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A Review of Technologies and Design Techniques
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Abstract—This paper reviews the state-of-the-art of millimeter-
wave power amplifiers, focussing on broadband design tech-
niques. An overview of the main solid-state technologies is
provided, including Si, GaAs, GaN and other III-V materials,
and both field-effect and bipolar transistors. The most popular
broadband design techniques are introduced, before critically
comparing through the most relevant design examples found in
the scientific literature. Given the wide breadth of applications
that are foreseen to exploit the millimeter-wave (mm-wave)
spectrum, this contribution will represent a valuable guide for
designers who need a single reference before adventuring in the
challenging task of mm-wave power amplifier design.

Index Terms—Broadband, millimeter wave, power amplifiers.

I. INTRODUCTION

THE millimeter-wave (mm-wave) spectrum is attracting
a great interest for applications such as 5G and future

satellite communications that go well beyond the traditional
niche of military and scientific use in terms of investments and
potential revenues. The most attractive feature of mm-waves
compared to the RF and microwave band is the huge spectrum
availability that gives a great advantage in terms of capacity
for telecommunication systems. Other advantages of mm-wave
systems are the compact size of circuits, especially antennas,
and the intrinsic easiness of frequency reuse thanks to the
high free-space attenuations. There are also some advantages
that are band-specific; for example, the very high attenuation
in the 60 GHz band due to oxygen absorption that enables
intrinsically secure communications.

On the other hand, the very high frequency of operation
poses significant challenges to system and circuit design.
Similarly to what happens at lower frequency, one of the most
critical circuit components is the power amplifier (PA). Its

Manuscript received XX XXXX, 2019; accepted XX XXXX, 2019. Date
of publication MM DD, YYYY; date of current version MM DD, YYYY.

V. Camarchia is with the Department of Electronics and Telecommunica-
tions, Politecnico di Torino, C.so Duca degli Abruzzi, 10129 Torino, Italy.
e-mail: vittorio.camarchia@polito.it

R. Quaglia is with the Centre for High Frequency Engineering, Cardiff
University, Queen’s Buildings, The Parade, Cardiff CF24 3AA Wales, UK.
e-mail: quagliar@cardiff.ac.uk

A. Piacibello is with the Department of Electronics of the University of
Roma Tor Vergata, via del Politecnico 1, 00133 Roma Italy and the De-
partment of Electronics and Telecommunications, Politecnico di Torino, C.so
Duca degli Abruzzi, 10129 Torino, Italy. e-mail: anna.piacibello@polito.it

Duy P. Nguyen is with MACOM Technology Solutions, Santa Clara, CA,
USA e-mail: duy.nguyen@macom.com

H. Wang is with the Georgia Institute of Technology, Atlanta, GA, 30308
USA e-mail: hua.wang@ece.gatech.edu

A. V. Pham is with the Department of Electrical and Computer Engi-
neering, University of California at Davis, Davis, CA, 95616 USA e-mail:
pham@ece.ucdavis.edu

main figure of merit (FoM) is the output power that must be
reached while respecting other requirements such as linearity
and power consumption. At mm-wave, the power losses,
the sensitivity to components’ tolerance, and the physical
limitations of transistor technologies make the PA design even
more challenging than at lower frequencies.

While these challenges represent an obstacle to an im-
mediate deployment of functional and affordable mm-wave
systems, they are very welcomed by the high-frequency PA
community who has found an interesting space for the research
and development of innovative technologies and techniques
that can supplement the knowledge developed for lower fre-
quency PAs.

This paper reviews the evolution and State-of-the-Art (SoA)
of mm-wave solid-state PAs, with a particular emphasis on
broadband solutions. The term broadband is relative and
somehow subjective; this paper focusses on PA examples that
generally achieve at least a 10% fractional bandwidth.

The paper is organized as follows. Section II gives a brief
overview of the available solid state technologies for power
amplification at mm-wave frequency, while Section III summa-
rizes the most common broadband PA design techniques and
describes their advantages and limitations. Sections IV to VII
critically describe some relevant examples of PAs published
in scientific journals or conferences, each section covering a
portion of the mm-wave spectrum, according to IEEE radar
bands [1]. Finally, Section VIII concludes the paper.

II. TECHNOLOGIES

One of the most important characteristics of a transmitter
is the covered range, which depends on the product of the
antenna gain and the PA output power and translates into
circuit specifications in terms of PA performance. Although
the total transmitter power can be combined from a number
of PAs, it is still strictly related to the power density of
the transistor technology adopted in the PA. For this reason,
power density measured at the mm-wave frequency of interest
is a crucial FoM for technology comparison. The other key
characteristic of a PA is its ability to amplify, meaning that
the gain the transistors can achieve when providing the desired
output power is another crucial FoM. The gain is related to
transistor characteristics such as the cut-off frequency (fT)
and maximum oscillation frequency (fMAX). However, power
density plays again an important role, since displacement
current effects result in an equivalent capacitance that is
roughly proportional to the transistor active area. This means
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Fig. 1. Survey of published PAs from K-band to over 300 GHz, extracted
from [2]. Saturated output power versus frequency of operation for different
transistor technologies.

that for the same output power target the transistor with better
power density will have lower capacitance hence, assuming
the real part of the load is the same in both cases, it will
be easier to use in high frequency, broadband PAs with good
gain.

Power efficiency and linearity are notably linked; their
trade-off, that arises when linearity is a strict system constraint,
is difficult to optimize at transistor level, so circuit level solu-
tions must be sought. However, if considered independently,
linearity is deeply linked to the transistor characteristics such
as the transconductance profile, the presence of traps, and the
dynamic non-linearities. At the same time, the efficiency is
also deeply affected by some transistor characteristics such
as the ratio between drain bias and knee voltage. Moreover,
the adoption of circuit solutions to improve efficiency, such
as harmonic tuning, relies on the ability of the transistor to
i) generate drain current profiles with sufficient harmonic
content, i.e., that are sharp enough, meaning high speed
transistors, and ii) sustain the resulting voltage waveforms,
i.e. with sufficiently high breakdown voltage.

By keeping in mind the above considerations, the survey
result shown in Fig. 1 is not surprising. It reports the output
power versus frequency performance of an extended database
of published PAs, extracted from the survey maintained at
Georgia Tech [2]. In particular, Fig. 1 focusses on PAs in Ka-
band and above, while the original survey includes microwave
and RF bands, as well as multipliers and oscillators. The
different markers and colors refer to different technologies,
with corresponding trend lines. To be noted; the trend lines are
not regression lines, but a tentative to capture the best efforts
for each technology, not considering however the single cases
which exceed considerably the general trend.

What makes a successful technology or product is delivering
value to the end-user, and no single semiconductor technology
achieves the optimal balance in every application. III-V com-
pound semiconductor technologies (sketch of typical device
cross-sections in Fig. 2), particularly GaAs and GaN, offer
exceptional power density, gain and efficiency over a broad fre-
quency range, providing system/design engineers with a wide
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Fig. 2. Sketch of mm-wave high electron mobility transistor structures in
III-V material systems.

trade-space to achieve optimal PA performance and economic
value. In addition to their inherent performance advantages,
and driven by smartphone demand, these technologies have
achieved the economies of scale to satisfy the expected volume
requirements of emerging mm-wave applications [3], [4]. On
the other hand, silicon technologies (typical device cross-
sections in Fig. 3) can rely on great advantages in terms of
integration and they are the technology of choice for medium
and lower power levels.

A. III-V technologies

GaN devices for mm-wave are High Electron Mobility
Transistors (HEMTs) with aggressive gate scaling, ranging
from 150/100 nm in commercially available processes down
to 20 nm at research level [27], corresponding to fT between
50-70 GHz and up to 300-400 GHz, respectively. This scaling
is achieved by adopting T-gate processes, and supported by
ad-hoc design of the epitaxial layers and Schottky contacts.
Comparable performance with InP and GaAs in terms of
gain and noise figure can be observed while maintaining
high breakdown voltage, of particular interest in transceiver
integration [32], [33]. Fig. 1 shows that the trends of GaN and
GaAs converge at around 150 GHz, with the GaN trend line
dropping faster than GaAs. The main reason for this is likely
to be the higher maturity of GaAs technology that allows for
a better current density. In our opinion, GaN technology still
has margins for growth and will become the technology of
choice when raw power at mm-wave is the main target, while
HBTs scaling may make these technologies more attractive
than HEMTs beyond 100 GHz. Substrate selection is a critical
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TABLE I
PROCESS PARAMETERS OF SEVERAL TRANSISTOR TECHNOLOGIES

Technology Gate length/Emitter width fT fMAX GD/CE Breakdown Power density Ref.(nm) (GHz) (GHz) (V) (mW/mm)

GaAs pHEMT
250 45–70 90–100 18–20 700–1200 [5]
150 70–85 120 12–16 560–1000 [6]
100 130 185–200 5–9 250–850 [5]

GaAs mHEMT 125 150 250 8 30 [7]
100–30 200–515 380–1000 4–2 - [7]–[10]

InP HBT/DHBT
512–500 250–370 390–490 4–4.9 - [8], [9], [11], [12]
256–250 375–520 650–850 4 500 [6], [11], [13]

128 730 1300 3.3 - [11]

InP HEMT 100 120 500 5.5 - [14]
80 300 700 - - [10], [13]

SiGe HBT/BiCMOS 180 170–180 200–250 1.6 - [15]
130–120 200–270 260–450 1.6–3.5 - [16]–[21]

GaN/Si HEMT 100 100 180 25–50 3300–4000 [7], [22]
60 150 190 25–30 3000 [7]

GaN/SiC HEMT (power)
200 40 100 - 3400 [23]
150 35–80 120 70 3500–4000 [5], [24], [25]
100 140 - - 2000 [26]

GaN/SiC HEMT (high freq.)
150 (T2) 90 220 50 - [27]
40 (T3) 200 400 40 300 [27]
20 (T4) 330 550 17 - [27]

Si CMOS/SOI
120 196 230 - - [28]
90 243 208 2.5–3 - [29]
45 300–400 350–500 - 50 [28], [30], [31]

issue in GaN. High performance GaN devices are grown on
SiC substrate that is known for its high cost. As a consequence,
several groups have focussed on GaN on Si substrate as
viable solution for mass-market applications, and commercial
products are already available. On the other hand, Si substrates
have worse electrical and thermal performance compared to
SiC substrates, and the compromise performance versus cost
must be evaluated at system/product level. Also, the choice
between high- or low-resistivity substrates is source of debate
and research [34]. Low-voltage GaN, although still at research
level, is interesting for mobile user applications since it would
bring some of the advantages of III-V technology but at
a reduced cost compared to GaAs, mainly thanks to the
possibility of integrating on a Si substrate.

GaAs-based processes can still be considered the prime
choice in mm-wave applications when a significant amount
of power is needed. Fig. 1 shows how spread in both power
and frequency the presence of GaAs PAs in literature is, a clear
indicator of the great flexibility offered by GaAs that enables
its use in different scenarios. The two main epitaxial structures
used are pseudomorphic HEMTs (pHEMT) and metamorphic
HEMTs (mHEMT). The gate lengths vary from 150 nm for
K-bands applications, to 100 nm to cover applications up to
100 GHz for pHEMTs, while mHEMT-based PAs with the
same gate length are found up to 160 GHz [35]. mHEMTs
with gate length of 35 nm allow PA design up to 300 GHz
[36].

InP- based technology is the only one currently able to pro-
vide PAs with >20 dBm output power above 200 GHz [37]–
[41]. Bipolar transistors (Heterojunction Bipolar Transistors
(HBT), and Double-Heterojunction (DHBTs)) have been used
to design PAs up to 325 GHz, while HEMT-based PAs have
been presented up to 185 GHz, with gate length of 80 nm [13].

The DHBT 500 nm and 250 nm technology nodes provide fT
around 330 GHz and 400 GHz, respectively, the latter with
an fMAX up to 700 GHz. HEMTs with gate length of 50 nm
give fT around 600 GHz, however with similar fMAX. The
main limitation of InP is its cost, due to the difficulty in
sourcing In and because it is a very brittle material, making
its manufacturing and handling extremely perilous.

B. Si and SiGe technologies
Si-based PAs clearly struggle to achieve the same power

versus frequency performance of the III-V competition, but
they are unbeatable in terms of cost (when mass-produced) and
integrability. Also, they are competitive in terms of frequency
alone, with examples up to 230 GHz in SiGe HBT [42] and up
to 210 GHz in Si on Insulator (SOI) Complementary Metal-
Oxide-Semiconductor (CMOS) [43].

CMOS technology for mm-wave PAs relies on extreme gate
scaling, from 180 nm down to 28 nm and beyond. However,
the frequency of operation is not always the main drive for
choosing the gate length, but sometimes other considerations
such as cost and the ability to integrate with the rest of the
transceiver are guiding the selection. A clear example are
40 nm CMOS PAs and 45 nm CMOS SOI PAs that are being
developed for 5G at around 28 GHz [30], [44], where longer
gate CMOS PAs are still capable of operating, although with
lower performance [45]. The main conundrum to be solved
is related to the most evident drawback of scaling down the
technology that is the breakdown voltage reduction. Although
circuit design techniques might help mitigating this problem,
such as transistor stacking, they never come for free and lead
to increased parasitics that affect maximum frequency as well
as achievable energy efficiency and linearity.

BiCMOS technology is intrinsically an example of integra-
tion, since it combines bipolar and field-effect transistors on
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Fig. 3. Sketch of mm-wave transistor structures in Si and SiGe.

the same substrate. The technology nodes typically used at
mm-wave range from 250 nm with fT around 220 GHz [46],
down to 90 nm with fT of 300 GHz [47]. BiCMOS can be
used for analogue Intermediate Frequency (IF) and baseband
functions as well, and the CMOS part supports Digital Signal
Processing (DSP) functions.

Integration is, in the view of the authors, the main advantage
of Si technology. With up to ten metal levels, the capability
of producing very complex circuits is unrivalled. Also, the
performance of passive elements in terms of losses or quality
factor is quite competitive [47]. The cost advantage however
becomes clear only for mass produced parts, since the initial
costs are much higher than in III-V technologies.

C. The 5G array scenarios

The high capacity services of 5G will use the mm-wave
spectrum with the so called 5G New Radio (5G-NR) [48].
Fig. 4 reports the bands assigned by 3GPP (TS 38.101-2) to the
Frequency Range 2 (FR2) of the 5G-NR. Two distinct set of
bands can be observed. The first one, around 27 GHz, includes
the n257, n258 and n261 bands; therefore, a transmitter aiming
to cover this set will need to be designed over 24–30 GHz,
corresponding to a 22% fractional bandwidth. The n260 band,
around 38.5 GHz, extends from 37 to 40 GHz, requiring a
8% fractional bandwidth. The biggest change compared to
existing systems at mm-wave is however the unprecedented
requirement for very large instantaneous bandwidths. In fact,
the channel widths supported are, for FR2, up to 400 MHz per
carrier, with the option of having multiple carriers and with
practical requirements for the base-station side up to 1 GHz
being considered at the moment. This puts quite a lot of stress
on the PA design from an equalisation point of view, since
it cannot be expected from predistorters to correct excessive
amounts of in-band gain variations. However, even more im-
portant is to guarantee uniform non-linear characteristics (AM-
AM and AM-PM) on such a large bandwidth. At the same
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Fig. 4. Frequency Range 2 designation for 5G NR.

time, the baseband impedance must be controlled accurately
up to a frequency of 3-5 times the channel bandwidth to
eliminate memory effects. This means that bias networks
must be resonant free potentially up to 5 GHz, stressing the
requirements for on- and off-chip by-pass circuitry.

From a transmitter architecture point of view, base-stations
will be based on active antenna arrays with a considerable
number of elements to allow for beam-steering and/or beam-
forming. The type of array architecture will be a deciding
factor in the selection of the PA technology. In fact, if many
antenna elements will be clustered and fed by a single PA, or in
case of analog beam-forming, higher power technologies will
be preferred, and GaN could be regarded at as the winning
solution. On completely the other hand, if each single radiator
will be fed by a separate transceiver, as in digital beam-
forming arrays, then Si-based technology makes more sense.
In the short term, however, the system cost for the latter case
is still too high due to its enormous complexity in both front-
end and back-end, making this solution unpractical. Therefore,
while current real-field 5G systems employ CMOS based
active array configurations [49], hybrid beam-forming arrays
[50] are likely to become the short term solution for 5G NR,
and GaAs might actually be the winning solution for the PA
(and perhaps the TX/RX switch and LNA), with the rest of
the transceiver made on BiCMOS technologies.

III. DESIGN TECHNIQUES

High frequency PAs at these frequencies are mostly based
on reduced current conduction angle modes, typically class
AB to maintain a good compromise between linearity and
efficiency. Class C is used on its own when linearity is not
a concern, for example in radar and imaging, or in complex
architectures such as the Doherty PA [51], [52].

Reactive matching is the standard solution for presenting
the optimum load at the transistors. Due to the displacement
current, each transistor will present an output capacitance;
this leads to the inability to perfectly match it over an
arbitrary bandwidth, known as the Fano limit [53]. At mm-
wave, wideband reactive matching is suitable for medium
bandwidth with the benefit of easy design and well predictable
performance. The practical limit is the number of matching
sections that can be used due to the impact of their losses,
leading to a compromise between matching accuracy and
insertion loss. To partially alleviate this, the matching network
design can be based on the continuous PA modes theory [54].
Although developed as a general concept and demonstrated



5

at RF and microwave frequencies [55], [56], it has already
found application at mm-wave frequencies, as for example in
[57], [58]. While for an application of textbook continuous
mode theory the harmonics must be controlled precisely, the
practical advantage that they bring is the understanding that
matching requirements can be relaxed by accepting a slight
and controlled reduction of performance [59]. One drawback
of continuous modes, and of most of harmonic manipulation
techniques, is that they require the active devices to sustain
voltage waveforms with high peaks. While this might be
acceptable in technologies like GaN where the breakdown is
much larger than twice the bias voltage, it might represent
a limitation for low voltage technologies where bias voltage
reduction will lead to lower output power density.

Independently of the technology adopted, single transistors
are mostly unable to provide the required level of output
power, therefore some form of power combining is necessary.
Multi-finger transistors are the obvious first step. GaN technol-
ogy has the potential to provide Watt-level output power with
a single multi-finger transistor cell. There is a limit, however
on the number of fingers that can be fed by a single gate
access, due to the need of keeping parasitics under control,
especially due to phasing and long source connections. Corpo-
rate combiners are the most common in III-V technology [35],
[41], [60] but used also in Silicon [61], and they are a form
of parallel (or current) combining. Based on fork combiners,
normally in a binary arrangement, they provide both power
combining and matching functions. A common way of design-
ing these even-mode combiners is to start from a multi-stage
ladder matching network that matches an equivalent device
(N × 1) which represents the total periphery, as if the N
individual devices to be combined were in parallel, and then
split the components in symmetric arrangements to achieve the
desired combiner (see Fig. 5(a)–(c)). To combine N identical
devices having optimum load resistance ROPT and equivalent
output capacitance COUT, the equivalent N×1 device with the
total periphery will have optimum load resistance ROPT/N
and equivalent output capacitance N ×COUT. This approach
does not affect bandwidth, at least in principle, but it requires
optimisation when real component will be placed in. A semi-
lumped implementation is often preferred in MMICs, where
the series inductors are replaced by equivalent distributed
elements (TLs in Fig. 5(d)). This, however, has an impact
on bandwidth, and requires a re-tuning of the values since
the transmission lines will also absorb some capacitance. The
main drawback of this solution is the extensive use of shunt
capacitors whose accuracy and repeatability becomes a key
requirement for the MMIC process. Off-chip power combining
is also possible, and gives great flexibility. Bulk waveguide
combiners are the most common choice, but sometimes off-
chip combination on a substrate is also used (mainly to save
area on precious MMIC substrates). An example using both
waveguide and microstrip combiners can be seen in [62] for a
V-band PA module. This solution is very interesting at higher
mm-wave bands, where the dimensions of the air combiners
is very small.

An interesting alternative for broadband design is the use
of balanced PAs. While at microwave frequencies the use of
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Fig. 5. Simplified diagrams showing the design procedure of even-mode
corporate combiners for the case N = 4, where the individual device has
optimum load resistance ROPT and equivalent output capacitance COUT.

Lange couplers is sometimes seen as a problem due to their
size and aspect ratio, at mm-wave they are very small and
they provide a much better design environment than corporate
combiners. There is a technology challenge, however; wafers
for mm-wave applications above Ka-band are usually thinned
to 50µm, meaning that width and spacing of Lange fingers
must be brought down to a challenging 4µm to achieve the
right ratio between odd- and even-mode impedance in broad-
band design. Alternatives exist, and broadside coupling can be
adopted instead of edge coupling to obtain 3 dB couplers; in
III-V technology this might require to use soft dielectric layers
to build the spacer between the coupled lines [36]. Normally,
a combination between even mode combining and balanced
structures is adopted, as depicted in Fig. 6. An advantage of
this configuration if compared with the corporate combiner of
Fig. 6 is the reduced impedance transformation ratio required,
with possible improvement of bandwidth. This is true if the
Fano limit is not being approached. The Fano limit depends
solely on the Q−factor of the load to be matched that is almost
independent on periphery, since the resistive part decreases,
but the capacitive part increases, with increasing device size.
The other advantages are related to the use of balanced
structures in general, such as the inherent isolation between
stages and the possibility of achieving simultaneous flat gain
and good matching over a wide bandwidth. On the other
hand, couplers generally introduce more loss than corporate
combiners, and normally complicate the routing of the bias
voltage since they naturally block DC between the stages.
Push-pull is a differential power combining technique that
ideally combines two class-B PAs to reconstruct a full-wave
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Fig. 6. Simplified diagrams showing the combination between corporate and
balanced combining.

at the output, therefore eliminating the need of even harmonic
resonators and improving the bandwidth. Since most systems
require a single-ended output, the output signal is obtained
through a balun transformer. This normally brings other ad-
vantages since it theoretically provides a 25 Ω impedance at the
amplifier ports, favouring the impedance ratio for matching.
In reality, due to the limited coupling coefficient and self-
loading, a 25 Ω impedance can be achieved but is not readily
present. Numerous push-pull PA examples are found at mm-
wave frequencies, in particular in GaAs [63], [64] and CMOS
[65], [66]. On the other hand, power combining through
transformers is a common feature in CMOS and BiCMOS
design [67]–[69] thanks to the exploitation of the many metal
layers available to realize 3D broadside transformers whose
parasitics effects are reduced compared to planar transformers.
Series combination through transformers is used also in III-V
PAs [70].

The main limitation with parallel combining in low-voltage
technologies is that optimum impedance decreases almost
linearly with the increasing number of transistors, affecting the
achievable bandwidth due to a larger impedance ratio to match.
An intuitive strategy to reduce the impedance ratio is transistor
stacking that ideally corresponds to voltage combining. In
particular, the transistors are stacked, starting from a bottom
stage with grounded source/emitter, and connecting on top
a number of transistors. Parallel and stacking configurations
are compared to a single stage configuration in the simpli-
fied schematics of Fig. 7. It can be noted how the idealised
matching network connected at the output scales differently in
the two cases, with the advantage of lowered impedance ratio
and capacitance compared to the parallel combining case. This
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Fig. 7. Simplified diagrams for (a) single-stage, (b) parallel combining and
(c) stacking showing the effect on an idealised output matching.
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Fig. 8. Simplified diagrams for different distributed amplifier solutions.

technique is almost a standard in CMOS [71] and BiCMOS
PAs (with better stacking possible in SOI technologies), but it
is used for GaAs as well [72], [73]. GaN stacking might be
employed effectively for short gate transistors. For example,
for 100 nm HEMTs, that work at around 15 V bias, stacking
might become useful to reach an output power higher than
10 W.

Distributed amplifiers allow to achieve very broadband
design by exploiting a very simple but powerful concept. When
considering a capacitively-loaded transmission line, the band-
width on which the structure behaves like a normal transmis-
sion line can be enhanced by increasing the number of loaded
sections per unit length. The distributed amplifier uses this
concept by loading two transmission lines, at input and output,
with the transistors’ gate and drain capacitances, respectively.
By equalizing the delay at input and output between each
transistor, the distributed amplifier can achieve amplification
on a very broad frequency band. As a consequence, they are
the topology of choice for applications such as radar coun-
termeasures and optoelectronic modulator drivers. Schematic
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diagrams of three different distributed amplifier configurations
are shown in Fig. 8. The uniform distributed amplifier provides
good bandwidth but generally does not show good efficiency
and does not maximises the output power. The reason is that
the devices are not seeing a uniform voltage swing along the
structure, since the voltage builds-up along the output line-
up, with the one further away from the load having the lower
voltage swing and therefore lower output power and efficiency.
The non-uniform distributed power amplifier (NDPA), on the
other hand, uses pieces of transmission line with different
impedance (decreasing towards the load) to achieve a more
uniform voltage swing along the structure and therefore a
better output power and efficiency for all devices. Also, it is
very common to substitute the transistors with Cascode cells
in order to decrease the input capacitance of each amplifying
unit, thus increasing gain and bandwidth of the distributed
amplifier. Examples of distributed amplifiers can be found both
in III-V [9], [74]–[78] and Silicon-based PAs [79]–[82].

The NDPA [83], [84] was initially proposed in the 1980s
adopting GaAs devices. However, the low output power (typi-
cally lower than 30 dBm) limited its application and favoured
reactively matched topologies. The advent of GaN MMICs
increased the achievable output power on one side, but limited
the bandwidth achievable by reactive matching due to the
high-Q terminations required. This paved the way for the re-
discovery of the NDPA topology for wideband GaN PAs.

There are also variants to the traditional distributed ampli-
fier, for example the constructive wave amplifier, where drain
and gate are loading the same transmission line [85].

IV. K-BANDS (18–40 GHZ)

The low portion of the mm-wave spectrum (more properly
cm-wave/mm-wave) is covered by the K-bands (K-band 18–
26.5 GHz and Ka-band 26.5-40 GHz). In the past, these bands
were exploited mainly for radar and backhaul applications,
while more recently they have become attractive also for
other strategic applications relevant to a large number of
emerging mass-markets like satellite communications and,
most importantly, 5G mobile communication.

Regarding 5G, the bands around 28 and 39 GHz have been
identified (see e.g. the 3rd Generation Partnership Project
(3GPP), released December 15, 2017 [86] and following) as
the best candidates for the initial fixed deployment (commer-
cial deployments expected to start in 2020).

Normally, conservative design approaches are used at these
frequencies, resulting in mm-wave PAs with poor efficiency.
The reason is that low-frequency well-established design and
characterisation techniques, such as harmonic load-pull and
waveform engineering, are still being explored at mm-wave.
In terms of signal bandwidth, the present trend is toward
bandwidths from 800 MHz to more than 1 GHz. This opens up
the potential to utilize the same portion of the spectrum, and
therefore the same equipment, not only for mobile broadband
access, but also for backhaul, to simplify small cells deploy-
ment. On the other hand, the power consumption of individual
wireless devices and back/base stations in 5G networks must
be minimised to cope with the billions of connected devices

TABLE II
PA SATURATED OUTPUT POWER REQUIREMENTS FOR COMMERCIAL

APPLICATIONS IN K- AND KA-BANDS.

Application Freq. Power Technology/ies Ref.(GHz) (dBm)

Backhaul 18–26 23–36 GaAs [88]26–38 20–33 GaAs, GaN

5G NR

24.25–27.50 10–20 CMOS, SiGe,
[86]26.50–29.5

27.50–28.35 30–40 GaAs, GaN37.00–40.00

Radar 24.05–24.25 10–20 CMOS, SiGe [1]33.4–36

Satellite 17.3–22.0 37–50 GaAs, GaN [89]27.5–31

and enable a reduction in energy usage over existing 4G
networks [87].

The applications identified differ mainly in terms of power
requirements, driving the choice of the adopted technology
and the complexity of the PA architecture. They span from
around 10–20 dBm for radars up to 37–50 dBm required by
satellite applications. For 5G and backhaul, the power levels
are still partially under definition, but two sub-ranges can
be identified, depending on the transmitter architecture in
terms of the analog or digital beam-forming scenarios. Table II
reports, for the identified applications, the technologies that
can achieve the required power at MMIC level, without the
need of off-chip combiners.

A. Standard PAs

In 1986, Kim et al. presented the first millimeter-wave
MMIC PAs at 44 GHz: a single stage amplifier with 10 dB gain
and a parallel-combined topology with over 17 dBm saturated
power and a power density of 23 dBm/mm adopting 300 nm
GaAs FETs [90].

The first examples of K-bands MMIC PAs appeared around
the early 90s do not target a specific application, but are
suitable for radar, communications, smart munitions or local
multipoint distribution services (LMDS). The technology node
of choice in the first decade was 150 nm GaAs, which enabled
to achieve from 18 dBm up to roughly 38 dBm above 30 GHz.
The architectures of these examples are based on combined
or balanced devices, mostly adopting two stages to increase
gain. In [91], a complete on-chip transceiver working up to
40 GHz developed by TRW Inc. is reported. The PA achieves
18 dBm output power with 12 dB gain from 37 to 40 GHz.
Fig. 9 reports, still by TRW Inc., a power module combining
two GaAs MMIC power amplifiers (two stages) and a driver
(two stages) to achieve the record output power of 37.7 dBm at
34.5 GHz, with a corresponding efficiency of 24% and a small-
signal gain of 22 dB [92]. The technology was not mature
enough to realize a single chip, mainly due to the losses of
the combining and matching networks, which were realised
off-chip as highlighted in Fig. 9.

Full on-chip power combining in GaAs is achieved in [93],
[94]. Both PAs, developed by TRW Inc., adopt the same two-
stage architecture reported in Fig. 10, where both driver and
power stages are balanced amplifiers. To achieve the required
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Fig. 9. 34.5 GHz 150 nm GaAs power module combining two MMIC PAs
and a driver [92] c©IEEE 1997.

Fig. 10. 150 nm GaAs single-chip MMIC power amplifier [93] c©IEEE 1998.

power level, devices are parallel-combined both in the driver
and the power stages. In [93] the target application is LMDS,
covering the 27.5–29.5 GHz band, where the PA maintains a
saturated output power and PAE higher than 32 dBm and 32%,
respectively. The MMIC in [94] is one of the first examples
targeting ground terminal satellite applications. It achieves a
saturated output power and PAE higher than 32 dBm and 22%
over a 3 GHz bandwidth, from 29 to 32 GHz, demonstrating
the feasibility to fully cover the uplink satellite band with this
technology. This PA shows a substantial bandwidth increment
compared to [93] without compromising the performance.

Broadband PAs achieving more than 10 GHz bandwidth can
be found since 2000. Even if different design strategies are
applied, e.g. distributed in [95], three-stage PA adopting single
devices in [96] and two-stage balanced in [97], a common
feature of these examples in 250 nm GaAs is the limited output
power (below 23 dBm), possibly requiring off-chip combining
to achieve Watt-level operation. A novel strategy to achieve
broadband operation is proposed in [98], where the parasitic
drain capacitance of the active devices is absorbed into the out-
put matching/combining network, which also provides some
immunity to process variations. The single-stage PA adopting
two 150 nm GaAs pHEMTs parallel-combined with coupled
resonators demonstrates 22.5 dBm output power, 30% PAE and
10 dB gain from 17 to 35 GHz.

A lower power (17 dBm), though on a wider bandwidth
(26–40 GHz), is achieved in [17] on 130 nm SiGe BiCMOS.

Fig. 11. 100 nm GaN/Si MMIC two-stage distributed power amplifier [99]
c©IEEE 2014.

This two-stage differential PA features 10 dB gain and is
compatible with satellite and ground-based communications
and radar applications. However, its PAE is limited to 5% over
the whole bandwidth due to the adoption of a linear class of
operation (class-A). Conversely, the highest power in SiGe is
demonstrated in [15], a combined PA which can ensure around
30 dBm output power with PAE higher than 13% from 20 to
28 GHz. Even wider bandwidth (12–40 GHz) is achieved by
adopting the distributed topology in 130 nm SiGe BiCMOS
[18], which achieves 19 dBm output power while maintaining
PAE higher than 8%.

The advantages of the rising GaN technology in terms of
power density directly reflect on the performance of [99]
(Fig. 11). This two-stage distributed PA in 100 nm GaN/Si
covers the 6–37 GHz band with 10 dB gain and output power
as high as 30 dBm. Even if the technology was still novel
at the time, it achieved a PAE (7%) comparable with the
more consolidated SiGe examples. GaN MMIC PAs in K-
bands were first demonstrated in 2004 [25], where a 150 nm
GaN/SiC (fT > 80 GHz, fMAX > 120 GHz) process was
adopted to realize two similar single-stage prototypes, one
in coplanar waveguides (CPW) and one in microstrip, with
4 parallel-combined devices achieving around 32 dBm output
power with more than 15% PAE and 8 dB gain at 33 GHz.
The evolution of the GaN technology allowed, some years
later, to realise more complex structures, both in terms of
number of stages and architecture. In 2012, TriQuint presented
a 3-stage single-ended PA and its corresponding balanced
structure [100] (Fig. 12). The balanced PA maintains output
power in excess of 39 dBm, PAE higher than 23% and small-
signal gain higher than 20 dB in the range 25–30 GHz, almost
doubling the power of the single-ended PA with a limited
impact on PAE over the same bandwidth.

In 2015, Northrop Grumman achieved a significant improve-
ment in performance adopting a two-stage structure combining
16 devices in 200 nm GaN/SiC HEMT technology, as shown
in Fig. 13. The PA achieves 45 dBm between 26 and 30 GHz,
with a PAE higher than 30% and a small-signal gain around
20 dB [23]. The highest power achieved in GaN is in excess
of 46 dBm [101], with similar gain and slightly lower PAE
over the same bandwidth. In less than 10 years GaN filled the
technological gap with respect to GaAs. In fact, the highest
power achieved in K-bands by GaAs MMIC PAs is of the order
of 38 dBm at 40 GHz [102]. To reach power levels compatible
with applications currently covered by travelling wave tubes,
of the order of 45 dBm, which is feasible at MMIC level
with GaN, GaAs technology requires off-chip combination of
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Fig. 12. Single-ended (top) and balanced (bottom) 150 nm GaN/SiC MMIC
three-stage power amplifiers [100] c©IEEE 2012.

Fig. 13. 45 dBm 16-combined PA adopting 200 nm GaN/SiC HEMTs [23]
c©IEEE 2015.

several MMICs, as in [103].
For several years, since its introduction, GaN HEMTs have

been fabricated on SiC substrates. Despite their significant
cost and limited availability, SiC substrates have enabled
complete modules with superior performance with respect to
any competitors (mainly GaAs), especially for applications
where absolute performance is more important than cost,
such as military, satellite and backhaul. A recent example
of a broadband, general purpose PA is presented in [26] (see
Fig. 14). The PA shows output power in excess of 37.8 dBm,
PAE of the order of 25% and small-signal gain of 22 dB
between 26 and 35 GHz, thus covering most of the Ka-band.
Lately, especially in the framework of analog beam-forming
for 5G networks, Si substrates have been explored due to
the lower cost and easier integrability of the PA with the
digital part of the transceiver, despite having worse thermal
properties. In 2018, OMMIC presented a 3-stage combined
PA targeting 33 dBm output power and 20 dB gain at 40 GHz

adopting its 100 nm GaN/Si process [22], shown in Fig. 15.

For applications requiring power levels limited to around
20 dBm, K-bands PAs in Si technology appeared around 2005.
Before the advent of 5G, the absence of a high-volume
application limited it to few examples demonstrated mainly
at research level, with PAE mostly limited to below 20%
at saturation. Around 2015, the great interest for 5G active
antenna arrays exploiting digital beam-forming has boosted
the number of solutions proposed based on Si technology,
which is favourable in terms of integration and unit cost for
mass-applications, and compatible in terms of performance.
Stacked transistor cells have been often adopted instead of
single common-source and cascode topologies for the PA basic
cell.

In [107], the comparison of a common source and a
two-stacked PAs designed in 28 nm bulk CMOS at 28 GHz
is presented. The two-stacked PA allows for higher gain
(13.6 dB) and saturated power (19.8 dBm) in the same chip
area (0.28 mm2) as the common source stage. High linearity
is achieved using a deep class-AB bias point and appropriate
harmonic control circuit, demonstrating 25% PAE and -33 dBc
adjacent channel leakage ratio (ACLRE-UTRA) at 14.6 dBm
average output power with an LTE signal with 16-quadrature
amplitude modulation (QAM), 7.5 dB PAPR and 20 MHz
bandwidth.

The best performance in terms of saturated power (of the
order of 25–26 dBm) and bandwidth is achieved by combined
structures [108], [110]. In [108], 4 cascode cells in 90 nm
CMOS are combined with transformers as 2 differential am-
plifier cells, resulting in an extremely compact structure, with a
saturated PAE of 27% and gain of 15 dB from 22 to 30 GHz. In
[110], a stacked topology in 45 nm SOI CMOS is adopted in a
two-stage configuration for each basic cell of the 8-combined
PA. The resulting efficiency in the range 33–45 GHz is of the
order of 10%.

The inherent low efficiency of Si-based PAs has an
even higher impact when non-constant envelope modulation
schemes are adopted, like in 5G systems, where the PA is
operated most of the time around 6–9 dB of back-off. The

Fig. 14. Broadband 3-stage combined PA in 100 nm GaN/SiC [26] c©IEEE
2019.
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TABLE III
SOA K-BANDS STANDARD PAS.

Ref. Year Technology Freq. Topology N. of stages PSAT PAESAT SS Gain
(GHz) (dBm) (%) (dB)

[104] 2003 100 nm GaAs mHEMT 32 combined 2 35 40 24
[105] 2004 150 nm GaAs mHEMT 18–40 single-ended 2 9.5 - 20
[102] 2010 300 nm GaAs pHEMT 40 combined 2 37.9 17 9
[98] 2012 150 nm GaAs pHEMT 17–35 combined 1 22.5 30 10
[12] 2007 500 nm InP DHBT 38 cascode combined 2 30.6 28.6 15

[106] 2008 InP DHBT 20 combined 2 32 37.8 17
[17] 2007 130 nm SiGe BiCMOS 25–40 balanced 2 17 5 10
[15] 2016 180 nm SiGe HBT 20–28 combined 2 29.5 13 -
[18] 2018 130 nm SiGe BiCMOS 12–40 distributed 4 a 19 8 -

[99] 2014 100 nm GaN HEMT 6–37 distributed 5 b 30 7 10
[23] 2015 200 nm GaN/SiC HEMT 26–30 combined 2 45.5 32 22
[22] 2018 100 nm GaN/Si HEMT 37–43 combined 3 40 23 18
[26] 2019 100 nm GaN/SiC HEMT 26–35 combined 3 37.8 - 22

[107] 2016 28 nm bulk CMOS 28 stacked 2 19.8 43 13.6
[108] 2018 90 nm CMOS 22–30 cascode combined 1 25 27 15
[109] 2020 45 nm CMOS SOI 24–40 differential cascode 2 19 36.6 12

aDistributed amplifier with 4 cells, each consisting of a cascode structure with one additional stacked transistor.
bTwo cascaded distributed amplifiers with 5 cells each.

Fig. 15. Broadband 3-stage combined PA in 100 nm GaN/Si [22] c©IEEE
2018.

non-isolating 8-way combiner proposed in [110] attempts to
mitigate this detrimental effect thanks to the load modulation
occurring when a number of the digitally-controlled transistor
cells in the array are turned off. Despite this complex strategy,
which is limited to a static turn on/off of the power cells, the
resulting PAE at 6 dB OBO remains limited to few percents.
A major improvement in the efficiency achievable by CMOS
PAs is marked by the recent work of [109], based on a
compensated distributed-balun output network. It features a
record 19 dBm saturated output power and corresponding PAE
in excess of 36% over the range 24–40 GHz, while achieving
the highest reported modulation speed (36 Gb/s 64-QAM)
among mm-wave PAs below 50 GHz. Notably, the PAE at 6 dB
back-off is higher than 10% over the whole bandwidth.

Another recent work where good efficiency is achieved,
while targeting high linearity over a wide instantaneous band-
width, is reported in [111]. The differential 3-stage PA is
designed in a 65 nm CMOS process and targets the 26.5–
29.5 GHz 5G band. It employs a second harmonic control
circuit and a low drop-out (LDO) regulator designed to sup-

press the memory effect generated by the non-linear mixing
between the envelope and the fundamental. In CW operation,
it achieves 14 dBm saturated power with a corresponding PAE
of 20%, and a 22 dB small-signal gain. Remarkably, the third
order intermodulation products are maintained under -30 dBc
across 1 GHz bandwidth at an output power of 5 dBm.

The state of the art in terms of output power, efficiency and
bandwidth for the PAs in the various analysed technologies is
reported in Table III.

B. Doherty PAs

The Doherty PA is a well-established back-off efficiency en-
hancement technique based on the load modulation principle
[112], [113]. While it is widely and successfully applied at
communications frequencies (sub-6 GHz), its exploitation for
mm-wave bands is still at research level. This is especially
critical for CMOS, where complex power combining strate-
gies are typically required to reach the target power levels.
On the other hand, the larger power densities of compound
semiconductors technologies lead to simpler cells (no need of
stacking/combining), thus allowing to exploit more complex
topologies.

Around 2000, led by two factors, i.e. the III-V technology
improvements and the introduction of complex modulation
schemes for backhaul and satellite applications, the necessity
and possibility for the first mm-wave MMIC Doherty PAs
arose. In 1999, TriQuint [114] presented the first 17 GHz
MMIC Doherty PA adopting a 250 nm GaAs process. Two
single devices are employed as shown in Fig. 16 to provide
25 dBm output power with a PAE in excess of 40% and a
8 dB small-signal gain. In 2000, the first demonstration of a
20 GHz Doherty PA was given in [115]. It adopts a 150 nm
GaAs pHEMT process and achieves similar performance to
[114], namely 23 dBm output power, 32% PAE and 8.4 dB
small-signal gain. These first works kept at a minimum the
stage complexity, without inserting power combiners or driver
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Fig. 16. First Ku-band MMIC Doherty power amplifier in 250 nm GaAs
[114] c©IEEE 1999.

stages, leading to limited gain and output power levels. The
promising back-off efficiency, higher than 20% at 6 dB OBO in
both cases, demonstrated the feasibility of the Doherty concept
at Ku- and K-bands, at least for narrowband operation. To de-
velop these initial proofs-of-concept into amplifiers with gain
and power levels compatible with the real-field applications,
an advancement in the technology was required. At the same
time, no strong push from the market existed yet. Around ten
years later, these two conditions were verified and brought to
multi-stage wideband K-band DPAs.

GaN technology reached the required maturity to develop
wideband K-band DPAs around 2012, when TriQuint pre-
sented a 37 dBm two-stage DPA adopting 150 nm GaN/SiC
HEMTs in the 21–24 GHz band [24]. Although the tech-
nology was still under development, this prototype showed
very promising performance, achieving higher output power
compared to the more mature GaAs technology without the
need of power combining, thanks to the higher power density
of GaN as well as the better thermal management of SiC
substrates. Furthermore, from the design point of view, GaN
devices present more favourable impedance levels allowing for
simpler matching networks with lower losses and potentially
wider bandwidth [116]. As a result, this preliminary example
already showed a peak PAE higher than 42% over the whole
bandwidth and in excess of 30% at 6 dB OBO at 23 GHz.

In [117] a two-stage Doherty adopting the TriQuint 150 nm
GaAs is presented in the band 22.8-25.2 GHz for backhaul
applications. The MMIC is one of the first GaAs DPAs
in which drivers are embedded in both main and auxiliary
branches of the Doherty configuration, as shown in Fig. 18.
The paper clearly demonstrates that the position of the driver
(in front of the Doherty stage (a) or inside each branch (b))
has a significant impact on the overall PAE, as reported in
Fig. 17. In particular, a two-stage DPA in which the drivers are
embedded within the Doherty architecture (b) shows a better
PAE compared to the case where a single driver feeds the
Doherty power stage (a), regardless of the driver efficiency.
Moreover, even drivers with limited efficiency (around 20%
in this case) are able to improve the PAE compared to the
single-stage DPA, besides increasing the gain. On the other
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Fig. 17. Study of the impact of the position of the driver in a two-stage
Doherty PA from [117]. Simulated total PAE of the two-stage DPA versus
driver efficiency for different driver gains. Strategy (a): dashed lines. Strategy
(b): solid lines. Ideal DPA PAE without driver: solid horizontal line c©IEEE
2014.

side, the design of the interstage matching networks between
the drivers and the power stage is critical, especially when
wideband operation is targeted, due to their effect on the signal
de-phasing among the branches, which is a key aspect of the
DPA operation. In this work no power combining at device
level is implemented, but the device periphery of the final
stage is significant.

Another work that aims at assessing the feasibility of the
Doherty architecture in GaN towards mm-wave frequencies
was reported in 2017 [118]. Because at that time the 150 nm
GaN technology was not openly available, this work pushes
the more stable 250 nm GaN/SiC UMS process at its limits
realizing a single-stage 14–15 GHz Doherty PA for point-to-
point radio applications. The resulting gain is clearly limited,
but the efficiency is comparable to that achieved by state-of-
the-art GaAs DPAs (both in saturation and in back-off) with
an output power which is four times higher.

In the last few years, the 5G application of the 28 GHz
band has given momentum to several new DPA contributions
at research level. The two possible scenarios foreseen for 5G
active antenna arrays, introduced in Sec. II-C, will require
power levels of the order of 30–40 dBm for analog beam-
forming and 10– 20 dBm in the case of digital beam-forming
for the single PA, thus making III-V compounds and Si tech-

Fig. 18. Two-stage 150 nm GaAs Doherty PA [117] c©IEEE 2014.
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TABLE IV
SOA K-BANDS DOHERTY PAS.

Ref. Year Technology Freq. Final stage topology N. of stages PSAT PAESAT PAEOBO
a SS Gain

(GHz) (dBm) (%) (%) (dB)
[117] 2014 150 nm GaAs pHEMT 22.8–25.2 single device 2 29.9 25 14 11
[119] 2017 150 nm GaAs pHEMT 29.25–30.25 single device 2 27 35 28 10
[120] 2018 150 nm GaAs pHEMTs 29–31.8 single device 2 25.7 31 21 b 12
[121] 2018 150 nm GaAs pHEMTs 27.25–28.5 combined stacked 2 28 34 24 13
[122] 2019 150 nm GaAs pHEMTs 26.5–29.5 combined 2 25 35 25 10
[24] 2012 150 nm GaN/SiC HEMT 21–24 single device 2 37 42 - -

[123] 2019 100 nm GaN/Si HEMT 27.5–28.35 single device 2 32 25 28 10
[31] 2018 45 nm CMOS SOI 25–31 stacked 1 20 30 20 10
[30] 2019 45 nm CMOS SOI 27 cascode, mixed-signal 2 23.3 40.1 33.1 19.1
[20] 2019 130 nm SiGe BiCMOS 29–31 differential 2 16.8 20.3 13.9 15
[21] 2020 130 nm SiGe BiCMOS 24–30 differential 2 28 30 20 20

aPAE at 6 dB OBO, unless otherwise noted.
bPAE at 7 dB OBO.

Fig. 19. Two-stage Doherty in 150 nm GaAs adopting a combined final stage
[122] c©IEEE 2019.

nology, respectively, the most appropriate choice. As a result,
seed contributions in the mature and reliable GaAs technology
[119]–[122] appeared, which are two-stage Doherty MMICs
achieving output power of the order of 25 dBm and linear
gain in excess of 10 dB over bandwidths wider than 1 GHz.
The PAE achieved in saturation ranges from 30 to 35%, while
the PAE at 6 dB output back-off results clearly much higher
than the classical counterparts (20–30%, versus 10–15%),
paving the way to the exploitation of those techniques for
future commercial 5G-NR. In these works, power combining
at device level starts to appear in the power stage, either as
simple parallel combination in [122] (Fig. 19) or with the
further addition of device stacking in [121] (Fig. 20), to reach
the required total power expected from the single PA, easier
adopting GaN.

One of the first examples of GaN DPA for 5G-NR has
been recently presented in [123], and based on a GaN on
Si technology. In the band 27.5–28.35 GHz, it shows 32 dBm
output power, 25% saturated PAE and 28% back-off PAE. In
this work, the advantages of GaN in terms of power density are
not yet completely exploited due to the partial immaturity of
the technology but the back-off efficiency is already promising,
suggesting that in a short while the technology improvement
will lead to interesting results.

Fig. 20. Two-stage Doherty in 150 nm GaAs combining two 2-stacked cells
in the final stage [121] c©IEEE 2018.

During the same years, Si-based DPAs (CMOS and SiGe
BiCMOS) have become feasible for the 5G digital beam-
forming scenario [19], [20], [30], [31], which requires power
levels (10–20 dBm) low enough to be reached by low-
complexity power combining structures. Until recently, the
record bandwidth (> 5 GHz) belonged to CMOS PAs [31],
with a resulting efficiency on the average comparable or lower
than their compounds counterparts. On the other side, DPAs
have much higher back-off efficiency than the standard PAs
presented in Sec. IV-A in the same technology. Finally, a very
recent 2-stage DPA in 130 nm SiGe BiCMOS is presented
in [21], achieving 28 dBm saturated power, 30% peak PAE,
and 20% PAE at 6 dB back-off from 24 GHz to 30 GHz. This
represents the SoA output power among 28 GHz SiGe/CMOS
K-bands PAs, effectively competing with compounds DPAs in
terms of both output power and efficiency.

To complete the K-bands scenario, two other technologies
that have been exploited at the early stages are the GaAs
mHEMTs and InP-based devices. Both have been tested when
the other technologies were still unable to provide the required
power or gain, but they are now less researched.

One of the first examples of InP PA in K-band was presented
in 1994 [124], with the state-of-the-art performance of 28 dBm
output power and 31% PAE at 44.5 GHz. After the advent of
the double heterojunction structure, several examples became
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available, such as [12], [106] which achieved output power in
excess of 30 dBm with peak PAE higher than 30%. It progres-
sively disappeared after 2010, moving to higher frequencies,
mainly due to its high production costs, as shortly mentioned
in Sec. II.

GaAs mHEMTs have also been used to take advantage
of the higher gain of such technology. The first multi-watt
mHEMT PA was presented by BAE Systems in [104], which
demonstrated 35 dBm output power, 39% PAE and 24 dB
linear gain with only two stages. A very wide bandwidth PA
for radar applications is reported in [105]. It adopts a two-
stage configuration where parallel resistive feedback is used
to provide a flat gain response and to reduce the sensitivity to
process variations. It achieves 20 dB of small-signal gain and
around 10 dBm output power from 18 to 40 GHz.

The state of the art DPAs in K-bands are summarised in
Table IV.

V. V-BAND (40–75 GHZ)

The 40–75 GHz spectrum, commonly known as the “V-
band” [125], is one of the most widely exploited mm-wave
bands for high capacity mm-wave communications. Like other
mm-wave bands, V-band wireless links also require unob-
structed line-of-sight channels and exhibit considerable path
loss that demands high antenna gain for compensation. In
addition to the significant rain fade effect in V-band [126],
it is noteworthy that the atmospheric oxygen absorption peaks
at 60 GHz with a sea-level attenuation of 20 dB/km [125]. As a
result, the V-band spectrum is primarily used for high-capacity
and short-distance (less than 2 kilometres) communications.
Over the 57–71 GHz FCC unlicensed band, the WiGig or
IEEE 802.11ad standard was announced in 2009 with up-
to six contiguous 2.16 GHz-channels, targeting applications
like wireless transmission of uncompressed UHD videos with
up-to 7 Gbit/s over 10 meters [127]. Following that, IEEE
802.11ay is proposed as the next-generation 60 GHz WiFi and
the second WiGig standard. It supports a maximum bandwidth
of 8.64 GHz by carrier aggregation/bonding as well as multi-
stream MU-MIMO for up-to 100 Gb/s and 300—500 meters
of extended range for various applications, including mm-
wave backhaul, fixed wireless access for homes/businesses
[128]. In addition, the 37–50 GHz spectrum is proposed for the
next-generation communication for non-geostationary satellite
constellations.

These high-data-rate high-capacity communication appli-
cations largely drive the design of V-band power ampli-
fiers, necessitating a balanced performance of output power,
bandwidth, linearity, and energy efficiency. For compound
semiconductor PAs, GaAs is a very popular technology of
choice for V-band PAs. In the 40–50 GHz sub-band, the best
reported GaAs PA achieves a saturated power in excess of
34.5 dBm with peak PAE of around 25% and 13 dB power gain
at 45 GHz [129]. To connect power devices with large output
peripheries, [129] uses a transmission-line (T-line) based in-
phase combiner on four PA cells, as shown in Fig. 21, with
lower passive loss compared to a conventional Wilkinson
combiner. In the range 60–75 GHz, reported GaAs PAs support

Fig. 21. GaAs pHEMT PA at 44.5 GHz [129] c©IEEE 2005.

Fig. 22. InP HBT PA at 71–76 GHz [134] c©IEEE 2015.

32.5 dBm saturated power and 25 dB gain at 60 GHz [130],
and saturated power higher than 28 dBm and 26 dB power
gain from 71 to 76 GHz [131]. T-line power combiners are
extensively used in these high power PAs.

GaN has also been widely employed for V-band PAs. The
recent PA in [22] that covers the upper portion of Ka-band and
the lower portion of V-band, which has already been presented
in Sec. IV (Fig.15), shows remarkable performance. The PA
in [132] realizes 33 dBm saturated power with 24.6% peak
PAE and 12 dB power gain over the 70–86 GHz sub-band,
covering both the up-link (71–76 GHz) and down-link (81–
86 GHz) satellite communication bands.

Various InP technologies have been used for V-band
PA designs targeting medium-power but high-efficiency
applications. The PA in [124] uses InP HEMT technology
and pushes the output power to 28 dBm at 44.5 GHz with a
high PAE of 31%. At 60 GHz, an InP HEMT PA supports
23.5 dBm output with 43% PAE [133], which is also the
highest reported PAE. At 71–76 GHz, the InP HBT PA
shown in Fig. 22 realizes 26 dBm output power, 23% PAE
and 10 dB gain [134]. It combines four output PA cells,
each of which is formed by two multi-finger InP devices and
output passive network that can carry high DC biasing current.

The increasing need for medium-power PAs to address
array-based high-capacity short-range applications also stimu-
lates the research and development on silicon-based V-band
PAs. At upper V-band frequencies (60–75 GHz), advanced
silicon processes still offer adequate power gain (e.g., fMAX

of 350 GHz for Globalfoundries 45 nm CMOS SOI), while
distributed passives and antennas become commensurate with
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Fig. 23. 60 GHz PA in 45nm CMOS SOI using asymmetric coupler DAT
combining [135] c©IEEE 2019.

on-chip active circuits due to the reduced signal wavelength;
this interesting combination has open the door to a plethora
of design innovations.

Boosting the output power of silicon PAs at this frequency is
of a primary interest to ensure sufficient link budget and cov-
erage. The on-chip passive power combiner is therefore often
a key focus in V-band PA designs. The major consideration is
how to best manage the impedance transformation, passive
loss, and bandwidth of on-chip passive power combiners.
Similar to lower frequency PAs, on-chip transformers are
popular choices for medium-power applications (∼ 20 dBm)
with a compact form-factor [69]. To achieve even higher
output power, the combiner’s scalability becomes critical,
and on-chip T-line combiners are demonstrated for 60 GHz
and above [136], [137]. In particular, [136] reports a 16-
way T-line power combiner on 3-stage single-ended PA cores
in 90 nm SiGe which achieves 27.3 dBm saturated power,
22.3 dBm power at 1 dB compression and 12.4% PAE with
a 1.8 V supply. There are also explorations on the distributed
active transformer (DAT) for series power combining that is
especially useful for PAs using low-voltage silicon devices
[138], [139]. However, using transformer magnetic coupling
for DAT combiners fundamentally needs “circular-shape” out-
put arrangement and results in substantially complicated input
signal distribution, low area-efficiency, and limited scalability
on the number of combining paths. Recently, a 60 GHz PA
using an asymmetric coupler-based series power combiner is
proposed and demonstrated [135] in 45 nm CMOS SOI pro-
cess (Fig. 23). Cascading asymmetric couplers achieve DAT-
based power combining by providing equal load impedance
on identical sub-PA. The coupler structure also supports dif-
ferential PA cores with broadband capacitive neutralization for
higher PA core gain, stability, and output power. Moreover,
this architecture achieves DAT-based series power combining
with a “line-shaped” non-circular layout, and multiple coupler-
based DAT PAs can be further power combined using zero-
degree T-line combiner, essentially as hybrid series-parallel
combining, to boost the PA output power. This 60 GHz CMOS
SOI PA realizes on-chip power combining of 24 sub-PAs and

Fig. 24. 60 GHz unit-PA (left) and multi-feed radiator (right) in 45 nm CMOS
SOI for on-antenna power combing [141] c©IEEE 2017.

achieves 30.1 dBm output power, 24.7 dB power gain, and
20.8% peak PAE, as well as 12 Gb/s 64-QAM and 8 Gb/s 16-
QAM modulations with long-term reliability, leading the state
of the art of high-power V-band PAs.

Besides power combiners, there is also extensive research on
stacking Si PA devices to sustain a high supply voltage with
minimum impedance transformation for high output power.
Unlike conventional cascode PAs, stacked transistor PAs re-
quire appropriate voltage swings at the gate/base terminals of
the stacked devices to ensure reliability [71], [110], [140]. In
addition to reliability, managing the amplitude and phase of
these gate/base voltage swings is highly critical yet non-trivial
at V-band, which often limits the achievable PA efficiency
and linearity in practice. The stacked PA topology has been
explored in both SiGe and CMOS SOI technologies, with the
CMOS SOI particularly conducive to stacking more devices
due to the floating body. Moreover, stacked PAs have been
reported for both class-AB linear PAs and quasi-switching
class-E PAs for further efficiency enhancement.

Another technology direction is to improve the PA band-
width and intrinsic linearity. Such broadband linear medium-
power PAs are critical components for large-array systems
with massive spatial power combining [65], [142], [143]. Like
broadband PAs at lower frequency [53], high-order passive
networks are typically used to provide a large-signal optimum
load to the power devices over a wide frequency range [142].
For PA linearity, static biasing and dynamic biasing can be
optimized to ensure flat AM-AM linearity. In CMOS PAs,
using NMOS and PMOS to compensate for the device AM-
PM nonlinearity has been a common practice, while for multi-
stage PAs, using drivers and output stages for nonlinearity
compensation is also widely exercised [144], [145].

There are also increasing explorations of boosting the back-
off efficiency for V-band PAs. This is essential for high
capacity wireless communication that support complex and
spectrally efficient modulations with large PAPR. Reported
approaches include Doherty PAs, Outphasing PAs, and an
asymmetrical non-isolating combiner PA [143]. However, due
to the high loss in passive networks and degraded active
devices, e.g., gain, efficiency, and output impedance, most
of these V-band PAs show very limited back-off efficiency
enhancement compared to class-B PA operations and often
exhibit degraded linearity, requiring extensive digital pre-
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TABLE V
SOA V-BANDS PAS.

Ref. Year Technology Freq. Topology N. of stages PSAT PAESAT SS Gain
(GHz) (dBm) (%) (dB)

[129] 2005 150 nm GaAs pHEMT 45 4-way combined 2 34.5 25 13
[130] 2005 150 nm GaAs pHEMT 60 8-way combined 2 32.5 - 25
[131] 2015 100 nm GaAs pHEMT 71–76 8-way combined 4 28 13 26
[132] 2018 70 nm GaN HEMT 70–86 8-way combined 4 30 8 16
[124] 1994 150 nm InP HEMT 44.5 single-stage 1 28 31 7
[134] 2015 150 nm InP HEMT 71–76 4-way combined 2 26 23 10
[136] 2016 90 nm SiGe 68–91 16-way combined 3 27.3 12.4 19.3
[142] 2014 28 nm bulk CMOS LP 40–67 differential 2 13 16 13
[135] 2019 45 nm CMOS SOI 56–63 24-way combined 3 28.5 15 24
[146] 2019 45 nm CMOS SOI 60 differential Doherty 3 20.1 26 a 13

aand 16.6% PAE at 7 dB OBO.

Fig. 25. 60 GHz multi-feed radiator in 45 nm CMOS SOI for on-antenna
Doherty active load modulation and power combing [147] c©IEEE 2019.

distortion (DPD) in practice. A recent 60 GHz Doherty PA in
45 nm CMOS SOI uses on-chip coupler baluns to construct a
low-loss Doherty load modulation network [146]. It measures
20.1 dBm saturated power and 26% PAE, as well as 16.6%
PAE at 7 dB back-off with 1.45× PAE enhancement over a
class-B PA, presently leading the V-band PAs with back-off
efficiency enhancement.

Recently, there is a new trend on mm-wave frontend in-
novations that merges antennas together with frontend elec-
tronics to achieve both desired radiations and various new
“on-antenna” functionalities. For example, antennas can be
designed and driven by multiple electronics paths as “multi-
feed antennas” (Fig. 24). It is shown that multi-feed anten-
nas can achieve on-antenna power combining and inherent
impedance transformation among the feeds before using any
on-chip passive networks, which greatly improves the combin-
ing efficiency over conventional on-chip passive combiners.
A 4-feed on-chip slot antenna is demonstrated to realize
parallel power combining of total 16 sub-PAs at 60 GHz and
achieve 27.9 dBm saturated power and 23.4% PAE on a 45 nm
CMOS SOI process [141]. A near-field coupled slot antenna

array achieves power combining of 8 sub-PAs for 27.4 dBm
saturated power and 30.8% drain efficiency at 74 GHz in
a 65 nm bulk CMOS process [148]. Moreover, multi-feed
antennas serve as part of the Doherty or outphasing active load
modulation network [147], [149], [150] (Fig. 25). [147] shows
a 2-way Doherty radiator using a dual-feed on-chip loop an-
tenna at 65 GHz, achieving 19.4 dBm saturated power and PAE
of 28.3% and 20.1% at saturation and 6 dB back-off, realizing
1.46× PAE enhancement at 6 dB back-off over an ideal class-
B PA. [149] shows that two near-field coupled multi-feed slot
antennas realizes a 3-way Doherty radiator with 21.2 dBm sat-
urated power, 20.7 dBm power at 1 dB compression, and PAE
of 21.8%/20.6%/20.1%/19.3% at Psat/OP1dB/4dB-PBO/8dB-
PBO, achieving 1.42× and 2.34× PAE enhancement at 4 dB-
PBO and 8 dB-PBO over an ideal class-B PA. Both Doherty
radiators/PAs realize the best back-off efficiency enhancement
among reported V-band PAs. Moreover, compared to spatial
polar combining with a very limited field-of-view (FoV) [151],
both Doherty radiators/PAs first combine the output power
of main and auxiliary paths before radiating it out, which
supports full antenna FoV (beyond -45◦ to +45◦) with multi-
Gbit/s 64-QAM and 16-QAM modulations and no DPD.

The state of the art in terms of output power, efficiency and
bandwidth for the various technologies previously mentioned
is reported in Table V.

VI. W-BAND (75–110 GHZ)

W-band frequency spectrum (75–110 GHz) has been de-
ployed in a number of applications thanks to its low at-
mospheric attenuation and the capability of providing high
data rate throughput. In particular, the 77 GHz band is used
for automotive cruise control radars. The 94 GHz window is
widely employed in mm-wave imaging applications, including
defense, astronomy, and security systems. More importantly,
the 71–76 GHz and 81–86 GHz segments are allocated for
satellite services and long-haul transmission [152]. As the
low-frequency spectrum becomes more crowded and suffers
from orbit congestion, W-band satellite systems have recently
gained much interest from research and industry. Furthermore,
the recent 5G development has pushed the frequency of
many applications such as automotive radars, long-haul optical
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Fig. 26. Four-stage balanced GaAs MMIC amplifier (2.7 × 1.85 mm2) [154]
c©IEEE 2012.

Fig. 27. 65–125 GHz Stacked-FET GaAs MMIC PA (1.75 × 1mm2) [156]
c©IEEE 2018.

communications, and measurement instrumentations into the
W-band spectrum [153]. One of the biggest challenges in
solid-state W-band power amplifiers is the ability to provide
high power with good efficiency. The difficulty is mainly due
to the limitation of the semiconductor processes. Within the
same semiconductor technology, the breakdown voltage of the
transistors is typically reduced when the cut-off frequency fT
increases. Moreover, high passive losses at W-band signifi-
cantly degrade the amplifier efficiency. Nonetheless, in the
past decades, W-band PAs have been demonstrated in various
technologies: GaAs, GaN, InP, SiGe, and CMOS.

The very first W-band amplifiers were designed in GaAs and
InP processes around the early 90s. In 1990, Advantek intro-
duced the first single-chip GaAs amplifier operating from 85
to 95 GHz [155]. The work presented two circuits using a sub
200 nm MESFET and pHEMT devices with an fT of 100 GHz
and fMAX of 200 GHz. Although the gain was still low, and
efficiency was not reported due to measurement capability, the
works laid out a solid foundation for W-band power amplifier
design. The 0.1-µm GaAs T-gate technology, which was first
developed by TRW Inc., is the most popular GaAs technology
deployed in W-band. Using this T-gate technology, multi-stage
amplifiers have been reported. Among these, the push-pull
amplifier presented in 1995 in [63] achieved a record (at that
time) 13 dB small-signal gain and 13.3% PAE at 18.8 dBm
at 90 GHz. Most W-band power amplifiers reported in the
90s mainly focused on the 94 GHz band for military radar
applications. Other frequencies in W-band have been later
explored for automotive radar at 77 GHz [157], broadband
mm-wave imaging 72–95 GHz [158], and the far-infrared

Fig. 28. Five-stage 92–102 GHz GaAs MMIC PA (3 × 3 mm2) [161] c©IEEE
2018.

and sub-millimeter telescope [159]. In particular, the authors
in [159] demonstrate three amplifier modules that cover
three different sub-bands: 72–81, 90–101, and 100–113 GHz.
Regarding wideband applications, Fig. 26 presents a fully
integrated MMIC that covers that whole W-band from 75
to 100 GHz [154]. The single chip can provide an average
of 14.5 dBm output power across the entire bandwidth. Four
identical MMICs in Fig. 26 are then combined using a 4-way
septum power combiner to achieve up to 20 dBm output power
with an associated gain of 15 dB over 75–110 GHz. Recently,
an ultra-wideband amplifier has been presented in a 50 nm
InAlAs/InGaAs mHEMT technology developed by Fraunhofer
IAF with an fT of 375 GHz and fMAX of 670 GHz [156].
The schematic and chip photo of the 1.75 × 1 mm2 MMIC
amplifier based on stacked-FET unit cells are illustrated in
Fig. 27. The prototype achieves 22 dBm output power, 16.8 dB
small-signal gain, and a peak PAE of 10.7%. Most notably,
the bandwidth is extended beyond W-band, covering from
65 to 125 GHz. Using a 0.1-µm GaAs pHEMT process with
solder hot-via RF transition, the authors in [160] demonstrate
a 28 dBm output power and a 22 dB small-signal gain from
81–86 GHz, which is the highest output power achieved by
a single GaAs MMIC in W-band to date. Fig. 28 presents a
5-stage MMIC that exhibits a 27 dBm maximum power and
27 dB of gain from 92–102 GHz [161]. The measured 12.5%
peak PAE is the highest PAE reported above 100 GHz using
GaAs technologies.

Besides GaAs, InP HEMT and HBT processes have also
been deployed in W-band PAs since the early 90s. In 1991,
an InP MMIC presented by Device Laboratory using a 0.1-
µm T-gate InP HEMT process achieves a maximum gain of
12 dB, and the bandwidth covers from 75 to 100 GHz [163].
As compared to GaAs, InP technologies generally provide
slightly lower output power, but at higher efficiency. 20%
PAE with an associated 26.3 dBm output power recorded in
[164] is among the highest power reported to date using InP
processes at W-band. Furthermore, using a 0.1-µm HEMT
process, a finite-ground coplanar waveguide design, which



17

Fig. 29. Two-stage W-band finite-ground-coplanar-waveguide InP MMIC PA
(2.4 × 1.1 mm2) [14] c©IEEE 1999.

Fig. 30. W-band PA using a 250-nm InP DHBT (1.08 × 0.68 mm2) [162]
c©IEEE 2017.

is shown in Fig. 29, exhibits an 18.2% PAE with 18.6 dBm
output power and 14.3 dB gain at 94 GHz [14]. Recently,
double heterojunction bipolar transistor (DHBT) technology,
which has the advantage of providing better linearity and effi-
ciency over HEMT devices, has become more popular among
InP processes. Most notably, Northrop Grumman Corporation
presents an InP MMIC amplifier using an advanced 250 nm
InP DHBT [162]. As shown in Fig. 30, the work reports a
remarkable 41.7% PAE with a saturated power of 12.4 dBm
at 93 GHz, which is the highest efficiency W-band PA reported
in open literature.

Although recent development in GaAs and InP technolo-
gies provides a great enhancement in power, bandwidth, and
efficiency in W-band PAs, the maximum output power of a
single MMIC is still limit below 1W. To achieve watt level
performance at W-band, GaN MMIC is the only candidate.
High-frequency GaN on SiC processes have been developed
by HRL Lab since 2006 with the first W-band three-stage
GaN MMIC reporting 25 dBm output power with 14% PAE
at 80.5 GHz [165]. Recently, Fujitsu developed an 80 nm
GaN HEMT process that observes among the highest power
density of 3.6W/mm at W-band [166]. A 2 × 1.8 mm2

MMIC shows a measured output power of 30.6 dBm with
a small-signal gain of 18.9 dB and a peak PAE of 12.3%
at 86 GHz. One of the most advanced GaN processes is the
40 nm T-gate process developed by HRL Lab which has an
fT of 200 GHz and fMAX of 400 GHz with the breakdown
voltage up to 40 V. The fabricated prototype achieves over
20 dB gain from 79–95 GHz, an output power of 31.3 dBm at
27% PAE [27]. In addition to conventional reactive matching
amplifiers, several techniques have been introduced in GaN
MMIC PAs to extend the bandwidth. For instance, Fig. 31
shows a traveling-wave three-stage GaN amplifier presented

Fig. 31. Broadband traveling wave W-band GaN MMIC (2.75 × 5.4 mm2)
[167] c©IEEE 2015.

Fig. 32. Four-stage broadband radial stub MMIC [168] c©IEEE 2018.

by Quinstar in [167] achieves more than 33 dBm power and
at least 16 dB gain from 75 to 100 GHz. On the other hand,
in [168], a broadband radial stub is deployed in a W-band PA
using a 100 nm Fraunhofer IAF GaN HEMT process to cover
the completed W-band from 70 to 110 GHz. The MMIC in
Fig. 32 demonstrates a maximum power and gain of 28.6 dBm
and 8.6 dB, respectively. Higher output power can also be
achieved by employing off-chip waveguide combiners. For
instance, an outstanding high power 45.6 dBm GaN amplifier
module has been demonstrated from 75 to 100 GHz using
septum combiners and 12-way radial combiners [22] [169].

Despite the capability to provide high output power over
a wide frequency range, GaAs and GaN MMICs typically
consume a large amount of dc power, have large chip size,
and low level of integration. On the other hand, Silicon-
based circuits, which have been dominated in commercial
applications at RF frequencies thanks to their high level of
integration and low cost, are more suitable for applications
requiring below 20 dBm power. In particular, the 65 nm and

Fig. 33. 45 nm SOI CMOS W-band amplifier using 8-way zero-degree
combiner (0.69 × 1.41 mm2) [170] c©IEEE 2014.
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Fig. 34. 77—110 GHz power amplifier in 65 nm CMOS process (0.95 × 0.6
mm2) [171] c©IEEE 2014.

Fig. 35. 76—106 GHz power amplifier in 40 nm CMOS process (0.85 × 0.47
mm2) [175] c©IEEE 2016.

45 nm CMOS processes prove themselves to be better can-
didates for high gain and high efficiency W-band amplifiers.
In particular, the authors in [172] present a 65 nm CMOS
amplifier that exhibits a measured output power of 19.3 dBm
with a gain of 24.2 dB and peak PAE of 19.2%. To overcome
the low breakdown limitation of CMOS processes, stacked-
FET is utilized in [173] to provide 19 dBm at 90 GHz. Fig. 33
presents a 45 nm SOI CMOS W-band amplifier using an 8-way
zero-degree combiner [170]. The circuit achieves a maximum
output power of 21.1 dBm with a gain of 10 dB. However, the
peak PAE is only 5.2% due to the high losses from the power
combiner. To minimize the losses, a broadband parallel-series
power combiner is employed in a 40 nm CMOS PAs [174].
The PA biased at 0.9 V can deliver 20.9 dBm power at 22.3%
PAE, which is among the highest PAE reported to data in
W-band CMOS PAs. In terms of bandwidth, the full W-band
CMOS PA in 65 nm CMOS has been reported in [171]. The
MMIC PA shown in Fig. 34 exhibits an 18 dB small-signal
gain with the bandwidth covers from 77–110 GHz. Similarly,
40 nm CMOS PA in [175] employs transformers and capacitor
coupling as shown in Fig. 35 to achieve 18 dB gain from 76–
106 GHz. Nonetheless, the former circuit only has a peak PAE
of 4.5% while the latter shows 10% PAE. Spatially power-
combined has also been demonstrated on a 2 × 4 SOI CMOS
amplifiers array [176]. The total output power recorded is
24 dBm, which is the highest W-band output power from a
single CMOS chip reported to date.

SiGe BiCMOS technology provides a good balance solution
that can achieve higher breakdown voltage than CMOS pro-
cesses, utilize the good linearity and efficiency BJT devices
while still preserve the high level of integration and maintain
a compact chip size.

Fig. 36. 90 nm SiGe W-band amplifier using a 16-way combiner (2.7 × 2.4
mm2) [136] c©IEEE 2016.

Fig. 37. Class-E SiGe W-band amplifier with 40.4% peak PAE (0.9 × 0.49
mm2) [177] c©IEEE 2015.

A 68–91 GHz PA using an advanced 90 nm 9HP SiGe
process from Global Foundries (previously known as IBM)
has been demonstrated [136]. The prototype shown in Fig. 36
demonstrates a measured output power of 27.3 dBm with an
associated PAE of 12.4% and a small-signal gain of 19.3 dB.
The design is the highest power silicon-based W-band PA
reported to date. It uses a 16-way T-line power combiner
on 3-stage single-ended PA cores in 90 nm SiGe. To achieve
high efficiency, the class-E amplifier design is investigated
in [31]. The MMIC shown in Fig. 37 demonstrates an out-
standing 40.4% PAE at 17.7 dBm output power at 93 GHz.
Although the class-E switching technique can provide high
PAE performance, the voltage swing typically exceeds the
breakdown voltage of the transistor, posing an issue for long-
term reliability.

Besides conventional amplifiers and power combining tech-
niques, Doherty amplifiers have also been explored to improve
efficiency at back-off power. In [68], the authors present a
40 nm CMOS Doherty amplifier at 77 GHz for base-station
backhaul communications. Despite high losses of the sili-
con substrate, the circuit achieves a peak PAE of 12% at
16.2 dBm output power and a 5.7% PAE at 6-dB power
back-off. Table VI summarizes the power, gain and efficiency
performances of state-of-the-art W-band PAs using different
technologies.

VII. ABOVE 110 GHZ

In this review section, we focus on power amplifier tech-
nologies beyond 110 GHz, mostly between 110 GHz and
300 GHz. In this upper mm-wave frequency regime, the short



19

TABLE VI
SOA W-BANDS PAS.

Ref. Year Technology Freq. Topology N. of stages PSAT PAESAT SS Gain
(GHz) (dBm) (%) (dB)

[156] 2018 50 nm GaAs mHEMT 65–125 stacked 1 22 10.7 16.8
[161] 2018 100 nm GaAs pHEMT 92–102 single-ended 5 27 12.5 27
[164] 1999 150 nm InP HEMT 85–95 single-ended 2 26.3 19 12
[162] 2017 250 nm InP DHBT 93 single-ended 1 12.4 41.7 10
[27] 2014 40 nm GaN HEMT 65–110 single-ended 3 31.1 27 20

[167] 2015 100 nm GaN HEMT 75–100 travelling wave 3 34.7 12.1 16
[169] 2016 100 nm GaN HEMT 75–110 off chip 3 45.7 - 14
[172] 2012 65 nm CMOS 79 8-way combined 4 19.3 19.2 24.2
[174] 2014 40 nm CMOS 71–86 4-way combined 2 20.9 22 18.1
[136] 2016 90 nm SiGe BiCMOS 68–91 16-way combined 3 27.3 12.4 19.3
[177] 2015 130 nm SiGe BiCMOS 93 class-E 2 17.7 40.4 15

wavelength of the electromagnetic waves is attractive for
high resolution radar, imaging systems to detect concealed
weapons, synthetic aperture radar (SAR) systems to track
maneuvering targets and image scenes on the battlefield [40],
[178]. One example is the DARPA Video Synthetic Aperture
Radar operating at 235 GHz and providing real-time high
resolution video SAR imagery [179]. In March 2019, the
Federal Communication Commission (FCC) voted to open up
21.2 GHz unlicensed spectrum between 116 GHz and 246 GHz
[180]. The frequency bands above 100 GHz can potentially be
used for 6G networks and wireless applications.

In this frequency regime, scaled field-plate GaN HEMTs are
the leading technology that provides the highest power density
and breakdown voltage [33], [181].

The process parameters of the scaled GaN HEMT processes
available from HRL Lab [33] are provided in the comparison
Table I. In addition to the 40 nm gate length T3 process already
mentioned in Sec.VI, the 20 nm T4 process features fT and
fMAX of 329 GHz and 558 GHz, respectively.

More importantly, the breakdown voltage of the T4 process
is 17 V, which is more than 10 times of those of scaled GaAs,
InP, CMOS and SiGe technologies in the same frequency
range [182]. Therefore, it is expected that GaN power am-
plifiers can provide watt-level output power in the frequency
regime of 110 to 220 GHz. While GaN HEMT MMICs have
been shown to have stellar parameters that are highly favorable
for power amplifiers of greater than 30 dBm power beyond
110 GHz, only a few power amplifiers have been reported in
open literature. In 2014, the 1st G-band 180–200 GHz GaN
MMIC PA reported in [33] only achieves 14 dBm output power
with an associated 4.5 dB gain. Recently, a PA at 115 GHz has
also been reported using a 100 nm GaN HEMT process from
Fraunhofer IAF [183]. The four-stage design achieves a very
high gain of 34.8 dB and a maximum power of 20.3 dBm.

The highest output power single die GaN amplifiers that
have been reported in literature in 2018 are the 29.5 dBm
output power PA from 102 to 118 GHz, and the 27 dBm output
power one from 98 to 122 GHz [181]. The two highest output
power amplifiers, which are shown in Fig. 38, were designed
by Quinstar and fabricated by HRL Laboratories, Malibu, CA
using their 150 nm T2 GaN process on a 50µm thick SiC
substrate [33], [181]. The T2 process features a double-

Fig. 38. Five-stage amplifiers in 150 nm T2 GaN process of HRL Laborato-
ries: 27 dBm 98-122 GHz PA (top), and 29.5 dBm 102-118 GHz PA (bottom)
[181] c©IEEE 2018.

Fig. 39. SSPA module based on the combination of four GaN MMIC power
amplifiers in a hybrid assembly with H-tee waveguide combiner [181] c©IEEE
2018.

heterostructure field-effect transistor (DHFET) with a typical
Imax of 1 A/mm. The main DHFET used in the final stage
has a total gate width of 100µm consisting of four 25µm
unite fingers. The 100µm DHFET achieves a measured gain
of 8.44 dB at 87 GHz with 12 V drain voltage operation and a
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power density of 1.8 W/mm. In order to achieve 20 dB gain,
the authors have developed two five-stage power amplifiers
(Fig. 38). The second PA has twice the total gate width from
stages 3 to 5 to produce higher output power. For instance,
the final stage of the 29.5 dBm PA employs eight 100µm
transistors. Four transistors are combined using T-junctions,
and two four-transistor power cells are combined using a
Wilkinson power combiner. Inter-stage matching networks use
quarter-wave transformers separated by a series capacitor Y-
inverter. The GaN MMIC has a chip size of 3.3 × 1.94 mm2

and achieves a measured small-signal gain of 20 dB from 105
to 115 GHz. The measured output power at P5dB is around
28 to 29 dBm from 102 to 118 GHz with a PAE of 8%. The
lower power PA achieves a measured power at 6 dB back-off
of more than 25 dBm from 98 to 122 GHz. Furthermore, four
GaN MMIC PAs of around 29 dBm output power were also
used in a hybrid assembly with H-tee waveguide combiner
(Fig. 39). The size of the solid-state power amplifier (SSPA)
is 5.4 × 4.4 × 1.9 cm3. The GaN SSPA achieves a measured
output power of 34.4 dBm at 114 GHz and greater than 33 dBm
from 102 to 116 GHz. The associated measured gain is 23 dB,
and efficiency is around 6%. The measurements were done
with waveguide fixtures and included losses of the integrated
waveguide to microstrip transitions. Fig. 39 presents the SSPA
module.

Likewise, a number of papers have been reported on InP
PAs from 110 to 260 GHz. The dominant technology in this
frequency regime is the InP HBT although a few advanced
InP HEMT processes are also being used [184]. Some of the
InP HBT processes that have been used for developing power
amplifiers up to 260 GHz [11] are also summarised in Table I.
The highest fMAX of the 128 nm InP HBT is 1.3 THz with a
3.3 V breakdown voltage, and a current density of 2.3 mA/µm
emitter length.

Single chip power amplifiers from 17 dBm to 23 dBm up to
260 GHz have been widely reported in these processes [40],
[184]–[186]. In particular, a sub-50 nm InP HEMT process is
used in a 207–230 GHz MMIC that delivers a 17 dBm output
power with 11.5 dB small signal gain and an associated 2.3%
PAE [185]. On the other hand, a 22.5 dBm MMIC with 22 dB
small signal gain has also been demonstrated in [182] using
a 250 nm InP HBT process. Due to low current density and
low voltage operation, InP MMIC amplifiers employ as many
as 16 parallel HBTs in the output stage. Specifically, authors
in [40] have demonstrated a 17–24 dBm output power PA
from 180-265 GHz in a single InP chip. The PA has been
designed in a 250 nm HBT process. The common-emitter and
common base HBT‘s are used to form a cascode cell with a
total emitter periphery of 4-fingers × 6 µm (Le = 24µm)
for each device. The 3-stage amplifier is shown in Fig. 40
in which the last stage has a total of 16 parallel transistor
cells. The 2:1 and 4:1 on-chip power combiners are used in
the last stage, having insertion losses of 0.5 dB and 0.55 dB,
respectively. The amplifier has a measured gain of 30 dB at
220 GHz and maintains more than 20 dB of gain from 190
to 260 GHz. The collector voltage operation is from 1.65 V
to 2.2 V. The amplifier achieves a maximum output power
of 23.4 dBm and higher than 20 dBm from 185 to 255 GHz.

16,..tell ss PA,, Di m: 2.14-mmi x 1.51-im m 

Fig. 40. 3-stage 16-way combined PA (2.14 × 1.58 mm2 [40] c©IEEE 2017.

Fig. 41. G-Band amplifier formed by combining four deck amplifiers: block
diagram of 8-way waveguide combiner deck amplifier (top), and 32-MMIC
PA (bottom) [193] c©IEEE 2015.

The measured PAE is between 1.3% to 4.1% within the same
band. Using the same 250 nm InP HBT process, the latest D-
band MMIC demonstrates a measured gain of 29.5 dB with
an outstanding PAE of 10.5% at 140 GHz [186]. However,
the output power is still limited to 150 mW.

The InP MMICs have also been used to implement a multi-
deck PA. In particular, Fig. 41(a) shows a 8-way waveguide
combiner employed in a module that combines 8 InP MMICs
to form one amplifier deck [193]. A phase shift is incorporated
at each input of the single MMIC to adjust the phase for
maximizing the combining efficiency. Four amplifier decks are
then combined using a 4:1 WR-4 waveguide combiner/divider.
The four-deck power amplifier module (32 MMICs) shown
in Fig. 41(b) achieved 28.5 dBm saturated power at 230 GHz,
and more than 32 dB small signal gain from 200 to 260 GHz.
Amplifiers using InP HEMTs with 25 nm gate length have also
been demonstrated to have 9 B of gain at 1 THz [194].

Besides InP, GaAs mHEMT is another technology that can
provide very high frequency operation. GaAs mHEMT power
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TABLE VII
SOA PAS ABOVE 110 GHZ.

Ref. Year Technology Freq. Topology N. of stages PSAT PAESAT SS Gain
(GHz) (dBm) (%) (dB)

[181] 2018 150 nm GaN HEMT 102–118 8-way combined 5 29.5 13 20
[183] 2018 100 nm GaN HEMT 115 cascode 4 20.3 2.6 34.8
[40] 2017 250 nm InP HBT 200–255 16-way combined 3 17–24 4.1 24

[187] 2015 35 nm GaAs mHEMT 250 4-way combined 3 10 2.9 32.8
[188] 2018 35 nm GaAs mHEMT 240 3-stacked 2 10.8 5 21.5
[189] 2017 130 nm SiGe BiCMOS 160 differential 5 15.5 7.2 30
[190] 2012 65 nm CMOS 140 8-way combined 4 13.2 14.6 16
[191] 2018 40 nm CMOS 140 2-way combined 3 14.8 8.9 20.3
[192] 2018 65 nm CMOS 114–131 differential 4 14.5 10.2 22.3

amplifiers have been demonstrated up to 330 GHz. Amplifiers
using a 100 nm mHEMT process and a 50 nm mHEMT process
have been demonstrated at 186–212 GHz [195] and 210–
235 GHz [196], respectively. Both MMICs exhibits 7.5 dBm
output power with around 2.5% PAE. Operating at frequencies
higher than 200 GHz, the 35 nm mHEMT is the most up to
date technology node of which the fT and fMAX are 515 GHz
and 1000 GHz, respectively. The breakdown voltage of the
process is around 2 V with a power density of 0.6 W/mm.
Therefore, the GaAs mHEMT process is more suitable for
developing low noise amplifiers at high frequency. The authors
in [187] present a 32.8 dB gain PA at 250 GHz using the 35 nm
mHEMT GaAs process. To improve the power, triple stacked-
FET technique are used [36], [188]. The 240 GHz MMICs has
a measured power of 10.8 dBm with 21.5 dB of gain, and the
300 GHz MMICs achieves 4.5 dBm output power with 11.6 dB
of gain. Recently, a 238–292 GHz amplifier has also been
presented with 6.7 dBm power with an associated maximum
gain of 14.7 dB [197].

Silicon-based technologies have also been developed and
deployed in mm-wave frequencies above 110 GHz. While
SiGe and Si-CMOS have higher level of integration, their
power amplifiers yield much lower power as compared to GaN
MMICs. The 130 nm SiGe BiCMOS process is popular and
has been used for developing power amplifiers to 255 GHz.
For the 130 nm SiGe process, its fT and fMAX are 295 GHz
and 400 GHz, respectively. The breakdown voltages BVCEO
and BVCBO are 1.55 V and 6.0 V. A 170 GHz amplifier using
the 130 nm SiGe process has been presented with up to 32 dB
gain and 10 dBm output power [198]. To achieve high power,
4-way and 8-way on-chip power combiners are usually used
in SiGe PAs. The typical output power is in the range of 7 to
15.5 dBm at different frequency ranging from 110 to 255 GHz
[42], [189], [199], [200]. The highest output power achieved
by SiGe amplifiers is 22 dBm at around 120 GHz [201]. The
MMIC shown in Fig. 42 is fabricated in an advanced 90 nm
SiGe BiCMOS process and demonstrates up to 22 dBm power
with 7.7 dB gain and 3.6% PAE.

Si CMOS amplifiers have been demonstrated from 110 to
170 GHz. The output power is the lowest among all technolo-
gies and is in the range of 5 to 15 dBm. The most popular
technology node in this frequency regime is 65 nm [137]. The
authors in [190] presented a high efficiency D-band PA using
8-way power combiner in a 65 nm CMOS process. The 4-stage

Fig. 42. 22 dBm 120 GHz MMIC using 90 nm InP SiGe BiCMOS process
[201] c©IEEE 2018.

Fig. 43. 14.8 dBm PA in 40 nm CMOS employing 2-way transformer-based
power combining [191] c©IEEE 2018.

circuit exhibits a measured output power of 13.2 dBm with an
associated peak PAE of 14.6% at 140 GHz, which is among the
highest efficiency achieved in the similar frequency range. Up
to 22.3 dB gain and 14.5 dBm output power has been presented
in a 114–131 GHz amplifier using the same 65 nm process
[192]. Other CMOS processes such as FD SOI 28 nm and
40 nm CMOS have also been deployed in D-band PAs [191],
[202]. The highest output power CMOS PA reported to date
(shown in Fig.43) was implemented in the 40 nm process. The
design employing 2-way transformer-based power combining
technique demonstrates a maximum power of 14.8 dBm with
very high gain of 20.3 dB and peak PAE of 8.9% [191].
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The state of the art in terms of output power, efficiency and
bandwidth for the various technologies previously mentioned
is reported in Table VII.

VIII. CONCLUSION

This paper has provided an overview of the current state-
of-the-art in power amplifiers in the whole millimeter-wave
frequency range. The relevance of this topic is increasing
steadily thanks to the drive from large scale applications
such as 5G and satellite communications, providing a fertile
environment for the exploration of new technology solutions
and design techniques, as well as the adaptation of methods
successfully adopted at lower frequency by the microwave
community.
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