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Abstract

We consider translation invariant gapped quantum spin systems satisfying the Lieb-Robinson
bound and containing single-particle states in a ground state representation. Following the Haag-
Ruelle approach from relativistic quantum field theory, we construct states describing collisions of
several particles, and define the corresponding S-matrix. We also obtain some general restrictions
on the shape of the energy-momentum spectrum. For the purpose of our analysis we adapt the
concepts of almost local observables and energy-momentum transfer (or Arveson spectrum) from
relativistic QFT to the lattice setting. The Lieb-Robinson bound, which is the crucial substitute
of strict locality from relativistic QFT, underlies all our constructions. Our results hold, in
particular, in the Ising model in strong transverse magnetic fields.

1 Introduction

Since many important physical experiments involve collision processes, our understanding of physics
relies to a large extent on scattering theory. The multitude of possible experimental situations is
reflected by a host of theoretical descriptions of scattering processes, see for example [64]. One theo-
retical approach, due to Haag and Ruelle [34,68], proved to be particularly convenient in the context
of quantum systems with infinitely many degrees of freedom. Originally developed in axiomatic
relativistic Quantum Field Theories (QFT), Haag-Ruelle (HR) scattering theory was adapted to
various non-relativistic QFT and models of Quantum Statistical Mechanics. However, the most
appealing aspect of HR theory, which is the conceptual clarity of its assumptions, typically gets
lost in a non-relativistic setting: some authors use physically less transparent Euclidean or stochas-
tic assumptions [9, 49], other resort to model-dependent computations [2]. In this paper we show
that there is an exception to this rule: For a class of gapped quantum spin systems satisfying the
Lieb-Robinson bound and admitting single-particle states in their ground-state representations, HR
scattering theory can be developed in a natural, model-independent manner parallel to its original
relativistic version.

To explain the content of this paper it is convenient to adopt a general framework which en-
compasses both local relativistic theories and spin systems: Let Γ be the abelian group of space
translations with Γ = Rd in the relativistic case and Γ = Zd for lattice theories. We denote by Γ̂
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(a) A pseudo-relativistic mass shell.
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(b) A regular mass shell.

Figure 1: Two examples of the energy-momentum spectra within the scope of this paper: (1a) The
lower blue surface is a pseudo-relativistic mass shell, since its variations are much smaller than the
lower mass gap. This mass shell is not regular as it has a flat direction. (1b) The solid line, dipping
into the shaded region, is a regular mass shell, since its second derivative vanishes at most at isolated
points. This mass shell is not pseudo-relativistic, since it has large variations compared to the lower
mass gap. On both figures (E, p) = (0, 0) is an isolated eigenvalue. (Cf. Subsection 4.1 for precise
definitions).

the Pontryagin dual of Γ, see [66], which in the latter case is the torus Sd1 and is sometimes called
the Brillouin zone. We consider a C∗-dynamical system (τ,A), where τ is a representation of the
group of space-time translations R×Γ in the automorphism group of a unital C∗-algebra A. We fix
a τ -invariant ground state ω on A (or a vacuum state in the relativistic terminology) and proceed
to its Gelfand-Naimark-Segal (GNS) representation (π,H,Ω). This allows us to represent the ob-
servables as bounded operators on a Hilbert space H, such that the ground state ω is given by the
vector state Ω, see e.g. [35, Sect. III.2] for the construction. Let U be a unitary representation of
R × Γ implementing τ in π. The Stone-Naimark-Ambrose-Godement (SNAG) theorem [66] gives a
spectral measure from which U can be recovered. We call the support of this measure its spectrum
and denote it by SpU . In more physical terms it is nothing but the energy-momentum spectrum
and its elements will be denoted (E, p). We always have (E, p) = (0, 0) ∈ SpU , since this is the
eigenvalue corresponding to the eigenvector Ω. We will always assume that this eigenvalue is isolated
from the rest of the spectrum.

We say that π contains single-particle states, if there is an isolated mass shell h ⊂ SpU . h should
be the graph of a smooth function p 7→ Σ(p), defined on an open subset of Γ̂, whose Hessian matrix
is almost everywhere non-zero. As Σ is the dispersion relation of the particle, the latter condition
says that the group velocity p 7→ ∇Σ(p) is constant at most on sets of measure zero. If also the
determinant of the Hessian matrix is almost everywhere non-zero, that is p 7→ ∇Σ(p) is invertible
almost everywhere, than we say that the mass shell is regular. If the difference of any two distinct
vectors on the mass shell is outside of the energy-momentum spectrum, then we say that the mass
shell is pseudo-relativistic. We note that in relativistic theories, where the mass shells are given by
the hyperboloids Σ(p) =

√
p2 +m2, both properties are trivially satisfied. In the context of spin

systems, whose mass shells can a priori have arbitrary shape, we will assume that at least one of the
two conditions holds. It is clear from Figure 1 that we can cover a wide range of different spectral
situations. We refer to Subsection 4.1 for precise definitions and further discussion of regular and
pseudo-relativistic mass shells, and to Section 6 for a proof that such mass shells actually appear
in the concrete example of the Ising model in strong transverse magnetic fields in various space
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dimensions.
Single-particle states in H are elements of the spectral subspace of the mass shell h introduced

above. To obtain states in H describing several particles one needs to ‘multiply’ such single-particle
states. This is performed following a prescription familiar from the Fock space: one identifies creation
operators of individual particles and acts with their product on the vacuum. In our context ‘creation
operators’ are elements of A, well localized in space and with definite energy-momentum transfer.
Thus acting on the ground state Ω they create single-particle states with prescribed localization in
phase-space. We recall that the energy-momentum transfer (or the Arveson spectrum) of A ∈ A,
denoted SpAτ , is defined as the smallest subset of R× Γ̂ s.t. the expression

τf (A) := (2π)−
d+1

2

∫
dtdµ(x) τ(t,x)(A)f(t, x), f ∈ L1(R× Γ), (1.1)

vanishes for any f whose Fourier transform is supported outside of this set. (Here dµ is the Haar
measure of Γ). We note that for Γ = Rd the Arveson spectrum of A is simply the support of the
(inverse) Fourier transform of the distribution (t, x) 7→ τ(t,x)(A). The utility of this concept derives
from the energy-momentum transfer relation

π(A1)P (∆)H ⊂ P (∆ + SpA1
τ)H, (1.2)

where P is the spectral measure of U defined on Borel subsets ∆ ⊂ SpU . In particular, setting
∆ = {(0, 0)} ∈ R×Γ̂ and choosingA1 s.t. SpA1

τ is a small neighbourhood of a point (Σ(p1), p1) on the
mass shell, we obtain a candidate for a creation operator of a particle whose energy and momentum
are close to this point. Such operators with their energy-momentum transfer in a prescribed set are
easy to obtain by setting A1 = τf (A) and making use of the fact that Spτf (A)τ ⊂ supp f̂ . However, to
ensure localization of the created particle in space we need more structure: A minimal requirement
seems to be the existence of a norm-dense ∗-subalgebra of almost local observables Aa−loc ⊂ A s.t.
for any A,A1, A2 ∈ Aa−loc

τ(t,x)(A) ∈ Aa−loc, (t, x) ∈ R× Γ, (1.3)

τf (A) ∈ Aa−loc, f ∈ S(R× Γ), (1.4)

[τx1(A1), τx2(A2)] = O(〈x1 − x2〉−∞), (1.5)

where S(R×Γ) are Schwartz class functions and in (1.5) a rapid decay of the norm of the commutator
is meant, cf. Appendix D. Postponing further discussion of Aa−loc to a later part of this introduction,
we note that with the above input the HR construction goes through in the usual way: In view of
(1.4), we can set B∗1 := π(A1), where A1 has its energy-momentum transfer near the point (E1, p1)
of the mass shell and in addition is almost local. Next, we pick a positive-energy wave packet

g1,t(x) = (2π)−
d
2

∫
Γ̂
dp e−iΣ(p)t+ipxĝ1(p), ĝ1 ∈ C∞(Γ̂), (1.6)

describing the free evolution of the particle in question. (Here dp is the Haar measure on Γ̂ and ĝ1

is supported near p1). The HR creation operator, given by

B∗1,t(g1,t) := (2π)−
d
2

∫
dµ(x)B∗1,t(x)g1,t(x), B∗1,t(x) = U(t, x)B∗1U(t, x)∗, (1.7)

creates from Ω a time-independent single-particle state Ψ1. Given a collection Ψ1, . . . ,Ψn of such
single-particle states, corresponding to distinct points (Σ(p1), p1), . . . , (Σ(pn), pn) on the mass shell,
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s.t. also the velocities∇Σ(p1), . . . ,∇Σ(pn) are distinct1, the n-particle scattering state is constructed
as follows

Ψ1

out
× · · ·

out
× Ψn := lim

t→∞
B∗1,t(g1,t) · · ·B∗n,t(gn,t)Ω, (1.8)

where the existence of the limit follows via Cook’s method (see Theorem XI.4 of [64] or the proof
of Theorem 4.8 below) and property (1.5). One obtains in addition that the scattering states
span a subspace in H naturally isomorphic to the symmetric Fock space, and thus they can be
interpreted as configurations of independent bosons. This latter step requires that the mass shell is
regular or pseudo-relativistic, and that multiples of Ω are the only translation invariant vectors in
H. In the language of the physical spins, these states correspond to collective, strongly interacting
excitations above the ground state, which become asymptotically independent from each other for
large times. As we shall see, mass shells of particles with fermionic or anyonic statistics do not
appear in the energy-momentum spectrum of a translation invariant ground state (or a vacuum
state). Nevertheless, variants of HR theory for fermions and anyons have been developed in the
relativistic setting. These would also be valid for lattice field theories such as lattice fermions.
In Section 7 we discuss prospects of adapting these constructions to spin systems on a lattice,
where fermions or anyons arise only as collective quasi-particle excitations. The existence of anyonic
excitations in such systems is believed to be generically associated to topologically ordered ground
states (cf. [30, 44]).

Let us now come back to the requirement that A should contain a norm-dense ∗-algebra Aa−loc

of almost local observables, whose elements satisfy properties (1.3)–(1.5). In relativistic theories
this requirement is met as follows: Recall that in this context A is the C∗-inductive limit of a net
of observables O 7→ A(O) labelled by open bounded regions O of space-time Rd+1. Due to the
covariance property

τ(t,x)(A(O)) = A(O + (t, x)) (1.9)

the ∗-algebra of all local observables Aloc is invariant under the action of τ and thus satisfies (1.3).
Locality of the net, which says that observables localized in spacelike-separated regions commute,
implies (1.5). However, property (1.4) cannot be expected, unless f is compactly supported. To
ensure (1.4), one proceeds to a slightly larger ∗-algebra consisting of A ∈ A s.t.

A−Ar = O(r−∞), for some Ar ∈ A(Or), where Or := { (t, x) | |x|+ |t| < r }. (1.10)

That is, A can be approximated in norm by observables localized in double-cones, centered at zero,
of radius r, up to an error vanishing faster than any inverse power of r. It is easy to see that this
algebra of almost local observables Aa−loc, introduced for the first time in [4], satisfies (1.3)-(1.5).
In particular, invariance under τ follows from the invariance of Aloc and isotony of the net.

In spin systems the existence of a ∗-algebra Aa−loc of almost local observables, satisfying (1.3)-
(1.5), is less obvious. We recall that here the algebra A is the C∗-inductive limit of a net of local
algebras Λ 7→ A(Λ) labelled by bounded subsets of space (more precisely finite subsets of the lattice
Γ = Zd). As these time-zero algebras are covariant only under space translations, the ∗-algebra Aloc

of all local observables is usually not invariant under time evolution2. Thus the algebra of almost
local observables Aa−loc, defined by replacing Or with a ball of radius r in Zd in (1.10), has a priori
no reason to be time invariant. However, and this is essential in our paper, using the Lieb-Robinson
bound one can show that it actually is invariant. This bound can be schematically stated as follows

‖[τt(A), B]‖ ≤ CA,Beλ(vLRt−d(A,B)), A,B ∈ Aloc, (1.11)

1In the relativistic case for the dimension of space d ≥ 3 the velocities of particles do not have to be distinct [35].
2Except for special cases such as for Hamiltonians consisting of commuting interactions of bounded range.
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where d(A,B) is the distance between the localization regions of A and B, vLR > 0 is called the
Lieb-Robinson velocity and λ > 0 is a constant. With the help of this estimate we show in The-
orem 3.10 that Aa−loc satisfies the crucial properties (1.3), (1.4). Property (1.5) follows directly
from the definition of Aa−loc. The Lieb-Robinson bound provides us via these results a crucial tool
to sufficiently localise single-particle excitations. This opens the route to HR scattering theory for
spin systems as described above, where particularly in the construction of multi-particle states, the
localisation of single-particle states is essential.

Apart from its relevance to scattering theory, almost locality combined with Arveson spectrum
is a powerful technique which appears in many contexts in relativistic QFT (see e.g. [18]). To
demonstrate its flexibility we include several results, partially or completely independent of scattering
theory, which concern the shape of SpU : First, we show that velocity of a particle, defined as the
gradient of its dispersion relation p 7→ ∇Σ(p), is always bounded by the Lieb-Robinson velocity
vLR appearing in (1.11). Second, we verify additivity of the spectrum: If p̃1, p̃2 ∈ SpU then also
p̃1 + p̃2 ∈ SpU , where the addition is understood in R × Γ̂. This result is a counterpart of a well
known fact from the relativistic setting [35]. Third, we check that gaps in the spectrum of the
finite-volume Hamiltonians cannot close in the thermodynamic limit. We hope that the concepts of
almost locality and Arveson spectrum will find further interesting applications in the setting of spin
systems.

Having summarized the content of this paper, we proceed now to a more systematic comparison
of our work with the literature: Definition and properties (1.3), (1.4), (1.5) of the algebra of almost
local observables for spin systems are in fact not new. Nearing the completion of this work, Klaus
Fredenhagen pointed out to us the Diplom thesis of Schmitz [70], which contains such results.
Also the bound ∇Σ(p) ≤ vLR is proven in [70]. Yet, since our proofs of these facts are different
than Schmitz’, and also the reference [70] is not easily accessible, we decided to keep the complete
discussion of these results in our paper. We also stress that the overlap between our work and
Schmitz’ does not go beyond the technical facts mentioned above. In particular, there is no discussion
of scattering theory in [70].

Let us now turn to the works which do concern scattering theory for lattice systems: In the
special case of the ferromagnetic Heisenberg model it is possible to develop scattering theory adapting
arguments from many body quantum mechanics [33,40]. For certain perturbations of non-interacting
gapped lattice models collision theory was established by Yarotsky, exploiting the special form of
the finite volume Hamiltonians [76]. Malyshev discusses particle excitations in the Ising model in
external fields (and more generally, in so-called Markov random fields), implementing HR ideas [50].
Barata and Fredenhagen have developed HR scattering theory for Euclidean lattice field theories [9]
on a d+1-dimensional lattice. Clustering estimates play an important role in the last three references,
and in fact they also appear in early proofs of the original HR theorem. In our analysis we avoid
clustering estimates altogether (in the case of pseudo-relativistic mass shells) or derive them from
the Lieb-Robinson bound via [57] (in the case of regular mass shells).

Let us now discuss briefly more recent literature, centered around the Lieb-Robinson bound:
In [36] certain operators were constructed which create from the ground state single-particle states
of a given momentum, up to controllable errors. Although technically quite different, this finite
volume result inspired the present investigation as it leaves little doubt that the Lieb-Robinson
bound is a sufficient input to develop HR theory for spin systems containing mass shells. Our
counterpart of the main result from [36] is Lemma 4.15 below. We further note that [36] gives a
theoretical justification that a matrix product state ansatz describes single-particle states efficiently,
see [73] for more details.

Our paper is built up as follows. In Section 2 we introduce the standard concepts and tools
of the theory of quantum spin systems. In Section 3, which still has a preliminary character, we
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introduce two concepts which may be less well known to experts in quantum spin systems: almost
locality and the Arveson spectrum. (A more general perspective on this latter concept is given in
Appendix A). Section 4 is the heart of the paper: there we develop the Haag-Ruelle scattering theory
for lattice systems. In Section 5 we include some results on shape of the spectrum obtained with
the methods of this paper. Examples of concrete systems satisfying our assumptions are given in
Section 6. Finally, in Section 7, we comment on possible future directions. Our conventions and
some more technical proofs are relegated to the appendices.

Acknowledgements: WD is supported by the DFG with an Emmy Noether grant DY107/2-1,
PN acknowledges support by NWO through Rubicon grant 680-50-1118 and partly through the EU
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relation from [26]. SB and WD wish to thank the organizers of the Warwick EPSRC Symposium on
Statistical Mechanics, Daniel Ueltschi and Robert Seiringer, as part of the work presented here was
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2 Framework and preliminaries

2.1 Quasilocal algebra A and space translations

Let Γ = Zd be the set labelling the sites of the system, which we equip with a metric | · |. We
define by P(Γ) the set of all subsets and by Pfin(Γ) the set of all finite subsets of Γ. Also, for
Λ,Λ1,Λ2 ∈ Pfin(Γ) we set

diam(Λ) := sup{ |x1 − x2| |x1, x2 ∈ Λ }, (2.1)

dist(Λ1,Λ2) := inf{ |x1 − x2| |x1 ∈ Λ1, x2 ∈ Λ2 }, (2.2)

Λr := {x ∈ Γ |dist(x,Λ) ≤ r }, (2.3)

and |Λ| :=
∑

x∈Λ 1 is the volume of Λ. We denote by Z = {0} the set consisting of one point at the
origin, so that Zr is the ball of radius r centered at the origin.

We assume that at each site x ∈ Γ there is an `-dimensional quantum spin whose observables are
elements of M`(C), the set of complex `× ` matrices, where ` is independent of x. For Λ ∈ Pfin(Γ)
we set

A(Λ) :=
⊗
x∈Λ

M`(C). (2.4)

For Λ1,Λ2 ∈ Pfin(Γ) such that Λ1 ⊂ Λ2, we have the natural embedding A(Λ1) ⊂ A(Λ2) given by
identifying A ∈ A(Λ1) with A⊗ 1Λ2\Λ1

∈ A(Λ2). Thus we obtain a net Λ 7→ A(Λ) which is local in
the sense that for Λ1,Λ2 ∈ Pfin(Γ), Λ1 ∩ Λ2 = ∅ we have

[A(Λ1),A(Λ2)] = 0. (2.5)

We define

Aloc :=
⋃

Λ∈Pfin(Γ)

A(Λ), (2.6)

and the quasilocal algebra A as a C∗-completion of Aloc.
We denote by Γ 3 x 7→ τx the natural representation of the group of translations from Γ in

automorphisms of A.
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2.2 Interactions

We define an interaction as a map Φ : Pfin(Γ)→ A, s.t. Φ(Λ) is self-adjoint and Φ(Λ) ∈ A(Λ). The
interaction is said to be translation invariant if

Φ(Λ + x) = τx(Φ(Λ)). (2.7)

We also introduce a family of local Hamiltonians: For any Λ ∈ Pfin(Γ) we set

HΛ :=
∑
X⊂Λ

Φ(X). (2.8)

HΛ induce the local dynamics {τΛ
t }t∈R given by

τΛ
t (A) := eiHΛtAe−iHΛt, A ∈ A. (2.9)

As stated in Corollary 2.2 below, the global dynamics τt := limΛ↗Γ τ
Λ
t can be defined for a large

class of interactions which we now specify.
Let F : [0,∞)→ (0,∞) be a non-increasing function such that

‖F‖ :=
∑
x∈Γ

F (|x|) <∞, (2.10)

C := sup
x,y∈Γ

∑
z∈Γ

F (|z − x|)F (|y − z|)
F (|y − x|)

<∞. (2.11)

For Γ = Zd one can choose F (x) = (1 + x)−d−ε for any ε > 0 and C ≤ 2d+ε+1
∑

x∈Γ(1 + |x|)d+ε,
see [56]. Then, for any λ > 0, Fλ(r) := exp(−λr)F (r) satisfies the same conditions with ‖Fλ‖ ≤ ‖F‖
and Cλ ≤ C. The formula

‖Φ‖λ := sup
x∈Γ

∑
X3x,0

‖Φ(X)‖
Fλ(|x|)

(2.12)

defines a norm on the set of translation invariant interactions. We let Bλ be the set of interactions
such that ‖Φ‖λ <∞.

2.3 Lieb-Robinson bounds and the existence of dynamics

The fast decay of interactions from Bλ implies that the associated dynamics satisfies the Lieb-
Robinson bounds [47,56] stated in Theorem 2.1 below. Beyond its physically natural interpretation
as a finite maximal velocity of propagation of correlations through the system, the Lieb-Robinson
bounds have many useful structural corollaries such as the existence of the dynamics in the infinite
system. This article will further emphasize that they provide an analogue of the speed of light in
the framework of quantum spin systems (cf. Corollary 5.2). Another instance of that analogy can
already be found in the exponential clustering property of [38,57] stated in Theorem 2.4 below.

For interactions Φ ∈ Bλ we have the following Lieb-Robinson bounds [47,56]:

Theorem 2.1. Let Λ1,Λ2,Λ be finite subsets of Γ such that Λ1,Λ2 ⊂ Λ, and let A ∈ A(Λ1),
B ∈ A(Λ2). Moreover, assume that there is λ > 0 such that Φ ∈ Bλ. Then

‖[τΛ
t (A), B]‖ ≤ 2‖A‖‖B‖

Cλ
e2‖Φ‖λCλ|t|

∑
w∈Λ1

∑
z∈Λ2

Fλ(|w − z|) (2.13)

for all t ∈ R and uniformly in Λ. Thus defining the Lieb-Robinson velocity as vλ := 2‖Φ‖λCλ
λ we have∥∥[τΛ

t (A), B
]∥∥ ≤ 2‖A‖‖B‖

Cλ
min(|Λ1|, |Λ2|)‖F‖e−λ(dist(Λ1,Λ2)−vλ|t|). (2.14)
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It is well-known [56,67] that the Lieb-Robinson bound allows for the extension of the dynamics
from the local to the quasi-local algebra by a direct proof of the Cauchy property of the sequence
τΛn
t (A) for any increasing and absorbing sequence of finite subsets Λn ⊂ Γ.

Corollary 2.2. Assume that there is λ > 0 such that Φ ∈ Bλ. Then there exists a strongly continuous
one parameter group of automorphisms of A, {τt}t∈R, such that for all A ∈ Aloc,

lim
n→∞

‖τΛn
t (A)− τt(A)‖ = 0,

independently of the choice of the absorbing and increasing sequence Λn. Moreover, there exists a
*-derivation δ such that τt = etδ.

2.4 Ground states and clustering

We start with a definition of a ground state of a C∗-dynamical system (A, τ):

Definition 2.3. Let ω be a state on (A, τ) s.t. ω◦τt = ω for all t. Let (π,H,Ω) be the corresponding
GNS representation and t 7→ U(t) the unitary representation of time translations implementing
t 7→ τt in π, which satisfies U(t)Ω = Ω for all t. Let H be the generator of U (the Hamiltonian) i.e.
U(t) = eitH .

1. We say that ω is a ground state and π a ground state representation if H is positive.

2. We say that π has a lower mass gap if {0} is an isolated eigenvalue of H.

3. We say that π has a unique ground state vector if {0} is a simple eigenvalue of H (corre-
sponding up to phase to the eigenvector Ω).

4. We say that ω is translation invariant if ω ◦ τx = ω for all x ∈ Γ.

We note here that our definition of a ground state is in fact equivalent to the more algebraic one
given by the inequality

− iω(A∗δ(A)) ≥ 0, A ∈ D(δ). (2.15)

See [12, Prop. 5.3.19].
Finally, we recall that the approximate locality provided by the Lieb-Robinson bound yields

exponential clustering in the ground state for Hamiltonians with a lower mass gap. The statement
below follows from Theorem 4.1 of [58]. We will use it in the proof of Theorem 4.9.

Theorem 2.4. Let ω be a ground state whose GNS representation has a lower mass gap and a
unique ground state vector. Then, under the assumptions of Theorem 2.1, for any local observables
A ∈ A(Λ1), B ∈ A(Λ2), s.t. dist(Λ1,Λ2) ≥ 1 we have

|ω(AB)− ω(A)ω(B)| ≤ C‖A‖‖B‖min(|Λ1|, |Λ2|)e−µdist(Λ1,Λ2), (2.16)

where C, µ > 0 are independent of A,B,Λ1,Λ2 within the above restrictions.

In the remainder of this paper we will always consider a lattice system with a translation invariant
interaction Φ ∈ Bλ, λ > 0, so that Lieb-Robinson bounds apply, and a translation invariant ground
state with a GNS representation (π,H,Ω).
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3 Arveson spectrum and almost local observables

In this section, which is still preparatory, we introduce the concepts of Arveson spectrum and almost
local observables. In Section 4 we will show their utility in the context of scattering theory. The
Arveson spectrum is a topic in the spectral analysis of groups of automorphisms. A more extensive
account can be found in [60].

3.1 Space-time translations

We claim that for any x ∈ Γ, t ∈ R and A ∈ A,

τt ◦ τx(A) = τx ◦ τt(A). (3.1)

Since τ is an action of Γ this is equivalent to τ−x ◦ τt ◦ τx(A) = τt(A) for all A ∈ A. By Corollary 2.2
and because τx is an automorphism we have

τ−x ◦ τt ◦ τx(A) = lim
n→∞

τ−x ◦ τΛn
t ◦ τx(A) = lim

n→∞
τΛn−x
t (A), (3.2)

for A ∈ Aloc, where in the last step the translation invariance of the interaction (2.7) is used, and
the limits denote convergence in norm. Since the right hand side converges irrespective of the choice
of exhausting sequence, and Aloc is norm-dense in A, the claim follows. Hence, we can consistently
define

R× Γ 3 (t, x) 7→ τ(t,x) := τt ◦ τx (3.3)

as a strongly-continuous representation of the group of space-time translations in automorphisms of
A.

Remark 3.1. For the sake of clarity, we will sometimes write τ (1), τ (d), τ to distinguish the respec-
tive groups of automorphisms:

R 3 t 7→ τt, Γ 3 x 7→ τx, R× Γ 3 (t, x) 7→ τ(t,x). (3.4)

In the following lemma we construct the unitary representation of space-time translations U in
the GNS representation of a translation invariant ground state ω.

Lemma 3.2. Suppose that the interaction is translation invariant, see (2.7), and ω is a translation
invariant ground state. Let Γ 3 x 7→ U(x) be a unitary representation of translations implementing
τx in π, which satisfies U(x)Ω = Ω, and let U(t) be as in Definition 2.3. Then we can consistently
define a unitary representation of space-time translations

R× Γ 3 (t, x) 7→ U(t, x) = U(t)U(x) = U(x)U(t). (3.5)

This representation implements (t, x) 7→ τ(t,x) in π and satisfies U(t, x)Ω = Ω for all (t, x) ∈ R× Γ.

Proof. We note that for A,B ∈ Aloc, for all x ∈ Γ and t ∈ R,

〈π(A)Ω, U(x)U(t)π(B)Ω〉 = 〈π(A)Ω, π(τx ◦ τt(B))Ω〉 = 〈π(A)Ω, π(τt ◦ τx(B))Ω〉
= 〈π(A)Ω, U(t)U(x)π(B)Ω〉, (3.6)

since we treat translation invariant interactions and hence (3.1) holds. Thus we have shown that
U(x)U(t) = U(t)U(x) on H. �
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Recall that the dual group of Γ = Zd is the d-dimensional torus Γ̂ = Sd1 (the Brillouin zone). By the

SNAG theorem [66], there exists a spectral measure dP on R× Γ̂ with values in H s.t.

U(t, x) =

∫
R×Γ̂

eiEt−ipxdP (E, p). (3.7)

The following is a special case of Definition A.1 in the case of unitaries, see Subsection A.2.

Definition 3.3. We define SpU as the support of dP .

By definition of the ground state we have that SpU ⊂ R+ × Γ̂.

3.2 Arveson spectrum

In this subsection we give a very brief overview of basic concepts of spectral analysis of automor-
phisms groups. For a more systematic discussion we refer to Appendix A.

Let A ∈ A and f ∈ L1(R × Γ), g ∈ L1(Γ), h ∈ L1(R). Then, using the space-time translation
automorphisms (t, x) 7→ τ(t,x) we set

τf (A) := (2π)−
d+1

2

∑
x∈Γ

∫
dt τ(t,x)(A)f(t, x), (3.8)

τ (d)
g (A) := (2π)−

d
2

∑
x∈Γ

τx(A)g(x), (3.9)

τ
(1)
h (A) := (2π)−

1
2

∫
dt τt(A)h(t). (3.10)

These are again elements of A by the strong continuity of τ , which is a consequence of the Lieb-
Robinson bound. Now we define:

Definition 3.4. The Arveson spectrum of A ∈ A w.r.t. τ , denoted SpAτ , is the smallest closed
subset of R× Γ̂ with the property that τf (A) = 0 for any f ∈ L1(R× Γ) s.t. its Fourier transform f̂
is supported outside of this set. The Arveson spectra of A w.r.t. τ (1) and τ (d), denoted SpAτ

(1) and
SpAτ

(d), are defined analogously.

Remark 3.5. SpAτ can also be called the energy-momentum transfer of A, cf. relation (3.15) below.

Items (3.11)–(3.14) of the following proposition are easy and well known consequences of Defini-
tion 3.4. Equation (3.15) is a special case of Theorem 3.5 of [5]. For the reader’s convenience, we
give an elementary argument in Appendix B, which is based on the proof of Theorem 3.26 of [26].

Proposition 3.6. We have for any A ∈ A, (t, x) ∈ R× Γ, f ∈ L1(R× Γ), g ∈ L1(Γ):

SpA∗τ = −SpAτ, (3.11)

Spτ(t,x)(A)τ = SpAτ, (3.12)

Spτf (A)τ ⊂ SpAτ ∩ supp f̂ , (3.13)

Sp
τ

(d)
g (A)

τ ⊂ SpAτ ∩ (R× supp ĝ). (3.14)

Moreover, with P as defined in (3.7), we have the energy-momentum transfer relation

π(A)P (∆) = P (∆ + SpAτ)π(A)P (∆) (3.15)

for any Borel subset ∆ ⊂ R× Γ̂.
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By (3.13), the smearing operation (3.8) allows one to construct observables A with energy-
momentum transfers contained in arbitrarily small sets. Such observables will be needed in Section 4
to create single-particle states from the ground state. Since particles are localized excitations, these
observables should have good localization properties. However, in view of Proposition 3.7 below,
if A ∈ Aloc is s.t. SpAτ is a small neighbourhood of some point (E, p) ∈ R × Γ̂ then A ∈ CI
and (E, p) = (0, 0). Therefore, in the next subsection we introduce a slightly larger class of almost
local observables which are still essentially localized in bounded regions of space-time but contains
observables whose Arveson spectra are in arbitrarily small sets. The class of almost local observables
is invariant under time translations and under the smearing operation (3.8).

Proposition 3.7. Let A ∈ Aloc, A /∈ CI. Then SpAτ
(d) = Γ̂.

Proof. The proof follows a remark in the Introduction of [17]. Since A is a simple algebra and A
is not a multiple of the identity, there is a B ∈ Aloc such that [τx(A), B] 6= 0 for some x ∈ Γ. Define
T (x) := [τx(A), B] which is supported, as an operator valued function of x, in a bounded region of

Γ by locality. Its Fourier transform, T̂ (p) := (2π)−
d
2
∑

x∈Γ e−ip·x[τx(A), B], which is a function on

Γ̂ = Sd1 , is such that supp T̂ = Γ̂. This can be seen by interpreting the Fourier transform T̂ as a
periodic function on Rd and verifying that it is real-analytic and non-zero. Now suppose that there
is some open U ⊂ Γ̂ s.t. U ∩ SpAτ

(d) = ∅. Then, by definition, for any g ∈ L1(Γ) s.t. supp ĝ ⊂ U we

have τ
(d)
g (A) = 0. Since [τ

(d)
g (A), B] = (2π)−

d
2

∫
T̂ (−p)ĝ(p)dp, this contradicts supp T̂ = Γ̂. �

3.3 Almost local observables

In this subsection we introduce a convenient class of almost local observables. We recall that in the
context of relativistic QFT almost local observables were first defined in [4]. This class is larger
than Aloc but its elements have much better localization properties than arbitrary elements of A
(see Lemma 3.9 below). The relevance of almost local observables to our investigation comes from
Theorems 3.10 and 3.11 below.

As mentioned in the Introduction, the class of almost local observables has been studied before
in the context of lattice systems in the Diplom thesis of Schmitz [70]. Counterparts of Lemma 3.9
and Theorem 3.10 below can be found in this work. Since our proofs are different, and also the
reference [70] is not readily accesible, we present these results here in detail.

Definition 3.8. We say that A ∈ A is almost local if there exists a sequence R+ 3 r 7→ Ar ∈ A(Zr)
s.t.

A−Ar = O(r−∞). (3.16)

The ∗-algebra of almost local observables is denoted by Aa−loc.

In contrast to local observables, the commutator of two elements of Aa−loc need not identically
vanish if one of them is translated sufficiently far from the other. Instead we have a rapid decay of
commutators:

Lemma 3.9. Let Ai ∈ Aa−loc, i = 1, 2. Then, for y ∈ Γ,

[A1, τy(A2)] = O(〈y〉−∞), (3.17)

where the notation 〈y〉−∞ is defined in Appendix D.
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Proof. Making use of almost locality of Ai, we find Ai,r ∈ A(Zr) s.t. Ai − Ai,r = O(r−∞). Thus
we get

[A1, τy(A2)] = [A1,r, τy(A2,r)] +O(r−∞). (3.18)

Setting r = ε〈y〉, we obtain that for sufficiently small ε > 0 and 〈y〉 sufficiently large

Zr ∩ (Zr + y) = ∅, (3.19)

which concludes the proof. �

The following theorem gives important invariance properties of Aa−loc. We note that they are in
general not true for Aloc. For precise definitions of the Schwartz classes of functions on a lattice,
S(Γ) and S(R× Γ), we refer to Appendix D.

Theorem 3.10. Let A ∈ Aa−loc. Then

(a) τ(t,x)(A) ∈ Aa−loc for all (t, x) ∈ R× Γ, and

(b) τf (A), τ
(d)
g (A), τ

(1)
h (A) ∈ Aa−loc for all f ∈ S(R× Γ), g ∈ S(Γ) and h ∈ S(R).

In contrast to relativistic QFT, for lattice systems this result is not automatic. We give a proof in
Appendix C.

To conclude this section we give a lattice variant of an important result of Buchholz [17], which
will be helpful in Section 4 (cf. Lemma 4.5 (c)). This result illustrates how the Arveson spectrum
and almost locality can be used in combination.

Theorem 3.11. Let ∆ be a compact subset of SpU , A ∈ A and SpAτ be a compact subset of
(−∞, 0)× Γ̂. Then, for any Λ ∈ Pfin(Γ),

‖P (∆)
∑
x∈Λ

π(τx(A∗A))P (∆)‖ ≤ C
∑

x∈(Λ−Λ)

‖[A∗, τx(A)]‖, (3.20)

where C is independent of Λ and Λ − Λ = {x1 − x2 |x1, x2 ∈ Λ } ⊂ Γ. If in addition A is almost
local, we can conclude that

‖P (∆)
∑
x∈Γ

π(τx(A∗A))P (∆)‖ <∞. (3.21)

Proof. First, we note that by positivity of the spectrum of H, our assumption on SpAτ and the
compactness of ∆, relation (3.15) gives that AnP (∆) = 0 for n ∈ N sufficiently large. Now to obtain
(3.20) we apply Lemma 2.2 of [17], noting that its proof remains valid if integrals over compact
subsets of Rd are replaced with sums over finite subsets of Γ.

If A is almost local, by Lemma 3.9 the sum on the r.h.s. of (3.20) can be extended from Λ− Λ
to Γ. As a consequence also the sum on the l.h.s. can be extended from Λ to Γ and it still defines
a bounded operator (as a strong limit of an increasing net of bounded operators which is uniformly
bounded). �

We remark that relation (3.20) actually holds in any representation in which space-time transla-
tions are unitarily implemented and the Hamiltonian is positive (not necessarily a ground state
representation).
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4 Scattering theory

A procedure to construct wave operators and the S-matrix, which we adapt to lattice systems in
this section, is known in local relativistic QFT as the Haag-Ruelle theory [34,68]. Our presentation
here is close to [27,29] which in turn profited from [3,18,39].

Let us start with stating our standing assumptions for this section:

1. We consider a lattice system given by a quasi-local algebra A and a translation invariant
interaction Φ ∈ Bλ, λ > 0. Thus the space-time translations act on A by the group of
automorphisms R× Γ 3 (t, x) 7→ τ(t,x) of equation (3.3).

2. We consider a translation invariant ground state ω of A and its GNS representation (π,H,Ω).
The space-time translation automorphisms τ are implemented in π by the group of unitaries U
constructed in Lemma 3.2.

3. SpU contains an isolated simple eigenvalue {0} (with eigenvector Ω) and an isolated mass
shell h (see Definition 4.1 below).

4. The mass shell is either pseudo-relativistic or regular (see Definition 4.1 below).

There is no general criterion that ensures the validity of the assumptions in a given quantum
lattice system. In fact, proving the very existence of an isolated mass shell is in general a difficult
problem. However, there are models where our standing assumptions can be checked in full rigour,
see Section 6. In other models isolated mass shells have been shown to exist numerically [36].

4.1 Single-particle subspace

A class of localized excitations of the ground state (particles) is carried by mass shells in SpU . We
define a mass shell as follows:

Definition 4.1. Let ω be a translation invariant ground state of a system (A, τ) with translation
invariant interaction. We say that h ⊂ R× Γ̂ is a mass shell if

(a) h ⊂ SpU , P (h) 6= 0, where P is the spectral projection of (3.7).

(b) There is an open subset ∆h ⊂ Γ̂ and a real-valued function Σ ∈ C∞(∆h) such that

h = { (Σ(p), p) | p ∈ ∆h}.

We shall call Σ the dispersion relation and denote by D2Σ(p) := [∂i∂jΣ(p)]i,j=1,...d its Hessian.

(c) The set T := { p ∈ ∆h |D2Σ(p) = 0 } has Lebesgue measure zero.

Moreover, we say that:

1. A mass shell is isolated, if for any p ∈ ∆h there is ε > 0 such that3(
[Σ(p)− ε,Σ(p) + ε]× {p}

)
∩ SpU = {(Σ(p), p)}. (4.1)

2. A mass shell is regular, if the set X := { p ∈ ∆h | detD2Σ(p) = 0 } has Lebesgue measure zero.

3To cover mass shells which dip into the continuous spectrum, as in Figure 1b, we allow for a different ε > 0 for
each p ∈ ∆h.
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3. A mass shell is pseudo-relativistic, if (h− h) ∩ SpU = {0}.

Finally, we define ∆′h := ∆h\X .

Given a mass shell, we define the corresponding single-particle subspace in a natural way:

Definition 4.2. Let h be a mass shell in the sense of Definition 4.1. The corresponding single-
particle subspace is given by Hh := P (h)H.

Let us add some comments on Definition 4.1: Requirement (c) prevents the group velocity ∇Σ
from being constant on a set of momenta of non-zero Lebesgue measure. This condition ensures
that configurations of particles with distinct velocities form a dense subspace. We will make use
of this fact in Subsection 4.4, see Lemma 4.19. We note that for ∆h = Γ̂, and Σ a real-analytic
function, condition (c) holds if and only if Σ is non-constant. In fact, if (c) is violated, then, by
analyticity, the second derivative of Σ vanishes identically on Γ̂. Thus interpreting Σ as a function
on Rd, it is periodic in all variables and linear. This is only possible if Σ is constant. We will use
this observation in the proof of Proposition 6.5.

For the construction of scattering states in Theorem 4.8 we only need to assume that the mass
shell is isolated. However, to show the Fock space structure of scattering states in Theorem 4.9 we
need to assume in addition that it is either regular or pseudo-relativistic. Regularity means that
the momentum-velocity relation p 7→ ∇Σ(p) is invertible almost everywhere, in particular Σ has no
flat directions. In d = 1 obviously every mass shell is regular, but for d > 1 it is not easy to verify
this condition in models. Therefore we introduced the alternative class of pseudo-relativistic mass
shells described in 3. of Definition 4.1. Since 0 is an isolated eigenvalue, Property 3. can always be
ensured at the cost of shrinking the set ∆h and is compatible with flat directions of Σ. We note that
mass shells in relativistic theories with lower mass gaps always satisfy this property, which justifies
the name ‘pseudo-relativistic’.

To conclude this subsection, we discuss briefly positive-energy wave packets describing the free
evolution of a single particle with a dispersion relation ∆h 3 p 7→ Σ(p) introduced in Definition 4.1.
Such a wave packet is given by

gt(x) := (2π)−
d
2

∫
∆h

dp e−iΣ(p)t+ipxĝ(p), (4.2)

where ĝ ∈ C∞(Γ̂) with supp ĝ ⊂ ∆h. Its velocity support is defined as

V (g) := {∇Σ(p) | p ∈ supp ĝ }. (4.3)

Some parts of the following proposition have appeared already in [76]. It is a generalization of the
(non)-stationary phase method to wave packets on a lattice.

Proposition 4.3. Let χ+ ∈ C∞0 (Rd) be equal to one on V (g) and vanish outside of a slightly larger
set and let χ− = 1− χ+. We write χ±,t(x) := χ±(x/t). Then we have

‖χ+,tgt‖1 = O(td), ‖χ−,tgt‖1 = O(t−∞), ‖gt‖1 = O(td). (4.4)

Assuming in addition that supp ĝ ⊂ ∆′h (i.e. detD2Σ 6= 0 on the support of ĝ) we have

sup
x∈Γ
|gt(x)| = O(t−d/2), ‖gt‖1 = O(td/2). (4.5)
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Proof. To prove (4.4) we use decomposition (A.20) to express gt as a finite sum of functions to
which the non-stationary phase method (the Corollary of Theorem XI.14 of [64]) applies. Thus

|(χ−,tgt)(x)| = O(〈|x|+ |t|〉−∞), (4.6)

either because of the corollary or because χ−,t vanishes in the cases the corollary does not apply.
It follows that ‖χ−,tgt‖1 = O(t−∞). Now since χ+ is compactly supported, we obtain ‖χ+,tgt‖1 =
O(td).

To prove (4.5) we use again decomposition (A.20) in order to apply the stationary phase method
(Corollary of Theorem XI.15 of [64]). This gives supx∈Γ |gt(x)| = O(t−d/2). By decomposing gt(x) =
χ+,t(x)gt(x) + χ−,t(x)gt(x), using ‖χ−,tgt‖1 = O(t−∞), supx∈Γ |gt(x)| = O(t−d/2) and the fact that
χ+ is compactly supported we get ‖gt‖1 = O(td/2). �

4.2 Haag-Ruelle creation operators

In this subsection we will define and study properties of certain ‘creation operators’ from π(Aa−loc)
which create elements of the single-particle subspace Hh = P (h)H from the ground state vector Ω.

Definition 4.4. Let A∗ ∈ Aa−loc be s.t. SpA∗τ ⊂ (0,∞)× Γ̂ is compact and SpA∗τ ∩ SpU ⊂ h. Let
gt be a wave packet given by (4.2). We say that:

1. B∗ := π(A∗) is a creation operator. SpA∗τ = Spπ−1(B∗)τ will be called the energy-momentum
transfer of B∗.

2. B∗t (gt) := π(τt ◦ τ (d)
gt (A∗)) is the Haag-Ruelle (HR) creation operator.

Recall that A is simple so that π is faithful, and thus 1. is well-defined. Furthermore, setting
B∗t (x) := U(t, x)B∗U(t, x)∗, we can equivalently write

B∗t (gt) = (2π)−
d
2

∑
x∈Γ

B∗t (x)gt(x), (4.7)

consistently with the notation π(A∗)(g) := π(τ
(d)
g (A∗)) from Appendix D.

We also note that the map t 7→ B∗t is smooth in the norm topology for any creation operator
and the respective derivatives are again creation operators. Indeed, since SpA∗τ is compact, we
have that A∗ = τf (A∗) for any f ∈ S(R × Γ) such that f̂ is equal to 1 on SpA∗τ . It follows that
τt(A

∗) = τft(A
∗), where ft(s, x) = f(s− t, x). Hence,

∂nt τt(A
∗) = (−1)nτ∂ns ft(A

∗), (4.8)

and t 7→ τt(A
∗) is C∞. The claim follows, since π is continuous.

By Proposition 3.6, Sp
τt◦τ (d)

gt (A∗)
τ ⊂ SpA∗τ thus by the energy-momentum transfer relation (3.15)

B∗t (gt)Ω ∈ Hh, (B∗t (gt))
∗Ω = 0. (4.9)

On the other hand it follows from Theorem 3.10 that τt ◦ τ (d)
gt (A∗) ∈ Aa−loc, thus B∗t (gt) creates a

well-localized excitation (particle) from the vacuum. The expression τt ◦ τ (d)
gt amounts to comparing

the interacting forward evolution τt with the free backward evolution τ
(d)
gt . The goal of scattering

theory is to show that they match at asymptotic times. In part (a) of the next lemma we show that
at the single-particle level these two evolutions match already at finite times.
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Lemma 4.5. Let B∗t (gt) be a HR creation operator and χ± be as in Proposition 4.3. We have

(a) B∗t (gt)Ω = B∗(g)Ω = P (h)B∗(g)Ω,

(b) ∂t(B
∗
t (gt)) = (∂tB

∗
t )(gt) +B∗t (∂tgt),

(c) ‖B∗t (gt)P (∆)‖ = O(1) for any compact ∆ ⊂ SpU ,

(d) ‖B∗t (gt)‖, ‖B∗t (χ+,tgt)‖ = O(td), ‖B∗t (χ−,tgt)‖ = O(t−∞),

where in (b) ∂tB
∗
t (resp. ∂tgt) is again a creation operator (resp. a wave packet).

Proof. Let us show (a): Making use of (3.7) and (4.9) we get

B∗t (gt)Ω = (2π)−
d
2

∑
x∈Γ

gt(x)U(t, x)B∗Ω

= (2π)−
d
2

∑
x∈Γ

gt(x)

∫
h

eiEt−ipxdP (E, p)P (h)B∗Ω

=

∫
h

ei(E−Σ(p))tĝ(p)dP (E, p)P (h)B∗Ω = B∗(g)Ω. (4.10)

Here in the third step we applied the Fourier inversion formula (cf. Appendix D). In the last step
we used that E = Σ(p) in the region of integration and thus the expression is t-independent. Then
we reversed the steps to conclude the proof of (a).

Part (b) is an obvious computation, which is legitimate since t 7→ B∗t is smooth in norm as we
argued above.

Part (c) is a consequence of Theorem 3.11: Let Ψ,Φ ∈ H be unit vectors, with Φ ∈ RanP (∆).
Then by the Cauchy-Schwarz inequality

|〈Ψ, B∗t (gt)Φ〉| ≤ (2π)−
d
2

(∑
x∈Γ

|〈Ψ, B∗t (x)Φ〉|2
) 1

2
(∑
x∈Γ

|gt(x)|2
) 1

2

. (4.11)

By Parseval’s theorem, the second factor on the r.h.s. above is a time-independent constant. As for
the first factor, we have∑

x∈Γ

|〈Ψ, B∗t (x)Φ〉|2 ≤
∑
x∈Γ

〈Ψ, P (∆′)B∗t (x)Bt(x)P (∆′)Ψ〉 ≤ ‖P (∆′)
∑
x∈Γ

B∗(x)B(x)P (∆′)‖, (4.12)

where in the first step we made use of the fact that B∗ = π(A∗), where SpA∗τ is compact, and
of the energy-momentum transfer relation (3.15), to introduce the projection on a compact set
∆′ ⊃ (∆ + SpA∗τ) ∩ SpU . Since A∗ is almost local, and

SpAτ = −SpA∗τ ⊂ (−∞, 0)× Γ̂, (4.13)

the expression on the r.h.s. of (4.12) is finite by Theorem 3.11.
Part (d) of the lemma follows from Proposition 4.3 and the obvious estimate ‖B∗(g′)‖ ≤

‖B∗‖‖g′‖1, g′ ∈ L1(Γ). �

The next lemma concerns the decay of commutators of HR creation operators associated with wave
packets with disjoint velocity supports.

Lemma 4.6. Let B∗1,t(g1,t), B
∗
2,t(g2,t), B

∗
3,t(g3,t) be HR creation operators s.t. V (g1) ∩ V (g2) = ∅

and V (g3) arbitrary. Then
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(a) [B∗1,t(g1,t), B
∗
2,t(g2,t)] = O(t−∞),

(b) [B∗1,t(g1,t), [B
∗
2,t(g2,t), B

∗
3,t(g3,t)]] = O(t−∞).

The statements remains valid if some of the HR creation operators are replaced with their adjoints.

Proof. To prove (a) we decompose gi,t = χi,+gi,t + χi,−gi,t, i = 1, 2, where χi,± appeared in
Proposition 4.3. Then, by Lemma 4.5, we get

[B∗1,t(g1,t), B
∗
2,t(g2,t)] = [B∗1,t(χ1,+,tg1,t), B

∗
2,t(χ2,+,tg2,t)] +O(t−∞). (4.14)

Now for each n there is a constant cn > 0 such that the following estimate holds,

‖[B∗1,t(χ1,+,tg1,t), B
∗
2,t(χ2,+,tg2,t)]‖ =

∥∥∥∥∥∥
∑

x1,x2∈Γ

χ1,+,tg1,t(x1)χ2,+,tg2,t(x2)[B∗1,t(x1), B∗2,t(x2)]

∥∥∥∥∥∥
≤

∑
x1,x2∈Γ

|χ1,+(x1/t)||χ2,+(x2/t)|
cn

〈x1 − x2〉n
, (4.15)

where in the second line the existence of cn follows from almost locality, Lemma 3.9, and the fact
that |gi(t, x)| = O(1) uniformly in x. Since χ1,+, χ2,+ are approximate characteristic functions of
V (g1), V (g2), they may be chosen with compact, disjoint supports. Therefore, by changing variables
to y1 := x1/t, y2 := x2/t we obtain that (4.15) is O(t2d−n) and hence O(t−∞) since n ∈ N is arbitrary.

To prove (b) we decompose ĝ3(p) = ĝ3,1(p) + ĝ3,2(p), using a smooth partition of unity, s.t.
V (g3,1) ∩ V (g1) = ∅ and V (g3,2) ∩ V (g2) = ∅. Now the statement follows from part (a) and the
Jacobi identity. �

The next lemma is a counterpart of the relation a(f)a∗(f)Ω = Ω〈Ω, a(f)a∗(f)Ω〉 which holds for the
usual creation and annihilation operators on the Fock space. We will need it to establish the Fock
space structure of scattering states. This is the only result of this subsection which requires that
the mass shell is pseudo-relativistic or regular.

Lemma 4.7. Let B∗1,t(g1,t), B
∗
2,t(g2,t) be HR creation operators.

(a) If h is pseudo-relativistic, and the energy-momentum transfers of B∗1 , B∗2 are contained in a
sufficiently small neighbourhood of h then

(B∗1,t(g1,t))
∗B∗2,t(g2,t)Ω = Ω〈Ω, (B∗1,t(g1,t))

∗B∗2,t(g2,t)Ω〉. (4.16)

(b) If h is regular and supp ĝ1, supp ĝ2 ⊂ ∆′h, then

(B∗1,t(g1,t))
∗B∗2,t(g2,t)Ω = Ω〈Ω, (B∗1,t(g1,t))

∗B∗2,t(g2,t)Ω〉+O(t−d/2). (4.17)

Proof. Part (a) follows immediately from (h− h)∩ SpU = {0} and the energy-momentum transfer
relation (3.15).

To prove (b) we will use the clustering property stated in Theorem 2.4 and a similar strategy
as in [16, p.169-171]: Let Ai ∈ Aa−loc, i = 1, 2, 3, 4, Ai(xi) := τxi(Ai) and Ai,r ∈ A(Zr) be s.t.
‖Ai −Ai,r‖ = O(r−∞). Now we write P ({0})⊥ = 1− |Ω〉〈Ω| and consider the function

F (x1, x2, x3, x4) := 〈Ω, π([A1(x1), A2(x2)])P ({0})⊥π([A3(x3), A4(x4)])Ω〉. (4.18)
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We will show that this function is rapidly decreasing in relative variables, i.e.

F (x1, x2, x3, x4) = O(〈x1 − x2〉−∞)O(〈x3 − x4〉−∞)O(〈x2 − x3〉−∞). (4.19)

By almost locality of Ai and Lemma 3.9, we obtain rapid decay in x1 − x2 and x3 − x4. Thus it
suffices to show

F (x1, x2, x3, x4) = O(〈x2 − x3〉−∞). (4.20)

To this end, we first write

F (x1, x2, x3, x4) := 〈Ω, π([A1,r(x1), A2,r(x2)])P ({0})⊥π([A3,r(x3), A4,r(x4)])Ω〉+O(r−∞). (4.21)

Denoting the first term on the r.h.s. of (4.21) by Fr(x1, x2, x3, x4), we obtain from Theorem 2.4:

|Fr(x1, x2, x3, x4)| ≤ Cχ(Xr
1 ∩Xr

2 6= ∅)χ(Xr
3 ∩Xr

4 6= ∅) max
i=1,...,4

|Xr
i |e−µdist(Xr

1∪Xr
2 ,X

r
3∪Xr

4 ), (4.22)

where we set Xr
i := Zr +xi = {xi}r and χ(K) is equal to one if the condition K is satisfied and zero

otherwise. Xr
1 ∩Xr

2 6= ∅ and Xr
3 ∩Xr

4 6= ∅ imply that

|x1 − x2| ≤ 2r, |x3 − x4| ≤ 2r. (4.23)

Moreover,

dist(Xr
1 ∪Xr

2 , X
r
3 ∪Xr

4) = inf{ |wa − wb| |wa ∈ Xr
1 ∪Xr

2 , wb ∈ Xr
3 ∪Xr

4 }
= inf

m∈1,2
n∈3,4

inf{ |wa − wb| |wa ∈ Xr
m, wb ∈ Xr

n }

≥ inf
m∈1,2
n∈3,4

|xm − xn| − 2r

≥ |x2 − x3| − 6r, (4.24)

where in the last step we made use of (4.23). Thus noting that |Xr
i | = |Zr| ≤ (2r)d we can write

|Fr(x1, x2, x3, x4)| ≤ C(2r)de6µre−µ|x2−x3|. (4.25)

Setting r = ε〈x2−x3〉, ε > 0 sufficiently small, and making use (4.21) we obtain (4.20) and therefore
(4.19).

Now we are ready to prove (4.17). Since (B∗1,t(g1,t))
∗Ω = 0, we have

‖P ({0})⊥(B∗1,t(g1,t))
∗B∗2,t(g2,t)Ω‖2 ≤

∑
x1,...,x4∈Γ

|F (x1, x2, x3, x4)||g1,t(x1)g2,t(x2)g1,t(x3)g2,t(x4)|.

(4.26)

By introducing relative variables xi,j = xi − xj , and using (4.19), we get

‖P ({0})⊥(B∗1,t(g1,t))
∗B∗2,t(g2,t)Ω‖2 ≤t−d

∑
x1,2,x2,3,x3,4∈Γ

O(〈x1,2〉−∞)O(〈x2,3〉−∞)O(〈x3,4〉−∞). (4.27)

Here we exploited regularity of the mass shell which gives ‖gi,t‖1 = O(td/2) and |gi,t(x)| = O(t−d/2)
uniformly in x ∈ Γ. (We applied the former estimate to g1,t(x1), and the latter to the remaining
three wave packets). This concludes the proof. �
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4.3 Scattering states and their Fock space structure

In this subsection we prove the main results of this paper which are the existence of Haag-Ruelle
scattering states for lattice systems (Theorem 4.8) and their Fock space structure (Theorem 4.9).
Using these two results we will define the wave operators and the scattering matrix in the next
subsection. The method of proof of the next theorem follows [3].

Theorem 4.8. Let B∗1 , . . . , B
∗
n be creation operators and g1, . . . , gn be positive energy wave packets

with disjoint velocity supports. Then there exists the n-particle scattering state given by

Ψout = lim
t→∞

B∗1,t(g1,t) . . . B
∗
n,t(gn,t)Ω. (4.28)

Moreover, let Sn be the set of permutations of an n-element set. Then, for any σ ∈ Sn,

Ψout = lim
t→∞

B∗σ(1),t(gσ(1),t) . . . B
∗
σ(n),t(gσ(n),t)Ω. (4.29)

Finally, let B̃∗i,t(g̃i), i = 1, . . . , n be HR creation operators satisfying the same assumptions and

let Ψ̃out be the corresponding scattering state. If B̃∗i,t(g̃i)Ω = B∗i,t(gi,t)Ω, for all i = 1, . . . , n, and

V (g̃i) ∩ V (gj) = ∅ for all i 6= j, then Ψ̃out = Ψout.

Proof. We prove the existence of scattering states by Cook’s method: Let {Ψt}t∈R be the approxi-
mating sequence on the r.h.s. of (4.28). Due to the Cauchy criterion for convergence and the bound
‖Ψt2 −Ψt1‖ ≤

∫ t2
t1
dt ‖∂tΨt‖, it suffices to show that the derivative

∂tΨt =

n∑
i=1

B∗1,t(g1,t) . . . ∂t(B
∗
i,t(gi,t)) . . . B

∗
n,t(gn,t)Ω (4.30)

is integrable in norm. By Lemma 4.5 (a), ∂t(B
∗
i,t(gi,t)) annihilates Ω. Thus we can commute this

expression to the right until it acts on Ω and it is enough to show that the resulting terms with the
commutators are O(t−∞). This follows from Lemma 4.6 (a) and Lemma 4.5 (b), (d).

Since any permutation can be decomposed into a product of adjacent transpositions, the estimate

B∗1,t(g1,t) . . . B
∗
i,t(gi,t)B

∗
i+1,t(gi+1,t) . . .Ω = B∗1,t(g1,t) . . . B

∗
i+1,t(gi+1,t)B

∗
i,t(gi,t) . . .Ω +O(t−∞), (4.31)

which holds by Lemma 4.6 (a) and Lemma 4.5 (d), is sufficient to prove the symmetry of Ψout.
Finally, by iterating the relation

B∗1,t(g1,t) . . . B
∗
n,t(gn,t)Ω = B∗1,t(g1,t) . . . B

∗
n−1,t(gn−1,t)B̃

∗
n,t(g̃n,t)Ω

= B̃∗n,t(g̃n,t)B
∗
1,t(g1,t) . . . B

∗
n−1,t(gn−1,t)Ω +O(t−∞), (4.32)

which follows again from Lemma 4.6 (a) and Lemma 4.5 (d), and taking the limit t→∞, we obtain
that Ψout coincides with the scattering state Ψ̃out. �

By the last part of Theorem 4.8, the scattering state Ψout depends only on the time independent
single-particle vectors Ψi = B∗i,t(gi,t)Ω, and possibly the velocity supports V (gi). The latter depen-
dence can easily be excluded making use of formula (4.33) below. It easily follows from formula (4.33)

below. Anticipating this fact we will write Ψout =: Ψ1

out
× · · ·

out
× Ψn.
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Theorem 4.9. Suppose that the mass shell is pseudo-relativistic. Let Ψout and Ψ̃out be two scat-
tering states defined as in Theorem 4.8 with n and ñ particles, respectively. Then

〈Ψ̃out,Ψout〉 = δn,ñ
∑
σ∈Sn

〈Ψ̃1,Ψσ1〉 . . . 〈Ψ̃n,Ψσn〉, (4.33)

U(t, x)(Ψ1

out
× · · ·

out
× Ψn) = (U(t, x)Ψ1)

out
× · · ·

out
× (U(t, x)Ψn), (t, x) ∈ R× Γ, (4.34)

where Sn is the set of permutations of an n-element set.

If the mass shell is regular, the same conclusion holds if supp ĝi, supp (̂g̃i), i = 1, . . . , n are
supported in ∆′h.

Remark 4.10. We stress that in (4.33) we only need V (gi) ∩ V (gj) = ∅ and V (g̃i) ∩ V (g̃j) = ∅
for i 6= j, where gi, g̃i enter the definition of Ψout, Ψ̃out as specified in (4.28). V (gi) and V (g̃j) may
overlap.

Proof. We first consider the case n = ñ. To prove (4.33), we set for simplicity of notation
Bi(t) := (B∗i,t(gi,t))

∗, B̃j(t) := (B̃∗j,t(g̃j,t))
∗ and denote by Ψt, Ψ̃t the approximating sequences of

Ψout, Ψ̃out. We assume that (4.33) holds for n− 1 and compute

〈Ψ̃t,Ψt〉 = 〈Ω, B̃n(t) . . . B̃1(t)B1(t)∗ . . . Bn(t)∗Ω〉

=
n∑
k=1

〈Ω, B̃n(t) . . . B̃2(t)B1(t)∗ . . . [B̃1(t), Bk(t)
∗] . . . Bn(t)∗Ω〉

=
n∑
k=1

n∑
l=k+1

〈Ω, B̃n(t) . . . B̃2(t)B1(t)∗ . . . ǩ . . . [[B̃1(t), Bk(t)
∗], Bl(t)

∗] . . . Bn(t)∗Ω〉

+
n∑
k=1

〈Ω, B̃n(t) . . . B̃2(t)B1(t)∗ . . . ǩ . . . Bn(t)∗B̃1(t)Bk(t)
∗Ω〉, (4.35)

where ǩ indicates that Bk(t)
∗ is omitted from the product. The terms involving double commutators

vanish in the limit t→∞ by Lemma 4.6 (b) and Lemma 4.5 (d). To treat the last term on the r.h.s.
of (4.35) we have to consider two cases.

For the first case, suppose that the mass shell is pseudo-relativistic. Recall that B∗ = π(A∗) and
setB∗f := π(τf (A∗)), f ∈ S(R×Γ). Choosing f̂ supported in a small neighbourhoodO ⊂ Γ̂ of a subset
of h, we obtain that the energy-momentum transfer of B∗f is contained in O (cf. Proposition 3.6).

Demanding in addition that f̂ is equal to one on h∩SpA∗τ we can ensure that B∗f,t(gt)Ω = B∗t (gt)Ω (cf.
the proof of Lemma 4.5 (a)). Thus, in view of the last part of Theorem 4.8, we can assume without
loss that all the HR creation operators involved in (4.35) satisfy the assumptions of Lemma 4.7 (a).
Then the last term on the r.h.s. of (4.35) factorizes as follows

n∑
k=1

〈Ω, B̃n(t) . . . B̃2(t)B1(t)∗ . . . ǩ . . . Bn(t)∗Ω〉〈Ω, B̃1(t)Bk(t)
∗Ω〉 (4.36)

by Lemma 4.7 (a). Now by the induction hypothesis the expression above factorizes in the limit
t→∞ and gives (4.33).

For the other case, let us assume that the mass shell is regular. By the energy-momentum
transfer relation (3.15) and Lemma 4.5 (c) we obtain that

|Ω〉〈Ω|B̃n(t) . . . B̃2(t)B1(t)∗ . . . ǩ . . . Bn(t)∗ = O(1). (4.37)
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Consequently, by Lemma 4.7 (b), the last term on the r.h.s. of (4.35) equals

n∑
k=1

〈Ω, B̃n(t) . . . B̃2(t)B1(t)∗ . . . ǩ . . . Bn(t)∗Ω〉〈Ω, B̃1(t)Bk(t)
∗Ω〉+O(t−d/2). (4.38)

Now the inductive argument is concluded as in the previous case.
If n 6= ñ, a similar argument implies that the scalar product is zero, since the reduction will yield

eventually an expectation value of a product of either only creation or only annihilation operators,
which vanishes. We omit the details.

This gives (4.33). Relation (4.34) follows from (4.33) and Lemma 4.5 (a). �

Remark 4.11. We conclude this subsection with two technical comments:

1. In estimate (4.37) above we made crucial use of the bound from Lemma 4.5 (c), which relies
on Theorem 3.11. Weaker bounds from Lemma 4.5 (d) would clearly not suffice to conclude the
proof along the above lines. Without this sharper bound available, in the regular case we would
have to proceed via cumbersome ‘truncated vacuum expectation values’ of arbitrary order, which
burden all the textbook presentations of the Haag-Ruelle theory known to us (see e.g. [3, 64]).

2. It is clear that the uniqueness of the vacuum vector Ω is not needed in the proof of existence
of scattering states (Theorem 4.8). It is less clear how to generalize the proof of the Fock
space structure (Theorem 4.9) to the case of degenerate vacua and we leave this question open
here. We think, however, that this can be accomplished by following the remarks from the last
paragraph of Section 5 of [16].

4.4 Wave operators and the S-matrix

Up to now we left aside the question if any of the scattering states Ψout is different from zero. In
this subsection we will demonstrate that scattering states in fact span a subspace of H which is
naturally isomorphic to the symmetric Fock space over Hh. This observation allows to define the
wave operators and the S-matrix.

We denote by Γ(Hh) the symmetric Fock space over the single-particle subspace Hh and by
a∗(f), a(f), f ∈ Hh, the corresponding creation and annihilation operators. We also define the
unitary representation of translations on the single-particle subspace

Uh(t, x) = U(t, x)|Hh
. (4.39)

Its second quantization (t, x) 7→ Γ(Uh(t, x)) is a unitary representation of space-time translations on
Γ(Hh).

Definition 4.12. We say that an isometry W out : Γ(Hh)→ H is an outgoing wave operator if

W outΩ = Ω, (4.40)

W out(a∗(Ψ1) . . . a∗(Ψn)Ω) = Ψ1

out
× · · ·

out
× Ψn, (4.41)

U(t, x) ◦W out = W out ◦ Γ(Uh(t, x)), (4.42)

for any collection of Ψ1, . . . ,Ψn ∈ Hh as in Theorem 4.8 and any (t, x) ∈ R× Γ.
An incoming wave operator W in is defined analogously, by taking the limit t → −∞ in Theo-

rem 4.8. The S-matrix is an isometry on Γ(Hh) given by

S = (W out)∗W in. (4.43)
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The main result of this section is the following theorem:

Theorem 4.13. If the isolated mass shell h is either pseudo-relativistic or regular then the wave
operators and the S-matrix exist and are unique.

Proof. We proceed similarly as in the proof of Proposition 6.6 of [29]. Let Γ(n)(Hh) be the n-particle
subspace of Γ(Hh) and let F ⊂ Γ(n)(Hh) be the subspace spanned by vectors a∗(Ψ1) . . . a∗(Ψn)Ω, Ψi

as in Theorem 4.8. Due to (4.29,4.33), there exists a unique isometry W out
n : F → H s.t.

W out
n (a∗(Ψ1) . . . a∗(Ψn)Ω) = Ψ1

out
× · · ·

out
× Ψn. (4.44)

By (4.34) it satisfies

U(t, x) ◦W out
n = W out

n ◦ Γ(n)(Uh(t, x)), (4.45)

where Γ(n)(Uh(t, x)) is the restriction of Γ(Uh(t, x)) to Γ(n)(Hh). Thus it suffices to prove that F is
dense in Γ(n)(Hh). Indeed, in that case W out

n extends uniquely to an isometry W out
n : Γ(n)(Hh)→ H,

and W out := ⊕n∈N0W
out
n is the unique outgoing wave operator in the sense of Definition 4.12. The

incoming wave operator W in is defined analogously, by taking limits t → −∞ in Theorems 4.8
and 4.9.

Let us now show density of F . We denote by Ph the spectral measure of Uh and define the product

spectral measure on (R× Γ̂)×n with values in H⊗nh (the non-symmetrized n-particle subspace):

dP̃h((E1, p1), . . . , (En, pn)) := dPh(E1, p1)⊗ · · · ⊗ dPh(En, pn). (4.46)

Clearly, P̃h is supported in h×n and P̃h(h
×n)H⊗nh = H⊗nh . Using Lemma 4.17 below, it is easy to see

that

F = Θs ◦ P̃h(h
×n\D)H⊗nh , (4.47)

where Θs : H⊗nh 7→ Γ(n)(Hh) is the orthogonal projection on the subspace of symmetrized n-particle
vectors and

D := { ((Σ(p1), p1), . . . , (Σ(pn), pn)) ∈ h×n | ∇Σ(pi) = ∇Σ(pj) for some i 6= j }. (4.48)

We have to subtract D in (4.47) to account for the disjointness of velocity supports of vectors in F .
By Lemma 4.19 below, the auxiliary set

D0 := { p1, . . . , pn ∈ ∆h | ∇Σ(pi) = ∇Σ(pj) for some i 6= j } (4.49)

has Lebesgue measure zero, which implies finally that P̃h(D) = 0 by Lemma 4.16 below. With this
and equation (4.47), the proof is complete. �

Remark 4.14. Although the construction of asymptotic states requires disjoint velocity supports,
Theorem 4.13 shows that, up to isometry, their span is dense in the bosonic Fock space. In particular,
n-particle product states, or condensates, can be obtained as limits of n-particle asymptotic states
with disjoint velocity supports.

We now state and prove the lemmas used in the proof of the above theorem.

Lemma 4.15. Let ∆ ⊂ h be an open bounded set and let K be a subspace of H spanned by vectors of
the form B∗Ω, where B∗ is a creation operator in the sense of Definition 4.4 s.t. Spπ−1(B∗)τ ∩h ⊂ ∆.
Then K is dense in P (∆)H.
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Proof. We pick an arbitrary A∗ ∈ Aloc and f ∈ S(R × Γ) s.t. supp f̂ ∩ SpU ⊂ ∆. Then
B∗ = π(τf (A∗)) is a creation operator as specified in the lemma and

B∗Ω =

∫
∆
f̂(E, p)dP (E, p)π(A∗)Ω ∈ P (∆)Hh. (4.50)

Approximating with f̂ the characteristic function of ∆ and exploiting cyclicity of Ω we conclude the
proof. �

Lemma 4.16. Let O ⊂ ∆h and hO := { (Σ(p), p) ∈ h | p ∈ O}. If O has Lebesgue measure zero then
P (hO) = 0.

Proof. We proceed similarly as in the first part of the proof of Proposition 2.2 from [18]. From
Lemma 4.15 we know that vectors of the form B∗Ω, where B∗ is a creation operator in the sense of
Definition 4.4, span a dense subspace of Hh. By formula (3.7), we can write

〈B∗Ω, P (hO)B∗Ω〉 = lim
n→∞

∫
h
χ̂n,hO(E, p)〈B∗Ω, dP (E, p)B∗Ω〉

= lim
n→∞

∫
χ̂n,hO(Σ(p), p)〈B∗Ω, dP (E, p)B∗Ω〉, (4.51)

where χn,hO ∈ S(R× Γ) and χ̂n,hO approximate the characteristic function of hO pointwise. We set
χ̂n,O(p) := χ̂n,hO(Σ(p), p), which approximates pointwise the characteristic function of O. We get
from (4.51) ∫

χ̂n,hO(Σ(p), p)〈B∗Ω, dP (E, p)B∗Ω〉 = (2π)−
d
2

∑
x∈Γ

χn,O(x)〈B∗Ω, U(x)B∗Ω〉

= (2π)−
d
2

∑
x∈Γ

χn,O(x)〈Ω, [B,B∗(x)]Ω〉

= (2π)−
d
2

∫
Γ̂
χ̂n,O(p)f̂(p)dp, (4.52)

where we used the translation invariance of Ω and BΩ = 0 in the second equality. In the last line,
f(x) := 〈Ω, [B,B∗(x)]Ω〉 is a rapidly decreasing function by Lemma 3.9 and in the last step we made
use of Parseval’s theorem. Since χ̂n,O converges pointwise to a characteristic function of a set of
Lebesgue measure zero, we have shown ‖P (hO)B∗Ω‖ = 0 and the proof is complete. �

Lemma 4.17. Let ∆ ⊂ h be an open bounded set and L be a subspace of Hh spanned by vectors of
the form B∗t (gt)Ω. Here B∗t (gt) is a HR creation operator such that supp ĝ ⊂ ∆h\X0, where X0 is a
set of Lebesgue measure zero and { (Σ(p), p) | p ∈ supp ĝ } ⊂ ∆. Then L is dense in P (∆)Hh.

Remark 4.18. If the mass shell is pseudo-relativistic (resp. regular) we use this lemma with X0 = ∅
(resp. X0 = X ).

Proof. First, we note that by Lemma 4.16 the set hX0 := { (Σ(p), p) | p ∈ X0} satisfies P (hX0) = 0,
thus we can assume that ∆ does not intersect with hX0 . Now we will argue by contradiction. Suppose
that that there is a non-zero vector Ψ ∈ P (∆)Hh which is orthogonal to all elements of L. Now we
find g, as in the statement of the lemma, s.t.∫

∆
ĝ(p)dP (E, p)Ψ 6= 0. (4.53)
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To this end we approximate with ĝ the characteristic function of ∆0 := { p ∈ ∆h | (Σ(p), p) ∈ ∆ }
from inside. This is possible since we assumed that hX does not intersect with ∆. Next, recall that
K, as defined in Lemma 4.15, consists of vectors of the form B∗Ω, where B∗ is a creation operator
s.t. Spπ−1(B∗)τ ∩ h ⊂ ∆. Since K is dense in P (∆)Hh, we can find B∗, within the above restrictions,
s.t.

0 6= 〈B∗Ω,
∫

∆
ĝ(p)dP (E, p)Ψ〉 = 〈B∗t (gt)Ω,Ψ〉. (4.54)

But the last expression is zero by definition of Ψ. �

Note that the claim of the lemma holds a fortiori if supp ĝ ⊂ ∆h.

Lemma 4.19. Let Σ be a dispersion relation of a mass shell (not necessarily pseudo-relativistic or
regular, see Definition 4.1). Then the set

D0 := { p1, . . . , pn ∈ ∆h | ∇Σ(pi) = ∇Σ(pj) for some i 6= j } (4.55)

has Lebesgue measure zero in Γ̂×n.

Proof. Note that D0 is a union of sets

D0,i,j := { p1, . . . , pn ∈ ∆h | ∇Σ(pi) = ∇Σ(pj) }, 1 ≤ i < j ≤ n. (4.56)

Suppose, by contradiction, that D0,1,2 has non-zero Lebesgue measure. Then, for some v ∈ Rd, the
set

D0,v := { p1, . . . , pn ∈ ∆h | ∇Σ(p1) = v } (4.57)

also has non-zero Lebesgue measure. Otherwise computing the measure of D0,1,2 as an iterated
integral of its characteristic function we would get zero. Clearly, we have

D0,v ⊂ { p1 ∈ ∆h |D2Σ(p1) = 0} × { p2, . . . , pn ∈ ∆h }, (4.58)

hence T = { p ∈ ∆h |D2Σ(p) = 0 } has non-zero Lebesgue measure, which contradicts property (c)
from Definition 4.1. �

5 Shape of the spectrum

In this section we prove three results concerning the shape of SpU . In the following, vλ is the
Lieb-Robinson velocity defined in Theorem 2.1.

Proposition 5.2, whose proof uses the scattering theory developed in the previous section, says
that the velocity of a particle computed as ∇Σ(p) cannot be larger that the Lieb-Robinson velocity
vλ. This shows that vλ plays a similar role in lattice systems as the velocity of light in relativistic
theories. A different proof of this result, adopting methods from the proof of Proposition 2.1 of [18],
appeared in [70]. In [63], vλ was also shown to be a propagation bound for ‘signals’.

Proposition 5.3 says that SpU is a semi-group in R×Γ̂ i.e. if q1, q2 ∈ SpU then also q1+q2 ∈ SpU .
A special case of this result actually follows from Theorem 4.9 and Lemma 4.17: if q1, . . . , qn ∈ h
then q1 + · · · + qn ∈ SpU (at least if X = T = ∅). However, the general proof below does not use
scattering theory but follows directly from the clustering property (Theorem 2.4) and the energy-
momentum transfer relation (3.15). This argument follows closely the proof from relativistic QFT,
see Theorem 5.4.1 of [35].

24



Proposition 5.4 relates the spectrum of the finite volume Hamiltonians HΛ to the spectrum of
the Hamiltonian H in the thermodynamic limit. More precisely, H is the GNS Hamiltonian of the
ground state which is the limit of the ground states of HΛ. Our result says that gaps cannot close
in the thermodynamic limit. This is of important practical interest, since quantum spin systems are
usually defined in finite volume where explicit spectral estimates can be obtained. And indeed, it
will be useful in the next section where we discuss concrete examples, to which the scattering theory
of the previous section can be applied.

We start with the following lemma from [67], which we need for the proof of Proposition 5.2.
It says that quantum spin systems satisfying the Lieb-Robinson bounds are asymptotically abelian
w.r.t. space-time translations in the cone {|x| > vλt} (cf. [70, Theorem II.7]).

Lemma 5.1. Under the assumptions of Theorem 2.1 and for any 0 < ε < v−1
λ , we have

‖[τt ◦ τx(A), B]‖ ≤ C(A,B, λ)e−λ(1−εvλ)|x| (5.1)

in the cone Cε := { (t, x) | |t| ≤ ε|x|}, where

C(A,B, λ) = 2‖A‖‖B‖C−1
λ ‖F‖min{|Λ1|, |Λ2|}eλdiam(Λ1∪Λ2). (5.2)

Proof. By Theorem 2.1 and the τx invariance of the norm,

‖[τt ◦ τx(A), B]‖ ≤ 2‖A‖‖B‖
Cλ

e2‖Φ‖λCλ|t|e−λ|x|
∑
w∈Λ1

∑
z∈Λ2

eλ|z−w|F (|z − (w − x)|)

≤ 2‖A‖‖B‖
Cλ

‖F‖min{|Λ1|, |Λ2|}eλdiam(Λ1∪Λ2) · e−λ(|x|−vλ|t|) (5.3)

and the lemma follows from the condition |t| ≤ ε|x|. �

Proposition 5.2. Under the standing assumptions of Section 4, we have the following: |∇Σ(p)| ≤ vλ
for any p ∈ ∆h.

Proof. We prove this by contradiction. Suppose there is p0 ∈ ∆h s.t. |∇Σ(p0)| > vλ. Then,
by smoothness of Σ, there is a neighbourhood Op0 of p0, that is compactly contained in ∆h, and
0 < ε < v−1

λ s.t. |∇Σ(p)| ≥ ε−1 for all p ∈ Op0 . We consider the subset of the mass shell

hOp0 := { (Σ(p), p) | p ∈ Op0 }, (5.4)

which is open in h because the dependence ∆h 3 p 7→ (Σ(p), p) ∈ h is diffeomorphic and bounded
since Op0 is away from the boundary of ∆h

4. To arrive at a contradiction we will show that the
projection P (hOp0 ) is zero.

By Lemma 4.17, vectors of the form

B∗(g)Ω = B∗t (gt)Ω, supp ĝ ⊂ Op0 , (5.5)

span a dense subspace in P (hOp0 )H. Thus it is enough to show that all these vectors are zero.
Since (B∗(g))∗Ω = 0, we can write for any given A′ ∈ A(Λ′), with Λ′ arbitrary but finite,

〈π(A′)Ω, B∗(g)Ω〉 = 〈Ω, [π(A′)∗, B∗t (gt)]Ω〉 = 〈Ω, [π(A′)∗, B∗t (χ+,tgt)]Ω〉+O(t−∞), (5.6)

4A priori Σ(p) may tend to infinity when p approaches the boundary of the open set ∆h. Once proven, Proposition 5.2
excludes such behaviour, however.
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where we applied Lemma 4.5 (d). Recall that χ+,t(x) = χ+(x/t) where χ+ ∈ C∞0 (Rd) is supported
in a small neighbourhood V (g)δ of the velocity support V (g). Clearly, we can assume that

V (g)δ ⊂ {∇Σ(p) | p ∈ Op0}, (5.7)

since ĝ is supported inside of Op0 .
Recall that B∗ = π(A∗) for some A∗ ∈ Aa−loc. Thus we can find Ar ∈ A(Zr) s.t. ‖A − Ar‖ =

O(r−∞). Hence

〈Ω, [π(A′)∗, B∗t (χ+,tgt)]Ω〉 = 〈Ω, [π(A′)∗, π(τt(A
∗
r))(χ+,tgt)]Ω〉+O(r−∞td), (5.8)

where we used that ‖gt‖1 = O(td). Now we note that the sum

τt(A
∗
r)(χ+,tgt) = (2π)−

d
2

∑
x∈Γ

τ(t,x)(A
∗
r)χ+(x/t)gt(x) (5.9)

extends over x in the set Xt := {x ∈ Γ | |x/t| ≥ ε−1 }. Clearly { (t, x) |x ∈ Xt} is contained in the
cone Cε := { (t, x) | |t| ≤ ε|x|}. Thus, by Lemma 5.1, we have

|〈Ω, [π(A′)∗, π(τt(A
∗
r))(χ+,tgt)]Ω〉| ≤ ‖ĝ‖1C(A′, A∗r , λ)

∑
x∈Γ

e−λ(1−εvλ)|x||χ+(x/t)|

≤ ‖ĝ‖1C(A′, A∗r , λ)cε,vλe−
1
2
λ(1−εvλ)ε−1t, (5.10)

where

C(A′, A∗r , λ) = 2‖A′‖‖Ar‖C−1
λ ‖F‖min{|Λ′|, |Zr|}eλdiam(Λ′∪Zr), (5.11)

and we note that ‖Ar‖ ≤ ‖A‖+O(r−∞). Thus, setting r(t) = tε, ε > 0 sufficiently small, we obtain
that the r.h.s. of (5.10) and error terms in (5.8), (5.6) tend to zero as t → ∞. Since the l.h.s. of
(5.6) is independent of t, we conclude that

〈π(A′)Ω, B∗(g)Ω〉 = 0. (5.12)

As this is true for any A′ ∈ Aloc we obtain that B∗(g)Ω = 0 and the proof is complete. �

Although conceptually very satisfactory, the bound provided by the proposition has the following
practical flaw inherited from the proof of Theorem 2.1: the Lieb-Robinson velocity exhibited there,
even after taking the infimum over the possible λ’s, only gives a crude upper bound, see Remark 2
in the original article [47] for a brief discussion.

Proposition 5.3. Under the assumptions of Theorem 2.4, the following additivity property holds:
Suppose that q1, q2 ∈ SpU . Then q1 + q2 ∈ SpU where + denotes the group operation in R× Γ̂.

Proof. Let ∆ be a (bounded) neighbourhood of q1 + q2. Let ∆1,∆2 be (bounded) neighbourhoods
of q1, q2 s.t. ∆1 + ∆2 ⊂ ∆. We pick A1, A2 ∈ Aa−loc s.t. SpA1

τ ⊂ ∆1 and SpA2
τ ⊂ ∆2. Then, by

the energy-momentum transfer relation (3.15), we have for any x ∈ Γ

Ψx := π(τx(A1))π(A2)Ω ∈ P (∆)H, (5.13)

thus it suffices to show that some of these vectors are non-zero.
By almost locality, we can find Ai,r ∈ A(Zr) s.t. (Ai − Ai,r) = O(r−∞) in norm for i = 1, 2.

Thus we have

‖Ψx‖ = ‖Ψr,x‖+O(r−∞), where Ψr,x := π(τx(A1,r))π(A2,r)Ω, (5.14)
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uniformly in x. By Theorem 2.4,

lim
|x|→∞

‖Ψr,x‖ = ‖π(A1,r)Ω‖‖π(A2,r)Ω‖ = ‖π(A1)Ω‖‖π(A2)Ω‖+O(r−∞). (5.15)

By choosing r sufficiently large, we can conclude from (5.14), (5.15), that (5.13) is non-zero for
sufficiently large |x|, provided that π(A1)Ω, π(A2)Ω are non-zero.

To justify this last point, we pick A0,i ∈ Aloc, fi ∈ S(R × Γ̂), s.t. suppf̂i ⊂ ∆i and set Ai =
τfi(A0,i). Then we have

π(Ai)Ω =

∫
f̂(E, p)dP (E, p)π(A0,i)Ω. (5.16)

Since with the spectral integrals above we can approximate P (∆i) (and P (∆i) 6= 0 since qi ∈ SpU),
by cyclicity of the ground state vector we can find A0,i s.t. π(Ai)Ω are non-zero. �

As a preparation to the proof of Proposition 5.4, we discuss briefly finite-volume Hamiltonians and
their ground states.

We first show how infinite volume ground states can be obtained from ground states of finite
dimensional systems. We essentially follow the argument of [12, Prop. 5.3.25]. Let ψΛ be a ground
state vector of HΛ for the eigenvalue EΛ, and define ωΛ(A) := 〈ψΛ, AψΛ〉 for any A ∈ A(Λ), which
can be extended to the whole algebra. Banach-Alaoglu’s theorem then ensures that there are weak-*
limit points of the net ωΛ as Λ↗ Γ, that we shall generically call ω. First,

〈ψΛ, A
∗[HΛ, A]ψΛ〉 = 〈ψΛ, A

∗HΛAψΛ〉 − 〈ψΛ, A
∗AHΛψΛ〉 ≥ 0, (5.17)

where we used in the first term that HΛ ≥ EΛ and in the second that HΛψΛ = EΛψΛ. Hence, ωΛ

is a ground state in the sense of (2.15) since −iδΛ = [HΛ, · ] is the generator of the finite-volume
dynamics. Furthermore, for any A ∈ D(δ) and any convergent (sub)sequence5 ωΛn , there is a
sequence An ∈ A(Λn) such that An → A and δΛn(An)→ δ(A). Hence,

− iω(A∗δ(A)) = lim
n→∞

−iωΛn(A∗nδΛn(An)) ≥ 0, (5.18)

so that the limiting state ω is a ground state in the general sense.
In this paper we are interested in models with isolated mass shells (cf. Definition 4.1). As we

will see in the next section in an example, in lattice systems such mass shells may correspond to
intervals in the spectrum of the GNS Hamiltonian, isolated from the rest of the spectrum by gaps6.
Here again, such gaps can be deduced from the finite volume properties. The following proposition
shows that a uniform spectral gap in finite volume cannot abruptly close in the GNS representation.

Proposition 5.4. Let E ∈ R be such that for some ε > 0, Λ0 ∈ Pfin(Γ),(
EΛ + (E − ε, E + ε)

)
∩ Sp (HΛ) = ∅

for all Λ ⊃ Λ0. Then E /∈ Sp(H), where H is the GNS Hamiltonian of a weak-∗ limit ω as above.

Proof. Let (H, π,Ω) be the GNS triplet of the limiting state ω. Let f ∈ S(R) be such that f̂ is
supported in (E − ε, E + ε). To prove the claim, it suffices to show that for any A,B ∈ Aloc,〈

π(A)Ω, f̂(H)π(B)Ω
〉

= 0. (5.19)

5A subsequence (rather than a subnet) can be found by exploiting the fact that the net converges in norm on any
local algebra.

6Note that this is not possible in relativistic theories.
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First, we write

τf (B) =
1√
2π

∫
dt f(t)τt(B), (5.20)

analogously to (3.10). (We skip the superscript (1) here as there is no danger of confusion). Next,
we use the invariance of Ω to get

f̂(H)π(B)Ω =
1√
2π

∫
dt f(t)eiHtπ(B)e−iHtΩ =

1√
2π

∫
dt f(t)π(τt(B))Ω = π(τf (B))Ω. (5.21)

We further note that 〈
π(A)Ω, f̂(H)π(B)Ω

〉
= ω(A∗τf (B)). (5.22)

Defining τΛ
f (B) analogously to (5.20), and recalling that ‖τΛ

t (B)− τt(B)‖ → 0 as Λ↗ Γ, we obtain

lim
Λ→Γ

∥∥τΛ
f (B)− τf (B)

∥∥ = 0. (5.23)

This, and the weak∗ convergence ωΛ → ω imply that for any δ > 0, there is Λ0 such that for all
Λ ⊃ Λ0, ∥∥A∗τf (B)−A∗τΛ

f (B)
∥∥ < δ/2,∣∣ω(A∗τΛ

f (B))− ωΛ(A∗τΛ
f (B))

∣∣ < δ/2. (5.24)

Hence, by (5.22), ∣∣∣〈π(A)Ω, f̂(H)π(B)Ω
〉
− ωΛ(A∗τΛ

f (B))
∣∣∣ < δ. (5.25)

But using the fact that HΛψΛ = EΛψΛ,

ωΛ(A∗τΛ
f (B)) =

1√
2π

∫
dt f(t)ωΛ

(
A∗eit(HΛ−EΛ)B

)
= ωΛ

(
A∗f̂(HΛ − EΛ)B

)
= 0, (5.26)

since f̂ is supported in (E − ε, E + ε) while, by assumption, this interval is outside the spectrum of
HΛ − EΛ. This proves (5.19) and therefore the proposition. �

6 Examples

In this section we show that the Ising model in a strong magnetic field ε−1 (given by (6.1) below)
satisfies the standing assumptions of Section 4 and thus admits scattering theory developed in this
paper. This model belongs to a larger family of systems which are perturbations of ‘classical’ models
studied e.g. in [1,22,42], or in the same spirit but with results that are somewhat further away from
what is required here, [11,21,43]. Here, we shall follow mostly [77] and the closely related [75], and
apply concrete results of [76] and [62]. We conjecture that many other models of this family fit into
the framework of Section 4, but complete proofs are missing. We will come back to this point in the
later part of this section.

The Ising model (with open boundary conditions) is given by the following family of finite volume
Hamiltonians

HI
Λ,ε := −1

2

∑
x∈Λ

(
σ(3)
x − 1

)
− ε

∑
(x,y)∈E(Λ)

σ(1)
x σ(1)

y , (6.1)

where E(Λ) := {(x, y) ∈ Λ×Λ | |y−x| = 1} is the set of undirected edges of the lattice. When ε = 0,
the Hamiltonian is diagonal in the tensor product basis of eigenvectors of σ(3), and Sp(HI

Λ,0) = {n ∈
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N |n ≤ |Λ|}. The unique ground state is given by the vector ⊗x∈Λ|+〉, with ground state energy
EIΛ = 0 for all Λ ∈ Pfin(Γ). It is easy to see that this model satisfies the assumptions of Theorem 2.1
and thus the Lieb-Robinson bound holds.

In the course of our analysis in this section we will also need a version of the Ising model with
periodic boundary conditions: for any L ∈ N we write [−L,L] := {−L,−L+ 1, . . . L} for an interval
and [−L,L]×d for a hypercube of side 2L centred at zero. The finite volume Hamiltonian of the
hypercube Λ = [−L,L]×d is given by

H̃I
Λ,ε := HI

Λ,ε − ε
∑

(x,y)∈F(∂Λ)

σ(1)
x σ(1)

y , (6.2)

where the boundary ∂Λ consists of all x ∈ Λ which have nearest neighbours outside of Λ, F(∂Λ) :=
{(x, y) ∈ ∂Λ×∂Λ | y−x ∈ {±2Le1, . . . ,±2Led } } and {ei}i=1,...,d are primitive vectors of the lattice.

We note that due to the non-local character of the boundary terms, H̃I
Λ,ε does not satisfy the

assumptions of Theorem 2.1, and we cannot conclude the existence of its global dynamics τ̃ε,t directly
from Corollary 2.2. Nevertheless, we have:

Lemma 6.1. The global dynamics τ̃ε,t of the Ising model (6.2) with periodic boundary conditions
exists and coincides with the global dynamics τε,t of the Ising model (6.1) with open boundary con-
ditions. Hence, also the corresponding families of infinite volume ground states coincide.

Proof. For any bounded X and A ∈ A(X), let Λn be the smallest hypercube such that {x ∈
Zd | dist(x,X) ≤ n} ⊂ Λn. Note that by locality it follows that δΛ1(A) = δ̃Λ1(A), where δΛ1(A) :=
i[HI

Λ1,ε
, A] and δ̃ is defined similarly. Note that by construction δΛ1(A(X)) ⊂ A(Λ1) and the same is

true for δ̃Λn .
Repeating the argument above it follows that δmΛn(A) = δ̃mΛn(A) for all m ≤ n and A ∈ A(X).

Hence,

τΛn
ε,t (A)− τ̃Λn

ε,t (A) =
tn

n!

∑
m>0

tmn!

(m+ n)!

(
δm+n

Λn
− δ̃m+n

Λn

)
(A). (6.3)

Now,

δNΛn(A) =
∑

xN ,...,x0

[Φ(xN , xN−1), [Φ(xN−1, xN−2), · · · , [Φ(x1, x0), A] · · · ]], (6.4)

where the sum is over sequences such that x0 ∈ X and |xi − xi−1| ≤ 1 for 1 ≤ i ≤ N , and Φ(xi, xj)
is either of the interaction terms of (6.1) and Φ(xi, xi) = Φ(xi) is understood. Since ‖Φ(xi, xj)‖ ≤ κ
for κ = max(1, ε), it follows that

‖δm+n
Λn

(A)‖ ≤ (4dκ)m+n‖A‖|X|, (6.5)

and similarly for δ̃m+n
Λn

(A), with the exception that the paths can “wrap around” the hypercube. All
in all,

‖τΛn
ε,t (A)− τ̃Λn

ε,t (A)‖ ≤ 2‖A‖|X|(4dκ)n|t|n

n!
e4dκ|t| (6.6)

where we used that n!/(n+m)! ≤ 1/m!.
By Corollary 2.2 we know that τΛn

ε,t (A) converges to τε,t(A). With the above estimate it then

follows that τ̃Λn
ε,t (A) also converges to τε,t(A) for all t in a compact interval. By the group property we

conclude that the dynamics of the Ising model with periodic and open boundary conditions coincide
in the thermodynamic limit.

It follows from the algebraic characterization of a ground state that also the sets of infinite
volume ground states are equal. �
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In order to make this section more self-contained, we recall some known facts in the following
three theorems before stating the main result of this section in Proposition 6.5.

Theorem 6.2 ([51, 76]). Let HI
Λ,ε be the Ising Hamiltonian. There is ε0 > 0 such that for any

0 < ε < ε0,

(i) HI
Λ,ε has a unique ground state ψIΛ,ε with ground state energy EIΛ,ε,

(ii) there is a constant γε > 0 such that HI
Λ,ε ≥ (EIΛ,ε + γε)

(
1− |ψIΛ,ε〉〈ψIΛ,ε|

)
, uniformly in Λ,

(iii) there is a positive constant c such that

Sp(HI
Λ,ε − EIΛ,ε) ⊂

⋃
n∈Sp(HI

Λ,0)

{nε | |nε − n| ≤ cnε} , (6.7)

(iv) there is a unique translation-invariant ground state ωε and ωε(A) = limΛ↗Γ〈ψIΛ,ε, AψIΛ,ε〉 for
all A ∈ Aloc. Moreover, ωε is pure.

(i-iii) are Theorem 1 of [76]. Theorem 2 there establishes the convergence of finite volume
ground states, ω̄ε = limΛ↗Γ〈ψIΛ,ε, ·ψIΛ,ε〉. We further claim that ω̄ε is translation invariant. Indeed,
the limiting state is unique and independent of the choice of increasing and absorbing sequence
Λn ↗ Γ. Now, for any such sequence and any x ∈ Zd, the sequence Λn − x also converges to Γ so
that, making use of translation invariance of the interaction,

ω̄ε(τx(A)) = lim
n→∞

〈ψIΛn,ε, τx(A)ψIΛn,ε〉 = lim
n→∞

〈ψIΛn−x,ε, Aψ
I
Λn−x,ε〉 = ω̄ε(A), (6.8)

for any local A, which proves the claim. This, and the general uniqueness and purity of the
translation-invariant ground state (Theorem 3 and Remark 4.8 of [51]) implies that ω̄ε = ωε, hence
we obtain (iv). The GNS triple of ωε will be denoted by (πε,Hε,Ωε) and the unitary action of
space-time translations by Uε. The GNS Hamiltonian of the Ising model will be called Hε

The notion of a ‘one-particle subspace’ of [76] is defined as a subspace H1 ⊂ Hε, that is invariant
under space-time translations (3.5) and such that there is a unitary operator V : H1 → L2(Γ̂)
satisfying:

(V Uε(x)V ∗f̂ )(p) = eipxf̂(p), (6.9)

(V Uε(t)V
∗f̂ )(p) = eimε(p)tf̂(p), (6.10)

where we identified L2(Γ̂) with the image of the Fourier transform (D.2). Note that this says
that the group of unitaries (t, x) 7→ Uε(t, x) affords a spectral decomposition on L2(Γ̂) in which
the space-time translation operators act as multiplication by ei(mε(p)t+px). Up to the sign of the
momentum this corresponds to the characterization of a mass shell as a subset of the spectrum
SpUε in Definition 4.1 (a) as we will see in the proof of Proposition 6.5 below.

From (6.7), Proposition 5.4 and the explicit form of Sp(HI
Λ,0) stated above, we conclude that

SpHε ⊂
⋃
n∈N0

{nε | |nε − n| ≤ cnε} . (6.11)

(Similar inclusion is obtained in Theorem 3 of [76] by different methods). Theorem 4 of [76] ensures
that the n = 1 component of union on the r.h.s. of (6.11) contains a non-empty isolated subset of
SpHε which gives rise to a one-particle subspace:
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Theorem 6.3 ([76]). Let Hε be the GNS Hamiltonian of the Ising model, and let 0 < ε < ε0 as
above. Let

P 1
ε = − 1

2πi

∫
C
(Hε − z)−1dz (6.12)

where C is a circle centered at 1 and of radius cε < r < 1− 2cε, and let G1
ε be its range. Then,

(i) G1
ε is a one-particle subspace,

(ii) the function p 7→ mε(p) of (6.10) is real-analytic.

Finally, let us define

fβΛ,ε(t) := ω̃βΛ,ε

(
σ

(1)
0 e−tH̃

I
Λ,εσ

(1)
0 etH̃

I
Λ,ε

)
, (6.13)

where ω̃βΛ,ε is the Gibbs state over A(Λ) associated to the Hamiltonian H̃I
Λ,ε with periodic boundary

conditions. Theorem 1 of [62] reads:

Theorem 6.4 ([62]). There exists a Baire measure µε depending analytically on ε, s.t. for ε small
enough

lim
Λ↗Γ

lim
β→∞

fβΛ,ε(t) =

∫ ∞
0

e−tλdµε(λ). (6.14)

Moreover, there are two reals 0 < a0,ε ≤ a1,ε (and the latter inequality is strict for ε > 0) such that
a1,ε − a0,ε = O(ε) and µε has no support in (0, a0,ε), while it is absolutely continuous in [a0,ε, a1,ε).
The dependence ε 7→ a0,ε is real analytic.

The following proposition is now an application of Theorems 6.2–6.4 to the present case.

Proposition 6.5. There is ε0 > 0 such that for any 0 < ε < ε0, the infinite volume Ising model (6.1)
satisfies the standing assumptions of Section 4. In particular, it has a unique ground state and an
isolated mass shell in the sense of Definition 4.1 with ∆h = Sd1 . For any d ≥ 1 this mass shell is
pseudo-relativistic. For d = 1 it is also regular.

Remark 6.6. In order to ensure that the mass shell is pseudo-relativistic, ε0 may depend on d. The
question of regularity of the mass shell in the case d > 1 is not settled.

Proof. First of all, we claim that the uniqueness and purity of the translation invariant ground
state of Theorem 6.2 (iv) implies that πε has a unique (up to phase) normalized ground state vector.
Indeed, suppose that Ω′ε ∈ Hε is a unit vector such that HεΩ

′
ε = 0, while Ω′ε 6= λΩε for λ ∈ S1. Then,

the vector state ω′ε associated to Ω′ε satisfies

− iω′ε(A
∗δε(A)) =

〈
πε(A)Ω′ε, [Hε, πε(A)]Ω′ε

〉
=
〈
πε(A)Ω′ε, Hεπε(A)Ω′ε

〉
≥ 0, (6.15)

since Hε is a positive operator on the GNS Hilbert space. Hence ω′ε is a ground state, and, by
purity of ωε, we have ω′ε 6= ωε which is a contradiction. Furthermore, (ii) of Theorem 6.2 and
Proposition 5.4 ensure that 0 is an isolated eigenvalue of the GNS Hamiltonian separated from the
rest of the spectrum by a gap of at least γε.

Let V be the unitary operator as in equations (6.9-6.10), corresponding to the one-particle
subspace of Theorem 6.3. With Lemma 3.2, we obtain

(V Uε(t, x)V ∗f̂ )(p) = (V Uε(t, 0)V ∗V Uε(0, x)V ∗f̂ )(p) = eimε(p)t+ipxf̂(p). (6.16)

Since V is unitary, this shows that hε := {(mε(−p), p) | p ∈ Γ̂} ⊂ Sp(Uε). By construction, hε has
non-zero spectral measure. In other words, hε fulfills conditions (a), (b) of Definition 4.1. hε is
isolated because it arose from an isolated part of SpHε, see the discussion below (6.11).
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In order to check condition (c), we identify the dispersion relation Σε with the function p 7→
mε(−p), and we will ensure that this function is non-constant. Given that, (c) follows as explained
below Definition 4.2. For d = 1 (c) is equivalent to regularity of the mass shell. For any d ≥ 1, (6.11)
implies that {0} is isolated from the rest of the spectrum by a gap of the size at least 1−cε, while the
energy component of any vector in hε−hε is at most 2cε, so that the mass shell is pseudo-relativistic
for ε < (3c)−1.

The fact that the mass shell is non-constant follows from Theorem 6.4 as follows. As always, a
tilde ·̃ will refer to objects obtained using periodic boundary conditions. Since ω̃βΛ,ε is a (τ̃Λ

ε , β)-KMS
state it satisfies the energy-entropy balance inequality

− iω̃βΛ,ε(A
∗δ̃ε(A)) ≥ 1

β
ω̃βΛ,ε(A

∗A) ln
ω̃βΛ,ε(A

∗A)

ω̃βΛ,ε(AA
∗)
, (6.17)

and hence, with (2.15), the limit β → ∞ yields a finite volume ground state 〈ψ̃IΛ,ε, · ψ̃IΛ,ε〉 of the
periodic Hamiltonian, see [12, Proposition 5.3.23] and its proof for details. With this and the
spectral decomposition H̃I

Λ,ε =
∫
λdP̃ IΛ,ε(λ), the β →∞ limit of (6.13) reads

lim
β→∞

fβΛ,ε(t) =

∫
R

e−t(λ−Ẽ
I
Λ,ε)
〈
ψ̃IΛ,ε, σ

(1)
0 dP̃ IΛ,ε(λ)σ

(1)
0 ψ̃IΛ,ε

〉
, (6.18)

and by a change of variables,

lim
β→∞

fβΛ,ε(t) =

∫ ∞
0

e−tλdµ̃Λ,ε(λ), (6.19)

where dµ̃Λ,ε(λ) = 〈ψ̃IΛ,ε, σ
(1)
0 dQ̃IΛ,ε(λ)σ

(1)
0 ψ̃IΛ,ε〉 and dQ̃IΛ,ε(λ) is the spectral measure of H̃I

Λ,ε − ẼIΛ,ε.
Let us denote ĝt(λ) := Θ(λ) exp(−λt) ∈ L1(R), where Θ ∈ C∞(R) is such that Θ(λ) = 1 for all
λ ≥ 0 and Θ(λ) = 0 if λ ≤ −1. Since gt (the inverse Fourier transform of ĝt) decays faster than any
polynomial, it is integrable. The right hand side above now reads∫ ∞

0
e−tλdµ̃Λ,ε(λ) = (2π)−

1
2

∫ ∞
0

∫
R
ds eisλgt(s)〈ψ̃IΛ,ε, σ

(1)
0 dQ̃IΛ,ε(λ)σ

(1)
0 ψ̃IΛ,ε〉

= (2π)−
1
2

∫
R
ds gt(s)〈ψ̃IΛ,ε, σ

(1)
0 τ̃Λ

ε,s(σ
(1)
0 )ψ̃IΛ,ε〉, (6.20)

where we used that (H̃I
Λ,ε − ẼIΛ,ε)ψ̃IΛ,ε = 0. We can now consider the infinite volume limit of (6.20).

As shown in Lemma 6.1, the infinite volume dynamics, the set of algebraic ground states and (by the
uniqueness of the algebraic ground state) the GNS Hamiltonian are independent of the boundary
conditions in the Ising model. Thus, by dominated convergence, the weak-* convergence of the
ground states and the existence of the infinite volume dynamics τε,

lim
Λ↗Γ

∫ ∞
0

e−tλdµ̃Λ,ε(λ) = (2π)−
1
2

∫
R
ds gt(s)ωε

(
σ

(1)
0 τε,s(σ

(1)
0 )
)

=

∫ ∞
0

e−tλdνε(λ), (6.21)

where
dνε(Λ) =

〈
πε(σ

(1)
0 )Ωε, dQ̃ε(λ)πε(σ

(1)
0 )Ωε

〉
, (6.22)

and dQ̃ε is the spectral measure of the GNS Hamiltonian. This shows that the moment generating
functions of the measure µε of (6.14), and that of νε are equal in a neighbourhood of zero, and hence
the measures are the same, see e.g. [10, Chapter 30]. In particular, νε is absolutely continuous on
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[a0,ε, a1,ε), which implies that dQ̃ε(λ) has an absolutely continuous part throughout that interval.

It remains to identify that interval with the spectral band n = 1 of (6.11). At ε = 0, σ
(1)
0 causes a

‘spin flip’ at the origin and σ
(1)
0 ψΛ,0 = σ

(1)
0 ψ̃Λ,0 is an eigenstate with energy equal to 1, so that µ̃Λ,0

is a Dirac measure at λ = 1 for all Λ and so is the limit µ0. Since ε 7→ µε and ε 7→ a0,ε are analytic,
ε 7→ [a0,ε, a1,ε) is the band arising from the isolated point λ = 1. In particular, the interval [a0,ε, a1,ε)
is a subset of the n = 1 interval given in (6.11). Finally, its non-vanishing width and the analyticity
of p 7→ mε(p) imply that Σε(p) = mε(−p) is not constant. �

Altogether, this proves that the Ising model satisfies the standing assumptions of Section 4 for large
enough transverse field, and hence the scattering theory can be constructed.

We also mention that the existence of an isolated mass shell is expected to hold in a large class
of models. In fact it is proved in some sense for the strongly anisotropic antiferromagnetic spin-1/2
Heisenberg Hamiltonian

HH
Λ,ε =

1

2

∑
(x,y)∈E(Λ)

(
σ(3)
x σ(3)

y + 1
)

+ ε
(
σ(1)
x σ(1)

y + σ(2)
x σ(2)

y

)
, (6.23)

whose version with periodic boundary conditions will be denoted by H̃H
Λ,ε. In particular, the conver-

gence (6.14) and the properties of the measure obtained for the Ising Hamiltonian also hold for the
Heisenberg model for d ≥ 2 [62]. Moreover, in [1], it is shown that if n ∈ N indexes the eigenvalues
at ε = 0, then for all Λ large enough, the spectral projections P̃HΛ,ε(n) of H̃H

Λ,ε depend analytically on

ε for |ε| small enough. Furthermore, the projection P̃HΛ,ε(0) is two-dimensional, the two eigenvalues

converge to each other as Λ ↗ Zd for fixed ε, while they remain uniformly isolated from the rest
of the spectrum. There is however one obstruction: the ground state of the model is degenerate.
Hence the analysis above would have to be adapted for the antiferromagnetic Heisenberg model. We
do however believe that a similar program could be carried out to obtain a bona fide mass shell.

More generally, there is a large bulk of knowledge in the physics literature on the spectrum of
spin chains with various degrees of anisotropy and additional interactions with an external magnetic
field, see [53] and the many references therein. However, very few of these results have reached the
level of a mathematical proof. In most cases, a variational Ansatz based on physical arguments
is used to determine the dispersion relation of the mass shell, thereby yielding upper bounds on
spectral gaps, while rigorous lower bounds are much harder to obtain. Further bounds on what we
called here the upper gap are scarce.

In the case of the isotropic ferromagnetic model, the works [33, 40] describe the asymptotic
behavior of spin waves, which are the low-lying collective excitations (see [20] for a precise statement).
However, the situation is very different since the spectrum is not gapped.

7 Outlook

In this paper we have developed Haag-Ruelle scattering theory for gapped systems on a lattice, and
have shown that it applies to the Ising model in a strong transversal magnetic field. Compared to
the conventional quantum-mechanical scattering theory, as carried out in the framework of quantum
spin systems e.g. in [33], the HR approach has two merits: First, there is no need to identify a ‘free’
Hamiltonian, since the free dynamics enters via the dispersion relation Σ in the wave packets (4.2).
This is of advantage, because in the context of lattice systems identification of some free part
Hfree,Λ of a finite volume Hamiltonian HΛ is not always apparent. Moreover, the corresponding free
and interacting ground states would in general define inequivalent representations of the algebra of
observables A as they differ globally. The resulting free and interacting GNS Hamiltonians Hfree
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and H, would then act in these inequivalent representations and the usual quantum mechanical
formula for the wave operator limt→∞ eitHe−itHfree would be meaningless. Second, HR theory treats
all scattering channels on equal footing: Indeed, a generalization of the discussion from Section 4 to
the case of several mass shells in SpU is straightforward. These two features (among others) make
the HR theory particularly convenient in the case of infinite quantum systems7 and justify its further
study in the context of spin systems on a lattice. We discuss several interesting future directions
below. We will suggest many times that certain results from relativistic QFT should be adapted
to the lattice setting. However, we never mean that this is automatic. A pertinent obstacle is the
breakdown of the Reeh-Schlieder theorem in the context of lattice systems: This theorem states
that in a vacuum representation (π,H,Ω) of a relativistic theory we have π(A(O))Ω = H for any
open bounded region of space-time O [3]. This inevitable presence of non-local correlations in the
relativistic vacuum provides, at a technical level, convenient dense domains for various operators on
H. In contrast, for lattice systems discussed in this paper the subspaces π(A(Λ))Ω ⊂ H, Λ ∈ Pfin(Γ),
are never dense, as they are only finite-dimensional.

7.1 Non-triviality of the S-matrix and the LSZ reduction formulae

Although Theorem 4.13 guarantees the existence and the uniqueness of the S-matrix, it does not
automatically follow that it is non-trivial i.e. S 6= I. In other words, it is not a priori clear
if any scattering takes place at all. In local relativistic QFT non-triviality of the S-matrix was
settled in certain two-dimensional models [45,59,72]. Perhaps surprisingly, already in space-time of
dimension three we are not aware of any local relativistic theories for which S 6= I is clearly stated
and proven. In the thoroughly studied λφ4

3 theory the essential ingredients for such a proof seem
to be available [19, 48], but the effort of putting them together remains to be made. In physical
space-time construction of a local relativistic QFT with S 6= I is an important open problem, which
does not seem amenable to the existing methods. In contrast, in the framework of lattice models
one can reasonably expect that tractable models with non-trivial S-matrix are in abundance for any
d ≥ 1. However, rigorous results of this sort are not known to us. Clarifying this point, e.g. in
the Ising model of Section 6, could help to identify general properties of infinite quantum systems
responsible for (non-)triviality of the S-matrix. A possible starting point of such an investigation,
which in fact was accomplished in Euclidean lattice field theories [8], is to establish the Lehmann-
Symanzik-Zimmermann (LSZ) reduction formulae [46]. That is, to express the S-matrix via ground
state expectation values of time-ordered products of observables. In a concrete model, these ‘Green’s
functions’ should be tractable e.g. using perturbation theory.

7.2 Asymptotic completeness

The conventional property of asymptotic completeness requires that all states in the Hilbert space
have an interpretation in terms of particles i.e. belong to the ranges of the wave operators. This
property was established in many-body quantum mechanics for particles with quadratic dispersion
relations [23,71]. If the latter assumption is dropped, the problem of complete particle interpretation
is open beyond the two-body scattering. It is therefore not a surprise that for lattice systems, whose
basic excitations typically have non-quadratic dispersion relations, asymptotic completeness is rather
poorly understood. An additional problem which arises in infinite systems is a possible presence
of non-equivalent representations of A describing charged particles, so-called ‘charged sectors’: A
configuration of charged particles whose total charge is zero gives rise to a vector in the ground state
Hilbert space H which is not in the ranges of the wave operators of neutral particles W in/out. Thus in

7We note, however, that quantum-mechanical scattering theory can also be recast in the HR fashion [14,69].
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the presence of charged sectors the conventional asymptotic completeness relation RanW in/out = H
cannot hold as it stands. One way to save it is to construct wave operators of charged particles as
we discuss below. Another possibility is to formulate a weaker notion of asymptotic completeness
in the ground state representation which is compatible with non-trivial superselection structure. In
the context of local relativistic QFT, where analogous problems arise, such a notion was formulated
in [29] and verified using methods from many-body quantum mechanics (e.g. propagation estimates).
We are confident that the analysis from [29] could be adapted to the lattice setting and possibly
pursued much further in this more tractable framework. We recall in this context that in the case of
the isotropic ferromagnetic Heisenberg model8 a similar programme of transporting methods from
quantum-mechanical scattering (propagation estimates, Mourre theory) was carried out in [33] and
led to a proof of conventional asymptotic completeness of two-magnon scattering.

7.3 Scattering of charged particles

Charged particles are described by vector states in representations of A which are not equivalent
to the ground state representation. To create such particles from the ground state vector Ω, which
is the first step of a construction of scattering states, it is necessary to use charge-carrying fields9.
While such fields are not elements of A, in massive relativistic theories they can be obtained from
observables by some variant of what is known as the Doplicher-Haag-Roberts (DHR) construction [18,
24]. In general, charged fields have different properties than observables: First, they may not be
localizable in bounded regions, but only in spacelike ‘fattening’ strings. Second, their commutation
rules may not be governed by the Bose statistics - in physical space-time one obtains the familiar
Bose/Fermi alternative while in lower dimensions more exotic braid group statistics corresponding to
anyonic excitations is possible. In all these cases scattering theory is well understood in the abstract
framework of local relativistic QFT [18,32]. In particular, it is known that anyonic statistics implies
non-triviality of the S-matrix [15]. But concrete examples satisfying all the assumptions are scarce
(see however [61]).

In the setting of lattice systems the opposite situation seems to be the case: there are plenty
of tractable models, containing charged [7] or even anyonic [44] excitations, but a general theory
of superselection sectors and scattering is not well developed. First steps towards such a general
theory for lattice systems satisfying the Lieb-Robinson bounds were taken over three decades ago in
the Diplom thesis of Schmitz [70], but this direction of research seems to have been abandoned. We
stress that nowadays there is strong physical motivation to revisit this subject: anyonic excitations
appear in topologically ordered systems, which are relevant for quantum computing [74]. Thus a
model independent theory of superselection sectors and scattering for anyonic systems on a lattice
could prove very useful.

7.4 Scattering theory of anyons in Kitaev’s toric code model

The simplest example of a lattice system exhibiting topological order is Kitaev’s toric code model [44].
This model is defined as follows: On finite Λ ⊂ Z2 that we imagine painted as a chessboard, let ΛB,
resp. ΛW be the subsets of black, respectively white squares, and define local Hamiltonians by

HK
Λ,0 =

∑
X∈ΛB

1

2

(
1−

∏
x∈X

σ(3)
x

)
+
∑
Y ∈ΛW

1

2

(
1−

∏
y∈Y

σ(1)
y

)
. (7.1)

8This model is not gapped and thus outside of the scope of this paper. Nevertheless it admits a meaningful scattering
theory which relies on a specific form of its Hamiltonian.

9The actual mathematical formulation may involve the field algebra [25] or the field bundle [24] depending on a
situation.
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The Hamiltonian is a sum of mutually commuting projections, and it has frustration-free ground
states: for any X ∈ ΛB and Y ∈ ΛW , the ground state projection PKΛ,0 is such that

(1−
∏
x∈X

σ(3)
x )PKΛ,0 = (1−

∏
y∈Y

σ(1)
y )PKΛ,0 = 0. (7.2)

Imposing periodic boundary conditions, this model can be seen as living on a torus, and in fact,
it can be defined on tori of higher genera. Topological order manifests itself in the ground states
by a degeneracy depending on the genus g of the surface, in this particular example 4g, while the
various ground states are locally indistinguishable, see [13] for precise definitions. Excited states
can be obtained by flipping a pair of either black squares or white squares. Such an excited square
has a natural interpretation of an abelian anyon [44]. Note that it is only possible to create pairs
of excitations, which can be interpreted as a form of charge conservation. To consider a single
excitation, one has to go to the thermodynamic limit, where it is possible to move one excitation of
the pair to infinity [55]. The anyonic nature of that ‘particle’ is another manifestation of topological
order.

The first step to develop scattering theory for anyons in this model is to obtain charge-carrying
fields discussed in Subsection 7.3. This may be possible by adapting to the lattice setting results
from [37, 54, 65]. The second step is to check if the mass shells of the anyons satisfy the technical
conditions stated in Section 4. In fact this turns out not to be the case: the excitations of the
Kitaev model have flat ‘mass shells’, thus there is no propagation. A possible solution is to proceed
to perturbed models of the form

HK
Λ,ε = HK

Λ,0 + ε
∑
X⊂Λ

Φ(X), (7.3)

where Φ ∈ Bλ for some λ > 0. While the shape of the spectrum, in particular of mass shells, should
be sensitive to such perturbations, the superselection structure typically is not, so we can expect
HK

Λ,ε to describe propagating anyons. Since HK
Λ,0 belongs to a class of theories whose perturbation

theory is well understood [13, 52], there are good chances to verify this claim proceeding similarly
as in Section 6. In particular a band structure similar to (6.7) is available. Given mass shells and
charge-carrying fields of anyons, a construction of scattering states should be performed by adapting
the relativistic results from [32] to the lattice setting.

A Spectral theory of automorphism groups

A.1 Groups of isometries

We give a brief account of concepts and results in spectral analysis of automorphism groups which
are used in this work. For a more extensive introduction to this subject we refer to [5] and [12,
Section 3.2.3].

Let G be a locally compact abelian group. Let Ĝ be its dual group, that is the set of all characters
{λ} (i.e. continuous group homomorphisms G 3 g 7→ 〈λ, g〉 ∈ S1). Given f ∈ L1(G), we define the
Fourier transform of f as

f̂(λ) =

∫
G
〈λ, g〉f(g)dµG(g), (A.1)

where dµG is the Haar measure of G. In general f̂ is an element of C0(Ĝ). In case f̂ ∈ L1(Ĝ) we
have the Fourier inversion formula

f(g) =

∫
Ĝ
〈λ, g〉f̂(λ)dµ

Ĝ
(λ), (A.2)
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provided that the Haar measure of Ĝ is suitably normalized.
Let G 3 g 7→ Tg be a strongly continuous representation of G in a group of isometries of a

complex Banach space V . Then, for any f ∈ L1(G), there is a unique bounded operator Tf of V
defined by

Tfv =

∫
G

(Tgv)f(g)dµG(g), v ∈ V, (A.3)

where the r.h.s. is a Bochner integral.

Definition A.1. The Arveson spectrum of T and the Arveson spectrum of v with respect to T are
defined by

SpT :={λ ∈ Ĝ | ∀Oλ ∃f ∈ L1(G) s.t. supp f̂ ⊂ Oλ and Tf 6= 0 }, (A.4)

Spv T :={λ ∈ Ĝ | ∀Oλ ∃f ∈ L1(G) s.t. supp f̂ ⊂ Oλ and Tfv 6= 0 }, (A.5)

respectively, where Oλ denotes a neighbourhood of λ. Also, for any closed E ⊂ Ĝ we define the
spectral subspace

MT (E) := { v ∈ V | Spv T ⊂ E }, (A.6)

where the closure is taken in the weak topology.

We note that in the case of G = Rn the Arveson spectrum of v w.r.t. T can equivalently be
defined as the support of the inverse Fourier transform of the distribution g 7→ Tgv. The closure of
the union of such supports (over all v ∈ V ) coincides with SpT . Coming back to general G, one can
easily show that

SpTfvT ⊂ SpvT ∩ supp f̂ . (A.7)

This relation allows to construct elements of V whose Arveson spectrum is contained in a prescribed
set.

A.2 Groups of unitaries

As a first example fitting into the above framework let us consider a strongly continuous abelian
group of unitaries G 3 g 7→ U(g) acting on a Hilbert space H. In this case the SNAG theorem
provides us with a spectral measure dP on Ĝ with values in projections on H, given by

U(g) =

∫
G
〈λ, g〉dP (λ). (A.8)

SpU coincides here with the support of dP and SpΨU for some Ψ ∈ H, with the support of
〈Ψ, dP ( · )Ψ〉. Moreover,

MU (E) = RanP (E). (A.9)

Finally we remark that if G = R then, by the Stone theorem, SpU is simply the spectrum of the
infinitesimal generator of U .
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A.3 Groups of automorphisms of C∗-algebras

As a second example let us consider a strongly continuous group of automorphisms G 3 g 7→ τg of
a C∗-algebra A. In the case G = R one can show that Sp τ (resp. SpA τ for some A ∈ A) coincides
with the operator-theoretic spectrum of the infinitesimal generator −iδ of τ on the entire Banach
space A (resp. on the weakly closed subspace spanned by the orbit of A under the action of τ) [31].
Coming back to the general G, we obtain from (A.7):

Spτf (A)τ ⊂ SpAτ ∩ supp f̂ . (A.10)

Now let π : A → B(H) be a representation of A in which τ is unitarily implemented i.e. there
exists a strongly continuous group of unitaries G 3 g 7→ U(g) s.t.

π(τg(A)) = U(g)π(A)U(g)∗, g ∈ G. (A.11)

This group of unitaries defines a group of automorphisms τ̃g( · ) = U(g) · U(g)∗ on B(H) and thus
for any B ∈ B(H) we can define its Arveson spectrum10 SpB τ̃ w.r.t τ̃ . It follows from Definition A.1
that

Spπ(A)τ̃ ⊂ SpAτ (A.12)

and for faithful π this inclusion is an equality. In the following theorem we summarize the relations
between the spectra of τ , τ̃ and U . This is a special case of Theorem 3.5 of [5]:

Theorem A.2. Let ∆ be a closed subset of Ĝ and A ∈ A. Then

π(A)P (∆) = P (∆ + Spπ(A)τ̃)π(A)P (∆). (A.13)

If π is faithful then Spπ(A)τ̃ = SpAτ .

To conclude this section, we point out an important difference between the spectral theory of
groups and unitaries and of groups of automorphisms: in the latter case no obvious counterpart of
the spectral measure (A.8) exists. Therefore, the finer structure of the Arveson spectrum of auto-
morphism groups (e.g. its division into pure-point, absolutely continuous and singular continuous
parts) remains to a large extent unexplored. Some steps to close this gap, with physical applications
in mind, have been taken in [17,28,41].

A.4 Examples of groups and their Haar measures

In relativistic quantum field theory we have G = Rd+1, Ĝ = Rd+1, the respective Haar measures
are the Lebesgue measures with normalization factors (2π)−(d+1)/2, and relations (A.1), (A.2) give
the usual Fourier transforms of functions on Minkowski space-time. The Arveson spectrum SpAτ is
often called the energy-momentum transfer of A due to relation (A.13).

In the case of lattice systems considered in the present paper, we consider the locally compact
abelian group G = R× Γ, where Γ := Zd is the group of lattice translations. The Haar measures of
Γ and G are fixed by the relations∫

f(x)dµΓ(x) = (2π)−
d
2

∑
x∈Γ

f(x), f ∈ L1(Γ), (A.14)∫
f(t, x)dµG(t, x) = (2π)−

d+1
2

∑
x∈Γ

∫
R
dt f(t, x), f ∈ L1(G). (A.15)

10The representation g 7→ τ̃g is usually not strongly continuous, and (A.3) can only be defined as a weak integral.
By the Riesz theorem the weak integral defines a unique element of B(H) and thus the Arveson spectrum of τ̃ is well
defined. The closure in (A.6) should then be taken in the weak-∗ topology.
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The dual group of G is Ĝ = R × Γ̂, where Γ̂ = Sd1 is the d-dimensional torus. For p ∈ Sd1 the
corresponding characters are given by

〈p, x〉Γ = eipx, p ∈ Γ̂, x ∈ Γ, (A.16)

〈(E, p), (t, x)〉G = e−iEt+ipx, (E, p) ∈ Ĝ, (t, x) ∈ G. (A.17)

With definitions (A.14)–(A.17) relation (A.1) reproduces our formulas for the Fourier transform in
(D.1), (D.2).

To construct the Haar measure on Ĝ and Γ̂ we proceed as follows: Let us consider two distinct
points p± ∈ S1 and open intervals I± identified with S1\{p±} via

I± 3 p1 7→ eip1 ∈ S1. (A.18)

For example, we can choose I+ = (0, 2π), I− = (−π, π). Now let ϕ± ∈ C∞(S1) be a smooth partition
of unity on S1 s.t. suppϕ± ⊂ I±. We can express the Haar measure on S1 by the relation∫

S1

f(p1)dµS1(p1) = (2π)−
1
2

∑
i∈{±}

∫
Ii

ϕi(p
1)f(p1)dp1, f ∈ L1(S1). (A.19)

By the uniqueness of the Haar measure (up to normalization) the r.h.s. above does not depend on
the details of the construction. Thus the Haar measure on the torus Γ̂ = Sd1 can be expressed as∫

Γ̂
f(p)dµ

Γ̂
(p) = (2π)−

d
2

∑
i1,...,id∈{±}

∫
Ii1×···×Iid

ϕi1(p1) . . . ϕid(p
d)f(p1, . . . , pd)dp, f ∈ L1(Γ̂),

(A.20)

where dp = dp1 . . . dpd. This careful construction of dµ
Γ̂

is important in the proof of Proposition 4.3.
Otherwise, due to the close relation between dµ

Γ̂
and the Lebesgue measure we use the short-hand

notation ∫
Γ̂
f(p)dµ

Γ̂
(p) =: (2π)−

d
2

∫
Γ̂
f(p)dp, f ∈ L1(Γ̂). (A.21)

In case f is supported on a subset of Γ̂ which is diffeomorphic with Rd, (A.21) makes sense also
literally. Using this short-hand notation, the Haar measure on Ĝ is given by∫

Ĝ
f(E, p)dµ

Ĝ
(E, p) = (2π)−

d+1
2

∫
R×Γ̂

f(E, p)dEdp, f ∈ L1(Ĝ). (A.22)

Given expressions (A.21), (A.22), relation (A.2) reproduces formulas (D.4), (D.5) for the inverse
Fourier transforms.

Finally, we note that partial derivatives of a function f ∈ C∞(∆), where ∆ is an open subset of
Γ̂, are independent of a chosen parametrization of the torus, an observation which is implicitly used
e.g. in Definition 4.1.

B The energy-momentum transfer lemma

Here we present a proof of the energy-momentum transfer relation, equation (3.15), in the context
of lattice systems. This is a special case of Theorem 3.5 of [5], but for the benefit of the reader we
here adapt an elementary argument given in the context of relativistic QFT in [26].
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Lemma B.1. Let A ∈ A and τ be the group of space-time translation automorphisms, and U its
implementing group of unitaries as in Subsection 3.1. Write P for the associated spectral measure
defined in (3.7). We then have the energy-momentum transfer relation

π(A)P (∆) = P (∆ + SpAτ)π(A)P (∆) (B.1)

for any Borel subset ∆ ⊂ R× Γ̂.

Proof. By countable additivity of the spectral measure, we can assume without loss of generality
that ∆ is bounded. Now for any g ∈ S(R× Γ) let

P (g) := (2π)−
d+1

2

∑
x∈Γ

∫
R
dtU(t, x)g(t, x) (B.2)

which has the following properties: Firstly, P (g) = P (K)P (g) for any closed K ⊃ supp(ĝ). Secondly,
P (∆) = P (g)P (∆) for any function g such that ĝ �∆= 1.

Now, let f, g ∈ S(R× Γ). We have that

π(τf (A))P (g) = (2π)−(d+1)
∑
x,y∈Γ

∫
R2

dtds f(t, x)g(s, y)U(t, x)π(A)U(t− s, x− y)∗

= (2π)−(d+1)
∑
z,y∈Γ

∫
R2

drds f(r + s, z + y)g(s, y)U(s, y)π(τ(r,z)(A))

= (2π)−
d+1

2

∑
z∈Γ

∫
R
dr P (h(r,z))π(τ(r,z)(A)), (B.3)

where the function h(r,z)(s, y) = f(r + s, z + y)g(s, y) clearly satisfies

supp(ĥ(r,z)) ⊂ supp(f̂) + supp(ĝ). (B.4)

Hence
π(τf (A))P (g) = P

(
supp(f̂) + supp(ĝ)

)
π(τf (A))P (g). (B.5)

Let now ϕ ∈ C∞(R× Γ̂) be bounded (as well as all its derivatives) and such that ϕ �SpAτ= 1 and

ϕ �(SpAτ)cε
= 0, where for any Ω ⊂ R× Γ̂ and ε > 0, we define Ωε := {x ∈ R× Γ̂ : dist(x,Ω) ≤ ε}, and

Ωc
ε is its complement. Such ϕ can be obtained by convoluting the characteristic function of (SpAτ)ε/2

with a suitable function from C∞0 (R× Γ̂). This yields a decomposition f̂ = f̂1 + f̂2 = ϕf̂ + (1−ϕ)f̂ ,
where both f1, f2 are Schwartz functions, and further

τf (A) = τf1(A) + τf2(A). (B.6)

By definition of the Arveson spectrum, τf2(A) = 0.
Let K be a compact set such that K ∩ (∆ + SpAτ) = ∅, and consider g ∈ S(R × Γ) such that

ĝ �∆= 1 and ĝ �∆c
ε
= 0. Then,

P (K)π(τf (A))P (∆) = P (K)π(τf1(A))P (g)P (∆)

= P (K)P
(
supp(f̂1) + supp(ĝ)

)
π(τf1(A))P (g)P (∆). (B.7)

Since K is disjoint from the compact set ∆ + SpAτ , there is ε small enough such that

dist
(
K, supp(f̂1) + supp(ĝ)

)
≥ dist (K, (SpAτ)ε + ∆ε) > 0, (B.8)
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and hence P (K)P
(
supp(f̂1) + supp(ĝ)

)
= 0. Therefore, P (K)π(τf (A))P (∆) = 0.

Finally, let (fn)n∈N be defined by

fn(t, x) = f̃n(t)δ0(x), (B.9)

where f̃n(t) = (2π)
d+1

2 (4πn−1)
− 1

2 e−nt
2/4 is a sequence converging to the Dirac δ (multiplied by

(2π)
d+1

2 ), and δ0 is Kronecker’s delta on Zd. For any ψ,ψ′ ∈ H,

〈
ψ′, π(τfn(A))ψ

〉
= (2π)−

d+1
2

∑
x∈Γ

∫
R
dt
〈
U(t, x)ψ′, π(A)U(t, x)ψ

〉
fn(t, x)→

〈
ψ′, π(A)ψ

〉
, (B.10)

by the strong continuity of (t, · ) 7→ U(t, · ), U(0, 0) = 1 and the dominated convergence theorem.
Hence, for ∆,K as above,

P (K)π(A)P (∆) = w− lim
n
P (K)π(τfn(A))P (∆) = 0. (B.11)

The restriction of K being compact can be lifted by considering a countable partition of the com-
plement of ∆ + SpAτ into bounded sets, so that the statement above extends to any K such that
K ∩ (∆ + SpAτ) = ∅. It follows that

π(A)P (∆)H ⊂
(
P
(

(R× Γ̂) \ (∆ + SpAτ)
)
H
)⊥

= P
(
∆ + SpAτ

)
H, (B.12)

i.e. π(A)P (∆) = P (∆ + SpAτ)π(A)P (∆). Since the reverse inclusion is trivial, this proves the
result. �

C Proof of Theorem 3.10

In this section we give a proof that space-time translations leave the algebra Aa−loc invariant, and
that the same is true if we smear against Schwartz functions. To this end, we first recall Lemma 3.2
of [6]:

Lemma C.1. If H1 and H2 are Hilbert spaces, and if A ∈ B(H1 ⊗H2) is such that

‖[A, 1⊗B]‖ < ε‖B‖

for all B ∈ B(H2), then for any normal state ω on B(H2), the map Πω = id⊗ ω satisfies the bound

‖Πω(A)−A‖ ≤ 2ε.

The key step in our proof of Theorem 3.10 is the following consequence of the Lieb-Robinson bound:

Proposition C.2. For any Y ∈ Pfin(Γ), A ∈ A(Y ), δ > 0 and t ∈ R there exists At,δ ∈ A
(
Y (vλ|t|+δ)

)
such that

‖τt(A)−At,δ‖ ≤ C(A, λ)e−λδ, (C.1)

and λ > 0 is as in Theorem 2.1. Moreover, the dependence t 7→ At,δ is piecewise continuous w.r.t.
the norm topology.
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Proof. In order to apply Lemma C.1 in the present case, let ρ be an arbitrary state on A. It
is necessarily locally normal with density matrices ρΛ, that is ρ(A) = Tr(ρΛA) for A ∈ A(Λ).
For any finite X ⊂ Λ ⊂ Γ, we consider the projection ΠΛ,X : A(Λ) → A(X) ⊗ 1Λ\X ' A(X)
onto the subalgebra A(X) given by ΠΛ,X := ΠρΛ\X = idA(X) ⊗ ρΛ\X . It satisfies the consistency
condition ΠΛ,X(A) = ΠΛ′,X(A) whenever A ∈ A(Λ) with X ⊂ Λ ⊂ Λ′ ⊂ Γ. We can therefore
define ΠX : A → A(X) as follows: for any A ∈ Aloc, for any Λ such that A ∈ A(Λ) we let
ΠX(A) = ΠΛ,X(A). Since, moreover, ‖ΠΛ,X(A)‖ ≤ ‖A‖, the densely defined linear map ΠX can be
extended to a bounded operator on the whole algebra A with the same bound.

Let now A ∈ A(Y ), t ∈ R, and Y ⊂ Λ ⊂ Λ′. Since τΛ
t (A) ∈ A(Λ) ⊂ A(Λ′), we have for any r > 0

such that Y r ⊂ Λ,∥∥∥ΠY r(τ
Λ
t (A))−ΠY r(τ

Λ′
t (A))

∥∥∥ =
∥∥∥ΠΛ′,Y r

(
τΛ
t (A)− τΛ′

t (A)
)∥∥∥ ≤ ∥∥∥τΛ

t (A)− τΛ′
t (A)

∥∥∥ . (C.2)

Hence,
A′t,r := lim

Λ↗Γ
ΠY r(τ

Λ
t (A)) (C.3)

exists and A′t,r ∈ A(Y r). Now we can write∥∥τt(A)−A′t,r
∥∥ ≤ ∥∥τt(A)− τΛ

t (A)
∥∥+

∥∥τΛ
t (A)−ΠY r(τ

Λ
t (A))

∥∥+
∥∥ΠY r(τ

Λ
t (A))−A′t,r

∥∥ , (C.4)

keeping in mind that r is restricted by Y r ⊂ Λ. Let us now eliminate this restriction: The Lieb-
Robinson bound (2.14) yields∥∥[τΛ

t (A), 1⊗B
]∥∥ ≤ 2‖A‖‖B‖

Cλ
|Y |‖F‖e−λ(r−vλ|t|) (C.5)

for any B ∈ A(Λ \ Y r). Therefore Lemma C.1 gives

‖ΠY r(τ
Λ
t (A))− τΛ

t (A)‖ ≤ 4‖A‖
Cλ
|Y |‖F‖e−λ(r−vλ|t|), (C.6)

uniformly in Λ. We apply this bound to the second term on the r.h.s of (C.4) and then take the
limit Λ ↗ Γ which eliminates the remaining two terms and the restriction on r. Thus we are left
with ∥∥τt(A)−A′t,r

∥∥ ≤ 4‖A‖
Cλ
|Y |‖F‖e−λ(r−vλ|t|), (C.7)

where r > 0 is arbitrary. Now for any δ > 0, t ∈ R we set r equal to r(δ, t) = vλ|t| + δ and define
Aδ,t := A′t,r(δ,t). This concludes the proof of (C.1).

The piecewise continuity of t 7→ Aδ,t, follows from two observations: First, r 7→ A′t,r, given by
(C.3), is a step function for fixed t (since r 7→ Y r depends on r in a discrete manner). Second,
t 7→ A′t,r is continuous in norm for fixed r, which follows by replacing τΛ′

t (A) with τΛ
t′ (A) in (C.2). �

Now we are ready to show that by smearing a local observable with a Schwartz class function we
obtain an almost local observable.

Lemma C.3. Let Λ ∈ Pfin(Λ), A ∈ A(Λ) and f ∈ S(R× Γ). Then τf (A) ∈ Aa−loc.

Proof. The fact that τf (A) ∈ A follows from the strong continuity of τ and properties of Bochner
integrals, or from the approximation procedure below. Let us set

A(r) :=

∫
|t|≤r

dt
∑

x∈Γ,|x|≤r

τ(t,x)(A)f(t, x). (C.8)
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Since f ∈ S(R× Γ), we have

τf (A) = A(r) +O(r−∞). (C.9)

Now we fix some δ > 0, depending on r, which will be specified later. Proposition C.2 gives
observables At,δ ∈ A(Λrδ(t)), with rδ(t) := vλt+ δ, such that

‖τt(A)−At,δ‖ ≤ C(A, λ)e−λδ. (C.10)

We note that At,δ ∈ A(Λrδ(r)), since |t| ≤ r in (C.8). Estimate (C.10) gives

A(r) =

∫
|t|≤r

dt
∑

x∈Γ,|x|≤r

τx(At,δ)f(t, x) +O(e−λδ), (C.11)

where we exploited the fact that the function t 7→ At,δ is piecewise continuous in norm and thus
Bochner integrable (see Proposition C.2). We denote by Ar the integral on the r.h.s. of (C.11) and
note that Ar ∈ A(Λvλr+δ+r). We set δ = r and obtain from (C.11)

A(r) = Ar +O(r−∞). (C.12)

Noting that Λ(vλ+2)r ⊂ Z2(vλ+2)r for r ≥ R0, where R0 depends on Λ, modifying Ar for r ≤ R0 and
rescaling r we conclude the proof. �

Proof of Theorem 3.10: Let A′ ∈ Aa−loc i.e. we have that there exist A′r ∈ A(Zr) s.t. A′ −A′r =
O(r−∞).

To show (a), we note that for (t, x) ∈ R× Γ

τ(t,x)(A
′)− τ(t,x)(A

′
r) = O(r−∞). (C.13)

Now by Proposition C.2, we obtain Ar ∈ A((Zr + x)r) s.t.

τ(t,x)(A
′
r)−Ar = O(r−∞). (C.14)

Using that (Zr + x)r = {x}2r ⊂ Z3r for r sufficiently large, we conclude part (a) as in the last step
of the proof of Lemma C.3.

To show (b) we note that for f ∈ S(R× Γ) we have

‖τf (A′)− τf (A′r)‖ ≤ ‖A′ −A′r‖‖f‖1 (C.15)

and therefore τf (A′)− τf (A′r) = O(r−∞). Now by Lemma C.3 we obtain Ar ∈ A((Zr)r) s.t.

τf (A′r)−Ar = O(r−∞). (C.16)

Using that (Zr)r ⊂ Z2r, we complete the proof in the case of f ∈ S(R × Γ). The remaining cases
follow similarly. �

D Notations

For the convenience of the readers we here collect the main notations that we use and at the same
time fix our normalisation constants for the Fourier transform. Note that we use a Minkowski sign
convention, in that the time and spatial components carry an opposite sign in the Fourier transform.
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1. For f ∈ L1(R×Γ), g ∈ L1(Γ), h ∈ L1(R) we define the following norms and Fourier transforms

‖f‖1 := (2π)−
(d+1)

2

∑
x∈Γ

∫
R
dt |f(t, x)|, f̂(E, p) := (2π)−

(d+1)
2

∑
x∈Γ

∫
R
dt eiEt−ipxf(t, x), (D.1)

‖g‖1 := (2π)−
d
2

∑
x∈Γ

|g(x)|, ĝ(p) := (2π)−
d
2

∑
x∈Γ

e−ipxg(x), (D.2)

‖h‖1 := (2π)−
1
2

∫
R
dt |h(t)|, ĥ(E) := (2π)−

1
2

∫
R
dt eiEth(t). (D.3)

2. For f̂ ∈ L1(R× Γ̂), ĝ ∈ L1(Γ̂), ĥ ∈ L1(R) we write

‖f̂‖1 := (2π)−
(d+1)

2

∫
R×Γ̂

dEdp |f̂(E, p)|, f(t, x) = (2π)−
(d+1)

2

∫
R×Γ̂

dEdp e−iEt+ipxf̂(E, p),

(D.4)

‖ĝ‖1 := (2π)−
d
2

∫
Γ̂
dp |ĝ(p)|, g(x) = (2π)−

d
2

∫
Γ̂
dp eipxĝ(p), (D.5)

‖ĥ‖1 := (2π)−
1
2

∫
R
dE |ĥ(E)|, h(t) = (2π)−

1
2

∫
R
dE e−iEtĥ(E). (D.6)

3. We write 〈x〉 :=
√

1 + x2.

4. We say that g ∈ S(Γ) if g(x) = O(〈x〉−∞). Equivalently, g ∈ S(Γ) if ĝ ∈ C∞(Γ̂).

5. We say that f ∈ S(R×Γ), if f ∈ C∞(R×Γ) and ∂nt f(t, x) = O((〈t〉+ 〈x〉)−∞) for any n ∈ N.
Equivalently, f ∈ S(R × Γ) if f̂ ∈ C∞(R × Γ̂) and ∂αp ∂

n
E f̂(E, p) = O(〈E〉−∞), uniformly in

p ∈ Γ̂, for any n ∈ N and α ∈ Nd.

6. Given B ∈ B(H) we set B(t, x) := U(t, x)BU(t, x)∗, B(x) := B(0, x), Bt := B(t, 0).

7. Given B ∈ B(H), f ∈ L1(R× Γ) and g ∈ L1(Γ) we write

B(f) := (2π)−
(d+1)

2

∑
x∈Γ

∫
dtB(t, x)f(t, x), B(g) := (2π)−

d
2

∑
x∈Γ

B(x)g(x). (D.7)

Thus for A ∈ A we have π(A)(f) = π(τf (A)), π(A)(g) = π(τ
(d)
g (A)).

8. O(x) denotes a term such that ‖O(x)‖ ≤ C|x| in some specified norms. O(x−∞) denotes a
term which is O(x−n) for any n ∈ N.
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[66] F. Riesz and B. Sz-Nagy. Leçons d’Analyse Fonctionnelle. Gauthier-Villars, 3rd edition, 1955.

[67] D.W. Robinson. Properties of propagation of quantum spin systems. J. Austral. Math. Soc., 19:387–399,
1976.

[68] D. Ruelle. On the asymptotic condition in quantum field theory. Helv. Phys. Acta, 35:147–163, 1962.

[69] W. Sandhas. Definition and existence of multichannel scattering states. Commun. Math. Phys., 3(5):358–
374, 1966.

[70] M. Schmitz. Lokalitätseigenschaften von Einteilchenzuständen in Quanten-Spinzuständen. Master’s
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