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Abstract

In this article, we derive the state probabilities of different type of space- and time-fractional

Poisson processes using z-transform. We work on tempered versions of time-fractional Poisson

process and space-fractional Poisson processes. We also introduce Gegenbauer type fractional

differential equations and their solutions using z-transform. Our results generalize and com-

plement the results available on fractional Poisson processes in several directions.

Key Words: Fractional Poisson process, Z-transform, inverse tempered stable subordinator,

fractional derivatives.

1 Introduction

In recent years fractional processes are getting increased attention due to their real life applica-

tions. For example fractional Brownian motion (FBM) overcome the limitations of Brownian

motion in modeling of long-range dependent phenomena occurring in financial time series,

Nile river data and fractal analysis etc (see e.g., [1]). Similarly time-fractional Poisson process

is helpful in modeling of counting processes where the inter-arrival times are heavy tailed or

arrivals are delayed (see e.g., [2, 3]). In time-fractional Poisson process the waiting times

are Mittag-Leffler (ML) distributed see [3]. Recently, [4] introduced space-fractional Pois-

son process by taking a fractional shift operator in place of an integer shift operator in the

governing differential-difference equation of standard Poisson process. Moreover, they have

shown that space-fractional Poisson process can also be obtained by time-changing the stan-

dard Poisson process with a stable subordinator. Further, they argue that time-fractional

Poisson process and the space-fractional Poisson process are specific cases of the same gener-

alized complete model and hence might be useful in the study of transport of charge carriers

in semiconductors [5] or applications related to fractional quantum mechanics [6]. In this

article, we extend the space-fractional and time-fractional Poisson process by considering a
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tempered time-space-fractional Poisson process. We feel a strong motivation to study these

processes since tempering introduces a finite moment condition in space-fractional Poisson

process. Further, it gives more flexibility in modeling of natural phenomena discussed in [6],

due to extra parameters which can be picked based on the situation. Moreover, we suggest

to use z-transform since the z-transform method is more general then method of probability

generating functions, and hence it could be applied for solutions of fractional equations which

are not probability distributions, see Section 3.6. The governing equations for marginal distri-

butions of Poisson and Skellam processes time-changed by inverse subordinators are discussed

in [7]. For properties of Poisson processes directed by compound Poisson-Gamma subordina-

tors (see [8]).

The rest of the paper is organized as follows. In Section 2, we introduce the z-transform

and the inverse z-transform by indicating their main characteristics. In this section Caputo-

Djrbashian fractional derivative, Caputo tempered fractional derivative and the Riemann-

Liouville tempered fractional derivative are also discussed. Further, main properties of Poisson

process are discussed briefly. Section 3 is devoted to different kind of fractional Poisson

processes. In this section first we revisit the time- and space-fractional Poisson processes with

z-transform approach. Our main results are given in Sections 3.4, 3.5 and 3.6. The last section

concludes.

2 Preliminaries

In this section, we provide some basic definitions and results to be used further in subsequent

sections.

2.1 The Z-Transform and Its Inverse

The z-transform is a linear transformation and can be considered as an operator, mapping

sequence of scalars into functions of complex variable z. For a function f(k), k ∈ Z, the

bilateral z-transform is defined by (see e.g., [9])

F (z) = Zf(k) =
∞∑

k=−∞

f(k)z−k, z ∈ C. (2.1)

We assume that there exists a region of convergence (ROC) such that the infinite-series (2.1)

converges in ROC. Alternatively, in case where f(k) is defined only for k ≥ 0, the (unilateral)

z-transform is defined as

F (z) = Zf(k) =
∞∑
k=0

f(k)z−k, z ∈ C,
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where the coefficient of z−k in this expansion is an inverse given by

f(k) = Z−1(F (z)). (2.2)

The inverse z-transform is also defined by the complex integral

Z−1{F (z)} = f(k) =
1

2πi

∮
C

F (z)zk−1 dz,

where C is simple closed contour enclosing the origin and lying outside the circle |z| = R. The

existence of the inverse imposes restrictions on f(k) for the uniqueness. If f(k), k ∈ N ∪ {0},
is probability distribution, that is, f(k) ≥ 0 and

∞∑
k=0

f(k) = 1,

then the probability generating function (PGF) is defined by

G(u) =
∞∑
k=0

ukf(k), |u| ≤ 1,

and relates to unilateral z-transform as follows G(z−1) = F (z). The following operational

properties of z-transform are used further for the solution of initial value problem involving

difference equations

Zf(k) = F (z),

Z(f(k −m)) = z−m[F (z) +
−1∑

r=−m

f(r)z−r], (2.3)

Z(f(k +m)) = zm[F (z)−
m−1∑
r=0

f(r)z−r], m ≥ 0. (2.4)

2.2 Fractional Derivatives

The Caputo-Djrbashain (CD) fractional derivative of order β ∈ (0, 1], for a function g(t), t ≥ 0

is defined as
dβ

dtβ
g(t) =

1

Γ(1− β)

∫ t

0

dg(τ)

dτ

dτ

(t− τ)β
, β ∈ (0, 1]. (2.5)

Note that the classes of functions for which the CD derivative is well defined is discussed in

([10], Sections 2.2, 2.3). The Laplace transform (LT) of CD fractional derivative is given by

(see e.g., [10], p.39)

L
(
dβ

dtβ
g(t)

)
=

∫ ∞
0

e−st
dβ

dtβ
g(t)dt = sβ g̃(s)− sβ−1g(0+), 0 < β ≤ 1,
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where g̃(s) is the LT of the function g(t), t ≥ 0, such that

L(g(t)) = g̃(s) =

∫ ∞
0

e−stg(t)dt.

The Riemann-Liouville tempered fractional derivative is defined by (see [11])

Dβ,ν
t g(t) = e−νtDβ

t [eνtg(t)]− νβg(t),

where

Dβ
t g(t) =

1

Γ(1− β)

d

dt

∫ t

0

g(u)du

(t− u)β

is the usual Riemann-Liouville fractional derivative of order β ∈ (0, 1). Further, the LT of

Riemann-Liouville tempered fractional derivative is

L
[
Dβ,ν
t g(t)

]
(s) = ((s+ ν)β − νβ)g̃(s). (2.6)

The Caputo tempered fractional derivative is defined by (see [11])

dβ,ν

dtβ,ν
g(t) = Dβ,ν

t g(t)− g(0)

Γ(1− β)

∫ ∞
t

e−νrβr−β−1dr. (2.7)

The Laplace transform for the Caputo tempered fractional derivative for a function g(t) sat-

isfies

L
[
dβ,ν

dtβ,ν
g

]
(s) = ((s+ ν)β − νβ)g̃(s)− s−1((s+ ν)β − νβ)g(0). (2.8)

2.3 Poisson Process

The homogeneous Poisson process N(t), t ≥ 0, with parameter λ > 0 is defined as,

N(t) = max{n : T1 + T2 + . . .+ Tn ≤ t}, t ≥ 0,

where the inter-arrival times T1, T2, . . . , Tn are non-negative iid exponential random variables

with mean 1/λ. The probability mass function (PMF) P (k, t) = P(N(t) = k) is given by

P (k, t) =
e−λt(λt)k

k!
, k = 0, 1, 2, . . . (2.9)

The PMF of the Poisson process satisfies the differential-difference equation of the form

d

dt
P (k, t) = −λ(P (k, t)− P (k − 1, t)) = −λ∇P (k, t) (2.10)

with initial conditions

P (k, 0) = δk,0 =

0, k 6= 0,

1, k = 0.
(2.11)

Further, by definition P (−l, t) = 0, l > 0 and ∇ ≡ (1 − B) with B as the backward shift

operator, i.e. B{P (k, t)} = P (k − 1, t).
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3 Fractional Poisson Processes

In this section, we revisit space- and time-fractional Poisson processes using the z-transform

approach. Note that z-transform is more general than the probability generating function

approach and can be used to solve the difference-differential equations where the solution

may not be a probability distribution. Also, we introduce and study tempered space-time-

fractional Poisson processes. Further, to show the importance of z-transform, we consider

Gegenbauer type fractional difference equations.

3.1 The Time-Fractional Poisson Process

The time-fractional Poisson process (TFPP) was first introduced by Laskin (2003) (see [3]).

The renewal process representation of TFPP is given by

Nβ(t) = max{n : T β1 + . . .+ T βn ≤ t}, t ≥ 0, β ∈ (0, 1], (3.12)

where the inter arrival times T β1 , T
β
2 . . . , T

β
n are iid non-negative random variables with Mittag-

Leffler distribution function, given by

P(T βk ≤ x) = 1−Mβ(−λxβ), x ≥ 0, λ > 0. (3.13)

Further, the probability density function (PDF) of the inter arrival time T βk is given by

f(x) = λxβ−1Mβ,β(−λxβ), x ≥ 0, λ > 0, β ∈ (0, 1], (3.14)

where

Ma,b(z) =
∞∑
k=0

zk

Γ(ak + b)
, z ∈ C, a, b > 0, (3.15)

is two parameter Mittag-Leffler function, and Ma(z) = Ma,1(z), z ∈ C is the classical Mittag-

Leffler function (see [12]). Let Sβ(t), t ≥ 0 be a stable subordinator with Laplace transform

Ee−zSβ(t) = e−tz
β

, z > 0, t ≥ 0, β ∈ (0, 1). (3.16)

Let Yβ(t) be its right-continuous inverse process defined by

Yβ(t) = inf{w > 0 : Sβ(w) > t}, t ≥ 0. (3.17)

The process Yβ(t) is non-Markovian with non-stationary increments [13] and also its marginals

are not infinitely divisible [14]. Further, the marginals of TFPP are not infinitely divisible

[14]. Recently, Aletti et al. (2018) established that TFPP is a martingale with respect to its

5



natural filtration [15]. Alternatively, Meerschaert et al. (2011) (see [2]), gave the following

subordination representation of TFPP

Nβ(t) = N(Yβ(t)), t ≥ 0, β ∈ (0, 1), (3.18)

where N(t) is the homogenous Poisson process with parameter λ > 0 and Yβ(t) is independent

of N(t). Nβ(t) has the PMF (see e.g. [3, 16, 17, 2])

Pβ(k, t) = P{Nβ(t) = k} =
(λtβ)k

k!

∞∑
r=0

(k + r)!

r!

(−λtβ)r

Γ(β(k + r) + 1)
, k = 0, 1, 2, . . . (3.19)

Further, it is the solution of the following fractional differential-difference equation with CD

fractional derivative in time

dβ

dtβ
Pβ(k, t) = −λβ(Pβ(k, t)− Pβ(k − 1, t)) = −λβ∇Pβ(k, t), (3.20)

Pβ(k, t) = 0, where k < 0, (3.21)

Pβ(k, 0) = δk,0, k = 0, 1, 2, . . . , β ∈ (0, 1]. (3.22)

For the particular case β = 1, the process reduces to the standard Poisson process.

3.2 The Space-Fractional Poisson Process

Let Sα(t), t ≥ 0, α ∈ (0, 1), be a stable subordinator and N(t), t ≥ 0, is homogenous Poisson

process with parameter λ > 0, independent of Sα(t). The space-fractional Poisson process

(SFPP) Nα(t), t ≥ 0, 0 < α < 1 was introduced by [4], as follows

Nα(t) =

N(Sα(t)), t ≥ 0, 0 < α < 1,

N(t), t ≥ 0, α = 1.
(3.23)

The density f(x, 1) of Sα(1) is infinitely differentiable on (0,∞), with the asymptotics given

by (see e.g., [18])

f(x, 1) ∼
(α
x
)

2−α
2(1−α)√

2πα(1− α)
e−(1−α)( x

α
)
− α

1−α
, as x→ 0; (3.24)

f(x, 1) ∼ α

Γ(1− α)x1+α
, as x→∞. (3.25)

Exact forms of the density f(x, 1) in terms of infinite series or integral are discussed in (see

e.g. [19], p. 583) and has the following infinite-series representation

f(x, 1) =
1

π

∞∑
k=1

(−1)k+1 Γ(kα + 1)

k!

1

xkα+1
sin (παk) , x > 0. (3.26)
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Note that from (3.24) and (3.25), we have

lim
x→0

f(x, 1) = f(0, 1) = 0 and lim
x→∞

f(x, 1) = f(∞, 1) = 0. (3.27)

The PGF of this process is

Gα(u, t) = EuNα(t) = e−λ
α(1−u)αt, |u| ≤ 1, α ∈ (0, 1). (3.28)

We introduce the fractional difference operator (see e.g., [1], p.60)

∇α = (1−B)α =
∞∑
k=0

(
α

k

)
(−1)kBk, α ∈ (0, 1), (3.29)

where (
α

k

)
=

(α)(α− 1) . . . (α− k + 1)

k!
=

(−1)k(−α)k
k!

,

and Pochhammer symbol

(λ)k =

λ(λ+ 1) · · · (λ+ k − 1), k = 1, 2, . . .

1, k = 0.
(3.30)

Let

Pα(k, t) = P{Nα(t) = k}, k = 0, 1, 2, . . . , (3.31)

be the PMF of the SFPP, which satisfies the following fractional differential-difference equa-

tions (see [4])

d

dt
Pα(k, t) = −λα(1−B)αPα(k, t), α ∈ (0, 1], k = 1, 2, . . . (3.32)

d

dt
Pα(0, t) = −λαPα(0, t), (3.33)

with initial condition

Pα(k, 0) = δk,0. (3.34)

Using the z-transform in both side, it follows

d

dt
{ZPα(k, t)} = −λα[Z{(1−B)αPα(k, t)}].

Further, using (3.29), we have

d

dt
{ZPα(k, t)} = −λαZPα(k, t)

[
1− α

z
+
α(α− 1)

(2!)(z2)
− · · ·

]
.
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Further,

d

dt
{ZPα(k, t)} =

[
−λ
(

1− 1

z

)]α
ZPα(k, t). (3.35)

Solving (3.35) for ZPα(k, t) and using initial condition in (3.34), leads to

ZPα(k, t) = e−λ
α(1− 1

z
)αt =

∞∑
r=0

(−λα)rtr(1− z−1)αr =
∞∑
r=0

(−λα)rtr
∞∑
k=0

(−1)k
(
αr

k

)
z−k

=
∞∑
k=0

z−k

[
(−1)k

k!

∞∑
r=0

(−λα)rtr

r!

Γ(rα + 1)

Γ(rα− k + 1)

]
.

To find Pα(k, t), invert the z-transform that is equivalent to finding the coefficient of z−k,

which leads to

Pα(k, t) =
(−1)k

k!

∞∑
r=0

(−λα)rtr

r!

Γ(rα + 1)

Γ(rα− k + 1)
. (3.36)

Moreover, one can write (
1− 1

z

)2α

=

(
1− 1

z

(
2− 1

z

))α
. (3.37)

By comparing the coefficients of z−2p in both sides, we get the following identity. For any

α > 0 and p ∈ N ∪ {0}, the following identify holds(
2α

2p

)
=

(
α

p

)
·
(
p

0

)
+ 22

(
α

p+ 1

)
·
(
p+ 1

2

)
+ . . .

+ 22p−2

(
α

2p− 1

)
·
(

2p− 1

2p− 2

)
+ 22p

(
α

2p

)
·
(

2p

2p

)
, (3.38)

where
(
α
p

)
= Γ(α+1)

Γ(p+1)Γ(α−p+1)
. The identity (3.38) is used in subsequent section.

Remark 3.1. The composition of n stable subordinators is also a stable subordinator. Let

S1, S2, . . . , Sn be n independent stable subordinators with parameters αi, i = 1, 2, . . . , n, re-

spectively. Then the iterated composition is defined by S(2)(t) = S2(S1(t)) and S(j)(t) =

Sj(S
(j−1)(t)), j = 2, 3, · · · , n. The iterated composition S(n)(t) is also a stable subordinator

with parameter α1α2 · · ·αn. It is easy to show that the PMF P̃ (k, t) = P(N(S(n)(t)) = k),

satisfies the following difference- differential equation

d2n

dt2n
P̃ (k, t) = λ[P̃ (k, t)− P̃ (k − 1, t)], t > 0, k > 0. (3.39)
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3.3 The Time-Space-Fractional Poisson Process

Note that [4] introduced the following time-space-fractional differential equations

dβ

dtβ
Pα
β (k, t) = −λα(1−B)αPα

β (k, t), α ∈ (0, 1] β ∈ (0, 1), k = 1, 2, . . . (3.40)

dβ

dtβ
Pα
β (0, t) = −λαPα

β (0, t), (3.41)

with initial conditions

Pα
β (k, 0) = δk,0 =

0, k > 0,

1, k = 0,
(3.42)

where dβ

dtβ
is the CD fractional derivative defined in (2.5). They have shown that

Pα
β (k, t) =

(−1)k

k!

∞∑
r=0

(−λα)rtrβ

Γ(1 + rβ)

Γ(rα + 1)

Γ(rα− k + 1)
, k = 0, 1, . . . , (3.43)

and its PGF

Gα
β(u, t) =

∞∑
k=0

ukPα
β (k, t) = Mβ

(
−λαtβ(1− u)α

)
, |u| ≤ 1. (3.44)

Using z-transform, we present an alternative proof of the fact that (3.43) satisfies (3.40). To

solve (3.40), take the z-transform in both hand sides, which leads to

dβ

dtβ
{ZPα

β (k, t)} = −λα(1− z−1)α{ZPα
β (k, t)}.

Further, using the Laplace transform with respect to the time variable t and Z{Pα
β (k, 0)} = 1,

it follows

sβL[Z{Pα
β (k, t)}]− sβ−1 = −λα(1− z−1)αL[Z{Pα

β (k, t)}].

By some manipulation, it follows

L[Z{Pα(k, t)}] =
sβ−1

sβ + λα(1− z−1)α
.

Using the LT of Mittag-Leffler function L(Mβ,1(−utβ)) = sβ−1

u+sβ
(see e.g. [10], p.36), it follows

Z{Pα
β (k, t)} = L−1

{
sβ−1

sβ + λα(1− z−1)α

}
= Mβ,1(−λα(1− z−1)αtβ) (3.45)

=
∞∑
k=0

(−1)kλkαtkβ(1− z−1)kα

Γ(1 + kβ)
.
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Inverting the z-transform gives

Pα
β (k, t) =

(−1)k

k!

∞∑
r=0

(−λα)rtrβ

Γ(1 + rβ)
(rα)(rα− 1) · · · (rα− k + 1)

=
(−1)k

k!

∞∑
r=0

(−λα)rtrβ

Γ(1 + rβ)

Γ(rα + 1)

Γ(rα− k + 1)
, k = 0, 1, 2, . . .

Alternatively, one can define the time-space-fractional Poisson process (TSFPP) as follows

Nα
β (t) = N(Sα(Yβ(t)) = Nα(Yβ(t)), t ≥ 0, (3.46)

where TSFPP is obtained by subordinating the standard Poisson process N(t) by an inde-

pendent α-stable subordinator Sα(t) and then by the inverse β-stable subordinator Yβ(t).

Proposition 3.1. The state probabilities of time-space-fractional Poisson process defined in

(3.46) satisfies the equation (3.40).

Proof. Let F (z, t) be the z-transform of Nα
β (t), then it follows

F (z, t) =
∞∑
k=0

z−kP(Nα
β (t) = k) =

∞∑
k=0

z−kP (N(Sα(Yβ(t))) = k)

=
∞∑
k=0

z−kP (N(Yβ(t)) = k) = E

[
∞∑
k=0

z−kP (N(Yβ(t)) = k|Yβ(t))

]
= E

[
e−λ

α(1−z−1)
α
Yβ(t)

]
= Mβ,1

(
−λα

(
1− z−1

)α
tβ
)
, (3.47)

which follows using the result E(e−sYβ(t)) = Mβ,1(−stβ). Note that the two z-transforms given

in (3.45) and (3.47) are same and hence two representations are equivalent by the uniqueness

of z-transform.

In next subsections, we generalize the above discussed processes to their tempered

counterparts, which can give more flexibility in modeling of the natural phenomena suggested

for the space- and time-fractional Poisson processes due the the extra parameter.

3.4 The Tempered Space-Fractional Poisson Process

One can also define tempered space-fractional Poisson process (TSFPP) by subordinating ho-

mogeneous Poisson process with the tempered stable subordinator. Note that tempered stable

subordinators are obtained by exponential tempering in the distribution of stable subordina-

tor, see [20] for more details on tempering stable processes. Let f(x, t), 0 < α < 1 denotes

the density of a stable subordinator Sα(t) with LT∫ ∞
0

e−sxf(x, t)dx = e−ts
α

. (3.48)
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A tempered stable subordinator Sα,µ(t) has a density

fµ(x, t) = e−µx+µαtf(x, t), µ > 0. (3.49)

Using (3.49) and (3.27), it follows

lim
x→0

fµ(x, t) = fµ(0, t) = 0 and lim
x→∞

fµ(x, t) = fµ(∞, t) = 0. (3.50)

The sample paths of Sα,µ(t) are strictly increasing similar to the stable subordinator. Further

it has the LT

f̃µ(s, t) =

∫ ∞
0

e−sxfµ(x, t)dx = e−t((s+µ)α−µα). (3.51)

For Sα,µ(t), we have E(Sα,µ(t)) = αµα−1t and Var(Sα,µ(t)) = α(1 − α)µα−2t. The tempered

space-fractional Poisson process is defined by

Nα,µ(t) = N(Sα,µ(t)), α ∈ (0, 1), µ ≥ 0, (3.52)

where homogeneous Poisson process N(t) is independent of the tempered stable subordinator

Sα,µ(t). The TSFPP is a Lévy process with finite integer order moments due to the finite

moments of the tempered stable subordinators. However the integer order moments of SFPP

are not finite. The TSFPP with marginal PMF Pα,µ(k, t) can also be defined by taking a

tempered fractional shift operator instead of an ordinary fractional shift operator in (2.10)

such that

d

dt
Pα,µ(k, t) = −((µ+ λ(1−B))α − µα)Pα,µ(k, t), α ∈ (0, 1], µ ≥ 0, (3.53)

and Pα,µ(k, 0) = δk,0, which reduces to the SFPP by taking µ = 0. We have following propo-

sition for the state probabilities of TSFPP.

Proposition 3.2. The state probabilities for TSFPP are given by

Pα,µ(k, t) = (−1)ketµ
α
∞∑
m=0

µmλαr−m
∞∑
r=0

(−t)r

r!

(
αr

m

)(
αr −m

k

)
, k ≥ 0, µ ≥ 0, t ≥ 0. (3.54)

11



Proof. Suppose F (z, t) is the z-transform of Nα,µ(t), then

F (z, t) = Z{P(Nα,µ(t) = k)} = e−t((µ+λ(1− 1
z ))

α
−µα)

= etµ
α
∞∑
r=0

(−t)r

r!

(
µ+ λ

(
1− 1

z

))αr
= etµ

α
∞∑
r=0

(−t)r

r!

∞∑
m=0

(
αr

m

)
µmλαr−m

(
1− 1

z

)αr−m
= etµ

α
∞∑
r=0

(−t)r

r!

∞∑
m=0

(
αr

m

)
µmλαr−m

∞∑
k=0

(
αr −m

k

)
(−1)k

1

zk

=
∞∑
k=0

z−k

[
(−1)ketµ

α
∞∑
m=0

µmλαr−m
∞∑
r=0

(−t)r

r!

(
αr

m

)(
αr −m

k

)]
,

the result follows by taking the coefficient of z−k.

By a standard conditioning argument, it follows that

E(Nα,µ(t)) = E(E(N(Sα,µ(t))|Sα,µ(t)) = E(λSα,µ(t)) = λαµα−1t.

Further,

Var(Nα,µ(t)) = E(Var(N(Sα,µ(t))|Sα,µ(t)) + Var(E(N(Sα,µ(t))|Sα,µ(t))

= E(λSα,µ(t)) + Var(λSα,µ(t)) = λαµα−1t+ λ2α(1− α)µα−2t.

Remark 3.2. Using a similar argument as in Prop. 3.1, one can show that the marginal PMF

given in (3.54) of the TSFPP defined by the subordination representation in (3.52) satisfies

(3.53) .

3.5 The Tempered Time-Space-Fractional Poisson Process

In this section, we introduce and study tempered time-space-fractional Poisson process (TTSFPP).

A time-change representation of TTSFPP can be written as

Nα,µ
β,ν (t) = N (Sα,µ(Yβ,ν(t))) = Nα,µ(Yβ,ν(t)), α, β ∈ (0, 1], µ, ν ≥ 0, (3.55)

where Yβ,ν(t) = inf{r > 0 : Sβ,ν(r) > t} is the right-continuous inverse of tempered stable

subordinator. Note that this process is non-Markovian due to the time-change component

of Yβ,ν(t), which is not a Lévy process. However, all the moments of this process are finite.

Alternatively, taking a tempered fractional derivative in the left hand side and tempered

fractional shift operator in the right hand side of the equation (3.32), we obtained the governing

12



fractional difference-differential equation of the PMF Pα,µ
β,ν (k, t) = P(Nα,µ

β,ν (t) = k) of TTSFPP,

such that

dβ,ν

dtβ,ν
Pα,µ
β,ν (k, t) = −((µ+ λ(1−B))α − µα)Pα,µ

β,ν (k, t), (3.56)

dβ,ν

dtβ,ν
Pα,µ
β,ν (0, t) = −((µ+ λ)α − µα)Pα,µ

β,ν (0, t), (3.57)

with initial condition

Pα,µ
β,ν (k, 0) = δk,0, (3.58)

where dβ,ν

dtβ,ν
is the Caputo tempered fractional derivative of order β ∈ (0, 1) with tempering

parameter ν > 0, given in (2.7). The governing equation (3.56) reduces to the governing

equation of SFPP by taking µ = ν = 0 and β = 1. The process Yβ,ν(t) is called inverse

tempered stable (ITS) subordinator. A driftless subordinator D(t) with Lévy measure πD

and density function f has the Lévy-Khinchin representation (see e.g., [21])∫ ∞
0

e−uxfD(t)(x)dx = e−tΨD(u), (3.59)

where

ΨD(u) =

∫ ∞
0

(1− e−uy)πD(dy), u > 0, (3.60)

is called the Laplace exponent. The Lévy measure density corresponding to a tempered stable

subordinator is given by

πSβ,ν (u) =
β

Γ(1− β)

e−νu

uβ+1
, u > 0,

which satisfies the condition
∫∞

0
πSβ ,ν(u)du = ∞. Let Lt→s(g(x, t)) = g̃(x, s) be the Laplace

transform (LT) of g with respect to time variable t. Using Theorem 3.1 of [22], the LT of the

density hβ,ν(x, t) of Yβ,ν(t) with respect to the time variable t is given by

h̃β,ν(x, s) =
1

s

(
(s+ ν)β − νβ

)
e−x
(

(s+ν)β−νβ
)
. (3.61)

From (3.61), it follows

∂

∂x
h̃β,ν(x, s) = −

(
(s+ ν)β − νβ

)
h̃β,ν(x, s).

Now by inverting the LT with the help of (2.6), it follows

∂

∂x
hβ,ν(x, t) = −Dβ,ν

t hβ,ν(x, t). (3.62)

Further,

− ∂

∂x
h̃β,ν(x, s) =

[(
(s+ ν)β − νβ

)
h̃β,ν(x, s)− s−1

(
(s+ ν)β − νβ

)
h(x, 0)

]
+ s−1

(
(s+ ν)β − νβ

)
h(x, 0). (3.63)
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For inverting the LT in (3.63) we will use the generalized Mittag-Leffler function, therefore we

introduce it here. The generalized Mittag-Leffler function, introduced by [23], is defined by

M c
a,b(z) =

∞∑
n=0

(c)n
Γ(an+ b)

zn

n!
, (3.64)

where a, b, c ∈ C with R(b) > 0 and (c)n is Pochhammer symbol see (3.30). When c = 1, it

reduces to Mittag-Leffler function. Further,

M c
a,b(0) =

(c)0

Γ(b)
=

1

Γ(b)
. (3.65)

The function L(s) = sac−b

(sa+η)c
has the inverse LT [24]

L−1[L(s)] = tb−1M c
a,b(−ηta). (3.66)

Moreover,

L−1

[
1

s(s+ ν)−β

]
= t−βM−β

1,1−β(−νt), (3.67)

which follows by taking a = 1, b = 1 − β, c = −β and η = ν. Now by inverting the LT in

(3.63) with the help of (3.67), it follows

− ∂

∂x
hβ,ν(x, t) =

∂β,ν

∂tβ,ν
hβ,ν(x, t) +

(
t−βM−β

1,1−β(−νt)− νβ
)
δ(x), (3.68)

where hβ,ν(x, 0) = δ(x) is the Dirac delta function. Taking ν = 0 in (3.68) and using (3.65),

it follows

− ∂

∂x
hβ,0(x, t) =

∂β

∂tβ
hβ,0(x, t) +

t−β

Γ(1− β)
δ(x), (3.69)

which is the governing equation of the density function of inverse β-stable subordiantor, which

complements the result obtained in literature (see e.g., [25, 26]).

Proposition 3.3. The PMF of TTSFPP defined in (3.55) satisfies (3.56).

Proof. Note that,

Pα,µ
β,ν (k, t) = P (Nα,µ(Yβ,ν(t)) = k) = E (P (Nα,µ(Yβ,ν(t)) = k|Yβ,ν(t)))

=

∫ ∞
0

Pα,µ(k, y)hβ,ν(y, t)dy, (3.70)

where Pα,µ(k, t) is the PMF of TSFPP and hβ,ν(x, t) is the probability density function of
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inverse tempered stable subordinator. Using (3.70) and (3.68)

dβ,ν

dtβ,ν
Pα,µ
β,ν (k, t) =

∫ ∞
0

Pα,µ(k, y)
dβ,ν

dtβ,ν
hβ,ν(y, t)dy

= −
∫ ∞

0

Pα,µ(k, y)
∂

∂y
hβ,ν(y, t)dy

−
(
t−βM−β

1,1−β(−νt)− νβ
)∫ ∞

0

Pα,µ(k, y)δ(y))dy

= −Pα,µ(k, y)hβ,ν(y, t)|y=∞
y=0 +

∫ ∞
0

d

dy
Pα,µ(k, y)hβ,ν(y, t)dy

−
(
t−βM−β

1,1−β(−νt)− νβ
)
Pα,µ(k, 0)

=

∫ ∞
0

d

dy
Pα,µ(k, y)hβ,ν(y, t)dy

= −((µ+ λ(1−B))α − µα)

∫ ∞
0

Pα,µ(k, y)hβ,ν(y, t)dy

= −((µ+ λ(1−B))α − µα)Pα,µ
β,ν (k, t),

using (3.53) and the fact that Pα,µ(k, 0) = 0, k > 0.

Remark 3.3. Using similar argument as in Prop. 3.3 with (3.62), it follows that

Dβ,ν
t Pα,µ

β,ν (k, t) = −((µ+ λ(1−B))α − µα)Pα,µ
β,ν (k, t), k > 0, t > 0.

Proposition 3.4. The state probabilities for TTSFPP are given by

Pα,µ
β,ν (k, t) = (−1)ke−tν

∞∑
m=0

tmνm
∞∑
r=0

(−tβ)rM r
β,βr+m+1(tβνβ)

r∑
h=0

(
r

h

)
(−µα)r−h (3.71)

×
∞∑
l=0

(
αh

l

)(
αh− l
k

)
µlλαh−l, k = 0, 1, . . . , µ ≥ 0, ν ≥ 0, t ≥ 0. (3.72)

Proof. Suppose F (z, t) is the z-transform of Pα,µ
β,ν (k, t), then

dβ,ν

dtβ,ν
F (z, t) = −((µ+ λ(1− z−1))α − µα)F (z, t), β ∈ (0, 1), α ∈ (0, 1], µ ≥ 0, ν ≥ 0.

Using Laplace transform with respect to the time variable t and assuming |(µ+λ(1−z−1))α−
µα| < |(s+ ν)β − νβ|, it follows

L [F (z, t)] =
1

s

(
1 +

((µ+ λ(1− z−1))α − µα)

(s+ ν)β − νβ

)−1

=
∞∑
r=0

(−1)r
((µ+ λ(1− z−1))α − µα)r

s((s+ ν)β − νβ)r
.
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Suppose L(s) = 1
(sβ−νβ)r

, then the inverse LT of L(s) from (3.66) and the shifting property of

LT E(s) = L(s+ ν) leads to the inverse LT of E(s) equal to e−νttβr−1M r
β,βr(ν

βtβ). Further,

L−1

[
E(s)

s

]
=

∫ t

0

e−νyyβr−1M r
β,βr(ν

βyβ)dy.

We use the integral from [27],∫ t

0

yµ−1Mν
ρ,µ(wyρ)(t− y)ν−1dy = Γ(ν)tν+µ−1Mν

ρ,µ+ν(wt
ρ). (3.73)

Then L−1
[
E(s)
s

]
= e−tν

∑∞
m=0 ν

mtβr+mM r
β,βr+m+1(νβtβ). For simplicity, we assume H(t) =

L−1
[
E(s)
s

]
. Next,

F (z, t) =
∞∑
r=0

(−1)r
r∑

h=0

(
r

h

)
(−µα)r−h

∞∑
l=0

(
αh

l

)
µl(λ(1− z−1))αh−lH(t)

=
∞∑
r=0

(−1)r
r∑

h=0

(
r

h

)
(−µα)r−h

∞∑
l=0

(
αh

l

)
µlλαh−l

∞∑
k=0

(−1)k
(
αh− l
k

)
(z)−kH(t)

=
∞∑
k=0

z−k

[
(−1)ke−tν

∞∑
m=0

tmνm
∞∑
r=0

(−tβ)rM r
β,βr+m+1(tβνβ)

r∑
h=0

(
r

h

)
(−µα)r−h

×
∞∑
l=0

(
αh

l

)(
αh− l
k

)
µlλαh−l

]
,

the result follows by taking the coefficient of z−k.

Remark 3.4. For µ = 0, ν = 0, eq. (3.71) is equivalent to putting m = 0, l = 0 and r = h,

which reduces to

Pα,0
β,0 (k, t) = (−1)k

∞∑
r=0

(−1)r
(
αr

k

)
λαrtβr

Γ(βr + 1)
, (3.74)

which is same as the PMF of TSFPP given in (3.43).

3.6 Fractional Equation with Gegenbauer Type Fractional Opera-

tor and Generalized Poisson Distributions

In this section, we introduce new class of fractional differential equations and their solutions.

We consider the backward-shift fractional operator

∇d
u = (1− 2uB +B2)d = (1− 2 cos(ν)B +B2)d

= [(1− eiνB)(1− e−iνB)]d

= −λ2d(1− 2uB +B2)dP u
d (k, t), |u| ≤ 1, d ∈ (0, 1/2],
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which often appears in the study of the so-called Gegenbaurer times series (see [1, 28, 29]).

Note that for u = 1 the fractional operator ∇d
u = (1 − B)d reduces to (3.40) with α = 2d ∈

(0, 1). where u = cos(ν) or ν = cos−1(u). We introduce the following fractional equation for

unknown function P u
d (k, t), t ≥ 0,

d

dt
P u
d (k, t) = −λ2d∇d

u (P u
d (k, t)) = −λ2d(1− 2uB +B2)dP u

d (k, t), k > 0, d ∈ (0, 1/2], (3.75)

d

dt
P u
d (0, t) = −λ2dP u

d (0, t), (3.76)

with initial condition

P u
d (k, 0) = δk,0. (3.77)

Using the z-transform in both sides, it follows

d

dt
[ZP u

d (k, t)] = −λ2d[Z{(1− 2uB +B2)dP u
d (k, t)}].

Expanding the fractional difference operator as

(1− 2uB +B2)d =
∞∑
j=0

∞∑
k=0

(−1)j+k
(
d

j

)(
d

k

)
(eiν)j(e−iν)kBj+k,

leads to

d

dt
[ZP u

d(k, t)] =

[
−λ2d

(
1− 2u

z
+

1

z2

)d]
ZP u

d (k, t). (3.78)

Now solve the equation (3.78) for ZP u
d (k, t), we obtain

ZP u
d (k, t) = Ae−λ

2d(1− 2u
z

+ 1
z2

)
d
t.

Using initial conditions in (3.77), it follows that A = 1, and hence

ZP u
d (k, t) = e−λ

2d(1− 2u
z

+ 1
z2

)
d
t. (3.79)

Further,

ZP u
d (k, t) =

[
1 +

(−λ)2dt

1!

{
1 +

1− 2uz

z2

}d
+ · · ·+ (−λ)2kdtk

k!

{
1 +

1− 2uz

z2

}kd
+ · · ·

]

= 1 +
(−λ)2dt

1!

{
∞∑
k=0

(
d

k

)∑k
n=0

(
k
n

)
(−2uz)n

z2k

}
+ · · ·

+
(−λ)2kdtk

k!

{
∞∑
k=0

(
kd

k

)∑k
n=0

(
k
n

)
(−2uz)n

z2k

}
+ · · ·
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With the help of coefficient of z−k, the inverse z-transform gives

P u
d (k, t) =

∞∑
r=0

(−λ)2rdtr

r!

{(
rd

p

)
·
(
p

0

)
+ (2u)2

(
rd

p+ 1

)
·
(
p+ 1

2

)
+ · · ·

+(2u)2p−2

(
rd

2p− 1

)
·
(

2p− 1

2p− 2

)
+ 22p

(
α

2p

)
·
(

2p

2p

)}
, d ∈ (0, 1/2], k = 2p.

We have the following proposition.

Proposition 3.5. Solution of the initial value problem (3.75) is of the form

P u
d (k, t) =

∞∑
r=0

(−λ)2rdtr

r!

{(
rd

p

)
·
(
p

0

)
+ (2u)2

(
rd

p+ 1

)
·
(
p+ 1

2

)
+ · · ·

+(2u)2p−2

(
rd

2p− 1

)
·
(

2p− 1

2p− 2

)
+ 22p

(
α

2p

)
·
(

2p

2p

)}
, d ∈ (0, 1/2], k = 2p. (3.80)

Remark 3.5. Taking α = 2d, k = 2p in (3.36) and u = 1 in (3.80), both the results coincides.

Further, we also introduce the following Gegenbauer type space-time-fractional equation by

replacing the integer order derivative in (3.75) by a fractional derivative of order β ∈ (0, 1],

as follows

dβ

dtβ
Qu
d,β(k, t) = −λd∇d

uQ
u
d,β(k, t)

= (−λ)2d(1− 2uB + b2B)dQu
d,β(k, t), d ∈ (0, 1/2], k ≥ 1 (3.81)

dβ

dtβ
Qu
d,β(0, t) = (−λ2dQu

d,β(0, t) with Qu,β
d (k, 0) = δk,0. (3.82)

Using a similar approach, we have the result.

Proposition 3.6. The solution for the Gegenbauer type space-time-fractional equation defined

in (3.81) is

Qu
d,β(k, t) =

∞∑
r=0

(−λ)2rdtrβ

Γ(1 + 2pβ)

{(
rd

p

)
·
(
p

0

)
+ (2u)2

(
rd

p+ 1

)
·
(
p+ 1

2

)
+ · · ·

+(2u)2p−2

(
rd

2p− 1

)
·
(

2p− 1

2p− 2

)
+ 22p

(
α

2p

)
·
(

2p

2p

)}
, d ∈ (0, 1/2].

Note that if u 6= 1 there is no stochastic process which marginals are the solutions of

the equations (3.75). To see this, consider a process Nu
d (t) with marginal PMF P u

d (k, t), then

F (z, t) = E[z−N
u
d (t)] =

∞∑
r=0

P u
d (k, t)z−r. (3.83)
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By normalization axiom of probability, it is necessary that F (1, t) = 1 for all t > 0. From

equation (3.79)

F (z, t) = e−λ
2d(1− 2u

z
+ 1
z2

)
d
t.

With the condition of normalization

F (1, t) = e−2λ2d(1−u)dt, |u| ≤ 1.

It is easy to see that F (1, t) < 1, for all u except the case when u = 1. So the solution P u
d (k, t)

will not satisfy the normalization condition. One can say that Nu
d (t) is a defective random

variable which indicates that there is some positive mass concentrated at ∞.

One can also consider shift operators of the form,

d

dt
P ∗(k, t) = −λ[(1−B)α1 + (1−B)α2 ]P ∗(k, t), (3.84)

with initial condition P ∗(k, 0) = δk,0. It is easy to show that

P ∗(k, t) = (−1)k
∞∑
r=0

(−1)r
λr

r!

r∑
m=0

(
r

m

)(
α1m+ α2(r −m)

k

)
, k = 0, 1, . . . (3.85)

Similar to the Gagenbauer shift operator case, the function P ∗ may not be a probability

distribution.

4 Conclusion

In this article, we introduce and study tempered time-space-fractional Poisson processes, which

may provide more flexibility in modeling of real life data. Further, we argue that z-transform

is more useful than the PGF in solving the difference-differential equations since it is more

general and hence may be used in the situations where the solution is not a probability distri-

bution indeed. To support this, we work with the Gegenbauer type fractional shift operator.

Our results generalize and complement the results available on time- and space-fractional

Poisson processes.

Acknowledgments: N. Leonenko was supported in particular by Australian Research Coun-

cil’s Discovery Projects funding scheme (project DP160101366)and by project MTM2015-

71839-P of MINECO, Spain (co-funded with FEDER funds). NG would like to thank Council

of Scientific and Industrial Research (CSIR) India, for the award of a research fellowship.

19



References

[1] Beran, J. (1994). Statistics for Long-Memory Processes. New York: Chapman & Hall.

[2] Meerschaert, M.M., Nane, E., Vellaisamy, P. (2011). The fractional Poisson process and

the inverse stable subordinator. Electron. J. Probab. 16(59):1600–1620.

[3] Laskin, N. (2003). Fractional Poisson process. Commun. Nonlinear Sci. Numer. Simul.

8(3-4):201–213.

[4] Orsingher, E., Polito, F. (2012). The space-fractional Poisson process. Statist. Probab.

Lett. 82(4):852–858.

[5] Uchaikin, V.V. and Sibatov, R.T. (2008). A fractional Poisson process in a model of

dispersive charge transport in semiconductors. Russian J. Numer. Anal. Math. Modelling.

23(3):283-297.

[6] Laskin, N. (2009). Some applications of the fractional Poisson probability distribution.

J. Math. Phys. 50(11):113513.

[7] Buchak, K. V., Sakhno, L. M. (2019). On the governing equations for Poisson and

Skellam processes time-changed by inverse subordinators. Theory Probab. Math. Statist.

98(2019):91–104.

[8] Buchak, K. V., Sakhno, L. M. (2018). Properties of Poisson processes directed by com-

pound Poisson-Gamma subordinators. Mod. Stoch. Theory Appl. 5(2):167–189.

[9] Debnath, L., Bhatta, D. (2014). Integral Transforms and Their Applications. Boca Raton,

FL: CRC Press.

[10] Meerschaert, M.M., Sikorski, A. (2012). Stochastic Models for Fractional Calculus. Berlin:

De Gruyter.

[11] Alrawashdeh, M.S., Kelly, J.F., Meerschaert, M.M., Scheffler, H.-P. (2016). Applications

of inverse tempered stable subordinators. Comput. Math. Appl. 73(6):892–905.

[12] Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V. (2014). Mittag-Leffler Functions,

Related Topics and Applications. Berlin: Springer.

[13] Bingham, N.H. (1971). Limit theorems for occupation times of Markov processes. Z.

Warscheinlichkeitsth. 17:1–22.

[14] Kumar, A., Nane, E. (2018). On the infinite divisibility of distributions of some inverse

subordinators. Mod. Stoch. Theory Appl. 5(4): 509–519.

20



[15] Aletti, G., Leonenko, N., Merzbach, E. (2018). Fractional Poisson fields and martingales.

J. Stat. Phys. 170(4):700–730.

[16] Mainardi, F., Gorenflo, R., Scalas, E. (2004). A fractional generalization of the Poisson

processes. Vietnam J. Math. 32(Special Issue):53–64.

[17] Beghin, L., Orsingher, E. (2009). Fractional Poisson processes and related random mo-

tions. Electron. J. Probab. 14(61):1790–1826.

[18] Samorodnitsky, G., Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes:

Stochastic Models with Infinite Variance. New York: Chapman & Hall.

[19] Feller, W. (1971). Introduction to Probability Theory and its Applications. Vol. II. New

York: John Wiley.
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