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Abstract

Growth in urban population, urbanisation, and ecoicodevelopment has increased the demand for wespecially in
water-scarce regions. Therefore, sustainable appesato water management are needed to cope watteftbcts of the
urbanisation on the water environment. This studyed to design novel configurations of tidal-flowrtical subsurface flow
constructed wetlands (VFCWSs) for treating urban rsteater. A series of laboratory experiments weredoaoted with
semi-synthetic influent stormwater to examine tlifeats of the design and operation variables onpgbegormance of the
VFCWs and to identify optimal design and operaticgtedtegies, as well as maintenance requiremehtsrdsults show that the
VFCWs can significantly reduce pollutants in urbaarmwater, and that pollutant removal was relatedspecific VFCW
designs. Models based on the artificial neural nefw(ANN) method were built using inputs derivearfr data exploratory
techniques, such as analysis of variance (ANOVA) mrincipal component analysis (PCA). It was foulnalt tPCA reduced the
dimensionality of input variables obtained fromfelient experimental design conditions. The resshsw a satisfactory
generalisation for predicting nitrogen and phospeaemoval with fewer variable inputs, indicatifgt monitoring costs and
time can be reduced.

Keywords. Constructed wetlands; Urban stormwater; Pollutamiorel; Artificial neural networks (ANNS); Principabmponent
analysis (PCA)

1. Introduction

According to the United Nations (2018), over 55%itad world’s population lives in urban areas, apprton that
is expected to increase to about 68% by 2050. iMitteasing urbanisation, the demand for water as®e, especially in
water-scarce regions. Therefore, to increase veataitability, interventions such as a reductioniater consumption,
reclamation of water sources, and sustainable niezat of wastewater (recycling and reuse) has beepoped.
Constructed wetlands (CWs) have been increasinggygl in wastewater treatment, partly because thstremtion and
maintenance costs of CWs are relatively low. Addislly, CWs can hold and treat variable volumewas$tewater, thus
mitigating extreme weather conditions (floods amdudhts) associated with climate change. Moredber,process of
pollutant removal in CWs occurs through a comboratdf biological, chemical, and physical proces@&gnn and
Liehr, 2001; Lee et al., 2002; Langergraber et 2008), which enables CWs to treat various typesvastewater.
However, understanding such multifaceted processesomplex and requires advanced analytical tooish sas
computational models (Langergraber, 2007). Previnadelling studies on the pollutant removal in Cure mainly
based on hydraulics and nutrient biogeochemistad{&c, 2000; Wynn and Liehr, 2001; Langergraber @imiunek,
2005; Langergraber et al., 2008; Akratos et al090Likewise, the ecological behaviour in polluisdter bodies was
explored by integrating hydrodynamic models andralemetworks to collate physical, chemical, andIdgaal
interactions that underpinned the different proesgkin et al., 2008).

More recently, numerical models, such as AQUASIMYIHRUS, and STELLA, have been used to describe
contaminant adsorption phenomena in CWs treatingicipal wastewater (Mburu et al., 2012, 2014). Thstudies
show that obtaining boundary conditions to represeastewater treatment in CWs as well as to desdribatment
processes can be challenging. Additionally, duthéodifferent modelling and wetland design criterids difficult to
compare the performance of different CWs. SpedificilYDRUS is unable to simulate CWs operated tiglo a
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tidal-flow strategy due to the inflexibility of thexodel to varying boundary conditions in a singledelling scenario.
For instance, while Lucas et al. (2015) demondrétat HYDRUS could predict the biologically influieed removal
processes of ammonia nitrogeNH;-N ), it was unable to model the removal of orthoplage (PO, -P) using the
same technique.

However, methods such as the artificial neural netw(ANN) model have emerged as powerful data ngrools.
ANNSs can identify complex patterns from variousadfiirmats, which has led to the increase of ANNI@ngntations
in multiple fields, including tumour and cancereltgion in the healthcare sector, audio and imagegrtion in digital
accessories such as smartphones, and machine ¢entyaaslation on internet search engines. ANNfparbest when
dealing with nonlinear univariate and multivaridega. In hydro-environmental studies, ANNs havenhesed to predict
the biochemical oxygen demand (BOD) and suspendéidss(SS) concentrations in the effluent of a wastter
treatment plant (Hamed et al., 2004); BOD and chahuxygen demand (COD) removal in horizontal sulase flow
constructed wetlands (HFCWs) (Akratos et al., 208®)rmwater quality (May and Sivakumar, 2009; M#wl., 2009);
and the removal ofPQ}" -P, total nitrogen (TN), and total phosphorus (TPHRCWSs (Akratos et al., 2009). For the
design of CWs, the mechanistic models can be larile several factors, including the operationatetyy deployed to
the wetland treatment system and the difficultiesmieasuring the definitive boundary conditions. réhis a need to
develop simple yet effective methods for evaluatihg overall performance of a pollution controlagtigy when
designing CWs. Specifically, the black-box natufewastewater treatment in CWs makes the ANN approac
appropriate modelling technique, but its perforneamiepends on the selection of input variables &ednetwork
architecture accounting for the size, nature, ame tof the input datdo make the ANN-based simulations more
effective, the multiple variables in large dataseted to be grouped to identify the relationshigmrrg the variables
using multivariate methods such as principal comporanalysis (PCAHerngren et al., 2006; Gunawardana et al.,
2014), which describes the complete data matrik witreduced number of principal components by toaméng the
original variables into a new orthogonal set ohpipal components for defining the relationshipoagithe variables.
The aim of this study was to develop an ANN modebptimise the novel configurations of vertical sulface flow
constructed wetlands (VFCWSs) for treatment of stwater and to predict nitrogen and phosphorus remoseng
influent-effluent data obtained from laboratory efments.

2. Methods

In order to develop a model based on ANN, a serfidaboratory experiments were carried out ovep@tiouous
period of two years (20142016) using eight pilot-scale VFCWs. VFCWs are wastter treatment systems designed as
pre-treatment units in horizontal flow beds (Seid€l65). VFCWSs are common in Austria, Denmark, Eearand the
UK, and are deployed in treating stormwater. They preferred to HFCWs because VFCWs have minimad la
requirements. VFCWs usually contain macrophytetecb the bed media (gravel or loamy sand) conguohict a depth
between 0.6 m and 1.0 m (Fig. 1). VFCWs are moistigrmittently dosed (Langergraber et al., 2008) aan be
operated either as planted or unplanted, with setodies reporting that planted VFCWs had enhanagllitant
removal rates (Taylor et al., 2011). Plants arentepl to provide favourable environments that fiaté the growth of
microbial populations and the release of oxygen the treatment system (Wang et al., 2012, Wu .e28l5), thus
enabling the biological removal of nitrogen and gitwrus (Zhu et al., 2012). Driven by gravity, easiter in VFCWs
flows down gradually through the media bed, thuabéing oxygen to transfer from the atmosphere th® media.
Oxygen facilitates the nitrification of nitrogengalucts (Cooper et al., 1996), leading to betterosehof organics, SS,
and NH;-N. However, VFCWs are not suitable for denitrificatias NH;-N is usually converted into nitrate
nitrogen (NO; -N ).

2.1. Experimental setup

Eight pilot-scale VFCW units were set up on thefrobSouth Building at the School of Engineering @dirdiff
University. Each VFCW unit used in the experimewss moulded from a structured-wall high-densityypthene
(HDPE) pipe with a height of 00 mm and a diameter of 400 mm. Each unit wasdealf at the bottom using an
HDPE plastic fitted with a drainage tap at the e=(Fig. 1). Different biofilter media were usedcnfigure the VFCW
in various design units. All the units were plantgth Typha latifolia.



(a) Physical model (b) Size and typical layout
Fig. 1. Experimental setup of VFCW units

In this paper the results from six VFCW units ofiemht are presented because the data colleated thie other
two VFCW units that were intermittently operated apt sufficient for the ANN modelling techniquenit$ 1, 4, 5, and
7 were filled with loamy sand, while units 2 anddhtained fine gravel and blast furnace slag medspectively (Table
1). Semi-synthetic stormwater was used to condwecekperiments partly because of the complex liogistf procuring
large volumes of natural stormwater, and the alesericSS, colloidal matter, and artefacts in symthstormwater
(Akratos and Tsihrintzis, 2007).

Table 1

Media configurations in VFCW units.

Unit Primary media Transition media Drainage media
1,4,57 Loamy sand Sharp sand Fine gravel

2 Fine gravel Medium gravel Coarse gravel

8 Blast furnace slag  Sharp sand Fine gravel

Semi-synthetic stormwater was prepared by mixinminah sediment with tap water dechlorinated usiadiam
thiosulphate. Natural sediment was collected frostoamwater pond in Nant y Briwnant (Cardiff) amdrh gulley pots
in the car park at the School of Engineering ofd@atniversity. Sediments were wet-sieved throwgh mm-diameter
sieve, and hence the particle sizes were compataltleose in pre-treated stormwater (FAWB, 2009n@minant
concentrations in the resulting slurry were analyisethe Characterisation Laboratories for Envirental Engineering
Research (CLEER), at the School of Engineering afd@f University. In some cases laboratory-gradericals
(KoHPQy, NH4CI, Pb(NQ),, ZnSQ-7H,0, CuCh-2H,0, Cd solution (1000 mg/L), Cr(N{, NiCl,-6H,0, and
FeCh-4H,0) were added to attain influent pollutant concatidns typical of UK urban areas.

2.2. Operation, sampling, and analysis

All six VFCW units were tidal-flow operated on tkreonsecutive days of each experimental week. Tiokalis a
technigue used to operate VFCWs, and it is chaiaeteby the unidirectional movement of wastew#i@vrova and
Koumanova, 2013). The feeding of the semi-synth&tticmwater stops as the surface is fully submeegetiflooded.
The media bed holds the wastewater until a set isneeached, and then it starts to drain downwaahds of
semi-synthetic influent stormwater was slowly arghtly dosed on the media surfaces of each VFCWs.uiihe
treatment cycle is completed when effluents arly flained from the filtration bed, and air (oxyges drawn in and
allowed to diffuse into voids in the biofilters {@&rh et al., 2014).

The VFCW units are usually designed based on thlilamewatershed area ratio (WWAR), where the serfaea
is determined as a percentage of the size of thersieed area. However, because the design of saenWFCWs
varies with the amount of rainfall received and titeatment requirements in different catchmentsiettare no specific
WWAR design codes. Nevertheless, standard guidehmel recommendations have typical WWARs of 1%-&bitle
WWARs of 2%—-3% are recommended in the UK (Ellisabt 2003). Thus, any WWAR that minimises land



requirements without compromising performance canded, especially where retrofitting of the sysigpianned.

In this study, units 1, 2, 4, and 8 were operatel225% WWAR, while units 5 and 7 had 5.0% andd\WWARs,
respectively. The VFCW units with WWARs of 2.5%0%, and 1.5% received stormwater loads in batch@2. L,
11.3 L, and 37.6 L, respectively, and the stormwatas held in the VFCW units for 24 h. Before fegdthe VFCW
units, 300 mL of the influent stock was taken, amditu measurements of pH, temperature, and @attonductivity
(EC) were recorded with a multi-parameter HANNA BrdModel HI 991301). After the 24-h retention pelrieffluent
samples were collected using the outlet tap on ®&&DW unit. Effluent in-situ readings were takendahe effluent
samples prepared for analysis and storag€Catrda fridge in the CLEER laboratory. Chemical ergtarameters such as
the concentrations of TNNH;-N , nitrite nitrogen NO,-N), NO;-N, PO, -P, TP, and total suspended solids (TSS)
were analysed using a spectrophotometer (Hach LBRE900) based on pollutant specified standard ogsti{APHA,
2012). Similarly, the analysis of heavy metals sashCu, Pb, Cd, Cr, Ni, and Fe was carried outhen CLEER
laboratory using the inductively coupled plasma iaght emission spectrometer (ICP-OES, Optima 210 DV,
PerkinElmer).

2.3. Data

Data for the daily and weekly influent-effluent ludént concentrations were converted into monthgrages to
obtain representative treatment efficiency of e®tCW unit. The monthly data were considered goadicetors
because it took nearly three months for the VFCoVattain treatment stability. Thus, the initial eimental data (O to
150 d) were excluded from the analysis. All theesipental data were pre-processed and examinestdblish trends,
relationships, and data dependencies.

Exploratory data analysis revealed multiple nor@dineombinations among the variables (27 in totatjuiding
derived variables such as the percentage reductiohijch followed exponential patterns. The complexand
nonlinearity exhibited by the dataset also suggettat ANNs are a suitable analytical tool. Sigrfit differences were
found in the means of the variables, and some blasaexhibited non-normal distribution. The datasetprising pH,
EC, temperature, and the concentrations of TH;-N, NO,-N, NO;-N, PO -P, and TP was re-scaleddohieve
normal distribution and data components that cauidably explain the variance of the inputs. Dueghe size and
nonlinearity of the variables, PCA was used toattthe principal components (Herngren et al., 2@éawardana et
al., 2014), and the principal components were amsetly used in the simulation to build ANNs to giot the
performance of different designs.

2.4. Artificial neural networks

Wastewater treatment in CWs is often describedask#box and exhibits nonlinear characteristicsn€amuently,
the performance of CWs can be simulated using ANNMINs are a form of artificial intelligence, whidhmitate the
functioning of the biological nervous system. ANMNserform complex computations through training opuis to
produce outputs. Thus, ANNs can be used to modelagmmental systems, in which the key processe<laadienging
to quantify.

Although ANNs can be implemented through variousvoek architectures, multi-layer perceptron (MLPINKs
have been applied (Lin et al., 2008; Akratos et24109; Abyaneh, 2014; Bagheri et al., 2015; Lalet2015; Lyu et al.,
2018). MLPs consist of three distinct layers: infhitlden, and output layers (Fig. 2). The input antput layers can
operate with any number of input variables such tiearrons in both the input and hidden layers assetput responses
concerning the weighted sum of inputs based omttigation function (Dawson et al., 2006). In thigady, inputs were
extracted using the PCA module in SPSS IBM 23 (Ge@nd Mallery, 2016), while the ANNs were impleiteghin
winGamma (Jones et al.,, 2000). All the PCA-extréctariables for modelling TN and TP removal had diect
relationship with the outputs. The reliability dfet ANN model was enhanced by eliminating derivealia (percentage
reductions) from the PCA. Similarly, the effectinputs on the outputs (local sensitivity analysisls evaluated using
the model built from all the extracted principalngmonents. Equally, to ensure a uniform modellingcpss, the
experimental data were standardised, randomisedpamitioned into training (70%) and validatior0¢8), so that each
data point could influence both the training andidegion processes. Subsequently, underfitting \cerfitting were
minimised through application of the Gamma statisthd M-test, respectively (Jones et al., 2000k &lgorithm



implemented in winGamma is a modified Broyden-HeteGoldfarb-Shanno (BFGS) method, in which the BFG
adjusts network weights and thresholds to minintiaaing and prediction errors. Accordingly, thetranean square
error (RMSE) was used to assess both the traifiRMSE) and validation (VRMSE) errors. Similarlygeticoefficient

of determination ) and the Nash-Sutcliffe efficiency (NSE) were useavaluate the precision and efficiency of the
ANN model, respectively.

Output layer

Hidden layers

Input layer

Fig. 2. MLP networks with two hidden layers

3. Results and discussion

Table 2 shows the experimental data, includingrikan values of each parameter and the standaratideviSD),
wheren is the number of the samples, @dheans the concentration. The results measuredsisoomits, namely units 1,
4,2,8,5,and 7, are presented. Units 1 andrésept the experimental control units operateab&WWAR with loamy
sand media. Similarly, units 2 and 8 were operatea 2.5% WWAR, but with fine gravel and blast faca slag media,
respectively, while units 5 and 7 underwent expernita carried out at 5.0% and 1.5% WWARs, respdgtiuging the
loamy sand. It can be noted that some paramet@stlynthe heavy metals in the effluent, had conegioins below the
detection limit (bdl) of the measuring instruments.

Table 2
Influent and effluent stormwater qualities.

Parameter Influent Unit 1 Unit 4 Unit 2 Unit 8 Usit Unit 7 n

pH 75%+0.3 6.9+0.2 6.8+0.3 75+0.3 8.5%0. 7.0+0.2 6.9+0.2 183
Temperature®C) 16.4+4.0 16.4+3.0 15.2+4.0 155+3.0 »HA00 15.3+4.0 152+4.0 183
EC (mS/cm) 0.35+0.03 0.62+0.04 0.61+0.06 0.3104 0.47 +£0.08 0.57 £0.06 0.57 £0.05 183
C(TSS) (mg/L) 167 +31 15+ 11 7+3 8+3 9+4 49 11+9 183
C(PQ} -P) (mg/L) 0.83+0.10 0.11+0.10 0.11 +0.10 0.22+£0.10 &2810 008 + 0.04 0.16 +0.10 183
C(TP) (mg/L) 1.04 £ 0.10 0.22+0.10 0.22+0.10 5430.10 0.30+£0.10 0.16 +0.06 0.26 £0.10 183
C(NO;-N) (mg/L) 0.01+0.02 bdl bdl bdl bdl bdl bdl 183
C(NO;-N) (mg/L) 0.01+£0.10 0.24 £0.30 0.17 £0.20 0.72 £0.40 0&D.20 0.2+0.40 0.29 £0.20 195
C(NH;-N ) (mg/L) 1.02 +0.20 0.12+0.10 0.10 £ 0.04 0.07 £0.03 7G®.03 0.12 £ 0.04 0.13+0.10 195
C(TN) (mg/L) 5.45+1.00 1.10 £ 0.60 1.09 £0.58 140.60 1.18 +0.53 1.24 +1.00 1.59 +0.80 183
C(Fe) (mg/L) 3.35+0.90 0.11 +0.10 0.04 +£0.10 90400.10 0.043 +0.04 0.108 +0.10 0.06 £0.10 234
C(zn) (mg/L) 0.43+£0.20 0.11+0.10 0.11 +0.10 20100.02 0.01 £0.02 0.10 +0.05 0.06 £ 0.10 234
C(Cu) (mg/L) 0.15 bdl bdl bdl bdl bdl bdl 156
C(Pb) (mg/L) 0.6 0.005 0.001 0.11 0.0003 0.0007 bdl 156
C(Cr) (mg/L) 0.03 bdl bdl bdl bdl bdl bdl 144
C(Cd) (mg/L) 0.004 bdl bdl bdl bdl bdl bdl 159
C(Ni) (mg/L) 0.097 bdl bdl bdl bdl bdl bdl 156

3.1. Design performance



Fig. 3 shows the percentage changes of pH, EC oReeatration, and Zn concentration measured ireftheent
against the influent in different media over a perof 369 d from the 154th day of the experimenke results from two
settings of loamy sand media in units 1 and 4 (tkzhas LS-1 and LS-4), fine gravel (FG), and biastace slag (BFS)
media are included, where the influent values e iadicated for reference.
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Fig. 3. Percentage changes of pH, EC, Fe concamiratnd Zn concentration in effluent against infiia different media

As shown in Fig. 3(a), the influent stormwater had values ranging from 7.0 to 8.0 with a high degoé
consistency in the procedure used in preparingéha@-synthetic stormwater. The measured pH valealf media were
highly consistent. The pH values in loamy sand {L&ad LS-4) were measured at around 90% of thisflofent, while
the pH in fine gravel was largely kept the samell@g the influent. However, the pH value in bfastace slag was higher
than in the influent, which was due to the highlpikl in the media. Nevertheless, it exhibited erdasing trend. This
clearly indicated that the effluent pH level depamhdn the influent pH, as well as the primary méyige. Consequently,
the pH values are found to be significantly loweloamy sand and fine gravel as compared to hlasate slagy= 0.000,
wherep is the measure of statistical significance at ace¥fidence level, the probability of rejecting thal hypothesis)
because the predominantly alkaline chemical conipasof blast furnace slag changed significantly da dilution and
washout caused by repeated dosing and treatmemiseve

As shown in Fig. 3(b), the influent EC varied betwe.3 mS/cm and 0.4 mS/cm, with an average of @S&Em.
The mean effluent EC values from the experimenteweeasured as 0.37 mS/cm, 0.47 mS/cm, and 0.58miBfine
gravel, blast furnace slag, and loamy sand VFCWsumnéspectively, which were all higher than infludC, with a
significant increase of effluent EC by 150%—-200%08amy sand media and 120%-155% in blast furnagerekdia from
that in fine gravel mediap(= 0.000), which was almost the same as the infle€htThe results indicated a significant
difference in the efficiency with which the primamedia filtered the suspended solids.

The concentrations of some pollutants in effluemthibited values below the respective limits ofedébn, as
evidenced by the heavy metals Cu, Pb, Cd, Cr, andtch were almost completely removed. Howeuesg, removal rate
of Fe was significant in all media, exceeding 9@%shown in Fig. 3(c), with higher removal ratefoemy sand media.
The removal rate of Zn, as shown in Fig. 3(d), ais® significant, exceeding 55% in all the mediges: There was a
substantially high removal efficiency (up to 95%y the period of around 318 d, particularly for fime gravel and blast
furnace slag media, and then a slight decreaseatthra steady reduction of 70% to 80%. Therefbeeggmoval rates of
both Fe and Zn were high in general.



Fig. 4 shows the percentage changes of the coatients of Fe, Zn, TP, and TN in units 1, 5, ancepresenting the
WWARSs of 2.5%, 5.0%, and 1.5%, respectively. It fieasd that the lower WWAR resulted in higher remionates of Fe
and Zn, as shown in Fig. 4(a) and (b) toward treeadrthe experiments, exhibiting a statisticallgrsficant differencef
= 0.000). The measurements also show that WWARdttadffect on the removal of Fe, but the effetthe WWAR on
the removal of Zn was significanp € 0.001). Although there is no monotonic incregdirend for the removal of Zn
related to a higher WWAR, the cumulative mass Ieadoval of Zn shows that the Zn removal rate wgbdii at a 1.5%
WWAR (85.0%) and at a 2.5% WWAR (82.0%) in compamisvith the 5.0% WWAR (71.0%). However, the effemftthe
WWAR on the removal of TN and TP, as shown in Big) and (d), were less evident, despite the st reduction
mostly being below 20%. Of the three cases, LS-6 tlva most efficient media in the removal of TP @hd
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Fig. 4. Percentage changes of Fe, Zn, TP, and Toaimy sand media with different WWARs

In the experiments, the influent temperature range@veen 6.8°C and 256°C and it was found thatimegal the
effluent temperature was about 1°C lower than dfidghe influent without significant differences tveten the various
designs. Influent TSS used in this study was highlyable between 79 mg/L and 290 mg/L (with arnrage of 167 mg/L),
much lower than the @00 mg/L used in the VFCWs investigated by Tormred. (2009) and the 400 mg/L to 700 mg/L of
Abdelhakeem et al. (2016). The effluent TSS iV&CWSs ranged from 7 mg/L to 15 mg/L, which was #igantly lower
than the influent TSS. Consequently, the cumulathzess removal rates of TSS almost reached 90% MFEWSs,
demonstrating adequate filtering capacity of loaagd, fine gravel, and blast furnace slag primaofilters. However,
significant differences in TSS removal were fouetideen different media, with the removal ratedenlilast furnace slag
media and fine gravel media higher than the averadge in the loamy sand media (Table 3). The WWARge also
found to be a significant factor in TSS removakhvihe highest removal rate at a 5.0% WWAR, conppérehat at the
1.5% WWAR and the average value at the 2.5% WWARIa& to the Fe and Zn removal.

Table 3
Cumulative mass removal rate of pollutants in défferVFCW units.

Unit Removal rate (%)
TSS PO/ -P TP NH;-N TN Fe Zn
1 91.4 87.2 80.2 88.6 81.0 96.9 76.4



4 95.8 87.3 80.3 91.3 81.2 98.9 76.8

2 95.5 73.9 67.3 93.7 80.1 97.3 96.1

8 94.5 73.1 72.1 93.4 79.1 98.8 98.6

5 95.6 95.0 92.4 94.2 88.6 98.4 88.5

7 89.9 71.2 62.2 79.9 56.3 97.0 80.3

3.2. Total nitrogen removal

The ANN-based models were built, using optimal ispto predict the removal of nitrogen and phospblautrients.
The selection of the optimal input parameters waseaed using PCA, local sensitivity analyses, araining and
validation techniques. The details of the modetspesented.

For TN removal, the models used different combaretiof input parameters extracted from PCA, inclgdnfluent
SS, effluent Zn, effluent pH, influenNH;-N , influent Fe, influentNO; -N , and influent NO, -N . The performance of
the ANN models for the various simulated scenagdisted in Table 4 for Unit 1 in terms of TRMSERMSE, R?, and
NSE. The results clearly show the different effeftdifferent combinations of inputs on the outpats determined
through local sensitivity analyses. Models 1 aré@ comparable TRMSE and VRMSE values.

Table 4
ANN models for predicting TN removal in VFCW Unit 1.

Model Network input variables TRMSE VRMSE R NSE

1 ISS, EZn, EpH, IAM, IFe, IN3, IN2 0.042 0.059 0.81 0.79
2 ISS, EZn, EpH, IAM, IFe, IN3 0.066 0.068 0.74 0.65
3 ISS, EZn, EpH, IAM, IFe, IN2 0.046 0.101 0.50 0.39
4 ISS, EZn, EpH, IAM, IN3 0.049 0.077 0.69 0.65
5 ISS, EpH, IAM, IN3 0.060 0.083 0.65 0.59
6 ISS, EZn, EpH, IN3 0.048 0.173 0.20 0.06
7 ISS, EZn, EpH, IAM 0.048 0.136 0.30 0.20

Note: ISS means influent SS, EZn means effluenEpt means effluent pH, IAM means influemMdH,-N , IFe means influent Fe, IN3 means influeN©O; -N , and
IN2 means influentNO, -N .

However, masking input influenNO,-N resulted in declines iR (8.6%) and NSE (17.7%) in the outputs of
Model 2 (Table 4). Likewise, fewer inputs (modelshBough 7) did not improve the performance of £&iN model
greatly. The variations of the outputs (TN remow® mainly attributed to influenNO; -N, suggesting that influent
NO;-N is key to TN removal in Unit 1. A comparison oétbxperimental and predicted TN removal rates it Urs
shown in Fig. 5.
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Fig. 5. Predictions of TN removal in Unit 1 with ANmodel.

Similarly, ANN-based models were built to predi® Temoval in units 2, 4, 5, 7, and 8 using the apph applied to
Unit 1. For the models built for TN removal in 8, 7, and 8, a similar number of predictors andR’ and NSE values
were obtained. TN removal predictions in Unit 8shewn in Table 5, had low NSE, which could suggesinsistencies



in the TN removal mechanism in blast furnace slagdim In fine gravel media (Unit 2), the TN remoxate was found to
be consistently low (not shown here), which cowdddine to the limited TN removal mechanism, whiléhimloamy sand
units, the relationship between TN removal and roityguts was variable even between the controbuh#nd 4.

Table 5
ANN models for predicting TN removal in VFCW Unit 8.

Model  Network input variables TRMSE VRMSE R NSE
1 IOP, ESS, ETR, ENS, EFe, ITP, EZn, IN2 0.042 8.17 0.25 0.21
2 IOP, ESS, ETR, EN3, EFe, ITP, EZn 0.042 0.086 305 0.40
3 IOP, ESS, ETR, EN3, EFe, ITP 0.039 0.099 0.54 105
4 IOP, ESS, ETR, EFe, ITP 0.050 0.074 0.67 0.63
5 IOP, ESS, ETR, EFe 0.053 0.068 0.71 0.65
6 IOP, ESS, ETR 0.068 0.072 0.68 0.44

Note: IOP means ianueanO} -P, ESS means effluent SS, ETR means effluent terhperdEN3 means effluentNO;-N , EFe means effluent Fe, and ITP means
influent TP.

In summary, predictions of TN removal in all VFCWeughtR? higher than 0.65, revealing a strong correlatiéth w
the experimental data. However, the NSE was vaiaBpecifically, the model for predicting TN rembwa Unit 5,
despite containing more input variables, had adrghror margin than the prediction errors produzgdther models,
while the model for TN removal in Unit 2 had fevieputs and produced fewer errors with mod@sind NSE values, as
listed in Table 6. Comparatively, in blast furnatag media, the ANN model had the lowest accuracy.

Table 6
Performance of ANNs in predicting TN removal intsri, 2, 4, 5, 7, and 8 in comparison with expenitakresults.

Unit Network input variables Experimental removatler (%) Predicted removal rate (%) Difference (%)R? NSE
1 ISS, EpH, IAM, IN3 78.14 76.97 —1.17 0.65 0.59
2 IpH, ETR, IAM 61.87 61.70 —0.17 0.70 0.60
4 EOP, IOP, EEC 80.06 78.49 —1.57 0.73 0.54
5 ESS, EEC, EN3, ISS, IN2, IFe 73.07 71.41 —1.66 0.71 0.69
7 EOP, ISS, 1Zn 73.03 72.04 —0.99 0.73 0.61
8 IOP, ESS, ETR 78.95 77.42 —1.53 0.68 0.44

Note: IpH means influent pH, EOP means eﬁlud?of,’ -P, EEC means effluent EC, and 1Zn means influent Zn.

Generally, the data obtained from all VFCW unitslgéd ANN models with fewer input variables thaa thputs
identified through PCA, suggesting that TN remowah be monitored indirectly. Moreover, the ANN misderedicted
the TN removal rate with both TRMSE and VRMSE a&sléhan 4% in all designs as shown in Table 5. éfbes, the
generalisations derived by ANNs are satisfactomphwegard to removal in the tidal-flow VFCWSs. Nameless, better
models could be developed using nonlinear datactegutechniques than PCA.

3.3. Predicting total phosphor usremoval

Predictions of TP removal were derived from theuisdisted in Table 7 for Unit 1. Nitrogen specaiesistituted the
most predictors, as well as influent SS and inflike) reinforcing the theory that TP and SS remtarad to occur through
similar mechanism of filtration and sedimentatibfonetheless, the ANN models created from diffeiaptits gave
variable output ranges. Except for model 6, in Wwhaffluent TN was masked, the rest of the ANN msdield low values
of TRMSE and VRMSE. Thus, effluent TN significantigfluenced the precision and reliability of the dedts.
Unfortunately, no remarkable improvements in ANM@enances were observed when the number of irgmisibies was
reduced.



Table 7
ANN models for predicting TP removal in Unit 1.

Model Network input variables TRMSE/RMSE R*  NSE

1 ESS, ETN, ISS, IAM, EN2, IFe, IN3 0.038 0.043 @©@75

2 ESS, ETN, ISS, IAM, EN2 0.038 0.047 0.643
3 ESS, ETN, ISS, IAM, EN2, IN3 0.047 0.042 00359
4 ESS, ETN, ISS, IAM, EN2 0.033 0.062  0.865
5 ESS, ETN, ISS, IAM, IFe, IN3 0.033 0.073 0656
6 ESS, ISS, IAM, EN2, IFe, IN3 0.029 0.110 02a3
7 ETN, ISS, IAM, EN2, IFe, IN3 0.039 0.086 0.952
8 ESS, ETN, ISS, EN2, IFe, IN3 0.044 0.048 0me4

Note: ETN means effluent TN, and EN2 means effliéDs -N.

The same procedure was applied to other VFCW tmiexamine the performance of the models in predjctP
removal with several input variable combination8.the models exhibited robust generalisations witth TRMSE and
VRMSE. TP removal obtained by the ANN models foitsi6 and 7 showed better performance. Additiopajwart from
Unit 4, TP removal representative models of allatieer VFCW units were developed from fewer inpetative to their
respective standard models. Thus, regarding théangaks, loamy sand VFCW units 1, 4, 5, and 7 peced good results,
as shown in Table 8, while both blast furnace sladg) fine gravel VFCW units produced weak models.

Table 8

Predicting TP removal in units 1, 4, 5, and 7.

Unit Network input variables TRMSE VRMSE R NSE

1 ESS, ETN, ISS, IAM, EN2 0.038  0.047 0.74 0.73
4 IpH, EZn, EEC, ESS, IN3, EFe 0.032  0.052 0.73 206

5 ESS, ENS, ETN, ISS, EpH 0.024 0.024 0.83 0.80

7 ETN, ITR, ISS, EAM, IAM 0.050 0.048 0.83 0.81

Note: EAM means effluentNH;-N , and ITR means influent temperature.

Table 8 shows the comparisons of the predictedefRoval rate from the best model with the experimletta in
units 1, 4, 5, and 7 for the loamy sand with défearWWARSs where units 1 and 4 are the control utits clear that the TP
removal rates predicted by the model agrees wétetperimental data in general. Among the loamy S&CW units,
the differences in performance could be attributeglariations in WWARs. At a 2.5% WWAR (units 1 aaygthe TP
removal models performed well, but the TP remoatés attained by the 5.0% (Unit 5) and 1.5% (UnWIVARS were
better judged by the values Bf and NSE. Thus, the cumulative TP mass removalwatehighest at a 5.0% WWAR
(92%), followed by a 2.5% WWAR (80%), and lowestaafl.5% WWAR (62%), as shown in Table 3. Similathe
differences in the removal of TP for different VFQWI ts were found to be significamt£ 0.000). Furthermore, the Tukey
post hoc test revealed that TP removal rate wasfisigntly lower at a 1.5% WWAR in comparison witie 2.5% and
5.0% WWARs. Thus, the ANN models for predicting fidoval reflect these variations, and the resultgysst that a
lower TP removal rate occurs through specific reahanechanism. This explained the consistency obsemvith the
higher TP removal rate indicating the involvemefiwarious factors and removal processes.

3.4. Discussion of ANN modelsfor predicting TN and TP removal

The extracted principal components revealed thlbdagh all six VFCW units treated the same influgotmwater,
each VFCW unit produced data specific to its desiGonsequently, the developed ANN models had vgryin
generalisations. Additionally, the principal compats extracted to predict TN removal and TP remoifééred for
different VFCW units. This suggests that the relahips between the input and output variablegependent on factors
such as air temperature, and design and operaidables.



The initial objective to develop ANN models was poedict the removal rates of time-consuming and
costlier-to-monitor pollutants (heavy metals, TRdarN) from the relatively cheaper-to-monitor paedens (pH,
temperature, and conductivity). However, the exgilany data analyses revealed significant differsmegween the means
of the input variables. Moreover, most of the Valea exhibited non-normal distribution.

Additionally, temperature, pH, and EC had a wedéti@n with the target outputs (TN removal and Eemoval),
which may be an indication that physical water yy& insufficient to characterise the dynamicgdfand TP removal in
the VFCWs. Thus, PCA was found to be necessamgdioae the dimensions of the data and to identé@yribst significant
inputs for building ANN models subsequently. VFCWi ta configured using loamy sand media yieldedab#é model
performances for TN and TP removal. However, fingvgl and blast furnace slag media exhibited ex¢tgmonlinear
patterns, which likely influenced the quality oEtANNS.

The best performing models of the VFCW units inggded in this study produced ANNs with consideydbiv
training and validation error margins for TN rembvasulting in satisfactory generalisations. Farthore, predictions of
TN removal had alR?values greater than 0.65, indicating a strong tatiom between the predicted and experimental
data. Except for units 1 and 5, the ANN modelpfadicting the TN removal rate in units 2, 4, 7d 8required few input
variables, and the predictions were least relialenit 8, perhaps because of the various TN refnmechanisms.
Therefore, the long-term monitoring of the perfont@of TN removal in VFCWSs can be achieved with AA\NNimilarly,
it is possible to build more reliable ANN models fwedicting TN removal by identifying significaimput variables using
nonlinear data reduction methods instead of PCANANbdels for predicting TP removal contained mopi variables
than the TN removal models, suggesting that TP vairia VFCWSs is more stochastic than TN removal.

However, no reliable model was developed for the fgravel and blast furnace slag VFCWs, and ordyipsand
VFCWs produced consistent or predictable TP remoMalertheless, ANN model predictions revealed rimggunl
variations in TP reduction in the loamy sand VFCWse differences in TP removal could be attribui@ahanges in
WWARSs. Thus, the models for TP removal with the22. WWAR (units 1 and 4) performed better when coragawith
the models for Unit 5 (5.0% WWAR) and Unit 7 (1.38NVAR). This shows that TP removal was consisteritigler
WWARSs as the influents were held longest due tdatger surface area available to small inflow woés, while for lower
WWARSs (1.5% WWAR), less water could be withheld #oshorter treatment time, resulting in a lowemucdigdn of TP.
Although different media may yield different TN aiB removal performances, the results showedledirie gravel and
blast furnace slag media exhibited high nonlinganihich in turn may influence the quality of th&lN models generated.

The results of the ANN models built from data oé tbontrol units 1 and 4 (loamy sand VFCWSs) showed n
significant difference in TN and TP removal rat@hjch indicates that the long-term pollutant remond/FCWs can be
strongly influenced by the primary media type and/MRs.

4. Conclusions

A series of laboratory experiments were continwpuslrried out over a two-year period. The waterliguaf
effluents from six pilot-scale VFCW units, which reefed with semi-synthetic influent stormwater, veamlysed. ANN
models for predicting TN and TP removal in the VFGMWIts were developed from the most significaniuiemt-effluent
input variables identified through innovative expliory data analyses.

The results show that primary media distinctly etiéel the changes in pH, EC, and removal of TP awdnTthe
investigated designs. However, all the media adetuaeduced the pollutants in the stormwater. Bigady, blast
furnace slag media attained higher removal ratasa® pollutants than loamy sand and fine gravelimeHowever,
loamy sand was most effective in removing TP, dgfigat a 5.0% WWAR, while fine gravel had the saefficiency in
removing TN. The differences in the performancéamy sand VFCWs were found to relate to the WWBIR, further
study may be required to establish this relatiarfife gravel and blast furnace slag media.

Similarly, the results of the ANN models for predig TP and TN removal revealed satisfactory gdisat@ons,
showing agreement between the predicted and expetaindata. Thus, ANNs are a useful tool for madglpollutant
removal in VFCWs. Furthermore, implementing nondindata reduction techniques could improve thaldity of the
ANN models and reduce simulation time, as welletuce input-output data requirements. Moreoveuréutesearch



should implement other ANN optimisation stratediks the radial basis function and machine learning

However, scaling up the results from this study loarchallenging, as the physical processes thakecbrainfall to
runoff are variable and challenging to replicatesémptions were also made for the hydraulic loasisigmes derived
from average annual rainfall rather than the réliimigensity, and the retention time used in thigdy (24 h) excluded the
situations of longer (> 24 h) rainfall events. Téfere, field studies must be conducted to complertienfindings of this
study before scaling up for engineering applicatiodonetheless, this study highlighted the effédbog and fixed
retention time on pollutant removal in tidal-flonFCWs.
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