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Abstract 

Growth in urban population, urbanisation, and economic development has increased the demand for water, especially in 
water-scarce regions. Therefore, sustainable approaches to water management are needed to cope with the effects of the 
urbanisation on the water environment. This study aimed to design novel configurations of tidal-flow vertical subsurface flow 
constructed wetlands (VFCWs) for treating urban stormwater. A series of laboratory experiments were conducted with 
semi-synthetic influent stormwater to examine the effects of the design and operation variables on the performance of the 
VFCWs and to identify optimal design and operational strategies, as well as maintenance requirements. The results show that the 
VFCWs can significantly reduce pollutants in urban stormwater, and that pollutant removal was related to specific VFCW 
designs. Models based on the artificial neural network (ANN) method were built using inputs derived from data exploratory 
techniques, such as analysis of variance (ANOVA) and principal component analysis (PCA). It was found that PCA reduced the 
dimensionality of input variables obtained from different experimental design conditions. The results show a satisfactory 
generalisation for predicting nitrogen and phosphorus removal with fewer variable inputs, indicating that monitoring costs and 
time can be reduced. 
 
Keywords: Constructed wetlands; Urban stormwater; Pollutant removal; Artificial neural networks (ANNs); Principal component 
analysis (PCA) 

 

1. Introduction 

According to the United Nations (2018), over 55% of the world’s population lives in urban areas, a proportion that 

is expected to increase to about 68% by 2050. With increasing urbanisation, the demand for water increases, especially in 

water-scarce regions. Therefore, to increase water availability, interventions such as a reduction in water consumption, 

reclamation of water sources, and sustainable treatment of wastewater (recycling and reuse) has been proposed. 

Constructed wetlands (CWs) have been increasingly used in wastewater treatment, partly because the construction and 

maintenance costs of CWs are relatively low. Additionally, CWs can hold and treat variable volumes of wastewater, thus 

mitigating extreme weather conditions (floods and droughts) associated with climate change. Moreover, the process of 

pollutant removal in CWs occurs through a combination of biological, chemical, and physical processes (Wynn and 

Liehr, 2001; Lee et al., 2002; Langergraber et al., 2008), which enables CWs to treat various types of wastewater. 

However, understanding such multifaceted processes is complex and requires advanced analytical tools such as 

computational models (Langergraber, 2007). Previous modelling studies on the pollutant removal in CWs were mainly 

based on hydraulics and nutrient biogeochemistry (Kadlec, 2000; Wynn and Liehr, 2001; Langergraber and Simunek, 

2005; Langergraber et al., 2008; Akratos et al., 2009). Likewise, the ecological behaviour in polluted water bodies was 

explored by integrating hydrodynamic models and neural networks to collate physical, chemical, and biological 

interactions that underpinned the different processes (Lin et al., 2008). 

More recently, numerical models, such as AQUASIM, HYDRUS, and STELLA, have been used to describe 

contaminant adsorption phenomena in CWs treating municipal wastewater (Mburu et al., 2012, 2014). Those studies 

show that obtaining boundary conditions to represent wastewater treatment in CWs as well as to describe treatment 

processes can be challenging. Additionally, due to the different modelling and wetland design criteria, it is difficult to 

compare the performance of different CWs. Specifically, HYDRUS is unable to simulate CWs operated through a 



 

tidal-flow strategy due to the inflexibility of the model to varying boundary conditions in a single modelling scenario. 

For instance, while Lucas et al. (2015) demonstrated that HYDRUS could predict the biologically influenced removal 

processes of ammonia nitrogen ( 4NH -N+ ), it was unable to model the removal of orthophosphate ( 3
4PO -P− ) using the 

same technique. 

However, methods such as the artificial neural network (ANN) model have emerged as powerful data mining tools. 

ANNs can identify complex patterns from various data formats, which has led to the increase of ANN implementations 

in multiple fields, including tumour and cancer detection in the healthcare sector, audio and image recognition in digital 

accessories such as smartphones, and machine language translation on internet search engines. ANNs perform best when 

dealing with nonlinear univariate and multivariate data. In hydro-environmental studies, ANNs have been used to predict 

the biochemical oxygen demand (BOD) and suspended solids (SS) concentrations in the effluent of a wastewater 

treatment plant (Hamed et al., 2004); BOD and chemical oxygen demand (COD) removal in horizontal subsurface flow 

constructed wetlands (HFCWs) (Akratos et al., 2008); stormwater quality (May and Sivakumar, 2009; May et al., 2009); 

and the removal of 3
4PO -P− , total nitrogen (TN), and total phosphorus (TP) in HFCWs (Akratos et al., 2009). For the 

design of CWs, the mechanistic models can be limited by several factors, including the operational strategy deployed to 

the wetland treatment system and the difficulties in measuring the definitive boundary conditions. There is a need to 

develop simple yet effective methods for evaluating the overall performance of a pollution control strategy when 

designing CWs. Specifically, the black-box nature of wastewater treatment in CWs makes the ANN approach an 

appropriate modelling technique, but its performance depends on the selection of input variables and the network 

architecture accounting for the size, nature, and type of the input data. To make the ANN-based simulations more 

effective, the multiple variables in large datasets need to be grouped to identify the relationships among the variables 

using multivariate methods such as principal component analysis (PCA) (Herngren et al., 2006; Gunawardana et al., 

2014), which describes the complete data matrix with a reduced number of principal components by transforming the 

original variables into a new orthogonal set of principal components for defining the relationships among the variables. 

The aim of this study was to develop an ANN model to optimise the novel configurations of vertical subsurface flow 

constructed wetlands (VFCWs) for treatment of stormwater and to predict nitrogen and phosphorus removal using 

influent-effluent data obtained from laboratory experiments. 

2. Methods  

In order to develop a model based on ANN, a series of laboratory experiments were carried out over a continuous 

period of two years (2014–2016) using eight pilot-scale VFCWs. VFCWs are wastewater treatment systems designed as 

pre-treatment units in horizontal flow beds (Seidel, 1965). VFCWs are common in Austria, Denmark, France, and the 

UK, and are deployed in treating stormwater. They are preferred to HFCWs because VFCWs have minimal land 

requirements. VFCWs usually contain macrophytes rooted in the bed media (gravel or loamy sand) compacted to a depth 

between 0.6 m and 1.0 m (Fig. 1). VFCWs are mostly intermittently dosed (Langergraber et al., 2008) and can be 

operated either as planted or unplanted, with some studies reporting that planted VFCWs had enhanced pollutant 

removal rates (Taylor et al., 2011). Plants are reported to provide favourable environments that facilitate the growth of 

microbial populations and the release of oxygen into the treatment system (Wang et al., 2012, Wu et al., 2015), thus 

enabling the biological removal of nitrogen and phosphorus (Zhu et al., 2012). Driven by gravity, wastewater in VFCWs 

flows down gradually through the media bed, thus enabling oxygen to transfer from the atmosphere into the media. 

Oxygen facilitates the nitrification of nitrogen products (Cooper et al., 1996), leading to better removal of organics, SS, 

and 4NH -N+ . However, VFCWs are not suitable for denitrification as 4NH -N+  is usually converted into nitrate 

nitrogen ( 3NO -N− ). 

2.1. Experimental setup 

Eight pilot-scale VFCW units were set up on the roof of South Building at the School of Engineering of Cardiff 

University. Each VFCW unit used in the experiments was moulded from a structured-wall high-density polyethene 

(HDPE) pipe with a height of 1 000 mm and a diameter of 400 mm. Each unit was sealed off at the bottom using an 

HDPE plastic fitted with a drainage tap at the centre (Fig. 1). Different biofilter media were used to configure the VFCW 

in various design units. All the units were planted with Typha latifolia.  



 

 

Fig. 1. Experimental setup of VFCW units 

In this paper the results from six VFCW units out of eight are presented because the data collected from the other 

two VFCW units that were intermittently operated are not sufficient for the ANN modelling technique. Units 1, 4, 5, and 

7 were filled with loamy sand, while units 2 and 8 contained fine gravel and blast furnace slag media, respectively (Table 

1). Semi-synthetic stormwater was used to conduct the experiments partly because of the complex logistics of procuring 

large volumes of natural stormwater, and the absence of SS, colloidal matter, and artefacts in synthetic stormwater 

(Akratos and Tsihrintzis, 2007).  
Table 1 

Media configurations in VFCW units. 

Unit Primary media Transition media Drainage media 

1, 4, 5, 7 Loamy sand Sharp sand Fine gravel 

2 Fine gravel Medium gravel Coarse gravel 

8 Blast furnace slag Sharp sand Fine gravel 

Semi-synthetic stormwater was prepared by mixing natural sediment with tap water dechlorinated using sodium 

thiosulphate. Natural sediment was collected from a stormwater pond in Nant y Briwnant (Cardiff) and from gulley pots 

in the car park at the School of Engineering of Cardiff University. Sediments were wet-sieved through a 1 mm-diameter 

sieve, and hence the particle sizes were comparable to those in pre-treated stormwater (FAWB, 2009). Contaminant 

concentrations in the resulting slurry were analysed in the Characterisation Laboratories for Environmental Engineering 

Research (CLEER), at the School of Engineering of Cardiff University. In some cases laboratory-grade chemicals 

(K2HPO4, NH4Cl, Pb(NO3)2, ZnSO4·7H2O, CuCl2·2H2O, Cd solution (1000 mg/L), Cr(NO3)3, NiCl2·6H2O, and 

FeCl2·4H2O) were added to attain influent pollutant concentrations typical of UK urban areas. 

2.2. Operation, sampling, and analysis 

All six VFCW units were tidal-flow operated on three consecutive days of each experimental week. Tidal flow is a 

technique used to operate VFCWs, and it is characterised by the unidirectional movement of wastewater (Lavrova and 

Koumanova, 2013). The feeding of the semi-synthetic stormwater stops as the surface is fully submerged and flooded. 

The media bed holds the wastewater until a set time is reached, and then it starts to drain downward. Loads of 

semi-synthetic influent stormwater was slowly and gently dosed on the media surfaces of each VFCW units. The 

treatment cycle is completed when effluents are fully drained from the filtration bed, and air (oxygen) is drawn in and 

allowed to diffuse into voids in the biofilters (Bruch et al., 2014). 

The VFCW units are usually designed based on the wetland-watershed area ratio (WWAR), where the surface area 

is determined as a percentage of the size of the watershed area. However, because the design of stormwater VFCWs 

varies with the amount of rainfall received and the treatment requirements in different catchments, there are no specific 

WWAR design codes. Nevertheless, standard guidelines and recommendations have typical WWARs of 1%–5%; while 

WWARs of 2%–3% are recommended in the UK (Ellis et al., 2003). Thus, any WWAR that minimises land 



 

requirements without compromising performance can be used, especially where retrofitting of the system is planned.  

In this study, units 1, 2, 4, and 8 were operated at a 2.5% WWAR, while units 5 and 7 had 5.0% and 1.5% WWARs, 

respectively. The VFCW units with WWARs of 2.5%, 5.0%, and 1.5% received stormwater loads in batches of 22.5 L, 

11.3 L, and 37.6 L, respectively, and the stormwater was held in the VFCW units for 24 h. Before feeding the VFCW 

units, 300 mL of the influent stock was taken, and in-situ measurements of pH, temperature, and electrical conductivity 

(EC) were recorded with a multi-parameter HANNA Probe (Model HI 991301). After the 24-h retention period, effluent 

samples were collected using the outlet tap on each VFCW unit. Effluent in-situ readings were taken, and the effluent 

samples prepared for analysis and storage at 4oC in a fridge in the CLEER laboratory. Chemical water parameters such as 

the concentrations of TN, 4NH -N+ , nitrite nitrogen ( 2NO -N− ), 3NO -N− , 3
4PO -P− , TP, and total suspended solids (TSS) 

were analysed using a spectrophotometer (Hach Lange DR3900) based on pollutant specified standard methods (APHA, 

2012). Similarly, the analysis of heavy metals such as Cu, Pb, Cd, Cr, Ni, and Fe was carried out in the CLEER 

laboratory using the inductively coupled plasma optical emission spectrometer (ICP-OES, Optima 210 DV, 

PerkinElmer). 

2.3. Data  

Data for the daily and weekly influent-effluent pollutant concentrations were converted into monthly averages to 

obtain representative treatment efficiency of each VFCW unit. The monthly data were considered good indicators 

because it took nearly three months for the VFCWs to attain treatment stability. Thus, the initial experimental data (0 to 

150 d) were excluded from the analysis. All the experimental data were pre-processed and examined to establish trends, 

relationships, and data dependencies. 

Exploratory data analysis revealed multiple nonlinear combinations among the variables (27 in total, including 

derived variables such as the percentage reduction), which followed exponential patterns. The complexity and 

nonlinearity exhibited by the dataset also suggested that ANNs are a suitable analytical tool. Significant differences were 

found in the means of the variables, and some variables exhibited non-normal distribution. The dataset comprising pH, 

EC, temperature, and the concentrations of TN, 4NH -N+ , 2NO -N− , 3NO -N− , 3
4PO -P− , and TP was re-scaled to achieve 

normal distribution and data components that could suitably explain the variance of the inputs. Due to the size and 

nonlinearity of the variables, PCA was used to extract the principal components (Herngren et al., 2006; Gunawardana et 

al., 2014), and the principal components were consequently used in the simulation to build ANNs to predict the 

performance of different designs.  

2.4. Artificial neural networks 

Wastewater treatment in CWs is often described as black-box and exhibits nonlinear characteristics. Consequently, 

the performance of CWs can be simulated using ANNs. ANNs are a form of artificial intelligence, which imitate the 

functioning of the biological nervous system. ANNs perform complex computations through training on inputs to 

produce outputs. Thus, ANNs can be used to model environmental systems, in which the key processes are challenging 

to quantify. 

Although ANNs can be implemented through various network architectures, multi-layer perceptron (MLP) ANNs 

have been applied (Lin et al., 2008; Akratos et al., 2009; Abyaneh, 2014; Bagheri et al., 2015; Li et al., 2015; Lyu et al., 

2018). MLPs consist of three distinct layers: input, hidden, and output layers (Fig. 2). The input and output layers can 

operate with any number of input variables such that neurons in both the input and hidden layers assess output responses 

concerning the weighted sum of inputs based on the activation function (Dawson et al., 2006). In this study, inputs were 

extracted using the PCA module in SPSS IBM 23 (George and Mallery, 2016), while the ANNs were implemented in 

winGamma (Jones et al., 2000). All the PCA-extracted variables for modelling TN and TP removal had no direct 

relationship with the outputs. The reliability of the ANN model was enhanced by eliminating derived inputs (percentage 

reductions) from the PCA. Similarly, the effect of inputs on the outputs (local sensitivity analysis) was evaluated using 

the model built from all the extracted principal components. Equally, to ensure a uniform modelling process, the 

experimental data were standardised, randomised, and partitioned into training (70%) and validation (30%), so that each 

data point could influence both the training and validation processes. Subsequently, underfitting or overfitting were 

minimised through application of the Gamma statistic and M-test, respectively (Jones et al., 2000). The algorithm 



 

implemented in winGamma is a modified Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, in which the BFGS 

adjusts network weights and thresholds to minimise training and prediction errors. Accordingly, the root mean square 

error (RMSE) was used to assess both the training (TRMSE) and validation (VRMSE) errors. Similarly, the coefficient 

of determination (R2) and the Nash-Sutcliffe efficiency (NSE) were used to evaluate the precision and efficiency of the 

ANN model, respectively. 

 

Fig. 2. MLP networks with two hidden layers 

3. Results and discussion 

Table 2 shows the experimental data, including the mean values of each parameter and the standard deviation (SD), 

where n is the number of the samples, and C means the concentration. The results measured from six units, namely units 1, 

4, 2, 8, 5, and 7, are presented. Units 1 and 4 represent the experimental control units operated at a 2.5%WWAR with loamy 

sand media. Similarly, units 2 and 8 were operated at a 2.5% WWAR, but with fine gravel and blast furnace slag media, 

respectively, while units 5 and 7 underwent experiments carried out at 5.0% and 1.5% WWARs, respectively, using the 

loamy sand. It can be noted that some parameters, mostly the heavy metals in the effluent, had concentrations below the 

detection limit (bdl) of the measuring instruments.  

Table 2 

Influent and effluent stormwater qualities. 

Parameter Influent Unit 1 Unit 4 Unit 2 Unit 8 Unit 5 Unit 7 n 

pH 7.5 ± 0.3 6.9 ± 0.2 6.8 ± 0.3 7.5 ± 0.3 8.5 ± 0.5 7.0 ± 0.2 6.9 ± 0.2 183 

Temperature (oC) 16.4 ± 4.0 16.4 ± 3.0 15.2 ± 4.0 15.5 ± 3.0 15.0 ± 4.0 15.3 ± 4.0 15.2 ± 4.0 183 

EC (mS/cm) 0.35±0.03 0.62 ± 0.04 0.61 ± 0.06 0.37 ± 0.04 0.47 ± 0.08 0.57 ± 0.06 0.57 ± 0.05 183 

C(TSS) (mg/L) 167 ± 31 15 ± 11 7 ± 3 8 ± 3 9 ± 4 15 ± 9 11 ± 9 183 

C( 3
4PO -P− ) (mg/L) 0.83± 0.10 0.11± 0.10 0.11 ± 0.10 0.22 ± 0.10 0.23 ± 0.10 008 ± 0.04 0.16 ± 0.10 183 

C(TP) (mg/L) 1.04 ± 0.10 0.22 ± 0.10 0.22 ± 0.10 0.35 ± 0.10 0.30 ± 0.10 0.16 ± 0.06 0.26 ± 0.10 183 

C( 2NO -N− ) (mg/L) 0.01 ± 0.02 bdl bdl bdl bdl bdl bdl 183 

C( 3NO -N− ) (mg/L) 0.01 ± 0.10 0.24 ± 0.30 0.17 ± 0.20 0.72 ± 0.40 0.20 ± 0.20 0.2 ± 0.40 0.29 ± 0.20 195 

C( 4NH -N+ ) (mg/L) 1.02 ± 0.20 0.12 ± 0.10 0.10 ± 0.04 0.07 ± 0.03 0.07 ± 0.03 0.12 ± 0.04 0.13 ± 0.10 195 

C(TN) (mg/L) 5.45 ± 1.00 1.10 ± 0.60 1.09 ± 0.58 1.11 ± 0.60 1.18 ± 0.53 1.24 ± 1.00 1.59 ± 0.80 183 

C(Fe) (mg/L) 3.35 ± 0.90 0.11 ± 0.10 0.04 ± 0.10 0.09 ± 0.10 0.043 ± 0.04 0.108 ± 0.10 0.06 ±0.10 234 

C(Zn) (mg/L) 0.43 ± 0.20 0.11 ± 0.10 0.11 ± 0.10 0.02 ± 0.02 0.01 ± 0.02 0.10 ± 0.05 0.06 ± 0.10 234 

C(Cu) (mg/L) 0.15 bdl bdl bdl bdl bdl bdl 156 

C(Pb) (mg/L) 0.6 0.005 0.001 0.11 0.0003 0.0007 bdl 156 

C(Cr) (mg/L) 0.03 bdl bdl bdl bdl bdl bdl 144 

C(Cd) (mg/L) 0.004 bdl bdl bdl bdl bdl bdl 159 

C(Ni) (mg/L) 0.097 bdl bdl bdl bdl bdl bdl 156 

3.1. Design performance 



 

Fig. 3 shows the percentage changes of pH, EC, Fe concentration, and Zn concentration measured in the effluent 

against the influent in different media over a period of 369 d from the 154th day of the experiments. The results from two 

settings of loamy sand media in units 1 and 4 (denoted as LS-1 and LS-4), fine gravel (FG), and blast furnace slag (BFS) 

media are included, where the influent values are also indicated for reference.  

 
Fig. 3. Percentage changes of pH, EC, Fe concentration, and Zn concentration in effluent against influent in different media 

As shown in Fig. 3(a), the influent stormwater had pH values ranging from 7.0 to 8.0 with a high degree of 

consistency in the procedure used in preparing the semi-synthetic stormwater. The measured pH values for all media were 

highly consistent. The pH values in loamy sand (LS-1 and LS-4) were measured at around 90% of that of influent, while 

the pH in fine gravel was largely kept the same level as the influent. However, the pH value in blast furnace slag was higher 

than in the influent, which was due to the high pH level in the media. Nevertheless, it exhibited a decreasing trend. This 

clearly indicated that the effluent pH level depended on the influent pH, as well as the primary media type. Consequently, 

the pH values are found to be significantly lower in loamy sand and fine gravel as compared to blast furnace slag (p = 0.000, 

where p is the measure of statistical significance at a 5% confidence level, the probability of rejecting the null hypothesis) 

because the predominantly alkaline chemical composition of blast furnace slag changed significantly due to dilution and 

washout caused by repeated dosing and treatment events. 

As shown in Fig. 3(b), the influent EC varied between 0.3 mS/cm and 0.4 mS/cm, with an average of 0.35 mS/cm. 

The mean effluent EC values from the experiments were measured as 0.37 mS/cm, 0.47 mS/cm, and 0.59 mS/cm in fine 

gravel, blast furnace slag, and loamy sand VFCW units, respectively, which were all higher than influent EC, with a 

significant increase of effluent EC by 150%–200% in loamy sand media and 120%–155% in blast furnace slag media from 

that in fine gravel media (p = 0.000), which was almost the same as the influent EC. The results indicated a significant 

difference in the efficiency with which the primary media filtered the suspended solids. 

The concentrations of some pollutants in effluents exhibited values below the respective limits of detection, as 

evidenced by the heavy metals Cu, Pb, Cd, Cr, and Ni, which were almost completely removed. However, the removal rate 

of Fe was significant in all media, exceeding 90%, as shown in Fig. 3(c), with higher removal rates in loamy sand media. 

The removal rate of Zn, as shown in Fig. 3(d), was also significant, exceeding 55% in all the media types. There was a 

substantially high removal efficiency (up to 95%) for the period of around 318 d, particularly for the fine gravel and blast 

furnace slag media, and then a slight decrease to reach a steady reduction of 70% to 80%. Therefore, the removal rates of 

both Fe and Zn were high in general. 



 

Fig. 4 shows the percentage changes of the concentrations of Fe, Zn, TP, and TN in units 1, 5, and 7, representing the 

WWARs of 2.5%, 5.0%, and 1.5%, respectively. It was found that the lower WWAR resulted in higher removal rates of Fe 

and Zn, as shown in Fig. 4(a) and (b) toward the end of the experiments, exhibiting a statistically significant difference (p 

= 0.000). The measurements also show that WWARs had little effect on the removal of Fe, but the effect of the WWAR on 

the removal of Zn was significant (p = 0.001). Although there is no monotonic increasing trend for the removal of Zn 

related to a higher WWAR, the cumulative mass load removal of Zn shows that the Zn removal rate was higher at a 1.5% 

WWAR (85.0%) and at a 2.5% WWAR (82.0%) in comparison with the 5.0% WWAR (71.0%). However, the effects of the 

WWAR on the removal of TN and TP, as shown in Fig. 4(c) and (d), were less evident, despite the significant reduction 

mostly being below 20%. Of the three cases, LS-5 was the most efficient media in the removal of TP and TN. 

 

Fig. 4. Percentage changes of Fe, Zn, TP, and TN in loamy sand media with different WWARs 

In the experiments, the influent temperature ranged between 6.8°C and 256°C and it was found that in general the 

effluent temperature was about 1°C lower than that of the influent without significant differences between the various 

designs. Influent TSS used in this study was highly variable between 79 mg/L and 290 mg/L (with an average of 167 mg/L), 

much lower than the 4 000 mg/L used in the VFCWs investigated by Torrens et al. (2009) and the 400 mg/L to 700 mg/L of 

Abdelhakeem et al. (2016). The effluent TSS in all VFCWs ranged from 7 mg/L to 15 mg/L, which was significantly lower 

than the influent TSS. Consequently, the cumulative mass removal rates of TSS almost reached 90% in all VFCWs, 

demonstrating adequate filtering capacity of loamy sand, fine gravel, and blast furnace slag primary biofilters. However, 

significant differences in TSS removal were found between different media, with the removal rates in the blast furnace slag 

media and fine gravel media higher than the average value in the loamy sand media (Table 3). The WWARs were also 

found to be a significant factor in TSS removal, with the highest removal rate at a 5.0% WWAR, compared to that at the 

1.5% WWAR and the average value at the 2.5% WWAR, similar to the Fe and Zn removal. 

Table 3 

Cumulative mass removal rate of pollutants in different VFCW units. 

Unit Removal rate (%) 

TSS 
3
4PO -P−  TP 4NH -N+  TN Fe Zn 

1 91.4 87.2 80.2 88.6 81.0 96.9 76.4 



 

4 95.8 87.3 80.3 91.3 81.2 98.9 76.8 

2 95.5 73.9 67.3 93.7 80.1 97.3 96.1 

8 94.5 73.1 72.1 93.4 79.1 98.8 98.6 

5 95.6 95.0 92.4 94.2 88.6 98.4 88.5 

7 89.9 71.2 62.2 79.9 56.3 97.0 80.3 

3.2. Total nitrogen removal 

The ANN-based models were built, using optimal inputs, to predict the removal of nitrogen and phosphorus nutrients. 

The selection of the optimal input parameters was achieved using PCA, local sensitivity analyses, and training and 

validation techniques. The details of the models are presented.  

For TN removal, the models used different combinations of input parameters extracted from PCA, including influent 

SS, effluent Zn, effluent pH, influent 4NH -N+ , influent Fe, influent 3NO -N− , and influent 2NO -N− . The performance of 

the ANN models for the various simulated scenarios is listed in Table 4 for Unit 1 in terms of TRMSE, VRMSE, R2, and 

NSE. The results clearly show the different effects of different combinations of inputs on the outputs as determined 

through local sensitivity analyses. Models 1 and 2 had comparable TRMSE and VRMSE values. 

Table 4 
ANN models for predicting TN removal in VFCW Unit 1. 

Model  Network input variables TRMSE VRMSE R2 NSE 

1 ISS, EZn, EpH, IAM, IFe, IN3, IN2 0.042 0.059 0.81 0.79 

2 ISS, EZn, EpH, IAM, IFe, IN3 0.066 0.068 0.74 0.65 

3 ISS, EZn, EpH, IAM, IFe, IN2 0.046 0.101 0.50 0.39 

4 ISS, EZn, EpH, IAM, IN3 0.049 0.077 0.69 0.65 

5 ISS, EpH, IAM, IN3 0.060 0.083 0.65 0.59 

6 ISS, EZn, EpH, IN3 0.048 0.173 0.20 0.06 

7 ISS, EZn, EpH, IAM 0.048 0.136 0.30 0.20 

Note: ISS means influent SS, EZn means effluent Zn, EpH means effluent pH, IAM means influent 4NH -N+ , IFe means influent Fe, IN3 means influent 3NO -N− , and 

IN2 means influent 2NO -N− . 

However, masking input influent 2NO -N−  resulted in declines in R2 (8.6%) and NSE (17.7%) in the outputs of 

Model 2 (Table 4). Likewise, fewer inputs (models 3 through 7) did not improve the performance of the ANN model 

greatly. The variations of the outputs (TN removal) are mainly attributed to influent 3NO -N− , suggesting that influent 

3NO -N−  is key to TN removal in Unit 1. A comparison of the experimental and predicted TN removal rates in Unit 1 is 

shown in Fig. 5.  

 

Fig. 5. Predictions of TN removal in Unit 1 with ANN model. 

Similarly, ANN-based models were built to predict TN removal in units 2, 4, 5, 7, and 8 using the approach applied to 

Unit 1. For the models built for TN removal in units 4, 7, and 8, a similar number of predictors and low R2 and NSE values 

were obtained. TN removal predictions in Unit 8, as shown in Table 5, had low NSE, which could suggest inconsistencies 

  



 

in the TN removal mechanism in blast furnace slag media. In fine gravel media (Unit 2), the TN removal rate was found to 

be consistently low (not shown here), which could be due to the limited TN removal mechanism, while in the loamy sand 

units, the relationship between TN removal and other inputs was variable even between the control units 1 and 4. 

Table 5 

ANN models for predicting TN removal in VFCW Unit 8. 

Model Network input variables TRMSE VRMSE R2 NSE 

1 IOP, ESS, ETR, EN3, EFe, ITP, EZn, IN2 0.042 0.174 0.25 0.21 

2 IOP, ESS, ETR, EN3, EFe, ITP, EZn 0.042 0.086 0.53 0.40 

3 IOP, ESS, ETR, EN3, EFe, ITP 0.039 0.099 0.54 0.51 

4 IOP, ESS, ETR, EFe, ITP 0.050 0.074 0.67 0.63 

5 IOP, ESS, ETR, EFe 0.053 0.068 0.71 0.65 

6 IOP, ESS, ETR 0.068 0.072 0.68 0.44 

Note: IOP means influent 3
4PO -P− , ESS means effluent SS, ETR means effluent temperature, EN3 means effluent 3NO -N− , EFe means effluent Fe, and ITP means 

influent TP. 

In summary, predictions of TN removal in all VFCWs brought R2 higher than 0.65, revealing a strong correlation with 

the experimental data. However, the NSE was variable. Specifically, the model for predicting TN removal in Unit 5, 

despite containing more input variables, had a higher error margin than the prediction errors produced by other models, 

while the model for TN removal in Unit 2 had fewer inputs and produced fewer errors with modest R2 and NSE values, as 

listed in Table 6. Comparatively, in blast furnace slag media, the ANN model had the lowest accuracy. 

Table 6 

Performance of ANNs in predicting TN removal in units 1, 2, 4, 5, 7, and 8 in comparison with experimental results. 

Unit Network input variables Experimental removal rate (%) Predicted removal rate (%) Difference (%) R2 NSE 

1 ISS, EpH, IAM, IN3 78.14 76.97 －1.17 0.65 0.59 

2 IpH, ETR, IAM 61.87 61.70 －0.17 0.70 0.60 

4 EOP, IOP, EEC 80.06 78.49 －1.57 0.73 0.54 

5 ESS, EEC, EN3, ISS, IN2, IFe 73.07 71.41 －1.66 0.71 0.69 

7 EOP, ISS, IZn 73.03 72.04 －0.99 0.73 0.61 

8 IOP, ESS, ETR 78.95 77.42 －1.53 0.68 0.44 

Note: IpH means influent pH, EOP means effluent 34PO -P− , EEC means effluent EC, and IZn means influent Zn. 

Generally, the data obtained from all VFCW units yielded ANN models with fewer input variables than the inputs 

identified through PCA, suggesting that TN removal can be monitored indirectly. Moreover, the ANN models predicted 

the TN removal rate with both TRMSE and VRMSE of less than 4% in all designs as shown in Table 5. Therefore, the 

generalisations derived by ANNs are satisfactory with regard to removal in the tidal-flow VFCWs. Nonetheless, better 

models could be developed using nonlinear data reduction techniques than PCA. 

3.3. Predicting total phosphorus removal 

Predictions of TP removal were derived from the inputs listed in Table 7 for Unit 1. Nitrogen species constituted the 

most predictors, as well as influent SS and influent Fe, reinforcing the theory that TP and SS removal tend to occur through 

similar mechanism of filtration and sedimentation. Nonetheless, the ANN models created from different inputs gave 

variable output ranges. Except for model 6, in which effluent TN was masked, the rest of the ANN models had low values 

of TRMSE and VRMSE. Thus, effluent TN significantly influenced the precision and reliability of the models. 

Unfortunately, no remarkable improvements in ANN performances were observed when the number of input variables was 

reduced. 



 

Table 7 

ANN models for predicting TP removal in Unit 1. 

Model Network input variables TRMSE VRMSE R2 NSE 

1 ESS, ETN, ISS, IAM, EN2, IFe, IN3 0.038 0.043 0.76 0.75 

2 ESS, ETN, ISS, IAM, EN2 0.038 0.047 0.74 0.73 

3 ESS, ETN, ISS, IAM, EN2, IN3 0.047 0.042 0.75 0.69 

4 ESS, ETN, ISS, IAM, EN2 0.033 0.062 0.66 0.65 

5 ESS, ETN, ISS, IAM, IFe, IN3 0.033 0.073 0.58 0.56 

6 ESS, ISS, IAM, EN2, IFe, IN3 0.029 0.110 0.20 0.13 

7 ETN, ISS, IAM, EN2, IFe, IN3 0.039 0.086 0.57 0.52 

8 ESS, ETN, ISS, EN2, IFe, IN3 0.044 0.048 0.69 0.64 

Note: ETN means effluent TN, and EN2 means effluent NO2
--N. 

The same procedure was applied to other VFCW units to examine the performance of the models in predicting TP 

removal with several input variable combinations. All the models exhibited robust generalisations with both TRMSE and 

VRMSE. TP removal obtained by the ANN models for units 5 and 7 showed better performance. Additionally, apart from 

Unit 4, TP removal representative models of all the other VFCW units were developed from fewer inputs relative to their 

respective standard models. Thus, regarding the media types, loamy sand VFCW units 1, 4, 5, and 7 produced good results, 

as shown in Table 8, while both blast furnace slag and fine gravel VFCW units produced weak models.  

Table 8 

Predicting TP removal in units 1, 4, 5, and 7. 

Unit Network input variables TRMSE VRMSE R2 NSE 

1 ESS, ETN, ISS, IAM, EN2 0.038 0.047 0.74 0.73 

4 IpH, EZn, EEC, ESS, IN3, EFe 0.032 0.052 0.73 0.62 

5 ESS, EN3, ETN, ISS, EpH 0.024 0.024 0.83 0.80 

7 ETN, ITR, ISS, EAM, IAM 0.050 0.048 0.83 0.81 

Note: EAM means effluent 4NH -N+ , and ITR means influent temperature. 

Table 8 shows the comparisons of the predicted TP removal rate from the best model with the experimental data in 

units 1, 4, 5, and 7 for the loamy sand with different WWARs where units 1 and 4 are the control units. It is clear that the TP 

removal rates predicted by the model agrees with the experimental data in general. Among the loamy sand VFCW units, 

the differences in performance could be attributed to variations in WWARs. At a 2.5% WWAR (units 1 and 4) the TP 

removal models performed well, but the TP removal rates attained by the 5.0% (Unit 5) and 1.5% (Unit 7) WWARs were 

better judged by the values of R2 and NSE. Thus, the cumulative TP mass removal rate was highest at a 5.0% WWAR 

(92%), followed by a 2.5% WWAR (80%), and lowest at a 1.5% WWAR (62%), as shown in Table 3. Similarly, the 

differences in the removal of TP for different VFCW units were found to be significant (p = 0.000). Furthermore, the Tukey 

post hoc test revealed that TP removal rate was significantly lower at a 1.5% WWAR in comparison with the 2.5% and 

5.0% WWARs. Thus, the ANN models for predicting TP removal reflect these variations, and the results suggest that a 

lower TP removal rate occurs through specific removal mechanism. This explained the consistency observed, with the 

higher TP removal rate indicating the involvement of various factors and removal processes. 

3.4. Discussion of ANN models for predicting TN and TP removal 

The extracted principal components revealed that although all six VFCW units treated the same influent stormwater, 

each VFCW unit produced data specific to its design. Consequently, the developed ANN models had varying 

generalisations. Additionally, the principal components extracted to predict TN removal and TP removal differed for 

different VFCW units. This suggests that the relationships between the input and output variables are dependent on factors 

such as air temperature, and design and operation variables. 



 

The initial objective to develop ANN models was to predict the removal rates of time-consuming and 

costlier-to-monitor pollutants (heavy metals, TP, and TN) from the relatively cheaper-to-monitor parameters (pH, 

temperature, and conductivity). However, the exploratory data analyses revealed significant differences between the means 

of the input variables. Moreover, most of the variables exhibited non-normal distribution. 

Additionally, temperature, pH, and EC had a weak relation with the target outputs (TN removal and TP removal), 

which may be an indication that physical water quality is insufficient to characterise the dynamics of TN and TP removal in 

the VFCWs. Thus, PCA was found to be necessary to reduce the dimensions of the data and to identify the most significant 

inputs for building ANN models subsequently. VFCW units configured using loamy sand media yielded reliable model 

performances for TN and TP removal. However, fine gravel and blast furnace slag media exhibited extremely nonlinear 

patterns, which likely influenced the quality of the ANNs. 

The best performing models of the VFCW units investigated in this study produced ANNs with considerably low 

training and validation error margins for TN removal, resulting in satisfactory generalisations. Furthermore, predictions of 

TN removal had all R2 values greater than 0.65, indicating a strong correlation between the predicted and experimental 

data. Except for units 1 and 5, the ANN models for predicting the TN removal rate in units 2, 4, 7, and 8 required few input 

variables, and the predictions were least reliable in Unit 8, perhaps because of the various TN removal mechanisms. 

Therefore, the long-term monitoring of the performance of TN removal in VFCWs can be achieved with ANNs. Similarly, 

it is possible to build more reliable ANN models for predicting TN removal by identifying significant input variables using 

nonlinear data reduction methods instead of PCA. ANN models for predicting TP removal contained more input variables 

than the TN removal models, suggesting that TP removal in VFCWs is more stochastic than TN removal. 

However, no reliable model was developed for the fine gravel and blast furnace slag VFCWs, and only loamy sand 

VFCWs produced consistent or predictable TP removal. Nevertheless, ANN model predictions revealed meaningful 

variations in TP reduction in the loamy sand VFCWs. The differences in TP removal could be attributed to changes in 

WWARs. Thus, the models for TP removal with the 2.5% WWAR (units 1 and 4) performed better when compared with 

the models for Unit 5 (5.0% WWAR) and Unit 7 (1.5% WWAR). This shows that TP removal was consistent at higher 

WWARs as the influents were held longest due to the larger surface area available to small inflow volumes, while for lower 

WWARs (1.5% WWAR), less water could be withheld for a shorter treatment time, resulting in a lower reduction of TP. 

Although different media may yield different TN and TP removal performances, the results showed that the fine gravel and 

blast furnace slag media exhibited high nonlinearity, which in turn may influence the quality of the ANN models generated. 

The results of the ANN models built from data of the control units 1 and 4 (loamy sand VFCWs) showed no 

significant difference in TN and TP removal rates, which indicates that the long-term pollutant removal in VFCWs can be 

strongly influenced by the primary media type and WWARs. 

4. Conclusions 

A series of laboratory experiments were continuously carried out over a two-year period. The water quality of 

effluents from six pilot-scale VFCW units, which were fed with semi-synthetic influent stormwater, was analysed. ANN 

models for predicting TN and TP removal in the VFCW units were developed from the most significant influent-effluent 

input variables identified through innovative exploratory data analyses.   

The results show that primary media distinctly affected the changes in pH, EC, and removal of TP and TN in the 

investigated designs. However, all the media adequately reduced the pollutants in the stormwater. Specifically, blast 

furnace slag media attained higher removal rates of more pollutants than loamy sand and fine gravel media. However, 

loamy sand was most effective in removing TP, especially at a 5.0% WWAR, while fine gravel had the same efficiency in 

removing TN. The differences in the performance of loamy sand VFCWs were found to relate to the WWAR, but further 

study may be required to establish this relation for fine gravel and blast furnace slag media. 

Similarly, the results of the ANN models for predicting TP and TN removal revealed satisfactory generalisations, 

showing agreement between the predicted and experimental data. Thus, ANNs are a useful tool for modelling pollutant 

removal in VFCWs. Furthermore, implementing nonlinear data reduction techniques could improve the reliability of the 

ANN models and reduce simulation time, as well as reduce input-output data requirements. Moreover, future research 



 

should implement other ANN optimisation strategies like the radial basis function and machine learning. 

However, scaling up the results from this study can be challenging, as the physical processes that convert rainfall to 

runoff are variable and challenging to replicate. Assumptions were also made for the hydraulic loading volumes derived 

from average annual rainfall rather than the rainfall intensity, and the retention time used in this study (24 h) excluded the 

situations of longer (> 24 h) rainfall events. Therefore, field studies must be conducted to complement the findings of this 

study before scaling up for engineering applications. Nonetheless, this study highlighted the effect of long and fixed 

retention time on pollutant removal in tidal-flow VFCWs. 
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