relationships among the power of groups stemmed from linear 



9 

equations. Moreover, games among teams are assumed to be idealized, and there are no 

unforeseen elements that affect the results. Correspondingly, the following equation is given 

to gauge the strength of a team in a week. 

𝜑(𝑖) = ∑
 𝑓(𝑋𝑖

ℱ)𝑗

∑  𝑓(𝑋𝑖
ℱ)𝑗

𝑁
𝑖=1

𝑀
𝑗=1 , (3) 

Where 𝜑(𝑖) shows the power value of team 𝑖, and 𝑓(𝑋𝑖
ℱ)𝑗 is the value of solution 𝑖for 𝑗th 

objective function, which is computed using ℱ. Moreover, the denominator denotes the total 

summation of values in the current iteration for the jth objective function. Eq.(3) implies that 

the power index of team 𝑖 is a function of its fitness value divided by all teams’ fitness values. 

𝜑(𝑖) determines the weight of team 𝑖 in the week where a better team has a higher 𝜑. Suppose 

teams 𝑙 and 𝑘are going to play in a match, with their ℱ values, 𝑋𝑙
ℱ, and 𝑋𝑘

ℱ, respectively. The 

power indexes for both teams are defined as 𝜑(𝑙) and 𝜑(𝑘). 

Let 𝑝(𝑙, 𝑘) denotes the probability of winning team 𝑙 in competition with team 𝑘. Therefore, 

the following formula is given: 

𝑝(𝑙, 𝑘) =
𝜑(𝑙)

𝜑(𝑙)+𝜑(𝑘)
. 

(4) 

Since 𝑝(𝑙, 𝑘) expresses the probability of winning a match that can be obtained from 

uniformly distributed random number 𝑟 ∈ [0. 1]. If 𝑟 ≤ 𝑝(𝑙, 𝑘), team 𝑙 can beat team 𝑙 , 
otherwise, team 𝑘 is the winner. Obviously, if 𝑓(𝑋𝑙

ℱ) and  𝑓(𝑋𝑘
ℱ)are close to each other, 𝑝(𝑙, 𝑘) 

and 𝑝(𝑘, 𝑙) converge to 0.5. Afterward, the strategies for the winner and the loser teams are 

implemented to set new ℱ.  In this manner, three strategies, namely, Knowledge sharing, 

repositioning, and leading role, is used for the wining team accordingly. Therefore, the 

procedure of competition is as outlined in Algorithm 2. 

Algorithm 2: Competition between teams 𝒊 and 𝒋 
Function Competition (i, j) 

Calculate 𝜑(𝑖) and 𝜑(𝑗) using Eq.,(3) 

Calculate 𝑝(𝑖, 𝑗) using Eq.(4) 

Generate 𝑟 ∈ [0, 1], 
If 𝑟 ≤ 𝑝(𝑖, 𝑗) 

        Team 𝑖 is a winner, and team 𝑗 is a loser, 

Else 

        Team 𝑗 is a winner, and team 𝑖 is a loser, 

End if 

Apply a winning strategy for the winning team, 

Apply losing strategies for the loser team, 

End 

3.4. Knowledge sharing strategy 

A coach has a significant impact on team performance and is responsible for coaching the 

team. During the match, the coaches continuously update both technical and tactical strategy 

of their teams, and they share his knowledge with players and substitutes, according to Eq.(5). 

 𝑋𝑗

𝑔
(𝑡 + 1) =  𝑋𝑗

𝑔
(𝑡) + 𝑟𝜆𝑔(𝑢𝑏𝑗 − 𝑙𝑏𝑗), (5) 

where  𝜆𝑔 are coefficients of ℱand 𝒮, respectively. 𝑟 is a generated random number that is 

uniformly distributed in the range [0-1]. Let 𝛿𝑘𝑠 denotes the rate of knowledge sharing in each 

team, the number of knowledge sharing in each competition is shown by 𝑁𝑘𝑠 = [𝑀𝛿𝑘𝑠] where 𝑁𝑘𝑠 

denote the number of knowledge sharing positions for each team used this strategy and 𝑀 

symbolizes the total number of positions in the team. The pseudo-code for this strategy is 

presented in Algorithm 3. 
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Algorithm 3: Knowledge-sharing strategy 

For k=1 :𝑁𝑘𝑠 

Select a position randomly  

For j=1 to 𝐽 
         Update position j of ℱ and that of 𝒮 using Eq.(5), 

End For 

End For 

3.5. Repositioning strategy 

We assume that the coach tries to assign the best player for each position to obtain the best 

presentation in the match. Therefore, players can be allocated to various positions throughout 

a game, based on the coaching strategy. We named this procedure repositioning strategy where 

the coach alters the positions of active players to obtain the best performance. This strategy can 

be used for the substitution part as well. 

Let 𝛿𝑟𝑠 indicates the rate that a team uses the repositioning strategy during the game. 𝑁𝑟𝑠 =
[𝑀𝛿𝑟𝑠] defines the number of repositioning strategies in any match. After choosing two 

positions 𝑖 and 𝑗 randomly, two variable 𝐴 and 𝐵with two properties (ℱ, 𝒮) are redefined, and 

then we consign properties of positions 𝑖 and 𝑗to properties (ℱ, 𝒮) of  𝐴 and 𝐵, 

respectively.The following formulas are obtained. 

𝐴𝑔 = 𝑋𝑖

𝑔
 , 𝐵𝑔 = 𝑋𝑗

𝑔
. (6) 

Then, properties of variables 𝐴 and 𝐵 are consigned to properties of𝑗 and 𝑖, respectively. 

Therefore, we get the following formulas: 

 𝑋𝑖

𝑔
= 𝐵𝑔 , 𝑋𝑗

𝑔
= 𝐴𝑔. (7) 

The pseudo-code of the repositioning strategy is expressed in Algorithm 4. 

Algorithm 4: The repositioning process 

Fork=1 to 𝑁𝑟𝑠 

Select randomly two members (i, j) of team k 

Define two variables A and B 

Use Eq. (6) 

Reverse two positions i and j using Eq. (7) 

End 

3.6. Substitution strategy 

Throughout a match, a player may be swapped with another player sitting on a substitution 

bench. Here, different ℱ could be used to change the player position in this strategy. 

The main goal of performing the substitution process is to achieve a better search process 

in the algorithm. In the classic version of the volleyball game, no strict regulations were 

limiting the number of players coming into the game to substitute for other players. Whereas, 

nowadays, teams are restricted in the number of substitutions which they can make in a typical 

match. We assume that the original version of volleyball roles in the algorithm, and the number 

of substitutions is expected to be free. Let 𝑟 represents a random number uniformly distributed 

between zero and one. The following equation calculates the number of substitutions 𝑁𝑠 =
[𝑟𝑀] for a team in the competition. 

In this stage, the losing team is selected randomly, and then, sets 𝐹 and 𝑆 are delineated 

containing selected players and substitutions, and accordingly, all members of sets 𝐹 and 𝑆are 

swapped randomly. The pseudo-code of the substitutions process is presented in Algorithm 5. 
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Algorithm 5: The substitution process 

Compute 𝑁𝑠 : a number of the substitution process  

Define Sets ℎ,𝐹, and 𝑆 

For k=1 to 𝑁𝑠 

 𝑋ℎ(𝑘)
ℱ = 𝑆(𝑘) 

 𝑋ℎ(𝑘)
𝒮 = 𝐹(𝑘) 

End 

3.7. Winner strategy 

To apply this strategy to winner teams, the position of a solution is given by its 

position 𝑋𝑔(𝑡), the best team 𝑋𝑔(𝑡)∗, the inertia weight 𝜓𝑔, and the set 𝑔 = {ℱ, 𝒮}. The next 

formula is presented to compute the winning strategy. 
𝑋𝑔(𝑡 + 1) = 𝑋𝑔(𝑡) + 𝑟𝜓𝑔(𝑋𝑔(𝑡)∗ − 𝑋𝑔(𝑡)), (8) 

where 𝜓𝑔 denotes the inertia weight of ℱ and 𝒮, and 𝑟 represents a random number between 

zero and one.  

3.8. Learning phase 

In this stage, the best team is considered as the Φ1, accordingly, the teams with rank 2 and 

rank 3 are termed as Φ2 and Φ3, respectively. In the MOVPL, any new solution is directed by 

Φ1,Φ2, and Φ3 which are considered as leaders for the other teams of the league. At the 

beginning of this stage, we set constant value 𝛽. The following equations are given to model 

the learning phase of the algorithm: 
𝜃 = 𝑑𝑏𝑟1 − 𝑏, (9) 

𝜗 = 𝑑𝑟2, (10) 

Where 𝜃 and 𝜗 denote coefficient values, 𝑑 is equal to 𝛽,𝑟1 and 𝑟2 are generated random 

numbers in the range [0-1], and 𝑏 is linearly lessened from 𝛽 to 0. Therefore, 𝑏 is calculated 

using the following formula: 
𝑏 = 𝛽 − (𝑡(𝛽/𝑇)), (11) 

where 𝑡 symbolizes the present iteration, and 𝑇 represents the total number of iterations in 

the proposed algorithm. It is worth mentioning that the value of 𝑏 has a great impact on the 

balance between exploration and exploitation that both have an influential impact on the 

performance of metaheuristics. Exploration ensures the algorithm reaches different promising 

regions of the search space, whereas exploitation ensures the searching for optimal solutions 

within the given region. At the initiating of the optimization process, the value of 𝑏 forces the 

proposed algorithm to make higher exploration, whereas the exploitation process has more 

strength at the end of the main loop of MOEAs. At the next step, the values of 𝜃 and 𝜗 are used 

in the following formula: 
 𝑋𝑗

𝑔(𝑡 + 1)Φ =  (𝑋𝑗
𝑔(𝑡))Φ − 𝜃(|𝜗 (𝑋𝑗

𝑔(𝑡))Φ −  𝑋𝑗
𝑔(𝑡)|). (12) 

In the above equation, 𝑔 = {ℱ, 𝒮 } andΦ = {1,2,3}, where indices in Φ, 1 to 3, represent the 

Φ1,Φ2, and Φ3 of the current iteration, respectively. 𝑋𝑗
𝑔(𝑡) is the value of position𝑗, and 

 𝑋𝑗
𝑔(𝑡 + 1)Φ indicates the value of the position𝑗of property𝑔 related to the best solutions Φ. To 

show more clarification on this formula, it would be mentioned here that we have six sets, 

generated by the sets 𝑔 and Φ. The index Φ may take a value 1 to 3, representing rank1, rank2, 

and rank3 teams of the current iteration. Therefore, the following three equations can be 

grasped for the top three teams for the formation property. 

 𝑋𝑗
ℱ(𝑡 + 1)1 =  (𝑋𝑗

ℱ(𝑡))1 − 𝜃(|𝜗 (𝑋𝑗
ℱ(𝑡))1 −  𝑋𝑗

ℱ(𝑡)|). (13) 

 𝑋𝑗
ℱ(𝑡 + 1)2 =  (𝑋𝑗

ℱ(𝑡))2 − 𝜃(|𝜗 (𝑋𝑗
ℱ(𝑡))2 −  𝑋𝑗

ℱ(𝑡)|) (14) 
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 𝑋𝑗
ℱ(𝑡 + 1)3 =  (𝑋𝑗

ℱ(𝑡))3 − 𝜃(|𝜗 (𝑋𝑗
ℱ(𝑡))3 −  𝑋𝑗

ℱ(𝑡)|) (15) 

In the same vein, the following three equations can be used for measuring the three best teams 

for the substitute property.  

 𝑋𝑗
𝒮(𝑡 + 1)1 =  (𝑋𝑗

𝒮(𝑡))1 − 𝜃(|𝜗 (𝑋𝑗
𝒮(𝑡))1 −  𝑋𝑗

𝒮(𝑡)|). (16) 

 𝑋𝑗
𝒮(𝑡 + 1)2 =  (𝑋𝑗

𝒮(𝑡))2 − 𝜃(|𝜗 (𝑋𝑗
𝒮(𝑡))2 −  𝑋𝑗

𝒮(𝑡)|) (17) 

 𝑋𝑗
𝒮(𝑡 + 1)4 =  (𝑋𝑗

𝒮(𝑡))3 − 𝜃(|𝜗 (𝑋𝑗
𝒮(𝑡))3 −  𝑋𝑗

𝒮(𝑡)|) (18) 

Coaches usually teach players according to the performance of the best team. We have no 

idea about the optimum values ℱand 𝒮 of the best possible team, and the top three teams are 

considered to be a good measure. 

We consider the three best teams (Φ = 1,2, and 3) and induce a current team to update its 

properties toward the best team's properties. In this regard, the following formula is presented. 

 𝑋𝑗

𝑔
(𝑡 + 1) = ∑

 𝑋𝑗
𝑔
(𝑡+1)Φ

3

3
Φ=1  . 

(19) 

3.9. Season transfers 

To mimic the season transfer, we have set 𝐻 where teams are chosen randomly from the 

set 𝑁. All positions of each member of set 𝐻is selected randomly from the currently available 

teams if 𝑟, which is a random number from [0, 1], is greater than 0.5.it is assumed that only 

some, and not all, teams will participate season transfers process. Let 𝛿𝑠𝑡 indicates the 

percentage of teams contributing in season transfer and 𝑁𝑝𝑟 = [𝑁𝛿𝑠𝑡], the number of teams 

participating in season transfer. The pseudo-code for season transfers is shown in Algorithm 6. 

Algorithm 6: The season transfers process 

For k=1 to 𝑁𝑠𝑡 

𝐻 = {𝑠𝑒𝑙𝑒𝑐𝑡 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑖 𝑓𝑟𝑜𝑚 𝑁|𝑖 ∉  𝐻} 
End For 

For k=1 to 𝑁𝑠𝑡 

For j=1 to 𝑀 

r=rand() 

If r>0.5 

w=select randomly from current available teams  

 𝐻𝑗
ℱ(𝑘) = 𝑤𝑗

ℱ 

𝐻𝑗
𝒮(𝑘) = 𝑤𝑗

𝒮 

End If 

End For 

𝐶𝑜𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑘) = 𝑓(𝑋ℱ(𝑘)) 

End For 

3.10. Promotion and relegation process 

In many sports competitions, there is a hierarchy of leagues in which the premier league is 

the top league. After finishing a season, best teams are moved up to an upper-division of the 

league, and the worst teams are moved down to a lower division for the next season. This 

process is called relegation and promotion in sports literature. Let 𝛿𝑝𝑟 shows the rate of 

promoted and regulated teams at the end of a season. We define  𝑁𝑝𝑟 = [𝑁𝛿𝑝𝑟] to determine 

the number of teams be moved. 

In this process, teams are selected from the lowest-ranked teams to go down to a lower 

division. To determine which team is promoted to the premier league, and since there is just 

one league in our algorithm, a unique process has been implemented to reach this goal. Hence, 

the position of the promoted team is selected randomly from positions of available teams in the 
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premier league. According to the above elucidations, the pseudo-code of the promotion and 

relegation process is shown in Algorithm 7. 

Algorithm 7: Promotion and relegation process 

Remove 𝑁𝑝𝑟 worst teams of the league. 

Define 𝑁𝑝𝑟 empty teams 𝑁𝑇 with two properties: ℱ and 𝒮 

For k=1 to 𝑁𝑝𝑟 

For j=1 to 𝐽 
s=select randomly from currently available teams (𝑁 − 𝑁𝑝𝑟)  

 𝑁𝑇𝑗
ℱ(𝑘) = 𝑠𝑗

ℱ 

𝑁𝑇𝑗
𝒮(𝑘) = 𝑠𝑗

𝒮 

End For 

𝐶𝑜𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑘) = 𝑓(𝑁𝑇ℱ(𝑘))  

End For 

Add 𝑁𝑇 teams to the league 

4. Multi-objective test functions 

There are numerous MOO test functions attainable in the literature [78, 79]. To show the 

validity of the proposed algorithm, we have selected a subset of these functions with different 

features. Moreover, different test functions with more sophisticated search space are considered 

in this paper. That said, we have chosen the test functions proposed in CEC 2009 including 

seven bi-objective and three tri-objective test functions as listed in . These test problems are 

considered as the most challenging test problems in the literature that provide different multi-

objective search spaces with different Pareto optimal fronts: convex, non-convex, 

discontinuous, and multi-modal.  

Table 2 and Table 3. These test problems are considered as the most challenging test 

problems in the literature that provide different multi-objective search spaces with different 

Pareto optimal fronts: convex, non-convex, discontinuous, and multi-modal.  

Table 2: Bi-objective test functions 

Function Mathematical expression 

UF1 
𝑓1 = 𝑥1 +

2

|𝐽1|
∑ [𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +

𝑗𝜋

𝑛
)]

2

,𝑗∈𝐽1
𝑓2 = 1 − √𝑥 +

2

|𝐽2|
∑ [𝑥𝑗 − 𝑠𝑖𝑛 (6𝜋𝑥1 +

𝑗𝜋

𝑛
)]

2

𝑗∈𝐽2
  

𝐽1 = {𝑗|𝑗 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 2 ≤ 𝑗 ≤ 𝑛}, 𝐽2 = {𝑗|𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 2 ≤ 𝑗 ≤ 𝑛}  

UF2 

𝑓1 = 𝑥1 +
2

|𝐽1|
∑ 𝑦𝑗

2,𝑗∈𝐽1 𝑓2 = 1 − √𝑥 +
2

|𝐽2|
∑ 𝑦𝑗

2
𝑗∈𝐽2   

𝐽1 = {𝑗|𝑗 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 2 ≤ 𝑗 ≤ 𝑛}, 𝐽2 = {𝑗|𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 2 ≤ 𝑗 ≤ 𝑛}, 

𝑦𝑗 = {
𝑥𝑗 − [0.3𝑥1

2𝑐𝑜𝑠 (24𝜋𝑥1 +
4𝑗𝜋

𝑛
) + 0.6𝑥1] 𝑐𝑜𝑠 (6𝜋𝑥1 +

𝑗𝜋

𝑛
)  𝑖𝑓 𝑗 ∈ 𝐽1

𝑥𝑗 − [0.3𝑥1
2𝑐𝑜𝑠 (24𝜋𝑥1 +

4𝑗𝜋

𝑛
) + 0.6𝑥1] 𝑠𝑖𝑛 (6𝜋𝑥1 +

𝑗𝜋

𝑛
)  𝑖𝑓 𝑗 ∈ 𝐽2

  

UF3 

𝑓1 = 𝑥1 +
2

|𝐽1|
(4∑ 𝑦𝑗

2 − 2∏ 𝑐𝑜𝑠 (
20𝑦𝑗𝜋

√𝑗
) + 2𝑗∈𝐽1𝑗∈𝐽1 )  

𝑓2 = √𝑥1 +
2

|𝐽2|
(4 ∑ 𝑦𝑗

2 − 2∏ 𝑐𝑜𝑠 (
20𝑦𝑗𝜋

√𝑗
) + 2𝑗∈𝐽2𝑗∈𝐽2

)  

𝐽1 𝑎𝑛𝑑 𝐽2 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑎𝑠 𝑡ℎ𝑜𝑠𝑒 𝑜𝑓 𝑈𝐹1, 𝑦𝑗 = 𝑥𝑗 − 𝑥1

0.5(1.0+
3(𝑗−2)

𝑛−2
)
, 𝑗 = 2,3, … , 𝑛   

UF4 

𝑓1 = 𝑥1 +
2

|𝐽1|
∑ ℎ(𝑦𝑗),𝑗∈𝐽1 𝑓2 = 1 − √𝑥 +

2

|𝐽2|
∑ ℎ(𝑦𝑗)𝑗∈𝐽2   

𝐽1 𝑎𝑛𝑑 𝐽2 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑎𝑠 𝑡ℎ𝑜𝑠𝑒 𝑜𝑓 𝑈𝐹1, 𝑦𝑗 = 𝑥𝑗 − sin (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2,3, … , 𝑛, ℎ(𝑡) =

|𝑡|

1+𝑒2|𝑡|  

UF5 
𝑓1 = 𝑥1 + (

1

2𝑁
+ 𝜀) |𝑠𝑖𝑛(2𝑁𝜋𝑥1)| +

2

|𝐽1|
∑ ℎ(𝑦𝑗),𝑗∈𝐽1  𝑓2 = 1 − √𝑥 + (

1

2𝑁
+

𝜀) |𝑠𝑖𝑛(2𝑁𝜋𝑥1)|
2

|𝐽2|
∑ ℎ(𝑦𝑗)𝑗∈𝐽2   
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𝐽1 𝑎𝑛𝑑 𝐽2 𝑎𝑟𝑒 𝑖𝑑𝑒𝑛𝑡𝑐𝑎𝑙 𝑡𝑜 𝑡ℎ𝑜𝑠𝑒 𝑡ℎ𝑜𝑠𝑒 𝑜𝑓 𝑈𝐹1, 𝜀 > 0, 𝑦𝑗 = 𝑥𝑗 − sin (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2,3, … , 𝑛, 

ℎ(𝑡) = 2𝑡2 − 𝑐𝑜𝑠(4𝜋𝑡) + 1 

UF6 

𝑓1 = 𝑥1 + 𝑚𝑎𝑥 {0,2 ((
1

2𝑁
+ 𝜀) |𝑠𝑖𝑛(2𝑁𝜋𝑥1)|)} +

2

|𝐽1|
(4 ∑ 𝑦𝑗

2 − 2∏ 𝑐𝑜𝑠 (
20𝑦𝑗𝜋

√𝑗
) + 2𝑗∈𝐽1𝑗∈𝐽1 )  

𝑓2 = 1 − 𝑥1 + 𝑚𝑎𝑥 {0,2 ((
1

2𝑁
+ 𝜀) |𝑠𝑖𝑛(2𝑁𝜋𝑥1)|)} +

2

|𝐽1|
(4∑ 𝑦𝑗

2 − 2∏ 𝑐𝑜𝑠 (
20𝑦𝑗𝜋

√𝑗
) + 2𝑗∈𝐽2𝑗∈𝐽2

)  

𝐽1 𝑎𝑛𝑑 𝐽2 𝑎𝑟𝑒 𝑖𝑑𝑒𝑛𝑡𝑐𝑎𝑙 𝑡𝑜 𝑡ℎ𝑜𝑠𝑒 𝑡ℎ𝑜𝑠𝑒 𝑜𝑓 𝑈𝐹1, 𝜀 > 0, 𝑦𝑗 = 𝑥𝑗 − sin (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2,3, … , 𝑛,  

UF7 
𝑓1 = √𝑥1

5 +
2

|𝐽1|
∑ 𝑦𝑗

2,𝑗∈𝐽1 𝑓2 = 1 − √𝑥1
5 +

2

|𝐽2|
∑ 𝑦𝑗

2
𝑗∈𝐽2   

𝐽1 𝑎𝑛𝑑 𝐽2 𝑎𝑟𝑒 𝑖𝑑𝑒𝑛𝑡𝑐𝑎𝑙 𝑡𝑜 𝑡ℎ𝑜𝑠𝑒 𝑡ℎ𝑜𝑠𝑒 𝑜𝑓 𝑈𝐹1, 𝜀 > 0, 𝑦𝑗 = 𝑥𝑗 − sin (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2,3, … , 𝑛 

 

Table 3: Tri-objective test functions 

Function Mathematical formulation 

UF8 

𝑓1 = 𝑐𝑜𝑠 (0.5𝑥1𝜋)𝑐𝑜𝑠 (0.5𝑥2𝜋) +
2

|𝐽1|
∑ [𝑥𝑗 − 2𝑥2𝑠𝑖𝑛 (6𝜋𝑥1 +

𝑗𝜋

𝑛
)]

2

𝑗∈𝐽1

 

𝑓2 = 𝑐𝑜𝑠 (0.5𝑥1𝜋)𝑠𝑖𝑛 (0.5𝑥2𝜋) +
2

|𝐽1|
∑ [𝑥𝑗 − 2𝑥2𝑠𝑖𝑛 (6𝜋𝑥1 +

𝑗𝜋

𝑛
)]

2

𝑗∈𝐽2

 

𝑓3 = 𝑠𝑖𝑛 (0.5𝑥1𝜋) +
2

|𝐽1|
∑ [𝑥𝑗 − 2𝑥2𝑠𝑖𝑛 (6𝜋𝑥1 +

𝑗𝜋

𝑛
)]

2

𝑗∈𝐽3

 

𝐽1 = {𝑗|3 ≤ 𝑗 ≤ 𝑛. 𝑎𝑛𝑑 𝑗 − 1 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3}.  
𝐽2 = {𝑗|3 ≤ 𝑗 ≤ 𝑛. 𝑎𝑛𝑑 𝑗 − 2 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3}. 
𝐽3 = {𝑗|3 ≤ 𝑗 ≤ 𝑛. 𝑎𝑛𝑑 𝑗 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3}. 

UF9 

𝑓1 = 0.5[ 𝑚𝑎𝑥{0. (1 + 𝜀)(1 − 4(2𝑥1 − 1)2)} + 2𝑥1]𝑥2 +
2

|𝐽1|
∑ [𝑥𝑗 − 2𝑥2𝑠𝑖𝑛 (6𝜋𝑥1 +

𝑗𝜋

𝑛
)]

2

𝑗∈𝐽1

 

𝑓1 = 0.5[ 𝑚𝑎𝑥{0. (1 + 𝜀)(1 − 4(2𝑥1 − 1)2)} + 2𝑥1]𝑥2 +
2

|𝐽2|
∑ [𝑥𝑗 − 2𝑥2𝑠𝑖𝑛 (6𝜋𝑥1 +

𝑗𝜋

𝑛
)]

2

𝑗∈𝐽2

 

𝑓1 = 1 − 𝑥2 +
2

|𝐽3|
∑ [𝑥𝑗 − 2𝑥2𝑠𝑖𝑛 (6𝜋𝑥1 +

𝑗𝜋

𝑛
)]

2

𝑗∈𝐽2

 

𝐽1 = {𝑗|3 ≤ 𝑗 ≤ 𝑛. 𝑎𝑛𝑑 𝑗 − 1 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3}.  
𝐽2 = {𝑗|3 ≤ 𝑗 ≤ 𝑛. 𝑎𝑛𝑑 𝑗 − 2 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3}. 
𝐽3 = {𝑗|3 ≤ 𝑗 ≤ 𝑛. 𝑎𝑛𝑑 𝑗 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3}. 

UF10 

𝑓1 = 𝑐𝑜𝑠 (0.5𝑥1𝜋)𝑐𝑜𝑠 (0.5𝑥2𝜋) +
2

|𝐽1|
∑[4𝑦𝑗

2 − cos(8𝜋𝑦𝑗1) + 1]

𝑗∈𝐽1

 

𝑓2 = 𝑐𝑜𝑠 (0.5𝑥1𝜋)𝑠𝑖𝑛 (0.5𝑥2𝜋) +
2

|𝐽1|
∑[4𝑦𝑗

2 − cos(8𝜋𝑦𝑗1) + 1]

𝑗∈𝐽2

 

𝑓3 = 𝑠𝑖𝑛 (0.5𝑥1𝜋) +
2

|𝐽1|
∑[4𝑦𝑗

2 − cos(8𝜋𝑦𝑗1) + 1]

𝑗∈𝐽3

 

𝐽1 = {𝑗|3 ≤ 𝑗 ≤ 𝑛. 𝑎𝑛𝑑 𝑗 − 1 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3}.  
𝐽2 = {𝑗|3 ≤ 𝑗 ≤ 𝑛. 𝑎𝑛𝑑 𝑗 − 2 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3}. 
𝐽3 = {𝑗|3 ≤ 𝑗 ≤ 𝑛. 𝑎𝑛𝑑 𝑗 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3}. 

 

The MOVPL algorithm is statistically analyzed, and compared with two eminent MOEAs 

in the literature, which have recorded encouraging performance including MOPSO and 

MOEA/D. This approach is inspired by a recent study of [3] on MOEAs contexts to analyze 

all proposed MOEAs. To homogenize our experiment, the number of function evaluations is 

set to 300K for all algorithms. Like in other studies [3, 80], we run each test function 30 times. 

One of the most important aspects of implementing an algorithm is parameter tuning which 

plays a crucial role in the performance of proposed MOEA. Since the proposed algorithm has 

not been published yet, there is no study that determines the optimal values for all parameters 
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of MOVPL, and that is, the Taguchi method is used for this consideration. The first step of the 

Taguchi method is to find the parameters and their levels, which are shown in Table 4. 

Table 4: MOVPL parameters and levels. 

Parameter Level 1 Level 2 Level 3 

𝑛𝑃𝑜𝑝 100 150 200 

𝑇 100 200 400 

𝜆𝑓 1 1.4 1.8 

𝜆𝑠 1 1.4 1.8 

𝜓𝑓 1 1.4 1.8 

𝜓𝑠 1 1.4 1.8 

𝛽 4 7 10 

𝛿𝑝𝑟 0.1 0.5 0.9 

 𝛿𝑠𝑡 0.1 0.5 0.9 

𝛿𝑡𝑟 0.1 0.5 0.9 

𝑀𝑎𝑥𝐼𝑡 100 200 400 

𝑛𝐴𝑟𝑐ℎ𝑖𝑣𝑒 50 75 100 

 

It is worth mention here that Taguchi method is not implemented for other algorithms, and 

the optimal values of parameters for corresponding  MOEAs can be grasped from [3], thus, the 

following parameters are selected for MOPSO: 

 𝜙1 = 𝜙2 = 2.05 

 𝜙 = 𝜙1+𝜙2 

 𝑤 =
2

𝜙−2+√𝜙2−4𝜙
 

 𝑐1 = 𝑤 × 𝜙1 

 𝑐2 = 𝑤 × 𝜙2 

 𝛼 = 0.1 

 𝛽 = 4 

 𝑛𝐺𝑟𝑖𝑑=10 

where 𝑤 denotes inertial weight, 𝑐1 and 𝑐2 are personal coefficient and social coefficient, 

respectively, 𝑛𝐺𝑟𝑖𝑑 𝛼 be grid inflation parameter, 𝛽 is leader selection pressure parameter, and 

finally, the number of grids per each dimension. It is worth mentioning here that 𝑛𝐺𝑟𝑖𝑑 and 𝛽 

have the most influential effects on the performance of MOPSO to reach diversity throughout 

the optimization process. As mentioned in the literature (e.g., [3]), the best values for these 

components (𝛽 = 4 and 𝑛𝐺𝑟𝑖𝑑 = 10 ) have guaranteed the proposed algorithm to maintain 

diversity in the most multi-objective optimization problems. The initial parameters of 

MOEA/D are selected as follows: 

 𝑁 = 100 

 𝑇 = 10 

 𝑛𝑟 = 1 

 𝛾 = 0.9 

 𝑚𝑟 = 0.5 

 𝜂 = 30 

where 𝑁 denotes the number of Subproblems, 𝑇 is number of neighbors, 𝑛𝑟 is the maximal 

copies of a new child in update, 𝛾 is the probability of selecting parents from the neighborhood, 

𝑚𝑟 is mutation rates, and finally, 𝜂 is the distribution index.   

To investigate all factors simultaneously, orthogonal arrays have been used for the Taguchi 

method. In this way, the L27 design is applied for MOVPL, which is shown in Table 5. This 

approach has been implemented in many studies, such as [81, 82].  
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Table 5: Used L27 design in the Taguchi method 

Experiment 

number 

Parameters levels 

𝑛𝑃𝑜𝑝 𝑇 𝜆𝑓 𝜆𝑠 𝜓𝑓 𝜓𝑠 𝛽 𝛿𝑝𝑟  𝛿𝑠𝑡 𝛿𝑡𝑟 𝑀𝑎𝑥𝐼𝑡 𝑛𝐴𝑟𝑐ℎ𝑖𝑣𝑒 

1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 2 2 2 2 2 2 2 2 

3 1 1 1 1 3 3 3 3 3 3 3 3 

4 1 2 2 2 1 1 1 2 2 2 3 3 

5 1 2 2 2 2 2 2 3 3 3 1 1 

6 1 2 2 2 3 3 3 1 1 1 2 2 

7 1 3 3 3 1 1 1 3 3 3 2 2 

8 1 3 3 3 2 2 2 1 1 1 3 3 

9 1 3 3 3 3 3 3 2 2 2 1 1 

10 2 1 2 3 1 2 3 1 2 3 1 2 

11 2 1 2 3 2 3 1 2 3 1 2 3 

12 2 1 2 3 3 1 2 3 1 2 3 1 

13 2 2 3 1 1 2 3 2 3 1 3 1 

14 2 2 3 1 2 3 1 3 1 2 1 2 

15 2 2 3 1 3 1 2 1 2 3 2 3 

16 2 3 1 2 1 2 3 3 1 2 2 3 

17 2 3 1 2 2 3 1 1 2 3 3 1 

18 2 3 1 2 3 1 2 2 3 1 1 2 

19 3 1 3 2 1 3 2 1 3 2 1 3 

20 3 1 3 2 2 1 3 2 1 3 2 1 

21 3 1 3 2 3 2 1 3 2 1 3 2 

22 3 2 1 3 1 3 2 2 1 3 3 2 

23 3 2 1 3 2 1 3 3 2 1 1 3 

24 3 2 1 3 3 2 1 1 3 2 2 1 

25 3 3 2 1 1 3 2 3 2 1 2 1 

26 3 3 2 1 2 1 3 1 3 2 3 2 

27 3 3 2 1 3 2 1 2 1 3 1 3 

 

After determining Taguchi design, we adjusted the MOVPL parameters over different 

problems (10 test functions and three classical engineering problems including welded beam 

design (WBD), disc brake design (DBD), and speed reducer design (SRD) problems), which 

are expressed in the Section 6). The parameters are shown in Table 6. As seen in this table, 

MOVPL is tuned for each problem, separately. 

Table 6: Best obtained parameter values used based on various problems  

Parameter 
Test functions Engineering 

problems UF1 UF2 UF3 UF4 UF5 UF6 UF7 UF8 UF9 UF10 WBD DBD SRD 

𝑛𝑃𝑜𝑝 1 1 1 3 1 1 1 2 1 1 1 1 3 

𝑇 2 2 2 1 1 2 1 1 1 2 2 2 1 

𝜆𝑓 3 2 2 1 2 2 2 3 1 1 2 2 1 

𝜆𝑠 3 1 2 2 2 2 2 2 2 2 1 3 2 

𝜓𝑓 3 2 2 2 2 2 1 1 1 1 2 1 3 

𝜓𝑠 2 3 1 2 2 1 2 1 1 1 3 1 3 

𝛽 1 1 1 1 2 1 2 2 2 3 1 1 2 

𝛿𝑝𝑟 2 2 3 2 2 1 1 3 2 2 3 2 2 

 𝛿𝑠𝑡 1 1 2 2 2 2 2 1 1 3 1 1 3 

𝛿𝑡𝑟 2 2 2 2 2 3 1 1 1 1 1 1 1 
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𝑀𝑎𝑥𝐼𝑡 2 2 3 1 3 2 3 3 3 3 2 3 3 

𝑛𝐴𝑟𝑐ℎ𝑖𝑣𝑒 3 1 2 3 1 1 3 1 2 1 3 2 1 

 

In this section, four standard metrics of MOEA algorithms are introduced.  

Spacing (SP) metric: This metric [83] is functioned to measure the coverage of our 

algorithm as: 

𝑆𝑃 = √
1

|𝑃𝐹|
∑ (�̅� − 𝑑𝑖)

2𝑛
𝑖=1 . (20) 

The main statistic parameter used in this metric is the standard deviation which considers 

distances among solutions of the Pareto front, where 𝑑𝑖 = 𝑚𝑖𝑛
�⃗� ∈𝑃𝐹

∑ (|𝑜𝑘(𝑥 ) − 𝑜𝑘(𝑦 )|)
𝐾
𝑘=1  is a 

minimal divergence of an individual 𝑥  from all individuals and �̅� is the average of 𝑑𝑖. 

Maximum Spread (MS) metric: This metric considers the extension of Pareto solutions, 

as shown in Eq. (21) [84]: 

𝑀𝑆 = √∑ (𝑚𝑖𝑛 𝑓𝑖 − 𝑚𝑎𝑥 𝑓𝑖)
2𝐼

𝑖=1 , (21) 

where 𝑚𝑖𝑛 𝑓𝑖 and 𝑚𝑎𝑥 𝑓𝑖 denote the best and the worst values of the fitness function within 

all non-dominated individuals [85]. 

Inverted Generational Distance (IGD) metric: the average value of the distance between 

obtained individuals on Pareto front and obtained  Pareto optimal set is calculated via this 

metric as: [46]:  

𝐼𝐺𝐷 =
(∑ 𝑑𝑖

2𝑁
𝑖=1 )

1
2⁄

𝑁
, (22) 

where 𝑁 means the total number of obtained non-dominated individuals in Pareto front, and 

𝑑𝑖 states the minimum Euclidean distance between the 𝑖th solutions to the Pareto optimal set. 

Diversity (∆) metric: This metric calculates the variety of obtained individuals as following 

[46]: 

∆=
∑ 𝑑𝑚

𝑒𝑀
𝑚=1 +∑ |𝑑𝑖−�̅�|𝑁

𝑖=1

 ∑ 𝑑𝑚
𝑒𝑀

𝑚=1 +𝑁∗�̅�
, (23) 

where 𝑁 symbolizes the total number of non-dominated individuals in Pareto front, 𝑀 is 

defined as the  total number of objectives, 𝑑𝑖 states Euclidean distance between neighboring 

individuals, and �̅� is the mean of 𝑑𝑖. Moreover, the parameter 𝑑𝑚
𝑒  denotes the Euclidean distance 

between the individuals of Pareto optimal set and the obtained non-dominated solution set with 

respect to the 𝑚th objective function.  

5. Computational experiments 

In the course of the experiment, statistical reports played an important role. Therefore, the 

experiments were performed statistically with presented in tables and plots. Table 7 

demonstrates the statistical results of the algorithms for the first metric, IGD, in which MOVPL 

shows exceptionally better than the others do in UF1.  As seen in Table 7, the statistical results 

indicated that MOVPL obtains the best ranks for nine out of all test problems indicating 

promising performances of the proposed algorithm in IGD metric on the multi-objective test 

functions. It can be concluded that high convergence of MOVPL is coined from the learning 

procedures and updating the main properties of a team with respect to other teams 

Table 7: Statistical results for the IGD metric on all test functions 

Test function Statistical features MOVPL MOPSO MOEA/D 

UF1 
Mean 0.0005 0.0474 0.0096 
Std. 0.0002 0.0389 0.0086 
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Rank 1 3 2 

UF2 
Mean 0.0012 0.0202 0.0040 
Std. 0.0007 0.0097 0.0022 

Rank 1 3 2 

UF3 
Mean 0.0268 0.2874 0.0501 

Std. 0.0144 0.0766 0.0202 

Rank 1 3 2 

UF4 
Mean 0.0048 0.0113 0.0076 

Std. 0.0004 0.0013 0.0011 
Rank 1 3 2 

UF5 
Mean 0.0719 0.5708 0.1983 

Std. 0.0472 0.3383 0.0908 
Rank 1 3 2 

UF6 
Mean 0.0581 0.4942 0.1754 
Std. 0.0275 0.2652 0.0948 

Rank 1 3 2 

UF7 
Mean 0.0008 0.0646 0.0170 
Std. 0.0008 0.0663 0.0178 

Rank 1 3 2 

UF8 
Mean 0.0209 0.622 0.0169 

Std. 0.0353 0.2957 0.0100 
Rank 2 3 1 

UF9 
Mean 0.0401 0.6529 0.0211 

Std. 0.0336 0.1597 0.0096 
Rank 2 3 1 

UF10 
Mean 0.0994 2.6392 0.1597 
Std. 0.0348 1.1245 0.0764 

Rank 1 3 2 

Average ranking 1.2 3 1.8 
Total rank 1 3 2 

 

This statistical result, also, can be seen in the boxplot. According to Figure 3, the 

corresponding boxplot for MOVPL is tighter and lower than the others. With this in mind, this 

algorithm shows better accuracy convergence than its rivals. It can be expressed that the 

MOVPL algorithm is immensely talented to afford exceptional convergence and accuracy on 

UF1. 
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Figure 3: Boxplot of the statistical results for IGD on all test functions 

It can be seen a comprehensive overview of the results of Pareto optimal solution for all 

MOEAs, which is shown in Figure 4. According to Table 8 and Table 9, it can be concluded 

that the proposed algorithm is able to achieve better convergence and coverage than the others 

are. While there are breaks on the Pareto optimal front of MOVPL, the convergence of the 

whole front is more extensive than the others on this test function. Hence, for the first test 

function, UF1, true Pareto optimal front is not widely distributed along with both objectives. It 

can be concluded that the results of MOVPL are better to achieve a true Pareto front, and it can 

cover a large part of the true Pareto front. For the UF2, the results of MOVPL are quite close 

to the results of MOEA/D, which shows the superior result in the average. MOEA/D obtains 

the best results, and the obtained results of Table 8 and Table 9 show that MOVPL is more 

stable than the others are. The significance of the results in Figure 3 indicates that MOVPL has 

promising performance in converging related to the true Pareto optimal front. 

To analyze the coverage of the proposed MOEAs, Figure 4 is provided to show obtained 

Pareto optimal solutions in which MOPSO is less distributed then MOVPL and MOEA/D 

which indicate the poor performance of that algorithm. Concerning obtained optimal results 

from MOEAs, MOVPL proves comparatively better coverage as outcomes of SP and MS 

indicated in Table 8 and Table 9. In UF3, MOVPL has the best average in all statistical values 

for IGD. By focusing on Figure 3, the superior performance of this algorithm can be grasped 

according to its narrower and lower boxplot. However, according to statistical results, similar 

to those on UF1 and UF2, MOPSO shows the worst performance for the IGD metric. The 

optimal Pareto solutions of all MOEAs can be seen in Figure 4, indicating the superiority of 

the MOVPL. This figure also reveals that the poor performance results of all proposed MOEAs 

obtained front to show that they would never be able to afford good coverage on UF3 test 

function. Despite this fact, the convergence and accuracy of MOVPL are better than the others 

are. 

The next test function problem, UF4, is discussed in this section to show the validity of the 

algorithms. Considering the statistical and in-depth analysis of this test function, MOVPL 

shows superior performance than MOPSO and MOEA/D. The tighter boxplot of MOVPL for 

the aforementioned test function (Figure 3) placed to lower the minimum values of MOPSO, 

and MOEA/D verifies that statistics results of MOVPL are relatively significant. The results of 

the experiment on this test function find that MOPSO obtains worst performance. Generally, 

the poor performance of MOEAs on this test function could be derived from the complex shape 

of the optimal Pareto front. 

As shown in Figure 4, the UF5 has been considered as one of the most discontinuous test 

functions. According to statistical results shown in the tables, MOVPL has defeated both 

MOPSO and MOPSO concerning all metrics. Even though MOVPL has better performance 

than others do, but statistically, not all MOEAs are able to provide promising performance on 

UF5. Given these points, it might be derived from complications arising from search space 

with a large number of discontinuous regions that impede algorithms from achieving a 

remarkable result on this test problem. Similar to test functions aforementioned before, 

MOVPL states impressive performance on approximating Pareto front on UF6. According to 

statistical result, MOVPL has superior performance on this test function. MOPSO shows the 
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poor results concerning all metrics. With considering results shown in Table 7-14, MOVPL 

shows better convergence ability in statistical indices. Because of sophisticated search space, 

none of these algorithms can estimate Pareto optimal solutions to the true Pareto front, while 

MOVPL is much closer to the Pareto front than others.  

Scholars have regarded that some linear test functions, like UF7, is not challenging to 

estimate true Pareto solutions [2]. The proposed algorithm, MOVPL, has better performance 

in determining true Pareto front in comparison with others. Even though it could be seen in 

Table 7-Considering obtained results from Table 9, the excellent agreement was achieved for 

evaluating the performance of all proposed algorithms indicating that MOVPL algorithm 

approach produced good quality results in MS metrics. 

Table 10 that the proposed algorithm shows better results, but, this eminence is not very 

outstanding as a result of the linear-shaped Pareto front of UF7. As seen in Figure 3, the 

proposed algorithm has a narrower lower average than both MOEA/D and MOPSO, which is 

proven its superiority. In analyzing this test function, MOPSO is not uniformly scattered along 

the true Pareto optimal front, and achieved solutions are placed on spots where the convergence 

of algorithm rarely occurred. 

Table 8: Statistical results for spacing (SP) metric on all test functions 

Test problem Statistical features MOVPL MOPSO MOEA/D 

UF1 
Mean 0.0028 0.1341 0.0387 
Std. 0.0013 0.1494 0.0695 

Rank 1 3 2 

UF2 
Mean 0.0092 0.0778 0.0264 
Std. 0.0074 0.0549 0.0211 

Rank 1 3 2 

UF3 
Mean 0.0549 0.2528 0.0674 
Std. 0.0618 0.1442 0.1045 

Rank 1 3 2 

UF4 
Mean 0.0123 0.0248 0.0289 
Std. 0.0024 0.0062 0.0078 

Rank 1 2 3 

UF5 
Mean 0.1636 0.5702 0.2999 
Std. 0.1274 0.3941 0.3698 

Rank 1 3 2 

UF6 
Mean 0.1590 0.5651 0.1757 
Std. 0.0955 0.5626 0.4210 

Rank 1 3 2 

UF7 
Mean 0.0057 0.1836 0.0772 
Std. 0.0018 0.2148 0.1428 

Rank 1 3 2 

UF8 
Mean 0.1592 2.7551 0.1011 
Std. 0.0287 1.4626 0.0844 

Rank 2 3 1 

UF9 
Mean 0.2895 2.7612 0.1202 
Std. 0.2507 0.8406 0.0602 

Rank 2 3 1 

UF10 
Mean 0.6476 9.3447 0.4684 
Std. 0.2427 4.2827 0.4621 

Rank 2 3 1 
Average ranking 1.3 2.9 1.8 

Total rank 1 3 2 

 

The results obtained from Table 8, the SP metrics of all proposed algorithms show that 

MOVPL has gained the best rank for 7 out of 10 test problems, and in terms of UF8, UF9, and 

UF10 where MOVPL has gained rank 2, the difference between top 2 ranks can be overlooked.  

The other three test functions, UF8, UF9, and UF10, are defined as the most challenging 

test problems, which have more than two objectives. In two of these test functions, the results 

show that MOVPL has a better value in all metrics, which is seen in boxplot (Figure 3). The 
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obtained Pareto front of UF8, as the first three-objectives test function problems, can be seen 

in Figure 4. It would be clear that obtained Pareto optimal solutions of all algorithms are not 

surely close to the true Pareto optimal front. Another challenging test function problem, the 

UF9, provides a distinguished Pareto front, which is more challenging to be solved. Figure 4 

shows obtained Pareto front of UF9 for all applied MOEAs. According to Figure 4, MOEA/D 

shows better convergence despite the fact that its poor results correspond to all metrics. Even 

though MOEA/D records the best performance, but this difference is not highly significant with 

MOVPL, as shown in Figure 3.  

The last test function, UF10, has similar performance to UF8 test function in estimating 

Pareto front. As shown in Figure 4, all proposed MOEAs are not able to coverage true Pareto 

front, but MOVPL shows superior statistical results on different aspects for IGD. As 

quantitative analytical results of all metrics shown in Table 7-Considering obtained results 

from Table 9, the excellent agreement was achieved for evaluating the performance of all 

proposed algorithms indicating that MOVPL algorithm approach produced good quality results 

in MS metrics. 

Table 10, MOVPL dominates other proposed algorithms and affords spectacular results on 

this test problem. We now provide the performance analysis of all proposed MOEAs for 

different metrics. As mentioned before, Table 7 offers statistical results for IGD, which is 

considered one of the primary metrics for analyzing the performance of MOEAs. Hence, the 

other performance metrics, maximum spread (MS), diversity metric (∆), and for spacing (SP), 

which provide quantitative assessments for the performance of the proposed MOEAs, are 

shown in Table 8 -- Table 10, respectively. 

Table 9: Statistical results for maximum spread (MS) metric on all test functions 

Test function Statistical features MOVPL MOPSO MOEA/D 

UF1 

Mean 2.2518 1.3532 1.1661 

Std. 0.7952 0.241 0.6436 

Rank 1 2 3 

UF2 

Mean 2.3855 1.7687 1.594 

Std. 0.35 0.1932 0.2908 

Rank 1 2 3 

UF3 

Mean 2.5778 0.8948 0.559 

Std. 1.2757 0.6872 0.6731 

Rank 1 2 3 

UF4 

Mean 2.0713 1.995 2.0504 

Std. 0.0542 0.044 0.0942 

Rank 1 3 2 

UF5 

Mean 4.1626 1.7331 1.9152 

Std. 2.9018 1.1498 1.6763 

Rank 1 3 2 

UF6 

Mean 3.5934 1.9239 1.1978 

Std. 2.4578 0.9794 1.2694 

Rank 1 2 3 

UF7 

Mean 2.2424 0.8101 1.106 

Std. 1.1106 0.4298 0.9429 

Rank 1 3 2 

UF8 

Mean 4.2128 3.671 2.8741 

Std. 0.373 2.0775 0.9458 

Rank 1 2 3 

UF9 

Mean 6.5246 4.1932 2.7404 

Std. 5.6954 1.8129 0.8121 

Rank 1 2 3 

UF10 Mean 9.7357 8.0222 3.6231 
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Std. 2.9007 2.7391 2.8233 

Rank 1 2 3 

Average ranking 1 2.3 2.7 

Total rank 1 2 3 

Considering obtained results from Table 9, the excellent agreement was achieved for 

evaluating the performance of all proposed algorithms indicating that MOVPL algorithm 

approach produced good quality results in MS metrics. 

Table 10: Statistical results for diversity metric (∆) on all test functions 

Test function Statistical features MOVPL  MOPSO  MOEA/D  

UF1 
Mean 0.1214 0.2766 0.1489 
Std. 0.0535 0.0540 0.0681 

Rank 1 3 2 

UF2 
Mean 0.1632 0.2320 0.1734 

Std. 0.0048 0.0267 0.0209 

Rank 1 3 2 

UF3 
Mean 0.0975 0.3652 0.1038 

Std. 0.0741 0.0743 0.0951 
Rank 1 3 2 

UF4 
Mean 0.1842 0.1937 0.1957 

Std. 0.0289 0.0147 0.0175 
Rank 1 3 2 

UF5 
Mean 0.1329 0.4016 0.1438 
Std. 0.1176 0.0998 0.1207 

Rank 1 3 2 

UF6 
Mean 0.0893 0.4113 0.1057 

Std. 0.0854 0.1177 0.1104 

Rank 1 3 2 

UF7 
Mean 0.0937 0.2829 0.1466 

Std. 0.0451 0.0814 0.0850 
Rank 1 3 2 

UF8 
Mean 0.1205 0.5077 0.1936 

Std. 0.0886 0.0939 0.0330 
Rank 1 3 2 

UF9 
Mean 0.1962 0.5188 0.2195 
Std. 0.0839 0.0655 0.0331 

Rank 1 3 2 

UF10 
Mean 0.2795 0.5356 0.3755 

Std. 0.0554 0.0844 0.1233 

Rank 1 3 2 
Average ranking 1 3 2 

Total rank 1 3 2 

 

According to results grasped from Table 10, the performance of a diversity metric has 

completely similar to MS metrics indicated that MOVPL has obtained the best rank in 

comparison with its rivals. The increasing diversity of obtained solutions may be explained by 

using specific operators such as learning strategy, which is originally driven from the basic 

version of VPL.    
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Figure 4: Pareto optimal solutions of all MOEAs for all test functions 

It can be concluded that kind of pattern takes place as a result of the hyper grid and archive 

which were embedded to MOEAs. The archive applied to the MOVPL algorithm compels 

algorithm to store and retrieve the best teams.  

 

For more supporting our study statistically, The Wilcoxon Signed-Rank Test was used to verify 

statistical significance [86]. Therefore, the null hypothesis (𝐻0) and alternative hypothesis (𝐻1) 

are defined to show the performance of the two MOEAs: 

{
𝐻0: 𝜇1 = 𝜇2

𝐻1: 𝜇1 ≠ 𝜇2
 (24) 

Significance was defined as a probability value of 0.5. It is worth mention here that p-value 

would be respected as the primary criteria to accept the null hypothesis (𝐻0). The p-values of 

each unrelated hypothesis have been measured and expressed in Table 11. In this table, 𝑅 

denotes statistical results of the Wilcoxon signed-rank test, if it is equal to 1, there is a 

significant difference between MOVPL and the other algorithms; conversely, if it is equal to 
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0, there is no significant difference between MOVPL and the others. From the value of 𝐻 rows, 

if it is termed as ‘‘+’’, indicated that the proposed algorithm outperforms other rivals 

statistically, conversely, ‘‘-’’ shows that MOVPL is inferior to the other MOEAs, and finally, 

‘‘=’’ indicated that there is no significant difference between proposed algorithm and its rivals. 

Additionally, in the last row of this table, it is seen the term 𝓌/𝔱/𝔩 which is considered the 

number of the win, tie, and loss of proposed MOEA compared to its rivals.   

Table 11: Statistical results of Wilcoxon signed-rank test for all MOEAs 

MOVPL Statistic features 

MOVPL vs # 

IGD  SP MS ∆ 

MOPSO MOEA/D MOPSO MOEA/D MOPSO MOEA/D MOPSO MOEA/D 

UF1 

p-value 4.20E-05 1.40E-04 4.42E-04 2.46E-04 1.60E-04 3.91E-05 4.20E-04 1.40E-04 

𝑅 1 1 1 1 1 1 1 1 

𝐻 + + + + + + + + 

UF2 

p-value 3.93E-06 6.35E-04 6.58E-04 4.49E-04 1.95E-05 5.29E-06 3.93E-05 6.35E-04 

𝑅 1 1 1 1 1 1 1 0 

𝐻 + + + + + + + = 

UF3 

p-value 2.05E-04 1.92E-04 6.02E-05 5.52E-04 3.15E-04 4.84E-04 2.05E-04 1.92E-01 

𝑅 1 1 1 1 1 1 1 1 

𝐻 + + + + + + + + 

UF4 

p-value 5.11E-05 3.13E-04 1.90E-04 1.50E-05 1.03E-04 2.99E-05 5.11E-04 3.13E+01 

𝑅 1 1 1 1 1 1 1 0 

𝐻 + + + + + + + = 

UF5 

p-value 1.51E-06 4.00E-04 7.77E-05 2.14E-04 2.90E-04 2.42E-04 1.51E-04 4.00E-01 

𝑅 1 1 1 1 1 1 1 0 

𝐻 + + + + + + + = 

UF6 

p-value 8.45E-05 3.45E-04 3.30E-04 2.25E-04 1.79E-04 5.61E-04 8.45E-05 3.45E-04 

𝑅 1 1 1 1 1 1 1 1 

𝐻 + + + + + + + + 

UF7 

p-value 3.41E-5 3.08E-04 3.51E-04 1.82E-04 4.12E-05 3.09E-04 3.41E-04 3.08E-04 

𝑅 1 1 1 1 1 1 1 1 

𝐻 + + + + + + + + 

UF8 

p-value 3.66E-04 8.45E-05 1.50E-04 2.57E-04 6.19E-04 2.35E-04 3.66E-05 8.45E-05 

𝑅 1 1 1 1 1 1 1 1 

𝐻 + + + - + + + + 

UF9 

p-value 1.86E-05 5.55E-03 6.15E-05 5.65E-05 4.86E-04 3.26E-04 1.86E-05 5.55E-04 

𝑅 1 1 1 1 1 1 1 1 

𝐻 + - + - + + + + 

UF10 

p-value 8.34E-04 1.00E+00 4.26E-04 3.26E-04 7.77E-04 1.78E-04 8.34E-04 4.97E-04 

𝑅 1 0 1 1 1 1 1 1 

𝐻 + = + - + + + + 

𝓌/𝔱/𝔩 10/0/0 8/1/1 10/0/0 7/0/3 10/0/0 10/0/0 10/0/0 7/3/0 

 

In this regard, an interesting point found from Table 11 is the fact that MOVPL outperforms 

all test function in terms of all metrics compared with MOPSO, meanwhile proposed method 

has shown different behavior in comparison with MOEA/D, that is, MOVPL superiors to 

MOEA/D in all test problems in terms of MS, but the proposed method cannot surpass 

MOEA/D on UF9 and UF10 for IGD, UF8, UF9, and UF 10 for SP and UF2, UF4, and UF5 

for ∆. Consequently, it can be concluded that the difference in obtained results between the 

proposed method and its rivals was statistically significant, and generally, MOVPL excel both 

methods on all metrics.  

6. Application of MOVPL in classical engineering problems 

Multi-objective optimization has many implementations in engineering and industry. Three 

engineering design problems are analyzed to show the validity of our proposed algorithm. To 
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show the capability of the proposed algorithm, we will provide a comprehensive experimental 

analysis for different classical engineering benchmark test functions.   

6.1. The welded beam design problem 

Multi-objective design of a welded beam is a well-known traditional engineering benchmark 

applied by many scholars. The objective of this problem is the minimization of overall 

fabrication. There are various constraints such as shear stress (τ), buckling load on the bar (Pc 

), end deflection of the beam (δ), and bending stress in the beam (σ) considering in this 

problem. The general sketch of the problem is exposed in Figure 5. 

B

A

Load

1x2x

3x

4x  
Figure 5: the welded beam design and its features 

In this problem, there are four variables as the width ℎ (𝑥1), length 𝑙 (𝑥2) of the welded 

area, the depth 𝑡 (𝑥3) , and the thickness 𝑏(𝑥4) of the main beam. This problem can be stated 

as: 
𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4 ] = [ℎ 𝑙 𝑡 𝑏] (25) 

𝑀𝑖𝑛 𝑓(𝑥 ) = 1.10471𝑥2𝑥1
2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2)  (26) 

𝑀𝑖𝑛 𝑓(𝑥 ) = 𝛿(𝑥 )  (27) 

𝑔1(𝑥 ) = 𝜏(𝑥 ) − 𝜏𝑚𝑎𝑥 ≤ 0 (28) 

𝑔2(𝑥 ) = 𝜎(𝑥 ) − 𝜎𝑚𝑎𝑥 ≤ 0 (29) 

𝑔3(𝑥 ) = 𝛿(𝑥 ) − 𝛿𝑚𝑎𝑥 ≤ 0 (30) 

𝑔4(𝑥 ) = 𝑥1 − 𝑥4 ≤ 0 (31) 

𝑔5(𝑥 ) = 𝑃 − 𝑃𝑐(𝑥 ) ≤ 0 (32) 

𝑔6(𝑥 ) = 0.125 − 𝑥1 ≤ 0 (33) 

𝑔7(𝑥 ) = 1.10471𝑥1
2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) − 5.0 ≤ 0 (34) 

0.10 ≤ 𝑥1 ≤ 2.00, (35) 

0.10 ≤ 𝑥2 ≤ 10.00, (36) 

0.10 ≤ 𝑥3 ≤ 10.00, (37) 

0.10 ≤ 𝑥4 ≤ 2.00, (38) 

where 

𝜏(𝑥 ) = √(𝜏′)2 + 2𝜏′𝜏′′ 𝑥2

2𝑅
+ (𝜏′′)2  

𝜏′ =
𝑃

√2𝑥1𝑥2
, 𝜏′′ =

𝑀𝑅

𝐽
, 𝑀 = 𝑃(𝐿 +

𝑥2

2
)  

𝑅 = √𝑥2
2

4
+ (

𝑥1+𝑥3

2
)

2

  

𝐽 = 2 {√2𝑥1𝑥2 [
𝑥2

2

4
+ (

𝑥1+𝑥3

2
)

2

]}  

𝜎(𝑥 ) =
6𝑃𝐿

𝑥4𝑥3
2 , 𝛿(𝑥 ) =

4𝑃𝐿3

𝐸𝑥4𝑥3
2  
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𝑃𝑐(𝑥 ) =
4.013𝐸√𝑥3

2𝑥4
6

36

𝐿2 (1 −
𝑥3

2𝐿
√

𝐸

4𝐺
)  

𝑃 = 6000 lb, 𝐿14 In, 𝛿𝑚𝑎𝑥 = 0.25 In., 

𝐸 = 30 × 106 psi, 𝐺 = 30 × 106 psi 

𝜏𝑚𝑎𝑥 = 13600 psi, 𝜎𝑚𝑎𝑥 = 30000 psi 

 

Eqs. (26) and (27) consider the objective functions; all constraints of the problem are 

discussed in the Eqs. (28)-(34), and variables are defined Eqs. (35)-(38). The IGD, SP, MS, 

and ∆ metrics are calculated over thirty runs for MOVPL and the two other algorithms. The 

obtained results in the form of min, worst, mean, and standard deviation values are exposed in 

Table 12, including the values of MOVPL, MOPSO, and MOEA/D algorithms. In Table 15, 

the best results in terms of all metrics are attained by MOVPL. In this benchmark function 

problem, it is perceived that MOVPL has lower IGD, as well as, lower SP, higher MS, and 

lower ∆ which are indicated that proposed algorithm has superior performance than its rivals 

to find true Pareto front. 

Table 12: Statistics results of the welded beam design problem 

Metrics MOEAs Min Max Mean Std. Rank 

IGD 

MOVPL 2.85E+04 3.23E+05 2.92E+04 2.85E+04 1 

MOPSO 3.95E+04 4.65E+05 6.12E+04 2.85E+04 3 

MOEA/D 2.85E+04 3.23E+05 2.92E+04 2.85E+04 2 

SP 

MOVPL 4.23E+03 7.65E+03 5.37E+03 1.23E+02 1 

MOPSO 4.77E+03 8.23E+03 5.94E+03 1.42E+02 3 

MOEA/D 4.44E+03 8.12E+03 6.01E+03 1.73E+02 2 

MS 

MOVPL 1.84E+04 5.23E+04 3.54E+04 0.07E+04 1 

MOPSO 1.23E+04 4.43E+04 2.44E+04 0.03E+04 3 

MOEA/D 1.65E+04 4.75E+04 2.67E+04 0.04E+04 2 

∆ 

MOVPL 0.6451 0.9221 0.8332 0.0321 1 

MOPSO 0.7787 0.9801 0.8741 0.0511 3 

MOEA/D 0.6812 0.9723 0.8865 0.0921 2 

 

The general comparison of corresponding Pareto fronts obtaining from the best individuals 

of algorithms is illustrated in Figure 6, where it is clearly grasped that the results are the mostly 

better than the results obtained from its rivals.  

 
Figure 6: Pareto optimal front for the welded beam design problem 

6.2. Disc brake design problem 

The second benchmark for multi-objective optimization, considering in many papers [2, 87, 

88], is the design of multiple disc brakes. There are many variables regarded in this problem as 

follows: 𝑟 (the inner radius), 𝑅 (outer radius of the discs), 𝑅 (outer radius R the discs), 𝑅 (the 

engaging force), and 𝑠 (the number of the friction surface). The objectives of this problem are 
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minimizing the overall mass and the braking time. Some constraints such as the torque, 

pressure, temperature, and length of the brake are considered in this problem. This problem can 

be expressed as follows: 
𝑀𝑖𝑛 𝑓1(𝑥 ) = 4.9 × (𝑅2 − 𝑟2)(𝑠 − 1)  (39) 

𝑀𝑖𝑛 𝑓2(𝑥 ) =
9.82×106(𝑅2−𝑟2)

𝐹𝑠(𝑅3−𝑟3)
  (40) 

𝑔1(𝑥 ) = 20 − (𝑅 − 𝑟) ≤ 0 (41) 

𝑔2(𝑥 ) = 2.5(𝑠 + 1) − 30 ≤ 0 (42) 

𝑔3(𝑥 ) =
𝐹

3.14(𝑅2 − 𝑟2)
− 0.4 ≤ 0 

(43) 

𝑔4(𝑥 ) =
2.22×10−3𝐹(𝑅3−𝑟3)

(𝑅2−𝑟2)2
− 1 ≤ 0  (44) 

𝑔5(𝑥 ) = 900 −
0.0266𝐹𝑠(𝑅3 − 𝑟3)

(𝑅2 − 𝑟2)
≤ 0 

(45) 

55 ≤ 𝑟 ≤ 80, (46) 

75 ≤ 𝑅 ≤ 110, (47) 

1000 ≤ 𝐹 ≤ 3000, (48) 

2 ≤ 𝑠 ≤ 20, (49) 

Eqs. (39) and (40) are represented as objective functions, Eqs.(41)-(45) are related to the 

constraints, and variables are presented in Eqs. (46)-(49). Having shown the performance of 

the proposed algorithm from the viewpoint of statistical analyses, results of the design of a disc 

brake problem are provided in Table 13 with respect to all metrics. 

Table 13: Descriptive statistics results of the design of a disc brake problem 

Metrics MOEAs Min Max Mean Std. Rank 

IGD 

MOVPL 3.27E+03 3.27E+03 3.27E+03 3.27E+03 1 

MOPSO 5.87E+03 9.65E+04 8.45E+04 2.12E+02 3 

MOEA/D 3.27E+03 1.77E+04 7.56E+03 1.13E+01 2 

SP 

MOVPL 1.13E+03 1.13E+03 1.13E+03 1.13E+03 1 

MOPSO 2.71E+03 10.18E+03 6.42E+03 4.67E+03 3 

MOEA/D 1.13E+03 8.88E+03 4.61E+03 3.15E+03 2 

MS 

MOVPL 1.23E+04 6.11E+04 4.29E+04 0.03E+04 3 

MOPSO 4.71E+04 9.33E+04 6.48E+04 0.04E+04 1 

MOEA/D 2.45E+04 7.61E+04 5.54E+04 0.06E+04 2 

∆ 

MOVPL 0.5788 0.9011 0.7933 0.0341 3 

MOPSO 0.4548 0.9123 0.8734 0.0412 2 

MOEA/D 0.4511 0.8712 0.7565 0.0311 1 

 

The results, which are obtained from all algorithms for solving design of a disc brake 

problem, are generally different from those calculated in the first engineering test problem, and 

MOVPL has received the best rank in IGD and SP metrics, conversely, in terms of MS and ∆ , 
the proposed algorithm is inferior to others. The comparison of the best solution of the Pareto 

fronts for all algorithms is depicted in Figure 9. We can see that the results of MOVPL are 

much superior to the results achieved by its competitors.  



29 

 
Figure 7: Pareto optimal front for the design of a disc brake problem 

6.3. Speed reducer design problem 

The latest problem studied in this paper is the speed reducer design problem, which is 

important in the context of mechanical engineering [89-91]. In this problem, the main 

objectives of this problem are the weight (𝑓1) and stress (𝑓1) of a speed reducer that should be 

minimized. The main variables of this problem include gear face width (𝑥1), teeth module (𝑥2), 

number of teeth of pinion (𝑥3), distance between bearings 1 (𝑥4), distance between bearings 2 

(𝑥5), diameter of shaft 1 (𝑥6), and diameter of shaft 2 (𝑥7) as well as eleven constraints. The 

general scheme of this problem is shown in Figure 8. 

4x

Shaft1

Shaft2

Bearings2

B
earin

gs1

6x5x7x

 
Figure 8: the speed reducer design and its features [92]  

The corresponding objectives and constraints of this problem can be written as follows: 

𝑀𝑖𝑛 𝑓1(𝑥) = 0.7854𝑥1𝑥2
2 (

10𝑥3
2

3
+ 14.933𝑥3  −  43.0934)  −  1.508𝑥1(𝑥6

2 + 𝑥7
3) +

7.477(𝑥6
2 + 𝑥7

3) + 0.7854(𝑥4𝑥6
2 + 𝑥5𝑥7

2)  
(50) 

𝑀𝑖𝑛 𝑓2(𝑥) = √(
745𝑥4

𝑥2𝑥3
)

2

+ 1.69 × 107 0.1𝑥6
3⁄   (51) 

𝑒1(𝑥) = 1 27⁄ − 1 (𝑥1𝑥2
2𝑥3)⁄ ≥ 0 (52) 

𝑒2(𝑥) = 1 397.5⁄ − 1 (𝑥1𝑥2
2𝑥3

2)⁄ ≥ 0 (53) 

𝑒3(𝑥) = 1 1.93⁄ − 𝑥4
3 (𝑥2𝑥3𝑥6

4)⁄ ≥ 0 (54) 

𝑒4(𝑥) = 1 1.93⁄ − 𝑥5
3 (𝑥2𝑥3𝑥7

4)⁄ ≥ 0 (55) 

𝑒5(𝑥) = 40 − 𝑥2𝑥 − 3 ≥ 0 (56) 

𝑒6(𝑥) = 12 − 𝑥1 𝑥2⁄ ≥ 0 (57) 

𝑒7(𝑥) = 𝑥1 𝑥2⁄ − 5 ≥ 0 (58) 

𝑒8(𝑥) = 𝑥4 − 1.5𝑥2 − 1.9 ≥ 0 (59) 

𝑒9(𝑥) = 𝑥5 − 1.1𝑥7 − 1.9 ≥ 0 (60) 

𝑒10(𝑥) = 1300 − 𝑓2(𝑥) ≥ 0 (61) 

𝑒11(𝑥) = 1100 − √(
745𝑥5

𝑥2𝑥3
)

2

+ 1.275 × 108 0.1𝑥7
3⁄ ≥ 0  (62) 

2.6 ≤ 𝑥1 ≤ 3.6 (63) 

0.7 ≤ 𝑥2 ≤ 0.8 (64) 
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17 ≤ 𝑥3 ≤ 28 (65) 

 7.3 ≤ 𝑥4 (66) 

𝑥5 ≤ 8.3 (67) 

2.9 ≤ 𝑥6 ≤ 3.9 (68) 

5.0 ≤ 𝑥7 ≤ 5.5 (69) 

 

Accordingly, the objective function is expressed in Eq. (50) and Eq. (51), all the constraints 

of the problem are reflected in constraints Eqs. (52)-(62), and variables are defined in Eqs. 

(63)-(69). The statistics results from the design of the speed reducer design problem are shown 

in Table 14. As shown in this table, the performance of MOVPL is superior in the case of IGD, 

SP, and MS metrics. On the other hand, MOEA/D has better a presentation in case of ∆ metrics. 

Table 14: Statistics results of speed reducer design problem 

Metrics MOEAs Min Max Mean Std. Rank 

IGD 

MOVPL 2.77E+03 8.85E+03 7.22E+03 2.14E+01 1 

MOPSO 4.11E+03 8.23E+04 8.14E+04 4.23E+02 2 

MOEA/D 5.51E+03 2.03E+04 8.52E+03 2.41E+03 3 

SP 

MOVPL 2.42E+03 7.72E+03 4.93E+03 2.11E+03 1 

MOPSO 3.90E+03 8.68E+03 5.52E+03 2.97E+03 2 

MOEA/D 4.36E+03 9.14E+03 6.67E+03 3.04E+03 3 

MS 

MOVPL 5.12E+04 8.61E+04 6.23E+04 0.07E+04 1 

MOPSO 4.31E+04 8.73E+04 5.79E+04 0.04E+04 2 

MOEA/D 3.23E+04 7.82E+04 5.38E+04 0.03E+04 3 

∆ 

MOVPL 0.5431 0.9223 0.7213 0.0332 3 

MOPSO 0.6543 0.9156 0.8312 0.0211 2 

MOEA/D 0.3123 0.8765 0.6712 0.0159 1 

 

The Pareto fronts obtained for a standard multi-objective function, the design of speed 

reducer design problem, with the proposed  MOVPL  and comparative algorithms (MOPSO 

and MOEA/D) are presented in Figure 9, in which indicates the superior performance of the 

proposed algorithm in comparison with its rivals.  

 
Figure 9: Pareto optimal  front  for the Speed reducer design problem 

6.4. Statistical analysis for engineering problems 

More detail analysis is required to determine the validity of the proposed method. In this 

section, we provide an extensive statistical test based on Wilcoxon signed-rank to show the 

validity of the proposed algorithm in the engineering test problem. Therefore, the results 

produced by the Wilcoxon signed-rank test with a significance level α = 0.05 are exhibited in 

Table 15. 
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Table 15: Statistical results of Wilcoxon signed-rank test in engineering test problems 

Engineering test 

problems 

Statistical 

features 

MOVPL vs # 

IGD SP MS ∆ 

MOPSO MOEA/D MOPSO MOEA/D MOPSO MOEA/D MOPSO MOEA/D 

WBD 

p-value 
4.20E-

05 
1.40E-04 

4.42E-

04 
2.46E-04 1.60E-04 3.91E-05 4.20E-04 1.40E-04 

𝑅 1 1 1 1 1 1 1 1 

𝐻 + + + + + + + + 

DBD 

p-value 
3.93E-

06 
6.35E-04 

6.58E-

04 
4.49E-04 2.24E+01 6.19E-05 7.05E+01 5.23E-05 

𝑅 1 1 1 1 0 1 0 1 

𝐻 + + + + = - = - 

SRD 

p-value 
2.05E-

04 
1.92E-04 

6.02E-
05 

5.52E-04 1.60E-04 1.60E-04 2.05E-04 1.92E-01 

𝑅 1 1 1 1 1 1 1 1 

𝐻 + + + + + + - - 

Interestingly, the obtained results in Table 15 support extensively those obtained from Table 

12-Table 14. Statistically, the proposed method has a better performance in terms of IGD and 

SP for all engineering test problems. Even though, MOVPL obtains a better performance on 

welded beam design problem in all metrics, but its rivals mostly have outperformed our 

proposed method in disk break design and space reducer design problems in terms of MS and 

∆ metrics. Although, these facts have been considered as a negative point for the performance 

of the proposed method, but overall statistical results show the superiority of our algorithm.  

7. Conclusions and directions for future research  

This paper has introduced a novel multi-objective evolutionary algorithm, which was 

inspired by the formal and informal interaction among teams, coaches, and players in a 

volleyball. New procedures, strategies, and components have also been proposed in this 

research. We have described the main steps of MOVPL, which consider solution structure, 

various operators, and different mathematical expressions. The solutions of the presented 

algorithm are defined as teams which effort to attain the best position in the league by applying 

some predefined procedures associated with the volleyball game. The coach, which has the 

most prominent role in the match, organizes all players in consonance with the condition of 

their teams and the rivals. One of the main steps of this algorithm, the competition process, has 

simulated the rivalry action occurred between two teams to reach a better position in the league. 

In this step, teams explore the rival teams’ condition to adopt the best strategy in the match. 

Also, they concentrate on learning from the best teams available in the league to move toward 

them. This concept is performed in the learning phase in which solution update its properties 

concerning three best teams. Furthermore, two new operators, which are called season transfer, 

and promotion and relegation process, have been implanted in the algorithm to improve search 

space in the proposed algorithm. The last two components, an archive, and leader selection 

were embedded into our algorithm to keep and retrieve the best non-dominated obtained 

individuals during the optimization process and to select the best teams, respectively.  

To show the performance of the MOVPL algorithm and compared with two well-known 

MOEAs, including MOEA/D and MOPSO, ten standard test functions were used and analyzed 

to various metrics. We have examined all test functions statistically in terms of four metrics, 

and the results show that proposed method has won 72 out of 80 (10 test functions, 2 compared 

algorithms, and 4 metrics) computations in this class of test function, Meanwhile, the proposed 

algorithm has won in four test functions (UF1, UF3, UF6, and UF7) in terms of all metrics. 

According to these metrics, results showed that the results of the MOVPL algorithm are 

superior to its competitors. Finally, three eminent engineering problems were solved; the 

results demonstrated in this part dominate the state of the art methods. The results of these 

engineering test problems showed that proposed method has won 18 out of 24 computations 
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indicating, accordingly, the performance of the proposed algorithm is significantly better than 

other algorithms.  

Future research on MOVPL might extend the theory and application of MOEA in the 

scientific works, and hybridization with other well-known nature-inspired algorithms would be 

reasonably prolific. Moreover, various methods of parameter tuning can be explored, and to 

cope with uncertainty, the robust optimization method on MOVPL may be investigated in the 

future.  
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