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Abstract: The aim of this paper is the presentation of an analytical model of insulator flashover and
its application for air at atmospheric pressure and pressurized SF6 (Sulfur Hexafluoride). After a
review of the main existing models in air and compressed gases, a relationship of flashover voltage
based on an electrical equivalent circuit and the thermal properties of the discharge is developed.
The model includes the discharge resistance, the insulator impedance and the gas interface impedance.
The application of this model to a cylindrical resin-epoxy insulator in air medium and SF6 gas with
different pressures gives results close to the experimental measurements.
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1. Introduction

In order to optimize the insulation level for high-voltage components (air insulated substations
(AIS), gas insulated substations (GIS) and gas insulated lines (GIL), breakers, overhead lines . . . ),
a special attention is given to creeping or surface discharges because of the thermal effects and the faults
that they can produce by sparking or flashover. Then, the knowledge of the parameters characterizing
this kind of discharge is essential to understand the complexity of the mechanisms involved in their
development. Thus, it is fundamental to acquire such information to enable building a mathematical
model that can help in optimizing the insulation efficiency.

This paper aims to carry out a review of existing models of creeping discharges and to propose an
analytical approach for the calculation of flashover voltage of solid insulators in gases under lightning
voltage stress.

2. Review of Surface Discharges and Flashover Models in Gases

From the insulation viewpoint, the triple junction (metal-gas-solid) constitutes the weakest point
in high-voltage equipment. Indeed, when the electric field reaches a critical value, partial discharges
(PDs) can be initiated in the vicinity of this region. The increase of the voltage leads these PDs
to develop and to transform into surface discharges (creeping discharges) that propagate over the
insulator up to flashover [1–4]. In the case of GIS and GIL, the worst case is when insulators (spacer,
post-type insulator) are contaminated by metallic particles on their surfaces [5,6].

The physical mechanisms responsible for the surface discharge propagation are still not well
known because of the complexity of the phenomena and the interaction of different factors, such as the
interaction between the discharges, nature of gas and the proprieties of the solid insulating material,
gas pressure, surface charges and pollution (metallic particle), geometrical parameters (insulator shape,
electrodes form . . . ), etc. Fundamental studies have been conducted to understand the inception and
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propagation of creeping discharges in various gases [7–14]. It appears from the reported results that
the phenomena start with corona discharges that evolves into ramified streamers. When the streamer
discharge reaches a certain length, a leader channel with streamers at its head appears.

The creeping discharge propagation dynamics in SF6 (sulfur hexafluoride) has been investigated
by many researchers [7–11]. Okubo et al. [8] reported that the creeping discharge has the same dynamics
as in air (Figure 1). Tenbohlen and Schröder [9] analysed the surface discharge under lightning impulse
(LI) voltage with different electrical charges deposition on the insulator surface. Figure 1 illustrates the
current waveform from the inception to flashover with different electrical charges on the insulator
surface. From Figure 1, some similarities with discharge current propagating in air [13] can be noted:
the current increases with the leader elongation until the discharge reaches the critical length. Then,
the final jump occurs causing the full flashover.
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Figure 1. Instantaneous current and voltage during flashover at the surface of cylindrical epoxy
insulator according to Reference [9].

Hayakawa et al. [7] analysed the mechanism of impulse creeping discharge propagation on
charged PMMA (poly-methyl methacrylate) surface. Their results showed that the discharge
propagation is influenced by the charged surface and can be explained by the streamer propagation
and streamer-to-leader transition based on the precursor mechanism. On the other hand, according to
Okubo et al. [8], Beroual [3] and Beroual et al. [10,11], the creeping discharge propagation depends on
the specific capacitance of the solid insulator. The permittivity, the conductivity and the geometry of
the insulator affect the propagation of the surface discharge [10–12].

Modelling and calculation of flashover voltage is not an easy task because of the interaction of
different parameters, such as gas pressure and its chemical constitution, physicochemical properties
of the solid insulator, nature and distribution of the surface charges, etc. Different models have been
proposed in order to compute the inception voltage of creeping discharges and flashover voltage of
insulator in air at atmospheric pressure [2,3,13,14]. Figure 2 depicts the different evolution steps of
creeping discharge on the insulator.

According to Reference [2], the corona inception voltage depends on the equivalent capacitance of
the system. It can be calculated with the following relationship [2]:

Uinception = A
Ca (1)



Energies 2020, 13, 591 3 of 14
Energies 2019, 12, x FOR PEER REVIEW 3 of 16 

 

  

(a): Corona inception (b): Streamers (c): Spark (Streamers/Leader) 

Figure 2. Steps of creeping discharges according to Reference [2]. 

According to Reference [2], the corona inception voltage depends on the equivalent capacitance 
of the system. It can be calculated with the following relationship [2]: 

inception a

AU
C

=  (1) 

The second step is the appearance of streamers (Figure 2a). The streamers voltage inception is 
given by [2]: 

streamer b

BU
C

=   (2) 

According to Toepler [3], the maximum (critical) length of the discharge that leads to flashover is:  

2 5 4
max

dul k C U
dt

= ⋅ ⋅ ⋅  (3) 

Then, if the voltage is increased, the discharge will be irreversible and propagates until flashover. In 
this case, the flashover voltage Ufov can be calculated as well: 

fov d

DU
C

=  (4) 

where: 
• C is the equivalent capacitance, 
• A, B and D are parameters that depend on the geometry and the material of insulator, the kind 

of the discharge and the experimental conditions (gas, pressure, temperature, humidity, 
electrodes shape, voltage waveform…), respectively. Terms a, b and d are empirical parameters 
the values of which vary in the range 0.2–0.44. 

These models are empirical and involve only the capacitance of the insulator. 
In the case of SF6, Laghari [15] proposed a relationship of flashover voltage based on the 

efficiency coefficient that represents the ratio of the flashover voltage for uniform electrical gradient 
distribution to the voltage breakdown of the same gap without an insulator with the same 
configuration of insulator as well: 

( )
( )1

2

ln12.4
ln

r
fov b

rb

k
V V

kV
ε

ε
= ⋅ ⋅ ⋅  (5) 

where,  

b
cri

EV const p d
p

 
= + ⋅ ⋅ 

 
 (6) 

Figure 2. Steps of creeping discharges according to Reference [2].

The second step is the appearance of streamers (Figure 2a). The streamers voltage inception is
given by [2]:

Ustreamer =
B
Cb (2)

According to Toepler [3], the maximum (critical) length of the discharge that leads to flashover is:

lmax = k ·C2
·U5
·

4
√

du
dt (3)

Then, if the voltage is increased, the discharge will be irreversible and propagates until flashover.
In this case, the flashover voltage Ufov can be calculated as well:

U f ov = D
Cd (4)

where:

• C is the equivalent capacitance,
• A, B and D are parameters that depend on the geometry and the material of insulator, the kind of

the discharge and the experimental conditions (gas, pressure, temperature, humidity, electrodes
shape, voltage waveform . . . ), respectively. Terms a, b and d are empirical parameters the values
of which vary in the range 0.2–0.44.

These models are empirical and involve only the capacitance of the insulator.
In the case of SF6, Laghari [15] proposed a relationship of flashover voltage based on the efficiency

coefficient that represents the ratio of the flashover voltage for uniform electrical gradient distribution
to the voltage breakdown of the same gap without an insulator with the same configuration of insulator
as well:

V f ov = 12.4
ln(Vb)

·
k1
k2
·

ln(εr)
εr
·Vb (5)

where,
Vb = const +

(
E
p

)
cri
· p · d (6)

Vb is the breakdown voltage calculated according to Paschen law. k1 and k2 are parameters that depend
on the roughness and the contact nature between the insulator and the electrodes. εr is the permittivity
of the insulator.

Hama et al. [16] proposed a semi-empirical relationship of flashover voltage based on the
mechanism leader/precursor:

V f ov =
XLeader

DpolVLeader
+ VLeader (7)

where XLeader and VLeader are the length and the voltage of the leader discharge respectively, and Dpol
is a coefficient that is dependent on the polarity of the applied voltage, the reduced critical electrical
gradient and the shape of the electrodes, with:
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Dpol = const×
(

E
p

)
cri
×φ(Ryelectrodes) (8)

The application of this model shows results close to the experimental measurements, but it is
limited to the shape of the used insulators and the experimental conditions.

In the following, we recall the main principles of an analytical static model based on the electrical
equivalent circuit and thermal discharge temperature we previously developed [1,13].

3. Principal of Circuit Model

Surface discharges are like spark (streamer/leader) discharges, i.e., a hot leader column and a
streamers zone at its head [8,9,13,17]. Based on Figure 3, the voltage along the discharge can be written
as follows:

Vd = Vl + Vs = xlEl + xsEs = xd rd I (9)

where Vd, Vl and Vs are the voltages of the discharge, the leader channel and the streamers, respectively.
xl, xs, El and Es are respectively the length and the electrical gradient of the leader channel and the
streamers. xd, rd, and I are respectively the discharge length, the discharge resistance and the current.
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Figure 3. Illustration of leader column and streamers head of a discharge at the surface of an insulator.

The discharge resistance can be deduced from Equation (9):

rd =
xlEl+xsEs

xdI (10)

where xd = xs + xl.
According to Equation (10), creeping discharge can be considered as a resistance and it can be

assumed that the discharge channel is a uniform cylinder.
Many researchers published photos of surface discharges indicating that there are two regions:

the main luminous discharge (leader + streamer head) and less luminous branches, as illustrated
in Figures 4 and 5 [10,18]. So, the presence of those less luminous discharges can be represented
as a resistor in parallel to the insulator surface. On the other hand, several research investigations
demonstrate the existence of a dark current in high-pressurized gases that contribute to increase the
insulator conductivity [19]. These currents contribute to the appearance of the second region (called
luminous plasma), as depicted in Figures 4 and 5.
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Figure 5. Surface discharge at the surface of a coated electrode in SF6 with 1 bar under LI+ according to
Reference [18].

3.1. Parameters of the Circuit

The proposed model is constituted by an equivalent electrical circuit representing the electrical
discharge, in series with the unbridged gap. The gap (the distance between the head of discharge
and the opposite electrode) consists of a gas layer and of the solid dielectric at the interface (Figure 6).
The gas layer is assumed to be equal to the diameter of the discharge channel. This model was
developed elsewhere [13] in the case of air at atmospheric pressure and represents the instant when the
discharge reaches a maximum length (called critical length) before the final jump [13]. In the following,
the same approach [13] will be adopted with the assumption that the LI (lightning impulse) voltage
waveform can be considered as a quart-cycle of sine signal with a frequency about 0.3 MHz.
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The electrical Equation describing this circuit is:

V = Rd(x)I +
[
Zg(x)//Zi(x)

]
I (11)

where,

Zg(X) = Rg(x)//Cg(x) =
Rg(x)

1+ jωRg(x)Cg(x)
=

rg(L−x)

1+(rgcgω)
2 − j

rg
2cgω(L−x)

1+(rgcgω)
2

2

Zi(X) = Ri(x)//Ci(x) =
Ri(x)

1+ jωRi(x)Ci(x)
=

ri(L−x)
1+(riciω)

2 − j ri
2ciω(L−x)

1+(riciω)
2

2 (12)

and
Rd(x) = rdx = xρd

sd
;

Ci(X) = ci
L−x = εi

si
L−x ;Cg(X) =

cg
L−x = εg

sg
L−x ;Ri(x) = ri(L− x) = ρi

L−x
si

;Rg(x) = rg(L− x) = ρg
L−x
sg

rd is the linear resistance of the discharge channel. ri, rg, ci, cg, εI, εg, ρi, and ρg, are respectively the
linear resistance, capacitance, the permittivity and the resistivity, respectively of the solid insulator
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and the unbridged gap. sd is the cross-section of the discharge channel, si and sg are respectively the
cross-sections of the solid insulator and the layer of the unbridged gap. ω is the pulsation (ω = 2πf,
f being the frequency).

Then, the equivalent impedance of the system will be:

Zeq(x) = rdx +
rgri
αgαi

G1(L− x) + j
rgri
αgαi

G2(L− x) (13)

Let us put:
τg = ρgεgω = rgcgω
τi = ρiεiω = riciω

(14)

Product τi
2 >> 1 and τg

2 >> 1, then: {
αi ≈ τi

2

αg ≈ τg
2 (15)

The terms G1 and G2 are:
G1 = z1

z3+z4

G2 = z2
z3+z4

(16)

where, 

z1 =

(
rg

τ2
g
+ ri

τ2
i

)(
1− τgτi

)
+

(
rg
τg

+ ri
τi

)(
τg + τi

)
z2 =

(
rg
τg

+ ri
τi

)
(1− τi) −

(
rg

τ2
g
−

ri
τ2

i

)(
τg + τi

)
z3 =

(
rg

τ2
g
+ ri

τ2
i

)2

z4 =
(

rg
τg

+ ri
τi

)2

(17)

The square of the modulus of the equivalent impedance is:

∣∣∣Zeq
∣∣∣2 = γx2 + 2Lx

[
rd

(
rd −

rgri

τ2
gτ

2
i
G1

)
− γ

]
(18)

where,

γ =

(
rd −

rgri

τ2
gτ

2
i
G1

)2

+

(
rgri

τ2
gτ

2
i
G2

)2

(19)

According to Reference [20], when the discharge length increases, the equivalent
impedance decreases:

d|Zeq|
2

dx ≤ 0 (20)

By differentiating Equation (18) with respect to x, we get:

d|Zeq|
2

dx = 2γx + 2L
[
rd

(
rd −

rgri

τ2
gτ

2
i
G1

)
− γ

]
≤ 0 (21)

Then,
x
L − 1 ≤

[
rd

γτ2
gτ

2
i

(
rgriG1 − τ2

gτ
2
i rd

)]
(22)

Flashover of the solid dielectric occurs when Equation (22) is equal to zero, i.e., when the discharge
length is equal to the total creeping (leakage) distance. This Equation can be considered as “the flashover
condition”. Therefore, the maximum (or critical) length of the discharge corresponding to flashover is:

xcri =
L

γαgαi

[
γτ2

gτ
2
i − rd

(
rd − τ

2
gτ

2
i G1

)]
= L · n (23)
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where,
n = 1

γτ2
gτ

2
i

[
γτ2

gτ
2
i − rd

(
rd − rgriG1

)]
(24)

where 0 < n < 1.
The worst case can be derived from Equation (12), it corresponds to:

rd
γτ2

gτ
2
i

(
rgriG1 − τ2

gτ
2
i rd

)
≥ 0 (25)

The term rd
γτ2

gτ
2
i

is always positive, then:

rgriG1 ≥ τ2
gτ

2
i rd (26)

Equation (26) can be written as:
τ2

gτ
2
i

G1
·

rd
rgri

= K ≤ 1 (27)

where,
0 < K ≤ 1 (28)

or:
rd ≤ K ·G1 ·

rgri

τ2
gτ

2
i

(29)

Condition (28) indicates that the discharge propagates when the ratio K is less than or equal to 1.
This corresponds to the propagation criterion in which the discharge length is sufficient for causing the
final jump, provoking flashover [13].

On the other hand, the power loss per unit length pd in the discharge channel is:

pd = rdI2 (30)

By combining Equations (30) and (26), it yields:

I =
√

pd
rd

(31)

The square of the modulus of the voltage—Equation (11) is:

|V|2 = |I|2 ·
∣∣∣Zeq

∣∣∣2 (32)

By substituting Equations (23), (24) and (30) in Equation (18), it yields:

∣∣∣Zeq
∣∣∣2 = βL2

(
rgri

τ2
gτ

2
i

)2

(33)

with:
β = K2G1

2n2 +
(
G1

2 + G2
2
)
(1− n)2 + 2K2G1n(1− n) (34)

By substituting Equations (31) and (33) in Equation (32), the Equation of flashover voltage will be
deduced as:

VFOV = L
τgτi

√
pd ·

rgri
rd
· β. (35)

3.2. Thermal Conductivity and Discharge Resistance

According to the solution proposed by Frank-Kamenetski [21,22], the energy dissipated by thermal
conduction within the discharge channel is:

Pd = 16πλd
KB
Wi

T2 (36)
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By combining Equations (36) and (30), the final Equation of flashover voltage will be:

VFOV = 4 L
τgτi

T
√
πKB
Wi
· λd ·

rgri
rd
· β (37)

In the case of air at atmospheric pressure, the thermal conductivity is calculated according to the
following Equation [23]:

λ(θ) = λa

1+Aa(1−va)
va

(38)

where λa, va and Aa are the thermal conductivity, volume fraction and kinetic gas coefficient for
air, respectively.

Also, the discharge resistance in air at atmospheric pressure is given by [24]:

rd(T) = r0d exp
( Wi

2KBT

)
. (39)

where r0d is a constant in the range of operating temperatures of the discharge. Wi represents
the first ionization energy of the different species constituting the discharge channel and KB is the
Boltzmann constant.

In the case of SF6, both discharge resistance and discharge thermal conductivity are functions
simultaneously of gas pressure and plasma temperature [25,26].

λd = Γ(T, p)
σd = Σ(T, p)

(40)

According to Pinnekamp and Niemeyer [27], and Niemeyer et al. [28], the temperature of the
leader discharge is between 2400 K and 2800 K. On the other hand, based on the transport parameters
data of SF6 published in the literature [25,26], the thermal conductivity was plotted as a function of
gas pressure (Figure 7) and the discharge resistance against gas pressure (Figure 8) for a range of
temperatures between 2500 K and 3500 K. From these figures, numerical empirical formulae of the
discharge thermal conductivity and discharge resistance against pressure for a given temperature
was deduced:

σd = A.p−m (41)

λd = a0 + . . . +anpn (42)

where p is the gas pressure and a and A are empirical parameters.Energies 2019, 12, x FOR PEER REVIEW 10 of 16 
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4. Application

To validate the proposed model, first the model was applied for the calculation of the flashover
voltage of cylindrical epoxy insulators in air at atmospheric pressure. The second application will be
for the same kind of insulator in SF6 gas medium. The computed flashover voltages are compared
with the experimental data reported by other researchers, as in References [12,13,15,29]. Table 1 gives
the characteristics of the used insulator in the computations.

Table 1. Characteristics of used insulators from literature used in modelling.

Insulator Material Diameter Length Reference Gas Pressure

1 Epoxy 25 60 [13] Air Atmospheric
2 Epoxy 25 60 [12] SF6 Variable
3 Epoxy 25 45 [29] SF6 Variable
4 Epoxy 30 10 [15] SF6 Variable

The lightning impulse voltage frequency is calculated based on the following Equation [30]:

f = 0.35 / TR (43)

TR is the rising time of the voltage front equal to 1.2 µs.

4.1. Air at Normal Atmospheric Conditions

Figure 9 illustrates the results of the application of the proposed model in air at atmospheric
pressure. The model is compared with the experimental data of Reference [13], a previous model
developed earlier [1] and Toepler’s model. The temperature of discharge was taken between 1800 K
and 2000 K, which corresponds to a leader phase on the insulator surface [13]. The resistance of air
ranges from 1023 to 1025 Ω/cm, its dielectric constant being equal to 1. The effect of humidity and
roughness are neglected.

By comparing flashover voltage given by Equation (36) and the other models, we can remark
that the computed values are close to the measured ones and follow the same trend. According to
this result, we can deduced that the impedance of the interface between the head of the discharge and
the opposite electrode plays affects the result (Figure 9). It contributes to the breakdown process before
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the final jump of the discharge (flashover), as described in Reference [12]. The maximum deviation is
18.2% and the average deviation is less than 5%.
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Figure 9. Comparison between calculated and measured flashover voltage versus creepage distance in
air at atmospheric pressure for insulator 1.

4.2. SF6 at Variable Pressure

In the case of SF6, we use Equations (41) and (42), to compute the flashover voltage and its
dependency on the gas pressure and temperature. The temperature of the discharge was taken between
2500 K and 3500 K.

A specific consideration for the resistance of the gas at the interface is required in the case of
pressurised SF6. In fact, experimental results concerning flashover of solid insulators on pressurised
gases suggest that the discharge tends to stick to the insulator surface when the gas pressure
increases [8,12]. On the other hand, according to Figures 4 and 5, the gap between the discharge’s
head and the ground electrode appears like an ionized cylinder. Knowing that the attachment of the
pressurised gas also increases with pressure, it can be deduced that the resistance of the interface
between the discharge head and the grounding electrode depends on the gas pressure as well.

Based on the data reported in the literature [25,26], the resistance of the interface can be represented
as a cylindrical plasma with a temperature between 1000 K and 1500 K. In this range of temperature,
the plasma resistivity increases with the gas pressure, as depicted in Figure 10. As can be observed in
this figure, the assumption of a plasma with a temperature varying between 1200 K and 1400 K is a
good approximation, since the resistivity is increasing with pressure for all temperatures. The dielectric
constant being equal to 1 and the effects of surface charge accumulation and humidity are not considered.

Figure 11 illustrates the comparison of the calculated flashover voltage with the data of
Slama et al. [12] for insulator 2 of Table 1. It can be observed that the calculated flashover voltages are
close to the measured values, indicating that flashover voltage tends to be stable with the pressure
increase. The maximum deviation is 8.2% and the average deviation is around 4.5%.

A comparison of the calculated flashover voltage with the data of Reference [29] obtained with
insulator 3, is depicted in Figure 12. In this work, Moukengué and Feser [29] present results of flashover
voltages as a function of gas pressure for different tests: one for a single impulse shot and the second
for five impulse shots. It is noted that the calculated flashover voltages are close to the experimental
measured values. The maximum deviation is 8.2% and the average deviation is around 6.5%.
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Figure 13 shows the comparison of the results using the developed model and the data of
Reference [15] with insulator 4. Again, it is observed that the calculated flashover voltages are close to
the experimental ones and the maximum deviation is 10% and the average deviation is less than 4%.
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5. Conclusions

In this paper, a model was developed for surface discharges and flashover voltage in air at
atmospheric pressure and compressed SF6. The proposed analytical model is based on the equivalent
electrical circuit representing the discharge along the insulator surface and the thermal properties of
the discharge by assuming that the area between the discharge head and the ground electrode as a
cylindrical plasma.

The proposed model was first applied for air at atmospheric pressure to validate it against existing
models and data. It was noticed that the simulated results are very close to the experimental ones.
Thus, the impedance of the interface between the head of the discharge and the opposite electrode
significantly affects the result. It contributes to the breakdown process before the final jump of the final
discharge that is flashover. In the case of SF6, the application of this model to various configurations
taken from the literature shows that the computed flashover voltage magnitudes are close to the
measured values and exhibit similar trends.

The proposed model constitutes a first step for developing a tool for flashover prediction in
ambient air and for the design of the solid insulation in GIS and GIL filled with SF6.
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