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Mathematical models can aid in elucidating the spread of infectious disease dynamics within a given population over time. In an
attempt to model tuberculosis (TB) dynamics among high-burden districts in the Ashanti Region of Ghana, the SEIR epidemic
model with demography was employed within both deterministic and stochastic settings for comparison purposes. /e de-
terministic model showed success in modelling TB infection in the region to the transmission dynamics of the stochastic SEIR
model over time. It predicted tuberculosis dying out in ten of twelve high-burden districts in the Ashanti Region, but an outbreak
in Obuasi municipal and Amansie West district. /e effect of introducing treatment at the incubation stage of TB transmission
was also investigated, and it was discovered that treatment introduced at the exposed stage decreased the spread of TB. Branching
process approximation was used to derive explicit forms of relevant epidemiological quantities of the deterministic SEIRmodel for
stability analysis of equilibrium points. Numerical simulations were performed to validate the overall infection rate, basic re-
productive number, herd immunity threshold, and Malthusian parameter based on bootstrapping, jackknife, and Latin Hy-
percube sampling schemes. It was recommended that the Ghana Health Service should find a good mechanism to detect TB in the
early stages of infection in the region. Public health attention must also be given to districts with a potentially higher risk of
experiencing endemic TB even though the estimates of the overall epidemic thresholds from our SEIR model suggested that the
Ashanti Region as a whole had herd immunity against TB infection.

1. Introduction

/e burden of tuberculosis (TB) poses a major public health
challenge especially among developing countries in terms of
its spread. /e challenge in controlling TB in Africa is at-
tributed to poverty, drug-resistant tuberculosis, endemic of
the causative agents, and inefficient diagnostic methods,
among others [1]. TB is considered among the top ten
leading causes of deaths worldwide, such that it infects about
one-third of the world’s population annually according to
WHO's health statistics [2]. In 2015 alone, approximately
1.4 million TB-related deaths out of 10.4 million TB cases
were recorded globally [3]. /e prevalence of the disease is
relatively higher in Africa than other parts of the world [4, 5].
In Ghana, the incidence of tuberculosis per 100,000 people

was reported at 148 in 2018, with a corresponding mortality
rate of 36 [6]. However, less than one-third of the estimated
number of diagnosed cases are reported yearly, and the level
of under-reporting of diagnosed cases in high TB burden
settings is largely unknown [7].

/e use of mathematical models and simulations to
explore the dynamics of infectious disease has generally
gained attention over the years as these models aid in better
understanding the spread of such disease infection and the
models provide a convenient summary of the epidemio-
logical data [8]. Consequently, it helps to also predict future
outbreaks as the infection progresses and make informed
decisions for the control of the underlying disease. Models
employed to study the transmission of communicable dis-
eases are termed dynamic epidemiological models since they
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study the evolution of infectious disease over time. Every
population may show some degree of heterogeneity about
infection, and thus, disease modellers try to incorporate
these diversities during the development of mathematical
models, resulting in the class of epidemic models known as
compartmental models. Compartmental models may be
formulated either deterministically using systems of ordi-
nary differential equations (ODEs) or stochastically via
continuous-time Markov chains and stochastic differential
equations (SDEs). /e ODE epidemic model provides a
framework for formulating their analogous stochastic
models and a major source of comparison with the sto-
chastic epidemic models [9]. /us, the two types of models
are alternative viewpoints of the same infection dynamics
[10].

Epidemic processes occur naturally in a stochastic
manner especially at the individual level, and thus, stochastic
models help to understand that such variations in disease
spread may be explained by chance fluctuations alone and
not always due to differences in virulence or infectiousness
[8]. Nevertheless, stochastic epidemic models are well suited
when examining outbreaks in relatively small populations as
well as elucidating infection dynamics at early stages [11].
/is suggests the robustness of deterministic epidemic
models to stochastic perturbations among larger pop-
ulations. Hence, the deterministic model is suitably an
infinite population limit of a general class of stochastic
models with or without homogeneous mixing [12, 13].
Hence, we employed a deterministic model for this study
due to the size of the target population and lack of infor-
mation at the early stages of the TB infection within the
district, while comparing results with its stochastic version.

In a deterministic model, a heterogeneous population is
divided into a finite number of homogeneous subpopula-
tions. /en, the epidemic dynamics are modelled deter-
ministically with a movement among subpopulations using
ODEs. Modelling infectious diseases with the deterministic
approach has a very long history. /ese models have been
used immensely in studying other communicable diseases
such as influenza, chickenpox, measles, and many more in
various contexts [14]. Deterministic models provide theo-
retical results such as the basic reproductive number,
thresholds, replacement number, and contact number. In
terms of infectious disease, these models help countries,
regions, and communities to design proper remedies to
reduce the infection probability of the pathogen [15].

Several studies have explored tuberculosis infection from
a modelling perspective using different classes of epidemic
compartmental models [16]. However, in the process of
investigating the effect of exposed individuals on the overall
TB infection dynamics of epidemic models, the class of
Susceptible-Exposed-Infected-Recovered (SEIR) models is
usually employed as compared to the Susceptible-Infected-
Recovered (SIR) models which are often adopted generally
when the latent stage of the infection is ignored. Most of the
studies carried out on TB using the SEIR model explored the
global stability with either nonsequential occurrence rate or
infectious drive at incubation, infectious, and recovered
stages [17, 18]. Nonetheless, only a few studies have been

done in Ghana using SEIR models as compared to the SIR
model in the context of TB infection since little or no
knowledge is known about the exposed individuals within
the population at the latent stages of infection. /is may be
associated with the lack of a proper mechanism to detect
exposed individuals and under-reporting in Ghana and
other parts of sub-Saharan Africa. However, in the Ashanti
Region of Ghana, only one study employed the SEIR model
without demography to determine whether or not TB will be
endemic in one of the high-burden districts called Amansie
West [19]. /eir study revealed that TB infection will persist
within this district in the Ashanti Region.

Consequently, this current study is an expansion of the
previous study [19], by investigating tuberculosis infection
dynamics among all high TB burden districts in the Ashanti
Region of Ghana using the SEIR model with demography.
Here, we developed an SEIR model by incorporating other
demographic information such as birth and death to explore
the dynamics of TB in the Ashanti Region of Ghana, while
examining the effects of (unknown) exposed individuals on
the overall infection dynamics within deterministic and
stochastic settings for comparison purposes. Moreover,
explicit derivation of the basic reproductive number and
Malthusian parameter (threshold) was performed using a
branching process approximation for steady-state stability
analysis./e effects of treatment introduction at the exposed
compartment were investigated based on the basic repro-
ductive number. Numerical simulations were performed to
validate estimates of the overall infection rate, basic re-
productive number, herd immunity threshold, and Mal-
thusian parameter across the districts using estimation
techniques from bootstrap, jackknife, and Latin Hypercube
sampling schemes for precision.

2. Materials and Methods

/e study employed administrative data compiled by the
Ashanti regional health directorate. /e data contained the
screening report on tuberculosis in the Ashanti Region of
Ghana for the year 2017. Even though there are twenty-
seven districts in the Ashanti Region, the data obtained
from the health directorate only reported on TB cases
within the twelve districts considered as the high-burden
districts by the Ghana Health Service./e remaining fifteen
districts were seen to produce routine cases of TB in the
region. /us, the infection dynamics of tuberculosis for the
entire region was investigated using these high-burden
districts. Infected individuals recovered from TB with
permanent immunity. Whenever there was infectious
contact, it was assumed that the individual goes through the
latent (incubation or exposed) period before becoming
infectious; hence, we fitted the SEIR model (Suscepti-
ble–Exposed-Infected-Recovery model) as originally de-
veloped by Kermack and McKendrick [20]. /e
deterministic SEIR model was employed to study the in-
fection dynamics while comparing its dynamics with its
stochastic form. /e model was modified by including
demography characteristics such as birth and death. Since
information on the exposed individuals was not captured
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or recorded in the actual observed data, a sensitivity
analysis was performed on the exposed compartment to
examine its effects on the overall TB infection dynamics.
Also, the outcome of introducing treatment at the incu-
bation stage of TB transmission was further explored.

From the deterministic SEIR model, the basic repro-
ductive number (R0) was obtained using the next generation
matrix analytically. /e population proportion of the
compartments at the equilibrium points (disease-free and
endemic) was also derived theoretically, and their stability
was studied using the Routh–Hurwitz stability criterion./e
branching process technique was used to deduce the Mal-
thusian parameter (ρ) and the probability of TB extinction.
Numerical simulation via bootstrap, jackknife, and Latin
Hypercube sampling schemes was carried out to validate the
overall empirical infection rate as well as other epidemic
thresholds (basic reproductive number, herd immunity
threshold, and Malthusian parameter) across the entire
region.

2.1. Deterministic SEIRModel Development. We present the
mathematical formation of the SEIR models with demo-
graphic characteristics. /e assumption of constant pop-
ulation size is made (demography: birth rate “λ” equal to
death rate “μ”⟺λ � μ). It is important to note that the
notations for the birth (λ) and death rates (μ) will be
maintained to generalize analytical estimators of relevant
epidemic quantities from the model for any values of λ and
μ. /e deterministic model is formulated by dividing the
host population into four classes: Susceptible (S), Exposed
(E), Infectious (I), and Recovery (R):

mathematically: N � S + E + I + R, (1)

where λ � birth rate, μ � death rate, α � infection rate,
ε� rate at which an individual moves from the exposed
class to the infection class, and β� recovery rate of the
infectious individual. /e constant population size as-
sumptions together with Figure 1 lead to the following
system of ordinary differential equations (ODEs) to indi-
cate the rate of change from one class (disease state) to the
other:

dS

dt
� λN − μS − αS

1
N

,

dE

dt
� αS

1
N

− (ε + μ)E,

dI

dt
� εE − (β + μ)I,

dR

dt
� βI − μR.

(2)

Rescaling equation (2) by representing s � (S/N),
i � (I/N), r � (R/N), and e � (E/N), where s � susceptible
proportion of the population, e � exposed proportion,
i � infectious proportion, and r � recovery proportion
[21]. /e scaled equations are given as follows:

ds

dt
� λ − μs − αsi,

de

dt
� αsi − (ε + μ)e,

di

dt
� εe − (β + μ)i,

dr

dt
� βi − μr,

(3)

where s + e + i + r � 1. Hence, making “r” the subject and
setting r � 1 − s − e − i, it suffices to study the system of
ODEs given by equation (4) instead of equation (3):

ds

dt
� λ − μs − αsi,

de

dt
� αsi − (ε + μ)e,

di

dt
� εe − (β + μ)i.

(4)

/is system of ODEs (4) was solved numerically via the
standard Runge–Kutta method.

2.1.1. Formulation of the Stochastic SEIR Model with
Demography. /e stochastic form of the deterministic SEIR
model with demography (equation (2)) was constructed by
assuming that the TB infection dynamics satisfies a ho-
mogeneous continuous-time Markov chain (CTMC) such
that time between events or transitions is exponentially
distributed. /is stochastic model was only developed solely
to compare its infection dynamics with the deterministic
model. Now, let S(t), E(t), I(t), and R(t) denote the number
of susceptible, exposed, infected, and recovered individuals
at any time t as the infection progresses. /en, the process
S(t), E(t), I(t), R(t): t≥ 0{ } is CTMC with discrete state
space F � 0, 1, . . . , N{ }, where N(t) � S(t) + E(t)+

I(t) + R(t). Hence, the stochastic SEIR with demography
based on its deterministic form can be modelled with events
that occur at rates within time interval [t, t + Δt] according
to Table 1.

Gillespie’s stochastic simulation algorithm (SSA) [22]
was used to simulate the stochastic epidemic SEIR model at
52 time points (in weeks) for over 5000 different simulation
runs in parallel. /e pseudocode for the simulation
according to the continuous-time Markov chain defined is

S E I R

λN

μR

εE βI

μE μIμS

αS (I/N)

Figure 1: Illustration of the SEIR model.
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summarized below by Algorithm 1 as implemented in R
programming language.

2.2. Computation of the Basic Reproductive Number of the
SEIR Model Using the Next-Generation Matrix. According
to [23], the basic reproductive number (R0) is the mean
number of secondary infections produced by one in-
fective individual in a completely susceptible population
at the disease-free equilibrium point (DFEP). /us,
R0 � (rate of secondary infections) × (infectious period).
It was assumed that “s” is near the disease-free equilib-
rium; hence, we linearized the ODEs in equation (4)
about the DFEP for exposed and infectious classes
yielding the matrix from the next-generation matrix
approach [24]:

H − K �
0 α

0 0
􏼢 􏼣 −

(μ + ε) 0

− ε (μ + β)
􏼢 􏼣, (5)

where H�matrix of infection rates and K�matrix of
transition rates:

H �
0 α

0 0
⎡⎢⎣ ⎤⎥⎦,

K �
(μ + ε) 0

− ε (μ + β)

⎡⎢⎣ ⎤⎥⎦.

(6)

But

|K| � (μ + ε)(μ + β) + 0⟹ |K| � (μ + ε)(μ + β),

K
− 1

�
1

(μ + ε)(μ + β)

(μ + β) 0

ε (μ + ε)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦.

(7)

Hence,

K
− 1

�

1
(μ + ε)

0

ε
(μ + ε)(μ + β)

1
(μ + β)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Multiplying the inverse of “K” by the matrix “H”
results in

HK
− 1

�

0 α

0 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1
(μ + ε)

0

ε
(μ + ε)(μ + β)

1
(μ + β)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

αε
(μ + ε)(μ + β)

α
(μ + β)

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(9)

/e basic reproductive number (R0) is also defined as
the spectral radius of HK− 1 according to [24]. We denote
this by ρ(HK− 1); hence,

R0 �
αε

(β + μ)(ε + μ)
. (10)

Remark 1. It is important to note that R0 as used here is a
natural bifurcation parameter at 1 such that R0 < 1 implies
the infection will die out in the long run and persist in the
population if otherwise (R0 > 1). Given R0, the herd im-
munity or critical immunization threshold (qc) which
measures the proportion of the population that needs to be
immunized to control the infection transmission is esti-
mated as [25]

qc � 1 −
1

R0
. (11)

2.3. Equilibrium Point of the SEIR Model. For the purpose
of this study, we considered two equilibrium points: the
disease-free equilibrium point (DFEP) when i � 0 and the
endemic equilibrium point (EEP) when i≠ 0. To achieve this,
equation (4) was set to zero and then the values of s, e, and i

were determined analytically:
ds

dt
� 0⟹ λ − μs − αsi � 0,

de

dt
� 0⟹ αsi − (ε + μ)e � 0,

di

dt
� 0⟹ εe − (β + μ)i � 0.

(12)

Table 1: /e modelling scheme of the SEIR CTMC model with demography.

Event Transition Rate of occurrence within Δt
Susceptible birth S⟶ S + 1 λN

Susceptible death S⟶ S − 1 μS

Exposed S⟶ S − 1, E⟶ E + 1 αS(I/N)

Exposed death E⟶ E − 1 μE

Infection E⟶ E − 1, I⟶ I + 1 εE
Infectious death I⟶ I − 1 μE

Recovery I⟶ I − 1, R⟶ R + 1 βI

Recovered death R⟶ R − 1 μR
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2.3.1. Disease-Free Equilibrium Point. At the disease-free
equilibrium point, it is presumed that there is no infection or
disease in the system; that is, i � 0 and e � 0. Hence, from
equation (12), we obtain

λ − μs − αs(0) � 0,

αs(0) − (ε + μ)(0) � 0,

ε(0) − (β + μ)(0) � 0.

(13)

/ese equations at the DFE reduce to

λ − μs � 0,

λ � μs⟹
λ
μ

.

(14)

/erefore, at the DFE, (s, e, i) � (λ/μ), 0, 0􏼈 􏼉 � (1, 0, 0)

since the host population is constant (λ � μ).

2.3.2. Endemic Equilibrium Point. At the endemic equilib-
rium point, disease persists in the system at the steady state.
Here, we solve equation (12) to obtain s, e, and i. But for easy
identification, s, e, and i are represented by (s∗, e∗, i∗) as
population proportion of the compartments at the steady state.

From
εe − (μ + β)i � 0⟹ i �

εe
μ + β

,

αsi − (μ + ε)e � 0⟹ s �
(μ + ε)
αi

.

(15)

Putting i into s gives

s �
(μ + ε)e

α(εe/(μ + β))
�

(μ + ε)(μ + β)e

αεe
. (16)

/us,

s
∗

�
(μ + ε)(μ + β)

αε
. (17)

Also, from αsi − (μ + ε)e � 0, we have αsi � (μ + ε)e and
putting this into

λ − μs − αsi � 0, yields λ − μs − (μ + ε)e � 0,

λ − μs +(− μ − ε)e � 0,

(− μ − ε)e � − λ + μs.

(18)

Substituting s∗ into (18) gives

− (μ + ε)e � λ − μ
(μ + ε)(μ + β)

αε
􏼨 􏼩, (19)

where

e
∗

�
λαε − μ(μ + ε)(μ + β)

αε(μ + ε)
. (20)

Putting e∗ into i � (εe/(μ + β)) yields

i
∗

�
λαε − μ(μ + ε)

α(μ + ε)
. (21)

Hence, at the endemic equilibrium point,

s
∗
, e
∗
, i
∗

( 􏼁 �
(μ + ε)(μ + β)

αε
,
λαε − μ(μ + ε)(μ + β)

αε(μ + ε)
,􏼨

λαε − μ(μ + ε)
α(μ + ε)

􏼩.

(22)

2.3.3. Stability of the Disease-Free Equilibrium Point. /e
stability of disease-free equilibrium point was also deter-
mined based on /eorem 1.

Theorem 1. 8e disease-free equilibrium point of system (4)
is asymptotically stable if and only if R0 < 1 and unstable if
R0 > 1.

Proof. At the DFE, we obtained the Jacobian matrix about
the point (s, e, i) � (1, 0, 0). /is yields the following matrix:

J(s, e, i) �

− μ 0 − α

0 − (μ + ε) α

0 ε − (μ + β)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (23)

We let J(s, e, i)DFE � J(s, e, i) be the Jacobian matrix at
the disease-free equilibrium and solve the characteristics
equation of J(s, e, i)DFE. /is can be achieved by solving the
relation: J(s, e, i)DFE − Iλ, where I is a unit matrix with order
3 by 3 since J(s, e, i)DFE has the same order:

Input: S0, E0, I0, R0, α, β, ε, λ, μ
Output: number of individuals within each compartment over time (52 time points) for different simulation runs, respectively

(1) Set initial values of the input variables at t � 0
(2) Compute rates of all the 7 possible events and the overall total rate Q for each simulation run based on initial values
(3) Determine next event using a uniform random generator and update the time to next event from exponential distribution at rate Q

for each simulation run
(4) Select the next event to occur with a probability proportional to each event’s rate in step 2
(5) Update the rates and repeat steps 2 to 4 till the final time t52, and stop the simulation runs, respectively

ALGORITHM 1: Pseudocode of Gillespie’s SSA for the stochastic SEIR model with demography.
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Iλ �

1 0 0

0 1 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

λ 0 0

0 λ 0

0 0 λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

J(s, e, i)DFE − Iλ �

− μ 0 − α

0 − (μ + ε) α

0 ε − (μ + β)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ −

λ 0 0

0 λ 0

0 0 λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

J(s, e, i)DFE − Iλ �

− (μ + λ) 0 − α

0 − (μ + ε) + λ􏼈 􏼉 α

0 ε − (μ + ε) + λ􏼈 􏼉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(24)

From this, we obtained the characteristics equation of
J(s, e, i)DFE − Iλ by finding the determinant and equating it
to zero:

J(s, e, i)DFE − Iλ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

− (μ + λ) 0 − α

0 − (μ + ε) + λ􏼈 􏼉 α

0 ε − (μ + ε) + λ􏼈 􏼉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

.

(25)

For |J(s, e, i)DFE − Iλ| � 0, we have

λ3 +(3μ + ε + β)λ2 + 3μ2 + 2μβ + 2εμ + εβ − αε􏼐 􏼑λ

+ μ2 + μ2β + μ2ε + μεβ − μαε􏼐 􏼑 � 0.
(26)

Letting Y andZ be the coefficients of λ2 and λ, respec-
tively, and A be the constant term of equation (26); then,

Y � 3μ + ε + β,

Z � 3μ2 + 2μβ + 2εμ + εβ − αε,

A � μ2 + μ2β + μ2ε + μεβ − μαε.

(27)

/e characteristic equation becomes λ3 + Yλ2 + Zλ + A.
From Routh–Hurwitz stability criterion analysis, if

Y> 0, Z> 0, and YZ − A> 0, then, all the roots of the
characteristic equation have a negative real part; hence, the
equilibrium point (DFEP) is stable.

2.3.4. Stability of the Endemic Equilibrium Point.
/eorem 2 was employed to determine the stability of the
endemic equilibrium point.

Theorem 2. 8e endemic equilibrium of system (4) is also
asymptotically stable when R0 > 1 and unstable when R0 < 1.

Proof. Obtaining the Jacobian matrix about the point
(s∗, e∗, i∗) gives

J s
∗
, e
∗
, i
∗

( 􏼁 �

− μ − αi∗ 0 − αs∗

αi∗ − (μ + ε) αs∗

0 ε − (μ + β)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (28)

Let J(s∗, e∗, i∗)EEP represent the Jacobian matrix at the
endemic equilibrium point. We solve the characteristic

equation of J(s∗, e∗, i∗)EEP by finding the determinant of
J(s∗, e∗, i∗)EEP − Iλ and setting the results to zero:

Iλ �

1 0 0

0 1 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

λ 0 0

0 λ 0

0 0 λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

J s
∗
, e
∗
, i
∗

( 􏼁EEP − Iλ �

− μ − αi∗ 0 − αs∗

αi∗ − (μ + ε) αs∗

0 ε − (μ + β)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ −

λ 0 0

0 λ 0

0 0 λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

J s
∗
, e
∗
, i
∗

( 􏼁EEP − Iλ �

− μ + αi∗ + λ( 􏼁 0 − αs∗

αi∗ − (μ + ε + λ) αs∗

0 ε − (μ + β + λ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(29)

Finding the characteristics equation of
J(s∗, e∗, i∗)EEP − Iλ, we find the determinant of
J(s∗, e∗, i∗)EEP − Iλ and set it to zero:

J s
∗
, e
∗
, i
∗

( 􏼁EEP − Iλ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

− μ + αi∗ + λ( 􏼁 0 − αs∗

αi∗ − (μ + ε + λ) αs∗

0 ε − (μ + β + λ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

.

(30)

Hence, |J(s∗, e∗, i∗)EEP − Iλ| � 0 results in

λ3 + 3μ + αi
∗

+ ε + β( 􏼁λ2 + 2μ2 + 2με + μβ + 2αi
∗μ + αi

∗ε􏼐

+ αi
∗β + εβ − εαs

∗
􏼁λ

+ μ2 + εμ2 + μεβ − μεαs
∗

+ αi
∗μ2 + αi

∗εμ + αi
∗εβ􏼐 􏼑 � 0.

(31)

We let Y and Z represent the coefficient of λ2 and λ,
respectively, and let A be the constant term in equation (31).
Hence,

Y � 3μ + αi
∗

+ ε + β,

Z � 2μ2 + 2με + μβ + 2αi
∗μ + αi

∗ε + αi
∗β + εβ − εαs

∗
,

A � μ2 + εμ2 + μεβ − μεαs
∗

+ αi
∗μ2 + αi

∗εμ + αi
∗εβ.

(32)

/e characteristics equation of J(s∗, e∗, i∗)EEP − Iλ then
becomes λ3 + Yλ2 + Zλ + A � 0. Using the Routh–Hurwitz
stability analysis and assuming Y> 0, Z> 0, and YZ − A> 0,
all the zeros of the characteristics equation have a negative
real part; hence, the equilibrium (endemic) point is
stable. □

2.4. Deterministic Formulation of the SEIR Model with the
Introduction of Treatment at the Exposed Stage. In the for-
mulation of the SEIR model with introduction of treatment
at the exposed (incubation) stage, the assumptions made
were as follows: there is a constant population size, the
exposed individuals are not infectious, the exposed indi-
viduals receive treatment, and finally, the exposed indi-
viduals may either recover the susceptible compartment,
may die, or become infectious.

6 Interdisciplinary Perspectives on Infectious Diseases



Similarly, λ� birth rate, µ� death rate, α� is the in-
fection rate, ε� the rate at which an individual moves
from the exposed class to the infection class, τ
� treatment rate introduced at the exposed stage, and
β� recovery rate of the infectious individual. /e SEIR
model with treatment at the latent stage is primarily
considered in this study to obtain an estimator for R0
based on its systems of ODEs. Consequently, the effects
of treatment introduction in the exposed compartment
on the R0 are only examined.

2.4.1. Mathematical Formulation of the SEIR Model with the
Introduction of Treatment at the Exposed Stage. /is
model as the standard SEIR model has the host population
divided into four compartments which are Susceptible (S),
Exposed (E), Infected (I), and Recovery (R). Figure 2,
together with assumptions made, shows the following sys-
tem of ODEs representing the model by the following
equation:

dS

dt
� λN − μS − αS

1
N

+ τE,

dE

dt
� αS

1
N

− (τ + ε + μ)E,

dI

dt
� εE − (β + μ)I,

dR

dt
� βI − μR.

(33)

Rescaling equation (33), we represent s � (S/N),

e � (E/N), i � (I/N), and r � (R/N), where s, e, i, and r

represent the susceptible, exposed, infectious, and recovery/
removal population proportions, respectively [21].
Substituting the proportions into equation (33) results in

ds

dt
� λ − μs − αsi + τe,

de

dt
� αsi − (τ + ε + μ)e,

di

dt
� εe − (β + μ)i,

dr

dt
� βi − μr,

(34)

where s + e + i + r � 1. Hence, making “r” the subject and
setting r � 1 − s − e − i, it is enough to study the system in
(35) instead of equation (34):

ds

dt
� λ − μs − αsi + τe,

de

dt
� αsi − (τ + ε + μ)e,

di

dt
� εe − (β + μ)i.

(35)

2.4.2. Computation of the Basic Reproductive Number of the
SEIR Model with Treatment Introduction at the Exposed
Stage. R0 � (rate of secondary infections)× (duration of
infection); hence, linearizing equation (35) leads to the next-
generation matrix:

H − K �
0 α

0 0
􏼢 􏼣 −

(τ + μ + ε) 0

− ε (μ + β)
􏼢 􏼣. (36)

where H�matrix of infection rates and K�matrix of
transition rates:

H �
0 α

0 0
􏼢 􏼣,

K �
(τ + μ + ε) 0

− ε (μ + β)
􏼢 􏼣.

(37)

But, |K| � (τ + μ + ε)(μ + β) + 0⟹ |K| � (τ + μ + ε)
(μ + β):

K
− 1

�
1

(τ + μ + ε)(μ + β)

(μ + β) 0

ε (τ + μ + ε)
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (38)

Hence, K− 1 �
1/(τ + μ + ε) 0

ε/((τ + μ + ε)(μ + β)) 1/(μ + β)
􏼢 􏼣.

Multiplying the inverse of “K” by the matrix “H” results
in

HK
− 1

�
0 α

0 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1
(τ + μ + ε)

0

ε
(τ + μ + ε)(μ + β)

1
(μ + β)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

αε
(τ + μ + ε)(μ + β)

α
(μ + β)

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(39)

/us,

R0 �
αε

(β + μ)(τ + μ + ε)
. (40)

S E I R

μS μE μI

τE

εE

λN

αS (I/N) βI

μR

Figure 2: Illustration of the SEIR model with the introduction of
treatment at the exposed stage.

Interdisciplinary Perspectives on Infectious Diseases 7



2.5. Branching Process Approximation of the Epidemic
Process. In the early stage of the epidemics, the infection
rate is relatively small. /e exposed class at any time (E(t)

is assigned a rate (αI(t)S(t)/N(t)) and is being reduced by
the rate (ε + μ)E(t). /e infectious class population, on
the other hand, is increased by the rate εE(t) and reduced
by (β + μ)I(t). At the initial stage, the host population
N(t) is almost the same as the susceptible population S(t);
hence, the ratio of the two is approximately one
(S(t)/N(t) ≃ 1). /is implies that the exposed class tends
to be increased at the rate αI(t) instead of
(αI(t)S(t)/N(t)) [26].

We let Tn(t) � En(t) + In(t) denote the number of in-
fected individuals at time t. From this relation, Tn(t) is
approximated by the branching process according to
/eorem 3.

Theorem 3. If Tn(t) is an epidemic process and T∞(t) is the
branching process, then Tn(t) converges weakly to T∞(t),
that is, Tn⟹T∞, n⟶∞ on any finite interval [0, t1].

/e approximation from /eorem 3 has two stages,
namely, the childhood (exposed) E∞ and the adulthood
(infectious)I∞ [27]. At the initial stage of the process where
t � 0, (E∞(0), I∞(0)) � (1, 0); E∞(t) is increased by
αI∞(t) and reduced by rate (μ + ε)E∞(t). I∞(t) is increased
by εE∞(t) (end of childhood) and reduced by (μ + β)I∞(t)

(end of adulthood). However, when state I(t) reaches the
absorbing state, the disease (TB) transmission stops.

2.5.1. Computation of the Malthusian Parameter. We derive
the threshold ρ (Malthusian parameter) from the branching
process T∞.

Malthusian parameter is the intrinsic exponential
growth rate of the epidemic branching process (T∞). /e
spread of the epidemic stops when theMalthusian parameter
is less than zero (ρ< 0). We denote it by ρ; hence,

􏽚
∞

0
e

− ρt
g(t)dt � 1, (41)

where g(t) represents the average rate at which an individual
gives birth (infectious contact) at time t [28].

Theorem 4. 8e Malthusian parameter of the epidemic is
given as

ρ � − μ +
ε + β
2

􏼨 􏼩 +

�����������

(ε − β)2

4
+ αε

􏽳

. (42)

Proof. At the end of the exposed period, there is no contact,
but α contact rate at the infectious period gives

g(t) � αe
− μt

􏽚
t

0
εe− εs

e
− β(t− s)ds⟹g(t) � αεe− (μ+β)t

􏽚
t

0
e

− (ε− β)sds.

(43)

Integrating g(t) with respect to s and applying the limit
gives

g(t) �

αε
ε − β

e
− (μ+β)t

− e
− (ε+μ)t

􏼐 􏼑, if ε≠ β,

αεte− (μ+β), if ε � β.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(44)

Substituting g(t) obtained above into (12) gives

− μ +
ε + β
2

􏼨 􏼩 +

�����������

(ε − β)2

4
+ αε

􏽳

, if ε≠ β,

��
αε

√
− (μ + β), if ε � β.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(45)

By considering a situation where ε≠ β, we have

ρ � − μ +
ε + β
2

􏼨 􏼩 +

�����������

(ε − β)2

4
+ αε

􏽳

. (46)

2.5.2. Probability of Disease (Tuberculosis) Extinction.
/e probability of extinction is derived using the branching
process approximation of the epidemic process. Both the
probabilities of extinction of the epidemic when started with
one latent Π(1, 0) individual and when started with one
infectious Π(0, 1) individual are derived as two points. Also,
the probability of extinction of the epidemic when it starts
with “n” latent and “z” infectious individuals using the two
points Π(1, 0) and Π(0, 1) were deduced. To derive these
two points, we assumed geometric offspring probability
generating function as proposed by Lloyd and others [29].
We let “Π” be the smallest positive solution of the equation
q � f(q) assuming one incubated individual, with f

denoting the probability generating function of X. /en,

f(q) � 􏽘
∞

r�0
P(X � r)q

r

�
μ

μ + ε
ε

μ + ε
β + μ

α + β + μ
+ 􏽘
∞

r�1

ε
μ + ε

β + μ
α + β + μ

r

α + β + μ
􏼠 􏼡

r

q
r

� A +
(1 − A)B

1 − (1 − B)μ
, whereA �

μ
μ + ε

andB �
β + μ

α + β + μ
.

(47)

However, “Π” is the smallest solution in the range [0, 1]

of the following equation:

q � A +
(1 − A)B

1 − (1 − B)μ
. (48)

Equation (48) has two solutions: qo � 1 and
q1 � A + (B/1 − B):

q1 �
μ

μ + ε
ε

μ + ε
β + μ
α

�
μ

μ + ε
ε

μ + ε
1

R0
. (49)

/is yields the following two points:
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Π(1, 0) �

1, if R0 ≤ 1,

μ
μ + ε

+
ε

μ + ε
1

R0
, if R0 > 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Π(0, 1) �

1, if R0 ≤ 1,

1
R0

, if R0 > 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(50)

/erefore, the probability of disease extinction in general
is

Π(n, z) � [Π(1, 0)]
n
[Π(0, 1)]

z
, (51)

since all the n + z independent epidemics must die out as
suggested by Lahodny and others [30]. /is results in

Π(n, z) �

1, if R0 ≤ 1,

μ
μ + ε

+
ε

μ + ε
1

R0
􏼠 􏼡

n 1
R0

􏼠 􏼡

z

, if R0 > 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(52)

3. Results

3.1. SEIR Model Parameter Estimation. /e parameters of
the SEIR model with demography as used in this study
include birth (λ) and death (μ) rates, the infection rate (α),
exposed rate (ε), and finally, the recovery rate (β). /ese
parameters were estimated from different sources. Some
were computed from the data from the regional health
directorate and others from the literature. Birth (λ) and
death (μ) rates and the recovery rate (β) were estimated
from the existing literature on TB infection. /e natural
death rate in Ghana is estimated to be 7 deaths per 1000
individuals [31]. But due to the assumption of a closed
population system, the natural birth and death rates are
assumed to be equal; hence, λ � μ � 0.007. Also, the average
period of infection is simply the reciprocal of the recovery
rate as defined in [32]. TB has an average infectious period of
two weeks [33, 34]. /us,

β �
1

infectious period
�
1
2

� 0.5 perweek. (53)

Moreover, TB is said to have an average exposed period
of six weeks. Hence, the exposed rate is estimated as

ε �
1

average exposed period
�
1
6

� 0.1667. (54)

/e infection rate (α) was estimated from the actual TB
data obtained from the regional health directorate as pro-
posed in [34]:

α �
effective contact
total contact

. (55)

Table 2 shows the total contact and effective contact for
each of the twelve high-burden districts with their corre-
sponding estimates of the infection rates. Nonetheless, the

recovery rate, natural birth, and death rate estimates were
assumed equal across the districts.

3.2. Estimate of the Basic Reproductive Number, Herd Im-
munity 8reshold, and the Malthusian Parameter. Based on
the empirical data, it was found that the estimates of the
basic reproductive number, herd immunity threshold, and
Malthusian parameter across the entire region are
R0 � 0.518< 1, qc � − 0.9305< 0, and (ρ) � − 0.074< 0, re-
spectively (Table 3). /us, the probability of TB extinction
(Π) in the entire region based on the branching process
estimation is 1 since overall R0 < 1 (from equation (48)). /e
estimates of these epidemic thresholds imply that TB in-
fection is expected to yield extinction in the entire Ashanti
Region of Ghana, and thus, the disease-free equilibrium
point will be stable. It was revealed that Amansie West and
Obuasi Municipal were the only districts among the high-
burden districts with R0 > 1, qc > 0, and ρ> 0 (see Table 2).
Hence, TB infection is expected to persist in these districts
resulting in the endemic equilibrium point. From the herd
immunity threshold estimates of these two districts with a
risk of endemic TB, approximately 14% of Amansie West
population and 12% of Obuasi Municipal need to be im-
munized to control the spread of the disease, respectively.
However, estimates of the epidemic thresholds for the
remaining ten districts suggest that TB infection will not
persist over time.

3.3. Stability Analysis of the Equilibrium Points across the
High-Burden District and the Entire Region. /e stability
analysis of the equilibrium points of the SEIR deterministic
model with demographic characteristics for each of the 12
high-burden districts in the Ashanti Region was investigated
based on /eorem 1, /eorem 2, and the Routh–Hurwitz
stability criterion./e basic reproductive number for each of
the districts indicated that some of the districts are char-
acterized by the disease-free equilibrium point and others,
the endemic equilibrium point. Also, from the
Routh–Hurwitz stability criterion for the disease-free
equilibrium point, the characteristics equation was derived
as λ3 + Yλ2 + Zλ + A. /e values of coefficients Y, Z, A, and
YZ − A of the characteristics equation for the disease-free
districts are, respectively, summarized in Table 4. On the
other hand, Table 5 presents the values of the coefficients of
the underlying characteristics equation for the two districts
that resulted in endemic cases.

From Table 4, it was revealed that all the conditions for
the stability of the disease-free equilibrium point hold
according to the Routh–Hurwitz stability criterion: all Y> 0,
all Z> 0, and all YZ − A> 0; hence, the equilibrium point of
the 10 districts characterized by disease-free cases is stable.
Similar to the disease-free cases, the endemic cases have the
equilibrium point stable since (from Table 5) the
Routh–Hurwitz stability criterion conditions hold for the
other 2 districts. For the entire region under study, the
disease-free equilibrium point was stable according to the
basic reproductive number and /eorem 1. By the Routh-
Hurwitz stability analysis, the characteristics equation
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deduced for the disease-free equilibrium had the following
coefficients: Y � 0.6877, Z � 3.04716, A � 0.0003461, and
YZ − A � 2.095186. Also, Y> 0, Z> 0, and YZ − A> 0 in-
dicate that all the zeros of the characteristics equation will
have a negative real part; and since all these conditions hold,
the disease-free equilibrium point of the entire region is thus
stable.

3.4. Sensitivity Analysis of the SEIR Model. Both determin-
istic and stochastic SEIR models with demography were
compared in terms of TB infection dynamics (Figure 3).
One-way sensitivity analyses of the two SEIR models were
conducted by varying the initial condition of the exposed
compartment so as to ascertain its effect on the overall
infection dynamics of TB in the Ashanti Region. /us, only
the initial condition of the exposed compartment was varied
over time, while keeping all other initial conditions and
parameters constant. /e sensitivity analysis was performed
using the initial conditions of the other compartments other
than the exposed compartment of the entire region as a case
study such that susceptibles� 9663, exposed� unknown,
infectious� 2643, and recovery� 10. /erefore, parameter
estimates were set as follows: birth and natural death rates:
λ � μ � 0.007, whereas exposed rate (ε) � 0.1667, recovery
rate (β) � 0.5, and infection rate (α) � 0.2735.

It was revealed at the end of the infection period (52 weeks)
that the stochastic model averagely overestimated the pro-
portion of susceptible individuals relative to the deterministic
SEIR model but underestimated the proportion of exposed,
infectious, and recovered individuals at the varying initial size
of the exposed compartment (Table 6). From the sensitivity
analysis (summarized by Table 6 and Figure 3), it can be
observed that increasing the size of the initial condition of the
exposed compartment significantly decreases the proportion of
susceptible individuals (with proportion of infected individuals
relatively constant) but increases the proportion of recovered

Table 2: Estimates of the infection rate among the high-burden districts.

Number District Total contact Effective contact Infection rate (α)

1 Adansi South 444 54 0.122
2 Asanti Akim North Municipal 2150 948 0.441
3 Amansie West 332 234 0.705
4 Mampong Municipal 790 38 0.048
5 Atwima Nwabiagye 440 115 0.261
6 Bekwai Municipal 455 139 0.306
7 Bosomtwe 570 57 0.100
8 Ejusu–Juaben Municipal 774 63 0.081
9 Obuasi Municipal 183 112 0.612
10 Offinso Municipal 21 8 0.381
11 Kumasi Metropolitan 3251 864 0.266
12 Sekyere South 243 10 0.041

Table 3: Estimates of the basic reproductive number, Malthusian parameter, and herd immunity threshold across districts.

Number District Basic reproductive number (R0) Malthusian parameter (ρ) Herd immunity (qc)

1 Adansi South 0.231 − 0.123 − 3.329
2 Asanti Akim North Municipal 0.835 − 0.022 − 0.198
3 Amansie West 1.158 0.041 0.136
4 Mampong Municipal 0.091 − 0.15 − 9.989
5 Atwima Nwabiagye 0.495 − 0.073 − 1.020
6 Bekwai Municipal 0.578 − 0.060 − 0.730
7 Bosomtwe 0.189 − 0.130 − 4.291
8 Ejusu-Juaben Municipal 0.154 − 0.137 − 5.494
9 Obuasi Municipal 1.334 0.020 0.118
10 Offinso Municipal 0.721 − 0.038 − 0.387
11 Kumasi Metropolitan 0.503 − 0.072 − 0.988
12 Sekyere South 0.078 − 0.154 − 11.825

Table 4: Estimates of the coefficient of the characteristics equation
for disease-free districts.

District Y Z A YZ − A
Adansi South 0.6877 3.0725 0.00052 2.11291
Asanti Akim North Municipal 0.6877 3.0192 0.00015 2.07615
Mampong Municipal 0.6877 3.0847 0.00061 2.12074
Atwima Nwabiagye 0.6877 3.0492 0.00036 2.09657
Bekwai Municipal 0.6877 3.0418 0.00031 2.09154
Bosomtwe 0.6877 3.0761 0.00055 2.11489
Ejusu–Juaben Municipal 0.6877 3.0792 0.00057 2.11699
Offinso Municipal 0.6877 3.0292 0.00022 2.08295
Kumasi Metropolitan 0.6877 0.0484 0.00055 2.09580
Sekyere South 0.6877 3.0859 0.00062 2.12156
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individuals at the end of the study period for both deterministic
and stochastic SEIR models. /e stochastic model generally
overestimated the proportion of susceptible individuals over

time as compared to the deterministic model but under-
estimated the proportion of individuals in the exposed, in-
fectious, and recovered compartments.
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Figure 3: TB infection dynamics of deterministic and stochastic SEIR models with demography over time at varying initial exposed size
(λ � μ � 0.007; α � 0.2735; β � 0.5; ε � 0.1667). (a) Case 1: S� 9663, E� 0, I� 2643, R� 10. (b) Case 2: S� 8663, E� 1000, I� 2643, R� 10.
(c) Case 3: S� 7663, E� 2000, I� 2643, R� 10 (d) Case 4: S� 6663, E� 3000, I� 2643, R� 10.

Table 5: Estimates of the coefficient of the characteristics equation for endemic districts.

District Y Z A YZ − A
Amansie West 0.6877 5.52 × 10− 3 − 0.07996 0.08375
Obuasi Municipal 0.6877 6.356 × 10− 3 − 0.07870 0.08310
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3.5. Effect of the Model Parameters of SEIR on the Basic Re-
productive Number. /e effect of the model parameters:
infection rate (α), exposed rate (ε), and recovery rate (β) on
the basic reproductive number (R0) were, respectively, in-
vestigated based on the deterministic SEIR model with
demography (Figure 4). It was revealed that the SEIR model
parameters have a varying effect on the basic reproductive
number (R0). Increasing the exposed rate (ε) and the in-
fection rate (α), respectively, increases R0 linearly and
curvilinearly, which in turn increases the spread of TB.
Nevertheless, the value of R0 decreases asymptotically to-
wards zero (0) with an increase in the exposed rate.

3.6. Effect of Treatment Introduction at the Latent Period.
/e effect of initiating treatment at the exposed stage of
tuberculosis infection on R0 was also explored (Figure 5). It
was revealed that the initiation of treatment at the latent
stage has great influence on the basic reproductive number.
Increasing the rate of treatment at the exposed stage
gradually decreased the reproduction number (R0), hence
reducing the spread of TB by infected individuals as
established by /eorem 1.

3.7. Numerical Simulation and Validation of Empirical Epi-
demic 8resholds. Numerical simulation was carried out to
validate the empirical results of the various thresholds (basic
reproductive number, herd immunity threshold, and Mal-
thusian parameter) estimated in the study for the entire
region. To improve on the various thresholds for the entire
region, several probability distributions were fitted to the
empirical infection rates across all districts (0.122, 0.441,
0.705, 0.048, 0.261, 0.306, 0.100, 0.081, 0.612, 0.381, 0.266,
and 0.041) via maximum likelihood estimation. Beta-dis-
tribution best fitted the infection rates as compared to other
continuous probability distributions based on their re-
spective Akaike information criterion (AIC) values. /e
infection rates specifically followed beta(1.223, 3.128)

probability distribution. Figure 6 presents distribution plots
of infection rates based on the fitted beta-distribution. It also
suggests mathematically that the TB infection rate as a
random variable appears to fit well with the beta-distribution
for the sake of other inferential statistics such as Bayesian
estimation.

To validate the empirical estimates of the overall in-
fection rate and epidemic thresholds of the entire region,
three different sampling schemes: bootstrap (random
sampling with replacement), jackknife (leave-one-out
sampling), and Latin Hypercube (stratified sampling scheme
to improve on the coverage of the k-dimensional input
space) were used to obtain 10000 simulated samples from
beta(1.223, 3.128) distribution. Mean estimates of the
overall infection rate, basic reproductive number, herd
immunity threshold, and Malthusian parameter based on
these sampling schemes were computed for comparison
(Table 7). /e bias of estimators based on the three sampling
schemes was computed in order to determine the method
that yielded better estimates of the true epidemic quantities
for the entire region. It was revealed that the level of pre-
cision among the three sampling schemes was relatively the
same, but the Latin Hypercube sampling scheme had a
smaller bias in the estimates of the overall infection rate,
basic reproductive number, herd immunity threshold, and
Malthusian parameter of the entire region than estimates
from bootstrap and jackknife sampling comparatively./ese
estimates of the epidemic thresholds (R0 � 0.533< 1, ρ �

− 0.073< 0, and qc � − 0.877< 0) suggest that the entire re-
gion is expected to have herd immunity against TB infection.
Hence, tuberculosis infection cannot persist in the region in
general, even though 2 of the districts are prone to endemic
TB.

4. Discussion

/e transmission of tuberculosis was previously investigated
in only one high-burden district called Amansie West in the
Ashanti Region of Ghana using a deterministic SEIR model
[19]. However, the Ghana Health Service has categorized
twelve districts as high-burden districts among a total of
twenty-seven districts in the region, of which AmansieWest is
part. In this paper, we primarily expanded the previous work
by Dontwi et al. [19] including their fitted epidemic model, by
investigating TB infection among all the high burden districts
in the region using the SEIR model with demography within
deterministic and stochastic settings. /e stochastic model
overestimated the proportion of individuals that remained
susceptible, exposed, and infectious and recovered from TB
relative to its deterministic model over time. /e disparity in
the proportion at each compartment or disease stage may be

Table 6: Population proportions of both deterministic and stochastic SEIR models at the end of the study period (52 weeks).

Type of model
Population proportions at the end of the study time

Exposed size Susceptible (S) Exposed (E) Infectious (I) Recovery (R)

Deterministic

0 0.751 7.12 × 10− 4 2.86 × 10− 4 0.248
1000 0.681 8.28 × 10− 4 3.38 × 10− 4 0.318
2000 0.619 8.23 × 10− 4 3.41 × 10− 4 0.380
3000 0.563 7.63 × 10− 4 3.2 × 10− 4 0.436

Stochastic

0 0.850 0.000 0.000 0.150
1000 0.794 9.71 × 10− 6 4.55 × 10− 6 0.206
2000 0.737 1.92 × 10− 5 9.52 × 10− 6 0.263
3000 0.681 2.96 × 10− 5 1.44 × 10− 5 0.319
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attributable to either the large size of the infectious individuals
or the effect of the other sources of variations such as de-
mographic variability [9]. It was discovered from our models
that 2 of the 12 districts had a greater chance of endemic TB
based on empirical estimates of the basic reproductive
number, herd immunity threshold, and intrinsic growth rate.
/e districts with endemic TB were Obuasi Municipal and
Amansie West. /is finding aligned with that of Dontwi et al.,
where they revealed a potential TB outbreak within the
AmansieWest district. Major reasons that increase the chance
of TB disease within these two districts are mainly due to the
general practices of the people through exploitation of re-
sources of the surrounding lands such as farming as well as
illegalmining and high congestion [19, 35, 36], resulting in lots
of social contacts, immigration, and records of high number of
new cases annually by TB programmes in these districts.

Nevertheless, estimates of the epidemic thresholds (R0 �

0.53< 1, ρ � − 0.073< 0, and qc � − 0.87< 0) from boot-
strap, jackknife, and Latin Hypercube sampling schemes for
the entire region suggested that there may not be

tuberculosis outbreak in the Ashanti Region since the
probability of TB extinction was unity within the region as a
whole; hence, the disease-free equilibrium point will be
stable for the entire Ashanti Region. A similar result was
found by Twumasi et al. where they discovered with a certain
probability that TB-infected individuals can recover in the
region via a discrete-time Markov model [37]. Nonetheless,
approximately 12% and 14% of the study population in
Obuasi Municipal and Amansie West district, respectively,
need TB immunization to control the spread of the disease.
Other studies also discovered that males in the region are
more likely to contract TB due to social responsibilities of
males, which require them to have more social contacts,
thereby increasing the risk of TB exposure [38]. /is im-
plies that the current study can be extended to capture such
demographic variations using at least multicohort epi-
demic models for different subgroups in the same pop-
ulation under study.

/e sensitive analyses of both the deterministic and
stochastic models were carried out to explore the effect of TB
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Figure 4: Effect of deterministic SEIR model parameters on the basic reproductive number.
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Figure 5: Effect of treatment introduced at the latent stage on the basic reproductive number.
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exposure on the overall infection dynamics. It was discov-
ered from both models that increase in the TB exposure only
decreased the proportion of susceptible individuals and
increased the proportion of recovered individuals but had no
significant effect on the proportion of infectious individuals
over time, as also revealed from other studies [19]. /us, not
all exposed individuals will become infectious and even
infectious people can recover from the disease with certainty
at the acute stage. /is also confirms that the number of
exposed individuals can have a significant effect on the
dynamics of tuberculosis in the Ashanti Region; hence,
latent TB tests for exposure cannot be ignored as practically
observed within most regions in the country due to under-
reporting and underdiagnosis of TB cases in Ghana.
Additionally, a marginal increase of the infection rate
significantly caused a linear increase in the basic repro-
ductive number (R0 > 1) in the region, while an increase in
the exposed rate increased R0, but asymptotically below
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Figure 6: Distribution plots of fitted beta(1.223, 3.128) distribution to infection rates across the high-burden districts. (a) Empirical and
theoretical densities. (b) Q-Q plot. (c) Empirical and theoretical CDFs. (d) P-P plot.

Table 7: Estimation of overall infection rate and other epidemic
thresholds of the entire region using different sampling sampling
schemes.

Sampling scheme Parameters Estimates Bias

Bootstrap

α 0.28278 0.00928
R0 0.53529 0.01729
ρ − 0.07298 0.00102
qc − 0.86825 0.06225

Jackknife

α 0.28279 0.00929
R0 0.53531 0.01731
ρ − 0.07297 0.00103
qc − 0.86807 0.06243

Latin hypercube

α 0.28148 0.00798
R0 0.53282 0.01482
ρ − 0.07331 0.00069
qc − 0.87682 0.05368

∗Empirical estimates: α � 0.2735, R0 � 0.518, ρ � − 0.074, and
qc � − 0.9305.
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unity. However, an increase in the recovery rate effectively
declined the basic reproductive number asymptotically to-
wards zero. It was also revealed that the introduction of
treatment at the latent stage of TB infection steeply decreased
R0 towards 0. Chowell et al. and Mbogo et al. argued that
increasing the infection rate implies increasing the number of
infectious individuals, while increasing the exposed rate
simply suggests decreasing the exposed or incubation period.
Nonetheless, increasing the recovery rate means a decline in
the infectious period [39, 40].

5. Conclusion and Recommendation

/e SEIR model showed success in modelling infection dy-
namics of tuberculosis among high-burden districts in the
Ashanti region of Ghana. Estimates of relevant epidemic
thresholds (basic reproductive number, herd immunity
threshold, and Malthusian parameter) and the probability of
TB extinction within the entire region suggest that TB in-
fection cannot be epidemic, and thus, it is certain to become
extinct completely from the region. /is implies further that
with early diagnosis and treatment of TB, the prevalence of
the disease can effectively be reduced over time within the
region. However, approximately 12% and 14% of the study
population in Obuasi Municipal and Amansie West districts,
respectively, require TB immunization to control the spread
of the disease since endemic TB is likely to occur in these two
districts of twelve districts under study. Also, it was revealed
that the number of exposed individuals, if left attended, can
tremendously affect the number of completely susceptible
individuals over time and the entire infection dynamics of TB.
We recommend that the Ghana Health Service should find a
good mechanism such as the Tuberculin Skin Test [41] to
detect individuals who are exposed to TB at the early stages of
infection due to under-reporting and underdiagnosis of TB
cases in the region as well as its long-term effect when left
undetected among exposed individuals. Finally, public health
education and other symposiums must be organized on the
prevalence of tuberculosis in the Ashanti Region, especially
Amansie West district and Obuasi Municipal, as these two
districts have a greater risk of encountering endemic TB. /is
will help to create a high level of awareness about the deadly
nature of tuberculosis and the need to seek medical attention
upon experiencing the signs and symptoms of the disease.

Data Availability

/e secondary data (in Microsoft Excel Worksheet) used for
the study will be made available upon request from the
corresponding author.
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