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Abstract

Portrait drawing is a common form of art with high ab-
straction and expressiveness. Due to its unique charac-
teristics, existing methods achieve decent results only with
paired training data, which is costly and time-consuming
to obtain. In this paper, we address the problem of auto-
matic transfer from face photos to portrait drawings with
unpaired training data. We observe that due to the signifi-
cant imbalance of information richness between photos and
drawings, existing unpaired transfer methods such as Cy-
cleGAN tend to embed invisible reconstruction information
indiscriminately in the whole drawings, leading to impor-
tant facial features partially missing in drawings. To ad-
dress this problem, we propose a novel asymmetric cycle
mapping that enforces the reconstruction information to be
visible (by a truncation loss) and only embedded in selec-
tive facial regions (by a relaxed forward cycle-consistency
loss). Along with localized discriminators for the eyes, nose
and lips, our method well preserves all important facial fea-
tures in the generated portrait drawings. By introducing a
style classifier and taking the style vector into account, our
method can learn to generate portrait drawings in multiple
styles using a single network. Extensive experiments show
that our model outperforms state-of-the-art methods.

1. Introduction

Portrait drawing is a unique style of art which is highly
abstract and expressive. However, drawing a delicate por-
trait drawing is time consuming and needs to be carried out
by skilled artists. Therefore, automatic generation of por-
trait drawings is very desirable.

Image style transfer has been a longstanding topic in
computer vision. In recent years, inspired by the effec-
tiveness of deep learning, Gatys et al. [4] introduced con-
volutional neural networks (CNNs) to transfer style from
a style image to a content image, and opened up the field
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of neural style transfer. Subsequently, generative adversar-
ial networks (GANs) have achieved much success in solv-
ing image style transfer problems [10, 25]. However, exist-
ing methods are mainly applied to cluttered styles (e.g., oil
painting style) where a stylized image is full of fragmented
brush strokes and the requirement for the quality of each
individual element is low.

Artistic portrait line drawings (APDrawings) are com-
pletely different from the previously tackled painting styles.
Generating them is very challenging because the style is
highly abstract: it only contains a sparse set of graphi-
cal elements, is line-stroke-based, disables shading, and
has high semantic constraints. Therefore, previous texture-
based style transfer methods and general image-to-image
translation methods fail to generate good results on the AP-
Drawing style (Fig. 1). To the best of our knowledge, AP-
DrawingGAN [20] is the only method that explicitly deals
with APDrawing by using a hierarchical structure and a dis-
tance transform loss. However, this method requires paired
training data that is costly to obtain. Due to the limited
availability of paired data, this method cannot adapt well to
face photos with unconstrained lighting in the wild.

Compared to paired training data, APDrawing genera-
tion learned from unpaired data is much more challeng-
ing. Previous methods for unpaired image-to-image trans-
lation [25, 21] use a cycle structure to regularize training.
Although cycle consistency loss enables learning from un-
paired data, we observe that when applying them to face
photo to APDrawing translation, due to significant imbal-
ance of information richness in these two data types, these
methods tend to embed invisible reconstruction information
indiscriminately in the whole APDrawing, causing a deteri-
oration in the quality of the generated APDrawings, such as
important facial features partially missing (Figs. 1(f-g)).

In this paper, we propose an asymmetric cycle structure
to tolerate certain reconstruction quality issues. We argue
that the network does not need to reconstruct an accurate
face photo from a generated APDrawing due to informa-
tion imbalance. Accordingly, we introduce a relaxed cy-
cle consistency loss between the reconstructed face photo



(a) Input (b) Gatys et al. (c)Linear Style Transfer (d) MUNIT (e1) ComboGAN (style1) (e2) ComboGAN(style2) (e3) ComboGAN(style3)

(f) DualGAN (g) CycleGAN (h) UNIT (i) APDrawingGAN (j1) Ours (style1) (j2) Ours (style2) (j3) Ours (style3)

Figure 1. Comparison with state-of-the-art methods: (a) input face photo; (b)-(c) style transfer methods: Gatys [4] and Linear Style
Transfer [14]; (f)-(h) single-modal image-to-image translation methods: DualGAN [21], CycleGAN [25], UNIT [15]; (d)-(e) multi-modal
image-to-image translation methods MUNIT [9] and ComboGAN [1]; (i) a portrait generation method APDrawingGAN [20]; (j) our
method. Note that APDrawingGAN requires paired data for training, so unlike other work, it is trained using the paired APDrawing
dataset. Due to this essential difference, we do not compare with this method in the follow-up evaluation.

and the input photo. By doing so the unnecessarily detailed
photo information does not need to be fully embedded in
APDrawings. Along with localized discriminators for the
eyes, nose and lips, our method can generate high-quality
APDrawings in which all important facial features are pre-
served.

Learning from unpaired data makes our method able to
utilize APDrawings from web data for training and include
more challenging photos into the training set. To exploit
the natural diversity of styles from web training images (see
Fig. 2 for some examples), our method1 further learns AP-
Drawings in multiple styles from mixed web data and can
control the output style using a simple style code.

The main contributions of our work are:

• We propose a novel asymmetric cycle-structure GAN
model to avoid indiscriminately embedding recon-
struction information in the whole APDrawing that is
often caused by cycle consistency loss.

• We use multiple local discriminators to enforce the ex-
istence and ensure quality for facial feature drawing.

• We learn multi-style APDrawings from unpaired,
mixed web data such that the user can switch between
multiple styles using a simple style code.

2. Related Work
2.1. Neural Style Transfer

The power of CNNs has been validated by many visual
perception tasks. Inspired by this, Gatys et al. [4] proposed
to use a pretrained CNN to extract content features and style

1The code is available at https://github.com/yiranran/
Unpaired-Portrait-Drawing

features from images and achieve style transfer by optimiz-
ing an image such that it maintains the content from the
content image and matches the style features from the style
image, where the Gram matrix is used to measure style sim-
ilarity. This method opens up the field of neural style trans-
fer and many follow-up methods are proposed based on this.

Li and Wand [13] proposed to maintain local patterns
by using a Markov Random Field (MRF) regularizer in-
stead of Gram matrix to model the style, and combined
MRF with CNN to synthesize stylized images. To speed up
the slow optimization process of [4], some methods (e.g.,
[11, 17]) use a feed-forward neural network to replace the
optimization process and minimize the same objective func-
tion. However, these methods still suffer from the problem
that each model is restricted to a single style. To speed
up optimization and allow style flexibility as [4], Huang
and Belongie [8] proposed adaptive instance normalization
(AdaIN) to align the mean and variance of content features
to those of style features. In these example-guided style
transfer methods, the style is extracted from a single image,
which is not as convincing as learning from a set of images
to synthesize style (refer to Section 2.2). Moreover, these
methods model style as texture, and thus are not suitable
for our portrait line drawing style that has little texture.

2.2. GAN-based image-to-image translation

GANs [5] have achieved much progress in many com-
puter vision tasks, including image super-resolution [12],
text-to-image synthesis [16, 22], facial attribute manipu-
lation [23], etc. Among these works, two unified GAN
frameworks, Pix2Pix [10] and CycleGAN [25], have en-
abled much progress in image-to-image translation.

Pix2Pix [10] was the first general image-to-image trans-
lation framework based on conditional GANs, and was later

https://github.com/yiranran/Unpaired-Portrait-Drawing
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(a) Style 1 (b) Style 2 (c) Style 3
Figure 2. We select three representative styles in our collected web
portrait line drawing data. The first style is from Yann Legendre
and Charles Burns where parallel lines are used to draw shadows.
The second style is from Kathryn Rathke where few dark regions
are used and facial features are drawn using simple flowing lines.
The third style is from vectorportal.com where continuous thick
lines and large dark regions are utilized.

extended to high-resolution image synthesis [18]. More
works focus on learning from unpaired data, due to the
difficulty of obtaining paired images in two domains. A
popular and important observation is the cycle consistency
constraint, which is the core of CycleGAN [25] and Dual-
GAN [21]. The cycle consistency constraint enforces that
the two mappings from domains A to B and from B to A
when applied consecutively to an image revert the image
back to itself. Different from enforcing cycle consistency at
the image level, UNIT [15] tackles the problem by a shared
latent space assumption and enforcing a feature-level cycle
consistency. These methods work well for general image-
to-image translation tasks. However, in face photo to AP-
Drawing translation, cycle consistency constraints lead to
facial features partially missing in APDrawings, because
the information between the source and target domains is
imbalanced. In this paper, we relax the cycle consistency
in the forward (photo→ drawing→ photo) cycle and pro-
pose additional constraints to avoid this problem. The NIR
(near infrared)-to-RGB method in [3] adopts a very differ-
ent type of asymmetry: it uses the same loss for the forward
and backward cycles, and only changes the network com-
plexity. Moreover, it targets a different task from ours.

The aforementioned unpaired translation methods are
also limited in the diversity of translation outputs. Unpaired
data such as crawled web data often naturally contains
multi-modal distributions (i.e. inconsistent styles). When
knowing the exact number of modes and the mode each
sample belongs to, the multi-modal image-to-image trans-
lation could be solved by treating each mode as a separate
domain and using a multi-domain translation method [1].
However, in many scenarios including our problem setting,
this information is not available. MUNIT [9] deals with
multi-modal image-to-image translation without knowing
the mode each sample belongs to. It encodes an image into
a domain-invariant content code and a domain-specific style
code, and recombines the content code with the style code
sampled from a target domain. Although MUNIT generates
multiple outputs with different styles, it cannot generate sat-
isfactory portrait line drawings with clear lines. Our archi-

Input Face Photo

Nonlinear
mapping

Figure 3. In CycleGAN, to reconstruct the input photo from gener-
ated drawings, a strict cycle-consistency loss embeds invisible re-
construction information indiscriminately in the whole drawings.
A nonlinear monotonic mapping of the gray values is applied in
a local region around the nose to visualize the embedded recon-
struction information.

tecture inserts style features into the generator and uses a
soft classification loss to discriminate modes in the train-
ing data and produce multi-style outputs, generating better
APDrawings than state-of-the-art methods.

3. Our Method
3.1. Overview

Our proposed method performs face photo to APDraw-
ing translation without paired training data using a novel
asymmetric cycle-structure GAN. Let P and D be the face
photo domain and the APDrawing domain, and no pairings
need to exist between these two domains. Our model learns
a function Φ that maps from P to D using training data
S(p) = {pi|i = 1, 2, · · · , N} ⊂ P and S(d) = {dj |j =
1, 2, · · · ,M} ⊂ D. N and M are the numbers of training
photos and APDrawings. Our model consists of two gener-
ators — a generator G transforming face photos to portrait
drawings, and an inverse generator F transforming draw-
ings back to face photos — and two discriminators, DD re-
sponsible for discriminating generated drawings from real
drawings, and DP responsible for discriminating generated
photos from real photos.

The information in the APDrawing domain is much less
than in the face photo domain. For example, in the cheek
region, there are many color variations in the original photo
but the cheek is usually drawn completely white (i.e. no
lines are included) in an APDrawing. Enforcing a strict
cycle-consistency loss like in CycleGAN [25] on the re-
constructed face photo and the input photo will cause the
network to embed reconstruction information in very small
variations in the generated APDrawings (i.e., color changes
that are invisible to the eye but can make a difference
in network calculation) [2]. See Fig. 3 for an example.
Embedding reconstruction information in very small vari-
ations achieves a balance between cycle-consistency loss
and GAN loss in CycleGAN; the generated drawing G(p)



can successfully reconstruct a face photo similar to the in-
put photo because of small color changes, while at the same
time G(p) can be similar to real drawings and be classified
as real by the discriminator. Embedding invisible recon-
struction information indiscriminately in the whole drawing
will put a very strong restriction on the objective function
optimization. Moreover, it will allow important facial fea-
tures to be partially missing in the generated drawings.

We observe that although cycle consistency constraints
are useful to regularize training, we are only interested in
the one way mapping from photos to portrait drawings.
Therefore, different from CycleGAN, we do not expect or
require the inverse generator F to reconstruct a face photo
exactly as the input photo (which is a near impossible task).
Instead, our proposed model is asymmetric in that we use
a relaxed cycle-consistency loss between F (G(p)) and p,
where only edge information is enforced to be similar, while
a strict cycle-consistency loss is enforced on G(F (d)) and
d. By tolerating the reconstruction information loss be-
tween F (G(p)) and p, the objective function optimization
has enough flexibility to recover all important facial features
in APDrawings. A truncation loss is further proposed to
enforce the embedded information to be visible, especially
around the local area of the selected edges where relaxed
cycle-consistency loss works. Furthermore, local drawing
discriminators for the nose, eyes and lips are introduced to
enforce their existence and ensure quality for these regions
in the generated drawings. By using these techniques, our
method generates high-quality portrait line drawings with
complete facial features.

Our model also deals with multi-style APDrawing gen-
eration. The APDrawing data we collected from the In-
ternet contains a variety of styles, of which only some are
tagged with author/source information. We select represen-
tative styles from the collected data (see Fig. 2), and train a
classifier for the collected drawings. Then a learned repre-
sentation is extracted as a style feature and inserted into the
generator to control the generated drawing style. An addi-
tional style loss is introduced to optimize for each style.

The four networks in our model are trained in an ad-
versarial manner [5]: the two discriminators DD and
DP are trained to maximize the probability of assign-
ing correct labels to real and synthesized drawings and
photos; and meanwhile the two generators G and F
are trained to minimize the probability of the discrim-
inators assigning the correct labels. The loss function
L(G,F,DD, DP) contains five types of loss terms: adver-
sarial loss Ladv(G,DD)+Ladv(F,DP), relaxed cycle con-
sistency loss Lrelaxed−cyc(G,F ), strict cycle consistency
loss Lstrict−cyc(G,F ), truncation loss Ltrunc(G,F ), and
style loss Lstyle(G,DD). Then the function Φ is opti-
mized by solving the minimax problem with loss function

L(G,F,DD, DP):

min
G,F

max
DD,DP

L(G,F,DD, DP)

= (Ladv(G,DD) + Ladv(F,DP)) + λ1Lrelaxed−cyc(G,F )

+ λ2Lstrict−cyc(G,F ) + λ3Ltrunc(G,F ) + λ4Lstyle(G,DD)
(1)

In Section 3.2, we introduce the architectures of our
model and our different designs for G,DD and F,DP . In
Section 3.3, we introduce our asymmetric cycle-consistency
requirements and five loss terms. An overview of our
method is illustrated in Fig. 4.

3.2. Architecture

Our GAN model consists of a generator G and a dis-
criminator DD for face photo to drawing translation, and
another generator F and discriminator DP for the inverse
drawing to photo translation. Considering information im-
balance between the face photo in P and the APDrawing in
D, we design different architectures for G,DD and F,DP .

3.2.1 Face photo to drawing generator G

The generator G takes a face photo p and a style feature s
as input, and outputs a portrait line drawing G(p, s) whose
style is specified by s.

Style feature s. We first train a classifier C (based
on VGG19) that classifies portrait line drawings into three
styles (Fig. 2), using tagged web drawing data. Then we
extract the output of the last fully-connected layer and use
a softmax layer to calculate a 3-dimensional vector as the
style feature for each drawing (including untagged ones).

Network structure. G is an encoder-decoder with resid-
ual blocks [7] in the middle. It starts with a flat convolution
and two down convolution blocks to encode face photos and
extract useful features. Then the style feature is mapped to
a 3-channel feature map and inserted into the network by
concatenating it with the feature map of the second down
convolution block. An additional flat convolution is used to
merge the style feature map with the extracted feature map.
Afterwards, nine residual blocks of the same structure are
used to construct the content feature and transfer it to the
target domain. Then the output drawing is reconstructed by
two up convolution blocks and a final convolution layer.

3.2.2 Drawing discriminator DD

The drawing discriminatorDD has two tasks: 1) to discrim-
inate generated portrait line drawings from real ones; and
2) to classify a drawing into three selected styles, where a
real drawing d is expected to be classified into the correct
style label (given by C), and a generated drawing G(p, s)
is expected to be classified into the style specified by the
3-dimensional style feature s.



Generator 𝐺
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Style feature 𝑠
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Figure 4. Our model is an asymmetric cycle-structure GAN model that consists of a photo to drawing generator G, a drawing to photo
generator F , a drawing discriminator DD and a photo discriminator DP . We use a relaxed cycle-consistency loss between reconstructed
face photo F (G(p)) and input photo p, while enforcing a strict cycle-consistency loss between reconstructed drawing G(F (d)) and input
drawing d. We further introduce local drawing discriminators Dln, Dle, Dll for the nose, eyes and lips and a truncation loss. Our model
deals with multi-style generation by inserting a style feature into the generator and adding a style loss.

For the first task, to enforce the existence of important
facial features in the generated drawing, besides a discrim-
inator D that analyzes the full drawing, we add three lo-
cal discriminators Dln, Dle, Dll to focus on discriminating
the nose drawing, eye drawing and lip drawing respectively.
The inputs to these local discriminators are masked draw-
ings, where masks are obtained from a face parsing net-
work [6]. DD consists of D,Dln, Dle, Dll.

Network structure. The global discriminatorD is based
on PatchGAN [10] and modified to have two branches. The
two branches share three down convolution blocks. Then
one branchDrf includes two flat convolution blocks to out-
put a prediction map of real/fake for each patch in the draw-
ing. And the other classification branch Dcls includes more
down convolution blocks and outputs probability values for
the three style labels. Local discriminators Dln, Dle, Dll

also adopt the PatchGAN structure.

3.2.3 Drawing to face photo generator F and Photo
discriminator DP

The generator F in the inverse direction takes a portrait line
drawing d as input and outputs a face photo F (d). It adopts
an encoder-decoder architecture with nine residual blocks
in the middle. Photo discriminatorDP discriminates gener-
ated face photos from real ones, and also adopts the Patch-
GAN structure.

3.3. Loss Functions

There are five types of losses in our loss function (Eq.
(1)). We explain them in detail as follows:

Adversarial loss. The adversarial loss judges discrimi-
nator DD’s ability to assign correct labels to real and syn-
thesized drawings. It is formulated as:

Ladv(G,DD) =
∑

D∈DD

Ed∈S(d)[logD(d)]

+
∑

D∈DD

Ep∈S(p)[log(1−D(G(p, s))]
(2)

where s is randomly selected from the style features of
drawings in S(d) for each p. As DD maximizes this loss
and G minimizes it, this loss drives the generated drawings
to become closer to real drawings.

We also adopt an adversarial loss for the photo discrimi-
nator DP and the inverse mapping F :

Ladv(F,DP) = Ep∈S(p)[logDP(p)]

+ Ed∈S(d)[log(1−DP(F (d))]
(3)

Relaxed forward cycle-consistency loss. As aforemen-
tioned, we observe that there is much less information in
domain D than information in domain P . We do not ex-
pect p → G(p, s) → F (G(p, s)) to be pixel-wise simi-
lar to p. Instead, we only expect the edge information in



p and F (G(p, s)) to be similar. We extract edges from p
and F (G(p, s)) using HED [19], and evaluate the similarity
of edges by the LPIPS perceptual metric proposed in [24].
Denote HED by H and the perceptual metric by Llpips, the
relaxed cycle-consistency loss is formulated as:

Lrelaxed−cyc(G,F ) = Ep∈S(p)[Llpips(H(p), H(F (G(p, s))))]
(4)

Strict backward cycle-consistency loss. On the other
hand, the information in the generated face photo is ad-
equate to reconstruct the drawing. Therefore, we expect
d → F (d) → G(F (d), s(d)) to be pixel-wise similar to
d, here the style feature s(d) is the style feature of d. The
strict cycle-consistency loss in the backward cycle is then
formulated as:

Lstrict−cyc(G,F ) = Ed∈S(d)[||d−G(F (d), s(d))||1]
(5)

Truncation loss. The truncation loss is designed to
prevent the generated drawing from hiding information in
small values. It is in the same format as the relaxed cycle-
consistency loss, except that the generated drawing G(p, s)
is first truncated to 6 bits (a general digital image stores in-
tensity in 8 bits) to ensure encoded information is clearly
visible, and then fed into F to reconstruct the photo. De-
note the truncation operation as T [·], the truncation loss is
formulated as:

Ltrunc(G,F ) = Ep∈S(p)[Llpips(H(p), H(F (T [G(p, s)])))]
(6)

In the first period of training, the weight for the truncation
loss is kept low, otherwise it would be too hard for the model
to optimize. The weight gradually increases as the training
progresses.

Style loss. The style loss is introduced to help G gener-
ate multiple styles with different style features. Denote the
classification branch in DD as Dcls, the style loss is formu-
lated as

Lcls(G,DD) = Ed∈S(d)[−
∑
c

p(c) logDcls(c|d)]

+ Ep∈S(p)[−
∑
c

p′(c) logDcls(c|G(p, s))]

(7)
For real drawing d, p(c) is the probability over style label
c given by classifier C, Dcls(c|d) is the predicted softmax
probability by Dcls over c. We multiply by the probability
p(c) in order to take into account those real drawings that
may not belong to a single style but lie between two styles,
e.g. softmax probability [0.58, 0.40, 0.02]. For generated
drawing G(p, s), p′(c) denotes the probability over style la-
bel c and is specified by style feature s, Dcls(c|G(p, s)) is
the predicted softmax probability over c. This classification
loss drives Dcls to classify a drawing into the correct style
and drives G to generate a drawing close to a given style
feature.

(a) Input Content (b) Input Style (c) Gatys (d) LinearStyleTransfer (e) Ours(style1,2,3)

Figure 5. Comparison with two state-of-the-art neural style trans-
fer methods, i.e., Gatys [4] and LinearStyleTransfer [14].

4. Experiments
We implemented our method in PyTorch. All experi-

ments are performed on a computer with a Titan Xp GPU.
The parameters in Eq. 1 are λ1 = 5 − 4.5i

n , λ2 = 5,
λ3 = 4.5i

n , λ4 = 1, where i is the current epoch number,
and n is the total epoch number.

4.1. Experiment Setup

Data. We collect face photos and APDrawings from the
Internet and construct a training corpus of 798 face pho-
tos and 625 delicate portrait line drawings, and a test set of
154 face photos. Among the collected drawings, 84 are la-
beled with artist Charles Burns, 48 are labeled with artist
Yann Legendre, 88 are labeled with artist Kathryn Rathke,
212 are from website vectorportral.com, while others have
no tagged author/source information. We observed that
both Charles Burns and Yann Legendre use similar parallel
lines to draw shadows, and so we merged drawings of these
two artists into style1. We select the drawings of Kathryn
Rathke as style2 and the drawings of vectorportral as style3.
Both of them have distinctive features: Kathryn Rathke uses
flowing lines but few dark regions and vectorportral uses
thick lines and large dark regions. All the training images
are resized and cropped to 512× 512 pixels.

Training process. 1) Training classifier C. We first
train a style classifier C (Section 3.2.1) with the tagged
drawings and data augmentation (including random rota-
tion, translation and scaling). To balance the number of
drawings in each style, we take all drawings from the first
and second styles but only part of the third style in train-
ing stage of C, to achieve more balanced training for dif-
ferent styles. 2) Training our model. Then we use the
trained classifier to obtain style features for all 625 draw-
ings. We further augment training data using synthesized
drawings. Training our network with the mixed data of real
drawings and synthesized drawings results in high-quality
generation for all three styles (Figs. 5-7, where our results



(a) Input (b) DualGAN (c) CycleGAN (d) UNIT (e) Ours(style1) (f) Ours(style2) (g) Ours(style3)
Figure 6. Comparison with three single-modal unpaired image-to-image translation methods: DualGAN [21], CycleGAN [25], UNIT [15].

(a) Input (b) MUNIT (c) ComboGAN (style1, 2, 3) (d) Ours (style1, 2, 3)
Figure 7. Comparison with two unpaired image-to-image translation methods that can deal with multi-modal or multi-domain translation:
MUNIT [9], ComboGAN [1].

of styles 1, 2, 3 are generated by feeding in a style feature
of [1, 0, 0], [0, 1, 0], [0, 0, 1] respectively).

4.2. Comparisons

We compare our method with two state-of-the-art neural
style transfer methods: Gatys [4], LinearStyleTransfer [14],
and five unpaired image-to-image translation methods: Du-
alGAN [21], CycleGAN [25], UNIT [15], MUNIT [9] and
ComboGAN [1].

Comparisons with neural style transfer methods are
shown in Fig. 5. Gatys’ method fails to capture portrait line
drawing styles because it uses the Gram matrix to model
style as texture and APDrawings have little texture. Lin-
earStyleTransfer produces visually better results but still not
the desired line drawing: the generated drawings have many
thick lines but they are produced in a rough manner. Com-
pared to these example-guided style transfer methods, our
method learns from a set of APDrawings and generates del-
icate results for all three styles.

Comparisons with single-modal unpaired image-to-
image translation methods are shown in Fig. 6. DualGAN
and CycleGAN are both based on strict cycle-consistency

loss. This causes a dilemma in photo to line drawing trans-
lation: either a generated drawing looks like a real drawing
(i.e. close to binary, containing large uniform regions) but
cannot properly reconstruct the original photo; or a gener-
ated drawing has grayscale changes and good reconstruc-
tion but does not look like a real drawing. Also, compared
to CycleGAN, DualGAN is more grayscale-like, less ab-
stract and worse in line drawing style. UNIT adopts feature-
level cycle-consistency loss, which makes the results less
constrained at the image level, making the face appear de-
formed. In comparison, our results both preserve face struc-
ture and have good image and line quality.

Comparisons with unpaired image-to-image translation
methods that can deal with multi-modal or multi-domain
translation are shown in Fig. 7. Results show that MUNIT
does not capture the line drawing style in our task and the re-
sults are more similar to a pencil drawing with shading and
many gray regions. ComboGAN fails to capture all three
representative styles and performs better on styles 2 and 3
than style 1. Our architecture inserts style information ear-
lier in the generator, which gives more space for multi-style
generation. As a result, our method generates distinctive re-



(a) Input (b) w/o ℒ𝑟𝑒𝑙𝑎𝑥𝑒𝑑(c) w/o ℒ𝑟𝑒𝑙𝑎𝑥𝑒𝑑 (d) w/o 𝐷𝑙∗ (e) w/o HED (f) Ours
w/o 𝐷𝑙∗

Figure 8. Ablation study: (a) input photos, (b) results of remov-
ing relaxed cycle-consistency loss (i.e. using L1 loss) and re-
moving local discriminators, (c) results of removing relaxed cycle-
consistency loss, (d) results of removing local discriminators, (e)
results of removing HED in calculating relaxed cycle-consistency
loss, (f) our results.

Table 1. User study results. The i-th row shows the percent-
ages of different methods (LinearStyleTransfer (LST) [14], Cy-
cleGAN [25], ComboGAN [1] and Ours) being ranked as the i-th
among four methods.

LST ComboGAN CycleGAN Ours
Rank1 1.3% 14.9% 15.2% 68.5%
Rank2 7.4% 31.8% 38.8% 22.0%
Rank3 31.2% 31.4% 30.0% 7.4%
Rank4 60.1% 21.9% 15.9% 2.1%

sults for three styles and reproduces the characteristics for
each style well.

4.3. User Study

We conduct a user study to compare our method with
LinearStyleTransfer (LST), CycleGAN and ComboGAN
(Gatys, DualGAN and UNIT are not included because of
lower visual quality and MUNIT is not included because it
does not capture the line drawing style). We randomly sam-
ple 60 face photos from the test set and translate 20 of them
to each style. The style reference needed for LST is ran-
domly chosen from real drawings. Participants are shown
a photo, a real drawing (style reference) and four generated
drawings at a time, and are asked to drag and sort four re-
sults based on style similarity, face structure preservation
and image quality. 34 participants attended the user study
and 2,040 votes were collected in total. Results of the per-
centages of each method ranked as 1,2,3,4 are summarized
in Table. 1. Our method ranks the best in 68.5% of votes,
while LST, ComboGAN and CycleGAN rank the best in
1.3%, 14.9% and 15.2% instances. The average rank of
our method is 1.43, compared to CycleGAN’s 2.47, Com-
boGAN’s 2.60 and LST’s 3.50. These results demonstrate
that our method outperforms other methods. All generated
drawings evaluated in user study are presented in the sup-
plementary material. And we provide another quantitative

evaluation (FID evaluation) in the supplementary material.

4.4. Ablation Study

We perform an ablation study on the key factors in our
method: (1) relaxed cycle consistency loss, (2) local dis-
criminators and (3) HED edge extraction. Results show that
they are all essential to our method.

As shown in Fig. 8b, without relaxed cycle consistency
loss and local discriminators, facial features are often miss-
ing (e.g. the nose is missing in the first and second rows,
nose and eye details are missing in the third row). Remov-
ing only relaxed cycle consistency loss (Fig. 8c) preserves
more facial feature regions (e.g., the nose in the first row)
than (Fig. 8b) but still some parts are missing. Removing
only local discriminators (Fig. 8d) produces few missing
parts (much better than (Fig. 8b) in facial structure preserva-
tion), but some facial features are not drawn in the desired
manner: some black regions or shadows that are usually
drawn near facial boundaries or hair appear near the nose.
When both relaxed cycle consistency loss and local discrim-
inators are used, results (Fig. 8f) preserve all facial feature
regions and no undesired black regions or shadows appear
in faces. These results show that both relaxed cycle consis-
tency loss and local discriminators help to preserve facial
feature regions and are complementary to each other, and
local discriminators also help to avoid undesired elements
in facial features.

As shown in Fig. 8e, without HED edge extraction in
the relaxed cycle consistency loss calculation, the lines are
often discontinuous or blurred (see the nose in the first and
second rows, and eyes and lips in the third row). In compari-
son, our results have clear, sharp and continuous lines. This
result demonstrates that using HED edge extraction helps
the model to generate clearer and more complete lines.

5. Conclusion

In this paper, we propose a method for unpaired portrait
line drawing generation using asymmetric cycle mapping.
Our method can learn multi-style portrait drawing gener-
ation from mixed web data using an additional style fea-
ture input and a soft classification loss. Experiments and a
user study demonstrate that our method can generate high-
quality distinctive results for three representative styles and
outperform state-of-the-art methods.
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