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Abstract

Plant material can regulate the mechanical properties of its cellular structure by

changing: (i) the structure of the cell wall, (ii) the cell core pressure, and (iii)

the cell-cell cohesion. The relevant scale at which such phenomena occur, though

beyond the capacity of the human eye, can be followed by mechanical analysis

and mathematical models based on micro-structural evidence. This thesis focuses

on two fundamental mechanical aspects. First, it concerns the mechanism of cell

debonding, as this is key in explaining the softening of fruit and legumes dur-

ing storage or cooking, and is decisive for the perceived quality of food products.

Particular attention is given to the mathematical modelling of damage through

shear deformation as this has been largely neglected in the literature due to many

theoretical and computational difficulties. Second, it provides a multiscale hyper-

elastic framework which relates the stresses and strains of a whole structure to

those at the cell level, and vice versa. Specifically, the non-linear elastic moduli

at the macroscopic level are derived systematically from those at the cell level.
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Chapter 1

Introduction

In this chapter, first, to motivate our work, we introduce some of the processes

which have resulted in the food products that we know and love today. We also

discuss the physical principles which affect the shape and cellular structure of

these products, and describe textural features and the link between texture and

mechanical properties at the cellular level. We then outline the continuum me-

chanics problems studied in this thesis.

1.1 Background and motivation

Fruits have evolved through natural selective processes. Appealing properties (to

the animals who choose to consume them) have promoted success of the plant

species [41]. Fruit ripens and becomes most attractive when the seeds are fully

developed, and thus mature seeds are transported to new locations through the

animal gut [155, p. 78]. Man has also domesticated plants using selective breeding

over millennia to enhance specific characteristics. This has lead to many of the

cultivars known today. For example, rapeseed, mustard, cabbage, kale, brussel

sprouts, broccoli and turnip have all been bred from an original genus of brassica,

where either the seeds, leaves, stems, buds, flowers or roots have been optimised

[40,80]. More recently, scientific methods such as genetic modification (GM) have

1



1.1. BACKGROUND AND MOTIVATION

been developed to further control food quality [158]. Desirable characteristics can

include: crop yield (shape, size and quantity), consistency/uniformity, time to

maturity, drought/pest resistance, taste, nutrition, appearance and texture.

CortexPith

Fluid filled cells
(parenchyma)

Cell 
core

Cell pressure
(turgor)

Cell-cell bond
(middle lamella)

Wall #1

200 micrometres 4 micrometres

Radial elongation

2 centimetres

Cell 
wall
pair

Core #1 Core #2

Wall #2

Cell-cell peeling
(debonding)

Figure 1.1: Multiscale demonstration of the cellular structure of an apple, with
an equatorial slice of an apple (top), cellular tissue including cell core pressure
(bottom left) and neighbouring cell walls with a cohesive cell-cell bond (bottom
right). Equivalent biological terms are shown in brackets. The cellular structure
is similar for potatoes, and many soft fruit including pears, tomatoes and kiwi.
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1.1. BACKGROUND AND MOTIVATION

Tubers (e.g. potato) and legumes (e.g. lentils) are deceptively similar to fruit

(e.g. apple, pear). The cellular tissues are comprised of a cohesive network, the

middle lamella, binding together fluid-filled parenchyma cells [64] (Figure 1.1).

They can all be used as a food product, or to seed new plants in the next season.

Cell-cell disassociation (or debonding) affects the perceived texture but is also an

essential mechanism in new root growth [139]. The cytoplasm in mature apples

contains high levels of sugars, whereas in potatoes the sugars are converted into

starch. The cell walls also contain fibres important in our diets - a fibre-reinforced

matrix, comprising of hemicellulouse, pectins and glycoproteins [122]. This pri-

mary structural component, within the hydrostatic structure, can sustain large

deformations and the presence of fibres gives the walls a non-linear mechanical

response [28,46,59].

Gene activation and regulation are known to control functions, such as cell

division and expansion, but the shape and form is also developed by the physical

forces in the environment [67, p. 27]. An example of force-growth interaction is

the cellular structure of trabecular bone. As a load-bearing material, the cellular

structure is in alignment with the principal stretches across the geometry (approx-

imated by an isotropic homogeneous material under the same mechanical loading).

Wolff’s law of bone remodelling is used to describe the active process that bones

adopt to realign to best resist applied load [141]. Similarly, in non-load-bearing

materials, such as fruit (primarily supporting their own body forces), the cell ge-

ometry and stiffness must also be influenced by some local mechanical forces. In

an apple, the central region (pith) has large radially organised elongated cells,

whereas in the cortex where there is less competition for space, the cells are more

uniform (and with larger intercellular spaces) [78] (see Figure 1.1 for reference).

Active remodelling can be observed in root growth as lateral roots initiate within

the mother root, which debonds its cells to allow for new growth [128].
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1.1. BACKGROUND AND MOTIVATION

Texture can be defined as the physical response of a material or substance to

some contact stimuli, with textural characteristics stemming from the behaviours

of deformation, failure and flow [71]. We primarily assess texture through touch,

mouth feel and experiment, although our interpretation can also be influenced by

psychological factors [71]. Squeezing a fruit or vegetable can assess how ripe or

fresh the produce is [142]. A firm avocado is not yet ripe, while a soft/limp carrot

is stale. Taste and appearance are primary factors in many foods, but there is a

large selection of mild flavoured foods (bread, mashed potatoes) where texture is

the most important attribute [27]. The boiling of potato causes the parenchyma

cells to swell, increasing the cell core (turgor) pressure and cell wall tension, which

reduces its strength, allowing it to fail more easily [90]. Terminology used to

describe the texture of mash potato includes: soft, fresh, smooth, creamy, fluffy,

light, airy, lumpy, sticky, claggy, soggy, wet, dense, dry, hard, bitty, grainy and

mealy. These descriptive words are subjective and the terminology and definitions

used in literature are inconsistent [77].

The interactions we have with food (squeezing, slicing, chewing, etc.) can be

simulated with mechanical testing methods, such as compression, tension, pene-

tration and bending tests [17]. These engineering tools can quantify properties in

space and time, but the information we extract from them requires precise and

meaningful definition. Many have set out to standardise terminology, such as [71]:

• Hardness: force required to compress;

• Crispness: amount and pitch of sound generated;

• Juiciness: amount of fluid released.

A greater understanding of the relationship between cellular level properties

and texture may lead to overcoming quality problems in plant foods [77] and also

inform industrial processing techniques (such as the extraction of oils [24]).
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1.2. CONTRIBUTION OF THIS THESIS

1.2 Contribution of this thesis

Texture is a manifestation of the micro- and macro-organisation of the tissue [77].

In apples and potatoes, the texture is dependant on the structural integrity of the

cell wall, middle lamella and turgor pressure [59,123,130]. The interplay between

the cell level parameters and the macroscopic behaviour at the tissue is investi-

gated in this work using the tools of finite elasticity theory and computational

finite element models. As a thesis in applied mathematics, the general approach

adopted here is outlined as follows:

1. Choose specific phenomenological processes to study;

2. Make appropriate simplifications and assumptions;

3. Create model problems;

4. Develop and apply suitable theoretical and computational frameworks;

5. Interpret and draw insight from the results.

1.2.1 Debonding

The first subject of our attention is the process of cell-cell debonding. The texture

named ‘mealy’, or ‘mealiness’ occurs if less energy is required to debond cells rather

than to rupture/burst them [53,79]. This is desirable for baked and mashed potato

but not for potatoes in soups or salads where the structural integrity of the piece

is important [135]. In apples, this texture can be dry and bitty as the cells do not

release their fluid. The biological process which promotes this texture has three

major components [19,29,70,168]:

• Dismantling of the middle lamella;

• Degradation of the pectin in the cell walls;

• Dehydration and loss of turgor pressure.
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If the pectin levels in the cell walls drops, then the cell walls become stiffer

and harder to rupture. If the intercellular bonds weaken and break down, then

less force needed to separate parenchyma cells. These, in turn, cause the failure

mode to transition from cell bursting/rupture to cell debonding. In addition, if

the force acting on the cell wall from the cell core decreases, then the cell wall will

be under less tension and its strength will increase. Further drops in pressure will

promote cell shrinking, which also pulls at the intercellular bonds [19,70,81].

This study aims to explore the interactions of these variables on the behaviour

of debonding. Shear is chosen as the primary deformation of study as it is ubiq-

uitous yet largely neglected in literature, due to difficulties in engineering testing

and measurement. In practice, our teeth are offset and so, during chewing, our

food is subjected to shearing forces. In this thesis, the investigation is approached

systematically, firstly considering the behaviour on the smallest scale and then

increasing size and complexity to find multiscale relationships.

We start with a purely analytical study of generalised shear in a transversely

isotropic cell wall, finding the permissible forms of the deformed face. This is used

to explore if two walls in unilateral contact can debond when they are sheared

together. The contribution of cellulose fibres to the mechanical properties of the

walls is captured by transverse isotropy, and of the cell core by the inter-cellular

pressure. Moving up the scale, we consider shearing of collections of cells in

unilateral contact. As the solution to this more complex problem relies on the finite

element method employed, computational scaling with model size is explored, such

that large scale models can be evaluated. This includes cell wall elasticity, cohesion

and cell core effects. A model parameter analysis is carried out to shed light on

the fundamental physical interactions observed in the literature for debonding in

fruit tissues.
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1.2.2 Multiscale stretching

Our second main focus is developing direct models which relate the cell level prop-

erties to the tissue stiffness. Here, a general continuum hyperelastic framework is

stated for creating new isotropic material models describing cellular materials. In

this case, we assume that no failure occurs at the microscopic scale, such as cell

rupturing or debonding. These models can be used to extend the idea of model

scalability further as these are easier to compute and can represent large tissue

samples. Such models are not limited to fruit and vegetables, but can describe

other non-load bearing structures, such as the brain, fat tissue and man-made

architectured materials, such as tissue scaffolds. The main restriction is that the

architecture deforms primarily by wall stretching rather than bending. They may

have cells which are closed and possibly pressurised by some compressible or in-

compressible contents. Alternatively, cells may be open collections of struts that

would not inhibit the transportation of fluid. Non-linear elastic parameters can be

derived for these new cellular material models, and used to measure the relation-

ship between scales, such as the effects of cell core stiffness on the macroscopic

non-linear shear modulus. The models can be applied to experimental data of

cellular tissues to estimate cell wall properties from the tissue elastic behaviour.

This thesis aims to provide insight into the mathematics of shearing materials,

computational procedures for cellular modelling, non-linear elastic moduli and an

insight into the multiscale relationships between parameters - which can all have

an impact on research and development in food science. This work could also

be applied to the creation of synthetic industrially engineered materials using the

developing technology of additive manufacture and 3D printing, which is briefly

explored as well.
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Chapter 2

Prerequisites and notation

2.1 Introduction

Robert Hooke is responsible for early work in elasticity and also first identified the

cellular structure of cork using early microscopes in 1665 [75, p. 112]. Hooke’s law

gives a linear relationship between force and deformation in a spring. A linearly

elastic (or Hookean) material is the fundamental principal in the infinitesimal

strain / small strain / linear elastic regime, which adequately explains the be-

haviour of many materials in engineering. This elastic regime was applied to

cellular materials in 1958 to investigate the relationships of cell wall stiffness and

turgor pressure on macroscopic stiffness [123]. An extensive overview of the me-

chanical behaviour of cellular structures, studied under the linearly elastic regime

is provided in [66] (see also [63–65]).

2.1.1 Preliminary concepts from linear elasticity

When a sample undergoes mechanical deformation, the load and the displacement

can be recorded giving a force-deformation curve. The stiffness, rigidity or firmness

is the slope of the initial linear curve. This is considered elastic behaviour if the

original shape is recovered when loads are released. If the deformation rate changes
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2.1. INTRODUCTION

significantly, this could be considered a yield point, which is often an indication of

some microscopic damage/rearrangement. In this case, the original shape is often

not recovered and the result is a plastic deformation. Large scale failure, observed

as a dramatic drop at the end of the force-displacement curve, is an indication of

the material strength and the required force for failure. The toughness is given by

the work done (force times deformation) to reach failure and is also represented

as the area under the curve.

Rescaling the force by the cross sectional area gives stress (Pa) and the defor-

mation by length gives strain (dimensionless). A stress-strain curve and the pa-

rameters derived from it are considered material properties as opposed to sample

properties. The following elastic parameters are important measures of material

properties and are considered constants in the linear elastic regime [113]:

• Young’s modulus, or elastic modulus E > 0 is the stiffness of a material in

uniaxial tension and is given by the slope of the stress-strain curve. The

larger the modulus, the stiffer the material and the more force is required to

deform it.

• Poisson’s ratio ν is the negative ratio of lateral to longitudinal strain in

uniaxial tensile stress. Values of ν are typically between -1 and 0.5 for an

isotropic material, with ν = 0.5 for incompressible materials, which maintain

their volume under deformation.

• Shear modulus µ is the ratio of shear stress to shear strain.

• Bulk modulus κ represents the materials response to uniform compression

or hydrostatic pressure and the resulting decrease in volume. For nearly

incompressible materials κ is large compared to µ, tending towards infinity

for true incompressibility.

For a linear isotropic material (with uniform behaviour in all directions), these

parameters are not independent: from any two, the others can be calculated.
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2.2. LARGE-STRAIN DEFORMATION

2.1.2 Finite elasticity

Finite strain / finite elasticity approaches consider large deformations and capture

non-linear behaviour caused by changes in properties as the deformation progresses

[6,58,84]. These approaches raise numerous challenges and opportunities for new

(and often counter-intuitive) findings. The non-linear elasticity theory has been

applied to the study of cellular materials, capturing behaviours not observed in

the small strain regime, in [103,104,174].

Next, we summarise some elements of finite elasticity theory [67, 73, 88, 112,

127, 157] that are relevant for the results of this thesis, including: deformation of

a solid body (kinematics), stress within a continuum material, and boundary and

contact conditions, which are at the heart of this thesis.

2.2 Large-strain deformation

2.2.1 Deformation

Definition 2.2.1 (material body) A material body B is a set of material points

which occupy a compact domain of the 3D Euclidean space, Ω ⊆ R3. The interior

of the body is an open, bounded and connected subset Ω ⊂ R3 with boundary

Γ = ∂Ω = Ω\Ω, which is Lipschitz continuous, and therefore a unit normal vector

n exists almost everywhere on Γ.

Definition 2.2.2 (reference configuration) A reference (material) configuration

B0 is a chosen configuration where the material points have unique coordinates

X = (X1, X2, X3) ∈ Ω.

Definition 2.2.3 (current configuration) The current (spatial) configuration B is

the configuration after a deformation has been applied and has coordinates x =

(x1, x2, x3) ∈ R3.
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2.2. LARGE-STRAIN DEFORMATION

Transformation from the reference configuration to the current configuration

is achieved with a map χ, such that:

x = χ(X). (2.2.1)

This map is a one-to-one, continuously differentiable vector field χ : Ω → R3

with det(∇χ) > 0 on Ω, such that χ is injective on Ω, to ensure that no two

material points in the interior of the body can map to the same location (no

interpenetration). Then the inverse map χ−1 also exists. The map needs not be

injective on Ω as self-contact is allowed on the body surface (see Figure 2.1).

Figure 2.1: Example of deformation with self-contact.

Definition 2.2.4 (deformation gradient) Changes in length, area and volume are

determined by the deformation gradient

∇χ = F =


∂χ1

∂X1

∂χ1

∂X2

∂χ1

∂X3

∂χ2

∂X1

∂χ2

∂X2

∂χ2

∂X3

∂χ3

∂X1

∂χ3

∂X2

∂χ3

∂X3

 . (2.2.2)

Then, the deformation of a line is given by F, change in area by cofF = det(F)F−T

and volume by the Jacobian J = detF.

Definition 2.2.5 (isochoric deformation) If J = 1 then the volume remains con-

stant and the deformation is said to be isochoric.

Definition 2.2.6 (homogeneous deformation) If the deformation gradient is uni-

form (does not depend on material coordinates) then each part of the material
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2.2. LARGE-STRAIN DEFORMATION

deforms as the whole does and the deformation is said to be homogeneous.

Definition 2.2.7 (displacement field) The displacement field is denoted as:

u(X) = x−X. (2.2.3)

Definition 2.2.8 (displacement gradient) The displacement gradient, more com-

monly used in engineering, is defined as:

∇u = F− I, (2.2.4)

or

∂ui
∂Xj

=
∂χi
∂Xj

− δij = Fij − δij. (2.2.5)

Example 2.2.9 (Simple Shear (SS))

(k,1,1) (1+k,1,1)

(k,1,0)

(1,0,1)

(0,0,0) (1,0,0)

(1+k,1,0)

X2

X1

X3

x2

x1

x3

(0,0,0) (1,0,0)

(0,1,0) (1,1,0)

(0,1,1) (1,1,1)

(1,0,1)

Figure 2.2: Unit cube (left) subject to simple shear (right).

A simple shear (SS) deformation is characterised by [33, 35, 114]:

x1 = X1 + kX2 x2 = X2 x3 = X3, (2.2.6)

where k is a positive constant, i.e. the deformation parallel to the X1 axis is linear.

The gradient tensor for this deformation is

5χ = F =


1 k 0

0 1 0

0 0 1

 . (2.2.7)

det(F) = 1, so this is an isochoric deformation.
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2.2.2 Deformation tensors

Deformation tensors are measures of an elementary vector after deformation. In

finite elasticity, the Cauchy-Green tensors are commonly used: the left Cauchy-

Green tensor B = FFT and the right Cauchy-Green tensor C = FTF. The

Green-Lagrange tensor E = 1/2(C − I) is commonly used in engineering and in

the finite element solver, Finite Elements for Biomechanics (FEBio) [92], employed

in this thesis.

In terms of the displacement gradient, the Green-Lagrange deformation tensor

is expressed as

Eij =
1

2

( ∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

)
. (2.2.8)

In the linear elastic limit, the quadratic terms in the Green-Lagrange tensor

are ignored, giving the linear, infinitesimal deformation tensor

ε = (εij)i,j=1,2,3, εij =
1

2

( ∂ui
∂Xj

+
∂uj
∂Xi

)
. (2.2.9)

In terms of the deformation gradient F, this is equal to

ε =
1

2
(F + FT )− I. (2.2.10)

Both Cauchy-Green tensors are symmetric positive definite (SPD) by construc-

tion and therefore have strictly positive eigenvalues {λ2
i }i=1,2,3, where {λi}i=1,2,3

are known as the principal stretch ratios or principal stretches. λi can be found

by solving the characteristic equation

det(B− λI) = λ3 − I1(B)λ2 + I2(B)λ− I3(B) = 0, (2.2.11)
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where Ii(B) are the principal invariants given by:

I1(B) = tr(B), (2.2.12)

I2(B) = tr(cof((B)) =
1

2
(tr(B)2 − tr(B2)), (2.2.13)

I3(B) = det(B) = J2 (as J = det(F) = det(FT )). (2.2.14)

Note that Ii(B) = Ii(C), for i = 1, 2, 3.

Equivalently, the principal invariants can be expressed as functions of the prin-

cipal stretches as follows:

I1(B) = λ2
1 + λ2

2 + λ2
3, (2.2.15)

I2(B) = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, (2.2.16)

I3(B) = λ2
1λ

2
2λ

2
3. (2.2.17)

Remark 2.2.10 When the right Cauchy-Green tensor is strictly diagonal, C =

diag(λ2
1, λ

2
2, λ

2
3), where {λi}i=1,2,3 are the principal stretches, then

E = diag
(λ2

1 − 1

2
,
λ2

2 − 1

2
,
λ2

3 − 1

2

)
. (2.2.18)

Theorem 2.2.11 The Polar Decomposition Theorem states that any deformation

gradient F can be decomposed as follows,

F = RU = VR, (2.2.19)

where R is a rotation tensor, satisfying RRT = I, U is the right (material)

stretch tensor with respect to the reference configuration, V is the left (spatial)

stretch tensor with respect to the current configuration, and U,V are unique SPD

tensors.
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2.2. LARGE-STRAIN DEFORMATION

For the left and right Cauchy-Green deformation tensors, respectively,

C = FTF = UTRTRU = U2, (2.2.20)

B = FFT = VRRTVT = V2. (2.2.21)

We consider U, with strictly positive eigenvalues {λi}i=1,2,3 and the correspond-

ing mutually orthogonal and normalised set of eigenvectors forming the columns

of a 3× 3 matrix Q = {Qi}i=1,2,3, then the eigenvalue problem is

UQi = λiQi. (2.2.22)

For C, the eigenvalue problem is

CQi = U2Qi = λ2
iQi, (2.2.23)

and thus C and U have the same eigenvectors {Qi}i=1,2,3, and the eigenvalues

of C and the square of the eigenvalues of U. Here, {λi}i=1,2,3 are the principal

stretches (as in (2.2.11)) and {Qi}i=1,2,3 are the Lagrangian (referential) principal

axes. It is then clear that C can be written in terms of a triaxial stretch along the

principal axes. The spectral decomposition of the right Cauchy-Green tensor is a

product of the principal stretches and the Lagrangian principal axes,

C = QΛQT , (2.2.24)

where Λ = diag(λ2
i ).

In terms of the current configuration, we consider F = VR, and substituting

RRT = I, we have

F = RRTVR = RU, (2.2.25)

Page 15



2.3. HYPERELASTIC MATERIALS

where U = RTVR. Therefore,

C = (RTVR)2 = RTV2R. (2.2.26)

Substituting into the eigenvalue problem,

CQi = RTV2RQi = λ2
iQi (2.2.27)

= RRTV2RQi = Rλ2
iQi (2.2.28)

= V2(RQi) = λ2
i (RQi). (2.2.29)

By letting RQi = qi, we find the eigenvalue problem for B,

Bqi = V2qi = λ2
iqi, (2.2.30)

where q = {qi}i=1,2,3 are the Eulerian principal axes in terms of the current

configuration. The spectral decomposition of the left Cauchy-Green deformation

tensor is

B = qΛqT . (2.2.31)

2.3 Hyperelastic materials

A hyperelastic material is characterised by a constitutive law or strain energy den-

sity function, W(F), which depends on the deformation gradient F. It typically

involves various deterministic model parameters, such as the constant elastic mod-

uli for infinitesimal deformations of a material within a given class of functions.

The total strain energy over the domain of the reference configuration is then

E =

∫
Ω

W(F)dV. (2.3.1)
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The following assumptions are long-standing principles in isotropic finite elas-

ticity [67,127,157]:

The principle of material objectivity or frame indifference states that

the constitutive equations must be invariant under changes of frame of reference.

It requires that the scalar strain energy function is unaffected by a superimposed

rigid body transformation (which involves a change of position) after deformation,

i.e. W(RTF) =W(F), where R ∈ SO(3) is a proper orthogonal tensor (rotation).

Material objectivity is guaranteed by considering strain energy functions defined

in terms of invariants.

The principle of material isotropy, or material symmetry requires that

scalar strain energy function is unaffected by a superimposed rigid-body trans-

formation prior to deformation, i.e. W(FQ) = W(F), where Q ∈ SO(3). For

isotropic materials, the strain energy function is a symmetric function of ei-

ther the principal invariants W(F) = W(I1, I2, I3) or the principal stretches

W(F) =W(λ1, λ2, λ3).

2.3.1 Strain energy density functions

For homogeneous isotropic hyperelastic materials described by a strain energy

density function that depends only on the deformation gradient F, we assume

the energy to be identically zero at the unstressed state, i.e. W(I) = 0. By the

principle of objectivity, requiring that the strain energy function is unaffected by

a superimposed rigid-body deformation, and by the material symmetry, W can

be expressed equivalently in terms of the principal invariants I1, I2, I3, or alter-

natively, in terms of the principal stretches λ1, λ2, λ3. In order to simplify the

notation, we write the strain-energy function as W and infer its argument from

the context.
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2.3. HYPERELASTIC MATERIALS

The following isotropic strain energy density functions are used in this thesis,

defined in terms of the principal invariants and the deterministic elastic material

constants:

• Incompressible neo-Hookean

W =
µ

2
(I1 − 3), (2.3.2)

• Compressible neo-Hookean

W =
µ

2
(I1 − 3− ln I3) +

λ

2

(
ln I

1/2
3

)2

, (2.3.3)

• Compressible Mooney-Rivlin

W =
C1

2
(I1 − 3) +

C2

2
(I2 − 3) +

κ

2

(
ln I

1/2
3

)2

, (2.3.4)

• Incompressible Fung

W =
µ

2b

(
eb(I1−3) − 1

)
, (2.3.5)

where b is the stiffening factor.

Transverse isotropy is considered with the addition of a family of extensible

fibres embedded in an incompressible Mooney-Rivlin material:

W(I1, I2, I4) =
C1

2
(I1 − 3) +

C2

2
(I2 − 3) +

C4

4
(I4 − 1)2 , (2.3.6)

where the fourth invariant I4 = (CM)·M and M is a unit vector denoting direction

of transverse isotropy, in the reference configuration.

Page 18



2.3. HYPERELASTIC MATERIALS

2.3.2 Stress

Cauchy stress

The Cauchy (true) stress represents the internal force per unit of deformed area

acting in the deformed solid. For a compressible hyperelastic material, it can be

expressed (in terms of the left Cauchy-Green deformation tensor B) as follows [68],

σ = β0I + β1B + β−1B
−1, (2.3.7)

where

β0 =
2√
I3

(
I2
∂W
∂I2

+ I3
∂W
∂I3

)
, (2.3.8)

β1 =
2√
I3

∂W
∂I1

, (2.3.9)

β−1 = −2
√
I3
∂W
∂I2

. (2.3.10)

For an incompressible hyperelastic material, the Cauchy stress tensor takes the

form

σ = −pI + β1B + β−1B
−1, (2.3.11)

where p is known as the ‘hydrostatic pressure’, or the Lagrange multiplier, for the

incompressibility constraints and I3 = det(B) = 1 [127, p. 200].

The Cauchy stress can also be written equivalently in terms of the right

Cauchy-Green deformation tensor C, as follows,

σ = 2J−1F
∂W
∂C

FT , (2.3.12)

where for an isotropic material,

∂W
∂C

=
∂W
∂I1

I +
∂W
∂I2

(I1I−C) +
∂W
∂I3

I3C
−1. (2.3.13)
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1st Piola Kirchhoff stress

The 1st Piola Kirchhoff stress tensor represents the internal force per unit of

undeformed area acting within the deformed solid. By the Piola transform, it can

be expressed in terms of the Cauchy stress as

P = σcof(F) = JσF−T . (2.3.14)

Equivalently, in terms of the strain energy density function W and the right

Cauchy-Green deformation tensor C,

P = 2F
∂W
∂C

=
∂W
∂F

. (2.3.15)

For an incompressible hyperelastic material, the 1st Piola Kirchhoff stress tensor

takes the form

P =
∂W
∂F
− pF−T . (2.3.16)

2.3.3 Principal stresses

In Section 2.2.2, it was shown that the Cauchy-Green deformation tensors can be

written in terms of principal stretches with respect to the principal directions. A

similar process can be applied to stresses to give strictly diagonal, triaxial stress

tensors, with the diagonal entries known as the principal stresses.

Principal Cauchy stresses

Consider the Cauchy stress defined by (2.3.7). Substituting the spectral decom-

position for B from (2.2.31) and likewise a ‘decomposition’ of I in terms of q (as
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2.3. HYPERELASTIC MATERIALS

the identity matrix is indifferent to the change of basis), we obtain

σ = β0qIqT + β1qΛqT + β−1qΛ−1qT (2.3.17)

= q(β0I + β1Λ + β−1Λ
−1)qT . (2.3.18)

Therefore, the Cauchy stress can also be written in terms of the basis q and takes

the form

σ = σ1q1 ⊗ q1 + σ2q2 ⊗ q2 + σ3q3 ⊗ q3, (2.3.19)

where σi are the principal stress values of the Cauchy stress tensor, and the tensor

product is defined as qi ⊗ qj = qiq
T
j .

If the Cauchy stress is written in terms the right Cauchy-Green deformation

tensor C, as in (2.3.12), then the principal Cauchy stresses take the form

σi = 2J−1λ2
i

∂W
∂λ2

i

, i = 1, 2, 3 (no summation). (2.3.20)

By the chain rule, this becomes

σi = 2J−1λ2
i

∂W
∂λ2

i

= 2J−1λ2
i

∂W
∂λi

∂λi
∂λ2

i

= 2J−1λ2
i

∂W
∂λi

1

2λi
= J−1λi

∂W
∂λi

. (2.3.21)

Principal 1st Piola Kirchhoff stress

Recalling that the 1st Piola Kirchhoff stress is related to the Cauchy stress by

(2.3.14), we obtain the principal stress values of the 1st Piola Kirchhoff stress

tensor,

Pi = Jσi
1

λi
=
∂W
∂λi

, i = 1, 2, 3 (no summation). (2.3.22)

The spectral decomposition of the 1st Piola Kirchhoff stress in terms of prin-
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cipal stresses is

P =
∂W
∂λ1

q1 ⊗Q1 +
∂W
∂λ2

q2 ⊗Q2 +
∂W
∂λ3

q3 ⊗Q3. (2.3.23)

where the second vector in the tensor products now represent the basis of the

reference state.

2.3.4 Material responses: Adscititious inequalities

Decades of theory and experiments have suggested that isotropic nonlinearly elas-

tic materials satisfy the following principles, known as the adscititious inequali-

ties [8, 93,108]:

Baker-Ericksen (BE) inequalities: the greatest principal stress occurs in the

direction of the greatest principal stretch. The BE inequalities in linear elasticity

reduce to µ > 0 and κ > 0, where µ is the shear modulus and κ is the bulk

modulus. For finite elasticity, the BE inequalities are formally stated as follows:

λi 6= λj ⇒ (σi − σj)(λi − λj) > 0, i, j = 1, 2, 3, (2.3.24)

where {λi}i=1,2,3 and {σi}i=1,2,3 are the principal stretches and stresses, respec-

tively, and “≥” replaces the strict inequality “>” if any two principal stretches

are equal.

Considering the form of Cauchy stress given by (2.3.7), the BE inequalities can

also be written in terms of the elastic coefficients [8, 93,108] as follows,

β1λ
2
iλ

2
j − β−1 > 0, i, j = 1, 2, 3. (2.3.25)

Pressure-compression (PC) inequality: each principal stress is a pressure

or a tension according if the corresponding principal stretch is a contraction or an
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elongation, respectively.

σi(λi − 1) > 0, i = 1, 2, 3. (2.3.26)

In practice, mean versions of the PC condition are used, as follows [113],

σ1(λ1 − 1) + σ2(λ2 − 1) + σ3(λ3 − 1) > 0, (2.3.27)

or

σ1

(
1− 1

λ1

)
+ σ2

(
1− 1

λ2

)
+ σ3

(
1− 1

λ3

)
> 0, (2.3.28)

if not all λi = 1, i = 1, 2, 3. In general, BE ; PC and PC ; BE [103].

2.4 Boundary value problems

2.4.1 Elastostatic equilibrium

For a deformed body, the equilibrium state can be described by the Eulerian field

equation

−div σ = b(x), (2.4.1)

where b(x) is the total body forces acting on the object, for example, due to

gravity.

The deformed configuration may not be known, so it can be more convenient

to define the equilibrium equation in terms of the reference configuration, giving

the Lagrangian equation

−Div P = b0(X), (2.4.2)

where b0(X) = J−1b(x). In the absence of body forces b0(X) = 0.

The above governing equations are completed by a constitutive law, depending

on material properties (Section 2.3), and supplemented by boundary conditions.
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2.4.2 Boundary conditions

The solution of a boundary value problem (BVP) is the displacement field u(X),

such that the equilibrium equation (2.4.2) is satisfied for all X ∈ Ω, together with

the following conditions on the boundary ∂Ω = Γ. Here, we consider the relatively

disjoint and open subset {Γ0,ΓD,ΓN ,ΓC} ⊂ Γ, such that Γ \ (Γ0 ∪ ΓD ∪ ΓN ∪ ΓC)

has zero area [88, Chapter VI].

Dirichlet (displacement) conditions. The displacement is zero where the

object is fixed:

u(X) = 0 on Γ0. (2.4.3)

The displacement is prescribed:

u(X) = uD on ΓD. (2.4.4)

Neumann (stress/traction) condition. External normal force applied at the

surface causes a normal stress:

τ = σn = g(x) on ΓN , (2.4.5)

or equivalently, in the reference configuration,

P(X)N = g0(X) on ΓN , (2.4.6)

where g(x) and g0(X) are the traction forces, and n and N are the normal vectors

to ΓN . Here, the subscript 0 refers to a vector with respect to the reference

configuration.
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Unilateral contact conditions. Acting on ΓC , the area where contact is pos-

sible [88, 112]:

• Contact displacement condition (interpenetration of bodies cannot occur):

[uC ] ·N ≤ d, where [uC ] = [u(X)− u(X′)] (2.4.7)

where X and X′ are material points potentially in contact (within different

bodies, or the same body for self-contact), N is the normal vector, [uC ] is

a function of the displacement giving the relative distance between the con-

tacting surfaces, and d ≥ 0 is a bounded measurable gap between surfaces,

which is the distance that cannot be exceeded between potential contacting

points.

• Normal contact pressure (surface loads cause compressive stress in the ma-

terial body):

P(X)N ·N = gC(X) ·N ≤ g (2.4.8)

where gC(X) is the force acting on the contact surface and g ≥ 0 is the

cohesion parameter, a force that must be overcome to separate (debond) the

contacting surfaces.

• Complementarity condition (if there is contact pressure, then contact occurs,

while no contact results in no contact pressure):

([uC ] ·N− d)(P(X)N ·N− g) = 0 (2.4.9)

The complementarity condition is highlighted in Figure 2.3, with d = 0 and

g = 0.

• Newton’s third law (if two material points map to the same point in space,

Page 25



2.4. BOUNDARY VALUE PROBLEMS

equal and opposite reaction forces occur):

gC(X) = P(X)N = −P(X′)N′ = −gC(X′) if χ(X) = χ(X′) (2.4.10)

Contact No contact

Figure 2.3: The complementarity condition, with two bodies Ω1 and Ω2 in contact
(left) and not in contact (right). Where the bodies are in contact, a force is possible
through the contact interface, whereas when there is a gap uC < 0 the normal
force must be zero.

Here, general unilateral contact conditions are given for surfaces with cohesion

and a permissible bounded gap (in which objects are still considered in contact)

in the absence of friction [88, 112]. We can define contact in terms of the current

state or the reference state. Here, it is stated in terms of the reference state.

The complexity of contact problems modelling structural systems is generally

associated with the detection of contacts and openings, and the resolution of non-

linear equations for contact [102, 112]. These problems originate in the so-called

problem with ‘ambiguous boundary conditions’ which was first posed by the Italian

mathematician Antonio Signorini in 1933 [149].
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2.4.3 Variational formulation

To form the variational problem which will be solved numerically, we need to define

the kinematically and statically admissible fields (conditions on displacement and

force, respectively). For simplicity, we assume the cohesion parameter and the

permissible gap to be zero, i.e. g = 0 and d = 0.

Definition 2.4.1 (kinematically admissible fields) The vector field u is a kine-

matically admissible displacement if and only if it simultaneously satisfies both

the Dirichlet boundary condition and the non-penetrative contact condition. We

denote the closed convex set of kinematically admissible fields by:

K = {u′ ∈ W 1,s(Ω;R3) |u′(X) = uD on ΓD, (2.4.11)

[uC ] ·N ≤ 0 on ΓC}, (2.4.12)

where W 1,s is a Sobolev space. The condition s > 3/2 is sufficient for a solution

to exist [112].

Definition 2.4.2 (statically admissible fields) A tensor field F = I + ∇u is a

statically admissible field if and only if ∂W/∂F simultaneously satisfies the elasto-

static equilibrium condition, Neumann boundary condition and contact conditions

(contact pressure and Newton’s third law - for every action, there is an equal and

opposite reaction). We denote the closed convex set of statically admissible gradi-

ent field by:

S = {F′ ∈ Lq(Ω;R) |Div
∂W
∂F′

= 0 in Ω, (2.4.13)

∂W
∂F′

N = gN on ΓN , (2.4.14)

∂W
∂F′

N ·N = gC ·N ≤ 0 on ΓC , (2.4.15)

gC(X) = −gC(X′) if χ(X) = χ(X′) on ΓC}, (2.4.16)
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where Lq is a Lebesgue space with q > 1, such that the function is greater than

once integrable [112].

2.4.4 Weak formulation (without contact)

If there are no contact boundaries to be resolved and no body forces present,

then the variational (weak) form of the potential energy is as follows: Find the

displacement u = x−X ∈ K such that

∫
Ω

∂W
∂F

(X,F(u)) : ∇vdV =

∫
ΓN

gN · vdA, (2.4.17)

with the admissible test field v = u′−u, u′ ∈ K, gN is the normal surface traction

measured per unit area of the undeformed state. This can be solved by employing

the Newton-Raphson Method [88,109].

2.4.5 Weak formulation with unilateral contact

In the case of unilateral (i.e. non-penetrative, cohesionless, frictionless) contact,

and in the absence of body forces, the weak variational form of the potential energy

is as follows: Find the displacement u = x−X ∈ K such that

∫
Ω

∂W
∂F

(X,F(u)) : ∇vdV =

∫
ΓN

gN · vdA+

∫
ΓC

∂W
∂F

N · (v + u)dA (2.4.18)

with the admissible test field v = u′−u, u′ ∈ K, gN is the normal surface traction

measured per unit area of the undeformed state.

Note the difference between the energy equation without contact (2.4.17) and

with contact (2.4.18) is the integral over the contact area. Solving (2.4.18) is more

complex and computationally expensive.
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2.4.6 Solution schemes

In this thesis, there are two solution schemes used:

1. Semi-inverse method;

2. Finite element method.

Both approaches are briefly described, along with their strengths and weaknesses.

Semi-inverse method

In continuum mechanics, the semi-inverse method is one of the few analytical

techniques able to obtain exact solutions. The approach is as follows:

1. Describe:

(a) material, geometry and if it is static or dynamic,

(b) deformation,

2. Find:

(a) material responses (such as stress),

(b) mechanical behaviour.

Exact solutions provide powerful insights and direct understanding of the non-

linear behaviour of solids. The semi-inverse method depends on the deformation

being defined a priori. Often we assume homogeneous deformations and substitute

into the field equations, hoping that they simplify such that exact solutions to

BVPs can be acquired. For complex deformations, the deformation cannot be

described and the semi-inverse method cannot be employed. Here, approximate

solutions can be obtained by numerical procedure, where it is cast as a variational

problem used to generate finite element methods.
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Finite element method

The finite element method (FEM) is a numerical method to analyse an object

to approximate its deformation and stresses (see [88,124] and references therein).

FEM requires inputs such as geometry, material properties and boundary condi-

tions. The inputs create a variational formulation, such as (2.4.17), that requires

numerical integration. The solid is discretised into intervals, known as a mesh.

Each element (which could be a 4 node tetrahedral element) in the mesh has a

simple function to approximate it’s displacement. A large set of linear equations is

formulated where the unknowns are the displacement at each node. These linear

equations are then solved. FEBio is a Finite element solver specifically designed

for biomechanics and as such provides the requires hyperelastic material models

and boundary conditions appropriate for modelling biological tissue [92].

In the last decade the finite element method has become more powerful (with

increasing computing power) and highly accessible (with simple user interfaces

and work flows). It is capable of approximating complex coupled fields problems

and produces highly detailed visual outputs with colour maps for stress and dis-

placement. As it is an approximation, there are several factors which affect it’s

accuracy, such as the density of the mesh and the shape of elements used. It can

also suffer from diverging solutions in the minimization algorithm, for which the

cause is not always obvious. In contrast to the semi-inverse method, calculating

incompressible materials is not possible and the material stiffness is overestimated,

which is called “element locking”. However, no real material is truly incompress-

ible and the FEM software has a special class of nearly incompressible materials.

Remark 2.4.3 It is important to note that although physical phenomena are be-

ing explored, assumptions and simplifications must be made on the material, the

deformation and the boundary conditions.

Remark 2.4.4 In non-linear elasticity, multiple solutions can exist, as seen, for

example, in the case of the classic problem of the Rivlin cube [116, 137].
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Chapter 3

Debonding of sheared cell walls

3.1 Introduction

Many cellular solids are anisotropic due to the structural distribution of the cells as

well as the cell wall material aeolotropic properties. For example, at the millimetre

scale, wood is a cellular structure, which can be modelled as a hexagonal prismatic

honeycomb, while at the micrometre scale, the cell walls are fibre-reinforced com-

posites, made up of fibres of crystalline cellulose embedded an amorphous matrix of

hemicellulose and lignin. Features such as wood density, representing the relative

quantity of the cell wall in a given volume of wood tissue, and microfibril angle

play important roles in the stiffness and load bearing capacity of this complex

structure, and the impact of their variations on the tree biomechanical perfor-

mance is non-trivial [38, 56, 65, 66, 136]. While wood density varies significantly,

the composition and strength of the cell wall is less variable, and phenomena such

as cell debonding, commonly known as “cell-peeling”, consisting in “the pulling

apart of two halves of the cell wall which debond along the central lamella” are

responsible for fast and extensive crack propagation in many wood types [7]. The

behaviour of wood is captured well by the small strain regime, however analogous

behaviours occur in softer plant tissue, where large strains require a non-linear

framework.
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The relevant scale at which such phenomena occur, though beyond the capac-

ity of the human eye, can be followed by mechanical analysis and mathematical

models based on micro-structural evidence [18,89,122]. To effectively capture cell

wall debonding, mathematical models that account for the attachment between

cells, which in some structures may sufficiently weaken so that cells separate, are

required for improved predictions of large distortions and failure in cellular struc-

tures. However, obtaining suitable models that are, at the same time, physically

plausible, mathematically tractable, and computationally feasible raises many the-

oretical and numerical challenges.

In this study, we model cellular structures with non-linear hyperelastic cell

walls under large shear deformations [110], and incorporate cell wall material

anisotropy [33,35] and unilateral contact between neighbouring cells in our struc-

tural models [25, 26, 82, 88, 112]. The theoretical and computational challenges

raised by these models range from the non-linear deformation of the individual

elastic cell walls, to the detection of contact and openings between individual

cells. For the cell wall material, we consider one of the most common features

of many cellular solids, namely transverse isotropy, whereby the material has one

axis of rotational symmetry and the cell wall is stiffer in that direction [76,85,99].

The fibre direction is often aligned close to the vertical axis of the cell [64], with

fibre angle varying in-plane, as the cell walls are thin. We analyse the mechanical

behaviour of two cuboid cell walls in unilateral, frictionless, contact and subject

to generalised shear deformation, and find that, if the walls are in mutual contact

in the undeformed state, then gaps can form at the interface between the sheared

walls. Although the finite shear deformation of transversely isotropic hyperelastic

solids was previously analysed in the literature, a similar study of the simultaneous

shear deformation of two transversely isotropic bodies under unilateral contact has

not been carried out before. Furthermore, our theoretical and numerical results

help to explain the important role of internal cell pressure in some natural cellular
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structures (such as apples, potatoes, pears, tomatoes, kiwi) where cell debond-

ing occurs. In Section 3.2, we analyse theoretically the mechanical behaviour

of two cuboids of incompressible transversely isotropic Mooney-Rivlin material

in unilateral (frictionless) contact and subject to simultaneous generalised shear

deformations, and demonstrate the appearance of gaps at the potential contact

zone. In Section 3.3, we extend this approach to include time dependence, for a

more simple material, such as the isotropic incompressible neo-Hookean material,

and find that walls have multiple modes of deformation, which suggests a greater

likelihood of debonding than the static case.

3.2 Fibre-reinforced cell walls under shear

The classical problem of generalised shear deformation involves finite plane de-

formations of a rectangular section of a material in which straight lines parallel

to the X1-axis are displaced relative to one another in the X2-direction, and the

straight lines parallel to the X2-axis in the undeformed state remain parallel af-

ter the deformation. When a cuboid cell wall is subject to generalised shear, the

deformation takes the form:

x1 = X1 + f(X2), x2 = X2, x3 = X3, (3.2.1)

where X = (X1, X2, X3) and x = (x1, x2, x3) are the Cartesian coordinates for the

reference (Lagrangian, material) and the deformed (Eulerian, spatial) representa-

tion, respectively, and f is a function to be determined (see Figure 3.1).

In particular, for the simple shear deformation, (3.2.1) takes the form:

x1 = X1 + kX2, x2 = X2, x3 = X3, (3.2.2)

where k is a positive constant (see Figure 3.2) [34, 35, 108, 157]. In this case, the
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Figure 3.1: Unit cube (left) subject to generalised shear (right).

straight lines parallel to the X1 or the X2-axis in the undeformed state remain

straight and parallel after the deformation.

Figure 3.2: Unit cube (left) subject to simple shear (right).

For a cuboid wall of incompressible Mooney-Rivlin material under the deforma-

tion (3.2.1), Green & Adkins (1970) [68, pp. 127-129] found that the straight lines

parallel to the X2-axis deform in the shape of a quadratic parabola. In the semi-

inverse method where the deformation is defined, the surface tractions need not be

known a priori. However, a normal stress may be needed on the inclined faces to

enforce this deformation, which is important for defining the boundary conditions

in finite element simulations. The surface tractions for simple shear are calculated

by Mihai & Goriely (2013) [109] in their paper investigating the Poynting effect

in simple shear deformations of Mooney-type materials. The positive Poynting

effect in shear is obtained if “the sheared faces tend to spread apart”, while the

negative Poynting effect occurs if “the sheared faces tend to draw together”.

The generalised shear of anisotropic incompressible materials was analysed by
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Merodio et. al [100] and Destrade et al. [36]. Both assume that the material is

clamped between two rigid plates and is infinite in length. To account for material

anisotropy, the strain energy density function is decomposed into an isotropic and

anisotropic part, such that

W =Wiso +Wani. (3.2.3)

They used an incompressible neo-Hookean material for Wiso and a standard rein-

forcing model for Wani, where

Wani =
γ

4
(I4 − 1)2 , (3.2.4)

with γ > 0 being a material constant describing fibre stiffness. Merodio et. al [100]

found that instabilities such as fibre kinking can occur whereas Destrade et al. [36]

studied two families of fibres embedded int the material and found instabilities can

occur from their relative orientation.

Here, we consider two hyperelastic bodies made from an incompressible trans-

versely isotropic material containing one family of extensible fibres embedded in

a Mooney-Rivlin material, which is described by the strain energy density func-

tion [33,35,88]

W(I1, I2, I4) =
C1

2
(I1 − 3) +

C2

2
(I2 − 3) +

C4

4
(I4 − 1)2 , (3.2.5)

where I1, I2, I3 are the principal isotropic invariants, I4 is the anisotropic invariant,

and C1 > 0, C2 > 0, and C4 > 0 are constants. If the fibres are contained in the

plane (X1, X2) and oriented in the direction

M =


cosψ

sinψ

0

 , (3.2.6)
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where ψ ∈ [0, π/2], in the reference configuration, then the stretch of the fibre λ4

under the deformation (3.2.1) is given by the parameter

I4 = λ2
4 = (CM) ·M = (f ′)2 sin2 ψ + 2f ′ sinψ cosψ + 1. (3.2.7)

(-1,0,0) (0,0,0) (1,0,0)

(-1,1,0) (0,1,0) (1,1,0)

(-1,1,1) (0,1,1) (1,1,1)

(1,0,1)

(-1+f(1),1,1) ( ,1,1)f(1) (1+ ,1,1)f(1)

( ,1,0)f(1)(-1+f(1),1,0)

(1,0,1)

(1+ ,1,0)f(1)

X2

X1

X3

x2

x1

x3

M

(-1,0,0) (0,0,0) (1,0,0)

Figure 3.3: Two unit cubes in unilateral contact (left) deformed by generalised
shear (right), with the fibre direction M also shown.

Assuming that the bodies are initially in contact at a common interface, we

wish to determine whether they will separate if they are deformed simultaneously

by the generalised shear (see Figure 3.3). For the deformation (3.2.1), the defor-

mation gradient is equal to

F =


1 f ′ 0

0 1 0

0 0 1

 , (3.2.8)

where f ′ is the derivative of f with respect to X2. The associated left and right

Cauchy-Green tensors are, respectively,

B = FFT =


(f ′)2 + 1 f ′ 0

f ′ 1 0

0 0 1

 C = FTF =


1 f ′ 0

f ′ (f ′)2 + 1 0

0 0 1

 ,
(3.2.9)
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and their principal invariants are

I1 = tr C = (f ′)2 + 3, (3.2.10)

I2 = tr (Cof C) =
1

2

[
(tr C)2 − tr C2

]
= (f ′)2 + 3, (3.2.11)

I3 = det C = 1. (3.2.12)

For a deforming body made of a homogeneous incompressible transversely

isotropic hyperelastic material described by the strain energy functionW(I1, I2, I4),

the Cauchy stress tensor can be represented as

σ = −pI + β1B + β−1B
−1 + β4FM⊗ FM, (3.2.13)

where β1 = 2∂W/∂I1, β−1 = −2∂W/∂I2, and β4 = 2∂W/∂I4 are the material

response coefficients, and p is a Lagrange multiplier associated with incompress-

ibility (3.2.12).

In particular, if the material is reinforced with fibres which are oriented in the

direction (3.2.6), then

FM⊗ FM =


(f ′ sinψ + cosψ)2 f ′ sin2 ψ + sinψ cosψ 0

f ′ sin2 ψ + sinψ cosψ sin2 ψ 0

0 0 0

 . (3.2.14)

Then, by (3.2.9) and (3.2.14), the components of the Cauchy stress (3.2.13)
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take the form

σ11 = −p+ β1 + β−1 + β1(f ′)2 + β4 (f ′ sinψ + cosψ)
2
, (3.2.15)

σ12 = (β1 − β−1)f ′ + β4

(
f ′ sin2 ψ + sinψ cosψ

)
, (3.2.16)

σ22 = −p+ β1 + β−1 + β−1(f ′)2 + β4 sin2 ψ, (3.2.17)

σ33 = −p+ β1 + β−1, (3.2.18)

σ13 = σ23 = 0, (3.2.19)

where

β1 = C1, β−1 = −C2, β4 = C4

[
(f ′)2 sin2 ψ + 2f ′ sinψ cosψ

]
. (3.2.20)

Next, by the equilibrium equation in absence of body forces (2.4.1), it follows

that

∂σ11

∂x1

+
∂σ12

∂x2

= 0, (3.2.21)

∂σ12

∂x1

+
∂σ22

∂x2

= 0, (3.2.22)

∂σ33

∂x3

= 0, (3.2.23)

and substituting (3.2.15)-(3.2.18) in (3.2.21)-(3.2.23) yields

∂p

∂x1

=
∂

∂x2

[
(β1 − β−1)f ′ + β4

(
f ′ sin2 ψ + sinψ cosψ

) ]
, (3.2.24)

∂p

∂x2

=
∂

∂x2

[
β1 + β−1[(f ′)2 + 1] + β4 sin2 ψ

]
, (3.2.25)

∂p

∂x3

= 0. (3.2.26)

Equation (3.2.26) shows that p is independent of x3, while equation (3.2.24)

implies that p is a linear function of x1. Next, integration of (3.2.25) with respect
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to x2, gives

p(x1, x2) = β1 + β−1 + β−1(f ′)2 + β4 sin2 ψ + ax1 + c, (3.2.27)

where a and c are undetermined constants. By (3.2.24) and (3.2.27),

∂

∂X2

[
(β1 − β−1)f ′ + β4

(
f ′ sin2 ψ + sinψ cosψ

) ]
= a, (3.2.28)

and the constant c remains to be obtained from the contact conditions.

Integrating and substituting β1, β−1, and β4 using (3.2.20) yields the following

cubic equation in f ′

C4(f ′)3 sin4 ψ+ 3(f ′)2C4 sin3 ψ cosψ+
(
C1 + C2 + 2C4 sin2 ψ cos2 ψ

)
f ′ = aX2 + b,

(3.2.29)

where b is an arbitrary constant.

In particular, if the fibres align in the X1-direction in the reference configura-

tion, i.e. ψ = 0, then β4 = 0 and (3.2.29) reduces to a linear equation in f , as in

the isotropic case.

We now focus our investigation on the special case when the fibres align in the

X2-direction, i.e. ψ = π/2. In this case, by (3.2.27) and (3.2.20),

p(x1, x2) = C1 − C2 + (C4 − C2)(f ′)2 + ax1 + c, (3.2.30)

and the stress components (3.2.15)-(3.2.18) take the form:

σ11 = (C1 + C2 − C4)(f ′)2 + C4(f ′)4 − ax1 − c, (3.2.31)

σ12 = (C1 + C2)f ′ + C4(f ′)3, (3.2.32)

σ22 = −ax1 − c, (3.2.33)

σ33 = (C2 − C4)(f ′)2 − ax1 − c. (3.2.34)
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The equation (3.2.29) simplifies as

C4(f ′)3 + (C1 + C2) f ′ = aX2 + b, (3.2.35)

where C1 > 0, C2 > 0, and C4 > 0.

Assuming that the fibres are much stiffer than the matrix, so that C4 � C1+C2,

(3.2.35) becomes

C4

[
(f ′)3 +

C1 + C2

C4

f ′
]

= aX2 + b. (3.2.36)

It can be approximated as

C4(f ′)3 = aX2 + b. (3.2.37)

3.2.1 Possible shear deformations

Assuming that, during the deformation, the points of coordinates (X1, 0, 0) remain

fixed and those of coordinates (1, X2, 0) are deformed into (1, X2 + k, 0), i.e.

f(0) = 0 and f(1) = k, (3.2.38)

the following two cases are distinguished:

(i) If a = 0, then (3.2.37) reduces to

f ′ =
( b

C4

)1/3

. (3.2.39)

Then, by (3.2.38), this reduces to simple shear

f =
( b

C4

)1/3

X2 = kX2, (3.2.40)

with b = C4k
3.
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(ii) If a 6= 0, then solving (3.2.37) in f ′ yields

f ′ =

(
a

C4

)1/3(
X2 +

b

a

)1/3

, (3.2.41)

and integration with respect to X2 gives

f =
3

4

(
a

C4

)1/3(
X2 +

b

a

)4/3

. (3.2.42)

Then, by (3.2.38), b = 0 and a = C4(4k/3)3, i.e.

f = kX
4/3
2 . (3.2.43)

Note that in the paper [114], the Dirichlet condition f(1) = k was replaced with

the Neumann condition f ′(1) = k, with similar results. The Dirichlet conditions

in (3.2.38) are used as they are more general, for shear deformation.

3.2.2 The unilateral contact constraints

Now, we consider two unit cubes made from the same fibre-reinforced material de-

scribed by the strain energy function (3.2.5) and occupying the reference domains

[−1, 0]× [0, 1]× [0, 1] and [0, 1]× [0, 1]× [0, 1], respectively, with the fibres aligning

in the X2-direction (i.e. ψ = π/2). Assuming that the two cubes are sheared

simultaneously by (3.2.1), such that f(0) = 0, where f satisfies (3.2.40) for the

first cube and (3.2.43) for the second cube, while at the interface between the

two cubes, the contact conditions (2.4.7)-(2.4.10) are satisfied such that d = 0,

we wish to verify if it is possible for gaps to appear at the common interface

(X1, X2, X3) ∈ {0} × [0, 1]× [0, 1].

Since gaps do not appear when the two bodies deform by the same deformation,

we assume f1(X2) = kX2 as given by (3.2.40) for the first cube and f2(X2) = kX
4/3
2

as given by (3.2.43) for the second cube, such that f1(0) = f2(0) = 0. We wish
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to verify if, in this case, the contact condition (2.4.7)-(2.4.10) are simultaneously

satisfied. The unit normal vector at any point on the curve (0, X2) is

N = [1, 0, 0]T . (3.2.44)

• The unilateral contact condition (2.4.7) between the deforming cubes is

0 ≤ [uC ] ·N = f1(X2)− f2(X2), ∀X2 ∈ (0, 1), (3.2.45)

and, since

f1(X2) = kX2 > kX
4/3
2 = f2(X2), for all X2 ∈ (0, 1), (3.2.46)

it follows that the condition (3.2.45) is satisfied.

• The normal forces condition (2.4.8) for each cube is

PN ·N = σ11 − f ′iσ12 ≤ g, ∀X2 ∈ (0, 1), i = 1, 2. (3.2.47)

Equivalently, by (3.2.31)-(3.2.32),

PN ·N = −C4(f ′i)
2 − ax1 − c ≤ g, ∀X2 ∈ (0, 1), i = 1, 2, (3.2.48)

where x1 = X1 + fi(X2) for i = 1, 2.

Since X1 = 0 at the interface between the two bodies in the reference con-

figuration, the condition (3.2.48) is equivalent to

PN ·N = −C4(f ′i)
2 − afi − c ≤ g, ∀X2 ∈ (0, 1), i = 1, 2. (3.2.49)

Page 42



3.2. FIBRE-REINFORCED CELL WALLS UNDER SHEAR

For the first cube, a = 0 and (3.2.49) takes the form

PN ·N = −C4k
2 − c1 ≤ g, (3.2.50)

where the constant c1 remains to be determined.

For the second cube, a = C4(4k/3)3 and (3.2.49) becomes

PN ·N = −C4

(
4

3

)2

k2X
2/3
2 −C4

(
4

3

)3

k4X
4/3
2 − c2 ≤ g, ∀ X2 ∈ (0, 1),

(3.2.51)

where the constant c2 is to be determined.

• In the reference configuration, at X2 = 0, [uC ]·N = 0 and the action-reaction

relation (2.4.10) implies

c2 = C4k
2 + c1. (3.2.52)

• By the complementarity condition (2.4.9), since by (3.2.46), the relative

displacement across the interface between the two cubes is strictly greater

than zero for all X2 ∈ (0, 1), the corresponding normal contact stress must

satisfy

PN ·N = g. (3.2.53)

For the first cube, (3.2.53) holds if and only if the equality in (3.2.50) is

satisfied, i.e.

c1 = −C4k
2 − g. (3.2.54)

For the second cube, by (3.2.52) and (3.2.54),

c2 = −g, (3.2.55)
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and (3.2.51) simplifies as follows

−C4

(
4

3

)2

k2X
2/3
2 − C4

(
4

3

)3

k4X
4/3
2 ≤ 0, ∀ X2 ∈ (0, 1). (3.2.56)

Note that, by taking k → 0, the equality in (3.2.56) is satisfied to the first

order in k, hence (3.2.53) holds for sufficiently small k.

Under the given assumptions and prescribed deformation, the contact condi-

tions (2.4.7)-(2.4.10) with d = 0 are simultaneously satisfied for both cubes. If

the contact conditions had not been satisfied then we would have concluded that

the assumptions and/or prescribed deformation were incorrect, but since they are

satisfied, it is possible for gaps to appear at the common interface between the

two cubes when these are sheared simultaneously.

3.2.3 The cohesive effect of internal cell pressure

We now turn our attention to the normal stresses (3.2.48) at the external faces

(X1, X2, X3) ∈ [−1, 1]× [0, 1]× [0, 1]. Assuming that the cells are filled and there

is a normal force g0 ≤ g exerted by the cell core on the faces of the cell walls,

then, at these faces,

PN ·N = −C4(f ′)2 − aX1 − af − c = g0, ∀X2 ∈ (0, 1), (3.2.57)

where X1 ∈ {−1, 1}.

For the first cube, the normal stresses (3.2.57) are equal to that at the interface

between the two cubes, i.e.

PN ·N = −C4k
2 − c1 = g0. (3.2.58)

Page 44



3.2. FIBRE-REINFORCED CELL WALLS UNDER SHEAR

For the second cube, (3.2.57) takes the form

PN·N = −C4

(
4

3

)2

k2X
2/3
2 ±C4

(
4

3

)3

k3−C4

(
4

3

)3

k4X
4/3
2 −c2 = g0,∀X2 ∈ (0, 1),

(3.2.59)

and if k → 0, then these stresses are also equal to the normal stress at the interface

between the two cubes to the first order in k.

Consequently, if g0 = g, then the contact conditions are satisfied and we cor-

rectly assumed that gaps may appear at the interface between the two cubes. Else

if g0 < g, then the complementarity condition is not met and the assumption of

gaps appearing between the cell walls does not hold. In particular, when g = 0,

if the cells are empty, i.e. g0 = 0, then the sheared cell walls may debond due

to gaps appearing between adjacent cell walls, whereas if the cells are filled and

there is internal pressure g0 < 0 exerted on the cell walls, then these walls remain

in full contact during the generalised shear deformation.

3.2.4 Surface tractions

The semi-inverse method requires the deformation to be defined a priori and then

an exact solution to a BVP can be attempted. The required surface tractions to

enforce the deformation do not need to be defined a priori and can depend on the

solution to the BVP and the contact conditions. Here we calculate the normal and

tangential stresses which must be applied to the faces in the planes X1 = −1, 0, 1,

to enforce these deformations.

The normal and tangential stresses on the vertical cell walls in order to ensure

the prescribed deformation are given by

PN = N · (PN), (3.2.60)

PT = (PN)− [N · (PN)]N, (3.2.61)
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where N = [1, 0, 0]T in the reference configuration. In terms of the Cauchy stress

components this becomes

PN = σ11 − f ′σ12, (3.2.62)

PT =


0

σ21 − f ′σ22

σ31 − f ′σ32

 =


PT1

PT2

PT3

 . (3.2.63)

From the Cauchy stresses given in (3.2.31)-(3.2.34)

PN = −C4(f ′)2 − ax1 − c, (3.2.64)

PT2 = (C1 + C2 + ax1 + c)f ′ + C4(f ′)3, (3.2.65)

PT3 = 0. (3.2.66)

By (3.2.35) and x1 = X1 + f(X2),

PN = −C4(f ′)2 − a(X1 + f)− c, (3.2.67)

PT2 = aX2 + b+ (ax1 + c)f ′ = a(X2 +X1f
′ + ff ′) + b+ cf ′. (3.2.68)

From Section 3.2.1, we know that for the cube deformed by f = kX2: a = 0 and

b = C4k
3, and for the cube deformed by f = kX

4/3
2 : a = C4(4k/3)3 and b = 0.

The values for c for each cube are defined in (3.2.54)-(3.2.55), resulting from the

complementarity condition. Thus, for the first cube

PN = g, (3.2.69)

PT2 = −gk. (3.2.70)
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and for the second cube,

PN = g − C4(4k/3)2X
2/3
2 − C4(4k/3)3X1 − C4k(4k/3)3X

4/3
2 , (3.2.71)

PT2 = −g(4k/3)X
1/3
2 + C4(4k/3)3X2 + C4(4k/3)4X1X

1/3
2 + C4k(4k/3)4X

5/3
2 .

(3.2.72)

Considering small deformation, a first order approximation in k reduces the

surface tractions on the second cube to

PN = g, (3.2.73)

PT2 = −g(4k/3)X
1/3
2 . (3.2.74)

The dependence on X2 in the second cube’s tangential stress is hard to implement

in simulation, but essential to enforce the exact deformation prescribed. Without

these surface tractions a different deformation would occur and one that that

would be less tractable using the semi-inverse method.

3.2.5 Numerical examples

In this section, we illustrate numerically the shear deformation of two hypere-

lastic cuboid walls in unilateral contact, with and without internal cell pressure

and demonstrate it’s cohesive effect. The numerical example presented here was

realised within the open-source Finite Elements for Biomechanics (FEBio) soft-

ware environment [92], and in particular, unilateral contact was approximated

numerically using the inbuilt FEBio finite element implementation.

First, we consider two cuboid walls of hyperelastic material described by (3.2.75)

and occupying the domains [−1, 0]×[−1, 1]×[0, 1] and [0, 1]×[−1, 1]×[0, 1], respec-

tively, in the undeformed state, as in Figure 3.4. The bodies are allowed frictionless

non-penetrative contact on the faces in the plane X1 = 0. Both cuboids are de-

formed simultaneously by imposing the following Dirichlet boundary conditions:
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• u1 = k on faces in the plane X2 = 1;

• u1 = −k on faces in the plane X2 = 0;

• u2 = 0 on faces in the planes X2 = 0, 1;

• u3 = 0 on faces in the planes X1 = −1, 0, 1, X2 = 0, 1 and X3 = 0, 1,

where ui is a displacement in the ith direction. The following Neumann boundary

conditions are applied:

• g1,g2,g3 = 0 on faces in the planes X1 = −1, 0, 1,

where gi is a force applied in the ith direction. These surface tractions are derived

from (3.2.69)-(3.2.74) where the cohesion parameter g = 0. If we did not set

g = 0 then there would have been a dependence on X2 which is not possible to

implement in FEBio. It is also important to highlight that g1 and g2 are defined in

the reference state and the normal N does not change throughout the deformation.

In a second simulation, in addition to the above boundary conditions, an extra

Neumann boundary condition is applied:

• g1 = g0 on faces in the plane X1 = −1, 1,

where the g0 = 0.1 MPa represents the force from a cell core.

(-1,1,0) (0,1,0) (1,1,0)

(-1,1,1) (0,1,1) (1,1,1)

X2

X1

X3

x2

x1

x3

(-1,-1,0) (0,-1,0) (1,-1,0)

(k,1,1) (k,1,1) (1+k,1,1)

(k,1,0)(-1+k,1,0) (1+k,1,0)

(-1,0,0) (0,0,0) (1,0,0)(-1,0,0) (0,0,0) (1,0,0)

(-k,-1,0)(-1-k,-1,0) (1-k,-1,0)

Figure 3.4: Two cuboids in unilateral contact (left) deformed by generalised shear
(right). Note the antisymmetry of the deformation with respect to the horizontal
line separating each undeformed cuboid into unit cubes.
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In the computer simulation, the transverse isotropic hyperelastic material is

characterised by the strain energy function [162]

W(I1, I2, I4) =
C1

2
(I1 − 3) +

C2

2
(I2 − 3) +

1

2
κ(ln J)2 +

C4

4
(I4 − 1)2, (3.2.75)

where C1 = 0.1 MPa, C2 = 0.01 MPa, κ = 100 MPa, C4 = 1 MPa, and the fibre

direction is parallel to the contact surface [168].

The undeformed and deformed bodies are represented in Figure 3.5A, where

gaps across their interface are captured in the deformed state. In Figure 3.5B, for

the two bodies, normal pressure g0 is also applied on the two external side surfaces,

causing the bodies to remain in full (active) contact after the deformation.

(A)

(B)

Figure 3.5: Finite element representation of two cuboids of hyperelastic material in
mutual unilateral contact, with dimensionless size 1×2×1 each in the undeformed
state (left), and under generalised shear deformation (right), when the lateral
external sides are (A) free and (B) subject to uniform normal pressure. The
colour bar indicates displacements in the X1- (horizontal) direction.

For FEM, the contact interfaces are split into discrete sections for which the de-

formation is approximated at each time step. Solutions in the semi-inverse method

which do not satisfy the complementarity conditions could still be approximated

by FEM since potential interpenetration would change the deformation in the lo-
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cal area - resulting with areas of contact and gaps, both on the same interface.

These results support that of the previous section where gaps can occur between

bodies under generalised shear. Also, they support the notion that intercellular

pressure can work as a cohesive force between pairs of cell walls.

3.3 Isotropic cell walls under time-dependant shear

deformation

Now we consider the problem of time-dependant generalised shear deformation

where a large number of solutions for the shape of the deformed face f may exist.

To maintain tractability of the solutions for shear motion, we restrict attention to

the incompressible neo-Hookean material and find general solutions of generalised

shear motion and generalised shear. This is presented without contact, but the

analysis from the previous section could be applied.

For the deformation of a large-strain and time-dependant body, the Eulerian

field equation is

ρẍ = divσ + ρb (3.3.1)

σ = σT (3.3.2)

where x = χ(X, t) is the motion of the body with respect to time, ρ is the density

of the elastic body (constant), b = b(x, t) is body force (assumed to be zero here),

˙ represents partial derivative w.r.t t and ′, partial w.r.t X2 (Newton’s notation).

When a cuboid cell wall is subject to generalised shear motion, the deformation

takes the form:

x1 = X1 + f(X2, t), x2 = X2, x3 = X3, (3.3.3)

where X = (X1, X2, X3) and x = (x1, x2, x3) are the Cartesian coordinates for the

reference (Lagrangian, material) and the deformed (Eulerian, spatial) representa-
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tion, respectively, and f is a function to be determined.

The deformation gradient F, the left Cauchy-Green tensor B and its inverse

B−1 is as follows:

F =


1 f ′ 0

0 1 0

0 0 1

 , B =


1 + (f ′)2 f ′ 0

f ′ 1 0

0 0 1

 , B−1 =


1 −f ′ 0

−f ′ 1 + (f ′)2 0

0 0 1

 .
(3.3.4)

The Cauchy stress for an incompressible material is

σ = −pI + β1B + β−1B
−1, (3.3.5)

where p is an undetermined hydrostatic pressure and β1, β−1 are material depen-

dant constants. Then,

σ =


β1(f ′)2 + β1 + β−1 − p (β1 − β−1)f ′ 0

(β1 − β−1)f ′ β−1(f ′)2 + β1 + β−1 − p 0

0 0 β1 + β−1 − p

 . (3.3.6)

From (3.3.1), in the absence of body forces, the equations of motion must

satisfy:

∂σ11

∂x1

+
∂σ12

∂x2

= ρf̈ ,

∂σ21

∂x1

+
∂σ22

∂x2

= 0,

∂σ33

∂x3

= 0.

(3.3.7)

As generalised shear motion is not a homogeneous deformation, the hydrostatic
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stress is not necessarily constant, so the equilibrium equations can be written as

∂p

∂x1

= (β1 − β−1)f ′′ − ρf̈ , (3.3.8)

∂p

∂x2

= 2β−1f
′f ′′, (3.3.9)

∂p

∂x3

= 0. (3.3.10)

Restricting our attention to the incompressible neo-Hookean material model,

given by

W =
µ

2
(I1 − 3), (3.3.11)

we find that (3.3.8-3.3.10) simplifies to

∂p

∂x1

= µf ′′ − ρf̈ , (3.3.12)

∂p

∂x2

= 0, (3.3.13)

∂p

∂x3

= 0. (3.3.14)

∂p
∂x3

= ∂p
∂x2

= 0 implies that p is not dependant on x2 or x3, i.e. p = p(x1, t).

Further, if we assume that there is zero net energy in the x1 direction on the

contact boundary ΓC , ∫
ΓC

σ11dx1 = 0, (3.3.15)

then we can conclude that p = p(t).
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Surface tractions

The normal and tangential stresses on the vertical cell walls in order to ensure the

prescribed deformation are given by

PN = σ11 − f ′σ12 = µ− p, (3.3.16)

PT =


0

σ21 − f ′σ22

σ31 − f ′σ32

 =


0

−p

0

 . (3.3.17)

As it is assumed that p(t) is, at most, a function of time and not on deformation

or position, then the tractions could be simply applied in simulation, and holds

true for all possible functions f found from solving the BVP.

3.3.1 Solving the boundary value problem

As p is only a function of time, the equilibrium equations reduce to an equation

for f , in the form of a one dimensional wave equation,

f̈ =
µ

ρ
f ′′. (3.3.18)

where
√
µ/ρ is the speed of the wave propagation.

The following boundary conditions are used:

f(0, t) = 0, f(L, t) = k, (3.3.19)

with initial conditions:

f(X2, 0) = f0(X2), ḟ(X2, 0) = ḟ0(X2). (3.3.20)

To solve this equation with non-homogeneous boundary conditions, we first
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consider a time independent solution f ′′E = 0, with boundary conditions fE(0) = 0

and fE(L) = k. The steady state solution is simply

fE =
k

L
X2. (3.3.21)

Next we introduce v(X2, t) = f(X2, t) − fE(X2), which is a solution to the

problem

v̈ =
µ

ρ
v′′, (3.3.22)

with homogeneous boundary conditions

v(0, t) = 0, v(L, t) = 0. (3.3.23)

Using separation of variables [69], we find the general solution for v(x, t) has

the form

v(X2, t) =
∞∑
n=1

[An cos(ωt) +Bn sin(ωt)] sin(τX2), (3.3.24)

where ω = (nπ/L)
√
µ/ρ and τ = nπ/L.

Therefore the general solution for f(X2, t) has the form

f(X2, t) =
k

L
X2 +

∞∑
n=1

[An cos(ωt) +Bn sin(ωt)] sin(τX2) (3.3.25)

with ω = (nπ/L)
√
µ/ρ and τ = nπ/L.

To determine the constants An and Bn, consider now the initial conditions,

f(X2, 0) =
k

L
X2 +

∞∑
n=1

An sin(τX2) = f0(X2), (3.3.26)

ḟ(X2, 0) =
∞∑
n=1

Bnω sin(τX2) = ḟ0(X2). (3.3.27)
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Using Fourier series, a function g(x) on 0 < x < L can be written in the form

g(x) =
∞∑
n=1

βn sin(τx), (3.3.28)

and has constants βn in the form

βn =
2

L

∫ L

0

g(x) sin(τx)dx. (3.3.29)

Letting g(x) = (f0(X2)− (k/L)X2) and An = βn, we find

An =
2

L

∫ L

0

(
f0(X2)− k

L
X2

)
sin(τX2)dX2. (3.3.30)

Similarly, letting g(x) = ḟ0(X2) and Bnω = βn, we find

Bn =
2

ωL

∫ L

0

ḟ0(X2) sin(τX2)dX2. (3.3.31)

3.3.2 The general solution of generalised shear motion

The general solution of generalised shear motion in an incompressible neo-Hookean

material is

f(X2, t) =
k

L
X2 +

∞∑
n=1

[An cos(ωt) +Bn sin(ωt)] sin(τX2) (3.3.32)

with

An =
2

L

∫ L

0

(
f0(X2)− k

L
X2

)
sin(τX2)dX2. (3.3.33)

Bn =
2

ωL

∫ L

0

ḟ0(X2) sin(τX2)dX2. (3.3.34)

where ω = (nπ/L)
√
µ/ρ and τ = nπ/L.

In general there are different modes of oscillations present in generalised time-

dependant shear motion. For any mode n and fixed X2 = X∗, k
L
X∗ = Dn and
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sin
(
nπX∗/L

)
= En where Dn, En are constant, giving

fn(X∗, t) = Dn + En

[
An cos

(nπt
L

√
µ

ρ

)
+Bn sin

(nπt
L

√
µ

ρ

)]
(3.3.35)

For an increase in t by one second, the argument of cos and sin increases by

(nπ/L)
√
µ/ρ, so for each mode, there are (n/2L)

√
µ/ρ cycles per second. There-

fore to increase the frequency of oscillation one can increase the shear modulus µ,

decrease the density ρ or decrease the length of the beam L.

Conversely for any mode n and fixed t = t∗, [An cos(ωt∗) + Bn sin(ωt∗)] = Cn,

where Cn is constant, giving

fn(X2, t
∗) =

k

L
X2 + Cn sin

(nπX2

L

)
. (3.3.36)

sin
(
nπX2/L

)
has n half periods of sin within 0 ≤ X2 ≤ L, where n = 0 recovers

simple shear, n = 1 is the fundamental tone, n = 2 is the first harmonic and

n = 3, the second harmonic. The possible modes in the shape of the deformed

face are given in Figure 3.6 where L = 1, k = 0.5 and Cn = 0.05, for demonstrative

purposes.

(A) (B)

(C) (D)

Figure 3.6: Modes of shear deformation in a unit cube (A) simple shear n = 0;
(B) fundamental tone n = 1; (C) first harmonic and n = 2; (D) second harmonic
n = 3.
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3.3.3 The general solution of generalised shear

We find the time-independent general solutions by considering t→ 0,

fn(X2, 0) =
k

L
X2 + sin(τX2)

2

L

∫ L

0

(
f0(X2)− k

L
X2

)
sin(τX2)dX2. (3.3.37)

with τ = nπ/L. If the initial condition is f0(X2) = k
L
X2 then the trivial solution

is obtained of simple shear, whereas an initial condition of f0(X2) = 0 gives the

solution

fn(X2, 0) =
k

L
X2 + sin(τX2)

2

L

∫ L

0

(
− k

L
X2

)
sin(τX2)dX2, (3.3.38)

fn(X2, 0) =
k

L
X2 +

2k

τ 2L2
sin(τX2)(τL cos(τL)− sin(τL)), (3.3.39)

fn(X2, 0) =
k

L
X2 +

2k

n2π2
sin(τX2)(nπ cos(nπ)− sin(nπ)), (3.3.40)

giving the general solutions of generalised shear for an incompressible neo-Hookean

material,

fn(X2, 0) =
k

L
X2 + (−1)n

2k

nπ
sin
(nπX2

L

)
. (3.3.41)

3.4 Summary

Many natural structures are cellular solids at millimetre scale and fibre-reinforced

composites at micrometer scale (e.g. plant stems, vegetables, fruit). For these

structures, physical properties are associated with the mechanical responses of the

structural elements under applied forces, and phenomena such as cell separation

through debonding of the middle lamella in cell walls is important for perceived

behaviour and texture.

To explore such phenomena, we model cellular structures with non-linear hy-

perelastic cell walls under large shear deformations and incorporate cell wall ma-

terial anisotropy and unilateral contact between neighbouring cells in our models.

Analytically, we show that, for two cuboid walls in unilateral contact and subject
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to generalised shear, gaps can appear at the interface between the deforming walls.

Although the deformation of transversely isotropic materials has been studied in

the literature, they have not been studied in the context of contact mechanics and

therefore this research is novel. This work has been published in the Journal of

Engineering Mathematics [114].

The semi-inverse method is powerful for obtaining exact analytic solutions.

The deformation gradient is assumed and then the material responses and nec-

essary tractions are calculated. Here we found a possible solution which had

complex tractions which depend on the X2 direction, which raises questions about

the physical plausibility of the deformation. However, employed in Section 3.3,

for time-dependant generalised shear deformation, we consider a simple isotropic

incompressible neo-Hookean material and find a plethora of possible behaviours

that have not been discussed in the literature, including a general solution for

generalised shear. In terms of contact of two cell walls in unilateral contact, the

amount of possible forms of f in generalised shear means that gaps are more likely

to occur. Choosing two solutions from (3.3.41), the analysis from Section 3.2 could

be repeated to find if the solutions are compatible. In addition, if time-dependent

solutions were considered, then the frequency of oscillation can vary, if for example

the values of µ differ slightly.

In these works on fibre reinforced materials, the fibre angle is deterministic

and the maximum and minimum are considered (π/2 and 0), whereas the fibre

direction in a real cell wall is stochastic and the mean fibre direction could be

anywhere in the range 0 ≤ θ ≤ π/2. Stochastic fibre directions (see [97] for details)

could be incorporated into these models, but the results may become complex and

intractable. The work could be further expanded for compressible materials and

for shear with superimposed triaxial stretch. The transversely isotropic case is

currently limited to the case where fibres are much stiffer than the isotropic matrix

and this ‘middle ground’ could be explored further, where O(C4) ≈ O(C1 + C2).
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Chapter 4

Debonding of cellular tissue in

shear

4.1 Introduction

Cell separation through debonding of the middle lamella in cell walls is key in ex-

plaining the property or behaviour of fruit and legumes during maturation, storage

or cooking, and is decisive for the quality of food products [81,91,145]. Fruit tissue

is a hydrostatic structure in which individual fluid-filled cells provide resistance to

compressive forces, and the fluid pressure may also influence the elastic properties

of the cell walls [29, 103]. Physical evidence suggests that the firmness of fruit

(apple, pear, tomato) decreases during pre-harvest ripening, when the cell walls

of the fruit tissue become softer, and continues to decrease in post-harvest storage

due to the loss of cell-to-cell contact, even though the stiffness of the cell walls in-

creases [5,14,168]. Ripening also involves a reduction in turgor pressure, and other

physiological and mechanical factors, such as changes in cell size, wall thickness,

and composition, may also contribute to changes in the strength and elasticity of

the cell walls. For example, during cool storage, cells from high-maturity fruit tend

to lose intercellular cohesion but maintain cell wall integrity, while cells from low-

maturity fruit tend to maintain relatively high cell-cell cohesion but the strength
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of the cell wall declines, so the cells are easily ruptured [53,70]. Cellular pressure

also decreases after harvest which causes cell wall relaxation and could acceler-

ate the process of loss of cohesion. However, both the cell wall strength and the

intercellular cohesion decline as fruit enter the over-ripe stage [19].

Figure 4.1: Example of debonded fruit cells, leaving cells with their cell walls
intact at the fracture surface, or debonding zone.

We extend our analysis from the previous chapter to the investigation of finite

element models of periodic structures with hexagonal cells, and find that, when

the structures are sheared, gaps appear between adjacent cell walls, causing ex-

tensive cell separation diagonally across the structure. To overcome difficulties

in the resolution of non-linear equations for contact, we extend the successive

deformation decomposition procedure proposed in [111], where seamless cellular

structures were treated, to structures with non-penetrative intercellular contact as

follows: (i) first, a continuous deformation is computed for the entire structure, as

in a compact elastic solid, where only the external boundary conditions and cell-

cell pressures are imposed, while the cells remain in mutual contact; (ii) then, for

the predeformed structure, the micro-structural properties at individual cell level,

such as the unilateral contact between cell walls are taken into account. For the

computer simulations, the two-step procedure proved significantly faster and more

accurate than when the external boundary conditions and contact constraints were

imposed simultaneously in a single step.
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Next, we address the question as to what is the influence of the cell-cell cohesion

on the intercellular contact where debonding is possible? To answer this question,

we impose uniform normal pressure on the contacting cell walls, and find that

separation is less likely between cells with high cell pressure than between cells

where the internal pressure is low. This is in agreement with physical observations

that, under applied force, tissue from high-maturity fruit (apple, pear) breaks

down into small clumps of undamaged cells, while cell walls from less mature

fruit, which are relatively strongly attached to each other, will rupture [70].

Our computer simulations of cellular bodies with hyperelastic cell walls in

mutual non-penetrative contact under large shear deformation, and the two-step

strategy which we employ to solve the multibody contact problems more efficiently

are novel. In Section 4.4, we present a set of computer models representing groups

of hexagonal cells in mutual unilateral contact for which we explore the effects of

large-strain deformations.

4.1.1 Summary of FEBio definitions

A number of concepts and definitions are necessary, that are either general for

FEM, or particular for FEBio [92], for the implementations in this chapter.

Quasi-static analysis - Structural analysis in FEBio will be achieved in a quasi-

static setting, such that deformation happens slowly enough for the system to

remain in internal equilibrium. The deformation can equally be considered as in-

stantaneous, with no time-dependence.

Analysis step - One or many analysis steps can be defined, which are collections

of all the constraints, such as boundary conditions, loads, contact interfaces, etc.

The ‘initial’ analysis step serves a special purpose since it collects all the con-

straints that do not depend on a particular step. Additional analysis steps can be

added which have constraints specific to that step.

Time step - Within each analysis step, a number of time steps are defined. Not
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to be confused with the notion of time, these ordered steps are used for incre-

menting the constraints, such that, e.g., a boundary condition can be applied in

predefined step sizes. For each time step the solution for that step is obtained by

a succession of equilibrium iterations using the Newton-Raphson method, where

each iteration brings the model (hopefully) closer to the solution for that step.

Failure to converge at a particular time step causes a roll-back to an interpolated

lower time step. Failure to converge can be caused by a number of reasons, in-

cluding an element becoming so distorted that it inverts J ≤ 0, or a convergence

tolerance not being reached at a contact interface.

Sliding contact - A sliding contact interface defines a non-penetration constraint

between two surfaces. This means that the surfaces are allowed to separate and

slide across each other, but are not allowed to penetrate each other. This is equiv-

alent the frictionless unilateral contact conditions defined in Section 2.4.2.

Tied contact - Tied interfaces can be used to tie two non-conforming surfaces

together, such that they are attached and do not debond throughout deformation.

If both surfaces have compatible nodes and have the same material defined, then

they can be considered as deforming together as one continuous material.

4.2 Problem formulation

Computationally, we construct finite element models in FEBio [92] with uniform

cells consisting of non-linear hyperelastic cell walls with uniform cell wall thickness,

which surround cellular inclusions [103,104]. Adjacent cells are bound together via

intercellular pressure [67,73,127] and unilateral contact between cells [88,112,114].

The cell inclusions are represented as an elastic solid with low elastic modulus and

zero initial stress. The pressure from the cell core (in the undeformed state) are

represented as pressure loads on the internal cell walls. Tissues are subjected to

shear of magnitude uX (displacement in the X direction) and gaps are created

between cells, which are measured and used to quantify debonding.
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4.2.1 Geometry and mesh

Within fruit tissues, cells are arranged randomly, as demonstrated in Figure 4.1.

Voronoi tessellations (2D and 3D) are packings that represent the randomised as-

pect of natural cellular materials. Geometric simplifications, such as uniform cell

geometry and packing, allow for ordered and repeatable experiment which can

be accurately scaled. In a hexagonal prism (or honeycomb) packing, each cell

wall has equal length and the cell is in maximum contact with six neighbouring

cells, without intercellular spaces. Hexagonal geometry is often used to approx-

imate cellular structures in analysis [63, 66, 174]. Tetrakaidecahedrons (14 sided

stackable polyhedra with all edges equal length) can create 3D space filling pack-

ings similar to those found in biologically grown cellular materials [65]. Potato

parenchyma packings are nearly isotropic with very few empty voids between cells

and tetrakaidecahedral modelling has been found to represent this well [79].

As this is a study on the contact between cells and overcoming some of the

computational difficulties, hexagonal prism cell geometry is chosen as each cell

only has 6 contact interfaces. The cell core is also hexagonal and is fixed to the

surrounding cell wall. We refer to the model size by the number of horizontal cells

on the bottom row, by the number of vertical cells, for example 3×3, 4×5 and 5×7.

On the top and bottom boundaries, extra tabs are added for the application of

boundary conditions. Tabs are shown in Figure 4.2 (left). The geometries are cre-

ated using open source software OpenSCAD, a programming based 3D modelling

program, and then imported into FEBio and meshed using the inbuilt ‘tetgen’

algorithm. Mesh refinements were carried out to assess deformation convergence

and found that the mesh, with elements of size 0.2, is sufficient. Adding further

mesh complexity adds to computational time greatly, limits potential model sizes

and does not refine the results substantially further.

Page 63



4.2. PROBLEM FORMULATION
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Cell core
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Figure 4.2: Schematic of a 3×3 cell FEM model, indicating the ’tabs’ on filled cells
where boundary conditions are applied and mesh (left), cell dimensions, which are
unitless (middle) and the location of where internal and external pressures are
applied, on empty cells (right).

4.2.2 Contact and cohesion

Contact conditions are prescribed on the cell walls which share a common in-

terface. For frictionless, non-penetrative contact, a ‘sliding contact interface’ is

used. Parameter values used for defining this interface can be found in Appendix

C. Le Tallec (1994) [88, Chapter VI] provides existence results for the contact

formulation (2.4.18) and explains the adaptation to the numerical algorithm to

detecting contact. The potential contact surface has a subset where contact ac-

tually occurs. A predictor-corrector algorithm predicts the subset and calculates

the contact-free equations (2.4.17) excluding this subset. Then it checks for points

where the contact conditions (non-penetration, compressive contact and comple-

mentarity (2.4.7-2.4.9)) have been violated and adds these points to the contact

subset. This process is iterative and ends when the contact subset stays invariant

between iterations.

It is possible to create a cohesive contact interface in FEBio by implement-

ing the source code edited by Bronik (2017) [21], but the computational cost is

extremely high for multiple contacts. We found a more computationally effective

solution to implementing cohesion in our models, as follows: as a cohesive contact

interface requires a tensile force over a critical value g to separate faces, we instead
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implement balanced normal non-linear surface loads between each pair of contact-

ing walls. In the reference configuration, the pressures are equal and opposite on

both sides of the cell wall pairs and thus has zero net force. The result is a force

g which must be overcome to separate cell wall pairs. Figure 4.2 (right) shows

the application of these surface loads on the internal cell surfaces and the external

tissue faces to maintain zero net force. The non-linear pressure load applies in a

normal direction to the current state of a surface.

4.2.3 Modelling cell core

The predominant mechanism of cell wall behaviour in empty cells is wall bending

but in fluid filled cells this becomes cell wall stretching. Stretching requires more

stress than bending and thus increases yield strength of the material [65]. It is

common to assume that as cells are compacted together, cell wall bending can be

neglected [130,131]. The effect of having an internal fluid in closed compartments

is that when deformation occurs (assuming no rupture of cell walls) the cell’s

volume is conserved and the densification stage of the stress-strain curve does not

happen [103].

As in other studies, fluid viscosity is ignored and the walls are assumed to be

impermeable so there is no relaxation of the cell due to fluid migration, which

is reasonable in the short time scale where forces are exerted [58, 130]. We also

assume initial pressure is equal in all cells.

In [130], the stress in a deformed cell wall of a pressurised cell is decomposed

as the sum of (a) the stress in the undeformed cell wall of the pressurised cell and

(b) the stress of the deformed cell wall in the unpressurised cell. Similarly here,

the cell inclusions are represented in two ways: (a) as a prescribed normal pressure

force acting on the surface of the cell walls; (b) as an elastic solid with low elastic

modulus and zero initial stress. In Section 3.2.3, it was proved theoretically that

modelling cell inclusions by imposing a uniform normal force on the surface of the
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cell walls is equivalent to imposing intercellular cohesion.

4.2.4 Material

The cell walls are made from a nearly incompressible isotropic homogeneous

Mooney-type hyperelastic material [121,138],

W =
C1

2
(I1 − 3) +

C2

2
(I2 − 3) +

1

2
κ(ln J)2, (4.2.1)

where C1 = 1 MPa, C2 = 0.1 MPa and κ = 100 MPa is the bulk modulus.

We choose to model the fluid also as a homogeneous Mooney-Rivlin material,

which is nearly incompressible, with parameters C1 and C2 being at least one order

of magnitude smaller than the cell wall material, whilst keeping the bulk modulus

κ = 100 MPa for the compressibility restraint.

4.2.5 Boundary conditions

Top tabs

Bottom tabs

External tissue 
boundary

External cell facesCentral cell faces 

Figure 4.3: 4× 5 cell FEM model indicating five groups of geometry faces which
have boundary conditions applied. Highlighted in blue are object faces, which are
given a group name and the boundary conditions which are applied there.

Shear deformation is applied by the following Dirichlet boundary conditions:

• uX shear displacement, on the top tabs (u+
X) and bottom tabs (u−X);

• uY = 0 on both top and bottom tabs;
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• uY = 0 on central cell faces (front and back, excluding boundary layers);

• uZ = 0 on all external faces and tabs (front and back, including external

tissue boundary),

where ui, i = X, Y, Z denotes displacement in the ith direction. Displacement

magnitude is unitless, relative to the cell size, given in Figure 4.2 (middle). Unless

otherwise stated, uX will imply both u+
X and u−X of the same magnitude.

The restrictions uY = 0 on cell faces are imposed to restrict rotational defor-

mation of the cells within the tissue and more closely represent simple/generalised

shear (and also restrain the solution space). For quantification of parameter in-

teractions, this solution gives tractable results.

Cell pressure and cohesion are applied by the following Neumann boundary

conditions:

• gn = p, normal traction on the contact interfaces and external tissues bound-

ary;

• gt = 0, tangential traction zero everywhere.

The magnitude of the constant p is measured in MPa. The direction of gn is

normal relative to the current state of the surface, such that if the angle of the

surfaces changes, so does the direction of force.

Traction free boundary conditions are used as an initial assumption (or ide-

alisation) to isolate the shear effect. Later, this assumption will be related and

traction will be imposed with cell cohesion for qualitative and quantitative results,

with the shear effect already understood.

4.2.6 Preliminary results

For the above geometry and boundary conditions, with shear displacements uX =

0.5 and p = 0 MPa, the simulation results are showed in Figure 4.4B. Here we
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can see cells stack into columns (along the diagonal compressive principal axis)

and small gaps appear between these columns. These effects propagate from the

boundary effects where deformation is generally largest.

We measure the gap between the central cells to quantify debonding, as in

Figure 4.4C. The central node positions in the mesh are recorded after deformation,

and their relative distance in the X direction is recorded as the gap size.

(A) (B) (C)

gap size

Figure 4.4: Assembly of 3×3 cells in unilateral contact under shear deformation:
(A) reference configuration and (B) deformed configuration. (C) shows the gap
size which is measured for quantification of debonding.

4.3 Improving the modelling procedure

Implementing contact problems in FEBio using a single analysis step results in a

suboptimal calculation processes and is prone to divergence problems. We extend

and implement methods of increasing computational efficiency, robustness and

make the process scalable. The idea of scalability, in computing terms, is that

the architecture of the calculation process scales well with complexity/size. In the

single analysis step implementation, the computation time increases exponentially

with the number of cells in the system whereas we aim to use multiple analysis

steps to make it scale close to linear in order to handle large numbers of cells

competently. In this section we introduce the extended successive deformation

decomposition procedure method for contact problems.
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Successive Deformation Decomposition Procedure (SDDP)

If x′ = χ′(X) ∈ R3 describes the first deformation in analysis step (i), and x =

χ(X) ∈ R3 describes the second deformation in analysis step (ii), written in terms

of the B0 configuration, then the deformation:

x′′ = χ′′(x′) = χ(χ′
−1

(x′)) (4.3.1)

maps the deformed state B′ to the final configuration B.

Let F = dχ(X)/dX, F′ = dχ′(X)/dX and F′′ = dχ′′(X)/dX be the corre-

sponding deformation gradients, such that det(F′) > 0 and det(F′′) > 0, i.e. the

mappings χ′ and χ′′ are invertible and orientation preserving.

Then, by the chain rule, the following compatible multiplication decomposition

holds [103]:

F = F′′F′ (4.3.2)

See Figure 4.5 for a diagrammatic representation.

Figure 4.5: Two step Successive Deformation Decomposition Procedure
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Application of SDDP in modelling cellular bodies

To improve computational efficiency we employ the SDDP, separating the defor-

mation into successive analysis steps:

• Step (0): In the initial step, impose the boundary conditions uY and uZ on

the surfaces defined in Section 4.2.5, which are always imposed.

• Step (i): Consider the structure as one continuous, seamless set of cells.

This is achieved with tied contact conditions between every cell wall pair,

such that cells cannot debond and both compressive and tensile forces are

transmitted through the interface.

– (i)a: Incrementally apply the cell and external pressures gn upto a

prescribed magnitude p.

– (i)b: Use (i)a as the reference configuration, with gn = p, and incre-

mentally apply the displacements uX . This results in a deformed set of

cells, without the development of intercellular spaces.

• Step (ii): Finally, consider debonding at the cell interfaces by replacing the

tied contact conditions with sliding contact, which allows for non-penetrative,

cohesionless and frictionless contact. This takes the deformed structure from

step (i), with the applied Dirichlet and Neumann boundary conditions, and

allows tensile forces to debond neighbouring cell walls. Cohesion is included

through application of cell pressures in step (i)a.

The algorithm in step (i) is simple to compute as no iteration sets are added to

the process to detect where the contact occurs (as it happens everywhere on the

potential contact surface) and therefore forces need to be calculated only once per

time step. The change of contact conditions in step (ii) requires a single iteration

to calculate the final equilibrium state given by the full contact equation (2.4.18).

As a single iteration, this step is performed quickly, as shown in the following

section.
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An SDDP in a quasi-static deformation means that each step effectively hap-

pens simultaneously. The result calculated through SDDP should be the same

as one calculated with only sliding contacts, but with a smaller computational

cost. SDDP is known to be well determined in a continuous structure [103]. For

a discontinuous structure of contacting elastic bodies, the work of Signorini and

Fichera can be used to show that this is also well determined [52,149].

For our simulations of a 5×7 cellular tissue, without cellular inclusions and co-

hesion, we study the calculation procedures to quantify the power of the successive

deformation decomposition procedure.

Analysis of the standard procedure in FEBio

Using the Full-Newton solver, the calculation process is broken down into time

steps where the deformation is applied incrementally. The optimal number of

time steps was defined in our simulations of shear as 10, but to reach the final de-

formation 76 steps were used. This indicates that a number of diverging solutions

were encountered at the prescribed time steps and rolled back to an interpolated

time step.

At each of these time steps, there were an average of 78 equilibrium iterations.

At each equilibrium iteration there were exactly 32964 simultaneous equations

being solved in the stiffness matrix and the number of non-zero entries changed

between each iteration, ranging between 6.89− 6.98× 105.

The calculation process took 3677.18 seconds to execute (a little over one hour).

This time is somewhat to do with 73 cell-cell pairs and their contact interfaces

(between the 32 cells in the 5 × 7 tissue) which are evaluated at each time step.

The contact interfaces are iteratively calculated at each step to find the points

which are in contact and their reaction forces.

The process is parameter sensitive (interpenetration penalty, deformation size,

material stiffness), but likelihood of success of the calculations is not bounded by
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a set of parameter limits, as small perturbations can fix or break the process. The

time at which failure occurs is later in the calculation process, which can be 40

minutes in.

Analysis of the SDDP in FEBio

Step (i) The first step deformed the tissue with tied contacts with optimal

number of iteration steps defined as 10, and to reach the final deformation exactly

10 steps were used. This indicates that the computation was relatively stable.

At each time step, there were an average of 6 equilibrium iterations. At each

equilibrium iteration there were exactly 32964 equations being solved in the stiff-

ness matrix and the number of non-zero entries was always 5.81× 105.

Step (ii) The second step took the first step as its reference state and had a

change of boundary conditions. As there was no boundary condition to be succes-

sively applied, only one iteration step was needed to find a new equilibrium state.

The optimal number of iteration steps is therefore 1. Under normal circumstances

if there is a problem and the particular step cannot be calculated, a smaller it-

eration step would be used. However, in this case a smaller step has identical

boundary conditions so if it fails to be calculated the first time, then it will fail

every time. In some ways, this makes the calculation more sturdy as divergent

solutions are found earlier in the calculation process and can be restarted with

different uX or gn values.

In this one time step, there were 34 equilibrium iterations. At each equilibrium

iteration there were exactly 32964 equations being solved in the stiffness matrix

and the number of non-zero varied at each equilibrium iteration in the range

6.89− 7.0× 105.

The calculation process took 36.87 seconds to execute.
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Comparison of calculation methods

Here we will refer to the single step method as standard to avoid confusion.

(A) (B)

Figure 4.6: Final deformation states of (A) the standard implementation and (B)
the SDDP. The colour bar represents total displacement in the X direction.

Comparison of calculation procedures in FEBio
Standard SDDP Step (i) Step (ii)

Time steps 76 11 10 1

Equilibrium iterations 78 8.5 (avg) 6 34
(avg per step)

Equations being solved
(at each equilibrium
step)

32964 32964 32964 32964

Non-zeros in stiffness
matrix (avg at each
equilibrium step)

6.94× 105 5.81× 105 6.95× 105

Calculation time
(hours:minutes:seconds)

1:01:17 0:0:37 0:0:20 0:0:17

Gap size 0.232 0.239

Table 4.1: Comparison of FEBio calculation breakdown

Visual inspection of the colour map of displacements in X, Figure 4.6, shows

a clear general agreement with seemingly identical cell position and colour dis-

tribution between the normal and SDDP simulations. To quantify the similarity,
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a comparison is performed on nodal positions in the final state. The maximum

difference in X displacements is 1.8×10−2, with average difference 3.6×10−3. For

perspective, the maximum difference 1.8× 10−2 is approximately 1/10 of the cell

wall thickness. The gap size is measured between the initially contacting central

nodes between the inner-most middle cells. The gap size differs by 7× 10−3.

In terms of calculation time there is a huge difference, from one hour to less

than one minute for the SDDP. The distribution of time taken over deformation

size is not linear for the normal procedure as it starts fast and progressively gets

slower (and may level off). The SDDP reliably takes the same amount of time to

calculate.

Calculation reliability is poor for the standard procedure, it can run for a

long time and then fail, for example running for 45 minutes then failing at 72%

deformation. For the SDDP due to the second step calculating in a single iteration

it is clear after the first attempt at solving if it will succeed or fail which means

there is a faster turnaround for building models.

Clearly there are strong advantages for using the successive deformation de-

composition procedure.

Validation of cohesive cell-cell bonding

A tensile test has been performed to see how well cohesive pressure stops tis-

sue failure under tensile deformation. Failure is quantified by debonding between

neighbouring cells, where the distance between any initially contacting nodes ex-

ceeds 0.05.

The SDDP is used and the cell walls are made from Mooney-Rivlin material

with material constants C1 = 1 MPa, C2 = 0.1 MPa and cohesive pressure p = 0.1

MPa.

Tensile deformation is applied by the following boundary conditions:

• u+
Y = 0.5 displacement on the top tabs and u−Y = 0 on the bottom tabs;
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• uX = 0 on top and bottom tabs;

• uZ = 0 displacement on all external faces.

Cell pressure and cohesion are applied by the following Neumann boundary con-

ditions:

• gn = p, normal traction on the contact interfaces and external tissue bound-

aries;

• gt = 0, tangential traction zero everywhere.

The direction of gn is normal relative to the current state of the surface, such that

if the angle of the surfaces changes, so does the direction of force.

(A) (B)

Figure 4.7: Tensile deformation of cellular tissue with intercellular cohesion p =
0.05 MPa using SDDP: (A) continuously deformed and (B) separation allowed.
The colour bar represents total displacement in the Y direction.

Figure 4.7A shows tissue deformation for cells that have tied contacts and in

Figure 4.7B the cells are able to debond, where the high pressure within the cells

stop debonding from occurring. For a deformation of u+
Y = 0.3, failure occurs for

p < 0.01 MPa and for u+
Y = 0.5, failure occurs for p < 0.018 MPa. This supports

the results for pressure simulating the effects of cohesive contact interfaces and

further validates the usefulness of the SDDP.
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4.4 Parameter investigation

4.4.1 Number of cells

The number of cells within the model tissue is explored here. In Figure 4.8 we

have 3×3, 4×5 and 5×7 tissues in the deformed state. The boundary conditions

are as set out in Section 4.2.5, with uX = 0.5 and p = 0.

(A) (B)

(C)

Figure 4.8: Cellular tissues under shear deformation uX = 0.5: (A)3×3, (B) 4×5
and (C) 5× 7. The colour bar represents displacement in the X direction.
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In each model the cells are the same size and distribution, the difference being

that there are more cells - making the tissue larger. Here the magnitude of the

shear deformation is scaled to the size of the cell, not the tissue. Gap sizes are

shown in Figure 4.9 for the three tissue scales. Even with a small cell number in

the 3 × 3 model, the gap opening is close to that of the 4 × 5 and 5 × 7 models.

The main difference between the models is the size of the X deformation possible

for simulation before computational failure. The 3× 3 model shows deformations

up to a magnitude of 0.5, the 4× 5 upto 0.8 and the 5× 7 upto 1.2.

Figure 4.9: Comparison of gap sizes for multiple tissue sizes.

4.4.2 Cell wall material models

We investigate the difference between the Mooney-Rivlin material and comparable

a linear elastic material by converting the material parameters (C1 = 1 MPa,

C2 = 0.1 MPa and κ = 100 MPa) to the Young’s modulus E and Poisson’s Ratio

ν, using the following identities,

C1 + C2 = µ E =
9κµ

3κ+ µ
ν =

3κ− 2µ

2(3κ+ µ)
(4.4.1)
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We now find the linear elastic coefficients for models comparable to previous ex-

amples to be:

E = 3.29 MPa ν = 0.49 (4.4.2)

Comparing the Isotropic Elastic material model in FEBio the simulation, a

deformation of 0 ≤ uX ≤ 0.3 shows the gap size matching within a tolerance of

10−3. Matching results at small strain is exactly what is to be expected by the

definition of the finite and small strain regimes. For larger uX , the results start

to diverge.

Figure 4.10: Relationship between uX and gap size for different materials - hy-
perelastic Mooney-Rivlin and Linear Elastic, in a 5× 7 tissue. This model is not
subject to cohesive pressure.

4.4.3 Cohesion

We vary both shear magnitude uX and intercellular pressures p on a 5× 7 tissue

to measure how these affect cell separation.

Figure 4.11 shows a plot of the gap size for 0 ≤ uX ≤ 1.1 and pressures

0 ≤ p ≤ 0.015 MPa. The data clearly shows that increasing pressure delays the

initiation of gaps. For zero pressure the rate of increase in gap size seems to follow
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Figure 4.11: Relationship between shear magnitude uX and gap size for different
cohesive pressures, in a 5× 7 tissue.

a non-linear curve. The slope of the gap size seems to be consistent once the gap

has been initiated.

Figure 4.12 shows the final deformation state (step (ii)) with 0.4 ≤ uX ≤

0.8 and 0 ≤ p ≤ 0.01 MPa. It is clear that gaps increase in size with greater

deformation (from left to right) and gaps decrease with increased cohesive pressure

(from top to bottom). The gap size seems to correlate with large deformation of

the corner cells.

4.4.4 Revisited: cell wall with cohesion

Again we investigate the difference between Mooney-Rivlin material and linear

isotropic material. Now we also include intercellular cohesion, shown in Figures

4.13 and 4.14.

The gap opening in the linear elastic case initiates at a higher deformation and

then grows at a similar rate. The difference in behaviour is similar to that of the

higher deformations in the previous linear/Mooney comparison (Figure 4.10).
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(a) p = 0 MPa,
uX = 0.4

(b) p = 0 MPa,
uX = 0.6

(c) p = 0 MPa,
uX = 0.8

(d) p = 0.005 MPa,
uX = 0.4

(e) p = 0.005 MPa,
uX = 0.6

(f) p = 0.005 MPa,
uX = 0.8

(g) p = 0.010 MPa,
uX = 0.4

(h) p = 0.010 MPa,
uX = 0.6

(i) p = 0.010 MPa,
uX = 0.8

Figure 4.12: 5 × 7 cellular tissue under varying shear deformation (uX fixed in
columns) and varying cohesive pressure (p fixed in rows). The colour bar represents
total displacement in the X direction.
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(a) X = ±0.2 (b) X = ±0.4 (c) X = ±0.6 (d) X = ±0.8 (e) X = ±1.0

(f) uX = 0.2 (g) uX = 0.4 (h) uX = 0.6 (i) uX = 0.8 (j) uX = 1.0

Figure 4.13: 5×7 cellular tissue under varying shear deformation uX for Mooney-
Rivlin (top row) and Linear Elastic material (bottom row). The colour bar repre-
sents total displacement in the X direction.

Figure 4.14: Relationship between shear magnitude uX = and gap size for different
materials in a 5× 7 tissue, with cohesive pressure of p = 0.005 MPa.
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4.4.5 Cell core

We now consider the soft elastic inserts embedded within the cell walls and study

the effect of its relative stiffness compared to the cell walls.

Figure 4.15 shows very similar deformation to that of the empty cells. The

volume restriction and elasticity of the inclusion has decreased gap size noticeably

at this deformation. Figure 4.16 shows a comparison of the gap sizes for inclusions

which have Mooney-Rivlin material parameters 10×, 20×, 40× and 1000× smaller

than the cell walls. The gap size of the cellular tissue with empty cell contents is

also shown. The first part of the deformation shows all gap sizes growing at the

same rate, but the rate of increase in gap size is delayed with the presence of an

inclusion. The closer the inclusion parameters are to the cell wall material, the

later the onset of this gap increase. After the gap increase begins, it happens at

a much faster rate than the empty case. The inclusion material 1000× smaller

shows that after this increase, the size of gap and the rate at which it expands

converge with the empty structure.

Figure 4.15: 3× 3 cellular tissue with cellular inclusions under shear deformation.
Elasticity of cellular inclusions are 10% softer than cell walls. The colour bar
represents total displacement in the X direction.
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The behaviour here is an interplay between volume restriction and inclusion

elasticity. As the elasticity constants decrease away from that of the cell wall

the behaviour will converge somewhere close to the 1000× case. Conversely, as

the material properties increase towards that of the cell wall then the cells will

become homogeneous granules. Thus empty cellular tissues and homogeneous

granules provide an upper and lower bound for debonding behaviour.

Figure 4.16: Comparison of gap sizes for varying core stiffness’s in a 3× 3 tissue.

4.5 Summary

Numerically, when finite element models of periodic structures with hexagonal cells

are sheared, significant cell separation is captured diagonally across the structure.

To obtain the numerical results, we employ a successive deformation decomposition

technique, whereby: (i) first, a continuous deformation is assumed throughout the

structure; (ii) then, for the predeformed structure the unilateral contact between

cell walls are taken into account. The two-step procedure proves significantly

faster and more accurate than a one-step approach where the external boundary

conditions and contact constraints are imposed simultaneously.
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Our analysis further indicates that, under large deformations, separation is less

likely between cells with high internal cell pressure than between cells where the

internal pressure is low. This is in agreement with the physical observations that

plant tissue under high turgor pressure (e.g. in fresh and growing fruit and veg-

etables) failed by cell wall rupture, whereas tissue under low turgor (e.g. in cooked

or ageing plants) failed by cell separation. The way cells separate or break and re-

lease their content is critical for horticultural qualities, such as fruit texture, which

is of major interest to producers around the world. As markets impose increas-

ingly stringent quality standards, there is a demand for development of models

that predict changes in fruit texture so that these processes can be managed and

controlled more effectively. Even though, in most cases, it is at a cellular level that

the structural basis of texture is best addressed, due to the inherent complexity

and diversity of cellular structures, the explicit representation of all individual

cells and their contact constraints in a structure with a very large number of

cells is not feasible computationally. Nonetheless, since local changes can generate

changes in the overall structural properties, the micro-structural model with non-

penetrative intercellular contact proposed here can be incorporated in a multiple

scale approach suitable for use in large-scale finite element computations.

Our simulations of non-penetrative contact within cellular bodies with hyper-

elastic cell walls, and the computational strategy which we employ is novel. This

work has been the subject of many talks, most notably presented at the 25th

Conference of the UK Association for Computational Mechanics, where the au-

thor received the Mike Crisfield Award, for best presenter of all PhD and post

doctoral researchers. The author also won sizeable sponsorship to communicate

these findings at an international conference on ‘biological soft matter and agricul-

tural food challenges’ in Sao Paulo, Brazil - which also then lead to an invited talk

in the Food Sciences group at the University of Nottingham, to discuss possible

collaboration.
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Chapter 5

Multiscale analysis of cellular

structures

5.1 Introduction

Solid cellular structures are widespread in nature and in an ever increasing num-

ber of biomedical and engineering applications [22,42,55,65,66,103,114,145,161].

For example, engineered tissue scaffolds provide an environment for growth and

regeneration of biological cells [20, 39, 43, 45, 47, 129, 143, 164, 166, 171], while nat-

ural materials generally incorporate several levels of structural hierarchy, which

contribute to their macroscopic physical properties [51, 54, 134, 160, 173]. From

the modelling point of view, a sub-level in the structural hierarchy can be treated

either as a substructure with its own geometry, or as a continuum described by a

suitable material model.

When studying cellular structures, the common assumption is that cell walls

are linearly elastic with a geometrically non-linear behaviour. In this case, if

the cell walls bend, then the elastic response can be determined from the linear-

elastic deflection of a beam [65, 66]. However, in many cellular structures, when

loaded, the cell walls stretch axially rather than bend. The dominant mechanical

behaviour is determined by the architecture and depends on whether the cells are
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open or closed [30,160]. Stretch-dominated cellular structures, such as octet-truss

and body-centred cubic geometries, for example (see Figure 5.1), have a higher

stiffness-to-weight ratio than bending-dominated ones [23, 30, 31, 44, 54, 66, 101,

159,160]. In addition, biological and bio-inspired materials are often non-linearly

elastic under large strains, and a finite elasticity approach is needed to understand

them [67,73,127,157].

(A)

(B)

Figure 5.1: Examples of stretch-dominated architectures: (A) octet-truss and (B)
body-centred cubic, at the cell level (left) and at the mesoscopic structural level
(right), respectively.

Microstructure-based models for a cellular solid with open cells of isotropic

linearly-elastic material were first proposed by Gent & Thomas (1959) [61], where

infinitesimal stretches were assumed. In [62], these models were extended to struc-

tures with closed cells containing an ideal gas. For these models, effective Young’s

modulus and Poisson’s ratio under infinitesimal deformations were derived explic-
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itly from the constitutive equations [11,13]. For cellular structures of non-linearly

elastic material under finite strain deformations, a phenomenological continuum

model was proposed by Blatz & Ko (1962) [15]. This model reduces to the Gent-

Thomas model in the small strain limit [10, 12]. Later, it was noted in [153]

that Hill’s energy functional of hyperelasticity [72] can be used to describe the

simple special case of structures where the principal stresses are uncoupled, i.e.

depend only on the stretch ratio in the corresponding principal direction. These

approaches are based on Ogden-type strain-energy functions for compressible ma-

terials extending the incompressible strain-energy functions defined in [126].

For stretch-dominated structures with open or closed cells made from non-

linear elastic materials, in [118,119], novel continuum isotropic hyperelastic mod-

els, at a mesoscopic level, where the number of cells was finite and the size of the

structure was comparable to the size of the cells, were constructed analytically

from the structural architecture and the material properties at the cell level. For

these structures, the cell walls, which were equal in size and arbitrarily oriented,

were under finite triaxial deformations, while the joints between adjacent walls

were not elastically deformed. The elastic responses at different scales were re-

lated by the assumption that, when the structure is subject to a triaxial stretch,

each cell wall deforms also by a triaxial stretch, without bending or buckling, and

the stretches of the structure and of the cell walls were related by a rotation.

Possible instability effects due to cell wall buckling, for example, which could also

occur under large deformations, were discussed in [118].

In this chapter, we bring new insight into the constitutive behaviour of the

stretch-dominated, open- and closed-cell models introduced in [118, 119], by pro-

viding a systematic derivation of their non-linear elastic parameters in the the-

oretical framework of [113]. As the focus of this study is the formal derivation

of non-linear elastic parameters, for which finite homogeneous deformations are

required, possible damage or instability effects are not discussed here. We start
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with a summary of the hyperelastic models and specialise these models to the case

with neo-Hookean cell components (Section 5.2), which we then analyse explicitly

as follows. For each model, first, the non-linear shear modulus is calculated under

the multiaxial deformation consisting of simple shear superposed on finite uniaxial

stretch (Section 5.3.1). Then, the non-linear Poisson’s ratio is computed under

uniaxial stretch, and the corresponding non-linear stretch modulus is obtained

from a universal relation involving the shear modulus as well (Section 5.3.2). A

universal relation is valid for a class of strain energy density functions, in this case,

isotropic hyperelastic materials. The role of the non-linear shear and stretch mod-

uli is to reflect stiffening or softening in a material under increasing loads. Volume

changes are quantified by the non-linear bulk modulus under hydrostatic pressure

(Section 5.3.3). To illustrate the theoretical results, we present and discuss the

non-linear elastic parameters of open- or closed-cell models where the material

and geometric parameters at the cell level are specified (Sections 5.3.4).

The strength of this model is highlighted is Section 5.4 by being applied ‘back-

wards’ to experimental data to predict cell wall behaviour, using an incompressible

Fung type model to capture cell wall stiffening. Finally, in Section 5.5.1 the model

based on neo-Hookean cell walls is implemented as a new material model in FEBio.

5.2 Hyperelastic models for stretch-dominated

architectures

In this section, first we summarise the general formulation of the continuum hy-

perelastic models for stretch-dominated architectures with open or closed cells

proposed in [118, 119]. We then specialise these models to the particular case of

structures with neo-Hookean cell components, which we analyse in detail in the

next sections.
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5.2.1 Geometric assumptions

The geometric assumptions are as follows: all cell walls are equal, with undeformed

thickness t and length L; the walls are thin, with the thickness-to-length ratio

0 < k = t/L < 1; and cell walls meet at joints with thickness t.

The representative volume fraction, ρw, signifies the fraction of cell wall ma-

terial in the structure, excluding the volume of the joint. This can be calculated

explicitly if the geometry is known. Here, we make further assumptions which let

us express a general ρw only as a function of k.

Open-cell structures. For the open-cell structure [118], we consider the case

where all cell walls meet at spherical joints (Figure 5.2A). It is assumed that

the entire surface of the joint is covered by cell walls (such that no red cell joint

is visible in Figure 5.2), then the volume of cell walls surrounding a joint is a

function of the joint’s surface area 4π(t/2)2 = 4π(kL/2)2. Half of each cell wall

L/2 is assumed to belong to each joint, giving

Vwall =
πk2L3

2
(5.2.1)

Taking the unit volume as the volume of the sphere with radius R = (L+t)/2 =

L(1 + k)/2, which is centred at a joint and contains half of the length of each cell

wall connected to that joint (see Figure 5.2B),

Vunit =
πL3(1 + k)3

6
(5.2.2)

Thus, the representative volume fraction of solid material contained in the cell

walls, included in this sphere, is

ρ(o)
w =

Vwall
Vunit

=
3k2

(1 + k)3
. (5.2.3)
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(A) (B)

Figure 5.2: Example stretch-dominated open-cell structure: (A) geometric as-
sumptions and (B) unit sphere.

(A) (B)

Figure 5.3: Example stretch-dominated closed-cell structure: (A) tetrakaidecahe-
dral packing and (B) representative volume based around a four cell junction.
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Closed-cell structures. For the closed-cell structures [119], all cell walls have

flat faces and adjacent cell walls meet along cell edges of length L, while adjacent

cell edges meet at spherical joints. In this case, setting the unit volume as the

volume of a sphere with radius R = (L + t)/2 = L(1 + k)/2, centred at a joint,

the representative volume fraction of solid material contained the cell walls (faces

and edges) included in this sphere, is equal to

ρ(c)
w =

3k

(1 + k)2
, (5.2.4)

while the remaining volume fraction, taken by the cell core, is

ρ(c)
c =

1

(1 + k)3
. (5.2.5)

See [119] for detailed derivation.

5.2.2 Kinematic assumptions

Stretch-dominated open-cell structures. When the structure is deformed

homogeneously with the principal stretches {αi}i=1,2,3, each cell wall deforms by a

triaxial stretch with the principal stretches {λi}i=1,2,3. Let (e1, e2, e3) be the usual

orthonormal vectors for the Cartesian coordinates in the principal directions in

which the structure deforms, and (n1,n2,n3) denote the orthonormal vectors in

the principal direction of a deforming cell wall, satisfying:

n1 =− e1 cos θ cosφ− e2 cos θ sinφ+ e3 sin θ,

n2 =e1 sinφ− e2 cosφ,

n3 =e1 sin θ cosφ+ e2 sin θ sinφ+ e3 cos θ.

(5.2.6)
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Figure 5.4: Cell wall and cell element before and after deformation in a stretch-
dominated open-cell structure.

- For the cell wall, the deformation gradient is the stretch tensor F = diag(λ1, λ2, λ3)

and the Cauchy-Green tensor is equal to C = diag(λ2
1, λ

2
2, λ

2
3). We denote the prin-

cipal invariants of the stretch tensor, F, by

ι1 = λ1 + λ2 + λ3,

ι2 = λ1λ2 + λ2λ3 + λ3λ1,

ι3 = λ1λ2λ3,

(5.2.7)

and the principal invariants of the Cauchy-Green tensor, C, by

I1 = λ2
1 + λ2

2 + λ2
3,

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1,

I3 = λ2
1λ

2
2λ

2
3.

(5.2.8)
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From (5.2.7) and (5.2.8), we obtain

I1 = ι21 − 2ι2,

I2 = ι22 − 2ι1ι3,

I3 = ι23.

(5.2.9)

- Assuming that the cell joints do not deform, if L and l are the lengths of a cell

wall before and after the deformation, respectively, and t is the width of a joint

between adjacent walls, we denote by L = L+ t = (1 + k)L and l = l+ t = l+ kL

the corresponding lengths of a cell element comprising a cell wall and a joint (or

a cell wall and half of each joint situated at the ends of the wall) before and after

the deformation (Figure 5.4). Then the principal stretches for a cell element are

λi =
λi + k

1 + k
, i = 1, 2, 3. (5.2.10)

Due to the structure undergoing homogeneous deformation, the cell element is

assumed to deform in the same manner as the structure, relating the principal

stretches of the cell element {λi}i=1,2,3 to the principal stretches of the structure

{αi}i=1,2,3 by

λ
2

1 =α2
1 cos2 θ cos2 φ+ α2

2 cos2 θ sin2 φ+ α2
3 sin2 θ,

λ
2

2 =α2
1 sin2 φ+ α2

2 cos2 φ,

λ
2

3 =α2
1 sin2 θ cos2 φ+ α2

2 sin2 θ sin2 φ+ α2
3 cos2 θ.

(5.2.11)

Denoting the principal invariants of the stretch tensor F = diag(λ1, λ2, λ3) by

i1 = λ1 + λ2 + λ3,

i2 = λ1λ2 + λ2λ3 + λ3λ1,

i3 = λ1λ2λ3,

(5.2.12)
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the following relations hold between the stretch invariants (5.2.7) and (5.2.12), of

the cell wall and of the cell element, respectively,

ι1 = (1 + k)i1 − 3k,

ι2 = (1 + k)2i2 − 2k(1 + k)i1 + 3k2,

ι3 = (1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3.

(5.2.13)

Then, by (5.2.9) and (5.2.13),

I1 =
[
(1 + k)i1 − 3k

]2 − 2
[
(1 + k)2i2 − 2k(1 + k)i1 + 3k2

]
,

I2 =
[
(1 + k)2i2 − 2k(1 + k)i1 + 3k2

]2
− 2

[
(1 + k)i1 − 3k

] [
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]
,

I3 =
[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]2
.

(5.2.14)

- For the structure, the principal invariants of the stretch tensor are

i1 = α1 + α2 + α3,

i2 = α1α2 + α2α3 + α3α1,

i3 = α1α2α3.

(5.2.15)

Stretch-dominated closed-cell structures. For the closed-cell structures, the

kinematic assumptions on the cell walls and the cell joints are the same as for the

open-cell case. In addition, when the cells are filled with an isotropic hyperelastic

core, it is assumed that the cell core deforms homogeneously with the cell walls

and remains in full active contact with the adjacent cell walls throughout the

deformation, i.e., no internal gaps occur.

Remark 5.2.1 We note that, in order for the kinematic assumptions to be satis-

fied, and in particular, that the deformation of the cell walls can be approximated

by a triaxial stretch, while the elastic deformation of the joints may be neglected, it

is reasonable to assume that the thickness of the walls, t, is much smaller than the
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length of the walls, L, and hence k = t/L is sufficiently small, i.e. 0 < k � 1. In

practice, the upper limit for k, such that the kinematic assumptions are reasonably

satisfied, will depend on both the cell wall material and cell geometry. In particular,

under the geometric and kinematic assumptions described above, in [118], numer-

ical examples show that the mesoscopic models capture the behaviour of cellular

structures with a fixed number of cells and increasing wall thickness more accu-

rately for the structures with thinner walls, where the deformation of the walls is

closer to the triaxial stretch and the joints deform less significantly, as assumed

theoretically, than for those with thicker walls, where the theoretical assumptions

fail to be satisfied. In the numerical examples presented in Section 5.3.4, we com-

pare numerically the non-linear material properties of the mesoscopic models, by

taking k ∈ {0.1, 0.2, 0.3} and the cell wall material parameters fixed, or varying

the cell core material parameters while the cell wall material is fixed, with k = 0.1.

5.2.3 Constitutive models

First, we recall that, for a homogeneous isotropic hyperelastic material, the fol-

lowing principles hold:

- Material objectivity (frame indifference), which states that the constitutive

equation must be invariant under changes of frame of reference, i.e. the scalar

strain-energy function, W = W(F), depending only on the deformation gradient

F, with respect to the reference configuration, is unaffected by a superimposed

rigid-body transformation (which involves a change of position) after deformation,

i.e. W(RTF) =W(F), where R ∈ SO(3) is a proper orthogonal tensor (rotation).

- Material isotropy, which requires that the strain-energy function is unaffected

by a superimposed rigid-body transformation prior to deformation, i.e. W(FQ) =

W(F), where Q ∈ SO(3).
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Assuming that the cell walls are made from a homogeneous isotropic hyper-

elastic material, it follows from the kinematic assumptions in Section 5.2.2 that

the following strain-energy functions can be equivalently expressed:

• By (5.2.9) the strain-energy of the wallWw can be expressed in terms of the

principal invariants of C or F of the cell wall deformation

Ww(I1, I2, I3) =Ww(ι1, ι2, ι3). (5.2.16)

• By (5.2.13), the strain-energy of the wall can be related to the strain-energy

of the cell element Ww

Ww(ι1, ι2, ι3) =Ww(i1, i2, i3) (5.2.17)

• By (5.2.11), (5.2.12),(5.2.15) and the principals of material objectivity and

isotropy, the strain-energy of the element can be equivalently written in

terms of the the structure’s principal invariants

Ww(i1, i2, i3) =Ww(i1, i2, i3). (5.2.18)

Open-cell model. For the open-cell model, the strain-energy function per unit

volume is defined by taking the mean value of the cell wall energy over the unit

sphere [118],

W(o)(i1, i2, i3) = ρ(o)
w

2

π

∫ π/2

0

∫ π/2

0

Ww(i1, i2, i3) sin θdθdφ

= ρ(o)
w Ww(i1, i2, i3).

(5.2.19)
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Then, the principal components of the corresponding Cauchy stress tensor are

σ
(o)
i = J−1

o αi
∂W(o)

∂αi

= J−1
o

∂W(o)

∂ (lnαi)
, i = 1, 2, 3,

(5.2.20)

where {αi}i=1,2,3 the principal stretches of the structure and Jo = i3 = α1α2α3.

A consequence of this formulation is that if a cell wall is incompressible, so will

the structure. This relationship would not be true in a bending-dominated struc-

ture, where the cell wall bending allows for a high level of compressibility. However

this assumption fits for stretch-dominated structures, especially in tension where

relatively little buckling should occur, as discussed in [118].

Closed-cell model. For the closed-cell model, the strain-energy function is

equal to [119]

W(c)(i1, i2, i3) = ρ(c)
w Ww(i1, i2, i3) + ρ(c)

c Wc(i1, i2, i3), (5.2.21)

where Ww(i1, i2, i3) and Wc(i1, i2, i3) are the strain-energy functions for the cell

walls and the cell core, respectively. When the cells are empty, the hyperelastic

model defined by (5.2.21) simplifies to

W(e)(i1, i2, i3) = ρ(c)
w Ww(i1, i2, i3). (5.2.22)

For the general closed-cell model given by (5.2.21), the principal components of

the associated Cauchy stress tensor are

σ
(c)
i = J−1

c αi
∂W(c)

∂αi

= J−1
c

∂W(c)

∂ (lnαi)
, i = 1, 2, 3,

(5.2.23)

where Jc = i3 = α1α2α3.
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5.2.4 The particular case with neo-Hookean cell compo-

nents

To investigate formally the non-linear elastic behaviour of the constitutive models

(5.2.19) and (5.2.21), we specialise to the case where the cell wall material is

described by the compressible neo-Hookean model

Ww(I1, I2, I3) =
µw
2

(I1 − 3− ln I3) +
λw
2

(
ln I

1/2
3

)2

, (5.2.24)

with µw > 0 and λw > 0 constants.

Open cells with neo-Hookean cell walls. The strain-energy function for the

open-cell model (5.2.19) with the cell wall material described by (5.2.24) is equal

to [118]

W(o)(i1, i2, i3) =
µwρ

(o)
w

2

[
(1 + k)2

(
i21 − 2i2

)
− 2k(1 + k)i1 − 3

(
1− k2

)]
− µwρ(o)

w ln
[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]
+
λwρ

(o)
w

2

{
ln
[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]}2
.

(5.2.25)

The associated principal Cauchy stress components, given by (5.2.20), are

σ
(o)
i = µwρ

(o)
w (1 + k)

αi
α1α2α3

[
αi(1 + k)− k − 1

αi(1 + k)− k

]
+ λwρ

(o)
w (1 + k)

αi
α1α2α3

ln [(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3]

αi(1 + k)− k
, i = 1, 2, 3.

(5.2.26)

Closed cells with neo-Hookean components. For the closed-cell structures,

if the cells are filled, we further assume that the cell core is characterised by the
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neo-Hookean model

Wc(I1, I2, I3) =
µc
2

(I1 − 3− ln I3) +
λc
2

(
ln I

1/2
3

)2

, (5.2.27)

with µc > 0, λc > 0 constants. Then, the strain-energy function for the closed-cell

model (5.2.21) takes on the form [119]

W(c)(i1, i2, i3) =
µwρ

(c)
w

2

[
(1 + k)2

(
i21 − 2i2

)
− 2k(1 + k)i1 − 3

(
1− k2

)]
− µwρ(c)

w ln
[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]
+
λwρ

(c)
w

2

{
ln
[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]}2

+ ρ(c)
c

[
µc
2

(
i21 − 2i2 − 3− 2 ln i3

)
+
λc
2

(ln i3)2

]
.

(5.2.28)

The associated principal Cauchy stresses, given by (5.2.23), are

σ
(c)
i = µwρ

(c)
w (1 + k)

αi
α1α2α3

[
αi(1 + k)− k − 1

αi(1 + k)− k

]
+ λwρ

(c)
w (1 + k)

αi
α1α2α3

ln [(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3]

αi(1 + k)− k

+
ρ

(c)
c

α1α2α3

[
µc
(
α2
i − 1

)
+ λc ln i3

]
, i = 1, 2, 3.

(5.2.29)

5.3 Non-linear elastic moduli

5.3.1 Shear modulus

In this section, for the hyperelastic models (5.2.25) and (5.2.28), we determine

explicit non-linear shear moduli, as discussed in [113]. Consider the following

multiaxial homogeneous deformation [49, 147], consisting of simple shear super-
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posed on finite uniaxial stretch (Figure 5.5) [35,113,132],

x1 = α(a)X1 + γaX3,

x2 = α(a)X2,

x3 = aX3,

(5.3.1)

where (X1, X2, X3) and (x1, x2, x3) are the Cartesian coordinates for the La-

grangian (reference) and the Eulerian (current) configuration, respectively, and

a and γ are positive constants.

Figure 5.5: Cube (left) deformed by uniaxial stretch (middle) followed by simple
shear (right).

For this deformation, the principal stretches {αi}i=1,2,3 satisfy

α2
1 =

α(a)2 + a2 (1 + γ2) +
√

[α(a)2 + a2 (1 + γ2)]2 − 4a2α(a)2

2
,

α2
2 =

α(a)2 + a2 (1 + γ2)−
√

[α(a)2 + a2 (1 + γ2)]2 − 4a2α(a)2

2
,

α2
3 = α(a)2.

(5.3.2)

Then, J = α1α2α3 = aα(a)2.

The non-linear shear modulus is defined as [113],

µ(a, γ) =
σ1 − σ2

α2
1 − α2

2

, (5.3.3)
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where {σi}i=1,2,3 are the principal components of the Cauchy stress tensor associ-

ated with the deformation (5.3.1).

Remark 5.3.1 Note that the non-linear shear modulus (5.3.3) is positive if the

Baker-Ericksen (BE) inequalities hold. These inequalities state that the greater

principal stress occurs in the direction of the greater principal stretch and take on

the form

(σi − σj) (αi − αj) > 0 if αi 6= αj, i, j = 1, 2, 3, (5.3.4)

with “≥” replacing the strict inequality “>” if any two principal stretches are

equal [8, 93].

For the neo-Hookean models (5.2.24) and (5.2.27), the non-linear shear mod-

ulus (5.3.3) is constant and equal to µw and µc, respectively.

When a → 1, i.e., for simple shear superposed on infinitesimal axial stretch,

the non-linear shear modulus given by (5.3.3) converges to the non-linear shear

modulus for simple shear,

µ̂(γ) = lim
a→1

µ(a, γ), (5.3.5)

and the principal stretches satisfy

α̂2
1 = 1 +

γ2 + γ
√
γ2 + 4

2
= α2,

α̂2
2 = 1 +

γ2 − γ
√
γ2 + 4

2
= α−2,

α̂2
3 = 1.

Similarly, when γ → 0, i.e., for infinitesimal shear superposed on finite axial

stretch, the non-linear shear modulus, given by (5.3.3), converges to

µ̃(a) = lim
γ→0

µ(a, γ). (5.3.6)

If a → 1 and γ → 0, then these shear moduli converge to the linear shear
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modulus of the infinitesimal theory, i.e.,

µ = lim
a→1

lim
γ→0

µ(a, γ)

= lim
γ→0

µ̂(γ)

= lim
a→1

µ̃(a).

(5.3.7)

Open-cell model. For the open-cell model (5.2.25), the non-linear shear mod-

ulus (5.3.3) is

µ(o)(a, γ) =
µwρ

(o)
w (1 + k)

α1α2α3 (α1 + α2)

[
(α1 + α2) (1 + k)− k +

k

[α1(1 + k)− k] [α2(1 + k)− k]

]
− λwρ

(o)
w k(1 + k)

α1α2α3 (α1 + α2)

ln[α1(1 + k)− k] + ln[α2(1 + k)− k] + ln[α3(1 + k)− k]

[α1(1 + k)− k] [α2(1 + k)− k]
.

(5.3.8)

When a→ 1, the non-linear shear modulus given by (5.3.5) is equal to

µ̂(o)(γ) = lim
a→1

µ(o)(a, γ), (5.3.9)

and if γ → 0, then the non-linear shear modulus defined by (5.3.6) is

µ̃(o)(a) = lim
γ→0

µ(o)(a, γ). (5.3.10)

In the linear elastic limit [118], a → 1 and γ → 0, by (5.2.3), these shear moduli

converge to

µ(o) = lim
a→1

lim
γ→0

µ(o)(a, γ)

= µwρ
(o)
w (1 + k)2

= µw
3k2

1 + k
.

(5.3.11)
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Closed-cell model. Similarly, for the closed-cell model (5.2.28), the non-linear

shear modulus (5.3.3) is equal to

µ(c)(a, γ) =
µwρ

(c)
w (1 + k)

α1α2α3 (α1 + α2)

[
(α1 + α2) (1 + k)− k +

k

[α1(1 + k)− k] [α2(1 + k)− k]

]
− λwρ

(c)
w k(1 + k)

α1α2α3 (α1 + α2)

ln[α1(1 + k)− k] + ln[α2(1 + k)− k] + ln[α3(1 + k)− k]

[α1(1 + k)− k] [α2(1 + k)− k]

+
µcρ

(c)
c

α1α2α3

.

(5.3.12)

When a→ 1, the non-linear shear modulus (5.3.5) is

µ̂(c)(γ) = lim
a→1

µ(c)(a, γ), (5.3.13)

and if γ → 0, then the non-linear shear modulus (5.3.6) is

µ̃(c)(a) = lim
γ→0

µ(c)(a, γ). (5.3.14)

In the linear elastic limit [119], a → 1 and γ → 0, by (5.2.4) and (5.2.5), these

moduli converge to

µ(c) = lim
a→1

lim
γ→0

µ(c)(a, γ)

= µwρ
(c)
w (1 + k)2 + µcρ

(c)
c

= 3kµw + µc
1

(1 + k)3
.

(5.3.15)

When the closed cells are empty, we obtain the corresponding non-linear shear

moduli, µ(e), µ̂(e), µ̃(e) , and their linear elastic limit, µ(e), by setting ρ
(c)
c = 0 in

(5.3.12), (5.3.13), (5.3.14), and (5.3.15), respectively.
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5.3.2 Stretch modulus and Poisson function

Next, we focus on the simple extension (or contraction) diag(α1, α2, α3), with

α3 = a > 1 (a < 1 for contraction) and α1 = α2 = α(a) (as in Figure 5.5 middle),

for which the associated Cauchy stress tensor is equal to σ = diag (0, 0, N), with

N > 0 for uniaxial tension (N < 0 for uniaxial compression).

Remark 5.3.2 We recall that, for a hyperelastic body subject to uniaxial tension

(or compression), the deformation is a simple extension (contraction) in the di-

rection of the tensile (compressive) force if and only if the BE inequalities (5.3.4)

hold [8, 93]. If the BE inequalities are valid for the cell wall material, then these

inequalities are valid also for the open- and closed-cell models (see details in [119]).

The non-linear Poisson’s ratio, defined in terms of the logarithmic (or Hencky,

or true) strain, is equal to the following Poisson function [10,113]

ν(a) = − lnα(a)

ln a
. (5.3.16)

Then, the non-linear stretch modulus satisfies the following universal relation

(valid for all isotropic hyperelastic materials) [113],

E(a) = µ̃(a)
a2 − a−2ν(a)

(1 + ν(a)) ln a
(1 + ν(a) + aν ′(a) ln a) , (5.3.17)

where µ̃(a) and ν(a) are given by (5.3.6) and (5.3.16), respectively, and ν ′(a) =

dν(a)/da is the derivative of ν(a) with respect to a.

We note that, for the neo-Hookean models (5.2.24) and (5.2.27), the non-linear

Poisson’s ratio given by (5.3.16) is not constant (see Section 5.3.2 for a proof). We

denote by νw(a) and Ew(a) the non-linear Poisson function and stretch modulus

for the cell wall, respectively, and similarly, by νc(a) and Ec(a) the non-linear

Poisson function and stretch modulus for the cell core, respectively. Then, the
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respective linear elastic limits are as follows:

νw = lim
a→1

νw(a)

=
λw

2 (µw + λw)
,

Ew = lim
a→1

Ew(a)

= 2µw(1 + νw),

(5.3.18)

and

νc = lim
a→1

νc(a)

=
λc

2 (µc + λc)
,

Ec = lim
a→1

Ec(a)

= 2µc(1 + νc).

(5.3.19)

Open-cell model. For the open-cell model (5.2.25) under the deformation

diag(α1, α2, α3), such that α3 = a and α1 = α2 = α(a) in the Cartesian directions

(e1, e2, e3), we assume that some of the cell walls are aligned with these Cartesian

directions. Then, their deformation is diag(λ1, λ2, λ3), where λ3 = a(1 + k) − k,

λ1 = λ2 = λ(a) = λ
−νw(λ3)
3 = [a(1+k)−k]−νw(a(1+k)−k), and α(a) = (λ(a)+k)/(1+

k). In this case, the non-linear Poisson’s ratio, defined by (5.3.16), is equal to

ν(o)(a) = −
ln
{

[a(1 + k)− k]−νw(a(1+k)−k) + k
}
− ln(1 + k)

ln a
. (5.3.20)

In the linear elastic limit [118], the Poisson function given by (5.3.20) converges

to

ν(o) = lim
a→1

ν(o)(a)

= νw.

(5.3.21)
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The corresponding non-linear stretch modulus satisfies the following relation sim-

ilar to (5.3.17),

E(o)(a) = µ̃(o)(a)
a2 − a−2ν(o)(a)

(1 + ν(o)(a)) ln a

(
1 + ν(o)(a) + a(ν(o))′(a) ln a

)
, (5.3.22)

with µ̃(o)(a) given by (5.3.10). In the linear elastic limit [118], the non-linear

stretch modulus defined by (5.3.22) converges to

E
(o)

= lim
a→1

E(o)(a)

= Ewρ
(o)
w (1 + k)2

= Ew
3k2

1 + k
.

(5.3.23)

Closed-cell model. Similarly, for the closed-cell model (5.2.28), if the cells are

empty or the Poisson’s ratios for the cell walls and the cell core are equal, i.e.,

νw = νc, then the Poisson function and stretch modulus are, respectively,

ν(c)(a) = −
ln
{

[a(1 + k)− k]−νw(a(1+k)−k) + k
}
− ln(1 + k)

ln a
(5.3.24)

and

E(c)(a) = µ̃(c)(a)
a2 − a−2ν(c)(a)

(1 + ν(c)(a)) ln a

(
1 + ν(c)(a) + a(ν(c))′(a) ln a

)
, (5.3.25)

with µ̃(c)(a) given by (5.3.14). In the linear elastic limit [119],

ν(c) = lim
a→1

ν(c)(a)

= νw

(5.3.26)
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and

E
(c)

= lim
a→1

E(c)(a)

= Ewρ
(c)
w (1 + k)2 + Ecρ

(c)
c

= 3kEw + Ec
1

(1 + k)3
.

(5.3.27)

Non-linear Poisson function for neo-Hookean material

Here we prove that the non-linear Poisson’s ratio defined by (5.3.16) is not constant

for an elastic body characterised by the generalised neo-Hookean model

W(α1, α2, α3) =
µ

2

[
α2

1 + α2
2 + α2

3 − 3− ln(α2
1α

2
2α

2
3)
]

+
λ

2
[ln(α1α2α3)]2 , (5.3.28)

where µ > 0 and λ > 0 are constants.

Proof: Under simple tension or compression, diag(α1, α2, α3), with α3 = a >

0 and α1 = α2 = α(a), the associated Cauchy stress tensor is equal to σ =

diag (0, 0, N), where N 6= 0 and the diagonal components satisfy

σi = J−1αi
∂W
∂αi

, i = 1, 2, 3, (5.3.29)

with J = α1α2α3. For the constitutive model (5.3.28), under the given deforma-

tion, (5.3.29) reduces to

1

α2
1α3

[
µ(α2

1 − 1) + λ ln
(
α2

1α3

)]
= 0,

1

α2
1α3

[
µ(α2

3 − 1) + λ ln
(
α2

1α3

)]
= N.

(5.3.30)
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Equivalently, by subtracting the first from the second equation in (5.3.30), we

obtain

µ(α2
1 − 1) + λ ln

(
α2

1α3

)
= 0,

µ(α2
3 − α2

1)

α2
1α3

= N.
(5.3.31)

Next, using the definition of the Poisson function given by (5.3.16), if α3 = a, then

α1 = α
−ν(a)
3 , and (5.3.31) takes on the form

µ(a−2ν(a) − 1) + λ (1− 2ν(a)) ln a = 0,

µ(a2 − a−2ν(a))

a1−2ν(a)
= N.

(5.3.32)

Assuming constant Poisson function, ν(a) = ν = λ/(2(µ+λ)), then λ = 2µν/(1−

2ν) and (5.3.32) reduces to

a−2ν + 2ν ln a = 1,

µ(a2 − a−2ν)

a1−2ν
= N.

(5.3.33)

Next, noting that the first equation in (5.3.33) has the unique solution a = 1, we

conclude that only under infinitesimal strain the Poisson function can be constant,

but not under finite strain in general.

5.3.3 Bulk modulus

Volume changes in the isotropic hyperelastic models (5.2.25) and (5.2.28) can

be quantified by the following non-linear bulk modulus [113], defined under the

equitriaxial stretch diag(α1, α2, α3), with α1 = α2 = α3 = a > 0 (Figure 5.6),

κ =
1

3

∂ (σ1 + σ2 + σ3)

∂(J − 1)
, (5.3.34)

where {σi}i=1,2,3 are the principal Cauchy stresses and J = α1α2α3 = a3.
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Figure 5.6: Cube deformed by hydrostatic compression.

Remark 5.3.3 For a compressible isotropic material, the fact that the volume of

the material is decreased by hydrostatic compression and increased by hydrostatic

tension is expressed by the the pressure-compression (PC) inequalities stating that

each principal stress is a tension or a compression if the corresponding principal

stretch is an extension or a contraction, i.e., σi (αi − 1) > 0, i = 1, 2, 3 [157,

p. 155]. Physically, either or both of the following mean versions of the PC con-

ditions are more realistic,

σ1 (α1 − 1) + σ2 (α2 − 1) + σ3 (α3 − 1) > 0, (5.3.35)

or

σ1

(
1− 1

α1

)
+ σ2

(
1− 1

α2

)
+ σ3

(
1− 1

α3

)
> 0, (5.3.36)

if not all principal stretches are equal to 1. By [119], if the PC inequalities hold for

the cell wall material, then these inequalities hold also for the open- and closed-cell

models.
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As J quantifies the relative change of volume from the reference to the current

configuration, assuming that J is close to 1 (i.e., for small or incremental volume

changes), and setting σ1 = σ2 = σ3 = σ, the non-linear bulk modulus (5.3.34)

simplifies as follows,

κ = lim
J→1

σ

J − 1
. (5.3.37)

For the neo-Hookean models (5.2.24) and (5.2.27), the respective bulk moduli

given by (5.3.37) are constant and equal to

κw =
2µw + 3λw

3
,

κc =
2µc + 3λc

3
.

(5.3.38)

Open-cell model. For the open-cell model (5.2.25), expressing the principal

components of the Cauchy stress tensor as

σ
(o)
i =

µwρ
(o)
w (1 + k)

J
2/3
o

[
J1/3
o (1 + k)− k − 1

J
1/3
o (1 + k)− k

]

+
λwρ

(o)
w (1 + k)

J
2/3
o

ln
[
(1 + k)3Jo − 3k(1 + k)2J

2/3
o + 3k2(1 + k)J

1/3
o − k3

]
J

1/3
o (1 + k)− k

, i = 1, 2, 3,

(5.3.39)

where Jo = a3, and the non-linear bulk modulus given by (5.3.37) takes on the

form

κ(o) = lim
Jo→1

{
µwρ

(o)
w (1 + k)

J
2/3
o (Jo − 1)

[
J1/3
o (1 + k)− k − 1

J
1/3
o (1 + k)− k

]

+
λwρ

(o)
w (1 + k)

J
2/3
o (Jo − 1)

ln
[
(1 + k)3Jo − 3k(1 + k)2J

2/3
o + 3k2(1 + k)J

1/3
o − k3

]
J

1/3
o (1 + k)− k


= κwρ

(o)
w (1 + k)2

= κw
3k2

1 + k
.

(5.3.40)
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Note that µ(o) and κ(o) scale by the same factor, such that

κ(o)

µ(o)
=
κw
µw
. (5.3.41)

This result is to be expected in the linear elastic limit since ν(o) = νw.

Closed-cell model. Similarly, for the closed-cell model (5.2.28), the non-linear

bulk modulus defined by (5.3.37) is equal to

κ(c) = lim
Jc→1

{
µwρ

(c)
w (1 + k)

J
2/3
c (Jc − 1)

[
J1/3
c (1 + k)− k − 1

J
1/3
c (1 + k)− k

]

+
λwρ

(c)
w (1 + k)

J
2/3
c (Jc − 1)

ln
[
(1 + k)3Jc − 3k(1 + k)2J

2/3
c + 3k2(1 + k)J

1/3
c − k3

]
J

1/3
c (1 + k)− k

+
ρ

(c)
c

Jc

(
µc
J

2/3
c − 1

Jc − 1
+ λc

ln Jc
Jc − 1

)}

= κwρ
(c)
w (1 + k)2 + κcρ

(c)
c

= 3kκw + κc
1

(1 + k)3
.

(5.3.42)

Hence, for the open- and the closed-cell models with neo-Hookean cell walls, the

non-linear bulk moduli given by (5.3.40) and (5.3.42), respectively, are constant.

5.3.4 Examples

For the the isotropic hyperelastic models (5.2.25) and (5.2.28), we illustrate the

non-linear elastic behaviour under the studied deformations as follows:

- In Figure 5.7, for the open-cell models, defined by (5.2.25), with varying

thickness-to-length ratio of the cell wall, k ∈ {0.1, 0.2, 0.3}, and fixed cell wall

material parameters, µw = 1 and νw = 0.49, we plot: (A) the non-linear shear

modulus µ̂(o)(γ), given by (5.3.9), evaluated under varying simple shear, with

0 < γ < 0.5, superposed on infinitesimal axial stretch, and (B) the non-linear shear
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modulus µ̃(o)(a), given by (5.3.10), evaluated under infinitesimal shear superposed

on varying compression or tension, with 0.75 < a < 1.25.

- In Figure 5.8, for the open-cell models (5.2.25), with varying thickness-to-

length ratio of the cell wall, k ∈ {0.1, 0.2, 0.3}, and fixed material parameters,

µw = 1 and νw = 0.49, we show: (A) the non-linear stretch modulus E(o)(a),

given by (5.3.22), and (B) the non-linear Poisson’s ratio ν(o)(a), given by (5.3.20),

both evaluated under varying compression or tension, with 0.75 < a < 1.25.

- In Figure 5.9, for the closed-cell models, given by (5.2.28), with varying shear

modulus of the cell core, µc ∈ {0.01, 0.05, 0.1}, and fixed cell wall parameters,

µw = 1, νw = νc = 0.49, and k = 0.1, we plot: (A) the non-linear shear modulus

µ̂(c)(γ), given by (5.3.13), evaluated under varying simple shear, with 0 < γ < 0.5,

superposed on infinitesimal stretch, and (B) the non-linear shear modulus µ̃(c)(a),

given by (5.3.14), evaluated under infinitesimal shear superposed on varying com-

pression or tension, with 0.75 < a < 1.25.

- In Figure 5.10, for the closed-cell models (5.2.28), with varying shear modulus

of the cell core, µc ∈ {0.01, 0.05, 0.1}, and fixed cell wall parameters, µw = 1,

νw = νc = 0.49, and k = 0.1, we show: (A) the non-linear stretch modulus

E(c)(a), defined by (5.3.25), and (B) the non-linear Poisson’s ratio ν(c)(a), defined

by (5.3.24), both evaluated under varying compression or tension, with 0.75 <

a < 1.25.
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(A) (B)

Figure 5.7: Open-cell models (5.2.25) with varying thickness-to-length ratio of
cell wall, k ∈ {0.1, 0.2, 0.3}, and fixed µw = 1, νw = 0.49, showing: (A) non-linear
shear modulus µ̂(o)(γ) of (5.3.9), evaluated under varying simple shear (0 < γ <
0.5) superposed on infinitesimal stretch, and (B) non-linear shear modulus µ̃(o)(a)
of (5.3.10), evaluated under infinitesimal shear superposed on varying compression
or tension (0.75 < a < 1.25).

(A) (B)

Figure 5.8: Open-cell model (5.2.25) with varying thickness-to-length ratio of cell
wall, k ∈ {0.1, 0.2, 0.3}, and fixed µw = 1, νw = 0.49, showing: (A) non-linear
stretch modulus E(o)(a) of (5.3.22), and (B) non-linear Poisson’s ratio ν(o)(a) of
(5.3.20), both evaluated under varying compression or tension (0.75 < a < 1.25).
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(A) (B)

Figure 5.9: Closed-cell model (5.2.28) with varying shear modulus of cell core,
µc ∈ {0.01, 0.05, 0.1} and fixed µw = 1, νw = νc = 0.49, and k = 0.1, showing:
(A) non-linear shear modulus µ̂(c)(γ) of (5.3.13), evaluated under varying simple
shear (0 < γ < 0.5) superposed on infinitesimal stretch, and (B) non-linear shear
modulus µ̃(c)(a) of (5.3.14), evaluated under infinitesimal shear superposed on
varying compression or tension (0.75 < a < 1.25).

(A) (B)

Figure 5.10: Closed-cell model (5.2.28) with varying shear modulus of cell core,
µc ∈ {0.01, 0.05, 0.1} and fixed µw = 1, νw = νc = 0.49, and k = 0.1, showing:
(A) non-linear stretch modulus E(c)(a) of (5.3.25), and (B) non-linear Poisson’s
ratio ν(c)(a) of (5.3.24), both evaluated under varying compression or tension
(0.75 < a < 1.25).
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Discussion of examples

Our illustrative examples show that, for the open-cell model:

- Under simple shear superposed on infinitesimal stretch, the non-linear shear

modulus increases slightly or remains almost constant as the shear parameter,

satisfying 0 < γ < 0.5, increases (Figure 5.7A).

- Under infinitesimal shear superposed on finite axial stretch, the non-linear

shear modulus decreases or remains almost constant as the stretch ratio, satisfying

0.75 < a < 1.25, increases (Figure 5.7B).

- Under increasing finite axial stretch, the non-linear stretch modulus increases,

while the Poisson function decreases (Figure 5.8).

- As the thickness-to-length ratio of the cell wall, k, increases, the non-linear

shear and stretch parameters increase, while the non-linear Poisson’s ratio de-

creases in tension and increases in compression (Figures 5.7 and 5.8).

Analogous properties were found for the closed-cell model with empty cells

(results not shown). In addition, when the closed cells are filled with an elastic

core that has the same Poisson’s ratio as the cell walls:

- The non-linear shear and stretch moduli increase as the shear modulus of the

cell core, µc, increases (Figures 5.9 and 5.10A).

- When the Poisson’s ratios for the cell wall and for the different cell core

materials are equal, the non-linear Poisson’s ratio for the closed-cell model does

not change with the cell core (Figure 5.10B).

Note the bulk modulus is only defined in the linear elastic limit and is constant,

whereas the other elastic moduli are functions of deformation. Hence, no plots of

the bulk modulus are given.
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5.4 Backwards multiscale method

There are many experimental difficulties in recording accurate cell wall stiffness

for biological cellular materials. These difficulties arise from: (i) the size of the

cell walls and the testing equipment required for measuring non-linear behaviour

accurately; (ii) changes in properties between in vivo and in vitro - an extracted

cell wall will have a different stiffness if it is within a tissue, as environmental

conditions (such as hydration) will change. The power of using the multiscale

framework [119] as a ‘backwards multiscale method’ is that it is able to extract

information from macroscopic tests and predict cell wall properties that may be

otherwise impossible to find.

In this section, we will apply the multiscale framework in reverse to exper-

imental data for the Jonagord apple, Figure 5.11 [125], to derive the cell wall

properties. The advantage of this data is that three sets of measurements were

taken, for varying cell core pressures (manipulated by absorption of mannitol so-

lution, with different osmotic potentials). This means that we can distinguish the

cell core effect and find the common cell wall data between the data sets. No

experimental data could be found to give a complete validation of the derived

cell wall material, so we highlight that this cell wall derivation is for illustrative

purposes only.

The experimental test [125] was performed on a rectangular specimen (11 ×

5 × 2mm) bonded by an adhesive at the ends to a tensile test rig. Three cycles

of uniaxial tensile loading and unloading, to zero stress, were performed, then

elongation until tissue failure. Tensile loading happened at a rate of 6.6µms−1.

Results are shown in Figure 5.11 1.

1Reprinted from Postharvest Biology and Technology, 44, Oey ML et al., Effect of turgor
on micromechanical and structural properties of apple tissue: a quantitative analysis, 240-247,
Copyright (2007), with permission from Elsevier.
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Figure 5.11: Jonagord apple [125] tensile data for three apple tissues, oversatu-
rated, fresh and overripe (from left to right).

5.4.1 Model derivation

The isotropic incompressible Fung strain energy density function [57] has the ca-

pacity to capture the strain stiffening effects caused by the fibres within the cell

walls, so we will use it for our cell wall material. This is then incorporated in the

mesoscopic model, which we then calibrate against the experimental data. The

cell wall strain energy density function is

Ww =
µw
2b

[
eb(I1−3) − 1

]
, (5.4.1)

where µw is the infinitesimal shear modulus of the cell wall, b is the stiffening

factor, and I1 is the first strain invariant of the deformation.

We assume that the cell core can be represented with a simple incompressible

neo-Hookean model

Wc =
µc
2

(
I1 − 3

)
, (5.4.2)

where µc is the infinitesimal shear modulus of the cell core.
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The mesoscopic strain energy density function for the closed cell model is then

W(c) =
µwρ

(c)
w

2b

{
eb[(1+k)2(i21−2i2)−2k(1+k)i1−3(1−k2)] − 1

}
+
µcρ

(c)
c

2

(
i21 − 2i2 − 3

)
,

(5.4.3)

where ρ
(c)
w and ρ

(c)
c are the volume fractions of cell wall and cell core material in a

representative unit volume (note that ρ
(c)
w does not include the volume of nodes),

respectively, k is the wall width-to-length ratio, and i1 and i2 are the first and

second deformation invariants.

In terms of principal stretches, αi, for the mesoscopic structure, this takes the

form

W(c) =
µwρ

(c)
w

2b

{
eb[(1+k)2(α2

1+α2
2+α2

3)−2k(1+k)(α1+α2+α3)−3(1−k2)] − 1
}

+
µcρ

(c)
c

2

(
α2

1 + α2
2 + α2

3 − 3
)
.

(5.4.4)

The corresponding principal stresses are

σi = µwρ
(c)
w

[
(1 + k)2α2

i − k(1 + k)αi
]
eb[(1+k)2(α2

1+α2
2+α2

3)−2k(1+k)(α1+α2+α3)−3(1−k2)]

+ µcρ
(c)
c α

2
i − p.

(5.4.5)

As we assume the cell walls, core and joints are all incompressible, the mesoscopic

bulk material is also incompressible and therefore α1α2α3 = 1. The mesoscopic

material is also isotropic and subject to uniaxial stretch, then α1 = α and α2 =

α3 = 1√
α

. A common assumption is that the out of plane stresses are zero, i.e.

σ3 = µwρ
(c)
w

[
(1 + k)2 1

α
− k(1 + k)

1√
α

]
e
b[(1+k)2(α2+ 2

α
)−2k(1+k)(α+ 2√

α
)−3(1−k2)]

+ µcρ
(c)
c

1

α
− p = 0.

(5.4.6)
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In this case, we can calculate the hydrostatic pressure

p = µwρ
(c)
w

[
(1 + k)2 1

α
− k(1 + k)

1√
α

]
e
b[(1+k)2(α2+ 2

α
)−2k(1+k)(α+ 2√

α
)−3(1−k2)]

+ µcρ
(c)
c

1

α
,

(5.4.7)

and obtain an expression for stress in the direction of the tensile force

σ1 = µwρ
(c)
w

[
(1 + k)2(α2 − 1

α
)− k(1 + k)(α− 1√

α
)

]
e
b[(1+k)2(α2+ 2

α
)−2k(1+k)(α+ 2√

α
)−3(1−k2)]

+ µcρ
(c)
c (α2 − 1

α
).

(5.4.8)

We can calibrate (5.4.8) to the experimental data, and find values for cell wall

material parameters (µw and b) for each of the three cases provided. For each

dataset, the values for the cell core stiffness µc can vary.

5.4.2 Experimental parameters

Average cell area over 2D cross sections have been recorded for high, normal and

low pressure. This allows for an approximation of the cell radius and volume.

Cell thickness was not recorded in this experiment, but [96] uses transmission

electron microscopy and MatLab analysis to calculate the cell wall thickness of

the Jonagord apple, thus a recording of 1.67 + −0.71µm is used here. In order

to approximate the cell wall thickness to length ratio k and the volume fractions

ρ
(c)
w and ρ

(c)
c , an idealised geometric assumption is made. An optimal, ordered, cell

packing in three dimensions, with full cell-cell contact (no gaps) is a tetrakaidec-

ahedral packing [65]. The resulting geometric parameters are summarised in the

table below.
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Jonagord apple parameters

Parameter Symbol Value Calculation

Cell wall pair thick-

ness

t 3.34µm Double recorded

thickness (cell wall

pair) [96]

Cell volume VT 2.74×106µm3 As recorded [125]

Edge length L 62.33µm VT = 8
√

2L
3

Effective edge length L 58.99µm L = L− t

Thickness to edge ra-

tio

κ 0.0536 κ = t/L

Thickness to effective

edge ratio

k 0.0566 l = t/L

RVF of cell walls ρw 0.0566 From geometry

RVF of cell core ρc 0.9434 From geometry

5.4.3 Model calibration

A built-in procedure is used in MatLab to calibrate the mesoscopic material model

against the experimental data. The absolute residual norm is minimised, where

the norm is given as

||r||22 =
∑

[σ1(λ)− σexp]2, (5.4.9)

where σexp is the experimentally recorded stress in the first direction, extracted

from Figure 5.11 using ‘grabit’ in MatLab.

The residual norms for each dataset (relating to the low, medium and high

core stiffness) is combined in the minimisation process with equal weighting, such

that the three samples relate to a shared shear modulus µw and stiffening factor

b.

Examining the data of Figure 5.11, sudden changes in the slope indicate some

sort of damage or failure, so these data points should be excluded. Further, there
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are cyclic tests included in these data sets which are also excluded. There are two

logical approaches to analysing the given data sets, which are both explored:

(i) Consider only data points up to the onset of damage,

(ii) Consider only data points up to a prescribed stretch.

Approach (i)

Here the data is resampled, so there are 100 data points in each data set, shown in

Figure 5.12. Excluded data points are shown in black. The ‘fminsearch’ MatLab

function is used as the data sets do not have the same λ range. An objective

function produces an error, dictated by (5.4.9), with equal weighting for each data

set. Penalties are included to enforce positive parameters.

Figure 5.12: Experimental data (excluding damage) fitted with the multiscale
Fung model, where black points are excluded in the fit.

The optimised parameters are µw = 1.9767, b = 16.057, and for the cell cores

(low pres) µc = 0, (med pres) µc = 0.3189 and (high pres) µc = 1.044, with
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residual norm ||r||22 = 0.039. The fit works well for both low and high pressures,

where either the Fung or neo-Hookean models dominate. However, for the normal

pressure the fit is not so good.

Approach (ii)

The data is resampled, such that there are 100 data points in the data range 1 ≤

λ ≤ 1.08 and 8% deformation is the maximum deformation considered, as shown

in Figure 5.13. Excluded data points are shown in black. The more appropriate

‘lsqcurvefit’ MatLab function is used as the data sets share the same λ range and

a single, combined objective function can be used, with equal weighting for each

data set. Lower limits are used to enforce positive parameters.

Figure 5.13: Experimental data (λ ≤ 1.08) fitted with the multiscale Fung model,
where black points are excluded in the fit.

The optimised parameters are µw = 1.3760, b = 36.6717 and for the cell cores

(low pres) µc = 0.006, (med pres) µc = 0.1976 and (high pres) µc = 1.0590, with

residual norm ||r||22 = 0.0031. Within the data range, there is strong agreement
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between the fit and experimental results, given by a norm which is of one order

of magnitude smaller than case (i). Outside of this range, stiffness increases more

sharply than the experimental data due to a higher stiffening factor.

5.4.4 Cell wall approximation

With the Fung cell wall material model approximation and the fitted parameters

from the mesoscopic material model, we now have functions and parameter val-

ues for both the cell wall and the continuum material, which could be used and

validated in further study. The Fung models for case (i) and (ii) are given by

Ww =
µw
2b

[
eb(I1−3) − 1

]
, (5.4.10)

with µw = 1.9767, b = 16.057 for case (i) and µw = 1.3760, b = 36.6717 for case

(ii). Assuming no out of plane stress, Figure 5.14 shows a stress plot of these

functions, given by

σw = µw

(
λ2

1 −
1

λ1

)
e
b(λ21+ 2

λ1
−3)
. (5.4.11)

5.5 New material models in FEBio

The open and closed cell mesoscopic material models have been implemented in

FEBio. This was written in C++ code and compiled into a .dll plugin, which can

be downloaded and used by other FEBio users. For validation, the computational

results are compared to the analytical predictions. We find that in uniaxial defor-

mation, the axial stress from the theory and simulation agree with accuracy 10−6.

This was tested with neo-Hookean cell wall material µw = 1, λw = 4 (which corre-

sponds to ν = 0.4 in the infinitesimal limit) and for closed cell - a soft neo-Hookean

cell core µc = 0.01, λc = 0.49 (which corresponds to ν = 0.49 in the infinitesimal
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Figure 5.14: Predicted cell wall behaviour from the Fung multiscale model.

limit). The boundary conditions were as follows: bottom face is fixed in the Z

direction and prescribed in the Z direction on the top. All faces are free in the X

and Y plane, however small cubes are attached to the top and bottom faces with

fixed X and Y to avoid multiple solutions. Clearly, with such strong agreement

between theory and simulation, the boundary conditions suffice for a homogeneous

deformation.

5.5.1 Derivation of the spatial elasticity tensor

The spatial elasticity tensor C is required for the linearisation of elasticity problems

and is calculated here in order for a new hyperelastic material to be implemented

in FEBio. C is of rank four and possesses major symmetries such that [73]

C = CT or CABCD = CCDAB, (5.5.1)
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Figure 5.15: Unit cube of closed cell material (left) subject to uniaxial tension
α3 = 1.5 (right), where colour bar represents stress in Z direction (in right only).

leaving 21 independent components, but then also minor symmetries such that

CABCD = CBACD = CABDC , (5.5.2)

leaving only 9 independent components.

In spectral form the spatial tensor can be expressed in terms of the principal

stretches

C =
3∑

a,b=1

J−1
m α2

aαb
∂Sa
∂αb

n̂a ⊗ n̂a ⊗ n̂b ⊗ n̂b

+
3∑

a,b=1
a6=b

J−1
m

σaα
2
a − σaα2

b

α2
b − α2

a

(n̂a ⊗ n̂b ⊗ n̂a ⊗ n̂b + n̂a ⊗ n̂b ⊗ n̂b ⊗ n̂a),

(5.5.3)

where Sa is the second Piola Kirchhoff stress Sa = σaJ/α
2
a and n̂a are the principal

spatial directions, which are the orthonormal eigenvectors of B. In the case where

α2
a = α2

b we find 0
0

so we apply l’Hôpital’s rule as follows:

lim
αb→αa

σaα
2
a − σaα2

b

α2
b − α2

a

=
(∂σb
∂αb

α2
a −

∂σa
∂αb

α2
b − 2αbσa

) 1

2αb

=
1

2
αa

(∂σb
∂αb
− ∂σa
∂αb

)
− σa.

(5.5.4)
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5.5.2 Example with neo-Hookean cell walls

For the mesoscopic model with neo-Hookean beams our base strain energy density

function will take the form

W(I1, I2, I3) =
µ

2
(I1 − 3)− µlnI

1/2
3 +

λ

2

(
lnI

1/2
3

)2

, (5.5.5)

where µ and λ are real positive constants.

From Section 5.2.4, we can calculate the strain energy density function for the

mesoscopic cellular structure as (in terms of principal stretches)

W(o)(α1, α2, α3) =
ρwµ

2

[
(1 + k)2(α2

1 + α2
2 + α2

3)− 2k(1 + k)(α1 + α2 + α3)

+ 3k2 − 3
]

− ρwµln
[
(1 + ρ)3(α1α2α3)− k(1 + k)2(α1α2 + α1α3 + α2α3)

+ k2(1 + k)(α1 + α2 + α3)− k3
]

+
ρwλ

2

{
ln
[
(1 + k)3(α1α2α3)− k(1 + k)2(α1α2 + α1α3 + α2α3)

+ k2(1 + k)(α1 + α2 + α3)− k3
]}2

.

(5.5.6)

The principal Cauchy stress is then calculated as

σi = ρw(1 + k)αiJ
−1
m

[
µ

(
ci −

1

ci

)
+ λ

(
lnC

ci

)]
, (5.5.7)

where for brevity,

ci = (1 + k)αi − k (5.5.8)

and

C =
3∑
i=1

ci = (1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3. (5.5.9)
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Spatial elasticity tensor C:

Ciiii = J−1
m α3

i

∂Si
∂αi

(5.5.10)

= ρw(1 + ρ)αiJ
−1
m

[
µ

(
ρ+

2ci + ρ

c2
i

)
(5.5.11)

+ λ
αi(ρ+ 1)− (2ci + ρ) lnC

c2
i

]
, (5.5.12)

Ciijj = J−1
m α2

iαj
∂Si
∂αj

(5.5.13)

= ρw(1 + ρ)αiαjJ
−1
m λ

ρ+ 1

cicj
, (5.5.14)

Cijij = Cijji =
σjα

2
i − σiα2

j

α2
j − α2

i

(5.5.15)

= ρw(1 + ρ)J−1
m αjαi

[
µ

(
αicj − αjci +

αj
ci
− αi
cj

)
(5.5.16)

+ λ

(
αi lnC

cj
− αj lnC

ci

)] 1

α2
j − α2

i

. (5.5.17)

When α2
j = α2

i , applying l’Hôpital’s rule, we have

Cijij = Cijji = 0.5αi

(
∂σj
∂αj
− ∂σi
∂αj

)
− σi, (5.5.18)

where

∂σi
∂αi

= ρw(1 + ρ)

[
µ

(
ci + ρ+

ρ

c2
i

+
1

ci

)
+ λ

(ci + ρ)(1− lnC)

c2
i

]
J−1
m , (5.5.19)

and, for i 6= j,

∂σi
∂αj

= ρw(1 + ρ)

{
µ

(
αi
ciαj

− αici
αj

)
+ λ

[
αi(ρ+ 1)

cicj
− lnCαi

ciαj

]}
J−1
m . (5.5.20)
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5.6 Summary

For stretch-dominated cellular structures with open or closed cells made from an

arbitrary homogeneous isotropic hyperelastic material, continuum isotropic hyper-

elastic models at a mesoscopic level were constructed analytically in [118,119]. To

gain further insight into the non-linear elastic behaviour of these models, here,

we specialised to the case with neo-Hookean cell components, and derived explic-

itly the non-linear shear, stretch, and bulk moduli and Poisson function defined

in [113].

For the continuum models of stretch-dominated structures with open or closed

cells investigated here, the non-linear elastic parameters were predicted analyt-

ically from the material and geometric parameters at the cell level, which were

provided a priori. Conversely, continuum models with specific non-linear elastic

properties may be designed by selecting suitable material and geometric properties

of the components, or these cell level parameters can be derived from experimental

measurements on cellular tissues, as in Section 5.4. The limitations in our ability

to perform validation tests for the open-cell model, is explored in Appendix A.

The exploration of the non-linear parameters has been published in the In-

ternational Journal of Non-linear Mechanics [144] and has been presented (along

with the backwards multiscale method) at the 10th European Solid Mechanics

Conference, Bologne, Italy (July 2018).
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Chapter 6

Conclusions and perspectives

6.1 Overview

The aim of this thesis was to illuminate some of the behaviours of deforming cellu-

lar materials and the links to their composition such as the cell wall, cell core and

cohesive middle lamella. This aim was achieved by studying cell wall pairs and

complex cellular tissues under shear deformation, in addition to exploring multi-

scale models built from microscopic observations. The use of non-linear materials

and large deformation frameworks allows for changes in material properties as the

deformation progresses, which is readily observed in soft biological material, es-

pecially fibrous composites. Our results match experimental observations and are

useful in directing further research.

Simple and generalised shear have been mathematically analysed for over half

a century, yet this is the first time they have been put in the context of contact

mechanics, where the permissible forms of deformed walls are combined with the

complementarity conditions of gap size and contact pressure. The exercise with

isotropic Mooney-Rivlin cell walls is omitted from the thesis, however this gives

detail on the possible quadratic forms of the deformed walls which do not con-

flict with the complementarity conditions. By including transverse isotropy, the

theoretical results depend on a fibre direction and a stiffness in this direction. If
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the fibre direction is parallel to the direction of shear, the isotropic case is recov-

ered. For simplified solutions, we assume the fibres to be much stiffer than the

surrounding matrix, but the role of the relative stiffness and a general fibre angle

could be further explored. In addition, the presence of intracellular pressure is

proven to have a cohesive effect on contacting cell wall pairs.

In many soft fruits it is desirable for the tissue to fail by cell bursting rather

than cell-cell debonding, as it is the cell cytoplasm which contains the flavour

and juices. There is relatively little literature on the debonding failure mode as

this is harder to test and decipher from mixed mode results. A limit of the finite

elasticity approach is that no damage can occur in the cell walls, such that cell-cell

debonding can only be explored and not the transition from cell bursting as the

primary failure mode. However, as the information on debonding is limited, our

investigation provides valuable insights. Finite element simulations of multibody

contact problems are usually inefficient due to the algorithms that detect and

resolve contact. As debonding cellular materials can quickly become cumbersome,

a two step procedure is developed to increase speed and reliability. In this case, the

boundary conditions play an important role in limiting the solution space to allow

tractable, measurable results. Frictionless non-penetrative contact is employed

between cells and cohesion is implemented through normal pressure on the cell

walls. Cohesion delays the onset of debonding, but once the debonding force

has overcome a certain limit, the opening increases in size at a constant rate.

The cell core affects the structure through its stiffness (approximated by a soft

elastic inclusion) and a normal pressure acting on the cell walls. The volumetric

constraint in the cell core also delays gap initiation, but here the opening does not

increases in size at the same rate, as the softer the core, the more quickly the gap

grows. Therefore, dehydrating cells will both cause a pull at the intercellular bonds

and increase the speed of gap growth. This is in agreement with the experimental

observations that ageing and cooked plants debond more readily.
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6.1. OVERVIEW

Expanding the scale of our focus further, we consider continuum approaches

for isotropic cellular materials using the frameworks of [118,119]. The assumptions

here are that the cell walls primarily deform by triaxial stretch, due to the struc-

tural architecture, and that the cell joints do not deform significantly. This frame-

work extends any hyperelastic isotropic material model to a mesoscopic scale, but

only the compressible neo-Hookean strain-energy function is formally explored.

In this case, the non-linear shear modulus, stretch modulus, Poisson’s function

and bulk modulus are explicitly derived for the cellular material comprising of

neo-Hookean cell walls. These moduli, which quantify multiscale relationships be-

tween the structure and cell wall properties, are the most mathematically ‘pure’

elastic characteristics of a soft material, and are in the process of being adopted

within the materials testing community. However, it will be some time before

they are adopted within food sciences. Possibly the most useful aspect of the

multiscale method (to experimentalists) is the backward multiscale process pro-

posed in this thesis, as this can enlighten us to the possible cell wall properties

of a biological structure when only the bulk tissue behaviour is known. Although

this method is powerful, there are currently limitations in our ability to perform

experimental validation. This is either due to the restrictions imposed by the

modelling assumptions, or the limitations of experimental processes. In Appendix

A, these limitations are explored for a 3D printed octet-truss geometry. Using this

information, new mathematical/computational/experimental models could be de-

signed which provide end-to-end validation. However, this was outside the context

of this thesis as it would require new multiscale hyperelastic material models, as

mentioned in Section 6.2.5. The newly implemented material models in FEBio

allows for new finite element simulations that could represent soft cellular tissues,

for example to see the effect of body forces on an apple’s geometry, or as part of hy-

brid approach where discrete cells are modelled in high stress areas and continuum

material where debonding does not occur, as discussed in Section 6.2.3.
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6.2. FURTHER WORK

6.2 Further work

6.2.1 Cell size effect

Not discussed in the body of this thesis is the impact of cell size. Cell size is

explored in a collaboration project (included in Appendix B) where we test several

silicone structures in homogeneous deformation, with the same beam thickness-

to-length ratio. This study highlights that smaller, but more numerous cells of

hyperelastic material will increase sample stiffness. However, within the multiscale

framework, each of these structures would give the same elastic properties. Often

in multiscale frameworks the cell size is assumed to be much smaller than the

sample size, yet here we do not enforce this constraint and there may be some way

to include the effects of cell size.

6.2.2 Stochastic material parameters

Accounting for the inherent variability in material properties is one of the next

stages in research for hyperelastic materials [115]. This could be the result of

variation between samples, within individual samples, and from experimental er-

ror/uncertainty. In this case, the standard deterministic model parameters and

equilibria are replaced by stochastic parameters and ‘likely equilibria’, defined

in terms of probability distributions. Several papers, where stochastic elasticity

problems are treated analytically, have been recently published [105–107,116,117],

which contain new and useful findings, and answer important questions such as

‘what is the influence of the random model parameters on the predicted non-

linear elastic responses?’ and ‘what are the possible equilibrium states and how

does their stability depend on the material constitutive law?’. These problems,

can offer significant insight into how the stochastic formulation can be incorpo-

rated into the nonlinear field theory. Similar stochastic models can be developed

for other mechanical systems.
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6.2.3 Hybrid models and generative modelling

Cell-cell dissociation, or debonding, along specific zones is a fundamental process

in the growth, reproduction and ageing of plants. Seed pods and pollen anthers

open along specific contours (dehiscence) [94, 95, 133], whereas leaves and fruits

are shed from prescribed connection points (abscission) [139,140,146]. Dehiscence

and abscission occur through zones which are only a few cells thick. As with fruit,

the cell-cell bonds degrade, but in addition, here, the cells outside of this zone

lignify and become stiffer. Mechanical stimulation is often necessary to initiate

the disassociation between the cells, which may come from harvesting machinery,

human touch or environmental conditions such as wind. In some cases, the disas-

sociation is violent as it releases residual stresses in the material, such as in ‘pod

shatter’ where the seeds get widely scattered [151]. We may want to delay, dis-

able or promote the onset of this process of debonding. By better understanding

the fundamental processes, from a mechanical perspective, we can better direct

agricultural research efforts for increasing productivity and reduce waste.

So far, we have constructed finite element models for the plant tissue as an

assembly of discrete closed cells with intercellular cohesion, and as a represen-

tative continuum material (developed in [118, 119]). Now we can combine these

approaches to show a more efficient hybrid method that can be used to describe

tissues with different debonding areas, such as in dehiscence and abscission. In

areas where debonding does not occur, a multiscale hyperelastic material model

can be used. This can have different properties to the debonding area, such as

increased wall stiffness and cellular pressure. In the areas where debonding can

occur, discrete cells can be modelled with hexagonal cell walls containing a soft

elastic inclusion and bounded together by an intercellular pressure, as previously

studied. The successive deformation decomposition procedure can also be imple-

mented here.
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Hybrid example

The cell walls and cell core are made from a neo-Hookean material described by

the strain-energy function

W(I1, I2, I3) =
µ

2
(I1 − 3− ln I3) +

λ

2

(
ln I

1/2
3

)2

, (6.2.1)

with µw, λw, µc, λc representing the cell walls and the core, where the parameters

for the cell core are at least one order of magnitude smaller than the cell wall.

The continuum material, built from the above material model, has the strain

energy density function

W(o)(i1, i2, i3) =
µwρ

(o)
w

2

[
(1 + k)2

(
i21 − 2i2

)
− 2k(1 + k)i1 − 3

(
1− k2

)]
− µwρ(o)

w ln
[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]
+
λwρ

(o)
w

2

{
ln
[
(1 + k)3i3 − k(1 + k)2i2 + k2(1 + k)i1 − k3

]}2
,

(6.2.2)

which has been implemented in FEBio [92] as a new material model, as discussed

in Section 5.5.1.

Figure 6.1: Geometry of a hybrid model of cohesive cells in unilateral contact.
Blue indicates areas where the continuum material (6.2.2) is used. Yellow and
pink indicates cell walls and cell cores, respectively, where neo-Hookean material
(6.2.1) is used, with the cell core much softer than the cell walls.
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In the example FEBio simulation, Figure 6.1, structures are subject to shear

deformation through the following Dirichlet boundary conditions:

• uX = 1 displacements, with u+
X = 1 on the top face and u−X = −1 on the

bottom face;

• uY = 0 on both top and bottom faces and additionally on all non-boundary

cell faces;

• uZ = 0 displacement on all external faces.

ui, i = X, Y, Z, indicates displacement in the ith direction, of unitless dimension,

relative to the length of one cell face.

Cell pressure and cohesion are applied by the following Neumann boundary

conditions:

• gn = 0.005 MPa, normal traction on the contact interfaces;

• gt = 0, tangential traction zero everywhere.

The direction of gn is normal relative to the current state of the surface, such that

if the angle of the surfaces changes, so does the direction of force.

We can vary the cell wall stiffness parameter µw inside the debonding zone

and in the continuum material. Stiffening in the continuum material (or soften-

ing within the debonding zone) is indicative of the differential stiffness between

lignified areas and non-lignified cells in the debonding zone.

With these tools we can create complex, but efficient numerical simulations

and hope the approach and resulting mechanical insights are used in experimental

investigation of phenomenological processes such as: coordinating the falling of

fruits at harvest; suppressing behaviours such as pod shatter in oilseed rape and

the premature shedding of petals in ornamental flowers; and promoting cell-cell

separation for ‘easy-peel’ fruit.
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(A) (B)

(C)

Figure 6.2: FEBio output of the SDDP applied to a hybrid model of cohesive cells
in unilateral contact, surrounded by mesoscopic continuum material, under shear
deformation: (A) schematic of the direction of shear deformation applied; (B)
deformed configuration after the first SDDP analysis step; (C) deformed configu-
ration after the second step SDDP analysis step where cells can debond. Colour
scale indicates total (absolute) displacement in the X direction.
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Generative modelling

These hybrid models can be incorporated in an adaptive multiscale approach for

the analysis of cellular bodies that can handle a large numbers of cells. In a

multiscale process, a continuum hyperelastic model can be used first to describe

the structure at the macroscopic level, then, after the loading is increased, the areas

where the contact forces reach critical values can be remodelled at the microscopic

level to predict important local effects. The open source MatLab interface for

FEBio, Gibbon [120] is a strong candidate for this iterative remodelling process.

6.2.4 Hierarchical structures

Advancements in manufacturing techniques are also enabling the creation of new

types of materials with several nested hierarchical levels [4, 44, 172, 173]. Such

structures promise to explore uncharted territory in materials research [54,65,160],

while the recursive nature of their hierarchies brings up questions about self-similar

and fractal behaviours [1, 4, 48, 87,134].

As the strain-energy functions for the isotropic hyperelastic cell wall and cell

core materials can be chosen arbitrarily, the mesoscopic models for open- or closed-

cell structures given by (5.2.19) and (5.2.21), respectively, can be applied itera-

tively to create hierarchical or self-similar structures. In this case, the cell walls

would consist of stretch-dominated architectures with open or closed cells. For

a model to be classified as self-similar, the geometric and kinematic assumptions

must hold on multiple levels. These models can be useful in deformation decom-

position or multiple scale procedures, where a cellular structure is represented first

as a continuum material deforming under finite homogeneous strain. The design of

such models and their non-linear elastic analysis remains to be explored. newpage
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Figure 6.3: An example self-similar body-centred-cubic geometry.

6.2.5 Optimised 3D printed structures

The behaviour of generalised shear motion from Section 3.3 could be integrated

into the mesoscopic model of Section 5 to give the time-dependent response of 3D

printed structures in sandwich panels, such as the octet-truss Figure 6.4A or the

hierarchical geometries developed by the author Figure 6.4B&C with a bending

dominated structure embedded within a stretch-dominated architecture. The ma-

terial stiffness is quantified by a multiscale relationship between the microscopic

properties such as beam width. The relationship between oscillation frequency

and applied load could lead to dampening or excitement under specific loads -

which has applications in automotive and aerospace industries where manipulat-

ing vibrations can increase product lifespans as it can mitigate fatigue. This idea

was awarded first place in the Cardiff Sparks competition in the ‘Ideas’ category,

which funded a batch of 3D printed prototypes.
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(A)

(B)

(C)

Figure 6.4: (A) An octet-truss geometry in a sandwich structure; and a hierarchical
geometry designed by the author in an (B) octet geometry and (C) a hexagonal
sandwich geometry.
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Appendix A

Insight into testing an ordered,

open-cell geometry

We take this opportunity to explore the gap between the analytical theory pre-

sented in Section 5 and practical experiment. This task is non-trivial as both

mathematical assumptions and experiments can have conflicting limitations.

The octet-truss geometry is chosen here as it is an ordered, isotropic lattice

material with microscopic parameters that can be varied (such as beam thickness)

to change the structure’s elastic properties. The structure is highly efficient and is

one of the most lightweight to stiff geometries available. It has been a geometry of

interest in numerous studies [44,54,65,134,160,172,173] where it has been studied,

(or 3D printed) with linear material. No literature was found for this structure

using hyperelastic material.

Homogeneity

We assume in the mesoscopic framework that the material is deformed by a ho-

mogeneous deformation, such that the same deformation applies to each part of

the material, regardless of position. As we produce a continuum material model,

we assume that the cellular structure can be considered a homogeneous material.

The boundary conditions applied in an engineering tensile test often do not

141



allow homogeneous deformation. For example, a tensile test uses clamps to grip

the test piece and these restrict lateral contraction, creating necking in the test

material. Often the assumption is made that if the test piece is sufficiently long,

then the middle section deforms homogeneously. Innovative test piece clamps have

been designed for quasi-2D materials (2D designs with a thickness), discussed in

Appendix B, which allow for homogeneous uniaxial tensile deformation.

The material can only be considered homogeneous if there are a sufficiently

large number of cells and the boundary cells behave the same as the central cells.

Unfortunately this is not the case with the octet-truss geometry as the behaviour

of the boundary cells (which deform differently to the central cells) will dominate

if they are not sufficiently far from the centroid of the sample. This means that

the engineering test solutions above are inappropriate as a thin sample will be

subject to the effects of boundary cells.

Stretch-dominated behaviour

The ‘incomplete’ cells on the boundaries are softer than the core material as the

conditions for being stretch-dominated are not met here. The beams are organised

into diamonds, as shown in Figure A.1 and bending occurs at the joints. The addi-

tion of cross bracing on the boundary can preserve stretch-dominated behaviour.

If the bracing is orientated perpendicular to the direction of force, this will enforce

stretching in the boundary beams, without adding surplus stiffness (as the beam

will only resist cell contraction and not go into tension itself).

Also, the conditions for stretch-dominated behaviour are defined in the in-

finitesimal strain regime and do not necessarily hold true for large deformation.

Shearing and buckling can be observed in very soft materials, or large deformation.

In our models we assume random orientation of beams and that on average,

each beam undergoes the same deformation. The octet-truss has beams with a

prescribed order and geometry and it is noted that 2/3 beams go into tension
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Figure A.1: The surface of octet-truss cells which show boundaries are not stretch-
dominated.

and 1/3 go into slight compression (as expected in stretch-dominated structures).

This can be seen in Figure A.2 where beams orthogonal to the stretch are blue (no

stress) and all other beams are identically stressed (red). This model was created

using Gibbon [120], an open source MatLab interface for FEBio.

Beam length, orientation and nodal connectivity

The walls are taken to be thin, with the thickness-to-length ratio 0 < k = t/L < 1.

As k increases, so does the joint volume which results in the assumption breaking

down that the joint does not significantly contribute to the strain energy of the

structure. There are limitations in the 3D printing process for beam length, thick-

ness and cell size, due to unsupported overhangs. Using the printing technology

in the Cardiff University Engineering department, the lowest k value achievable is

k = 0.333, where the cell walls are cylinders with diameter 2mm, length 6mm and

unit cell size 11.3mm. k = 0.333 is the upper limit of beam thickness ratio before

the joints show too much deformation.

We also assume that:

• all cell walls have equal thickness and length (however here there are two

different beam lengths. We could take the average beam length);

• the cell walls meet at joints with thickness t (which is roughly true here);
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Figure A.2: Slice plot of an octet-truss geometry under small axial tension, where
the colour bar represents effective stress in MPa.

Figure A.3: Octet-truss geometry printed at Cardiff University using ninjaflex.
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• the number of walls connecting at a joint is constant (whereas there are 8

and 12 beam connections).

Measurement

In the mathematical models we calculate the stress within the continuum material

body, but in a non-homogeneous material it is not clear how this internal stress

translates. In experiment, there is often a normal stress applied to the boundary

which is recorded as nominal (or engineering) stress. Due to the deformation

gradient F being assumed to be strictly diagonal, the nominal stress is related

to the first component of the 1st Piola Kirchhoff stress tensor. From the stress

on the boundary we can calculate the expected deformation in the mesoscopic

material model. One can also measure the displacement in individual beams on

the boundary, using optical methods such as DIC (digital image correlation) and

video strain gauge, but as we know already, these beams act differently than those

within the body.

Material properties

Often 3D printing material is not classified by a hyperelastic material model (with

material constants) by the manufacturers so it is the researchers duty to perform

this task. For the polymer ‘ninjaflex’ used at Cardiff University, Mr. Michael

Robinson performed uniaxial tension (UT), biaxial tension (BT) and pure shear

(PS) tests to classify the material (sufficient data for accurate hyperelastic model

fitting), under a static setting. As the material is incompressible, then [37, 152]

can be used to inform the fitting procedure and appropriate model selection for

a rubber-liker material. The author aided in classifying ninjaflex, finding that

Mooney-Rivlin or Yeoh-Fleming models [167] appropriately fit the data. As men-

tioned in Section 6.2.2, variability will exist within the material model as properties

could vary between prints and could also vary with temperature.
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Viscoelasticity and damage

We assume that the material consists of a true hyperelastic material which does

not have strain rate dependant properties and does not undergo microscopic or

macroscopic damage. However in practice, all materials undergo some microscopic

damage/viscoelasticity and show hysteresis. Damage usually starts at the weakest

point in a cellular structure and propagates from there [66]. The test print qual-

ity (Figure A.3) is an acceptable standard for mechanical testing, with bonding

between layers and a roughly smooth step size between layers. However, many

imperfections can be observed which could promote localised stresses and slip

between layers after repeated or high intensity loading.

Summary

There is substantial evidence to support that this geometry cannot be tested in

homogeneous conditions and that any attempt would be a qualitative approxima-

tion. There are different methods that could be approached, including using a

sample geometry which is very wide perpendicular to the loading direction, and

within a sandwich panel. Here the boundary conditions can be approximated

with F = diag(α, 1, 1) and simulated with periodic boundary conditions. How-

ever, the mathematics may be better optimised for this situation using simple

shear assumptions rather than uniaxial tension on the microscopic scale.
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Appendix B

Non-linear scaling effects in the

stiffness of soft cellular structures

For cellular structures with uniform geometry, cell size and distribution, made

from a neo-Hookean material, we demonstrate experimentally that large stretching

causes non-linear scaling effects governed by the microstructural architecture and

the large strains at the cell level, which are not predicted by the linear elastic

theory. For this purpose, three honeycomb-like structures with uniform square

cells in stacked distribution were designed, where the number of cells varied while

the material volume and the ratio between the thickness and the length of the

cell walls was fixed. These structures were manufactured from silicone rubber

and tested under large uniaxial tension in a bespoke test fixture. Optical strain

measurements were used to assess the deformation by capturing both the global

displacements of the structure and the local deformations in the form of a strain

map. The experimental results showed that, under sufficiently large strains, there

was an increase in the stiffness of the structure when the same volume of material

was arranged as many small cells compared to when it was organised as fewer

larger cells. Finite element simulations confirmed our experimental findings. This

study sheds a new light on the non-linear elastic responses of cellular structures

in large-strain deformations, which cannot be captured with linear elasticity.
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B.1 Introduction

The design and assessment of cellular structures undergoing large elastic deforma-

tions is central in many industrial and biomedical applications, and their math-

ematical modelling and mechanical analysis pose many theoretical and computa-

tional challenges [103,104,113,118,119]. In particular, soft cellular structures are

the subject of important research efforts in regenerative applications, such as soft

tissue scaffolds, for which a better understanding of the mechanical behaviour is

necessary to optimise their functional performance [16,39,45,47,83,148,163,171].

Cellular structures can also be found in both load-carrying and non-load-carrying

matter, in nature as well as in several industrial areas (e.g., impact protection,

aerospace, microelectronics, pharmaceutical and food processes) [56, 66, 122, 136,

161]. Therefore, by studying the fundamental mechanical responses of cellular

structures, important insights can be gained for the development of many areas

of research.

For natural and man-made cellular structures, several key factors determine the

magnitude of the enhancement of stress level in the cellular body, including the cell

geometry, the cell wall thickness, and the number of cells [103, 104, 118, 119, 144].

For two different structures made from the same volume of solid material, which

is distributed uniformly as a small number of large cells or as a larger number of

smaller cells, respectively, if the ratio between the thickness and the length of the

cell walls is the same in both structures, then the stiffness of the structures under

small strain elastic deformations is the same [66]. While this is valid for many

cellular structures with linear elastic cell walls, and similarly, for structures with

non-linear elastic walls in the small strain regime, in many cellular solids, the cell

size is expected to have a more independent effect on the elastic responses, even

though this effect is typically obscured by other structural properties [9, 145].

In this study, for cellular structures with uniform geometry, cell size and dis-

tribution, and a neo-Hookean hyperelastic cell wall material [138,156], we demon-
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strate experimentally that sufficiently large stretching causes non-linear elastic ef-

fects which are governed by the microstructural architecture and the large strains

at the cell level, and are not predicted by the linear elasticity theory. For this

purpose, three honeycomb-like structures with uniform square cells in stacked dis-

tribution were designed, where the number of cells varies while the total material

volume and the ratio between the thickness and the length of the cell walls is

fixed. These structures were manufactured from silicone rubber and tested un-

der large uniaxial tension in a bespoke test fixture. Optical strain measurement

techniques were used to assess the deformation by capturing both the global dis-

placements of the structure and the local deformations in the form of a strain

map [50,60,154,165,170]. The experimental results show that there is an increase

in the stiffness of the structure when the same volume of solid material is arranged

as many small cells than when organised as fewer larger cells. This behaviour is

also captured by our finite element simulations of cellular structures with similar

geometries and cell wall material properties.

This study sheds a new light on the non-linear elastic responses [67,73,88,113,

124,127,157] of soft cellular structures, which cannot be captured by the classical

linear-elastic theory. In particular, we show that, under sufficiently large strains,

the stiffness of the structures with non-linear elastic cell walls varies with the

cell size [104, 118], in contrast to the results predicted for structures with linear

elastic cell walls [66], given that the same volume of material is used for each

structure, and that the thickness-to-length ratio for the cell walls remains the

same. This has important implications for the optimal design of cellular materials

in various applications, and in particular, for stretch-dominated architectures,

which are structurally more efficient, due to a higher stiffness-to-weight ratio,

than the bending-dominated ones [30,66,113,118,119,144].
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B.2 Experimental material and methods

B.2.1 Structure design and manufacture

Three periodic honeycomb-like structures with a different number of square cells

in stacked distribution were designed and manufactured, ensuring that the overall

volume of solid material used and the ratio between the thickness and the length

of the cell walls is the same for all structures, whilst the number of cells vary.

The geometric parameters for the designed structures are summarised in Table

B.1 and illustrated on a single structure in Figure B.1. In this figure, the tabs

seen at the top and the bottom of the structure allow for the physical structure to

be mounted in the bespoke test fixture, as described in detail in the next section

which focuses on the experimental set-up.

Figure B.1: Geometry of cellular structure with 5× 5 cells.

Individual aluminium moulds were created for each of the structures, and the
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cellular
structure

overall
height,
H
(mm)

structure
height,
LX
(mm)

structure
width,
LY
(mm)

structure
depth,
LZ
(mm)

cell
wall
length,
L
(mm)

cell
wall
thick-
ness,
t
(mm)

cell wall
thickness-
to-
length
ratio,
t/L

3×3 cells 170.833 100 100 10 25.00 8.33 3.00
5×5 cells 142.50 100 100 10 15.00 5.00 3.00
9×9 cells 127.67 100 100 10 8.33 2.78 3.00

Table B.1: Geometric parameters of the undeformed cellular structures tested
experimentally.

structures were then cast out of Tech-Sil 25 silicone. This silicone is a two-part

silicone, mixed as per the manufacturer’s instructions, which underwent a two-

part de-gassing process, first after the initial mixing and second after the casting,

then allowed 24 hours to cure. The material behaviour of this silicone is charac-

terised by a neo-Hookean hyperelastic model, described by equation (B.2.1), with

Young’s modulus E= 0.74 MPa and Poisson’s ratio ν=0.48 under infinitesimal de-

formations. The neo-Hookean model is the simplest non-linear hyperelastic model,

originally proposed to characterise the non-linear elastic behaviour of rubberlike

material in [138, 156]. Our parameter values were obtained through uniaxial ten-

sile and compression testing, using the process of inverse analysis, prior to the

manufacturing of the structures. A total of six structures were manufactured, two

of each structure type.

B.2.2 Experimental setup

To conduct the uniaxial tensile testing of each structure, a bespoke fixture was

designed (see Figure B.2). This allowed for the (top and bottom) ends of the

structure to slide horizontally whilst the structure was loaded vertically, meaning

that all the initially straight and vertical cell walls remained almost straight and

vertical throughout the testing, avoiding the unwanted bending of the side walls,

which is commonly seen during more traditional tensile tests whereby the ends
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Figure B.2: Bespoke test fixture allowing the structure to slide in the horizontal
direction and create a straight edge during tension.
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of a structure are clamped. This was achieved through the use of dowel rods

and needle roller bearings, where the friction within the system was minimised

through polishing of the contact surfaces. When the coefficient of friction was

experimentally measured for the system, a resulting mean CoF of 0.02±0.003 was

found, demonstrating minimal friction within the bespoke test fixture.

Uniaxial tensile tests were conducted using a Zwick - Roell Z050 tensile test-

ing machine, with a 2kN load cell to measure tensile force. Initially, loading and

unloading tests were carried out to verify that the structures were elastically de-

formed, i.e., all the changes in the deformed structures were reversible. For this,

each structure was subjected to a 60N tensile load in 10N increments and unloaded

to 0N after each increment. To measure their local and global deformations, the

structures were subjected to a maximum tensile load of 50N. To capture quasi-

static deformations, the tests were performed at a velocity of 2 mm/s, and a

pre-load of 1N was used to remove slack from the experimental set-up. Tests were

conducted twice for each structure type (n=2).

B.2.3 Digital Image Correlation

Digital image correlation (DIC) is a non-contact optical measurement technique

measuring specimen displacement. A high contrast pattern is applied to the sur-

face of the specimen, which provides unique points of identification to allow the

software to track the displacement of the specimen. The specimen is imaged in its

unloaded state, and this acts as a point of reference for the software. The speci-

men is then imaged throughout loading, either through video or through a series of

camera images. The software will then use the captured images to track the unique

points within the high contrast pattern, measuring the displacement of the speci-

men. From the displacement, strain can then be computed using the parameter of

the affine transformation and the gradients of the deformation [50,60,154,165,170].

Within this study, two DIC systems were used, the first was the Imetrum Video
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Gauge system. This was used to capture the global deformation of the structure

through the application of virtual strain gauges. The second system was a Q-400

Dantec Dynamic system used to create a 2D map of the strains at a local level,

focusing solely on the centre cell of each structure.

Measuring global deformation

A video strain gauge system (Imetrum) was used to capture the global deformation

of the structure during tensile tests. The system was used with a single camera

with a general-purpose lens and calibrated using markers of a known distance

apart within the field of view, as per the manufacturer’s instructions. Markers

were applied to the surface of the specimen to allow the software, provided as part

of the system, to track the deformation of the structure. These were applied to the

structure using a black marker pen, with markers applied to the intersections and

the mid-wall of the cells. When processing the data, virtual strain gauges were

applied to the structure, using markers that maximised the length of the gauge,

thus reducing errors within the system. For the purpose of this study, a limited

number of points were selected to validate the new loading fixture, although there

is a potential for further exploiting results obtained from these data.

Measuring local deformation

The Q-400 (Dantec Dynamics) system was used to capture the local deformation

of the structures and to validate the finite element models (FEMs). The system

consisted of the necessary software, Instra4D, a HiLis light source and a data

logging system to connect the cameras to the laptop. The HiLis light source is

a high intensity LED illumination system which provides cool and homogeneous

illumination. Two digital cameras were used with the system and were mounted

onto a tripod with the HiLis light source positioned between them. The two

cameras were connected to a data logging system, which in turn was connected to

Page 154



B.2. EXPERIMENTAL MATERIAL AND METHODS

the laptop. Following this, the aperture and focus of both cameras were adjusted,

focusing on the high contrast speckle pattern applied to the surface of the silicone

specimen [165]. This high contrast speckle pattern was applied using white and

black face paint (Snazaroo). Three different camera setups were required, due to

the differences in structure geometry, ensuring the most appropriate setup for each

structure in terms of the field of view. Each camera set-up differed in terms of their

field of view only, with the same equipment including calibration target and camera

lenses used for each. Following the setup of the DIC system, it was necessary to

conduct a calibration. This determined the position and orientation of each of the

cameras with respect to the surface of the specimen and related the pixel size of the

object image to the metric scale. In order to calibrate the system, a series of eight

calibration images were taken of a calibration target. The calibration target used

for this study was a 9×9 grid, 40mm x 40mm (Dantec Dynamics). The target was

rotated and tilted for each image to allow the software to determine the required

parameters. A calibration residuum of< 0.1 was considered acceptable [165]. Data

was processed within the DIC software, Instra4D, with the parameters from data

capture and processing displayed in Table B.2. For each structure, two polygons

were drawn over the surface of the struts, one covering the vertical strut, and

one covering the horizontal strut. In both cases, the joints were excluded from

the analysis. For the polygon, mean values of the strain over the surface were

exported. Throughout this study, the Green-Lagrange strain is used [73,113,127].

B.2.4 Experimental results

Global deformation of structures

To validate the new loading fixture (see Figure B.2), and thus ensure that the

boundary conditions achieved are as expected, the global behaviour of each struc-

ture was analysed using the Imetrum video strain gauge system. Virtual strain

gauges were added to the structure, as shown in Figure B.3(a), with the red dots
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experimental technique used 3× 3 cells 5× 5 cells 9× 9 cells
calibration residuum <0.1 <0.1 <0.1
speckle pattern size 0.45-1.2 mm 0.35-1.2 mm 0.25-0.6 mm
subset 17 pixels 17 pixels 17 pixels
step size 17 pixels 17 pixels 17 pixels
spatial resolution 1.33 mm 1.02 mm 0.697 mm
total number of images 15 15 15
displacement

displacement noise 0.005 mm 0.015 mm 0.020 mm
strain

smoothing method none none none
strain noise 20 mstrain 20 mstrain 20 mstrain

Table B.2: Parameters for the DIC data capture and processing.

depicting the marks made on the physical structure. Struts 1, 2 and 3 were com-

pared to verify that the strain was the same for each of these struts, thus ensuring

that no end-effects were present in the structure. The results can be seen in Fig-

ure B.3(b), where the struts exhibit almost identical mean vertical strains at loads

up to around 80N. Throughout the paper, strains are presented as millistrain or

mstrain. Struts 2 and 5 were analysed to ensure that the new loading fixture cre-

ated symmetrical boundary conditions, as seen in Figure B.3(c), where the mean

vertical strains for these two struts are almost identical.

In addition to the vertical strain of different struts, the horizontal strain was

also analysed. Virtual strain gauges were added to the structure as shown in

Figure B.4(a), with the red dots depicting the marks made on the physical struc-

ture. Struts 7 and 8 were compared to verify that the strain was the same for

each strut, thus ensuring that no end-effects were present within the deformed

structure. These results are illustrated in Figure B.4(b), where the struts exhibit

almost identical mean horizontal strains at loads up to around 80N. Struts 8 and

9 were analysed to ensure that the loading fixture created symmetrical boundary

conditions, as seen in Figure B.4(c), where the mean horizontal strains for these

two struts are almost identical.

Although the reported results correspond to the structure with 5 × 5 cells,
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Figure B.3: Comparison of vertical strains in vertical struts: (a) schematic of cel-
lular structure showing the location and numbering of strain gauges for each strut;
(b) comparison of mean vertical strains in struts 1, 2 and 3; and (c) comparison
of mean vertical strains in struts 2 and 5. The strain shown is in mstrain.
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Figure B.4: Comparison of horizontal strains in horizontal struts: (a) schematic
of cellular structure showing the location and numbering of strain gauges for each
horizontal strut; (b) comparison of mean horizontal strains in struts 7 and 8; and
(c) comparison of mean horizontal strains in struts 8 and 9. The strain shown is
in mstrain.
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similar results were obtained for the structures with 3 × 3 and 9 × 9 cells, thus

validating the new loading fixture in creating the desired boundary conditions for

uniaxial tensile testing under large strains.

To ensure that all testing remained within the elastic limits of the structures

and no plastic deformation occurred, a series of loading-unloading tests were also

performed. The loading conditions were as described previously, with each struc-

ture being subjected to a 60N tensile load in 10N increments and unloaded to

0N after each increment. Figure B.5 shows the results for the three structures.

The data demonstrate no plastic deformation of the structure, with each structure

clearly remaining within its elastic region, with minimal hysteresis between the

loading and unloading paths.

Figure B.5: Applied force vs. maximum vertical displacement in tensile loading
and unloading of the three structures. The blue, red and grey lines represent the
9× 9 structure, the 5× 5 structure and the 3× 3 structure respectively, with the
dotted and solid lines differentiating between different samples. For experimental
testing, n=2.

Additionally, the experimental results demonstrated some variation between

different samples of the same structure (see Figure B.5). Despite these variations,
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the same trend was seen within the data, with the 9 × 9 structure being stiffer

that the 5 × 5 structure which was in turn stiffer than the 3 × 3 structure. The

variation between samples could be caused by a number of factors. One possibility

is the slight inconsistencies in the manufacturing process. For example, the silicone

used is a two-part silicone and small variations in the volume of the mixture could

influence its mechanical properties. Another possible explanation for the variation

in experimental results is the slight change in the testing environment, for example,

tests were not conducted in a temperature-controlled environment.

Local deformation of structures

Figure B.6: Colour maps showing the vertical strain in each structure at 10N,
30N and 50N, with the left hand column depicting the 3× 3 structure, the middle
column depicting the 5 × 5 structure, and the right hand column depicting the
9× 9 structure. The strain shown is in mstrain.
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Figure B.7: Comparison of the deformation of the centre cell of the structure
tested experimentally using DIC: (a) photos of physical structures; (b) applied
tensile force vs. mean vertical strain; (c) mean vertical strain vs. maximum
vertical displacement of the load machine. The strain shown is in mstrain.

Since all cells in the structure are deformed similarly, for our analysis, we focus

on the central cell. In Figures B.6-B.8, we show the strain maps within the three

different structures under three different loads each. The same strain map scale

was used for the three structures within each image, but varied for the different

loading stages. At 10N tensile load, there appears to be almost no difference

between the strains in the three structures, as seen from Figure B.6, but as the

load increases, the difference between the strains in these structures increases. For

example, Figure B.6 suggests that, in the structure with 9 × 9 cells, the vertical

strain at 50N tensile load is greater than in the 5×5 cells structure, which in turn

is greater than in the 3 × 3 cells structure. This observation is confirmed by the

results plotted in Figure B.7, where the force required to stretch the structure with

9×9 cells to a certain magnitude of Lagrange axial strain (or by a certain maximum

vertical displacement) is greater than for the structure with 5 × 5 cells, which in

turn, is greater than for the structure with 3 × 3 cells. Importantly, it should be

noted that Figure B.7(b) shows almost no differences in the strains of the cell walls

within the small strain regime (typically, this is classified as below 4% strain or
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Figure B.8: The maximum principal strain for the structure with 3 × 3 cells at
a 50N tensile load, with the small lines within the strain map showing the local
orientation of the strain. The strain shown is in mstrain.
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40mstrain). The strain within the cell walls begin to vary at around 150mstrain,

showing the stiffening effect of the cell arrangements at larger deformations.

To illustrate the orientation of the maximum principal strains in the structures

under tensile loads, in Figure B.8, the strain orientation in the structure with 3×3

cells at a 50N tensile load is shown. However, similar trends were observed in the

other structures as well, although with different magnitudes of strain. As seen

from Figure B.8, the maximum principal strain is orientated in the vertical direc-

tion within the vertical struts, and corresponds to longitudinal tension, whereas in

the horizontal walls, the maximum principal strain is orientated in the horizontal

direction and corresponds to longitudinal compression. At the intersection be-

tween the horizontal and vertical walls, the orientation of the maximum principal

strain shows a more curved alignment, highlighting the more complex behaviour

that occurs at these joints.

B.2.5 Finite element simulation

Model set-up

In this section, we assess computationally non-linear stretching effects in periodic

cellular structures with square cells in stacked distribution and neo-Hookean cell

wall material [138, 156], similar to those tested experimentally. Within the finite

element simulations, the generalised neo-Hookean model was used, characterised

by the strain energy density function:

W(I1, I2, I3) =
µ

2
(I1 − 3− ln I3) +

λ

2

(
ln I

1/2
3

)2

, (B.2.1)

where µ = E/[2 + ν] > 0 and λ = νE/[(1 + ν)(1 − 2ν)] > 0 are constant mate-

rial parameters, with E and ν denoting the Young’s modulus and Poisson’s ratio

respectively, and µ representing the shear modulus at infinitesimal deformations,

and C = FTF and B = FFT , with F denoting the (large-strain) deformation
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gradient. The Green-Lagrange strain tensor then takes the form E = (C − I)/2,

where C is the right Cauchy-Green deformation tensor defined above and I is the

identity tensor (note the boldface notation for tensors) [73,113,127].

As in the experimental tests, a Young’s modulus, E, of 0.74 MPa and a Pois-

son’s ratio, ν, of 0.48 were assumed for the cell wall material. These parameter

values were then used to compute the constants µ and λ for the neo-Hookean

model, given by (B.2.1), in the finite element simulations. As a Poisson’s ratio of

0.5 corresponds to perfect incompressibility, a Poisson’s ratio of 0.48 represents a

condition of slight compressibility (or near incompressibility). The modelled struc-

tures had the same geometry as those tested experimentally, but the symmetry of

the boundary conditions was used to reduce computational cost, modelling only

half of the tested specimen. To compute the force-displacement responses in the

computational structures, cylindrical metal rods inserted through the hoops at the

end of the structure were modelled, mimicking the physical tests conducted exper-

imentally. The position of these rods can be seen clearly in Figure B.9. These rods

were modelled as rigid bodies, and the boundary conditions between the rods and

the structure, as rigid interfaces. The rigid rods had a prescribed displacement

in the positive vertical direction to create the prescribed vertical stretch of the

structure. The internal and external faces of the structure were allowed to deform

freely. The boundary conditions applied to the model are shown schematically in

Figure B.9.

The numerical results recorded here were obtained within the Finite Element

for Biomechanics (FEBio) software environment [92]. The model structures were

created in SolidWorks and imported into the FEBio software, and a mesh refine-

ment study was performed for each structure, the results of which are shown in

Figure B.10, to ensure that the numerical results are independent of the mesh

size. To evaluate the mesh sensitivity, the total reaction force was used as this

was a criteria of interest in evaluating the overall behaviour of each structure.
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Figure B.9: (a) Schematic view of the finite element boundary conditions, with
dash lines along AA showing the surfaces fixed using the symmetry constraint, BB
showing the fixed constraint applied in the horizontal and out of plane direction
for the inner surface of the holes and CC showing the location of the rigid rods
and the direction of stretch. (b) A three-dimensional view of the finite element
set-up, clearly displaying the location of the rigid rods.
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Figure B.10: Mesh sensitivity study for the finite element modelling of the three
structures investigated, showing the total reaction force for each structure and the
total number of elements in each model.

The reaction force was computed within the FEBio software for each of the rigid

rods used in constraining the structures. To calculate the total reaction force for

each structure, the computed forces for each rigid rod were added together and

the resulting reaction force was doubled due to the symmetry assumption applied

to the model. The results were deemed to be independent of meshing parameters

once three results in a row were within 1% of one another. The mesh elements

used were 4-node linear tetrahedral elements, with the exact details of the mesh

used for each structure found in Table B.3. An example of the mesh used for the

5× 5 structure can be seen in Figure B.11.

structure total number of ele-
ments

total number of nodes element type

3× 3 cells 449851 98921 four-node linear tetra-
hedral

5× 5 cells 398165 94147 four-node linear tetra-
hedral

9× 9 cells 267391 72971 four-node linear tetra-
hedral

Table B.3: Final mesh parameters for each structure.
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Figure B.11: Example of the mesh for the 5 5 structure with (a) showing the
front view of the mesh, (b) showing the side-on view or the elements through the
thickness and (c) showing a three-dimensional view of the meshed structure.

Comparison with experimental data

Figure B.12: Comparison of force – displacement curves for the FEBio computa-
tional models (dashed lines) and the corresponding experimental data (solid lines)
of the three structures. For experimental testing, n=2.

The numerical results from the computational models were compared with the

experimental data. For the finite element models, the reaction force on the rigid

rods was exported, as well as the displacement of the structure, to compare with

the force-displacement data acquired experimentally. The results shown in Figure

B.12 for the finite element simulation are in qualitative agreement with the experi-
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mental data, as for both the computation and experimental structures, the stiffness

clearly increases with the number of cells. In addition to the force-displacement

curves, the vertical strain maps across the computational and experimental struc-

tures with 5 × 5 cells are presented, at the same scale, in Figure B.13. In this

figure, the magnitude of the strains found computationally and experimentally

are similar.

Figure B.13: Comparison between vertical strain in the structure with 5 5 cells at
50 N load: (a) FEBio model and (b) experimental. Note that the two figures are
shown at similar scale bars (the colours are software-specific). The strain shown
is in mstrain.

For all structures, there are slight differences between the finite element simu-

lations and experimental results. These differences can be attributed to assump-

tions made within the modelling process. One example would be the material

model representing the silicone used to create the structures. For this study, a

neo-Hookean hyperelastic model was chosen with parameters determined exper-

imentally. Furthermore, there is a variation in the experimental results between

samples making it difficult to evaluate the difference between finite element simu-

lations and experimental testing. More experimental testing is required to assess

these variations.
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Analysis of FEM data

Figure B.14: Additional analysis of the finite element models for each structure,
with (a) showing the 3 × 3 structure, (b) showing the 5 × 5 structure and (c)
showing the 9 × 9 structure. The solid lines show the response of the centre cell
joint and the dashed lines show the response of the centre cell vertical wall. Each
figure shows the total structure displacement against the Lagrange axial strain
(mstrain).

In order to understand the difference in behaviour between the different struc-

tures investigated as part of this study further analysis of the FEM models was

conducted. As part of this analysis, it was found that the joints within the struc-

tures exhibit a different non-linear behaviour compared to the cell walls (Figure

B.14). The non-linear behaviour of the joints changes due to the extra constraints,

therefore when the number and size of the joints changes within a structure, the

mechanical response of the structure changes. Figure B.14 shows that, in the small

strain regime, the difference between the response of the cell joint and the cell wall

is negligible, with the difference increasing outside of the small strain regime. This

trend can be seen in all structures investigated as part of this study.

B.3 Conclusion

In general, for different cellular structures with linear elastic cell walls, containing

the same volume of solid material, which is distributed either as a small number
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of large cells or as a larger number of smaller cells, when the ratio between the

thickness and the length of a wall is the same, the stiffness of the corresponding

structure is expected to be the same [66]. For similar structures of non-linear

elastic material also, this behaviour appears reasonable under small strains. How-

ever, in real structures, under sufficiently large strains, the cell size is expected to

have a more independent effect, even though this effect may be relatively minor

or harder to separate from other mechanical responses [9, 145].

The aim of this paper was to separate the cell size effect from other non-

linear elastic responses when the size of the cells and the size of the structure

are comparable (i.e., the cells are not infinitesimally small relative to the cellular

sample). Specifically, for cellular structures with uniform cell size, shape, and

distribution, we demonstrated experimentally, for the first time, that, under large-

strain deformations, the stiffness in cell walls made from an isotropic non-linear

hyperplastic material increases when the number of cells increases while the volume

of solid material and the ratio between the thickness and the length of the wall

remain fixed. This can be attributed to the non-linear responses of the elastic

cell wall joints in addition to that of the cell walls. Therefore, when the number

and size of the joints changes, the response of the structure will change. Further

investigation is required to understand the limits of the structures in regard to

their stiffness.

For our experimental tests, we developed a novel loading method for cellular

structures under uniaxial tensile tests, which allows for a structure to be loaded

in such a way that the end-effects are minimal and the boundary conditions are

suitable for non-linear elastic analysis under large strains.

In addition to the experimental study, we constructed computational models

which simulate the physical structures and reproduce the elastic effects observed

experimentally. Finite element models are suitable for further investigation of

three-dimensional structures with different cell size or cell wall material parame-
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ters, and subject to different loads [118,119].

Although many natural structures are irregular, cellular structures with regular

geometry are easily reproducible and can be studied systematically to identify the

independent influence of different properties [103,104,118,119,144]. In particular,

our analysis offers valuable insight into the independent mechanical effect of cell

size for structures under large elastic strains, which cannot be captured within

the linear elasticity framework. Our results naturally open the door to many new

questions, and will inspire further theoretical and experimental investigations.
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FEBio SDDP configuration

If the reader wishes to implement their own SDDP in FEBio the following extract

from a .FEB file will be useful. Stated below are the parameters for each analysis

step and the tied and sliding contact interfaces. These parameters are known to

work in FEBio v2.5.0.

<?xml ve r s i on =”1.0” encoding=”ISO−8859−1”?>

< f e b i o s p e c ve r s i on =”2.0”>

<Step name=”Step01”>

<Module type=” s o l i d ”/>

<Control>

<t ime s teps >10</t ime steps>

<s t e p s i z e >0.1</ s t e p s i z e>

<max refs>15</max refs>

<max ups>0</max ups>

<dtol >0.001</ dtol>

<e to l >0.01</ e to l>

<r t o l >0</r t o l>

< l s t o l >0.9</ l s t o l >

<t ime stepper>
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<dtmin>0.01</dtmin>

<dtmax>0.1</dtmax>

<max ret r i e s>5</max re t r i e s>

<o p t i t e r >10</ o p t i t e r>

</t ime stepper>

<a n a l y s i s type=” s t a t i c ”/>

</Control>

<Contact>

<contact type=”t i e d ” name=”Tied01”>

<laugon>1</laugon>

<to l e rance >0.2</ to l e rance>

<penalty>1000</penalty>

<minaug>0</minaug>

<maxaug>10</maxaug>

<s u r f a c e type=”master ”>...</ sur face>

<s u r f a c e type=”s l a v e ”>...</ sur face>

</contact>

<Step name=”Step02”>

<Module type=” s o l i d ”/>

<Control>

<t ime s teps>1</t ime steps>

<s t e p s i z e >1</s t e p s i z e>

<max refs>15</max refs>

<max ups>0</max ups>

<dtol >0.001</ dtol>

<e to l >0.01</ e to l>

<r t o l >0</r t o l>

< l s t o l >0.9</ l s t o l >
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<t ime stepper>

<dtmin>0.1</dtmin>

<dtmax>1</dtmax>

<max ret r i e s >1000</ max re t r i e s>

<o p t i t e r >10</ o p t i t e r>

</t ime stepper>

<a n a l y s i s type=” s t a t i c ”/>

</Control>

<Contact>

<contact type=”face t−to−f a c e t s l i d i n g ” name=”S l i d i n g 0 1”>

<laugon>1</laugon>

<to l e rance >0.2</ to l e rance>

<penalty>30</penalty>

<two pass>1</two pass>

<auto penal ty>0</auto penal ty>

< f r i c c o e f f >0</ f r i c c o e f f >

< f r i c p e n a l t y >0</ f r i c p e n a l t y>

<s e a r c h t o l >0.01</ s e a r c h t o l>

<minaug>0</minaug>

<maxaug>10</maxaug>

<gaptol>0</gaptol>

<seg up>0</seg up>

<s u r f a c e type=”master ”>...</ sur face>

<s u r f a c e type=”s l a v e ”>...</ sur face>

</contact>

</Contact>

</Step>

</ f e b i o s p e c>
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