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Abstract: Interactions relating to human chemical signalling, although widely acknowledged, are 

relatively poorly characterised, chemically, except for human axillary odour. However, the extensive 

chemical ecology of insects, involving countless pheromone and other semiochemical identifications, 

may offer insights into overcoming problems of characterising human-derived semiochemicals more 

widely. Current techniques for acquiring insect semiochemicals are discussed, particularly in relation 

to the need for samples to relate, as closely as possible, to the ecological situation in which they are 

naturally deployed. Analysis is facilitated by chromatography coupled to electrophysiological 

preparations from the olfactory organs of insects in vivo. This is not feasible with human olfaction, but 

there are now potential approaches using molecular genetically reconstructed olfactory preparations 

already in use with insect systems.  

There are specific insights of value for characterising human semiochemicals from advanced studies 

on semiochemicals of haematophagous insects, which include those involving human hosts, in 

addition to wider studies on farm and companion animals. The characterisation of the precise 

molecular properties recognised in olfaction could lead to new advances in analogue design and a 

range of novel semiochemicals for human benefit. There are insights from successful synthetic biology 

studies on insect semiochemicals using novel biosynthetic precursors. Already, wider opportunities in 

olfaction emerging from in silico studies, involving a range of theoretical and computational 

approaches to molecular design and understanding olfactory systems at the molecular level, are 

showing promise for studying human semiochemistry. 
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1. Introduction 

Studies on insect chemical ecology receive more attention than human semiochemistry because of 

their impact as pests and also, more recently, with the growing concern for raising the value of insects 

in ecosystem services such as pollination. However, vertebrate and particularly mammal 

semiochemistry is more sophisticated in terms of the behaviours evoked, presumably on account of 

the highly evolved interactions with the central nervous system of these animals, especially true for 

human interactions. Here, some insights are offered from studies on insects that may be of value in 

chemically characterising the cues underlying olfactory communication in human beings and other 

vertebrates. The first step in characterising semiochemicals involves capturing samples for 

confirmation as being biologically active. For insects, there is usually an emphasis on such samples 

being derived directly from the insect itself and its own exocrine secretory system. Although bacteria 

living superficially on the cuticle of insects or at sites of excretion have provided some insights, for 

human studies there is more value in studying bacterial and other parasite-associated semiochemistry 

for non-invasive disease detection and relating directly to human interactions. The paper in this 

edition by Andreas Natsch and Roger Emter [1] describes the production of highly impacting human 

semiochemicals from conversion of essential precursors by human commensal bacteria. 

Semiochemicals from insects are preferably captured during a situation ecologically relevant to the 

signalling process under study, e.g. mating or host location. There is often a specific chemical 

composition of the pheromones for individual insect species, although there can be some intraspecific 

variation. However, human beings and other mammals often produce particular pheromonal 

signatures that differentiate individuals.  

For insects, we can access the olfactory signal recognition system by insertion of microelectrodes into 

the olfactory organs, i.e. antennal electrophysiology. This allows direct monitoring of 

chromatographically separated components of complex mixtures comprising semiochemicals, and 

obviates the need to identify individual components for behavioural testing by allowing early 

pinpointing of biologically active compounds.  It is also possible genetically to modify insect olfactory 

systems, for example recent advances in the neurophysiology of the fruit fly Drosophila melanogaster 

to investigate more sophisticated aspects of insect semiochemistry, in addition to chemical 

characterisation. This raises new prospects for studying human semiochemistry, with the potential for 

using overexpressed human molecular recognition genetics in non-sentient animal systems. However, 

whilst we await advances towards this approach, we can still exploit the insect system, particularly 

where insects have an evolutionary dependence on human semiochemistry, and we already have 

evidence for biting flies detecting not only human attractants, but semiochemicals that might relate 

directly to human interactions.  

The rational design of better-performing insect semiochemical analogues is more difficult than for 

drug and pesticide discovery because of the substantially more precise nature of semiochemical 

recognition, but some opportunities are now being realised by synthetic biological techniques. We 

may also have new theoretical approaches to molecular design which could be applied to human 

semiochemical development. 

2. Capturing semiochemicals from insects. 

An early dispute over the natural composition of a honeybee pheromone involved in foraging and 

swarming behaviour was resolved using samples taken directly form the site of pheromone 

generation. This was achieved by injecting, and then retracting, minute volumes of inert solvent  

(Figure 1) from the closed secretory Nasonov gland known to produce the pheromone [2]. This 

approach established that aerial oxidation did not produce artefactual components, as had been 



claimed, but that these were generated biosynthetically during release [3]. This pheromonal 

composition was then successfully mimicked in the field by a polymeric slow release formulation [4] 

and is currently a commercially valuable tool in apiculture, e.g. Swarm Commander. This approach 

may not appear to offer direct application in human semiochemical elucidation, but sampling of 

regions of human skin, and particularly organs within the epidermis, would comprise an analogous 

approach (Figure 2). For studies on human and other vertebrate pheromones, many solvents cause 

irritation whereas, for insects, there is much higher tolerance of solvent contact. Even inter-tergite 

regions of insects can accept hydrocarbon solvents without trauma. Instead of using solvents, 

polymeric absorbents, e.g. those  for reverse-phase liquid chromatography [5], can be used to extract  

 

Figure 1 The Nasonov pheromone of the honey bee is sampled by placing the tip of a blunted syringe 

needle into the closed Nasonov gland minimising aerial oxidation or other perturbation of 

composition. (Courtesy Ingrid Williams, Rothamsted Research) 

 

 

Figure 2 Sampling air from over a particular region of human skin for isolation of volatile 

semiochemicals. (Courtesy Jetske de Boer, Netherlands Institute of Technology) 

human skin volatiles directly, and then either be eluted with solvent or the volatiles desorbed by a 

flow of inert gas, for analysis. For identifying insect pheromones as they are released into the air above 

an insect, entrainment onto a porous polymer is most effective and can accurately measure the 

naturally-released pheromone composition [6]. A very simple system employs solid phase micro-



extraction (SPME) such as by a retractable absorbent polymer fibre, which is exposed to the headspace 

above the pheromone-releasing insect and combined as a syringe device for direct insertion for gas 

chromatographic (GC) analysis [7]. This approach has the disadvantage of a relatively small part of the 

headspace being sampled and the sample is directly eluted into the GC apparatus, precluding multiple 

analysis, for example, of the chemical composition and biological activity [7]. The most successful 

approach is by  the entrainment of air from above the biological sample (Figure 3)  and by drawing the 

air through a porous polymer and eluting with a purified solvent, to obtain a liquid sample for multiple 

types of analysis [6]. For long-term storage, the sample must be sealed in a glass ampoule under an 

inert gas, preferably nitrogen. Insects can be held in a glass vessel through which a stream of clean air 

is passed. If the system is not sealed prior to the airflow being analysed, a positive pressure should be 

established to ensure no contamination enters the system. This can be readily applied to the study of 

mammal semiochemicals, and has been used for studies on human beings [8, 9] and farm [10] and 

companion animals [11]. Here, polyester or other non-contaminating polymeric bags are used to 

enclose parts of the body to be sampled selectively, and regions producing extraneous volatiles to be 

excluded. Thus, volatiles from the head and thereby breath can be obviated [8] (Figure 2). Such a 

procedure led to the identification of a group of simple compounds from children, comprising short 

chain oxo-substituted alkanes (Figure 4), which in the context of other human volatile compounds 

increased attraction of mosquitoes vectoring the causative pathogens of malaria [9].  

 

Figure 3 Portable apparatus for entrainment of volatiles from over biological samples, under positive 

pressure of purified air, by absorption on porous polymer. (Courtesy Irene Castellan, Cardiff 

University) 
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Figure 4 Human volatile compounds, associated with infection by the causative pathogen of malaria 

and increased attractiveness to the mosquito vector, isolated from children by air entrainment and 

identified by GC-MS following GC-EAG studies.  

For insects, most pheromones are emitted away from waste excretory sites. However, as with human 

semiochemistry, there are exceptions. Thus, an aggregation pheromone, and faecal or detritus-related 

semiochemicals, can be entrained from air above cellulosic substrates acting as refuges for the 

common bed bug, Cimex lectularius, and show maximal aggregation activity [12]. Indeed, socks worn 

by human subjects function maximally to capture, directly, human-related semiochemicals for 

behavioural assays with haematophagous insects [13]. However, for GC-coupled electrophysiological 

and chemical analysis, entrainment onto porous polymers such Porapak Q or Tenax TA (Figure 3), from 

air having passed over the feet of individuals, is employed [9]. In more sophisticated investigations, 

for example on the subtle inherited differences of human semiochemical profiles, volatile samples are 

isolated directly by entrainment of air from over human hands [8, 14]. 

3. Capturing semiochemicals from the insect environment, including on the host 

Insects can alter their pheromone composition or response when releasing on or near their host, e.g. 

sex pheromones released when the insect is on its host and thus indicating a food supply for ensuing 

larvae, particularly by synergising the pheromone response [15, 16]. Entrainment of the 

semiochemicals via porous polymers, with desorption by inert gas stripping, can allow analysis of 

compounds normally emerging with the solvent from the chromatograph, again using positive air 

pressure in glass vessels or polyester bags surrounding the host or part of the host (Figure 3) [7]. When 

insects feed on their hosts, this can reduce attractiveness of the host to subsequent attack, particularly 

by that insect species, thus avoiding competition. For plant hosts, this has been recently reviewed [17] 

and also discussed for vertebrate hosts [18, 19], particularly in terms of the contextual relationship 

with feeding stress and non-host related repellents. The analogy with human and other vertebrate 

semiochemical studies is that we can study signalling under stress to identify semiochemical markers 

of pathogen or parasite development [9], which can be useful in early diagnosis and may, perhaps, 

offer remedies for psychological problems. 

4. Exploitation of haematophagous insects 

Insects that have vertebrate hosts, particularly for the consumption of blood, not only determine 

suitability of potential hosts by taxonomic recognition via semiochemicals but can also avoid closely 

related animals which are less suitable hosts. This involves the insect detecting the presence, or 

heightened levels, of certain compounds which, in the context of normal host semiochemicals, cause 

avoidance or even repulsion. This phenomenon is an example of contextual repellency [18, 19]. Thus, 



the tsetse flies, Glossina species, comprising the vectors of trypanosomes causing animal 

trypanosomiasis or nagana in sub-Saharan Africa, are known to avoid the non-host waterbuck, Kobus 

ellipsiprymnus defassa, although the livestock cattle hosts are in the same family (Bovidae). The  

semiochemicals identified as effecting this avoidance, i.e. pentanoic acid, 2-methoxyphenol, 6-

propyltetrahydro-2H-2-one, (E)-6,10-dimethylundeca-5,9-dien-2-one,  are used to protect cattle in the 

field against infection by trypanosomes [20]. Even within a breed of cattle [9] and within the human 

species, variation in the semiochemistry of individuals causes contextual inhibition of potential host 

characteristics [8]. This provides repellents for experimental treatments on human arms to repel 

mosquitoes, including Anopheles gambiae, the vector of the causative pathogens (Plasmodium 

species) of malaria [21], in favourable comparison with DEET, the “gold standard” of mosquito 

repellents. 

From these studies, it is evident that haematophagous insects can detect semiochemicals 

underpinning host choice relating to human physiology, in addition to the manipulation by 

Plasmodium species of human semiochemistry causing attraction of the vector An. gambiae. There is 

evidence that even changes in human physiology, e.g. throughout the menstrual cycle, can be 

detected behaviourally by the yellow fever mosquito, Aedes aegypti (JG Logan and CM Woodcock 

2000, unpublished). This means that, whilst development of non-invasive molecular tools directly for 

neurophysiological detection of human semiochemicals is awaited, live recordings comprising 

electrophysiological preparations from the antennae of haematophagous insects can be used to 

detect human semiochemicals unrelated, directly, to insect behaviour. Not only electroantennogram 

preparations of entire antennae, but also single neuron preparations, can be coupled to high 

resolution gas chromatography (GC) for human semiochemical identification studies and, as a 

technique for studying mosquito olfaction, has been available for over two decades [22].  

The close relationship between human volatile production and olfactory recognition by 

haematophagous insects suggests that human pheromones may be detected by these insects. Thus, 

insect electrophysiology could be used in the identification of human pheromone components. 

Furthermore, olfactory organs of insects, specifically the “empty” neuron of the fruit fly, Drosophila 

melanogaster, can be modified to express functional olfactory proteins heterologously from other 

insects [23] to understand the mechanism, at the molecular level, that helps to discover largely 

unrecognised olfactory proteins and receptors. More speculatively, the opportunity may eventually 

arise for expressing human olfactory receptor proteins in these electrophysiologically more compliant 

organisms for direct identification studies of human semiochemistry. The fundamental differences 

between insect and mammalian olfactory systems are well understood (see §5a) and so, for this 

speculative approach to be realised, the amino acid sequences for molecular recognition by the 

proteins involved in human olfaction would need to be genetically expressed within the functional 

background of the insect olfactory system. 

5. Rational design of better-performing semiochemical analogues 

(a) Biosynthetic approaches  

In learning from insect semiochemistry, there are well defined differences in the olfactory processes 

of insects compared with mammals. Insects have a family of odorant-gated ion channels comprising a 

highly conserved co-receptor (Orco), specifically functioning as the odorant-gated ion channel, and a 

divergent odorant receptor (OR) that confer chemical specificity and chemical signal amplification. In 

mammals, this is delivered by G-protein coupled ORs [24, 25]. Both are bathed in an aqueous lumen, 

with transport to the OR from the air mediated by odorant binding proteins (OBPs) or lipocalin-like 

proteins respectively. However, the molecular recognition systems in both, although insufficiently well 



understood for predictable design of analogues, appear to be essentially similar. The rational design 

of semiochemical analogues, i.e. synthetic chemicals with biological activities related to those of 

known insect semiochemicals but with improved properties, e.g. resistance to oxidation or 

isomerisation under sunlight, would be an obvious way forward. However, the molecular recognition 

of semiochemicals, as for all olfactory recognition systems, as well as being poorly understood is 

extremely selective because of the need to discriminate semiochemicals from the vast range of other 

volatile compounds in the environment [24].  

For drugs and pesticides, the recognition system is protected by the blood/brain barrier and other 

physiological filters, making the task of designing biologically active analogues a much a more rational 

process than for semiochemicals. However, some opportunities are now being realised for insect 

semiochemicals by a synthetic biological approach, which produces novel analogues by biosynthesis. 

In this approach, novel non-natural precursors of semiochemical ligands, from the late stages of the 

biosynthesis route, are fed to the final synthase enzymes in the biosynthesis of the semiochemical. 

This strategy has tested the hypothesis that, if the enzyme accepts the novel precursor and a 

semiochemical-like product ensues, the product will have a sufficiently similar chemical “space” to the 

natural semiochemical to show related biological activity. This hypothesis has tested true for the 

phytophagous insects, aphids, by which analogues of the natural plant stress-related sesquiterpene 

(S)-germacrene D have been generated that are highly active [26]. This work is currently being further 

developed for pest  control in a push-pull system, by which the natural repellent (S)-germacrene D 

(push), and novel analogues, e.g. (S)-15-methylgermacrene, together with a novel attractant, (S)-

14,15-dimethylgermacrene D (pull), are tested in the field. New semiochemicals have been targeted 

for related studies, for example 7-epizigiberene [27], a powerful whitefly repellent from wild tomato 

plants which is produced by a related biosynthetic pathway with similar potential late-stage 

biosynthetic precursors. This approach could be applied to human semiochemistry once new work has 

identified the specific enzymology by which some human semiochemicals are biosythesised, including 

terpenoids related to the plant semiochemical above, in which homozygous (identical) human twins 

are analysed for mosquito attraction and the correlation investigated for associated semiochemicals 

and genetics already known to exist [14]. 

(b) In silico approaches  

Currently, we do not have sufficient understanding of the interaction between olfactory ligands and 

olfactory recognition proteins for the predictable design of novel synthetic semiochemicals. However, 

for drug and pesticide design, considerable knowledge is available and the synthesis of highly active 

analogues of natural and synthetic lead structures for molecular design is routine. In this process, 

computer-based (in silico) molecular design is categorized as either ligand-based or structure-based. 

Ligand-based (in silico) strategies are used from the existing knowledge of ligand structures, which for 

this example would be known semiochemicals. This technique is particularly useful when the 

experimental three-dimensional structure of the recognition protein is not available, i.e. the situation 

with olfaction. Indeed, historically, ligand-based methods have been used in semiochemical studies 

(see §5b(i)). However, without information on a direct protein interaction, we can potentially use an 

approach called homology modeling if coordinates from a related system are available (see §5b(ii)). 

This would then make available structure-based studies for olfaction by a virtual approach. 

A major problem in earlier attempts to design novel semiochemicals in olfaction research is the 

perceived need to have relatively low molecular weights, and thereby boiling points, to provide 

sufficient volatility to reach the olfactory apparatus of insects. However, these essential 

physicochemical restrictions do allow for some higher molecular weights, provided the compounds 

are sufficiently lipophilic for a positive vapour pressure. For example, although (5R,6S)-6-acetoxy-5-



hexadecanolide contains 4 oxygen atoms with the molecular weight of 312.45 Da, it is the oviposition 

pheromone for Culex spp. Mosquitos, where the response is via olfaction.  

As described in §5a, semiochemicals are perceived by insects in association with OBPs which, when 

bound together, are recognised by ORs [24, 25]. Furthermore, when studied in vitro, OBPs are 

apparently highly promiscuous and many ORs are not apparently selective, although certain ORs do 

selectively recognise pheromones. However, when this arrangement is complete in vivo, molecular 

recognition is spectacularly selective and sensitive. Additionally, insect ORs are only active when 

forming an heteromeric complex with the co-expressed Orco (also known as “tuning” receptor 

subunits [28-31]) and OR neurons also play a mediating role in signal transduction [32, 33].This 

complex molecular recognition system poses difficulties, of course, even in ligand-based modeling.  

(i) Ligand-based approaches  

The first ligand-based studies in olfaction involved Structure Activity Relationships (SARs), i.e. the 

relationships between the chemical structure of pheromones and other semiochemicals and their 

olfactory activities in insects. For further advances, these relationships were studied quantitatively by 

measuring biological activity against different but related chemical structures, termed Quantitative 

Structure Activity Relationships (QSARs). In this, QSAR provides a mathematical model derived from a 

series of similar molecules possessing known physiological activities, correlated with their 

physicochemical properties. For insects, physiological activity can readily be derived from 

electrophysiological activity (see §4). However, for human physiological activity, this would be more 

difficult to measure unless, in the future, it proves possible to express human molecular olfactory 

recognition in insect systems as proposed speculatively earlier (see §4). For physicochemical 

properties in QSAR of semiochemicals, predicted volatility from molecular parameters [34] would 

need to be added to other components of physicochemical properties, normally used in the study of 

QSARs for drugs and pesticides [35, 36]. In practical terms, a series of semiochemicals and analogues 

possessing experimental olfactory activity is divided into training and test sets. The training set is used 

to derive a QSAR model and the test set is used to determine the quality of the model. For 

semiochemicals, the advanced QSAR modeling technique, 3D-QSAR, developed using the three-

dimensional (3D) properties of chemical structures, including molecular shape, electrostatic and 

hydrophobic properties calculated in 3D space, could be useful in developing new semiochemicals. 

For insect olfaction, SAR studies were initiated with the identification of (Z)-7-dodecenyl acetate and 

other minor components, including (Z)-5-decenyl acetate, as the sex pheromone produced by the 

female turnip moth, Agrotis segetum [37]. Synthetic analogues of (Z)-7-dodecenyl acetate led to SARs 

emphasizing the importance of the acetate group, along with strict requirements for the polar 

functional group for pheromonal activity in A. segetum [38]. The SAR study was extended to using 

(Z,E)-dienic analogues of the minor pheromonal component (Z)-5-decenyl acetate, which identified a 

new role for E double bonds in conferring pheromonal activity [39]. Varying the alkyl chain length 

among the analogues of (Z)-5-decenyl acetate led to an extended SAR, suggesting that the terminal 

alkyl chain requires a specific chain length for interaction with a hydrophobic part of the protein target 

[40]. Subsequently, the introduction of methyl groups into the carbon chain of (Z)-5-decenyl acetate 

[41] showed discrimination amongst the ensuing optical isomers [42]. This investigation provided the 

first SAR example (Figure 5) of a systematic variation in chemical structures and impact on pheromonal 

activity. Although this was an interesting initiation to the SAR study of semiochemicals, the lack of 

improved activity suggested further refinements for the approach, and so the data from 49 analogues 

were used for 3D-QSAR modeling [43]. Although this 3D-QSAR provided 3D contour maps of the 

potential binding pocket of the target protein, it again did not lead to the production of new 

semiochemicals and pointed to the need for further experiments. 



 

Figure 5 Development of analogues of the insect sex pheromone from the female moth Agrotis 

segetum for (a) minor component (Z)-5-decenyl acetate analogues ; (b) major component (Z)-7-

dodecenyl acetate analogues by varying group R1; (c) analogues introduced with one or more E double 

bonds; (d) analogues with varying carbon chain length at R2; (e) methyl analogues with increased 

branching; (f) methyl analogues with defined chirality; (g) analogues incorporating ether functionality 

at R3 or R4 and having varying alkyl chain lengths. 

Human olfaction. An early attempt to study human semiochemistry by QSAR targeted the olfactorily 

active components of ambergris. Although ambergris is a naturally produced lipoidal secretion known 

for its fixative properties in perfumery [44],  the principal component, a triterpene alcohol, ambrein, 

oxidized into a range of compounds with human odorant properties. A QSAR study on 98 of these 

compounds was made, in which physiological activities were measured using a panel of human 

volunteers trained on a series of 10 semantic odour descriptors (i.e. different types of smells including 

earthy, woody, camphor, fruity, rosy, marine, sandalwood, musky and cedarwood) [45]. This was 

correlated with a set of physicochemical properties expressing descriptors of molecular 

characteristics, including chirality and other topological elements and atomic connectivity etc., 

calculated with the help of a range of computer software tools [45]. This type of modeling could be 

used to derive synthetic ambergris and other fragrances, depending upon the availability of a wide 

range of natural analogues. 

An artificial intelligence approach has been made to correlate physicochemical parameters of human 

semiochemicals with their olfactory perception. This involved establishing a crowdsourcing non-profit 



community working through contributors across the research spectrum, including researchers from 

universities, technology companies, not-for-profit agencies, and biotechnology and pharmaceutical 

companies, entitled the DREAM Olfaction Prediction Consortium. The objective was to develop 

machine-learning algorithms that could differentiate 476 structurally diverse odorant molecules [46]. 

For this, the physiological parameters, determined according to 21 semantic odorant descriptors, 

were derived initially from the individual perceptions of a panel of 49 volunteers. An additional 19 

semantic odorant descriptors were derived by averaging the population perceptions, also from the 49 

volunteers. The artificial intelligence approach allowed a greater number of physicochemical 

properties than normally available to QSAR to be correlated with the olfactory properties of the 

odorant molecules [47]. Among the dataset from the 476 molecular structures, 338 were given to 19 

participating teams at the international level, while the omitted 69 were used in qualifying tests. Of 

the participating 19 teams, one team was found to be the most effective in developing machine-

learning in silico models, specialized in predicting individual perceptions. A second team was found to 

be most effective in developing  in silico predictive models, specialized in population perception [47, 

48]. These two separate artificial machine-learning models were then used for differentiating 

structurally diverse molecules from the 376, based on odour intensity and pleasantness, and could 

also correctly predict 8 among 19 semantic odour descriptors, specifically garlic, fish, sweet, fruit, 

burnt, spices, flower and sour.  

Future ligand-based directions. Use of simple QSAR and 3D-QSAR based approaches to semiochemical 

analogue production could be more valuable if vastly more molecular structures were analysed, also 

employing the apparent advantages of a machine-learning approach [47, 48]. Because QSAR studies 

usually do not use entirely random libraries, it is essential to include structural diversity so as not to 

miss unexpected structure-activity relationships, particularly important for semiochemical invention 

where there are structurally unrelated compounds with similar biological activity. In silico searches of 

vast theoretical libraries could provide virtual hits to be followed by synthesis, but this objective would 

not be served by use of combinatorial libraries which, by definition, lack diversity. Indeed, for 

semiochemical analogue discovery, the creation of specifically diverse semiochemical-related libraries 

would be valuable. Commercially available virtual libraries, such as Enamine-REAL [49] and ZINC [50] 

containing millions of molecular structures, could be assessed for the availability of semiochemical-

like molecules. This could be achieved by searching natural semiochemical structures, eliminating non-

volatile compounds and those likely to interact pharmacologically with the insect recognition 

processes.  

(ii) Structure-based approaches  

Many aspects of the mechanisms and physiology of olfactory systems, including the key ORs, remain 

unknown. There are nearly 400 human ORs identified but no X-ray, NMR or even Cryo-EM based 

structures have been reported [51, 52]. Since these ORs are relatively high molecular weight 

transmembrane proteins and difficult to crystalize, this limits olfactory research and the identification 

of human pheromones. A Cryo-EM structure for an insect Orco (a co-expressed co-receptor), which is 

essential for the functioning of insect ORs (see §5a) has recently been reported, but only at low 

resolution [24].  

Essentially, for advancing human olfactory research, it is important to identify the functionality and 

molecular mechanisms of G-protein coupled ORs. Therefore, in the absence of experimental structural 

data, we can use homology modeling, involving structure-based computational biology in conjunction 

with chemical biology. Homology models of ORs can be built using computational approaches in 

multiple steps, sequentially starting from protein sequence alignment search tools [53, 54], for 

identifying similar protein or protein domain structures from the protein data banks [55, 56]. The best 



matches can then be used as templates for construction of the homology model and there are well 

developed methods available for this general purpose [57, 58]. However, it is crucial to assess the 

quality of the newly constructed homology model by means of various, equally well established, 

techniques [57-59]. This homology model can be tested in silico using relevant semiochemical 

structures and further refinements made to the homology model. The model is then tested 

experimentally to access discrimination between semiochemical structures.  

The putative human odorant receptors OR5AN1 and OR1A1, for musk-related odorants used in 

perfumery, have been modeled to derive virtual 3D homology models [60]. In this process, an X-ray 

crystal structure of a specific muscarinic acetylcholine receptor was used as a template. This receptor 

comprises the closest homologue protein for which there is a high-grade crystal structure, and which 

is defined by interaction with the alkaloid muscarine. The homology models of OR5AN1 and OR1A1 

were used to identify the binding specificity of 35 musk-related odorants, including all three classes of 

aromatic nitro-, polycyclic- and macrocyclic- musk odorants. Computer-based studies of molecular 

interactions showed how these musk odorants differentially interacted with the homology models of 

OR5AN1 and OR1A1. This was experimentally confirmed using a human cell line (Hana3A) to express, 

heterologously, the OR5AN1 and OR1A1 proteins. In addition, the amino acid residues identified as 

essential for molecular recognition in the homology model were confirmed experimentally by directed 

mutation studies, Tyr260 to Phe in OR5AN1, and Tyr251 to Phe and Tyr258 to Phe in OR1A1 proteins 

[60].  

In another study, a homology model of OR7D4 was developed from the template protein structure of 

a β2-adrenergic receptor [61]. This model was then used to investigate the differential perception of 

androstenone as being either foul-smelling or pleasant. This work related to the natural mutant 

variants in the human OR, OR7D4-WM, confirming in silico that the mutations Arg88 to Typ and Thr133 

to Met should change the perception of androstenone from foul to pleasant. As with the previous 

study, the amino acids identified as crucial for olfactory discrimination were confirmed by 

experimental mutation studies, with a success rate of 75% [61]. 

6. Conclusions 

As the growing need for exploiting insect semiochemistry becomes even more apparent, there will 

perhaps be more insights gained in the quest to overcome the many challenges associated with 

further understanding human chemical signalling networks, and associated molecular modulators, at 

the physiological level. The identification of insect semiochemical structures is rendered simple, in 

principle, by use of electrophysiological preparations from the insect olfactory recognition apparatus. 

However, with the eventual possibility of transferring, by heterologous gene expression into the insect 

recording systems, crucial gene products from human and other vertebrate olfactory recognition 

systems, the analytical convenience of insect electrophysiological analysis could be made available. As 

has been done for many insects, the specific semiochemicals with which each OR interacts, at 

physiologically relevant stimulus concentrations, need to be identified to advance this aspect of 

human semiochemistry research. We have the task of exploring new opportunities beyond those from 

insect semiochemistry research and should try, as some are doing in other sections of this issue [1], 

to research ways for advancing human wellbeing with mood enhancers and better therapies.  As the 

exploitation of insect semiochemistry impacts more on food sustainability, and also on farm animal 

and human health, we can point to the social and economic value of olfaction research and 

development in this field. Although it would perhaps be specious to believe that we could manipulate 

human behaviour in quite the same dramatic and predictable way as can be achieved with insects, the 

value of insights from insect semiochemistry may provide opportunities to expand the understanding 

of human semiochemistry and help move towards innovation in human health and wellbeing. 
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