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Abstract. We add a random bulk term, modeling the interaction with the impurities of the
medium, to a standard functional in the gradient theory of phase transitions consisting of a gradient
term with a double-well potential. For the resulting functional we study the asymptotic properties
of minimizers and minimal energy under a rescaling in space, i.e., on the macroscopic scale. By
bounding the energy from below by a coarse-grained, discrete functional, we show that for a suitable
strength of the random field the random energy functional has two types of random global minimizers,
corresponding to two phases. Then we derive the macroscopic cost of low energy “excited” states
that correspond to a bubble of one phase surrounded by the opposite phase.
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1. Introduction. Models where a stochastic contribution is added to the energy
of the system naturally arise in condensed matter physics, where the presence of the
impurities causes the microscopic structure to vary from point to point. The starting
point is a random functional which models the free energy of a two-phase material
on a so-called mesoscopic scale, i.e., a scale which is much larger than the atomistic
scale so that the adequate description of the state of the material is by a continuous
scalar order parameter m : D ⊆ R

d → R. The free energy functional consists of three
competing parts: an “interaction term” penalizing spatial changes in m; a double-
well potential W (m); i.e., a nonconvex function which has exactly two minimizers (for
simplicity +1 and −1, modeling a two-phase material); and a term which couples m
to a random field θg(·, ω), with mean zero, variance θ2, and unit correlation length,
i.e., a term which prefers at each point in space one of the two minimizers of W (·) and
breaks the translational invariance but is “neutral” in the mean. A standard choice
with the aforementioned properties is

Ĝ(m,ω) :=
∫

D

(|∇m(y)|2 +W (m(y)) + θg(y, ω)m(y)
)
dy.

We are, however, interested in a so-called macroscopic scale, which is coarser than
the mesoscopic scale. Therefore we rescale space with a small parameter ε. If Λ = εD
and u(x) = m(ε−1x), we obtain Ĝ(m,ω) = ε1−dGε(u, ω), where

Gε(u, ω) :=
∫

Λ

(
ε|∇u(x)|2 +

1
ε
W (m(x)) +

θ

ε
gε(x, ω)m(x)

)
dx,
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782 NICOLAS DIRR AND ENZA ORLANDI

where gε now has correlation length ε. First, we are interested in the asymptotic
behavior of the minimizers, which, unlike in the case θ = 0, will not be the constant
functions u(x) ≡ 1 and u(x) ≡ −1, but functions varying in x and ω, and the minimal
energy will be strictly negative. Second, we would like to know how functions which
are not minimizers, but have energy of the same order as the minimizer, behave as
ε → 0. This can be used to obtain information on the asymptotics of minimizers
with a constraint, such as, e.g., requiring the spatial mean of u to equal a fixed value.
The appropriate mathematical set-up for the second question is as follows. First we
“renormalize,” i.e., we subtract the energy of the minimizers (which exists by standard
arguments) to obtain

Fε(u, ω) = Gε(u, ω) − inf
H1(Λ)

Gε(·, ω),

and then we consider the Γ-limit of the functionals Fε defined in L1(Λ) (with respect
to the L1(Λ)-convergence). A functional F0 is the Γ-limit of the family (Fε)ε→0 with
respect to the L1-topology, if for all u ∈ L1(Λ),

• for all {uε} ∈ L1(Λ) with uε → u in L1(Λ),
lim inf

ε
Fε(uε) ≥ F0(u),

• and there exists a sequence {vε} ∈ L1(Λ), vε → u in L1 (recovery sequence
or Γ-realizing sequence) such that

lim sup
ε

Fε(vε) ≤ F0(u).

(1.1)

The Γ-limit, a notion invented by E. De Giorgi, means heuristically that F0(u) is
the limit energy of the “lowest energy approximations” to u. In the the case θ = 0,
the minimizers are obviously the constants ±1 with minimum energy zero, and the
second question, the Γ-limit, was answered by Modica [15] and Modica and Mortola
[16], who found that

F0(u) =

{ ∫
Λ
τ
(

grad u
| grad u|

)
| gradu| if u ∈ BV (Λ), |u| = 1 a.e.,

∞ else,
(1.2)

τ(n) = CW = 2
∫ 1

−1

√
W (s)ds ∀ n ∈ Sd−1,(1.3)

where Sd−1 := {x ∈ R
d : |x| = 1}. The term gradu(| gradu|)−1 is the generalized

outward unit normal of the “jump set” of u, i.e., the set separating the region where
u = +1 from the region where u = −1. (For a precise setting which uses bounded
variation (BV) functions, i.e., functions such that the distributional derivative is a
(vector-valued) Radon measure; see, e.g., [9].) The weight τ(n) = τ(−n) is the surface
tension in the language of statistical mechanics. While it is constant for θ = 0, it is
nonconstant (anisotropic) for g periodic (see [7, 6]) or for the gradient term being
replaced by a bilinear form with periodic coefficients; see [2].

Note that the investigation of the limit behavior of Fε(u, ω) requires simultane-
ously the homogenization of a random structure and the performing of a limit of
“singular” nature. Moreover, due to the nonconvexity of the double-well potential,
the Euler–Lagrange equation does not have a unique solution.

The g-dependent bulk term can, because of the scaling with ε−1, force a sequence
uε to “follow” the oscillations of g. This always happens in the form of bounded
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SHARP-INTERFACE LIMIT WITH A RANDOM FIELD 783

oscillations around the two wells of the double-well potential. In such a situation
there are still two distinct minimizers, also called “phases,” adopting the language of
statistical mechanics. But in principle the g-dependent term could be strong enough
to enforce large oscillations, so that the minimizers will change sign and move from
one “well” to the other.

In the periodic case it is possible to check on a deterministic volume with a
diameter of the order of the period regardless of whether the minimizer “changes
well,” i.e., creates a “bubble” of the other phase; see, e.g., [7, 6].

The random case is quite different, because there is no deterministic subset of Λ
such that the integral of the random field over this subset equals zero for almost all
realizations of the random field—there are always fluctuations around the zero mean.
A first consequence of this is that the approach in [6], which was successful in the
periodic case, fails here: If we attempt to remove the term in Gε which changes its
sign by writing

Gε(u, ω) = Ḡε(v, ω) − ε

∫
Λ

|∇fε|2dx,

with

Ḡε(v, ω) =
∫

Λ

(
ε|∇v|2 +

1
ε
W
[
v + fε

])
dx,

where fε(·, ω) solves

Δfε =
θα(ε)
ε2

(
gε −

∫
Λ

gεdx
)

with Neumann boundary conditions, then explicit computations with Green’s function
show that the covariance of the Gaussian random field fε is unbounded as ε → 0. So
we cannot expect fε to be bounded as it would be in the periodic case.

Let us explain another aspect that makes the random case far more challenging
than the periodic one. A set A becomes the support of a bubble of the other phase if
the cost of switching to the other well, which can be estimated by the Modica–Mortola
result as proportional to the boundary of A, is smaller than the integral of the random
field part over A. As the correlation length is ε, a set A ⊆ Λ contains roughly |A|ε−d

independent random variables, where | · | denotes the d-dimensional Lebesgue measure
of a set. By the central limit theorem, fluctuations of order θ

√|A|εd/2 are highly likely,
but the probability of larger fluctuations vanishes exponentially fast. Therefore, using
the isoperimetric inequality, the probability of a given set A being the support of a
bubble is exponentially small if

(1.4) cd|A|(d−1)/d � |A|1/2ε(d−2)/2θ,

where cd is the isoperimetric constant. In d ≥ 3 this is asymptotically always the case
for sets of diameter of order larger than ε, or for sets of any size, provided θ → 0.

When determining properties of the minimizers, we are, however, not interested
in whether a single given set A becomes the support of a bubble, but whether there
exist “bubbles” of the other phase. In order to estimate the latter probability, we have
to find a way to count subsets, which requires a coarse-graining on the scale of the
correlation length. Standard coarea arguments, following the original ideas of Modica
and Mortola [16], are therefore not able to avoid the need for a coarse-graining.
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784 NICOLAS DIRR AND ENZA ORLANDI

Let us briefly sketch how the coarse-graining is done. We define a phase indicator
which is ±1 if the average of u over a cube of side ε is close to ±1, the minimizers of
the “unperturbed” (θ = 0) functional. (See (2.15).) Then we prove that the energy
of a function is bounded from below by an energy that can be expressed as a function
of the so-called contours (connected components of cubes where the average deviates
from one of the wells) of the coarse-grained “representative” of the function. The
proof of this bound does not require probabilistic arguments. The basic idea behind
contours is to make explicit the region in space where the order parameter u deviates
from the minimizer, which is, of course, unknown. However, one may guess that for
sufficiently weak disorder (θ small) the minimizers should look almost like the ones
without random field. It is thus natural to build the contour model on the basis of
the ideal minimizers and to let the contours themselves keep track of the deviations
of the true minimizers from these ideal minimizers. Our use of contours for functions
u : Λ → R, i.e., functions taking values in continuum, has been strongly inspired by
the series of papers done for Ising spin systems with Kac-type interaction by Presutti
and his collaborators; see the book [19].

However, we do not impose any boundary conditions on the cube Λ because we are
interested in global minimizers. This kind of free boundary condition corresponds to
Neumann boundary conditions for smooth solutions of the Euler–Lagrange equations.
In the “discretized” setting after “coarse-graining,” the free boundary conditions will
make the definition of contours more complicated than in the standard setting, where
usually some type of “Dirichlet” boundary conditions are used. Additionally, the
energy in [19] contains convolution terms instead of gradients, so our approach is
quite different as far as the more technical parts are concerned.

These contour reduction techniques will have further applications in the analysis
of random functionals which are related to a deterministic reference functional with
multiple ground states (phases). The contour reduction allows us to use probabilis-
tic techniques developed in the 1980s for the (discrete) random field Ising model.
The central question heatedly discussed in the 1980s in the physics community was
whether the random field Ising model would show spontaneous magnetization at low
temperature and weak disorder in dimension 3. This is closely related to the question
of whether there are at least two distinct minimizers, one predominantly + and one
predominantly −.

Even though (1.4) holds for one single bubble A, it is not easy to obtain from
(1.4) that the probability to have some bubble surrounding one point, for example the
origin, is exponentially small in θ when θ is small enough. Even in the simplest case in
which there are no “bubbles inside bubbles,” a naive subadditivity argument breaks
down. Namely, the number of bubbles surrounding the origin and having surface area
n grows like ecn for some positive constant c; see remarks in the proof of Lemma
5.4. Of course this is not surprising since the random fields in areas with nonempty
intersections are quite correlated. This problem was solved by Fisher, Fröhlich, and
Spencer; see [11]. They use coarse-grained contours to take advantage of the fact that
many contours enclose essentially the same volume. In an approximation in which
there are no contours within contours they proved that the random field Ising model
has at least two phases in d ≥ 3 when θ and the temperature are small enough.
We adapt their technique of coarse-grained contours to compare the contribution
of the random magnetic field versus the surface area for any bubble uniformly in
the volume Λ. This forces us to take θ � (log ε−1)−1; see footnote 5. Hence in
this regime the minimizers do not change sign and these estimates are sufficient for
dealing with contours inside contours. We report them, adapted to our context, in
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Appendix A. Later, Imbrie [14] proved that in d = 3 for θ fixed and small enough,
there are with probability one at least two ground states of the Ising Hamiltonian, one
having predominantly positive phase and the other predominantly negative phase. He
used coarse-grained contours for the same reason as [11], but he dealt with contours
inside contours proving, by a bootstrap strategy, that contours of a certain size are
rare, assuming only that smaller contours are rare and that they can be neglected.
He argues inductively from smaller to larger contours, so his proof is a sequence of
suitable local minimization problems.

At positive temperature (i.e., beyond the ground state) the problem was solved
by Bricmont and Kupiainen [4], who proved the existence of phase transition in d ≥ 3
for small magnitude of the random field, and Aizenman and Wehr [1], who proved
that there is no phase transition in d = 2 for all temperatures. We refer to the original
papers and to a didactic presentation of them in [3].

After that overview, let us return to the model considered in this paper. We prove
that in d ≥ 3 and for a set of random realizations of overwhelming probability (see
Theorem 2.1), there are two functions u+

ε (·, ω) and u−ε (·, ω), close in L∞ to +1 and
−1, respectively, on which the value of the functional is close to its minimum value,
and one of them is the global minimizer. The energy of these minimizers diverges as
ε → 0, but the minimal energy is close to a deterministic sequence cε up to an error
which vanishes as ε → 0 (see Theorem 2.2); i.e., the energy becomes deterministic in
the limit by a law of large numbers.

Once this is established, the Γ-convergence of the renormalized energy Fε, con-
tained in Theorem 2.3, follows by relatively straightforward methods. We show Γ-
convergence with respect to the L1(Λ)-topology with probability one. The realization
ω of the random field is treated as parameter P for almost all such ω.

Both Theorems 2.1 and 2.3 hold only in the case θ = (log(ε−1))−1 → 0, while the
analytic result which is crucial in obtaining these estimates, the contour reduction
in Theorems 2.7 and 2.11, hold for θ which is small but does not depend on ε ↓ 0.
The assumption θ → 0 is important because by analogy with the aforementioned
Ising models with random field we expect that for θ small but finite, two (almost)
minimizers exist, but they do not stay in a single “well” of the double-well potential.
The + minimizer, for example, will be predominantly near +1, but there will be many
small (diameter ∼ ε) “bubbles” where it is close to −1.

In this case a more subtle analysis is needed. One needs to find a way to deal
with minimizers having contours (i.e., changing sign) as it was done for the random
field Ising Hamiltonian by Imbrie [14] or Bricmont and Kupiainen [4].

In the case of “weak” disorder treated here, i.e., θ → 0, we show that the surface
tension τ = CW (see (1.2)) as in the case θ = 0.

This does not mean that the disorder is too weak to have any effect: First note
that the minimizers are not constants but functions depending on space and on the
realization of the random field. Their energy is not zero, hence the presence of the
renormalization.

Second, in Appendix C, we present a (partly heuristic) computation that indicates
that minimizers in d = 3 are not microscopically flat, i.e., even if S(u) = {−1 + δ <
u < 1 − δ}, the jump set of u, is a plane, an “optimal” recovery sequence uε has the
property that for some δ > 0 the jump set S(uε) fluctuates around the limit plane on
any scale smaller than ε2/3. This is clearly not the case for θ = 0, where the global
minimizer has planar level sets, and in the periodic case recent results by Novaga and
Valdinoci [17] indicate that S(uε) oscillates on the scale ε.
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786 NICOLAS DIRR AND ENZA ORLANDI

This paper is organized as follows. In section 2 we state the main results and
define the phase indicator and our notion of contours. In section 3 we show that
we can associate to each function a representative which gives rise to essentially the
same coarse-grained function, but has smaller energy and is uniformly bounded and
uniformly Lipschitz. This allows us to derive that such a function must be pointwise
close to the minimizers if the coarse-grained function is. In section 4 we estimate the
cost of a contour, i.e., a deviation of the coarse-grained function from local equilibrium.
In section 5 we show the aforementioned lower bound on the energy in terms of a
functional depending only on the contours of the coarse-graining. As a consequence,
we prove that a minimizer stays in one single well of the double-well potential. Finally,
in section 6, we use the information obtained so far to show the Γ-convergence of the
renormalized functionals.

For the reader’s convenience, we collect in Appendix A standard results for prop-
erties of the solution to the Euler–Lagrange equation of our random functional under
the condition that the solution stays in one single well. In Appendix B we prove some
of the probabilistic estimates used in this paper.

2. Notation and results.

2.1. The functional. The “macroscopic” space is given by Λ := [− 1
2 ,

1
2 ]d, the

d-dimensional unit cube centered at the origin. The ratio between the macroscopic
and the “mesoscopic” scale is given by the small parameter ε > 0. Hence for any ε the
mesoscopic space is defined as Λε := [− 1

2ε ,
1
2ε ]

d. We require ε to be in a countable set,
e.g., ε = 1

n , n ∈ N. This choice avoids irrelevant technical difficulties.1 The disorder or
random field is constructed with the help of a family {g(z, ω)}z∈Zd of independent and
identically distributed Bernoulli random variables. The law of this family of random
variables will be denoted by P, in particular,

(2.1) P({g(z, ω) = ±1}) = ±1
2
, z ∈ Z

d.

Different choices of g could be handled by minor modifications provided that g is still
a random field with finite correlation length, is invariant under (integer) translations,
and is such that g(z, ω) has a symmetric distribution with compact support. The
disorder or random field in the functional will be obtained by a rescaling of g such
that the correlation length is order ε and the amplitude grows as ε→ 0. To this end,
define for x ∈ Λ a function gε(·, ω) ∈ L∞(Λ) by

(2.2) gε(x, ω) :=
∑
z∈Zd

g(z, ω)1ε(z+[−1
2 , 12 ]d)∩Λ(x),

where for any Borel measurable set A

1A(x) :=

{
1 if x ∈ A,

0 if x �∈ A.

For u ∈ H1(Λ) and any open set A ⊆ Λ, consider the following random functional:

(2.3) Gε(A, u, ω) :=
∫

A

(
ε|∇u(x)|2 +

1
ε
W (u(x))

)
dx+

1
ε
α(ε)θ

∫
A

gε(x, ω)u(x)dx,

1It will soon become clear that this assumption simplifies some definitions; see, for example, the
definition of contours given next, which avoids dealing with boundary layer problems.
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where θ > 0 and 0 < α(ε) � 1 is a function of ε to be specified later. If A = Λ, we
simply write Gε(u, ω). The potential W is a so-called double-well potential.

Assumption H 1. W ∈ C2(R), W ≥ 0, W (s) = 0 iff s ∈ {−1, 1}, W (s) = W (−s),
and W (s) is strictly decreasing in [0, 1]. Moreover, there exist δ0 and C0 > 0 so that

(2.4) W (s) =
1

2C0
(s− 1)2 ∀s ∈ (1 − δ0,∞).

Note thatW is slightly different from the standard choiceW (u) = (1−u2)2.Our choice
simplifies some proofs because it makes the Euler–Lagrange equation linear provided
that solutions stay in one “well.” These assumptions could be relaxed, but in order
to keep the exposition reasonably short, we prefer to use stronger assumptions. The
functional (2.3) can be extended to a lower semicontinuous functional Gε : L1(Λ) →
R ∪ {+∞} by defining Gε(v, ω) = +∞ for any v �∈ H1(Λ) and ω ∈ Ω. For ε > 0 fixed
and ω ∈ Ω, it follows in the same way as in the case without random perturbation
that the functional Gε(·, ω) is coercive and weakly lower semicontinuous in H1(Λ),
so there exists at least one minimizer (see [8]), which here is a random function in
H1(Λ), i.e., different realizations of ω will give different minimizers.

2.2. Minimizers and Γ-limit. Our first main result is the existence of two
minimizing random functions u±ε and their properties.

Theorem 2.1. Let d ≥ 3, θ > 0, α(ε) =
(
ln 1

ε

)−1 and let C0 be the constant
in (2.4). There exist ε0 > 0 and a ≡ a(α(ε0)θ, d) > 0 so that for all ε ≤ ε0, there
exist two functions u+

ε (·, ω) and u−ε (·, ω) which are almost surely in H1(Λ), and a set
Ωε ⊆ Ω,

P[Ωε] ≥ 1 − e−a(ln 1
ε )

1+ 49
50
,

so that for all ω ∈ Ωε, the following holds:2

(2.5) inf
H1(Λ)

Gε(·, ω) = Gε(uτ
ε , ω), where τ = −sign

(∫
Λ

gε

)
,

‖u+
ε (·, ω) − 1‖∞ ≤ C0θα(ε), ‖u−ε (·, ω) + 1‖∞ ≤ C0θα(ε), ω ∈ Ωε,

and

(2.6) |Gε(u+
ε , ω) −Gε(u−ε , ω)| ≤ δε, ω ∈ Ωε

for some δε with δε → 0 as ε→ 0 which does not depend on ω. Moreover,

E[u±ε (r, ·)] = 1 ∀r ∈ Λ,

and (decay of correlations)

(2.7)
∣∣E[u±ε (r, ·)u±ε (r′, ·)] − E[u±ε (r, ·)]E[u±ε (r′, ·)]∣∣ ≤ C(d)θ2α2(ε)e

− 1
2ε
√

2C0
|r−r′|

.

In the unperturbed case θ = 0 the minimum value is zero and there are two
minimizers, the constant functions identical and equal to 1 or to −1. When θ > 0 the

2The exponent 49
50

is just a possible choice. The relevant issue is that for ε = 1
n

,
∑

n ef(n) is

finite, where here f(n) = −a(ln n)1+
49
50 .
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infimum over H1(Λ) can be negative or even diverge to −∞ as ε ↓ 0. Hence we shall
introduce an additive renormalization for the functional and denote for u ∈ H1(Λ)

(2.8) Fε(u, ω) = Gε(u, ω) − inf
H1(Λ)

Gε(·, ω).

Denote

(2.9) cε = E

[
inf

H1(Λ)
Gε(·, ·)

]
.

We have the following result.
Theorem 2.2. For d ≥ 3 and α(ε) = (ln(1/ε))−1, θ > 0,

(2.10) cε = E[Gε(u+
ε , ·)] = E[Gε(u−ε , ·)],

(2.11) E
[
cε − infH1(Λ)Gε(·, ·)

]2 → 0, 0 < lim inf
ε

α(ε)2
|cε| ≤ lim sup

ε

α(ε)2
|cε| <∞.

The next theorem states that the renormalized functionals have a Γ-limit.
Theorem 2.3. For d ≥ 3, ε = 1

n , n ∈ N, α(ε) = (ln(1/ε))−1, and θ > 0,
Fε(·, ω) → F0(·) in the sense of Γ-convergence (with respect to the L1-topology) P-
almost surely, where F0 is as in (1.2) and CW is as in (1.3).

Theorems 2.1 and 2.2 correspond to the highest order term of a so-called Γ-
expansion of our functional. Their proofs are given in section 5. Theorem 2.3 charac-
terizes the next highest order term. Its proof is given in section 6. The main problem
we face is, as explained in the introduction, the characterization of the minimizers.
Once we have established that each minimizer does not change sign, the proof of the
Γ-convergence result (see Theorem 2.3) follows by standard arguments.

Remark 2.4 (minimizers with constraints). As a direct consequence we obtain
that a sequence uε(·, ω), with

Gε(uε, ω) = min
{v∈H1:

∫
Λ v=m}

Gε(v, ω)

for m ∈ (−1, 1), converges a.e. to a deterministic function u(·) such that

F0(u) = min
{v∈BV :

∫
Λ v=m, |v|=1 a.e.}

F0(v), P = 1.

2.3. Contours and contour reduction. The proofs of Theorems 2.1 and 2.3
are based on an extension of Peierls’ argument [18], to the present context using three
steps: First, a reformulation of the problem in terms of contours, then an estimate
of their energy, and finally an estimate of their number. As we are interested in
global minimizers, we consider free boundary conditions which correspond to Neu-
mann boundary conditions for smooth solutions of the Euler–Lagrange equations.
This makes the definition of contours in the “discretized” setting more complicated.
It is convenient to reformulate the problem in the mesoscopic coordinates. We consider
v ∈ H1(Λε) and denote in mesoscopic coordinates

(2.12) G1(v, ω) :=
∫

Λε

(|∇v(x)|2 +W (v(x))
)
dx + α(ε)θ

∫
Λε

g1(x , ω)v(x )dx.

The relation between (2.3) and (2.12) is

(2.13) Gε(Λ, u, ω) = εd−1G1(Λε, v, ω),

where v(x) = u(εx) for x ∈ Λε.
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2.3.1. Coarse-graining. We introduce notation for the partition of R
d. We

denote by D(0) = {C(0)} the partition of R
d into cubes of side 1, with one of them

having center 0, and we denote by C(0(y) for y ∈ R
d the block of the partition D(0)

which contains y. Two cubes of D(0) are connected if their closures have nonempty
intersection. Given m ∈ L1

loc(R
d) we denote for each cube C(0) ∈ D(0)

(2.14) m(0)(y) ≡
∫

C(0)(y)

m(z)dz,

and by

(2.15) η(m, y) ≡ ηζ(m, y) =

⎧⎪⎨⎪⎩
1 if m(0)(y) > 1 − ζ,

−1 if m(0)(y) < −1 + ζ,

0 if − 1 + ζ ≤ m(0)(y) ≤ 1 − ζ

the block variable with tolerance ζ, where 1 > ζ > 0. η(m, ·) is constant on each cube
of the partition. It determines the sign of the cube. We omit writing the superscript
in notation (2.15) when no confusion arises.

2.3.2. Islands and contours.
Correct points. The point y is ζ-correct, or, equivalently, C(0)(y), the block of

D(0) containing y, is ζ-correct if ηζ(m, y) �= 0 and ηζ(m, y) = ηζ(m, y′) on the cubes
of D(0) which are connected to C(0)(y). (That is, a cube is correct if its sign is nonzero
and all its neighbors have the same sign.) The point y, or, equivalently, C(0)(y), is
ζ-incorrect if it is not ζ-correct. When no confusion arises we drop the ζ- in the
previous definition and we denote a point or a block only by correct or incorrect.

Correct set. The union of the correct blocks of D(0).
Islands and signs of islands. The maximal connected components of the correct

set are called islands. We denote them by I. In an island, η(m, y) is constantly equal
either to 1 or to −1; accordingly we define the sign of the island sign(I ) = ±1.

Boundaries. The boundary ∂extI of an island I is the set of cubes C(0) not in I
but at distance 0 from I; ∂intI is the set of cubes C(0) in I and at distance 0 from
∂extI. The topological boundary is denoted ∂I. The definition of island ensures that
∂extI is a kind of “safety zone” around I, in which η(m, y) still has a definite sign,
equal to the sign of the island.

Contours. Each maximal connected component of the incorrect set is the support
of a contour. The contour is the pair Γ = (sp(Γ), ηΓ), where sp(Γ) is the spatial
support of Γ, i.e., the maximal connected component of the incorrect set and ηΓ is
the restriction to sp(Γ) of η(m, ·). See also Figure 1.

Boundary of a contour. The boundary ∂int(sp(Γ)) of the contour Γ is the union
of ∂extI ∩ sp(Γ) over the islands. The ± boundary, ∂±(sp(Γ)), is the union of cubes
in ∂extI ∩ (sp(Γ)) over the ± islands I.

Contours in finite regions. When m ∈ H1(Λε), the block variable (see (2.15))
can be defined only for those C(0) ⊂ Λε, since m has support in Λε. The notion of
correctness for a block C(0) needs the knowledge of the block variables of the cubes
connected to C(0). We make the following convention.

Neumann boundary condition on Λε. A cube C(0) ⊂ Λε is correct if ηζ(m, y) �= 0
for y ∈ C(0) and ηζ(m, y) = ηζ(m, y′) on the cubes of D(0) ⊂ Λε connected to C(0)(y).
Contours are defined consequently and their support is contained in Λε.

Dirichlet boundary condition on A ⊂ Λε. Let A ⊂ Λε be a bounded, D(0)-
measurable region. We say thatA has boundary conditions +1 (or −1) when η(m, y) =
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− +
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+ O Γ

I Γ

− +

+

+
−

Γ
=AΓ

+

C

C

2

3

+

− int(  )Γ
A Γ

−1C+

Fig. 1. Possible types of contours and inner/outer complement.

+1 (or −1) for all y ∈ Ac, d(y,A) ≤ 1. We then use the convection that all the blocks
in Ac are considered positive (negative) correct and define those inside A according to
the previous rules. Contours are defined consequently and their support is contained
in A.

Collection of contours and islands. Given m ∈ H1(Λε), ζ > 0, we associate
G(m) ≡ G(m, ζ) = {Γ1, . . . ,Γk} for k ∈ N, the collection of contours according to the
previous construction. This also defines the collection of islands I(m) ≡ I(m, ζ) =
{I1, . . . , In} for n ∈ N. It is possible that there are no islands, I(m) = ∅, for example,
when G(m) = {Γ} and sp(Γ) = Λε.

Outer complement of a contour Γ. Given a contour Γ ∈ G(m), consider all con-
nected components of Λε \ sp(Γ), which are connected to the boundary ∂Λε. Denote
them by C1, . . . , CKΓ , KΓ ∈ N. We can associate a sign with each connected compo-
nent by defining sign(Cj) := η(x) for some x ∈ Cj with dist(x, sp(Γ)) < 1/2. We form
the union over the positive and negative connected components, i.e.,

A+
Γ :=

⋃
sign(Cj)=+1

Cj , A−
Γ :=

⋃
sign(Cj)=−1

Cj .

Note that this definition does not imply that η(·) is constant on A+
Γ . Namely, there

could be contours different from Γ contained in A+
Γ . We ignore them when assigning

the sign +. The same applies to A−
Γ .

We denote by OΓ the outer complement of a contour Γ, the set

(2.16) OΓ :=
{
A+

Γ if |A+
Γ | ≥ |A−

Γ |,
A−

Γ if |A+
Γ | < |A−

Γ |.
Inner complement of a contour Γ. The inner complement of a contour Γ is

denoted by int(Γ) := Λε \ [sp(Γ) ∪OΓ].
It is convenient to define a mapping Γ ∈ G(m) → {IΓ} ⊂ I(m), which associates

with each contour Γ the corresponding set of islands {IΓ}. By abuse of notation we
will ignore that there may be several islands and write {IΓ} = IΓ if no confusion
arises.

How to associate {IΓ} to Γ. Given Γ ∈ G(m), let int(Γ) be the inner complement.
The islands {IΓ} together with their sign are defined as follows. Fix a connected
component of the inner complement int(Γ). This connected component is connected
to either ∂+(sp(Γ)) or ∂−(sp(Γ)). Set τ = ±1 accordingly. The island associated
with this connected component is the union of all cubes in the considered connected
component which have the same sign, i.e., η(m, y) = τ for all y ∈ IΓ, and which are
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connected to ∂τ (sp(Γ)). The sign of IΓ equals τ . Note that the number of islands
associated to Γ is equal to the number of the connected components of the inner
complement and their signs can be + or −.

Virtual contour. Further, we denote

IΓ̃ := Λε \ ∪Γ∈G(m) (sp(Γ) ∪ {IΓ}) .

The coarse-grained phase indicator η is constant on IΓ̃ (see Lemma 5.1), and we define

(2.17) sign(m) := ηζ(m, ·)|IΓ̃ .

This means that IΓ̃ shares this important property with the islands associated with
real contours; therefore, it is justified to call it an island associated with a virtual
contour Γ̃.

Remark 2.5. Note that in a finite volume with Neumann or Dirichlet boundary
conditions it is always possible to divide the complement of the support of a collection
of contours {Γ1, . . . ,Γk} into connected regions Ii for i = 1, . . . , n so that η is constant
and not zero on ∂extIi (the boundary of an island).

The definitions (2.14) and (2.15) distinguish functions in L1
loc(R

d) according to
their mean over unit cubes of the partition D(0). We would like to have some control
on their pointwise behavior on correct cubes. In the next theorem we show that,
given ζ > 0 and m0 ∈ H1(Λε), we can associate a function which decreases the energy
functional, has “almost” the same phase indicator ηζ as the original function m0,
and for which positive (resp., negative) mean over correct cubes implies pointwise
positivity (resp., negativity). We will refer to such a function as the ζ-representative
of m0.

Remark 2.6. Theorems 2.7 and 2.11 are stated for θ small and α(ε) = 1. In the
case α(ε) → 0 they hold for ε sufficiently small.

Theorem 2.7 (representation). There exist θ0 > 0 and 0 < ζ0 < δ0/4,3 such
that P-almost surely the following holds: For all 0 < θ ≤ θ0, 0 < ζ ≤ ζ0, and for all
m0 ∈ H1(Λε) we can associate m1 ∈ H1(Λε), m1 ≡ m1(ω,m0, ζ) so that

(2.18) G1(m1, ω) ≤ G1(m0, ω)

and that m1 has the following properties.
Let Î = {x ∈ Λε; d(x, I) ≤ 1

4} for I ∈ I(m1, ζ), and let C1 = 2C0‖g‖∞, where C0

is the positive constant in (2.4). Then we have the following.
1. If Γ ∈ G(m0, ζ), then sp(Γ) ⊂ sp(Γ′) with Γ′ ∈ G(m1, ζ).
2. m1 is Lipschitz continuous on Î with Lipschitz constant L0 = L0(d, C1, θ0).
3. There exists 0 < ζ̂ < δ0/2, ζ̂ = ζ̂(d, ζ, θ0) (see (3.4)) so that

m1(x)∈
{ [

1−ζ̂, 1+C1θ
]
, x ∈ Î and sign(I) = +1,[−1−C1θ,−1+ζ̂
]
, x ∈ Î and sign(I) = −1.

4. m1(x, ω) = sign(I ) + v̂(x , ω, Î ) for x ∈ Î , where v̂(·, ω, Î) is the solution of

(2.19) −Δv+
1

2C0
v +

1
2
α(ε)θg1(·, ω) = 0 in Î , v = m1 − sign(I ) on ∂ Î .

3The upper bound ζ0 < δ0/4 is an immediate consequence of (3.5).
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Remark 2.8. The previous theorem holds for 0 < ζ < ζ0, but it becomes mean-
ingless for θ fixed and ζ small: In such a situation ηζ = 0 on too many cubes because
the random field will create deviations from ±1 which are typically larger than ζ.
Theorem 2.11, stated below, holds only for an accuracy parameter ζ(θ), not for a
range reaching up to zero.

The proof of Theorem 2.7 is given at the end of section 3. It is based on several
intermediate results proven in section 3.

Definition 2.9. We denote by Rζ,ω(Λε) the set of the ζ-representatives of func-
tions in H1(Λε) :

Rζ,ω(Λε) := {m ∈ H1(Λε) : There exists u ∈ H1(Λε) s .t . m = m1(ω, u, ζ)}.
We will drop the suffix ζ, ω when no confusion arises.

For such a “representative” m1 we can bound the energy from below in terms of
contours. First we need to define two functions u+

ε (·, ω) and u−ε (·, ω), which for θ � 1
are the minimizers under the pointwise constraints u > 0 and u < 0, respectively.

Definition 2.10. Let v∗ε (·, ω) be the solution of the following equation:

(2.20) −εΔv(r) +
1

2C0

v(r)
ε

+
1
2ε
α(ε)θgε(r, ω) = 0 in Λ,

∂v

∂n
= 0 on ∂Λ.

Let u±ε := ±1 + v∗ε , and set for x ∈ Λε, v∗(x, ω) := v∗ε (εx, ω), u± := ±1 + v∗. Note
that v∗ depends on ε only through α(ε).

The relevant properties of v∗ε are summarized in Proposition B.1. The next the-
orem bounds from below the difference between G1(m,ω), the functional evaluated
over a generic function m ∈ H1(Λε), and G1(usign(m), ω), the functional evaluated at
u+

ε := 1 + v∗ε , when sign(m) = 1, or at u−ε := −1 + v∗ε , when sign(m) = −1. This
lower bound in terms of contours of m1 holds for each realization of ω ∈ Ω. When the
quantity which bounds this difference from below is positive, then for that realization
of the random field the function u±ε := sign(m) + v∗

ε , having no contours, has lower
energy than G1(m,ω). Theorem 2.11 together with some probabilistic estimates is an
essential step in the proof of Theorem 2.1.

Theorem 2.11 (reduction). Let ζ0 and θ0 be as in Theorem 2.7. There exists
θ1 > 0 with θ1 < θ0 such that P-almost surely the following holds: There exists
0 < ζ := ζ(θ0) < ζ0 such that for all 0 < θ < θ1 there exists a deterministic constant
c(θ) with lim infθ→0 c(θ) > 0 such that

G1(m,ω)−G1(usign(m), ω) ≥
∑

Γ∈G(m1,ζ)

(
−sign(m)2θ

∫
I
−sign(m)
Γ

g1(x, ω)dx + c(θ)NΓ

)
,

where m1 is a ζ-representative of m (see Theorem 2.7), NΓ =
∣∣∪Γ∈G(m1,ζ)sp(Γ)

∣∣ , and
I±Γ denotes those islands associated with Γ, where ηζ = ±1.

We show the proof of Theorem 2.11 in section 5.
Remark 2.12. Since we apply Theorems 2.7 and 2.11 to prove Theorems 2.1, 2.2,

and 2.3, which hold only in d ≥ 3, we prove Theorems 2.7 and 2.11 only for d ≥ 3.
The proof extends to d ≥ 1 with minor modifications mainly due to the explicit
representation of the solution of (2.20) in terms of the associated Green function.

In the following we denote by Per(A,Q) the perimeter of a set A within a set
Q. When Q = Λ we set Per(A) = Per(A,Λ). Roughly speaking, Per(A,Q) denotes
the area of that part of the boundary of A which is contained in the interior of Q. A
rigorous definition uses the BV norm of the characteristic function of A, i.e., of the
function which is equal to 1 in A and zero elsewhere; see, e.g., [9, 21].
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3. Properties of low energy states.

3.1. Existence and properties of global minimizers. In this section we
prove properties of functions with energy close to the minimal one. The statements
hold either for α(ε) = 1 and θ sufficiently small, or for θ arbitrary, α(ε) → 0, and ε
sufficiently small. We first show that to determine the minimizers of the functional
Gε, it is sufficient to consider functions in H1(Λ) which satisfy a uniform L∞-bound.

Lemma 3.1. Assume H1. We have with P = 1 that for all v ∈ H1(Λ) and all
t > 1 + C0θα(ε)‖g‖∞,

(3.1) Gε(t ∧ v ∨ (−t), ω) −Gε(v, ω) ≥ 1
ε

∫
Λt

(
C−1

0 (t− 1) − α(ε)θ‖g‖∞
)
(|v(y)| − t),

where C0 is the constant in (2.4) and Λt = {y ∈ Λ : |v(y)| > t}. In particular
Gε(t ∧ v ∨ (−t), ω) < Gε(v, ω) unless Λt = ∅.

Proof.

Gε(v, ω) −Gε(t ∧ v ∨ (−t), ω) ≥ 1
ε

∫
Λt

(W (v(y)) −W (t)) dy

+
1
ε
α(ε)θ

∫
Λt

gε(y, ω)[v(y) − sign(v(y))t]dy,

and from H1 and the L∞-bound on g we derive (3.1).
This L∞-bound on the global minimizer implies Lipschitz regularity. In order to

see this, note that a global minimizer of Gε(·, ω) in H1(Λ) is for all ω ∈ Ω a weak
solution of the Euler–Lagrange equation

εΔv =
1
2ε

[W ′(v) + θα(ε)gε] in Λ,(3.2)

with homogeneous Neumann boundary conditions.
Proposition 3.2. Let

(3.3) L0 = C(d)

[
sup

{s:s=v(r),r∈Λ}
|W ′(s)| + θ‖g‖∞

]
.

With P = 1 it holds that the solution v of the Euler–Lagrange equation (3.2) satisfies

|v(r, ω) − v(r′, ω)| < L0

ε
|r − r′|, r, r′ ∈ Λ.

Proof. By Lemma 3.1, a global minimizer v satisfies the bound |v(r, ω)| ≤ 1 +
C0θ‖g‖∞α(ε) for r ∈ Λ and ω ∈ Ω. Since |gε(·, ω)| ≤ 1 for all ω ∈ Ω, any minimizer
will be a bounded solution of Poisson’s equation with a bounded right-hand side.

By changing variables y = r
ε , one writes (3.2) in Λε. Denote u(y, ω) = v(εy, ω).

By the regularity theory for the Laplacian (see [12]) the solution u is Lipschitz in Λε

with a Lipschitz constant bounded by L0 = sup{s:s=u(x),x∈Λε} |W ′(s)| + θ‖g‖∞ and
independent of ε. Transforming back the solution in the old set of coordinates, one
immediately obtains the result.
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3.2. Pointwise properties. Once the Lipschitz continuity is established, it is
easy to derive pointwise properties from information about integral averages over
cubes by standard estimates.

Proposition 3.3. Let θ0 > 0 and 1 > ζ0 > 0, Q ∈ D(0) and let

k(d) = inf
x∈[0,1]d

lim inf
r→0

r−d|Br(x) ∩ [0, 1]d|.

Suppose that u is Lipschitz continuous in Q with Lipschitz constant L0, and ‖u‖∞ ≤
1 + C1θ for 0 < θ ≤ θ0. Let

(3.4) ζ̂(d, L0, ζ0, θ0) := 2
(
ζ0 + C1θ0
k(d)

) 1
(d+1)

(2L0)
d

(d+1) .

Then for 0 < ζ < ζ0

u(x) ∈
{ [

1 − ζ̂, 1 + C1θ
]

if ηζ(u, x) = +1,[− 1 − C1θ,−1 + ζ̂
]

if ηζ(u, x) = −1.

Proof. Suppose ηζ(u, x) = 1 for x ∈ Q. Let ζ̂ be as in (3.4) and assume there
exists a point x0 ∈ Q such that u(x0) < 1 − ζ̂. We will show that this assumption
leads to a contradiction. Let 0 < r � 1. Then since u has Lipschitz constant bounded
by L0

u(x) < 1 − ζ̂ + L0r ∀x ∈ Br(x0).

Moreover, we have the bound |u| ≤ 1 + C1θ. Let vr := |Br(x0) ∩ Q|; then, since
ζ ≤ ζ0,

(1 − ζ0) ≤ (1 − ζ) ≤
∫

Q

u ≤ (1 − ζ̂ + L0r)vr + (1 − vr)(1 + C1θ0),

and consequently

vr(ζ̂ − L0r + C1θ0) ≤ ζ0 + C1θ0.

Choose r so small that L0r ≤ (1/2)ζ̂, and let k(d) be such that vr ≥ k(d)rd for r � 1.
Then we derive a contradiction if ζ̂ is as in (3.4). Therefore x0 cannot exist and
u(x) > 1 − ζ̂ for all x ∈ Q. The case ηζ = −1 is proven similarly.

Remark 3.4. To exploit the properties of the double-well potential near the points
±1 it is essential to require u(x) ≥ 1 − δ0 for x ∈ Q, where δ0 is the quantity defined
in (2.4). Keeping in mind that by Lemma 3.1 we may assume ‖u‖∞ ≤ 1+2C0‖g‖∞θ,
we require

(3.5) 2
(
ζ0 + 2C0‖g‖∞θ0

k(d)

) 1
(d+1)

(2L0)
d

(d+1) ≤ δ0
2
.

This forces a condition on ζ0 and θ0 (when α(ε) = 1).
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3.3. Minimizers with constraints.
Definition 3.5. Denote for m ∈ H1(Λε), |m| ≤ 1 + C1θ0, I ⊂ Λε, a D(0)-

measurable set and τ = ±, respectively,

XI,m =
{
ψ ∈ H1(Λε, R) : ψ = m on (I ∪ ∂extI)c

}
,(3.6)

Aτ
I,m =

{
ψ ∈ XI,m : η(ψ, x) = τ on I ∪ ∂extI

}
.(3.7)

A generic function in Aτ
I,m, e.g., an element of a recovery sequence for the Γ-

convergence result in Theorem 2.3, does not need satisfy the hypothesis of Proposition
3.3. However, it will turn out that we do not need to prove that the constraint given
by the mean (see (2.15)) implies a strictly pointwise constraint for a generic function
in Aτ

I,m but only for those functions minimizing the energy under the constraint to be
in Aτ

I,m (the integral constraint) and the pointwise constraint |ψ| ≤ 1 + C1θ0. So we
dedicate the next subsection to the proof that the minimizers of the functional (2.12),
subject to the integral and the pointwise constraint just described, are, on correct
cubes, Lipschitz continuous with a Lipschitz constant depending only on W , θ0, and
‖g‖∞.

Definition 3.6. Given m0 ∈ H1(Λε), ‖m0‖L∞ ≤ 1 +C1θ, θ > 0, 1 > ζ > 0, we
define Sε(m0) ≡ Sζ

ε (m0) as follows:

Sε(m0) :=
{
m ∈ H1(Λε) : ‖m‖L∞ ≤ 1 + C1θ

}
∩

⎧⎪⎨⎪⎩m ∈ H1(Λε) :

⎧⎪⎨⎪⎩
∫

C(0)(x)m ≥ 1 − ζ if
∫

C(0)(x)m0 > 1 − ζ,∣∣∣∫C(0)(x)
m
∣∣∣ ≤ 1 − ζ if

∣∣∣∫C(0)(x)
m0

∣∣∣ ≤ 1 − ζ,∫
C(0)(x)

m ≤ −1 + ζ if
∫

C(0)(x)
m0 < −1 + ζ.

⎫⎪⎬⎪⎭

(3.8)

Since weak convergence in H1 implies strong convergence in L2, the integral
constraints are preserved under weak H1-convergence. Moreover, any sequence which
converges strongly in L2 has a subsequence which converges a.e., so that the L∞-
constraint is also preserved under weak H1-convergence. Hence for any fixed ε > 0
the set Sε(m0) is weakly H1-closed and minSε(m0)G1(u, ω) exists with P = 1. Note
that m0 ∈ Sε(m0), so

(3.9) min
Sε(m0)

G1(u, ω) ≤ G1(m0, ω).

Choose any m1 ∈ argminSε(m0)G1(u, ω). We denote m1 ≡ m1(ω,m0, ζ) a represen-
tative of m0. Define, as before, the block indicator ηζ(m1, x), x ∈ Λε, and the set
of the associated contours G(m1) and islands. Note that if ηζ(m0, x) = 0, then
ηζ(m1, x) = 0 but, as strict inequalities are not preserved in the limit, it might hap-
pen that ηζ(m1, x) = 0 even though ηζ(m0, x) �= 0.

The next lemma shows that on correct cubes the pointwise constraint is not active
for the minimizer m1. This is not obvious due to the simultaneous presence of both
types of constraints: The one-sided integral constraint “pushes the minimizer up.”
Note that the integral constraint is not active on correct cubes by definition; see
(2.15).

Lemma 3.7. Let m1 ∈ argminSε(m0)G1(u, ω), and let Q0 be a ζ-correct cube for
m1. Define U := {x : dist(x,Q0) < 1/2}.

Then there exists for any ξ ∈ C∞
0 (U) a δξ > 0 such that

m1 + δξ ∈ Sε(m0) ∀ δ < δξ.
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As a simple consequence we have that the minimizer with the constraints satisfies
the Euler–Lagrange equation in a weak sense.

Corollary 3.8. For m1 and ξ as in Lemma 3.7 we have that

−2
∫

gradm1 grad ξ =
∫

[W ′(m1) + θα(ε)g1] ξ.

Lemma 3.7 follows from Lemmas 3.10 and 3.11 stated below in the case ηζ(m1, x) =
1 on Q0, and the obvious version of them when ηζ(m1, x) = −1 on Q0. We need the
following definition.

Definition 3.9. Let Q ⊆ R
d be connected and D(0)-measurable, i.e., a union of

translated unit cubes such that the topological interior int(Q) is connected. Moreover,
let β > 0 and C > 0. We denote by Ψ±

Q,β the minimizer with boundary condition
±(1 + Cθ), the unique element of

(3.10) argmin{v∈H1(Q): v∓(1+Cθ)∈H1
0(Q)}

∫
Q

(| gradu|2 ± βu),

i.e., the minimizer with boundary condition ±(1 + Cθ).
To shorten notation we specialize the next lemmas to the case of positive boundary

conditions and denote Ψ+
Q,β := ΨQ,β .

Lemma 3.10. Let ΨQ,β be as in Definition 3.9. Then,
1. −2ΔΨQ,β + β = 0 on int(Q), ΨQ,β = 1 + Cθ on ∂Q.
2. 1 + Cθ − C(Q)β ≤ ΨQ,β < 1 + Cθ on int(Q), where C(Q) depends only on

the diameter of Q.
3.
∫

Q |ΨQ,β − (1 + Cθ)| → 0 as β → 0.
Proof. Point (1) is obvious, (2) is an immediate consequence of the strong maxi-

mum principle applied to ΨQ,β (upper bound) and the maximum principle applied to
φ ≡ ΨQ,β − [ β

4d |x−x0|2 + c0], where x0 is the center of the smallest ball containing Q
and c0 is the largest constant such that β

4d |x− x0|2 + c0 ≤ 1 +Cθ on ∂Q. Namely, φ
is a harmonic function in Q and on the boundary of Q nonnegative, so φ(x) ≥ 0 for
x ∈ Q. We choose c0 = 1 + Cθ − β

4d (diamQ)2. This implies the lower bound in (2),

setting C(Q) = (diamQ)2

4d . Finally, (3) follows from (2).
Lemma 3.11. Let Q be connected and D(0)-measurable. Let ΨQ,β be as in Def-

inition 3.9 with C ≥ 2C0‖g‖L∞, where C0 is the constant in (2.4). Let u ∈ H1(Q)
so that ‖u‖∞ ≤ 1 + Cθ. There exists θ0 = θ(W, ‖g‖∞) > 0 and for all θ ≤ θ0
β0 = β0(θ,W, diamQ) (see (3.14)), so that for 0 < β < β0 the function ûβ := u∧ΨQ,β

satisfies the following.
1. G1(Q, ûβ, ω) ≤ G1(Q, u, ω), with strict inequality if ûβ �= u, P = 1.
2. ûβ < 1 + Cθ in int(Q), ûβ = u on ∂Q.
3. | ∫Qi

ûβ − ∫Qi
u| → 0 as β → 0 for all Qi ⊆ Q, Qi ∈ D(0).

Proof. Point (2) follows from (2) of Lemma 3.10 and the L∞-bound on u and
that, by construction, ΨQ,β(·) = 1+Cθ on the boundary of Q. Point (3) follows from
point (3) of Lemma 3.10 and the bound u(x) ≤ 1 + Cθ a.e.

It remains to show (1). The main idea is to consider Ψ̃ := ΨQ,β∨u as a (compactly
supported) perturbation of Ψ := ΨQ,β, thus obtaining bounds on∫

{u(x)>Ψ(x)}
| gradu|2.
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These bounds, in turn, are used to obtain (1), considering ûβ ≡ ΨQ,β ∧u as a pertur-
bation of u. As Ψ is a minimizer (see (3.10)), we obtain

0 ≤
∫

Q

[
(| grad Ψ̃|2 − | gradΨ|2) + β(Ψ̃ − Ψ)

]
=
∫
{u>Ψ}

[
(| gradu|2 − | gradΨ|2) + β(u − Ψ)

]
,

and therefore

(3.11)
∫
{u>Ψ}

(| gradu|2 − | gradΨ|2) ≥ −β
∫
{u>Ψ}

(u − Ψ).

Then, since by (2) of Lemma 3.10, Ψ(·) ∈ [1 + Cθ − C(Q)β, 1 + Cθ], and u(·) ∈
(1 + Cθ − C(Q)β, 1 + Cθ] for all x ∈ {u > Ψ}, we have

G1(Q, u, ω)−G1(Q, ûβ, ω)

=
∫
{u>Ψ}

[
(| gradu|2 − | gradΨ|2) +

(
W (u) −W (Ψ)

u− Ψ
+ θg1(·, ω)

)
(u− Ψ)

]
≥ C(β, θ)

∫
{u>Ψ}

(u − Ψ),

(3.12)

where

(3.13) C(β, θ) = inf
[1+Cθ−C(Q)β,1+Cθ]

W ′(s) − θ‖g‖L∞ − β.

Take β ≤ δ0
C(Q) so that 1−δ0 < 1+Cθ−C(Q)β. By (2.4), inf [1+Cθ−C(Q)β,1+Cθ]W

′(s) =
1

C0
[Cθ − C(Q)β]; then, since by assumption C ≥ 2C0‖g‖L∞, we obtain that

C(β, θ) ≥ θ‖g‖L∞ − β

C0
[C0 + C(Q)].

Take θ0 and β0 so that

(3.14) θ0 ≤ 2
δ

‖g‖∞ , β0 =
1
2
θ
C0‖g‖L∞

C0 + C(Q)
;

then C(β, θ) > 1
2θ‖g‖∞ for all β < β0.

4

Remark 3.12. For u as in Lemma 3.11 we can find β ≡ β(u) < β0 such that∫
Qi
ûβ > 1 − ζ if

∫
Qi
u > 1 − ζ for all unit cubes Qi contained in Q = ∪iQi.

As a consequence we have that for such β, ûβ strictly satisfies the integral and the
L∞-constraints in Q, G1(Q, u, ω) ≥ G1(Q, ûβ, ω), with strict inequality unless u = ûβ

a.e.
Proof of Lemma 3.7. Let m1 be a minimizer in the set Sε(m0); see (3.8) and (3.9).

Let Q̂ be the union of Q0 and the cubes Qi, which are the connected neighbors of Q0.
By assumption, Q0 is ζ-correct and we may assume that ηζ(m1, x) = 1 for x ∈ Q̂.

(Similar arguments hold when ηζ(m1, x) = −1 for x ∈ Q̂.) By Lemma 3.11 (and its
version for the negative well), there exists a β > 0 such that |m1(x)| ≤ ΨQ̂,β(x) in

4The choices made enforce β ≤ δ0
C(Q)

since C(Q) ≥ 1.
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Q̂. This implies (see point (2) of (3.11)) that there exists a c0 ≡ c0(β, d) such that
|m1(x)| ≤ c0 < 1 + Cθ in the set U ⊂⊂ Q̂; see the statement of the lemma. Since
ξ ∈ C∞

0 (U), there exists δξ so that for all δ ≤ δξ, m1 + δξ does not violate the
pointwise constraint, i.e., ‖m1 + δξ‖L∞ < 1 +Cθ. (Take δ supx |ξ(x)| < 1 +Cθ − c0.)
We may require in addition that 0 < δ| ∫Qi

ξ| < minQi⊆Q̂(
∫

Qi
m1) − (1 − ζ); then

m1 + δξ ∈ Sε(m0).
After having established that the constraint minimizer m1 satisfies the same

Euler–Lagrange as the unconstraint minimizer, we obtain Lipschitz regularity on cor-
rect cubes.

Lemma 3.13. With P = 1 the following holds: Let θ0 > 0. There exists a constant
L0 ≡ L0(d, C0, θ0, ‖g‖∞) (C0 as in (2.4)), such that for 0 < θ < θ0, 0 < ζ < δ0

4 , the
representatives m1 ∈ argminSζ

ε (m0)
G1(·, ω) of any m0 ∈ H1(Λε) satisfy the following

on any correct cube Q0 for x, y ∈ U := {x : dist(x,Q0) < 1/2}:

|m1(x) −m1(y)| ≤ L0|x− y|.

Remark 3.14. Note that L0 does not depend on ζ. This will enable us to apply
Lemma 3.3 to ζ, θ that satisfy (3.5).

Proof. Let Q̂ be the union of Q0 and the cubes Qi, which are the connected
neighbors of Q0, and let V := {x : dist(x,Q0) < 3/4}. Then there exists a cutoff
function χ ∈ C∞

0 (Q̂) such that ‖χ‖W 2,∞ ≤ K for some K(d) independent of θ and ζ,
χ(x) = 1 for all x ∈ U, while χ(x) ≡ 0 for x ∈ Q̂ \ V, and 0 ≤ χ(x) ≤ 1 for x ∈ Q̂.
Then by Corollary 3.8 we obtain that (χm1) is a weak solution of the linear PDE

Δv = f on Q̂, v = 0 on ∂Q̂,(3.15)

f = m1Δχ+ gradχ gradm1 +
1
2

[W ′(m1) + θα(ε)g1]χ.(3.16)

As the proof proceeds by standard arguments (see, e.g., [8]), we sketch it. First we
show that there exists a constant depending only on W , d, K, the bound on the
W 2,∞-norm of the cutoff function, and θ0 so that for all θ ≤ θ0,

(3.17)
∫

V

| gradm1|2 ≤ C(W, ‖g‖∞, d, θ0).

Now we know that f in (3.16) can be written as f = f1 + f2, ‖f1‖L∞(Q̂) +
‖f2‖L2(Q̂) ≤ C(W,d, θ0). By the regularity theory for weak solutions of (3.15), we
obtain v ∈ W 2,2, hence, gradm1 ∈ Lp(V ′) for a slightly smaller set V ′ and p <
2d/(d−2). This improves the regularity of f2 to ‖f2‖Lp < C′(W,d, θ0). This standard
bootstrap procedure can be repeated until, after a number of steps depending only
on the dimension, ‖f2‖Lp < Cp(W, θ) for p > d. Then v ∈ W 2,p by the Lp-regularity
theory for elliptic equations and by the Sobolev embedding v ∈ C1 with constants
depending only on W, θ, ‖g‖∞, and the dimension.

We are now able to prove Theorem 2.7.
Proof of Theorem 2.7. Let ζ ≤ ζ0 and Sζ

ε (m0) be the set defined in (3.8). The
existence of a minimizer of G1(m,ω) for m ∈ Sε(m0) is a consequence of the fact that
there exist a constant C and Cε(θ, ‖g‖∞) so that

G1(u, ω) ≥ 1
C

(‖∇u‖2 + ‖u‖2
)− Cε, P = 1.
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G1 is weakly lower semicontinuous on H1(Λε) and, as pointed out before Lemma 3.7,
the set Sε(m0) is weakly H1-closed. Point (1) is obvious because of the definitions of
Sε(m0), the block variable (see (2.15)), and the definition of contours. The Lipschitz
property in point (2) is a consequence of Lemma 3.13 applied to each block in any
island associated to m1. Recall that, by definition, each island is the union of correct
blocks. The positivity is a consequence of point (1) and Proposition 3.3. Further,
assume without loss of generality that sign(I) = 1; for notation see subsection 2.3.2.
Set m1 = 1 + v̂. The functional restricted to Î can be written as the following:

G1(Î , 1 + v̂, ω) =
∫

Î

(
|∇v̂(y)|2 +

1
2C0

(v̂(y))2
)

dy + α(ε)θ
∫
Î

dyg1(y, ω)(1 + v̂(y)).

The equality holds since m1(x) ≥ 1 − ζ̂ for x ∈ Î (see point (3)) and ζ̂ ≤ δ0 by
assumption (see Remark 3.4), and by the assumption on the double-well potential
(see (2.4)). Further, we proved that the constraints on m1 are not active in Î. Thus v̂
solves the Euler–Lagrange equation (2.19). As a simple consequence of the convexity
of the potential W (s) when s ≥ δ0 (see H1), this solution is unique.

4. Deviations from equilibrium. In this section we estimate the cost associ-
ated with the support of a contour. We will need several lemmas for estimating the
cost of a single cube which is not correct, and then conclude by a covering argument.
The estimates in this section are based on standard methods, but they are compli-
cated by the fact that we need estimates that hold even for those contours which are
not “mixed,” i.e., which do not separate areas where m ∼ 1 from areas where m ∼ −1.
Let Q be a cube of sidelength �. Given m ∈ H1(Q) and t > 0 we define the following.

Definition 4.1.

(4.1) mt
Q(x) =

{
|m(x)| ∨ t if |{m > 0}| ≥ 1

2 |Q|,
−(|m(x)| ∨ t) if |{m > 0}| < 1

2 |Q|.

Lemma 4.2. Let δ0 and C0 be as defined in (2.4), and let Q be a cube of side-
length �. Then there exists C2 > 0 (depending only on the dimension) and a t0 with
max{ 1

2 , 1 − δ0} < t0 < 1 so that with D1 := inf |s|≤ 1
2

√
2(W (s) −W (t0)) ≥ 0 it holds

that for any t with t0 < t < 1 − 2C0α(ε)θ‖g‖∞

(4.2) G1(Q,m, ω)−G1(Q,mt
Q, ω) ≥

(
D1− 8α(ε)θ�

t0C2

)∫ t
2

− t
2

P ({m < s}, Q)ds.

The proof goes as in Proposition 3.6 of [7]. We will apply Lemma 4.2 together
with the following isoperimetric inequality (see sections 5 and 6 of [9]):

(4.3) Per ({m < s}, Q) ≥ (min(|Q ∩ {m(x) ≤ s}|, |Q ∩ {m(x) > s}|)) d−1
d ,

where Per(A,Q) is the perimeter of a set A within a set Q (see the definition at the
end of section 2), and |A| denotes the d-dimensional Lebesgue measure of the Borel
set A. We need the following lemma, which bounds from below the cost of a zero
cube.

Lemma 4.3. Let 0 < ζ < 1
4 . There exist increasing and near 0 strictly increasing

continuous functions σ̃(ζ) > 0, θ̃(ζ) > 0, with σ̃(0) = θ̃(0) = 0 which depend only
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on the double-well potential, the L∞-norm of g, the sidelength of the cube, and the
dimension, such that for 0 < θ < θ̃(ζ) on any cube Q with

−1 + ζ <
1
|Q|
∫

Q

m < 1 − ζ, ‖m‖L∞(Q) < 1 + 2θC0,

it holds that

(4.4) G1(Q,m, ω) −G1(Q, u±, ω) ≥ σ̃(ζ)|Q|.

For its proof we need another lemma which we state and prove first.
Lemma 4.4. Let δ, ρ, t, ζ, and C1 be positive parameters such that 0 < δ < ρ <

ζ < 1/4, and suppose that ζ and t satisfy the relation { 1
2 , 1 − δ0} < t < 1 − ζ. Let

(4.5) A = {x ∈ Q : −1 + ζ − ρ < m(x) < 1 − ζ + ρ}

and suppose

(4.6) |Q ∩A| < δ|Q|.

Suppose, moreover, that θ < 1 and let

(4.7) σ3 = min
{(

1
2
− δ

)
,
ρ− δ

3 + C1

}
.

Then the following implication holds.
If |m(x)| < 1 + C1θ and ηζ(m,x) = 0 for all x ∈ Q, then

(4.8) min(|Q ∩ {m(x) > s}|, |Q ∩ {m(x) < s}|) ≥ σ3|Q| for − t/2 < s < t/2.

Proof. We show the lemma in the case

(4.9) max(|Q ∩ {m(x) > 0}|, |Q ∩ {m(x) ≤ 0}|) = |Q ∩ {m(x) ≥ 0}|

and s ∈ [0, t/2]; the remaining case is shown similarly. By assumption, { 1
2 , 1 − δ0} <

t0 < t < 1 − ζ. We distinguish two cases:
(a) |Q ∩ {m(x) > s}| ≤ |Q ∩ {m(x) < s}|;
(b) |Q ∩ {m(x) < s}| ≤ |Q ∩ {m(x) > s}|.

We start by discussing the case (a). As s < t
2 < 1 − ζ, we have |{0 < m(x) < s}| ≤

|{0 < m(x) < 1 − ζ + ρ}| for any ρ > 0 and by (4.6)

(4.10) |Q ∩ {0 < m(x) < s}| < δ|Q|.

We have

|Q ∩ {m(x) > s}| = |Q| − |Q ∩ {m(x) ≤ 0}| − |Q ∩ {0 < m(x) < s}|.

As |Q ∩ {m(x) ≤ 0}| ≤ 1/2|Q| by assumptions (4.9) and (4.10), we obtain

(4.11) |Q ∩ {m(x) > s}| ≥
(

1
2
− δ

)
|Q|.

Take δ < 1
2 so that (4.11) is strictly positive.
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In the case (b) we estimate with the help of the a priori bound |m| ≤ 1 + C1θ and
0 < s < 1 − ζ∫

Q

m ≥
∫

Q∩{m(x)<s}
m+

∫
Q∩{s<m(x)<1−ζ+ρ}

m+
∫
|Q∩{m(x)≥1−ζ+ρ}

m

≥ (−1 − C1θ)|Q ∩ {m(x) < s}| + (1 − ζ + ρ)(|Q ∩ {m(x) ≥ 1 − ζ + ρ}|)
≥ −(1 + C1θ)|Q ∩ {m(x) < s}|

+ (1−ζ+ρ) [|Q|−|Q∩ {m(x) < s}|−|Q ∩ {−1+ζ−ρ < m(x) < 1−ζ+ρ}|] .
By ηζ = 0 on Q and inequality (4.6) we obtain

|Q|(1−ζ) ≥ −(2 − ζ + ρ+ C1θ)|Q ∩ {m(x) < s}| + (1 − ζ + ρ)(1 − δ)|Q|,
which implies for δ < ρ < ζ < 1/4

|Q ∩ {m(x) < s}|
|Q| ≥ ρ− δ(1 − ζ + ρ)

2 − ζ + ρ+ C1θ
≥ ρ− δ

3 + C1
> 0,(4.12)

and we obtain (4.8) for σ3 as in (4.7).
Now we show the proof of Lemma 4.3.
Proof. Assume without loss of generality that (4.9) holds. Let δ > 0, ρ > 0, so

that 0 < δ < ρ < ζ. Let A be as in (4.5). We distinguish two cases.
Case 1. Suppose (4.6) does not hold, i.e., |Q ∩ A| ≥ δ|Q|. Recall that u± =

±1 + v∗ and, similarly to Proposition 3.2, one estimates 1
|Q|
∫

Q
|∇v∗|2 ≤ Cθ2, where

C = C(W,d, ‖g‖∞). We have

G1(Q,m, ω) −G1(Q, u±, ω) ≥ −
∫

Q

|∇v∗|2 +
∫

Q

W (m) −
∫

Q

W (u±)

+ θ

∫
Q

g1[m∓ 1] − θ

∫
Q

g1v
∗(4.13)

≥ −Cθ|Q| + |Q| δ

2C0
(ζ − ρ)2,

since by the assumptions on the double-well potential H1

W (u±) ≤ θ2‖g‖2
∞C

2
0 ,

1
|Q|
∫

Q∩A

W (m) ≥ δ

2C0
(ζ − ρ)2.

Then we get (4.4) with σ̃ = δ
2C0

(ζ − ρ)2 − Cθ.
Case 2. Assume (4.6). We apply Lemma 4.2 to the cube Q. Again we may

suppose that |Q∩ {m(x) > 0}| ≥ 1/2|Q| (see (4.9)). So from Lemma 4.2, adding and
subtracting, we have for { 1

2 , 1 − δ0} < t < 1 − ζ

G1(Q,m, ω)−G1(Q, u±, ω) ≥ [G1(Q,mt
Q, ω) −G1(Q, u±, ω)]

+
(
D1− 8�θ

t0C2

)∫ t
2

− t
2

P ({m < s}, Q)ds.

Taking into account the assumption H1 for the potential, we estimate the first term
in a straightforward manner, obtaining

[G1(Q,mt
Q, ω) −G1(Q, u±, ω)] ≥ −Cθ|Q|,
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where C = C(W,d, ‖g‖∞). The second term we estimate with the help of the isoperi-
metric inequality (4.3) together with the bound (4.8) from Lemma 4.4. In this way

we obtain (4.4) with σ̃ = σ
d−1

d
3 (D1− 8�θ

t0C2
)t−Cθ, where σ3 and t are as in Lemma 4.4.

Finally, fix t0 := 1
2 (1 + max{1/2, 1− δ0}), 0 < ζ < 1/4 such that 1 − t0 < 1 − ζ,

δ = 1
4ζ, and ρ = 1

2ζ, and take θ̃(ζ) so that

(4.14) σ̃ = min
{
σ

d−1
d

3

(
D1− 8�θ

t0C2

)
1
4
− Cθ,

(
δ

2C0
(ζ − ρ)2 − Cθ

)}
is strictly positive.

Lemma 4.5. Set 0 < ζ < ζ0 < 1/2. Let C± be two cubes of sidelength 1, and let
z′ ∈ Z

d be such that C− ∪ C+ ⊆ Q for Q := z′ + 2[− 1
2 ,

1
2 ]d. Suppose that∫

C+

m > (1 − ζ),
∫

C−
m < (−1 + ζ), ‖m‖L∞(Q) ≤ 1 + C1θ.

There exists θ0 > 0 independent of ζ and a constant σ2 := σ2(ζ0, θ0, d) > 0 given in
(4.18) so that for all θ ≤ θ0

G1(Q,m, ω) −G1(Q, u±, ω) ≥ σ2|Q|, P = 1.

Proof. We have

G1(Q,m) −G1(Q, u±) = [G1(Q,m) −G1(Q,mt)] +G1(Q,mt) −G1(Q, u±).

As in Lemma 4.3, we estimate the second addend asG1(Q,mt)−G1(Q, u±) ≥ −Cθ|Q|,
where C = C(W,d, ‖g‖∞) > 0, and apply Lemma 4.2 and the isoperimetric inequality
(4.3) for the first addend. Note that here Lemma 4.2 holds with � = 2. It remains to
show that
(4.15)

min |Q ∩ {m > s}|, |Q ∩ {m < s}| > 1 − ζ0
2d(1 + C1θ)

|Q| for any s ∈ [−t/2, t/2].

We obtain with the L∞-bound on m

(4.16)

(1 − ζ) ≤
∫

C+

m ≤ (1 + C1θ)|C+ ∩ {m > s}| for − t/2 < s < 0,

(4.17)

(1 − ζ) ≤
∫

C+

m ≤ s|C+ ∩ {m ≤ s}| + (1 + C1θ)|C+ ∩ {m > s}| for 0 < s <
t

2
.

Since s < t/2 and t < 1 − ζ0, we get (1 − ζ) ≤ 1
2 (1 − ζ0) + (1 + C1θ)|C+ ∩ {m > s}|

from (4.17). Then, as ζ < ζ0, both (4.16) and (4.17) imply

|C+ ∩ {m > s}| ≥ (1 − ζ0)
2(1 + C1θ)

.

A similar estimate can be obtained for |C− ∩ {m < s}| so we obtain (4.15). Set

(4.18) σ2 = t0

(
D1− 4θ0

t0C2

)(
1 − ζ0

2d+1(1 + C1θ0)

) d−1
d

− Cθ0.
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Since ζ0 ≤ 1
2 we can take θ0 independent on ζ0 and small enough so that σ2 > 0.

Definition 4.6. Given m ∈ H1(Rd,R), ζ > 0, and a D(0)-measurable region J,
define

B(ζ,J)
0 (m) ≡ {x ∈ J : ηζ(m,x) = 0},

B(ζ,J)
± (m) =

{
x ∈ J : ηζ(m,x) = ±1 and there is x′ ∈ J with

ηζ(m,x′)ηζ(m,x) = −1, C(0)(x′) connected to C(0)(x)
}
.

(4.19)

We will show the following result.
Theorem 4.7. Let 0 < ζ < 1

4 . Given m ∈ H1
loc(R

d,R), sp(Γ), and a bounded
D(0)-measurable connected subset of ζ-incorrect cubes, there exists σ1(ζ) > 0 so that
for all θ ≤ θ̃(ζ), θ̃ as in Lemma 4.3,

(4.20) G1(sp(Γ),m, ω) −G1(sp(Γ), u±, ω) ≥ σ1 |sp(Γ)| , P = 1.

Proof. If Q+ z0 is an incorrect cube contained in sp(Γ), then either the cube or
at least one of its connected neighbors is a zero cube, or it has a connected neighbor
of opposite sign. In each of the cases it holds that the cube 3Q+ z0 of sidelength 3
centered at the same center contains

(a) a zero cube, or
(b) a pair C+, C− of connected cubes with opposite sign such that C+ or C− is

centered at z0.
In case (a), by Lemma 4.3,

G1(sp(Γ) ∩ (3Q+ z0),m) −G1(sp(Γ) ∩ (3Q+ z0), u±) ≥ 3−dσ̃(ζ)|3Q+ z0|,
while in case (b), by Lemma 4.5,

G1(sp(Γ) ∩ (3Q+ z0),m) −G1(sp(Γ) ∩ (3Q+ z0), u±) ≥ (3/2)−dσ2|3Q+ z0|
for θ sufficiently small. Hence we have shown the following: Let z0 ∈ Z

d be the center
of a cube which is incorrect for m with accuracy ζ. Then for θ < θ0(ζ) there exists
σ3(ζ) such that

(4.21) G1(sp(Γ) ∩ (3Q+ z0),m) −G1(sp(Γ) ∩ (3Q+ z0), u±) ≥ σ3(ζ)|3Q+ z0|.
Let {z1, . . . , zN} be a collection of lattice points such that

(4.22) zi +Q ⊆ sp(Γ), (zi + 3Q) ∩ (zj + 3Q) = ∅ for j �= i, i, j = 1, . . . , N.

Then we can estimate

G1(sp(Γ),m) −G1(sp(Γ), u±)

≥
N∑

i=1

(
G1(sp(Γ) ∩ (3Q+ z0),m) −G1(sp(Γ) ∩ (3Q+ z0), u±)

)
+ G1

(
sp(Γ) \ (∪N

i=1(zi + 3Q)
)
,m
)−G1

(
sp(Γ) \ (∪N

i=1(zi + 3Q)
)
, u±
)

≥ σ3(ζ)N − θC(‖g‖∞|,W )3d|sp(Γ)|.
For the last estimate we used (4.21), the bound |m| < 1 + Cθ, and the estimates on
u± = ±1 = v∗ and on its gradient collected in Appendix B, Proposition B.1.
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The claim of Theorem 4.7 follows by choosing θ sufficiently small, provided that
we can show that there exists a constant C(d) depending only on the dimension
such that for any contour Γ there exists a collection of lattice sites {z1, . . . , zN(Γ)}
satisfying (4.22) such that N(Γ) ≥ C(d)−1|sp(Γ)|. We claim that C(d)−1 ≥ 6−d,
which is sufficient but not optimal.

The claim is shown by induction on |sp(Γ)| ∈ N. For the induction proof we will
not assume that sp(Γ) is connected; the claim holds for any D(0)-measurable set. The
claim is obvious with C(d) = 5−d for 0 < |sp(Γ)| ≤ 5d.

Assume that the claim is shown for 0 < |sp(Γ)| ≤ n, n ≥ 5d, and suppose
that |sp(Γ)| = n + 1. Choose a cube z0 + Q in Γ and consider the nonempty set
Γ̂ := sp(Γ) \ (5Q+ z0). Clearly any cube of sidelength 3 centered at any cube in Γ̂
does not intersect z0 + 3Q. Therefore

N(Γ) ≥ 1 +N(Γ̂) ≥ 1 + C−1(n− 5d) = C−1(n+ 1) + 1 − C−1(1 + 5d) ≥ (n+ 1)C−1,

provided 1 + 5d < C.

5. Contour reduction and proof of Theorem 2.11. Take ζ ≤ ζ0 ∧ 1
4 , where

ζ0 is chosen according to Theorem 2.7. Let G(m, ζ) be the collection of contours
associated to m. First we show that the sign(m) := ηζ(m, ·)|IΓ̃ , defined in (2.17), is
well defined.

Lemma 5.1. The function η(m, ·) is constant on

IΓ̃ := Λε \ ∪Γ∈G(m) (sp(Γ) ∪ IΓ) .

Proof. By construction, IΓ̃ ∩ int(Γ) = ∅ for all Γ ∈ G(m); hence each cube in IΓ̃ is
connected to the boundary of Λε. The function η(m, ·) is constant over each connected
component of IΓ̃. Assume that there exist two connected components with different
signs. As they are connected to the boundary of Λε, there exist two cubes Q+ ∈ IΓ̃
and Q− ∈ IΓ̃ of different sign, which touch the boundary. Hence there must be a
contour Γ0 ∈ G(m) intersecting the boundary such that Q+ and Q− are in different
connected components of OΓ0 , where OΓ0 is the outer complement of the contour Γ0;
see (2.16). According to our definition, either Q+ or Q− must be contained in IΓ0 ,
which contradicts that both are contained in IΓ̃.

Next we estimate the difference between the energy of m ∈ Rζ(Λε) (see Definition
2.9) and the energy of u± in each ζ-island of m.

Lemma 5.2. Let u± = ±1+ v∗, where v∗(x/ε) solves (2.20). Let m = sign(I)+ v̂
for x ∈ Î, I ⊂⊂ Î (see Theorem 2.7), and let θ, ζ be as in Theorem 2.7. Then there
exists c = c(d,W, ‖g‖∞) such that

(5.1) G1(I,m, ω) −G1(I, usign(I), ω) ≥ −c
√
θ|∂extI|.

Remark 5.3. Note that for those islands that touch ∂Λε, in particular for IΓ̃, the
external boundary ∂extI consists of cubes contained in the support of a contour and
is therefore very different from the topological boundary.

Proof of Lemma 5.2. For the sake of simplifying the presentation we prove the
case I �= IΓ̃. The case I = IΓ̃ is proven similarly, replacing ∂I with ∂extI. To take
advantage of the boundary influence decay, which is due to the properties of the
Euler–Lagrange equation in a single “well,” we separate a strip near the boundary
from the rest of the island. For this purpose, let

Iμ := {x ∈ I : dist(x, ∂I) ≤ μ} ,

D
ow

nl
oa

de
d 

02
/2

8/
14

 to
 1

31
.2

51
.2

54
.1

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SHARP-INTERFACE LIMIT WITH A RANDOM FIELD 805

and choose μ =
√

2C0 log
(
θ−1
)
. We split

G1(I,m, ω) −G1

(
I, usignI , ω

)
=
[
G1(Iμ,m, ω) −G1

(
Iμ, u

signI , ω
)]

+
[
G1(I \ Iμ,m, ω) −G1

(
I \ Iμ, usignI , ω

)]
.(5.2)

By the Lipschitz estimate in Proposition 3.2 and since |v∗| ≤ C0θ uniformly on ε (see
(B.3)), we obtain that

G1

(
Iμ, u

signI , ω
) ≤ cθ|Iμ| ≤ cθ log

(
θ−1
)
(|∂I|),

where we estimated |Iμ| ≤ cμ|∂I|. Here and in what follows we adopt the constant
convention and denote by c any constant depending only on d,W, ‖g‖∞, even if these
constants change from one inequality to another. Moreover,

G1(Iμ,m, ω) ≥
∫

Iμ

θgm ≥ −2‖g‖L∞θ|Iμ| ≥ −2c‖g‖L∞
√

2C0θ log
(
θ−1
)
(|∂I|),

hence [
G1(Iμ,m, ω) −G1

(
Iμ, u

signI , ω
)] ≥ −cθ log

(
θ−1
)
(|∂I|).

The remaining term in (5.2) is estimated by applying the estimate (B.11), which in
mesoscopic coordinates becomes

(5.3) |m(x) − usignI(x)| ≤ C(d)e
− 1√

2C0
dist(x,∂I)‖m− usignI‖L∞(∂I) ≤ C(d)θ

for all x ∈ I \ Iμ. Denote by χθ a C∞(Λε, [0, 1]) cutoff function so that

χθ(x) =

{
1 when x ∈ I \ (Iμ+

√
θ),

0 when x ∈ Iμ,

and ‖ gradχθ‖L∞ ≤ C(d)θ−1/2. Suppose that sign(I) = +1. Let

hθ := χθm+ (1 − χθ)u+.

Then hθ|∂(I\Iμ) = u+; hence, recalling that u+ is a minimizer in its well,

(5.4) G1(I \ Iμ, hθ, ω) −G1(I \ Iμ, u+, ω) ≥ 0.

Moreover, by Theorem 2.7 and Proposition 3.2, there exists c ≡ c(d,W, ‖g‖∞) so that
| gradu+| + | gradm| ≤ c. Hence, recalling (5.3), | gradhθ − gradm| ≤ | gradχθ||m−
u+|+ | gradm|+ | gradu+| ≤ √

θ+ c, and therefore | gradhθ| < c. By using first (5.4)
and then hθ = m on I \ Iμ+

√
θ and the gradient bounds above, we get (for all ω ∈ Ω)

G1(I \ Iμ,m) −G1

(
I \ Iμ, u+

) ≥ G1(I \ Iμ,m) −G1(I \ Iμ, hθ) ≥ −c∣∣Iμ+
√

θ \ Iμ
∣∣

≥ −c
√
θ
∣∣∂I∣∣.

Proof of Theorem 2.11. As the proof holds for all realizations of the random field
provided ‖g(·, ω)‖∞ ≤ 1, we will suppress the explicit dependence on ω. Thanks to
Theorem 2.7 it is enough to show the theorem for a ζ-representative of m ∈ H1(Λε),
ζ ≤ ζ0, with ζ0 as in Theorem 2.7. To simplify the presentation we take ζ = ζ0.
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Further, to shorten notation, we denote the representative always bym and we assume
α(ε) = 1. We have

G1(m) −G1(usign(m)) = G1(IΓ̃,m) −G1(IΓ̃, u
sign(m))

+
∑

Γ∈G(m)

{[
G1(IΓ,m) −G1(IΓ, usign(m))

]
+
[
G1(sp(Γ),m) −G1(sp(Γ), usign(m))

]}
.

(5.5)

From now on, we assume without loss of generality that the sign(m) = sign(IΓ̃) (see
(2.17)) is positive. We estimate each addend in the sum.

G1(IΓ,m) −G1(IΓ, u+) =
[
G1(IΓ,m) −G1

(
IΓ, u

sign(IΓ)
)]

+
[
G1(IΓ, usign(IΓ)) −G1(IΓ, u+)

]
≥
[
G1(IΓ, usign(IΓ)) −G1(IΓ, u+)

]
− c

√
θ|∂extIΓ|

= 2θ[sign(IΓ̃) − sign(IΓ)]
∫

IΓ

g1(x)dx − c
√
θ|∂extIΓ|.

(5.6)

The last inequality is a consequence of Lemma 5.2; the last equality follows from the
hypothesis (2.4) and |u± −±1| ≤ δ0. Note that the contributions of the random field
on islands having the same sign as m cancel. The last term in (5.5) is estimated as

G1(IΓ̃,m) −G1(IΓ̃, u
+) ≥ −c

√
θ|∂extIΓ̃|.

To estimate from below the energy of a contour we apply Theorem 4.7. Let θ1 := θ̃(ζ0)
be as in Theorem 4.7; then, for all θ ≤ θ1, we have

(5.7) G1(sp(Γ),m) −G1(sp(Γ), u+) ≥ σ1NΓ,

where

NΓ = |sp(Γ)| = the number of D(0)-measurable cubes in sp(Γ)

and σ1 = σ1(ζ0) is the quantity defined in Theorem 4.7. The right-hand side of (5.7)
is the “gain term” and the energy of a contour Γ is at least the gain term. If there
are more contours in Λε, each one will contribute proportionally to the volume of its
support. Therefore from (5.5) we obtain

G1(m) −G1(u+) ≥
∑

Γ∈Γ(m)

(
2θ
∫

I−
Γ

g1(x)dx + σ1NΓ − c
√
θ|∂extIΓ|

)
− c

√
θ|∂extIΓ̃|

≥
∑

Γ∈Γ(m)

(
2θ
∫

I−
Γ

g1(x)dx +
σ1

2
NΓ

)
.

(5.8)

To prove the last inequality we use thatNΓ ≥ |∂extIΓ| and choose θ small enough.
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5.1. Proofs of Theorems 2.1 and 2.2. To prove Theorem 2.1 we need the
properties of the “single-well minimizers” stated in Appendix B, and the probabilis-
tic estimates stated in Appendix A. An immediate consequence of Proposition A.1
(stated in Appendix A) is the following lemma, which describes the size of the typical
fluctuations of the random field in a domain R.

Lemma 5.4. Let d ≥ 3 and R ⊂ Λε denote a connected, D(0)-measurable region.
Set for δ > 0

Ωε,δ :=
{
ω ∈ Ω : ∀R ⊂ Λε :

∣∣∣∣∫
R

dyg1(y, ω)
∣∣∣∣ < δ

α(ε)θ
|∂R|

}
.

There exist ε0 > 0 and a := a(α(ε0)θ, d) so that for ε ≤ ε0

(5.9) P[Ω \ Ωε,δ] ≤ 2
|Λ|
εd
e
− δ2a

θ2α2(ε) .

Further, we set 5

(5.10) δ(ε) = θ(ln(1/ε))−
1

100 and Ωε := Ωε,δ(ε)

so we can find ε0 such that

(5.11) P[Ω \ Ωε] ≤ e−a ln 1
ε (ln( 1

ε ))
49
50 for 0 < ε < ε0.

Proof. In the following we consider only regions R which are connected and
D(0)-measurable, i.e., unions of unit cubes. We have

P

[
∃R ⊂ Λε,

∣∣∣∣∫
R

dyg1(y, ω)
∣∣∣∣ ≥ δ

α(ε)θ
|∂R|

]
= P

[
∃x0 ∈ Λε, ∃R ⊂ Λε : x0 ∈ R,

∣∣∣∣∫
R

dyg1(y, ω)
∣∣∣∣ ≥ δ

α(ε)θ
|∂R|

]
≤ |Λ|

εd
P

[
∃R ⊂ R

d : 0 ∈ R,

∣∣∣∣∫
R

dyg1(y, ω)
∣∣∣∣ ≥ δ

α(ε)θ
|∂R|

]
.

(5.12)

A naive upper bound of (5.12) (ignoring for the time being the factor |Λ|
εd ) is given by

(5.13)
∑

{R:0∈R}
P

[∣∣∣∣∫
R

dyg1(y, ω)
∣∣∣∣ ≥ δ

θα(ε)
|∂R|

]
≤

∑
{R:0∈R}

e
− δ2

θ2α2(ε)
1
2d |∂R|

(d−2)
(d−1)

.

The last inequality is obtained by the independence of the random field and then by
applying the isoperimetric inequality6 |R| ≤ 2d|∂R| d

d−1 ; then,

|∂R|2
|R| ≥ 1

2d
|∂R|2

|∂R| d
d−1

=
1
2d

|∂R| (d−2)
(d−1) .

5Note that α(ε) = (log ε−1)−1 is essential to control the term
|Λ|
εd .

6Note that a relative isoperimetric inequality bounds the ratio |R|(d−1)/d||S|−1 ≤ C(d) in the
case where R = IΓ and S = ∂ext(Γ), and the island IΓ associated with a contour is given by our
definition. A proof of the relative isoperimetric inequality can be given adapting the arguments in
[21, p. 230].
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808 NICOLAS DIRR AND ENZA ORLANDI

On the other hand (see [13]), for a fixed natural number n there are eC(d)n D(0)-
measurable regions R which contain the origin and have surface area n. One imme-
diately verifies that (5.13) diverges. So this analysis is inadequate.

We need to take advantage of the fact that many regions enclose essentially the
same volume. In order to obtain (5.9), we apply a method we learned from [11]; see
also [3, p. 115 and the following pages], reported in Proposition A.1 of Appendix A.7

Now choose δ as a function of ε, so that δ(ε) → 0 sufficiently slow, e.g., as in
(5.10). It is immediate to verify that there exist an ε0 and a constant a(α(ε0)θ, d)
so that for ε ≤ ε0 the right-hand side of (5.9) is smaller than the right-hand side of
(5.11).

Proof of Theorem 2.1. Applying Lemma 3.1 we get immediately that the global
minimizer uε fulfills |uε(r, ω)| ≤ 1 + C0α(ε)θ for r ∈ Λ and ω ∈ Ω. Set u+

ε = 1 + v∗ε
and u−ε = −1 + v∗ε , where v∗ε solves (2.20) in Λ. Choose ε0 > 0 so that C0θα(ε0) ≤ δ0;
then by the symmetry assumption (2.4) on W we obtain for all ε < ε0 and all ω ∈ Ω

Gε(u+
ε , ω) −Gε(u−ε , ω) =

2
ε
α(ε)θ

∫
Λ

gε(r, ω)dr.(5.15)

By the Markov exponential inequality [20], one has for any t > 0

(5.16) P

[
ω :

2
ε
α(ε)θ

∣∣∣∣∫
Λ

gε(r, ω)dr
∣∣∣∣ ≥ t

]
≤ 2e

− t2

4εd−2θ2α2(ε) .

In dimension d ≥ 3, for any choice α(ε), (α(ε) = 1 suffices), we can choose t = δε (see
(5.10)), limε→0 δε = 0, sufficiently slow, so that δ2

ε

4εd−2θ2α2(ε) → ∞ and conclude that
there exists Ω(δε) ⊂ Ω,

(5.17) P[Ω(δε)] ≥ 1 − 2e−
δ2
ε

4εd−2θ2α2(ε) ,

so that for ω ∈ Ω(δε), |Gε(u+
ε , ω) −Gε(u−ε , ω)| ≤ δε. To show

(5.18) inf
H1(Λ)

Gε(·, ω) = min{Gε(u+
ε , ω), Gε(u−ε , ω)}, ω ∈ Ωε,

we first prove that any ũ such that

Gε(ũ, ω) = inf
H1(Λ)

Gε(·, ω)

does not change sign, so it is in one well of the potential W . The assumption on W
(see H1) and the L∞-bound on g imply that if ε is small enough,

inf
u∈H1(Λ): u>0 a.e.

Gε(·, ω) = inf
u∈H1(Λ): u>1−δ0 a.e.

Gε(·, ω).

7In d = 2 we have

(5.14) P

[∣∣∣∣∫
R

dygε(y, ω)

∣∣∣∣ ≥ ε
δ

θα(ε)
|∂R|

]
≤ 2e

− δ2

θ2α(ε)2 .

Therefore in d = 2, when α(ε) = 1, the upper bound in (5.14) depends only on θ. By the Borel–
Cantelli lemma one sees immediately that with probability one, the event

∣∣∫
R

dygε(y, ω)
∣∣ ≥ δ

θ
ε|∂R|

for any δ > 0 occurs for a number of regions in Λ going to ∞ as ε ↓ 0. In d = 2, when α(ε) = (ln 1
ε
)
−1

for a fixed region, the upper bound in (5.14) is small for ε small. Nevertheless, even in this case (see
Proposition A.1), the entropic factor spoils the estimate and we are not able to show the absence of
contours.
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The functional Gε is convex on {u ∈ H1(Λ) : u > 1 − δ0 a.e.}, hence it has a
unique minimizer over that set. It follows easily that the constraint is not active
for ε sufficiently small, so the minimizer solves the linear Euler–Lagrange equation.
Thanks to the symmetry assumptions on W (see (2.4)), it is enough to solve the
Euler–Lagrange equation in one well. In this way one obtains immediately that the
two minimizers under the constraints u > 0 and u < 0, respectively, are indeed
u∗ε = ±1 + v∗ε , with v∗ε being the solution of (2.20).

To prove (5.18) we apply Theorem 2.11, i.e., we use the notion of contours and
Theorem 2.7. It is convenient to reformulate the problem in mesoscopic coordinates
and therefore study the functional (2.12) in Λε. The idea of the proof is to show
that each contour costs more than the possible gain obtained from the random field;
hence a minimizer cannot have contours. Note that IΓ need not be connected. De-
note by (IΓ)1, . . . , (IΓ)KΓ its connected components, and denote by ∂ext(IΓ)j the
exterior boundary of (IΓ)j ; see also section 2.3.2. The connected components need
not be simply connected, because there may be contours within contours. Another
consequence of the presence of contours within contours is the fact that in general
∂ext(IΓ)j �⊂ sp(Γ). This is a problem, because the isoperimetric inequality used in the
proof of Lemma 5.4 requires us to compare a region R and its entire boundary, i.e.,
all cubes that are connected both to a cube in R and to a cube in its complement.

But we consider only D(0) measurable sets. This implies that there exists a
constant c(d) such that each cube in the support of a contour is in the exterior
boundary of at most c(d) connected components of some islands. Therefore we can
split the cost of a cube in a contour between all islands that are connected to it; i.e.,
for another constant c(d) depending only on the dimension we get

NΓ ≥ c(d)−1
∑
Γ̃

∑
j

∣∣∂ext(IΓ̃)j ∩ sp(Γ)
∣∣+ 1

2
NΓ,

and we obtain that there exists a δ(d, ζ) such that
(5.19)

G1(m,ω)−G1(u+, ω) ≥
∑

Γ∈Γ(m)

⎛⎝σ1

2
NΓ +

KΓ∑
j=1

[
2α(ε)θ

∫
(I−

Γ )j

g1(x, ω)dx + δ
∣∣∂ext(I−Γ )j

∣∣]⎞⎠.
Let Ωε,δ be as in Lemma 5.4 with some 0 < δ < 1 to be determined later. If m is a
function which has at most one block different from η = 1, then, by Theorem 4.7, the
right-hand side of (5.19) is nonnegative for ω ∈ Ωε,δ. So for these ω the minimizer ũ
must have all cubes ζ-close to the sign(ũ) phase, i.e., ηζ(ũ, x) = sign(ũ) for all x ∈ Λε,
i.e., all blocks are correct. We strengthen the result taking δ = δ(ε) ↓ 0 for ε ↓ 0
as in (5.10). We can apply Proposition 3.3 to show that |ũ(x, ω)| > 0 for x ∈ Λε

and ω ∈ Ωε,δ. From Appendix B (the minimizer in one single well) we have that the
minimizer ũ equals either u+ or u−; see Definition 2.10 in section 2. The statement
(2.5) is now an immediate consequence of the symmetry of W. Obviously

E[u±ε (r, ·)] = 1 ∀r ∈ Λ.

Moreover (see (B.7)),∣∣E[u±ε (r, ·)u±ε (r′, ·)] − E[u±ε (r, ·)]E[u±ε (r′, ·)]∣∣ = |E[v∗ε (r, ·)v∗ε (r′, ·)]|
≤ C(d)θ2α2(ε)e

− 1
2ε
√

2C0
|r−r′|

.
(5.20)
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810 NICOLAS DIRR AND ENZA ORLANDI

Denote Ωε := Ωε,δ(ε) ∩ Ω(δε), where Ωε,δ(ε) is the probability space defined in (5.10)
and Ω(δε) is the probability space defined in (5.17). We have

P[Ωε] ≥ 1 − 2 max
{

2e−
δ2
ε

4εd−2θ2α2(ε) , e−a ln 1
ε (ln( 1

ε ))
49
50

}
.

Taking δε ≥ δ(ε), we have the thesis.
In the proof of Theorem 2.1 we actually quantified the difference between the

energy of a function and the energy of the minimizer. We state this for further use.
Theorem 5.5. There exist δ > 0 , ε0 > 0, a := a(ε0θ, d) > 0 and there exists for

each ε < ε0 a set Ωε ⊆ Ω with P(Ωε) ≥ 1 − e−a ln 1
ε (ln( 1

ε ))
49
50 such that for ω ∈ Ωε

(5.21) G1(m,ω) − min
{
G1(u+, ω), G1(u−, ω)

} ≥ δ
∑

Γ∈G(m)

|sp(Γ)|.

Moreover, we immediately get the following corollary; for notation see (2.8).
Corollary 5.6. Under the same hypothesis of Theorem 5.5, for ω ∈ Ωε, we

have

Fε(m,ω) ≥ εd−1δ
∑

Γ∈G(m)

|sp(Γ)|.

Proof of Theorem 2.2. From (2.5) of Theorem 2.1, the symmetry of the wells, and
the fact that v∗ε is solution of (2.20), one immediately obtains that

inf
H1(Λ)

Gε(·, ω) = min
{
Gε(u+, ω), Gε(u−, ω)

}
= min

{
±α(ε)θ

ε

∫
Λ

gε(r, ω)dr
}

+Fε(v∗ε , ω),

where Fε is the functional defined in (B.1). Then

E[Gε(u±ε , ·)] = E[Fε(v∗ε , ·)]

and (2.10) follows immediately. From (B.4) we have that

Fε(v∗ε , ω) =
1
2ε
α(ε)θ

∫
Λ

gε(r, ω)v∗ε (r, ω)dr =
α2(ε)
4ε3

θ2
∫

Λ×Λ

gε(r, ω)Gε(r, z)gε(z, ω)dzdr,

where Gε(r, z) is the Green function solution of (B.5). Then, using the construction
of gε with the help of independent and identically distributed random variables (see
(2.1) and (2.2)) and the bounds on the Green function in Appendix B (see (B.8)), we
have that there exists C(d) > 0 such that in d ≥ 3

|E[Gε(u±ε , ·)]| ≤
α(ε)2

4ε
θ2C(d)|Λ|, E[Gε(u±ε , ·) − cε]2 ≤ C(d)α2(ε)θ2εd−2|Λ|.

Moreover, using the exponential decay of the Green function we obtain that for any
δ > 0 there exists ε(δ) > 0 such that Gε(x, y) > C(d)−1 for |x−y| < ε, dist(x, ∂Λ) > δ,
dist(y, ∂Λ) > δ, and all ε < ε(δ). Therefore we also obtain

lim inf
ε↓0

4ε
α(ε)2

|E[Gε(u±ε , ·)]| > 0.
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6. Γ-convergence when α(ε) = [ln 1
ε
]−1. We first show that passing to the

representative for each function in a sequence of functions with bounded renormalized
energy leaves the L1-limit of that sequence unchanged. Although the representative
depends on the realization of the random field, we will suppress this dependence in
the notation when no confusion arises. Likewise we will not denote explicitly the
dependence on ω of the energy.

Definition 6.1. For m ∈ H1(Λ) define m̂ : Λε → R by m̂(y) := m(εy). Let m1

be any ζ-representative of m̂ as in Theorem 2.7. Then

m1,ε(x, ω) := m1(ε−1x, ω), x ∈ Λ.

Theorem 6.2. Let θ1 and ζ be as in Theorem 2.11, and let θ < θ1. With P = 1 the
following holds: Let (mε)ε→0 ∈ H1(Λ), and let the associated representatives (mε)1,ε

be as in Definition 6.1. Then, if

lim sup
ε→0

Fε(mε, ω) < C <∞, then
∫

Λ

|mε(x) − (mε)1,ε(x, ω)| → 0.

Proof. Because of the quadratic growth of the potential and the L∞-bound on
the random field g it is easy to show that there exists a sequence Cε → 0 such that
for Mε = 1 + Cε

Fε((mε ∨ (−Mε)) ∧Mε) ≤ Fε(mε),
∫

Λ

|(mε ∨ (−Mε)) ∧Mε −mε|dr → 0.

Therefore we can assume that ‖mε‖∞ ≤ M by any constant M > 1 provided ε <
ε0(M). To simplify notation we work on the rescaled cube Λε and let (see Definition
6.1 and Theorem 2.7)

m(x) := mε(εx), m1(x) := (mε)1,ε(εx), x ∈ Λε.

Take a smooth cutoff function r : Λε → [0, 1] such that ‖ grad r‖∞ < C, r(x) = 1 for
x ∈ ⋃Γ∈G(m1)

sp(Γ), and r(x) = 0 for x ∈ IΓ \ ∂intIΓ, Γ ∈ G(m1), and let

m̃ := m(1 − r2) +m1r
2.

This function is equal to m1 on the contours of m1. We immediately obtain

F1(m̃) = F1(m) +
∑

Γ∈G(m1)

[
G1

(
sp(Γ) ∪ ∂intIΓ, m̃

)−G1

(
sp(Γ) ∪ ∂intIΓ,m

)]
.

Since r ≤ 1 and m and m1 are bounded in L∞, we can estimate as follows:∑
Γ∈G(m1)

[
G1

((
sp(Γ) ∪ ∂intIΓ

)
, m̃
)−G1

((
sp(Γ) ∪ ∂intIΓ

)
,m
)]

≤
∑

Γ∈G(m1)

{
c|sp(Γ)| +

∫
∂intIΓ

[|∇m̃|2 − |∇m|2]} .
We have

∇m̃ = (1 − r2)∇m+ r [2∇r(m1 −m) + r∇m1] .
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From the bound on | grad r| and the bound on the Lipschitz constant of m1 we im-
mediately get that there exists a constant C so that

|∇m̃|2 ≤ (1 − r2)2|∇m|2 + C + r|∇m|C,
which implies[|∇m̃|2 − |∇m|2] ≤ C + r2[r2 − 1]|∇m|2 + (r|∇m|)[C − (r|∇m|)] ≤ C +

C2

4
,

as r ≤ 1. Then we can conclude that for some constant C′

F1(m̃) ≤ F1(m) + C′ ∑
Γ∈G(m1)

|sp(Γ)|.

From Theorem 5.5 we obtain that
∑

Γ∈G(m1)
|sp(Γ)| ≤ ε1−dC; hence there exists C1

such that

F1(m̃) ≤ ε1−dC1.

Therefore m̃ satisfies a bound on the energy of the same order as m. As m and m̃
are different only on

∑
Γ∈G(m1)

(
sp(Γ) ∪ ∂intIΓ

)
, the L∞-bound on both functions and

the bound on the volume of the contours implies immediately that ‖m̃−m‖1 → 0 as
ε→ 0.

The new function m̃ has an important property: On the topological boundary of
an island it equals m1 and is therefore pointwise in the well of W which corresponds
to the sign of η(m1). This property will allow us to show that m̃ and m1 are close in
the islands. Note that G1(m1) ≥ infH1(Λε)G1(·), so we can estimate

ε1−dC ≥ G1(m̃) −G1(m1) = G1(m1 + (m̃−m1)) −G1(m1)

=
∫

Λε

[2 grad(m̃−m1) gradm1 + (W ′(m1) + α(ε)θg)(m̃−m1)]

+
∫

Λε

(
| grad(m̃−m1)|2 +

1
2

(∫ 1

0

W ′′(m1 + s(m̃−m1))ds
)

(m̃−m1)2
)
.

By Corollary 3.8 (and its obvious extension to connected components of correct cubes)
we get that the term in the second line equals zero since ξ := m̃−m1 is an admissible
test function. We have by definition of m̃ that m̃ −m1 = 0 whenever η(m1, x) = 0,
so the integration in the third line extends only over the set {x ∈ Λε : η(m1, x) �= 0}.
Moreover, using the convexity of the wells (see (2.4)), we find that if m1 and m̃ are
both in [1 − δ0,∞) or both in (−∞,−1 + δ0], then W ′′(m1 + s(m̃ −m1)) ≥ C for
s ∈ [0, 1], so there exists C′′ > 0 such that

ε1−dC ≥
∫

Λε

C(m̃−m1)2 − C′′|{x : η(m1, x) �= 0} ∩ {η(m1, x)m̃(x) < 1 − δ0}|.

It remains to show that

|{x : η(m1, x) �= 0} ∩ {η(m1, x)m̃(x) < 1 − δ0}| ≤ Cε1−d.

For t = 1 − δ0 and x in the islands of m1, we denote

m̃t :=
{ |m̃(x)| ∨ t if η(m1, x) = 1,

−(|m̃(x)| ∨ t) if η(m1, x) = −1,
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while m̃t(x) := m̃(x) for x ∈ sp(Γ), Γ ∈ G(m1). Note that m̃ = m1 on the topological
boundary of any contour, and that the representative m1 stays pointwise in the well
associated with η(m1) on this topological boundary of the contour; see Theorem 2.7.
Therefore the function m̃t is H1, and

G1(m̃) −G1(m̃t) ≤ G1(m̃) − inf G1(·) < Cε1−d.

Since η(m1, x) = η(m,x) for x in the islands of m1, by applying Lemma 4.2 and then
(4.3) we obtain

G1(m̃) −G1(m̃t) ≥ C
∑

{z:z+Q∈IΓ,Γ∈G(m1)}
|(z +Q) ∩ {η(z,m)m < −(1 − t)/2}| d−1

d .

Note that the L∞-bound onm implies that for ζ sufficiently small |{m > 0}∩Q| > 1/2
if η(x,m) = 1 on Q. As (d− 1)/d < 1,∣∣∣∣(⋃Γ∈G(m1)

IΓ

)
∩ {η(m, z)m < −(1 − t)/2}

∣∣∣∣ ≤ Cε1−d.

We can easily bound |{−1 + δ0 < m̃ < 1 − δ0}|, because on this set the double-well
potential dominates the random field. So we finally obtain

|{x : η(m1, x) �= 0} ∩ {η(m1, x)m̃(x) < 1 − δ0}| ≤ |{−1 + δ0 < m̃ < 1 − δ0}|
+
∣∣∣∣(⋃Γ∈G(m1)

IΓ

)
∩ {η(m, z)m < −δ0/2}

∣∣∣∣+ ∑
Γ∈G(m1)

|sp(Γ)| ≤ Cε1−d,

and the claim is shown.

6.1. Identification of the Γ-limit. The proof of the lower and later of the
upper bound is given in the macroscale, but still uses the notion of contours which
was introduced in the mesoscale. To avoid confusion, we keep writing the contours
in mesoscale and rescale sp(Γ) by ε when we deal with the support of the contour of
the representative mε in the macroscale. Hence m(x) := mε(εx), x ∈ Λε, denotes the
representative in the mesoscopic scale, and G(m) := G(m, ζ) the collection of contours
associated to m when the chosen tolerance is ζ. We suppose 0 ≤ θ < θ1, with θ1 as
in Theorem 2.11, and we avoid explicitly writing the dependence on ζ, where ζ is as
in Theorem 2.11.

Lemma 6.3. There exists a set Ω̃ ⊆ Ω with P(Ω̃) = 1 such that on Ω̃ the following
holds: For any u ∈ BV (Λ, {−1, 1}) and for any mε with ‖mε − u‖L1 → 0 we have
that

(6.1) lim inf
ε

Fε(mε, ω) ≥ CW

∫
Λ

| gradu| for CW as in (1.3).

Proof. First fix a δ > 0 independent of ω. Recall that ε = ε(n) = 1
n and let δ(ε(n))

and Ωε(n) as in (5.10). We define Ω̃ by defining its complement:

An := Ω \ Ωε(n), Ω \ Ω̃ = {ω : ω ∈ An for infinitely many n ∈ N}.
The first Borel–Cantelli lemma and the probabilistic estimates in Theorem 2.1 and in
Lemma 5.4 imply that P(Ω \ Ω̃) = 0. By definition, for any ω ∈ Ω̃, there exists n(ω)
such that ω ∈ Ωε(n) for all n ≥ n(ω). From now on we will always assume that ω ∈ Ω̃
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and ε(n) ≤ ε(n(ω)) without stating the dependence on ω explicitly. Moreover, we will
write ε for ε(n) in order to simplify notation. Note that it is sufficient to consider the
case supε Fε(mε, ω) <∞.

By Theorem 6.2 we can replace mε by a representative (see Definition 6.1), which
we still denote bymε for simplicity. Hence we may assume that ‖mε‖L∞ ≤ 1+C0θα(ε).

By Theorem 2.1 infH1(Λ){Gε(·, ω)} = min{Gε(u+
ε , ω), Gε(u−ε , ω)} and without

loss of generality we suppose that Gε(u+
ε , ω) ≤ Gε(u−ε , ω). Recall that u±ε = ±1 + v∗ε ,

and let vε := mε − sign(mε). Due to the exponential decay of the boundary influence
and the fact that the representative solves a linear PDE in the islands, one can easily
show the following (see Appendix B and (B.11), (B.12)). There exist C > 0 and
K > 0 such that for Γ ∈ G(m, ζ) in an island IΓ

|u±ε (r) −mε(r)| = |v∗ε (r) − vε(r)| < Ke−ε−1C dist(r,ε sp(Γ)),(6.2)∣∣ grad
[
u±ε (r) −mε(r)

]∣∣ = ∣∣ grad
[
v∗ε (r) − vε(r)

]∣∣ < ε−1Ke−ε−1C dist(r,ε sp(Γ)).(6.3)

Given an δ ∈ (0, δ0), define

Iδ
Γ :=

{
y ∈ IΓ : dist(y, ∂IΓ) > C−1 ln

(
4K
δ

)}
,

where C and K are the constants in (6.2), (6.3). We write
∑

Γ for
∑

Γ∈G(m) and
estimate

Gε(mε)−Gε(u+
ε ) ≥

∑
Γ

∫
ε (sp(Γ)∪(IΓ\Iδ

Γ))

(
2
√
W | gradmε| − 4θα(ε)ε−1‖g‖∞

)
−
∑
Γ

∫
ε (sp(Γ)∪(IΓ\Iδ

Γ))

(
ε| gradv∗ε |2 + ε−1W (1 + v∗ε )

)
+
α(ε)
ε
θ
∑
Γ

∫
εIδ

Γ

{
gε[mε − usign(IΓ)

ε ] − gε(1 − sign(IΓ))
}

+
∑
Γ

∫
εIδ

Γ

(
ε(| gradvε|2 − | grad v∗ε |2) +

1
2C0ε

(v2
ε − (v∗ε )2)

)
.

As |u±ε (r) − mε(r)| < δ/4 on Iδ
Γ, u

± → ±1 in L∞ as ε → 0, so for ε sufficiently
small Per({mε < s}) = 0 in Iδ

Γ for |s| < 1 − δ. So, using the Lipschitz bounds and
L∞-bounds on v∗ from Proposition B.1, we get

Gε(mε) −Gε(u+
ε ) ≥

∫ 1−δ

−1+δ

2
√
W (s)Per({mε < s})ds

−C−1 ln(4K/δ){4θα(ε)‖g‖∞ + Cθ2α(ε)2}
∑
Γ

εd−1|sp(Γ)|

−α(ε)
ε
θ
∑
Γ

∫
ε(IΓ\Iδ

Γ)

{gε(1 − sign(IΓ)) + ‖g‖∞|v∗ε − vε|}(6.4)

+
∑
Γ

∫
ε(IΓ\Iδ

Γ)

(
ε(| gradvε|2 − | gradv∗ε |2) +

1
2C0ε

(
v2

ε − (v∗ε )2
))
.(6.5)

Now we make use of the splitting IΓ = Iα
Γ ∪ (IΓ \ Iα

Γ ) with

Iα
Γ := {y ∈ IΓ : dist(y, ∂IΓ) > C−1| ln(α(ε))|},

D
ow

nl
oa

de
d 

02
/2

8/
14

 to
 1

31
.2

51
.2

54
.1

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SHARP-INTERFACE LIMIT WITH A RANDOM FIELD 815

where C is the constant in (6.2), (6.3). We suppose that ε is so small that Iα
Γ ⊆ Iδ

Γ.
First we are going to estimate the term in line (6.5). Define Mε(u) := ε| gradu|2 +
ε−1u2. By Proposition B.1 and (6.2), (6.3), we estimate on Iα

Γ

(6.6) |Mε(vε(x)) −Mε(v∗ε (x))| < Cε−1α(ε)e−ε−1Cdist(x,ε ∂(Iα
Γ )), ε−1x in Iα

Γ .

Therefore a computation using the coarea formula yields∫
εIα

Γ

|Mε(vε) −Mε(v∗ε )| =
∫

R

(∫
|Mε(vε) −Mε(v∗ε )|dHd−1|εIα

Γ ∩{x: dist(x,ε∂IΓ)=r}

)
dr

≤ Cεd−1|∂Iα
Γ |α(ε) ≤ C′εd−1|sp(Γ)|α(ε),

where dHd−1 is the (d− 1)-dimensional Hausdorff measure.
Let Rε be defined as the argument of the summation in (6.5). As Mε(vε) −

Mε(v∗ε ) ≥ −Mε(v∗ε ) and as Mε(v∗ε ) is of order ε−1(θα(ε))2, we can estimate

Rε(IΓ,mε, v
∗
ε ) ≥

∫
εIα

Γ

(. . . ) +
∫

ε(IΓ\Iα
Γ )

(. . . )

≥ −C′εd−1|sp(Γ)|α(ε) − ‖Mε(v∗ε )‖L∞εd|IΓ \ Iα
Γ |

≥ −Cεd−1|sp(Γ)|
[
α(ε) + | ln(α(ε))|(θα(ε))2

]
.

The term α(ε)ε−1‖g‖∞|v∗ε − vε| in (6.4) can be estimated in a similar way.
In order to estimate the expression in (6.4), recall that ω ∈ Ωε,δ(ε), hence

α(ε)ε−1θ

∣∣∣∣∫
εIΓ

gε(1 − sign(IΓ))
∣∣∣∣ ≤ δ(ε)εd−1|sp(Γ)|.

So far we have shown that for ω ∈ Ω̃ and ε(n) sufficiently small

Gε(mε) −Gε(u+
ε ) ≥

∫ 1−δ

−1+δ

2
√
W (s)Per({mε < s})ds(6.7)

−
∑
Γ

c′
[
α(ε)| ln(α(ε)δ)| + δ(ε)

]
εd−1|spΓ|,(6.8)

and, as by Corollary 5.6 for all ω ∈ Ωε(n),∑
Γ∈G(m)

εd−1|sp(Γ)| ≤ CFε(mε) < C′,

we have that the expression in (6.8) vanishes as ε(n) → 0 for ω ∈ Ω̃.
So it remains to bound (6.7). As mε → u in L1(Λ) there exists a subsequence,

denoted by mε again, which converges a.e. to u, and for this subsequence we have
1{mε<s}(r) → 1{u<s}(r) in L1(Λ). Further, it is easy to prove by applying Lemma 3.1
that |u| = 1 a.e. Then by lower semicontinuity of the perimeter

lim inf
ε→0

Per({mε < s}) ≥ Per({u < 0}) for − 1 < s < 1,

and, by Fatou’s lemma,

lim inf
ε

∫ 1−δ

−1+δ

(
2
√
W (s)Per({mε < s})

)
ds ≥

(∫ 1−δ

−1+δ

2
√
W (s)ds

)
Per({u < 0})

≥ (CW − 2Cδ)
∫

Λ

| gradu|.
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As δ > 0 was arbitrary and independent of ω, this proves the theorem.
Lemma 6.4. There exists a set Ω̃ ⊆ Ω with P(Ω \ Ω̃) = 0 such that for any ω ∈ Ω̃

the following holds: For any u ∈ BV (Λ, {−1, 1}) which has the property that E := {x :
u(x) = −1} has a smooth boundary, there exists mε(·, ω) with ‖mε(·, ω) − u‖L1 → 0
and

lim supFε(mε) ≤ CW Per(E) for CW as in (1.3).

Proof. We construct a sequence with the required properties. To this end, let
m̄ : R → R be the increasing solution of

m̄′′ = W ′(m̄), lim
r→±∞ m̄(r) = ±1.

It is well known [10] that there exist C, λ > 0 such that

(6.9) |(1 − |m̄(r)|)| + m̄′(r) ≤ Ce−λ|r|.

Define

d(x) :=
{ −dist(x,E) if x ∈ Λ \ E,

dist(x,Rd \ E) if x ∈ E,
dε(x) :=

d(x)
ε
,

and

mε(·, ω) := v∗ε (·, ω) + m̄ (dε(·)) ∀ω ∈ Ω,

where v∗ε solves (2.20). Obviously ‖mε(·, ω) − u‖L1 → 0 for all ω ∈ Ω. To shorten
notation, in what follows we avoid writing the dependence of mε and v∗ε on ω. Note
that | gradd(x)| = 1; therefore,

| gradmε(x)|2 ≤ ε−2[m̄′(dε(x))]2 + 2ε−1| gradv∗ε (x)|m̄′(dε(x)) + | gradv∗ε (x)|2,
and

Gε(mε) −Gε(1 + v∗ε ) ≤
∫

Λ

ε−1[m̄′(dε(x))2 +W (m̄(dε(x)))](6.10)

+ 2
∫

Λ

| grad v∗ε (x)|m̄′(dε(x))(6.11)

+
1
ε

∫
Λ

[
W (m̄(dε(x)) + v∗ε (x)) −W (1 + v∗ε (x)) −W (m̄(dε(x)))

]
(6.12)

+
α

ε

∫
Λ

(m̄(dε(x)) − 1)gε(x).(6.13)

It is well known (see [15]) that the expression in (6.10) converges to CW Per(E). Next
we show that the term in (6.11) vanishes. We obtain from Proposition B.1 for ε
sufficiently small | gradv∗ε | ≤ C′α(ε)ε−1. Hence by the coarea formula and (6.9) we
estimate∫

Λ

2| gradv∗ε |m̄′(dε) ≤ 2C′α(ε)
ε

∫ ∞

−∞
Hd−1({d(x) = r})e−λ r

ε dr ≤ C′′Per(E)α(ε) → 0.

Let με := −ε ln(α(ε)) = ε ln ln(1/ε) > 0, and

Λμε := {x : |d(x)| < με}.
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Split the expression in (6.12) into an integral over Λμε and the rest. On Λμε we have

|W (m̄+ v∗ε ) −W (m̄)| ≤ L‖v∗ε‖∞, W (1 + v∗ε ) ≤ 1
2C0

‖v∗ε ‖2
∞

for L := sups∈[−2,2] |W ′(s)|. This helps to estimate

ε−1

∫
Λμε

(W (m̄+ v∗ε ) −W (1 + v∗ε ) −W (m̄)) ≤ |Λμε |
ε

C

(
L+

α(ε)
2C0

)
α(ε)

≤ C′α(ε) ln
(

1
α(ε)

)
Per(E).

To estimate the integral over Λ \ Λμε , we use that for x so that |d(x)| > ε| ln(α)|

|W (m̄(dε))| ≤ 1
2C0

(m̄(dε) − 1)2 ≤ C2

2C0
e−2λd(x)/ε,

and then

|W (m̄(dε) + v∗ε ) −W (1 + v∗ε )| ≤
[

sup
|s−1|≤Cα(ε)

W ′(s)

]
Ce−λd(x)/ε ≤ C′α(ε)e−d(x)/ε.

Here the symmetry of the wells was used. The constants depend on the second
fundamental form of the set E. We obtain

ε−1

∫
Λ\Λμε

([W (m̄+ v∗ε ) −W (1 + v∗ε )] −W (m̄))

≤ ε−1

∫
Λ\Λμε

(
C′α(ε)e−d(x)/ε +

C2

2C0
e−2λd(x)/ε

)
.

By the coarea formula and a change of variables d/ε = r, this is bounded by

C (Per(E))

[
(α(ε) + 1)

∫ ∞

| ln(α(ε))|
e−λrdr

]
≤ C′ (Per(E))α(ε) → 0.

The term in (6.13), which depends on the random field, can be bounded by

C′Per(E)α(ε) + 2
α(ε)
ε

∫
E

gε.

Note that there exists a constant C(d) depending only on the dimension, such that the
following holds: There exists for any E as above an ε0(E) such that for any ε < ε0(E)
there exists a set Eε which is a union of cubes of sidelength ε with centers on εZd and

C(d)−1Per(Eε) ≤ Per(E) ≤ C(d)Per(Eε) |EεΔE| → 0 as ε→ 0.

This can be shown, e.g., by approximating the smooth manifold ∂E by polygons and
then by faces of cubes with centers on the lattice εZd. Hence in arguing that the term
in the fourth line vanishes we can use Lemma 5.4 with ε(n), δ(ε(n)) as in the proof
of Lemma 6.3 to show that ∣∣∣∣α(ε)

ε

∫
E

gε

∣∣∣∣ ≤ Cδ(ε)Per(E).
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Hence the lemma is proven.
Now we prove Theorem 2.3.
Proof. From Lemma 3.1 we immediately get that Fε → +∞ if |u| is different from

1 on a set of positive Lebesgue measure. By general arguments (see [15, Lemma 1]), it
is sufficient to consider the upper bound in the case where E has a smooth boundary.
Now the theorem follows from Lemmas 6.4 and 6.3, together with Theorem 6.2.

Appendix A. Probabilistic estimates. Let R be the set of all connected
unions of unit cubes such that the origin is contained in the union. We denote by R
an element of R and by (abusing notation) |∂R| the total volume of all cubes in R
which are connected to a cube not in R. We have the following result.

Proposition A.1. For d ≥ 3, for any S0 > 0, there exists c′ ≡ c′(S0, d) so that
for all S > S0, we obtain

(A.1) P

⎡⎣∃R ∈ R : 0 ∈ R,

∣∣∣∣∣∣
∑

z∈Zd:(z+[0,1]d)∩R⊂R

g(z, ω)

∣∣∣∣∣∣ ≥ S|∂R|
⎤⎦ ≤ 2e−S2c′ .

Proof. We have

P

⎡⎣∃R ∈ R : 0 ∈ R,

∣∣∣∣∣∣
∑

z∈Zd:(z+[0,1]d)∩R⊂R

g(z, ω)

∣∣∣∣∣∣ ≥ S|∂R|
⎤⎦

≤
∑
n≥1

P

⎡⎣ sup
R∈R: |∂R|=n, 0∈R

∣∣∣∣∣∣
∑

z∈Zd:(z+[0,1]d)∩R⊂R

g(z, ω)

∣∣∣∣∣∣ ≥ S|∂R|
⎤⎦ .

(A.2)

To estimate each addend we define a sequence of sets R� ∈ D(�), � ∈ N, i.e., a
partition of R

d in cubes of side 2�, with one of them having center 0. The R�, � ∈ N,
are constructed by a “coarse-graining” procedure from the original connected region
R0 ≡ R. We denote by R� : R0 → R� the map which associates to R0 the set of cubes
in D(�) so that

|C(�) ∩R0| ≥ 1
2
2d�,

where R� is the union over those cubes. Note that R� is in general not connected.
One can prove (see Proposition 1 of [11]) that

(A.3) |∂R�| ≤ C(d)|∂R0|,
and that the volume of the corridor between R� and R�−1 when R� �= ∅ is estimated
by

(A.4) |R�ΔR�−1| ≤ |∂R0|2�,

where for two sets A and B, AΔB = (A \B) ∪ (B \A). Denote

F (R0, ω) =
∑

z∈Zd:(z+[0,1]d)∩R0⊂R0

g(z, ω).

Set z = S|∂R0| = Sn and write, for any choice of k(n) ∈ Z,

F (R0, ω) = F (Rk(n), ω) + [F (Rk(n)−1, ω) − F (Rk(n), ω)] + · · · [F (R0, ω) − F (R1, ω)].
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We have

P

[
sup

|∂R0|=n:0∈R0

F (R0, ω) > z

]
≤

k(n)∑
�=1

P

[
sup

|∂R0|=n:0∈R0

{F (R�−1, ω) − F (R�, ω)} > z�

]

+ P

[
sup

|∂R0|=n:0∈R0

F (Rk(n), ω) > zk(n)+1

]
(A.5)

for any sequence z� with
∑k+1

�=1 z� ≤ z. Since F is a sum of independent identically
distributed random variables, it is immediate to see that

(A.6) P [{F (R�, ω) − F (R�−1, ω)} > z�] ≤ e
− z2

�
|R�ΔR�−1| .

Estimate (A.6) bounds the probability that a particular coarse-grained corridor has
a large field. Therefore
(A.7)

P

[
sup

|∂R0|=n:0∈R0

{F (R�, ω)−F (R�−1, ω)} > z�

]
≤ A�−1,nA�,ne

− z2
�

sup
{|∂R0|=n:0∈R0}

|R�ΔR�−1|
,

where A�,n is the number of image points in R� that are reached when mapping any
of the R0 occurring in the sup, i.e., those so that |∂R0| = n and those that contain the
origin. In [11, Proposition 2], it has been shown that there exists a constant C = C(d)
so that

(A.8) A�,n ≤ e

(
C�n

2(d−1)�

)
.

Therefore we obtain from (A.7) and (A.4)

P

[
sup

|∂R0|=n: 0∈R

F (R0, ω) > z

]
≤

k(n)∑
�=1

A�−1,nA�,ne
− z2

�
n2�

+Ak(n),ne
− z2

k+1
sup{|∂R0|=n:0∈R0} |Rk(n)| .

(A.9)

By the isoperimetric inequality and (A.3) we have sup|∂R0|=n:0∈R0
|Rk(n)| ≤ C(d)n

d
d−1 .

By (A.8)

P

[
sup

|∂R0|=n:0∈R0

F (R0, ω) > z

]
≤

k(n)∑
�=1

e

(
2C�n

2(d−1)(�−1)

)
e−

z2
�

n2�

+ e

(
Ck(n)n

2(d−1)k(n)

)
e
− z2

k+1

n
d

d−1 .

(A.10)

Then choose k(n), the number of times one repeats the coarse-graining procedure,
so that the final coarse-grained volume does not have an anomalous large total field,
Rk(n)−1 �= ∅, and the sum on the right-hand side of (A.10) is small. Take

2k(n) = n
1
3 , z� =

S

2
n

�2
,
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and note that k(n) � logn and

S

2

k(n)+1∑
�=1

n

�2
≤ S

n

[
1 − 1

2
1

k(n) + 1

]
≤ z.

We obtain, since

zk(n)+1 =
S

2
n

(k(n) + 1)2
� S

2
n

(lnn+ 1)2

and

k(n)n
2(d−1)k(n)

� n lnn
n

1
3 (d−1)

in d ≥ 3, 8

that

e

(
Ck(n)n

2(d−1)k(n)

)
e
− z2

k+1

n
d

d−1 = e

(
Cn

1
3 (4−d) ln n−S2 n

d−2
d−1

(ln n+1)4

)
n↑∞→ 0.

For the remaining term in (A.10), when d ≥ 3, one can choose S0 ≡ S0(d) > 0 so that
for S ≥ S0

(A.11)
C(�− 1)n

2(d−1)�
− nS2

2��4
= n�

S2

2�

(
C

S2

(�− 1)
2(d−2)��

− 1
�5

)
< 0 ∀� ≥ 1.

Then it is possible to find c = c(S0, d) so that for all S ≥ S0

k(n)∑
�=1

e−S2 �

2� nc ≤
k(n)∑
�=1

e−S2�n
2
3 c ≤ e−S2n

2
3 c.

Summarizing all the estimates one immediately gets (A.1).

Appendix B. Global and local minimizers in one single well. Let

V (s) =
1

2C0
s2 ∀s ∈ R,

and consider for u ∈ H1(Λ) the functional

(B.1) Fε(u, ω) ≡
∫

Λ

(
ε|∇u(y)|2 +

1
ε
V (u(y))

)
dy +

1
ε
α(ε)θ

∫
Λ

dygε(y, ω)u(y).

As in Lemma 3.1, one has for all u ∈ H1(Λ)

(B.2) Fε(t ∧ u ∨ (−t), ω) < Fε(u, ω) ∀t > C0α(ε)θ, P = 1.

The minimizer of Fε(u, ω) is obviously v∗ε , the solution of the Euler–Lagrange equation
(2.20). Next we report the properties of v∗ε used throughout the paper. The proofs

8In d = 2 the choice of k(n) makes the last term in the sum (A.10) diverging. Namely, we

have e
(Cn

2
3 ln n− S2

(ln n+1)4
) → ∞when n → ∞. Further, in d = 2, the remaining term in (A.10),

independently of the choice of k(n), is always diverging.
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use standard computations involving Green’s function for (B.5) below, therefore they
are omitted. For the required properties of Green’s function, see, e.g., Dautray and
Lions [5, p. 635].

Proposition B.1. The solution v∗ε of the Euler–Lagrange equation (2.20) is
Lipschitz continuous on Λ with Lipschitz constant bounded by

ε−1L0 = ε−1C(‖g‖∞)α(ε)θ

and

(B.3) |v∗ε (r, ω)| ≤ C0α(ε)θ‖g‖∞, r ∈ Λ, P = 1.

It can be represented as

(B.4) v∗ε (r, ω) =
α(ε)
2ε2

θ

∫
Λ

Gε(r, r′)gε(r′, ω)dr′ r ∈ Λ,

where Gε(·, ·) is the Green function solution of the following problem:

− ΔrGε(r, r′) +
1
ε2

1
2C0

Gε(r, r′) = δ(r − r′), r, r′ ∈ Λ,

∂Gε

∂n
(r, r′) = 0, r′ ∈ Λ a.e. for r ∂Λ.

(B.5)

v∗ε is a Gaussian process with mean

(B.6) E[v∗ε (r, ·)] = 0, r ∈ Λ,

and covariance for d ≥ 3

(B.7) E[v∗ε (r, ·)v∗ε (r′, ·)] ≤ C(d)θ2α2(ε)e
− 1

2ε
√

2C0
|r−r′|

.

Proposition B.2. In d ≥ 3 one can bound

(B.8) 0 < Gε(r) ≤ C(d)
1

4π|r|d−2
e−k|r|, k =

1
ε

1√
2C0

.

Next we consider the local minimizer in one single well with Dirichlet boundary
conditions. Let D ⊂ Λ and consider the following boundary value problem:

(B.9) −εΔu(r) +
1
ε

1
2C0

u(r) +
1
2ε
α(ε)θgε(r, ω) = 0 in D, u = v0 on ∂D,

where v0 ∈ H1(Λ). We have the following boundary influence decay for the solution
of (B.9).

Proposition B.3. For d ≥ 3, there exists a positive constant C(d) so that for
P = 1 the following holds: Let v be the solution of (B.9). We have

(B.10) |v(r, ω)| ≤ C(d) sup
y∈∂D

|v0(y)|e−
1

ε4
√

2C0
d(r,∂D)

+ C0α(ε)‖g‖∞θ, r ∈ D.

For solutions of (B.9) with different boundary conditions we obtain

|v1(r, ω) − v2(r, ω)| ≤ C(d) sup
y∈∂D

|v1(y) − v2(y)|e−
d(r,∂D)
4ε
√

2C0 , x ∈ D,(B.11)

| grad(v1(r, ω) − v2(r, ω))| ≤ Ĉ(d)
ε

sup
y∈∂D

|v1(y) − v2(y)|e−
d(r,∂D)
4ε
√

2C0(B.12)

for r ∈ D and d(r, ∂D) > ε.
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Appendix C. In this section we show for a simplified functional that sequences
that approximate a function with a flat jump set are not microscopically flat. First
we give some definitions. From now on d = 3, x = (x1, x2, x3), Λ = (−1/2, 1/2)3.
As a simplification we replace the part of the functional Gε which consists of the
gradient part and the double-well potential directly by its sharp-interface limit and
and we restrict our attention to functions which are of bounded variation with values
in {+1,−1}; i.e., we consider

Ĝε(u, ω) =

{ ∫
Λ

(
| gradu| + α(ε)

ε gεu
)

if u ∈ BV (Λ, {−1, 1}),
+∞ else.

Recall that the Heaviside function H(x) : R → R is defined as H(x) = 1 for x > 0,
H(0) = 0, and H(x) = −1 for x < 0. We will show that perturbations of the “planar”
function U(x) := H(x3) decrease the energy. More precisely we consider “graph-
like” perturbations, i.e., functions V : Λ → {−1, 1} for which there exist functions
ϕ : (−1/2, 1/2)2 → (−1, 1) so that {V = −1} = {x : x3 ≤ ϕ(x1, x2)}, and we will
show that we can find with high probability such a ϕ with

osc(ϕ) := sup
(−1/2,1/2)2

ϕ− inf
(−1/2,1/2)2

ϕ� ε,

and lower energy than that of ϕ(x1, x2) = 0.
This indicates that the minimizer under boundary conditions that enforce a “pla-

nar” jump are not planar on small scales. We make another assumption which is not
automatic because the gε here is constant on deterministic cubes.

Assumption H 2. There is a δ > 0 so that for any measurable set A

P

(∫
A

gε > ε3/2
√
|A|
)

≥ 1
2

P

(∣∣∣∣∫
A

gε

∣∣∣∣ > ε3/2
√
|A|
)

≥ δ > 0

and the random variables
∫

A gε,
∫

A′ gε are independent and identically distributed for
dist(A, A′) > ε.

If A and A′ are unions of sufficiently many cubes, then H2 is an immediate
consequence of the central limit theorem.

Theorem C.1. Let U(x) := H(x3), 0 < β < 1, ε = 1
n , and assume H2. Let

hε = α(ε)ε(2β+1)/3; then there exists a function ϕε(·, ω) : [−1, 1]2 → [0, hε), such that
P-almost surely for any i ∈ Z

2

lim
ε→0

h−1
ε

(
sup

εβ(i+[−1,1]2)⊂[−1,1]2
(ϕε(·, ω)) − inf

εβ(i+[−1,1]2)⊂[−1,1]2
(ϕε(·, ω))

)
> 0.

Let Vε(·, ω) : Λ → {−1, 1} be such that {Vε = −1} = {x : x3 ≤ ϕε(x1, x2, ω)}; then
there exists C > 0 such that

P

[
Ĝ(U) − Ĝ(Vε(ω)) > Cε2/3(1−β)α(ε)2

]
→ 1.

Proof. Let rε = εβ , and divide the square (−1/2, 1/2)2 into cubes Qr(yi) of
sidelength 2rε centered at yi = εβi ∈ (−1/2, 1/2)2 for i = (j1, j2) ∈ Z

2.
We denote by Pε ⊆ R

3 the pyramid with center at the origin, base (−rε, rε)2 ×
{x3 = 0}, and height hε. The excess area (surface of the pyramid minus area of
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the base) is r
√
r2 + h2 − r2. We translate the basis of the pyramid on the plane

(−1/2, 1/2)2 and denote it by Pε+(yi, 0) for all i ∈ Z
2 so that yi = iεβ ∈ (−1/2, 1/2)2.

Next we define a random variable which indicates whether a perturbation is conve-
nient.

ηi(y, ω) =

{
1 if α(ε)ε−1

∫
Pε+(yi,0)

gε > 2r2ε (
√

1 + (hε/rε)2 − 1), y ∈ Qr(yi),
0 else.

Now let ϕrε(x1, x2) : Qrε(0) → [0, hε] be such that ϕrε(x1, x2) is the graph of Pε and
denote

ϕrε(x1, x2, ω) =
∑

(j1,j2)∈Z2:y(j1,j2)∈(−1/2,1/2)2

ηi((x1, x2), ω)ϕrε

(
(x1, x2) − εβ(j1, j2)

)
.

The theorem follows immediately from a Borel–Cantelli argument if we are able to
show that 1 > P(η(0) = 1) > 0. The upper bound follows from the symmetry of the
random field, which yields P(η(0) = 1) ≤ 1/2. The lower bound is a consequence of
H2: The volume of the pyramid is 1/3r2εh

2
ε ; i.e., H2 implies

P

(
α(ε)ε−1

∫
Pε

gε > ε1/2α(ε)(1/3)rε
√
hε

)
> δ,

and for ε sufficiently small

ε1/2α(ε)
√

(1/3)rε
√
hε

2r2ε (
√

1 + (hε/rε)2 − 1)
≥ ε1/2α(ε)εβ

εβ+1/2α(ε)3/2
=

1
α(ε)

1
2
> 1.

Remark C.2. The error in the upper bound, Lemma 6.4, is of order α(ε) � ε2/3;
therefore the error when replacing Gε by the functional Ĝε defined in this appendix
is larger than the effect described here. Hence this does not prove that minimizing
sequences of Fε with plane-like constraints are not flat. However, a careful analysis
of the next order for the functional Gε would be beyond the scope of this paper.
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