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Purpose: In the present work, we describe the correction of diffusion-weighted MRI 
for site and scanner biases using a novel method based on invariant representation.
Theory and Methods: Pooled imaging data from multiple sources are subject to 
variation between the sources. Correcting for these biases has become very important 
as imaging studies increase in size and multi-site cases become more common. We 
propose learning an intermediate representation invariant to site/protocol variables, 
a technique adapted from information theory-based algorithmic fairness; by leverag-
ing the data processing inequality, such a representation can then be used to create 
an image reconstruction that is uninformative of its original source, yet still faithful 
to underlying structures. To implement this, we use a deep learning method based 
on variational auto-encoders (VAE) to construct scanner invariant encodings of the 
imaging data.
Results: To evaluate our method, we use training data from the 2018 MICCAI 
Computational Diffusion MRI (CDMRI) Challenge Harmonization dataset. Our pro-
posed method shows improvements on independent test data relative to a recently 
published baseline method on each subtask, mapping data from three different scan-
ning contexts to and from one separate target scanning context.
Conclusions: As imaging studies continue to grow, the use of pooled multi-site im-
aging will similarly increase. Invariant representation presents a strong candidate for 
the harmonization of these data.
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1 |  INTRODUCTION

Observational conditions may vary strongly within a med-
ical imaging study. Researchers are often aware of these 
conditions (eg, scanner, site, technician, facility) but are 
unable to modify the experimental design to compensate, 
due to cost or geographic necessity. In magnetic resonance 
imaging (MRI), variations in scanner characteristics such 
as the magnetic field strength, scanner vendor, receiver 
coil hardware, applied gradient fields, or primary image re-
construction methods may have strong effects on collected 
data1-3; multi-site studies in particular are subject to these 
effects.4-7 Data harmonization is the process of removing 
or compensating for this unwanted variation through post 
hoc corrections. In the present work we focus on harmo-
nization for diffusion MRI (dMRI), a modality known to 
have scanner/site biases8-16 as well as several extra possible 
degrees of freedom with respect to protocol (eg, angular 
resolution, b-values, gradient waveform choice).

Several prior methods approach diffusion MRI harmoni-
zation as a regression problem. Supervised image-to-image 
transfer methods have been proposed,17,18 while for the un-
supervised case site effects are often modeled as covariate 
effects, either at a summary statistic level2,7 or on the image 
directly.19 All of these methods directly transform scans from 
one site/scanner context to another. Further, while all meth-
ods require paired scans to correctly validate their results 
(subjects or phantoms scanned on both target and reference 
scanners), supervised methods also require paired training 
data. The collection of such data is expensive and difficult to 
collect at a large scale.

In this paper, we instead frame the harmonization problem 
as an unsupervised image-to-image transfer problem, where 
harmonizing transformations may be learned without explic-
itly paired scans. We propose that a subset of harmonization 
solutions may be found by learning scanner invariant repre-
sentations, that is, representations of the images that are un-
informative of which scanner the images were collected on. 
These representations and the mappings between them may 
then be manipulated to provide image reconstructions that 
are minimally informative of their original collection site. We 
thus provide an encoder/decoder method for learning map-
pings to and from invariant representations computationally. 
This method has several advantages over regression-based 
methods, including a practical implementation that does not 
require paired data, that is, a traveling phantom as training 
input, and an extension to a multi-site case.

We demonstrate our proposed method on the MICCAI 
Computational Diffusion MRI challenge dataset,20-22 show-
ing substantial improvement compared to a recently published 
baseline method. We also introduce technical improvements 
to the training of neural architectures on diffusion-weighted 

data, and discuss the limitations and error modes of our pro-
posed method.

1.1 | Relevant prior work

Harmonization has been an acknowledged problem in MR 
imaging and specifically diffusion imaging for some time.22 
Numerous studies have noted significant differences in dif-
fusion summary measures (eg, fractional anisotropy; FA) 
between scanners and sites.10,12,13 Further protocol differ-
ences arise between sites due to limitations of the available 
scanners, unavoidable changes or upgrades in scanners or 
protocols, or when combining data retrospectively from mul-
tiple studies; effects of variations in scanning protocols on 
derived measures include effects of voxel size,11 b-values 
(the diffusion weightings used),8,11 and angular resolution or 
q-space sampling9,14-16 among other parameters. These prob-
lems were also examined by the MICCAI Computational 
Diffusion MRI 2017 and 2018 challenges,20,21 which held an 
open comparison of methods for a supervised (paired) task.

Most previously proposed harmonization methods have 
relied on forms of regression. Harmonization of summary 
statistics (voxel-wise or region-wise) include random/
mixed-effect models7 as well as the scale-and-shift random 
effects regression of ComBat.2,7 This latter method was 
adapted from the genomics literature,23 and employs a varia-
tional Bayes scheme to learn model coefficients.

A more nuanced family of regression methods for diffu-
sion imaging was recently introduced in a series of papers by 
Mirzaalian et al.19,24,25 This was later analyzed empirically 
in Karayumak et al,26 which compared it against ComBat23 
for summary statistics. This family of methods computes a 
power spectrum from a spherical harmonic (SH) basis, then 
generates a template from these images using multi-channel 
diffeomorphic mappings. The resulting template is used to 
compute spatial maps of average SH power spectra by scan-
ner/protocol, which are then used in a scale regression on 
individual subjects. While these papers take a very differ-
ent approach from our own, the resulting method has a very 
similar usage pattern and output. We compare our approach 
directly to this method.

In a supervised (paired) task, direct image-to-image 
transfer has been explored both in the harmonization con-
text20,27,28 as well as the similar super-resolution context.17,18 
This family of methods generally relies on high expressive 
capacity function fitting (eg, neural networks) to map directly 
between patches of pairs of images. This requires explicitly 
paired data, in that the same brains must be scanned at all 
sites. These methods perform well empirically, as tested by 
the CDMRI challenge,21 but require paired data in the train-
ing set. Our proposed method does not require paired data to 
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train; however, in our opinion, best practice validation still 
requires paired data in the (holdout) test set.

2 |  THEORY

Our goal is to map diffusion MRI scans from one scanner/site 
context to another, so that given an image from one site we 
could predict accurately what it would have looked like were 
it collected at another site. In order to do this, we construct an 
encoding function q that takes each image x to a correspond-
ing vector z, and a conditional decoding function p that takes 
each z and a specified site s back to an image x̂ (the “recon-
struction” of the original image).

We further wish to remove trends and biases in x that are 
informative of s from the reconstruction x̂, so that all data 
remapped to a given site s′ have the same bias (this is the 
harmonization task). In order to do so, it would be sufficient 
to constrain z, the intermediate representation, to be indepen-
dent of s, denoted z⊥s. This is a hard constraint, and direct 
optimization of q and p subject to that constraint would be 
non-trivially difficult.

Instead, we choose to relax the constraint z⊥s to the 
mutual information I(z,  s). Mutual information, taken from 
information theory, quantifies the amount of information 
shared between two variables, for example, z and s. I(z, s) = 0 
if and only if z⊥s, and so its minimization is a relaxation of 
our desired constraint. For a comprehensive reference on in-
formation theory, we refer the reader to Chapters 2 and 8 of 
Cover and Thomas.29

After relaxing the independence constraint to mutual in-
formation, we would like to optimize q and p so that q(z|x) 
has minimal scanner-specific information, and so that p(x|z)  
has minimal differences from the original data. We demon-
strate one solution for doing this using a variational bound 
on I(z, s), parameterizing p and q using neural networks. The 
underlying theory is explored in Moyer et al,30 where it is 
used in the context of algorithmic fairness. We reproduce it 
here for clarity, and further reinterpret their theoretical results 
in the imaging harmonization context, adding our own data 
processing inequality interpretation of test time remapping.

Learning the mapping q does not require matching pairs 
of data (x, x′) from pairs of sites (s, s′). Best practices in val-
idation and testing do require such data, but during training 
we can minimize I(z, s) without having examples of the same 
subject collected on different scanners. This is due to our 
bound of I(z, s) described in Equation 1, which is not reliant 
on inter-site correspondence.

At test time, we can manipulate this mapping to recon-
struct images at a different site than they were originally 
collected at; we use this mapping as our harmonization tool. 
Again, by the data processing inequality, the amount of 

information these (new) reconstructed images contain about 
their original collection site is bounded by I(z, s), which we 
explicitly minimize.

2.1 | Scanner invariant variational  
auto-encoders

We wish to learn a mapping q from data x (associated with 
scanner s) to some latent space z such that z⊥s, yet also 
where z is maximally relevant to x. We start by relaxing z⊥s 
to I(z, s), and then bounding I(z, s) (detailed demonstration in 
Appendix A): 

where q(z) is the empirical marginal distribution of z under 
q(z|x), the specified encoding which we control, and p(x|z, s) 
is a variational approximation to the conditional likelihood of x 
given z and s again under q(z|x). Here, KL denotes the Kullback-
Leibler divergence and H denotes Shannon entropy.

The bound in Equation 1 has three components: a condi-
tional reconstruction, a compressive divergence term, and a 
constant term denoting the conditional entropy of the scan 
given the scanner. We can interpret Equation 1 as stating that 
the information in z about s is bounded above by uncertainty 
of x given z and s, plus a penalty on the information in z and 
a constant representing the information s has about x overall.

Intuitively, this breakdown makes sense: if we recon-
struct given s, and are otherwise compressing z, the optimal 
compressive z has no information about s for reconstruction; 
q(z|x) can always remove information about s without pen-
alty, because the reconstruction term is handed that infor-
mation immediately. Further, if x is highly correlated with 
s, that is, H(x|s) is very low, then our bound will be worse.

We can now construct a variational encoding/conditional- 
decoding pair q and p which fits our variational bound of 
I(z, s) nicely, and which also fits our overall goal of re-mapping  
x accurately through p(x|z,  s). Following Kingma and 
Welling,31 we use a generative log-likelihood as an objective: 

Here, however, we inject the conditional likelihood to 
match our bound for I(z, s). This also fits our test time desired 
Markov chain (with condition z⊥s) where x̂ is the harmo-
nized reconstruction at new site s′: 

(1)

I(z, s)≤−�x,s,z∼q[ log p(x�z, s)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Conditional Reconstruction

+�x[ KL[ q(z�x) ‖ q(z) ] ]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Compression

− H(x�s)
⏟⏟⏟

Const

(2)max log�(x,s)[p(x|s)]

s→ x→ z→ x̂← s′
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Following the original VAE derivation (again in Kingma and 
Welling), we can derive a similar VAE with s-invariant encod-
ings by introducing the encoder q(z|x): 

 

 

we assume that the prior p(z|s) = p(z), that is, that the condi-
tional prior is equal to the marginal prior over z. In the gener-
ative context, this would be a strong model mis-specification: 
if we believe that there truly are generating latent factors, it is 
unlikely that those factors would be independent of s. However, 
we are not in such a generative frame, and instead would like 
to find a code z that is invariant to s, so it is reasonable to use a 
prior that also has this property.

Taking this assumption, we have 

This is a conditional extension of the VAE objective from 
Kingma and Welling.31 Putting this objective together with the 
penalty term in Equation 1, we have the following variational 
bound on the combined objective (up to a constant): 

We use the negation of Equation 7 as the main loss term 
for learning q and p, where we want to minimize the negative 
of the bound. As described in Higgins et al,32 an additional 
parameter α may be multiplied with the divergence from the 
prior (the first term of Equation 7) for further control over the 
VAE prior.

As we have it written in Equation 7, the site variable s has 
ambiguous dimension. For applications with only two sites, 
s might be binary, while in the multi-site case, s might be a 
one-hot vector (For a categorical variable with value k out 
of K possible values, its corresponding one-hot vector is a 
K-dimensional vector with zeros in every entry except for the 
kth entry, which is one). We conduct experiments for both in 
Sections 3 and 4. More complex s values are also possible, 
but we do not explore them in this paper.

2.2 | Diffusion-space Error Propagation 
from SH representations

A convenient representation for diffusion-weighted MRI 
is the spherical harmonics (SH) basis.24 These provide a 
countable set of basis functions from the sphere to and 
from which projection is easy and often performed (eg, in 
graphics). In this paper, our input data and the reconstruc-
tion error is computed with respect to the SH coefficients. 
However, for the eventual output, the data representation 
that we would like to use is not in this basis, but in the 
original image representation which is conditional on a set 
of gradient vectors (b-vectors). These vectors are in gen-
eral different for each subject due to spatial positioning and 
motion, and often change in number between sites/proto-
cols. Rigid transformation and alignment of scan data, used 
in many pre-processing steps, also change vector orienta-
tion. While the �2 function norm is preserved under projec-
tion to the SH basis (ie, asymptotically SH projection is 
an isomorphism for �2), this is not the case for a norm on 
general finite sets of vectors.

To correct for this, we construct a projection matrix from 
the shared continuous SH basis to the diffusion gradient di-
rections. This projection can then be used in conjunction with 
decoder output p(x|z, s) to map output SH coefficients to the 
original subject-specific b-vector representation. We allow 
each b0 channel to “pass through” the projection (mapped 
as identity), as they are without orientation. While we use 
the SH representation for both input and reconstruction (to 
leverage our invariance results), we augment the loss func-
tion from Equation 1 with a “real-space” loss function, the 
reconstruction loss in each subject’s original domain. This 
encourages the overall loss function to be faithful to our use-
case in the original image space.

3 |  METHODS

3.1 | Computational implementation

We parameterize q and p using neural networks, fitting 
their parameters by mini-batch gradient-based optimi-
zation. The loss in Equation 7 is defined generally, and 
invariant representations may be learned using many dif-
ferent function parameterizations. However, the flexibility 
of neural networks as function approximators make them 
ideal for this application. We apply these networks to small 
image patches, concatenating patch-wise outputs to create 
harmonized images. The overall architecture is shown in 
Figure 1A, and the training and testing configurations are 
diagrammed in Figure 1B, with exact parameters given 
in Section 3. We discuss the use of patches and its rela-
tive advantages and drawbacks in Section 5. As shown in 

(3)

log p(x|s) = log ∫
p(x, z|s)

q(z|x)
q(z|x)dz = log�z∼q

[
p(x, z|s)

q(z|x)

]

(4)≥�z∼q[ log p(x, z|s)− log q(z|x)]

(5)=�z∼q[ log p(z|s)− log q(z|x)+ log p(x|z, s)].

(6)log p(x�s)≥−KL[ q(z�x) ‖ p(z)]+�z∼q[ log p(x�z, s)].

(7)

�(x,s)[ log P(x�s)]−�I(z, s)≥
�(x,s)[−KL[q(z�x)‖p(z)]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Div. from Prior

− �KL[q(z�x)‖q(z)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Div. from Marg.

+ (1+�)�z∼q[ log p(x�z, s)]]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Cond. Reconstruction

.
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Figure 1B, each sample consists of a single unpaired patch, 
and batches of data consist of patches and protocol identi-
fiers (one-hot vectors). As diagrammed on the right-hand 
side of Figure 1B, protocol identifiers are manipulated at 
test time to produce harmonized reconstructions.

Our primary reconstruction loss is computed in the SH 
domain with respect to the entire patch. We then add a sec-
ondary loss function for the center voxel based on the SH-
to-DWI projection, and an adversarial loss which attempts 
to predict which scanner/protocol each reconstructed patch is 
from (seen at the right of Figure 1A). We added this branch 
in order to provide additional information toward keeping re-
mapped patches “reasonable” when remapping to new sites; 
this prediction can be performed without explicit pairing of 
patches. Our loss function is then, in abstract, 

where recon is SH reconstruction loss (using MSE), proj is the 
DWI space loss, and adv is the adversarial loss on the SH re-
construction, with three hyper parameters controlling trade-offs 
between objectives. This loss function trivially extends from the 
single-site case (one target site to/from one base site) to a multi-
site case, where s is categorical.

We use a standard adversarial training scheme for defin-
ing and minimizing adv (see eg, Chapter 7.13 of Goodfellow, 
Bengio, and Courville33). The adversarial loss adv is the 
softmax cross-entropy loss of a secondary “adversary” net-
work, shown in green in Figure 1A. We alternate between op-
timizing the primary network (minimizing Equation 8), and 
the adversary (minimizing adv).

We optimize these networks by differentiating the loss 
functions (Equation 8 and adv) with respect to the network 
weights (ie, backpropagation34) and then using the Adam 
optimizer,35 which is a first order optimization method. 
Optimization is undertaken using mini-batches. To compute 
gradients of the divergences in Equation 7 efficiently, we 
use the re-parameterization trick of Kingma and Welling,31 
using both a diagonal Gaussian conditional q(z|x) and a 
Gaussian prior p(z). We also use the closed form bound for 
KL[q(z|x)‖q(z)] from Moyer et al.30

3.2 | Data and pre-processing

To evaluate our method, we use the 15 subjects from the 
2018 CDMRI Challenge Harmonization dataset.21,36 These 
subjects were imaged on two different scanners: a 3 T GE 

(8) = recon+�prior+�proj−�adv−�I(z, s)

F I G U R E  1  Diagrams describing network configuration and training/testing schema
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Excite-HD “Connectom” and a 3 T Siemens Prisma scan-
ner. For each scanner, two separate protocols were collected, 
one of which matches between the scanners at a low resolu-
tion, and another which does not match at a high resolution. 
This results in four different “site” combinations, for which 
all subjects were scanned, resulting in forty different acqui-
sitions (10 subjects, 2 scanners, 2 protocols each). We split 
this into 9 training subjects, 1 validation subject, and 5 held 
out-test subjects.

The low resolution matching protocol had an iso-
tropic spatial resolution of 2.4 mm with 30 gradient di-
rections (TE  =  89  ms, TR  =  7200  ms) at two shells 
b = 1200, 3000 s mm−2, as well as a minimum of 4 b0 ac-
quisitions, at least one of these with reverse phase encoding. 
These volumes were then corrected for EPI distortions, sub-
ject motion, and eddy current distortions using FSL’s TOPUP/
eddy.37,38 Subjects from the “Connectom” scanner were then 
registered to the “Prisma” scanner using a affine transforma-
tion, fit to a co-temporally acquired T1-weighted image volume 
(previously registered to each corresponding FA volume). The 
b-vectors were then appropriately rotated. In the case of the 
“Connectom” scanner, geometric distortions due to gradient 
non-linearities were corrected for using in-house software.39,40 
The high resolution protocols are identical in pre-processing 
to their low resolution counterparts, but have isotropic voxel 
sizes of 1.5 mm (TE = 80 ms, TR = 4500 ms) and 1.2 mm 
(TE = 68 ms, TR = 5400 ms) for “Prisma” and “Connectom” 
scanners respectively, each with 60 gradient directions per 
shell, same b-shell configurations (b = 1200, 3000 s mm−2). 
We downsample the spatial resolution of the high resolution 
scans to 2.4 mm isotropic to test the multi-task method, but 
keep the angular resolution differences. To simplify notation, 
we refer to the four scanner/protocol combinations by their 
scanner make and number of gradient directions: Prisma 30, 
Prisma 60, Connectom 30, and Connectom 60.

All scans were masked for white matter tissue. This was 
done in order to focus our analysis on the tissue most com-
monly assessed using diffusion MRI (see eg, for a review41). 
We map each of these scans to an 8th-order SH representa-
tion for input into our method, but retain the original domain 
for training outputs. We use the minimal �2 weighted solu-
tion in the case of under-determined projections, which cor-
responds with the SVD solution (using the pseudo-inverse). 
This is well-defined, unlike direct projection.

3.3 | Experimental protocol

The original CDMRI 2018 challenge21 specified three super-
vised tasks, mapping between one base “site” (Prisma 30)  
and the three target “sites” (Prisma 60, Connectom 30, 
and Connectom 60). We modify this task, removing corre-
spondence/pairing knowledge between sites (keeping this 

information for validation and testing), and including the in-
verse mapping task (target to base). This results in six tasks, 
two for each target site.

We train a “single-site” network for each of the six tasks, 
learning representations for Prisma 30 and a single target site, 
a multi-site variant across all six tasks. During training the 
method is not provided corresponding patches, and is only 
given individual patches. A single sample corresponds to one 
patch, not a pair of patches. Paired patches are only used to 
calculate error measures.

We measure the performance of each method on the hold-
out set of subjects using the Root Mean Squared Error (RMSE) 
between each method’s output and the ground truth target im-
ages in the original DWI basis (after pre-processing). For com-
parison we also include results from Mirzaalian et al,19 which 
is the only other unsupervised method we are aware of in the 
literature.

We further assess the performance of each method by 
estimating the fiber orientation distributions (FODs) for 
each reconstruction using Multi-shell multi-tissue con-
strained spherical deconvolution (MSMT-CSD),42 with 
response functions estimated using the method proposed 
in Dhollander et al.43 For both of these steps we use the 
implementations from MRtrix3.44 For each FOD we com-
pute the maxima at each voxel and compare it to the clos-
est maxima of the ground truth image to compute angular 
error.

In order to assess the fidelity of common local diffusion 
model summary measures before and after harmonization, 
we measure the Mean Average Percent Error (Mean APE) 
and the Coefficient of Variation (CV) between method- 
estimated and observed summary measures, reported in 
Table 1. We measured Mean APE and CV for Fractional 
Anisotropy, Mean Diffusivity, Mean Kurtosis,45 and Return-
to-Origin-Probability (RTOP).46 This mirrors the analysis in 
Ning et al.47

In order to test the specific effects of our compressive reg-
ularizations, we conducted two ablation tests of our method, 
comparing it to the “regular networks” with parameters de-
scribed in Section 3.4. We re-trained both single-site and 
multi-site methods with the invariance parameter λ set to 
0, but otherwise the same settings. We further trained two 
more networks for λ and α set to 0. Effectively this ablates 
the added invariance-inducing compressive elements of the 
loss function. We then compared their performance by com-
puting the voxelwise difference in RMSE in each heldout test 
subject.

For the proposed methods and corresponding ablated net-
works we assessed the amount to which we removed site in-
formation from of the learned representation z by attempting 
predict s from z. If there is no information in z about s then we 
would expect the optimal predictor to do no better than ran-
dom. To this end we trained feed forward networks to predict 
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s from z (“post-hoc adversaries”). As shown in Moyer et al,30 
the cross-entropy error of these networks is a lower bound 
for the mutual information I(s, z). The post-hoc adversaries 
had same configuration as the patch-adversaries (two 32-unit 
layers using tanh(·) activations and the softmax cross-entropy 
loss).

3.4 | Configuration and parameters

We implemented our method for image patches composed 
of a center voxel and each of its six immediate neighbors. 
Each of these voxels has two shells of DWI signal, which 
we mapped to the SH 8th order basis, plus one b0 channel. 
Unravelling these patches and shells, the input is then a vec-
tor with 91 × 7 = 637 elements.

We use three-layer fully connected neural networks for 
encoder q(z|x) and conditional decoder p(x|z, s), with 256, 
128, 64 hidden units respectively for the encoder, and the re-
verse (64, 128, then 256) for the decoder. The latent code z 
is parameterized by a 32 unit Gaussian layer (z). This layer 
is then concatenated with the scanner/protocol one-hot rep-
resentation s, and input into the decoder. We use tanh(x) 

transformations at each hidden layer, with sigmoid output 
from the encoder for the variance of the Gaussian layer. The 
adversary is a fully connected two-layer network with 32 
units at each layer, with tanh(x) units again at each hidden 
node.

For each task we train our network for 1000 epochs, which 
took 19 hours to train in the pair-wise case on standard desk-
top equipped with an external Nvidia Titan-Xp with 12 GB 
of RAM using TensorFlow (32 GB of CPU RAM, 4 cores). 
We loosely tune the hyper parameters so losses are approxi-
mately on the same order of magnitude, with α = 1.0, β = 1.0, 
γ = 10.0, and λ = 0.01. We use these same parameters for both 
the pair-wise tasks as well as the multi-task experiments. We 
use an Adam learning rate of 0.0001 and a batch size of 128. 
For each batch provided for primary network training we pro-
vide 10 epochs for training the adversary.

4 |  RESULTS

Figure 2A plots the root mean squared error (RMSE) by voxel 
of the baseline, single-site proposed method, and multi-site 
proposed method, as evaluated on the holdout test subjects, in 

T A B L E  1  Here we report the mean absolute percent error (APE) and mean coefficient of variation (CV) per voxel for each of the methods  
for four common diffusion summary measures: Fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK),45 and Return-to- 
Origin-Probability (RTOP)46

      FA MD MK RTOP

* P30 Method APE CV APE CV APE CV APE CV

Connectom 30 to Mirzaalian 0.46 0.48 0.42 0.80 0.99 1.02 0.19 1.22

Single-task 0.25 0.26 0.12 0.17 3.37 0.30 0.11 0.28

Multi-task 0.28 0.30 0.12 0.16 3.15 0.28 0.11 0.16

from Mirzaalian 0.50 0.39 0.52 0.59 0.96 1.05 0.22 0.26

Single-task 0.29 0.24 0.22 0.18 3.72 0.30 0.13 0.18

Multi-task 0.30 0.27 0.21 0.17 3.90 0.31 0.12 0.17

Prisma 60 to Mirzaalian 0.52 0.55 0.60 0.67 0.99 1.05 0.29 0.41

Single-task 0.34 0.37 0.12 0.23 3.44 0.31 0.14 1.47

Multi-task 0.34 0.37 0.12 0.19 3.17 0.29 0.13 0.45

from Mirzaalian 0.64 0.45 0.48 0.44 0.96 0.98 0.22 0.28

Single-task 0.41 0.30 0.38 0.15 0.48 0.14 0.09 0.16

Multi-task 0.42 0.32 0.38 0.15 0.45 0.13 0.08 0.11

Connectom 60 to Mirzaalian 0.86 0.79 0.88 0.92 1.01 1.05 1.11 26.18

Single-task 0.35 0.36 0.26 0.81 3.22 0.35 0.16 0.50

Multi-task 0.35 0.36 0.14 0.23 3.31 0.36 0.14 0.37

from Mirzaalian 3.19 1.26 4.64 5.97 0.88 0.90 0.63 0.69

Single-task 1.86 0.40 2.93 0.31 4.44 0.27 0.10 0.17

Multi-task 1.77 0.38 2.84 0.29 4.56 0.27 0.10 0.32

Notes: The APE measure is the same as the error metric reported in Ning et al47; similar to Ning et al,47 we report values as decimals (where 1.00 corresponds to 
100%), and not actual percentages. It is well known that the APE measure is biased towards methods reporting smaller values41,48 We therefore also report the 
Coefficient of Variation, computed by dividing the RMSE by the observed sample mean. This measure is also sometimes referred to as the Relative RMSE.
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the original signal representation. Our proposed methods show 
improvement over the baseline method in each case. In the 
pair-wise task between similar protocols (mapping between 
Prisma 30 and Connectom 30), these improvements have non-
overlapping inner quartile range. For dissimilar protocols, that 
is, mapping between Prisma 30 and Prisma 60 or Connectom 
60, our proposed method shows improvements, though the 
difference is less pronounced. Surprisingly, for higher resolu-
tion target images the multi-site method performs as well or 

better than the pair-wise method and the baseline; this may be 
due to the multi-task method receiving many more volumes 
overall, allowing it to gather more information (albeit biased 
by other scanners) or preventing it from overfitting.

Figure 2B plots the voxel-wise angular deflection of each 
method, as measured by MSMT-CSD. For Connectom 30 
and Prisma 60, both to and from Prisma 30, all three meth-
ods are comparable, with median errors well below 20◦, and 
90th percentile errors all slightly above 25◦. For mappings to 

F I G U R E  2  Here, we plot the voxel-wise performance as measured by RMSE (top) and angular deflection (bottom), that is, the angular 
difference between the global maxima of the Fiber Orientation Distributions recovered by MSMT-CSD42 from the ground truth and reconstructed 
images, measured in degrees. This is shown for the Mirzaalian et al19 method as well as our two proposed methods on each of the six harmonization 
tasks (Prisma 30 to and from each of the other scanner/site combinations). All RMSE values are calculated in the original signal representation. In 
both plots, lower is better. For the angular deflection error, the 90th percentile data point plotted in red
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the Connectom 60 protocol, the Mirzaalian et al method has 
generally higher error, though the inner quartile ranges still 
overlap for all methods. We plot a subset of the FODs from 
the original image and two of the reconstructions in Figure 3.

Figures 4-6 show the spatial distribution of the error for 
each tested method on a single test subject, for mappings 
between Prisma 30 and Connectom 30, Prisma 60, and 
Connectom 60 respectively. For the Prisma 30 to Connectom 
30 mapping, overall the Mirzaalian baseline19 has higher 
error than the other methods as shown by the overall color-
ing. The Mirzaalian baseline19 and the multi-site proposed 
method show significant white matter patterning (though in 
varying degree); optimally we would like to see uncorrelated 
residuals, like those shown in the single-site method.

The Connectom 60 error plots (Figure 6) have a strong spa-
tial patterns at both the occipital and frontal poles, shown in all 
methods. This wide-scale effect is somewhat mitigated by the 
proposed methods, but is still present in all error distributions.

Table 1 reports the Absolute Percent Error (APE) and 
the estimated Coefficient of Variation (CV) for each method  
voxel-wise for four commonly used diffusion summary mea-
sures: Fractional Anisotropy (FA), Mean Diffusivity (MD), 
Mean Kurtosis (MK),45 and Return-to-Origin-Probability 
(RTOP).46 It is well known that APE is biased towards meth-
ods reporting smaller values, and becomes inaccurate and 
inflated as actual observed values approach zero.48,49 In our 
context this means that for FA and MD, more spherical ten-
sors are weighted strongly, while more anisotropic tensors are 

F I G U R E  3  Here, we plot exemplar FOD glyphs (estimated via MSMT-CSD) from the actual data, a reconstruction using the Mirzaalian 
et al method, and a reconstruction using the proposed single-site method. Inputs to each reconstruction were the data from the Prisma 60 protocol/
site. The background colors represent the direction of the FOD maxima
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weighted less. Due to this bias, we also report the estimated 
Coefficient of Variation (CV),50 which is the RMSE divided 
by the observed sample mean (For unbiased estimates the 
RMSE divided by sample mean should further be multiplied 
by a factor of 

(√
N

N−1

)(
1−

1

4N

), where N is the number of tested 
voxels. However, this number is very close to 1, and the re-
sulting change is negligible). CV has also been used to as-
sess summary statistic variation between scanners,12,51 and is 
sometimes referred to as Relative RMSE.

For all reported summary measures except MK, the pro-
posed methods map to and from Connectom 30 perform well 
under both error measures. Mapping to both Connectom 60 

and Prisma 60 from Prisma 30 has higher error than the con-
verse (Prisma 30 to Connectom/Prisma 60); this fits our intu-
itions about upsampling, as both “60” protocols have higher 
angular resolution.

For Mean Kurtosis in remapped scans to/from Connectom 
30, the APE is very high while the CV is surprisingly low. 
This pattern is also seen in FA, MD, and MK for scans 
mapped to Connectom 60, and for MK in scans mapped from 
Prisma 60. Because the APE error is above 100% (but CV 
is small), we believe that the methods are overestimating 
small actual values, since underestimation error is bounded 
at 100% for non-negative measures. In order to further verify 

F I G U R E  4  We plot the spatial distribution of RMSE per voxel, displayed in slices centered at (x, y, z) = (10, 22, 35) for mappings from 
the Prisma 30 protocol to the Connectom 30 protocol, for (top row) the Mirzaalian19 baseline, (center row) the single-site proposed method, and 
(bottom row) the multi-site proposed method. The color scale is the same between the rows, as well as between this figure, Figures 5 and 6. All 
RMSE values are calculated in the original signal representation
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this, we computed the Percent Error (without absolute val-
ues) shown in Table 2, indicating the average bias above or 
below the actual observed value. Since the MK PE for both 
proposed methods is very close to the APE, this indicates that 
on average small values are being overestimated. Discussion 
continues in Section 5.

4.1 | Ablation test results and post-hoc 
adversarial accuracies

Table 3 shows the results of the ablation tests, where we set 
either λ to zero or both λ and α to zero, effectively removing 

invariance and prior terms respectively from the primary loss 
function. We computed the difference in the RMSE between 
the regular model and the ablated models on the hold-out test 
dataset. For Connectom 30 both to and from Prisma 30, both 
the invariance term and the prior term hinder reconstruction 
performance. When only the invariance term is removed this 
effect is slight, but when both are removed the effect is much 
stronger in the multi-task setting.

For Prisma 60 mappings differences without the invari-
ance term for the single task method are relatively small, 
while removing both the invariance and prior terms leads to 
large increases in RMSE. For mappings to Connectom 60, 
differences in RMSE follow a similar pattern to Prisma 60, 

F I G U R E  5  We plot the spatial distribution of RMSE per voxel, displayed in slices centered at (x, y, z) = (10, 22, 35) for mappings from the 
Prisma 30 protocol to the Prisma 60 protocol, for (top row) the Mirzaalian19 baseline, (center row) the single-site proposed method, and (bottom 
row) the multi-site proposed method. The color scale is the same between the rows, as well as between this figure, Figures 5 and 6. All RMSE 
values are calculated in the original signal representation
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with performance decreasing with both invariance and prior 
terms ablated. For the mappings from Connectom 60, perfor-
mance strongly drops without the invariance term and then 
further drops without the prior term.

Table 4 shows the results of the post-hoc adversarial pre-
dictions. Setting λ = 0 uniformly increases post-hoc adversar-
ial accuracy, and setting α = 0 increases accuracy further in 
both Prisma 60 and Connectom 60 cases. For the multi-site 
model the prediction task is considerably harder, yet setting 
both λ and α to zero induces relatively high adversarial accu-
racy in the multi-task setting (∼60%).

It is unsurprising that the invariance term does not aid in 
reconstruction for more similar protocols/scanners. Inclusion 
of this term should lead to more compression, and thus less 
information in z relevant to x, which in turn should lead to 
worse reconstruction. Further, this intuition also extends to 
the VAE prior term, which is a sufficient condition for the 
compressive portion of the invariance term (if prior = 0 then 
KL[q(z|x)‖q(z)]  =  0). It is interesting, however, that these 
terms lead to increased performance for dissimilar protocols/
scanners, that is, Connectom 60 and Prisma 60. This indi-
cates that these two loss terms are helpful for generalization.

F I G U R E  6  We plot the spatial distribution of RMSE per voxel, displayed in slices centered at (x, y, z) = (10, 22, 35) for mappings from 
the Prisma 30 protocol to the Connectom 60 protocol, for (top row) the Mirzaalian19 baseline, (center row) the single-site proposed method, and 
(bottom row) the multi-site proposed method. The color scale is the same between the rows, as well as between this figure, Figures 4 and 5. All 
RMSE values are calculated in the original signal representation
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* P30 Method FA PE MD PE MK PE RTOP PE

Connectom 30 to Mirzaalian −0.27 −0.26 −0.87 −0.09

Single-task −0.05 0.02 3.31 −0.01

Multi-task −0.11 0.03 3.04 −0.03

from Mirzaalian 0.22 −0.45 −0.95 0.20

Single-task 0.10 0.18 3.57 −0.07

Multi-task 0.04 0.15 3.79 −0.04

Prisma 60 to Mirzaalian −0.15 −0.58 −0.93 −0.19

Single-task −0.15 −0.00 3.38 0.00

Multi-task −0.14 0.05 3.03 −0.05

from Mirzaalian 0.48 −0.22 −0.94 0.20

Single-task 0.18 0.29 0.44 0.03

Multi-task 0.15 0.32 0.33 −0.01

Connectom 60 to Mirzaalian 0.23 −0.88 −0.91 0.36

Single-task 0.02 0.16 3.06 −0.04

Multi-task −0.02 0.01 3.16 −0.00

from Mirzaalian 2.32 3.65 −0.73 −0.62

Single-task 1.70 2.88 4.33 −0.02

Multi-task 1.56 2.77 4.48 0.01

    Negative PE implies Actual Value > Estimated 
Value

 

Note: Negative PE implies that the value from the real data was greater than the value from the harmonization 
method.

T A B L E  2  Here, we report the mean 
Percent Error (PE) per voxel for each of 
the methods for four common diffusion 
summary measures

  ΔRMSE for λ = 0

  𝚫RMSE = RMSEreg. −RMSE
�=0

  Connectom 30 Prisma 60 Connectom 60

  To From To From To From

Proposed Single-task 1.2 2.6 −1.4 7.6 −4.0 −46.8

Proposed Multi-task 6.3 2.6 16.7 12.25 −4.1 −65.7

ΔRMSE for λ = 0, α = 0

ΔRMSE = RMSEreg. −RMSE�= 0, � = 0

Connectom 30 Prisma 60 Connectom 60

To From To From To From

Proposed Single-task 6.1 1.9 −6.4 −1.5 −17.0 −55.7

Proposed Multi-task 94.3 89.4 −324.8 −354.8 −217.0 −90.0

Note: Negative values indicate that the regular model has better performance than the ablated models.

T A B L E  3  Here we report the mean 
per-voxel test set RMSE change between 
the regular model and two ablated models, 
where (top) the invariance term λ was set to 
zero, and (bottom) the invariance term λ and 
the VAE prior term α were set to zero

  Post-hoc Adversarial Accuracy, Predicting s from z 

  Best Possible Full Model λ = 0 λ = 0, α = 0

Proposed Single-task, Connectom 30 0.5 0.61 0.63 0.63

Proposed Single-task, Prisma 60 0.5 0.5 0.51 0.54

Proposed Single-task, Connectom 60 0.5 0.63 0.68 0.85

Proposed Multi-task 0.25 0.41 0.41 0.62

Notes: The far left column shows the best possible performance. The architecture and training protocol for the 
adversaries is described in Section 3.3. Here, lower is better (“closer to invariant”).

T A B L E  4  Here, we report the mean 
per-patch test set classification accuracy for 
an adversary trained post hoc to predict the 
site variable s from the latent representation 
z, for z taken from the full model (center left 
column), the λ ablated model (center right 
column), and the λ and α ablated model 
(right column)
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5 |  DISCUSSION

Our proposed harmonization method is unsupervised in that 
we do not require multiple images from the same subject or 
phantom from separate sites (ie, paired data) in order to train 
our method. It is advisable to validate using such data, but due 
to the expense of collecting images from the same subject at 
varying sites it is advantageous to limit reliance on these data.

We believe it is important to understand the trade-off be-
tween reconstructive error and adversarial accuracy (eg, between 
performance in Figures 2A and 4). It is obviously desirable to 
have high reconstructive accuracy, yet any attempt to induce in-
variance necessarily removes information (ie, site information), 
which reduces this accuracy. At the other end of the spectrum, 
there is always a family of perfectly invariant solutions (constant 
images), but these also have no information about the subjects, 
and subsequently very high reconstructive error. It is thus im-
portant to consider both in selecting a remapping method.

Because of the VAE prior’s sufficiency for compressing z, 
empirically we can create an acceptable method without the 
invariance term (ie, with λ = 0). This agrees with our intu-
ition about Equation 1, where compression plus conditional 
reconstruction is a proxy for invariance. It appears that the 
exact form of compression is less impactful. However, best 
performance is achieved by including an invariance term.

It is tempting to attempt to interpret the encodings z, but 
these efforts should not be undertaken lightly. The encoding 
and decoding functions are designed to be non-linear, and 
individual components of z may have interaction effects with 
other components. Further, the encodings z are not images or 
patches, lacking a spatial domain. With careful construction 
analysis may be possible, but it is almost certainly non-trivial 
to do in the encoding domain.

In the current method we reconstruct images for a specific 
target site s′. We might instead look for a site agnostic image. 
This is philosophically challenging: images are by nature col-
lected at sites, and there are no site-less images. While we 
can manipulate our method to produce an s∗ average site, the 
output image may not be representative of any of the images. 
It may be that all images must have site information, and that 
the quotient representation is not an image at all. On the other 
hand, for other tasks y that are not images, for example, pre-
diction of pathology or prognosis, we can use z to make un-
biased (scanner-agnostic) predictions of y. In cases where the 
actual goal is not in the image domain (for which the harmo-
nization task is a pre-processing step), such a formulation may 
be beneficial, and could be built from our proposed method.

5.1 | Limitations

This method cannot remove long-range scanner-biases; this 
is due to the patch-based architecture. In theory, with larger 

patches, we could avoid this limitation; current hardware, in 
particular GPU memory and bus speeds, limit our computa-
tion to small patches for dMRI. Specific work in this domain 
has been done to reduce memory load,17 but it is by no means 
solved, especially for high angular resolution data such as 
the HCP dataset.52 We hypothesize that a similar architecture 
with larger patches or whole images could rectify this par-
ticular problem—architectures that may become accessible 
with increased hardware capabilities—or better model com-
pression/computational reduction techniques.

In the present work, the proposed method was only 
evaluated on white matter, and not in grey matter (neither 
cortex nor subcortical structures). White matter analyses 
generally focus on models of restricted axonal compart-
ments (fibers), with derived measures such as fiber orien-
tation distribution functions (FODs) and voxel-wise data 
with generally high anisotropy. Grey matter analyses in 
contrast may focus more on signal from isotropic compart-
ments and/or dendritic arbors,53 and notably their models 
may be robust or vulnerable to site-bias in different ways. 
We have not considered grey matter signal or model sum-
mary statistics in this analysis, and thus we advise caution 
when applying this method to identified grey matter voxels. 
Further, as Tables 1 and 2 show, for low values of Mean 
Kurtosis the proposed method is inaccurate and has a pos-
itive bias in reconstruction. We advise caution when using 
this method where the accuracy of these measures for low 
relative values is critical.

6 |  CONCLUSION

In the present work we have constructed a method for learn-
ing scanner-invariant representations. These representations 
can then be used to reconstruct images under a variety of 
different scanner conditions, and due to the data processing 
inequality the reconstruction’s mutual information with the 
original scanner will be low. This we demonstrate to be use-
ful for the unsupervised case of data harmonization in diffu-
sion MRI; critically, we can harmonize data without explicit 
pairing between images, reducing the need for. Surprisingly 
in some cases the multi-task method outperforms a pairwise 
method with similar architecture. This may hint at further 
benefits for learning shared representations.
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APPENDIX A

Derivation of the Bound in Equation 1
This bound is also found in Moyer et al,30 where it is used in 
the context of Fair Representations. Again, we reproduce it 
here for clarity, but the demonstration remain unchanged. All 
entropic quantities are with respect to q the empirical encod-
ing distribution unless otherwise stated.

From the tri-variate identities of mutual information, we 
have that I(z, s) = I(z, x) − I(z, x|s) + I(z, s|x). However, 
the distribution of z is exactly given by ∫q(z|x)dx by con-
struction, and thus the distribution of z solely depends on 
x. Thus, 

we can then write the following: 

 

 

 

 

This inequality is tight if and only if the variational approxima-
tion p(x|z, s) is correct; interpreted in an imaging context, if we 
cannot perform conditional reconstruction correctly this bound 
will not be tight.

(A1)I(z, s|x)=H(z|x)−H(z|x, s)=H(z|x)−H(z|x)=0.

(A2)I(z, s)= I(z, x)− I(z, x|s)

(A3)= I(z, x)−H(x|s)+H(x|z, s)

(A4)≤ I(z, x)−H(x|s)−�x, s, z∼q[ log p(x|z, s)]

(A5)
=�z, x[ log q(z|x)− log q(z)]−H(x|s)−�x, s, z∼q[ log p(x|z, s)]

(A6)
=�x[KL[q(z�x)‖q(z)]]−H(x�s)−�x, s, z∼q[ log p(x�z, s)].
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