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Summary 
 

The number of people developing myopia and high myopia has increased in recent 

years, throughout Europe and Asia. This increased incidence is set to escalate further, 

with reports of nearly 50% of the population likely to develop myopia by 2050. Although 

investigations into what is causing this ‘myopia boom’ and its associated risk factors is 

currently ongoing, it is still not entirely clear why certain individuals are affected and not 

others. It is suspected that changes in the environment within recent years, such as a 

global push towards education, may be responsible. However there is a large body of 

evidence that demonstrates the complexity of the refractive error phenotype and 

human emmetropisation, with reports identifying more than 150 genetic loci associated 

with myopia, implying some people may have a genetic predisposition to the condition. 

The aim of this thesis was to investigate whether inspecting genetic predisposition to 

myopia would allow us to detect individuals at risk, and determine whether a genetic 

model to predict children at risk was feasible. This may then help identify individuals 

who would benefit more from early intervention, or more regular monitoring.  

Initially, 149 genetic variants that reached genome-wide statistical significance in a 

GWAS for refractive error carried out by the CREAM consortium were used to create a 

‘genetic risk score’ to assess the accuracy with which incident myopia could be predicted 

in children from the ALSPAC cohort. Analyses were also carried out for another 

predictor, namely the children’s number of myopic parents. The results suggested that 

the number of myopic parents was a better predictor of refractive error and incident 

myopia than the genetic risk score (R2 = 4.8% vs. 2.6%). This was likely due to several 

limitations in the genetic risk score. Notably, the results also demonstrated that these 

two predictors were largely independent, hence prediction accuracy improved when 

they were used together (R2 = 7.0%).  

To try and increase the accuracy of genetic prediction, I took advantage of the recently 

released genetic data from the UK Biobank cohort, for which a proportion (23%) of 

individuals also had ocular measurements taken. A genome wide association study 

(GWAS) was performed for autorefraction-measured refractive error in European 

individuals with both genetic and refractive data (N = 95,505), which replicated many 

loci previously shown to be associated with refractive error. A regression model to 
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impute refractive error in UK Biobank participants who did not undergo autorefraction 

measurement was also created (to improve the accuracy of the existing genetic risk 

score by means of running an additional GWAS analysis, thus expanding the effective 

sample size used in the creation of the genetic risk score). A multi-variable model was 

developed using age of onset of first spectacle wear, age and gender; the model fit was 

optimised objectively. The resultant model yielded an imputed refractive error that was 

moderately explanative (R2 = 0.30) for the variance of ‘true’ (autorefraction-measured) 

refractive error, as judged in an independent sample. A GWAS for imputed refractive 

error was carried out in 287,448 European UK Biobank participants who were not 

amongst the 95,505 individuals included in the original GWAS for autorefraction-

measured refractive error. The genetic correlation between the 2 traits (imputed 

refractive error vs. autorefraction-measured refractive error) was rg = 0.92, which 

confirmed that the imputed refractive error phenotype was a good surrogate for the 

true phenotype. 

Summary statistics from the 2 GWAS analyses described above were combined, along 

with GWAS summary statistics for educational attainment taken from a published study 

(www.SSGAC.org). Meta-analysis was performed using ‘multi-trait analysis of genome-

wide association summary statistics’ (MTAG). The accuracy of the genetic risk scores in 

predicting refractive error was assessed in an independent sample of European adults 

(the ALSPAC mothers cohort). The best prediction accuracy was achieved by combining 

summary statistics for all 3 traits (autorefraction-measured refractive error, imputed 

refractive error, and educational attainment). The resultant genetic risk score explained 

11.2% of the variance of refractive error, and demonstrated an area under the receiver 

operating characteristics curve (AUROC) of 0.67 and 0.75 for predicting any (≤-0.75D) 

and moderate (≤-3.00D) myopia, respectively. Participants from the ALSPAC mothers 

cohort in the top 10th percentile of the genetic risk score were found to be at 6-fold 

greater risk of developing high myopia (≤-5.00D) compared to the remainder of the 

sample. The accuracy of the genetic risk score was also tested in individuals of Asian, 

Chinese, and Black ancestry. Prediction accuracy was reduced by approximately 50% in 

Asian and Chinese individuals. Prediction accuracy was worse still in those of Black 

ethnicity.  
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1 General Introduction and Literature Review 

 

1.1 Outline 

This thesis aims to investigate the ability to genetically predict refractive error and 

myopia development, taking advantage of the recently released data for the UK Biobank 

cohort of over 500,000 individuals. This chapter will define the common terminology 

used within this thesis, and give an overview on the relevant literature, including the 

genetics of myopia and its prediction using genetic information.  

Initially, descriptions of how refractive errors are classified will be given, followed by a 

brief overview of the prevalence of myopia (both current and projected), and a 

discussion of the most strongly implicated risk factors. After this, descriptions of genetic 

terminology and explanations of common principles in quantitative genetics that are 

relevant to this project will be outlined. Finally, a general overview of the myopia 

genetics literature will be presented, including the context of where the analyses in this 

thesis fit into the wider context of the management of patients with myopia.  

1.2 Introduction to Refractive Error  

 Classification of Refractive Errors  

1.2.1.1 Myopia 

Myopia is defined as a form of refractive error (or ametropia) where the axial length of 

the eye is too long for the refractive power of its ocular components, causing light to 

focus in front of the retina i.e. the eye’s corresponding focal length is shorter than the 

axial length (Millodot 2014). Thus, if this refractive error is left uncorrected, it results in 

blurry vision for the individual at far distances. Although this discrepancy between focal 

length and axial length can be caused by a disproportionately high power of the cornea 

or lens, most non-syndromic myopia is caused by excessive axial elongation of the eye 

(Grosvenor and Scott 1993; Morgan et al. 2012).  

The refractive error threshold accepted to be the lower boundary for myopia 

categorisation has been widely debated (BHVI and WHO 2016). Some researchers have 

selected a threshold of ≤-0.50D (Rosenfield and Gilmartin 1998; Czepita et al. 2019; 
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Ueda et al. 2019), whereas others have classified myopia as a refraction of ≤-1.00D 

(Guggenheim et al. 2012; Cumberland et al. 2016). This is usually due to methodology, 

with studies involving self-reported information or younger participants with refractive 

error measured using non-cycloplegic autorefraction setting more stringent myopic 

thresholds in order to reduce misclassification. However, a recent meta-analysis 

indicated the most commonly used threshold is ≤-0.50D, and recommended that this 

threshold be applied for all future studies if there is no plausible risk of bias, such as 

those described above (Flitcroft et al. 2019).  

1.2.1.2 High Myopia  

High myopia is a subcategory of myopia, for which, again, there is no consensus 

regarding the threshold used for classification (BHVI and WHO 2016). A meta-analysis 

indicated that a threshold of ≤-6.00D or <-6.00D is most commonly used for defining 

high myopia, with 61% of reports using either of these thresholds (Flitcroft et al. 2019). 

Accordingly, ≤-6.00D has been proposed as the preferred refractive threshold by the 

International Myopia Institute (Flitcroft et al. 2019) with the recommendation that this 

level continue to be used for consistency, but that a threshold of ≤-5.00D may still be 

useful in certain circumstances. The ≤-5.00D threshold has also been recommended by 

other authors for its clinical relevance, as the unaided vision would typically be <3/60, 

matching the diagnostic threshold for blindness or severe sight impairment. The latter 

threshold was recommended by the World Health Organisation (BHVI and WHO 2016), 

suggesting the use of either threshold could be justified. 

High myopia is sometimes due to monogenic (see Section 1.3.2) or syndromic 

conditions, for which a single faulty gene can cause early onset high myopia (Morgan et 

al. 2012). There are 261 syndromes listed in the Online Mendelian Inheritance in Man 

(OMIM) database for which myopia is a feature, however this form of myopia is usually 

much less common than other multi-factorial causes of myopia. 

1.2.1.3 Hypermetropia/Hyperopia  

Hypermetropia (or hyperopia) is the opposite state of myopia, in which the refractive 

power and corresponding focal length of the eye is longer than the axial length 

(Veerappan et al. 2009). Usually infants are born hyperopic, after which their ocular 

components begin to change to adapt to visual stimuli to correct any innate ametropia 
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(Flitcroft 2014). This process, termed emmetropisation, involves both a passive and 

active component (Mutti et al. 2005). The passive component involves an increase in 

eye size – specifically, a coordinated increase in axial length and flattening of corneal 

curvature – which is largely under genetic control (Wallman 1993). The active 

component involves a visually guided feedback mechanism in which the rate of axial 

elongation is fine-tuned to the clarity of the retinal image (Wallman 1993). Despite 

intense research, the mechanism by which active emmetropisation detects of the ‘sign-

of-defocus’ (i.e. whether the visual image is focussed in front of the retina or behind the 

retina in an unaccommodating eye) is unclear. However, evidence that longitudinal 

chromatic aberration provides information on the sign of defocus has been obtained in 

a range of animal models (Rucker 2019).  

As hyperopia does not carry the same associated comorbidities and secondary disease 

risks as myopia, it has not been as thoroughly investigated. However similarly to myopia, 

the threshold for defining hyperopia has varied from study to study, with no general 

consensus. Threshold levels of +0.50D (Yuan et al. 2015) and +1.00D (Cumberland et al. 

2016) are common. 

 Secondary Conditions Associated with Myopia 

Having myopia usually means that throughout their lifetime, an individual will require 

ocular correction to view objects at a distance. In countries with limited healthcare 

resources this can lead to a significant proportion of the population suffering from visual 

blur that would be classified as correctable visual impairment or blindness (Flaxman et 

al. 2017). Overall, uncorrected refractive error (with myopia being the greatest 

contributor) is the leading cause of moderate or severe visual impairment worldwide, 

and the second most frequent cause of blindness after cataract.  

However, this is not the only or greatest concern regarding myopia. As myopia is 

primarily due to an increase in axial length, which is accompanied by stretching and 

thinning of the retina, choroid and sclera, individuals with myopia have an increased risk 

of many co-morbidities including primary open angle glaucoma (POAG), maculopathy, 

and retinal detachment (Marcus et al. 2011; Flitcroft 2012; BHVI and WHO 2016).  

The risk of developing any of the above co-morbidities is greater in those with high 

myopia (Wong et al. 2014), however this is not to say that lower levels of myopia are 
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insignificant. Flitcroft (2012) reported that any level of myopia increases the risk of 

myopic maculopathy, posterior subcapsular cataract, POAG, and retinal detachment by 

2-fold compared to someone without myopia. Another study argued that reducing 

myopia progression by 1.00D during childhood should reduce the incidence of myopic 

maculopathy by 40% (Bullimore and Brennan 2019).  

In summary, uncorrected refractive error, particularly uncorrected myopia, is one of the 

most common causes of correctable visual impairment worldwide currently, and 

increases the risk of many serious secondary eye diseases that could cause loss of vision 

and leads to an increased burden for healthcare providers.  

 Prevalence of Refractive Error and Myopia 

Estimates of the prevalence of myopia demonstrate high variability depending on the 

population studied, method of refractive measure performed (i.e. with or without the 

use of cycloplegia) and their ethnicity, and age. Most myopia prevalence studies have 

focussed on European and Asian populations. Moreover, these studies have used 

different thresholds for categorising myopia and high myopia, leading to difficulty in 

comparing between studies. In the section below describing current prevalence 

estimates, any study which used a cycloplegic has been specified, with the majority of 

prevalence studies not having used this. 

1.2.3.1 Current Prevalence of Myopia 

A meta-analysis of 62,000 European adults (98% with white European ancestry over the 

age of 25 years) estimated that 31% of the population were myopic, with just under 3% 

of the population having a refractive error ≤-6.00D (Williams et al. 2015b). A study in 

2009 reported an overall prevalence of myopia within the white American population in 

1999-2004 of 43% (Vitale et al. 2009). More locally, prevalence rates within the UK adult 

population also appear similar to that of the European sample with a UK twin-based 

cohort demonstrating 34% and 32% of the adults aged 50-54 and 55-59, respectively 

being myopic with a threshold of ≤-0.75D (Williams et al. 2013).  

The prevalence of myopia (≤-0.50D; cycloplegic autorefraction) in UK children between 

the ages of 6 and 7 years old is between 2.8-5.7%, and increases to approximately 17.7-

18.6% in 12-13 year-olds (O'Donoghue et al. 2010; Logan et al. 2011). As these children 

are still adolescents, it is likely that the number of individuals who will eventually 
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develop myopia will increase further. A ‘cohort effect’ has also been identified: the 

prevalence of myopia appears to be higher when investigating more recently-born 

individuals within large population samples of adults. For example, the E3 Consortium 

meta-analysis of European adults demonstrated that nearly 50% of those aged 25-29 

years old had myopia of -0.75D or greater compared to 27% in those aged 55-59 years 

old (Williams et al. 2015b). However, other researchers have questioned the validity of 

such a cohort effect, instead arguing that myopia naturally reduces in prevalence with 

age (see below). 

Prevalence estimates for myopia tend to be highest in young East-Asian populations, 

reaching epidemic levels (Morgan et al. 2018). Adult estimates in Singaporean, Chinese, 

Indian, and Malay adult males showed a myopia prevalence of 79%, 82%, 69%, and 65%, 

respectively (Wu et al. 2001), with over 10% of the Singaporean population 

demonstrating high myopia (<-6.00D). However, it may be argued that this was not a 

representative sample, as it comprised of conscripted military personnel, likely 

incorrectly weighted due to using 16-25 year olds (down-weighted as younger 

individuals may still go on to develop myopia later on, however potentially up-weighted 

compared to the population due to the young sample and lack of cycloplegia). A meta-

analysis of Asian populations demonstrated approximately 28% of adults were myopic, 

using a threshold of ≤-0.50D (Pan et al. 2015).  

The suggested cohort effect observed in Europeans has also been reported within Asian 

populations. A meta-analysis identified an increased prevalence of nearly 50% of adults 

aged below 29 years old being myopic, compared to 26% in those aged 30 to 39 years 

old (Pan et al. 2015). It should be noted that this meta-analysis included reports of more 

elderly populations (70+ years) that did not control for factors such as cataract 

development; consequently the authors reported a U-shaped relationship between 

myopia prevalence and age.  

Furthermore recent prevalence estimates for Asians seem to be even higher in children; 

a study found that 88% of school children in China had myopia of ≤-0.50D when 

measured with non-cycloplegic autorefraction (Chen et al. 2018), with other reports 

from urban Chinese children also demonstrating a 65-80% prevalence with the same 

non-cycloplegic myopia threshold (He et al. 2004; You et al. 2014; Wu et al. 2015). Other 
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Asian countries have also shown high prevalence levels of myopia in young adult 

populations (using the same ≤ -0.50D threshold, but using cycloplegia) with 97% of 19 

year olds in South Korea having myopia (Jung et al. 2012), and 84% and 21% of 

Taiwanese 16-18 year olds being myopic (≤ -0.25D) and highly myopic (≤ -6.00D), 

respectively, using cycloplegic autorefraction (Lin et al. 2004). Overall a consistent 

pattern in both European and Asian populations is that the prevalence of myopia is 

increasing as younger children and adolescents mature compared to previous 

generations, with a relatively higher prevalence in East Asian populations for the same 

age categories (Figure 1.1).   

 

Figure 1.1 Prevalence of myopia by age for East Asian and White ethnicities from a meta-analysis 
in 2005. Error bars are 95% CIs. Taken from Wolffsohn et al. (2019) adapted from data by 
Rudnicka et al. (2016). 

1.2.3.2 Future Prevalence of Myopia  

As mentioned above, the evidence for an increasing prevalence of myopia in more 

recent birth cohorts has been questioned. A counter argument is that individuals 

naturally become less myopic as they get older, i.e. a longitudinal effect rather than a 

cohort effect (Mutti and Zadnik 2000). However, evidence continues to accumulate for 

a cohort effect. For example, in age-matched individuals from the United States, the 

myopia prevalence has increased over the last 30 years (Figure 1.2A) (Vitale et al. 2009). 

Moreover, there have been reports of similar findings for increased levels of myopia 

compared to previous estimates in the same populations (Williams et al. 2015b; Zhou et 

al. 2016; Chen et al. 2018; Morgan et al. 2018; Ueda et al. 2019). Williams et al. (2015a) 
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demonstrated a cohort effect when looking at individuals from a European population 

aged 40-79, with a higher myopia prevalence observed for more recent birth decades, 

as shown in Figure 1.2B.  

 

 

Figure 1.2 Graphical representations demonstrating the increase in myopia prevalence in recent 
birth cohorts. Panel A demonstrates the changes in prevalence between the early 1970’s and the 
late 1990’s in America, with subpanel (1) portraying the change in White individuals, and (2) 
portraying the change in Black individuals (taken from Vitale et al. (2009)). Panel B shows the 
prevalence of myopia in birth cohorts taken at different times and age ranges, demonstrating an 
increased prevalence in recent cohorts (taken from Williams et al. (2015a)). 

As well as a general increase in myopia prevalence, there has been evidence that the 

age at which children become myopic has been decreasing i.e. on average children are 

becoming myopic at a younger age. In a study of Taiwanese children, Lin et al. (2004) 
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found that the average age children were becoming myopic had reduced from 11 to 8 

years-old between 1983 and 2000. An earlier age of onset of myopia may lead in turn to 

an increase in the prevalence of high myopia, as children who develop myopia at 

younger ages tend to develop higher degrees of myopia, on average (Iribarren et al. 

2009; Williams et al. 2013; Chua et al. 2016). 

The increased prevalence of myopia in recent birth cohorts, as well as the reduced 

average age of onset, suggest that the prevalence of myopia and high myopia around 

the world are likely to increase in the future, with estimates of 50% and 10%, 

respectively, by 2050 (Holden et al. 2016). Given the association between myopia and 

secondary ocular disorders such as glaucoma and maculopathy (Flitcroft 2012), 

predicting children at an increased risk of developing myopia at an early age (prior to 

onset) would be beneficial and allow clinicians to monitor such at-risk individuals more 

closely and intervene to slow myopia progression at an early stage. 

 Environmental Influences and Risk Factors for Myopia 

Given the rapid rise in myopia prevalence during the last 30 years (Lin et al. 2004; Vitale 

et al. 2009; Dolgin 2015), it has been argued that genetics cannot be directly responsible, 

because 30 years would only correspond to 1-2 generations, which is insufficient for 

temporal genetic change (Lim et al. 2014). Therefore changes in environmental risk 

factor exposure have been proposed as the primary cause of the recent increase in 

myopia prevalence (Holden et al. 2016). The environmental risk factors most widely 

studied are discussed below.  

A relationship between educational attainment and myopia has been shown in a range 

of different study populations; a similar relationship between IQ and myopia has also 

been observed (Rosner and Belkin 1987; Au Eong et al. 1993; Saw et al. 2004; Morgan 

and Rose 2005; Pan et al. 2012; Williams et al. 2015a). For instance, adult Inuit 

populations had a myopia prevalence of 1.2% before the introduction of a formal 

education system (Lasker 1956), but within two generations, individuals under the age 

of 30 exhibited a prevalence of myopia of up to 58% (Young et al. 1969; Morgan et al. 

1975). Evidence for a causal role of education in myopia has come from recent 

Mendelian randomisation studies, using genetic susceptibility as an instrumental 

variable (Cuellar-Partida et al. 2015; Mountjoy et al. 2018). This is the best current 
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evidence for a causal role of education, as randomised controlled trials for educational 

attainment would be unethical. 

Reduced time spent outdoors is associated with an increased incidence of myopia 

(Guggenheim et al. 2012; French et al. 2013a; Guggenheim et al. 2014; He et al. 2015). 

In randomised controlled trials, increased time outdoors demonstrated a protective 

effect against myopia development (Ngo et al. 2014; He et al. 2015; Jin et al. 2015; Barry 

et al. 2016; Shah et al. 2017; Wu et al. 2018). The mechanism responsible has commonly 

been attributed to the increased light level outdoors: the so-called ‘light-dopamine 

regulatory theory’ (Witkovsky 2004; Rose et al. 2008; Smith et al. 2012; Hua et al. 2015). 

A crude explanation of this theory is that the release of dopamine in the retina - a 

neurotransmitter known to inhibit the rate of eye growth - is stimulated by bright light 

(McCarthy et al. 2007). This link of reduced light levels and increased rate of myopia can 

explain the effects of light deprivation studies, where animal models investigating 

myopia have shown increases in axial length and myopia with reduced light levels 

(Howlett and McFadden 2005; Ashby et al. 2009; Karouta and Ashby 2015). The 

importance of light levels being they key factor behind time outdoors’ effect is further 

supported by the limited association of physical activity with myopia development (Rose 

et al. 2008; French et al. 2013a).  

Studies investigating lighting changes and their potential interactions with circadian 

rhythms have also shown some significant findings. Reports using animal models have 

demonstrated a relationship of altered circadian rhythms and changes in lighting 

exposure during the day with an increased level of myopia development (Mutti et al. 

1998; Norton and Siegwart 2013; Stone et al. 2013; Nickla and Totonelly 2016), leading 

to the suggestion that an altered, unnatural light cycle may have an impact on ocular 

development.  

Furthermore, an investigation into disruptive night-time lighting in children found an 

association of ambient light at night and an increased rate of myopia (Quinn et al. 1999) 

suggesting a potential link for study, however this finding has not been replicated 

(Zadnik 2001; Guggenheim et al. 2003).  

The relationship between insufficient time outdoors and myopia risk prompted 

investigation into vitamin D deficiency as a potential risk factor for myopia development. 
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Mutti and Marks (2011) measured serum vitamin D levels in a small sample of 13-25 

year olds and concluded “myopes appear to have lower average blood levels of vitamin 

D than non-myopes”. Several subsequent cross-sectional studies have supported this 

association (Choi et al. 2014; Yazar et al. 2014; Tideman et al. 2016). However, 

Guggenheim et al. (2014) pointed out that vitamin D levels would be expected to be 

lower in children spending relatively less time outdoors. In a longitudinal study, these 

authors found no evidence that serum vitamin D mediated the relationship between 

time outdoors and myopia (Guggenheim et al. 2014). A review further deliberated on 

the lack of strong evidence for a causal link, as earlier studies which found associations 

failed to control for important confounders, such as time spent outdoors and sunlight 

exposure (Pan et al. 2017). Yet another study demonstrated a negative association of 

serum vitamin D levels and axial length in children, even after controlling for time 

outdoors; but it was not possible to infer whether this was due to a causal relationship 

or residual confounding (Tideman et al. 2016). However, a Mendelian randomisation 

study using genetic variants associated with vitamin D levels suggested that there was 

at most only a very small contribution from vitamin D on myopia development, 

indistinguishable from zero, and that the previous positive associations demonstrated 

would be likely due to confounding (Cuellar-Partida et al. 2017). Generally, the evidence 

for vitamin D being a risk factor for myopia appears to be limited, and could be 

considered a proxy measure for time outdoors, rather than an independent risk factor. 

Overall with regard to time outdoors, there is strong evidence from randomised 

controlled trials that time outdoors reduces the incidence of myopia, but the exact 

underlying mechanism remains unknown. 

Near work (or increased time reading) has also been proposed as a risk factor for myopia 

development. A number of different factors relating to near work have been considered, 

including reading distance, posture, and length of time spent reading (Goss 2000; 

Hartwig et al. 2011; Lin et al. 2013). Because of this variation, it has been hard to 

compare across studies. A meta-analysis looking at reports for myopia and near work 

activities in children found an odds ratio of 1.14  for being myopic for every hour of 

increased near work per week (Huang et al. 2015). However, the results for this risk 

factor have been inconsistent (Mutti and Zadnik 2009), particularly regarding whether 

the effect of time outdoors has or has not been accounted for (Ip et al. 2008; Rose et al. 
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2008; Wu et al. 2013). This may suggest that increased near work could be a proxy for 

reduced time spent outdoors. It is currently unclear if the association between 

education and myopia (see above) is due to time engaged in near work during the school 

day. 

Parental myopia has been shown consistently to be associated with an increased risk of 

myopia (Mutti et al. 2002; Saw et al. 2006; Jones-Jordan et al. 2010; O'Donoghue et al. 

2015; Zadnik et al. 2015; Zhang et al. 2015b). However the precise degree of risk 

associated with having 0, 1, or 2 myopic parents varies from study to study. Mutti et al. 

(2002) reported an odds ratio for myopia of 3.31 and 7.29 in children with 1 or 2 myopic 

parents, respectively, compared to those with no myopic parents. However, Saw et al. 

(2006) reported odds ratios of only 1.63 and 1.70 for 1 and 2 myopic parents, 

respectively. Such discrepancies may be due to differences in the sample demographics, 

e.g. children of differing ethnicity. Age may also contribute to the incongruity, as French 

et al. (2013b) reported that having myopic parents was associated with an increased risk 

of myopia in 5-6 year olds, but not when the same children reached 13 years old.  

The best current predictor of myopia risk is a ‘pre-myopic’ cycloplegic refraction of 

≤+0.75D at the age of 6 years (Zadnik et al. 2015), which has an AUROC of 0.87. Zadnik 

et al. found that the addition of other risk measures, such as near work, time outdoors, 

or parental myopia offered minimal improvement in the accuracy of myopia prediction. 

However, the sensitivity and specificity of Zadnik et al.’s prediction model was lower at 

younger ages (aged around 6 years old) compared to older ages (aged around 11 years 

old) (Jones-Jordan et al. 2010; Zadnik et al. 2015), and was not evaluated in children 

aged under 6 years, meaning that the investigation of a predictor that could be used 

before the age of 6 may be useful. Moreover, another study using Chinese twins 

between the ages of 7 and 15 years old created multiple multi-variable models, which 

included ocular and genetic measures to assess prediction accuracy for high myopia 

(Chen et al. 2019). They found that age (both on its own and as a polynomial term), 

gender, parental spherical equivalent, and genetic risk score were significantly 

associated with myopia, but that the addition of the genetic risk score on top of age, 

gender, and measured refractive data did not enhance the predictive performance of 

their model (AUROC > 0.95). It should be noted that this model was used for predicting 

high myopia after the age of 13; by this age many children may already be myopic, and 
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therefore similarly to the study by Zadnik et al. the model may not be applicable to 

identifying at risk children who are already ‘pre-myopic’, i.e. on a refractive trajectory 

towards myopia.  

 Current Myopia Management and Myopia Control Strategies 

There are currently two main approaches for slowing myopia progression that have 

been investigated: optical and pharmacological. The majority of studies investigating 

pharmacological interventions have tested the use of atropine eye drops. High (1%), 

medium (0.1-0.5%) and low (≤0.01%) dose atropine eye drops have all demonstrated a 

reduction in myopia progression compared to placebo or historical control groups (Chia 

et al. 2013; Chia et al. 2015; Huang et al. 2016). The 0.01% low dose atropine treatment 

demonstrated similar efficacy to that of high dose atropine, with less adverse effects 

such as reduction in accommodation and enlarged pupil size, along with a smaller 

‘rebound effect’, whereby the reduction in myopia progression can accelerate post-

treatment (Chia et al. 2012).  However, it should be noted that low dose atropine has 

not shown the same consistent impact on reducing axial length growth alongside 

refractive error (Yam et al. 2019). Moreover, the use of atropine has been investigated 

largely in Asian populations (Chia et al. 2012; Kumaran et al. 2015; Huang et al. 2016), 

with investigations in white or European populations performed in smaller limited 

samples (Loughman and Flitcroft 2016; Polling et al. 2016).  

Optical methods for reducing the progression of myopia that have demonstrated some 

success include multifocal/enhanced depth of focus lenses, defocus incorporated 

multiple segment (DIMS) spectacle lenses, and orthokeratology (ortho-K). Soft extended 

depth of focus lenses have been shown to reduce myopia progression by 10-60% over 2 

years (Sankaridurg et al. 2019). A three year randomised control trial of a multifocal 

contact lens showed 59% and 52% relative reductions in the progression of myopia and 

axial elongation compared to control single vision contact lenses (Chamberlain et al. 

2019). The DIMS spectacle lenses have also demonstrated similar efficacy, with a relative 

reduction of myopia progression and axial elongation by 52% and 62%, respectively (Lam 

et al. 2019). DIMS lenses incorporate a ring-shaped area containing tiny lenslets that 

provide additional plus power, around a 9mm diameter central zone that provides clear 

and central vision. Due to the change in corneal curvature and refractive error that 
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accompanies ortho-K lens wear, it is difficult to directly measure the reduction in myopia 

progression that occurs. However, ortho-K has been shown to reduce axial elongation, 

on average, by 43% relative to a control group (Cho and Cheung 2012). There have been 

few studies into possible rebound effects for ortho-K and multifocal lenses, although 

Cho and Cheung (Cho and Cheung 2017) suggested that axial elongation may resume 

upon cessation of lens wear (in teenagers). It is not possible to perform a double blind 

randomised controlled trial of ortho-K due to the fitting schedule. 

Despite the progress made in interventions to reduce myopia progression, no optical or 

pharmacological intervention has been designed or tested with the aim of preventing 

incident myopia. As mentioned previously, increased time outdoors has been shown to 

prevent myopia onset in children, with randomised controlled trials of increased 

outdoor time in a school setting showing a reduction in the incidence of myopia (Wu et 

al. 2013; Barry et al. 2016).  However, the evidence regarding time outdoors’ efficacy in 

slowing myopia progression is not always consistent, with some studies showing no or 

limited effect of reducing myopia progression, and other studies demonstrating 

beneficial effects (Xiong et al. 2017; Cao et al. 2019). 

In summary, although there have been advances in myopia intervention with regard to 

the reduction in progression (Huang et al. 2016; Chamberlain et al. 2019), and time 

outdoors with lower myopia incidence (Morgan et al. 2018), there is still more 

information required to fully understand and optimise current myopia interventions. 

This includes how to further improve efficacy, exploring why some people may not 

respond as well as others to the intervention, and to determine which intervention may 

be better suited to specific individuals based on their demographics or ocular status e.g. 

different level of myopia or different ethnicity.  

1.3 Introduction to Quantitative Genetics and Complex Traits 

 Phenotypes, Genetic Variants, and Alleles 

A phenotype is defined as a trait that is observable and measurable. This can be 

quantitative (for example height, which can be measured with a numerical value on a 

linear scale) or categorical (having two or more classes, for example eye colour). 

Phenotypes are determined by the action and possible interaction of genes and/or the 
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environment (see Section 1.3.4). The reason that humans can present with a range of 

different phenotypes within the same environment is because of variation within their 

genetic material i.e. having different genotypes. These differences can range from a 

single nucleotide substitution or an insertion or deletion of several nucleotides at a point 

in the genome (Frazer et al. 2009). Genetic variation has been estimated to occur in 0.6% 

of the human genome (1000 Genomes Project et al. 2015) with the most commonly 

occurring type of genetic variation being simple single nucleotide substitutions, termed 

single nucleotide polymorphisms (SNPs) (Wang et al. 1998). For example, at a specific 

locus in the genome, the majority of the population may have a ‘G’ nucleotide, however 

due to previous mutation some individuals may have inherited a ‘T’ nucleotide. These 

different nucleotides at polymorphic sites (places in the genome with frequently 

observed variation between individuals) are commonly referred to as alleles. Should a 

polymorphic site present with a minor allele frequency (MAF) of 1% or more i.e. the less 

common allele is present in more than 1% of the population, the polymorphism is 

classified as a ‘common’ (Wang et al. 1998). If the MAF is lower than 1%, the 

polymorphism is classified as a ‘rare variant’ or mutation. An example of a SNP allele is 

shown in Figure 1.3.  

 

Figure 1.3 A SNP screening chip with two sets of nucleotides that are identical except for a SNP 
(bold font). In this example, the chromosome shown in panel A carries an ‘A’ allele, whereas the 
chromosome shown in in panel B carries a ‘C’ allele at the same location. Copied from Wang et 
al. (1998). 
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SNPs are located throughout the genome, including coding regions and non-coding 

regions (only 3% of the human genome codes for proteins) (Djebali et al. 2012). 

Nevertheless, SNPs that are located at coding locations of the genome do not always 

make changes to the output of a protein. SNPs that do cause a change in the amino acid 

sequence of a protein are named non-synonymous variants. More frequently, SNPs do 

not cause any change in the amino acid sequence, (named synonymous variants), but 

can still result in subtle variations to a phenotype, for example due to changing levels of 

gene expression (Hunt et al. 2009).  

Other more complicated genetic variations include insertions and deletions (INDELs), 

and copy number variants (CNVs). INDELs are polymorphisms in which a section of DNA 

has either been inserted or deleted, ranging from a single nucleotide to a larger block of 

hundreds of nucleotide base pairs (Mullaney et al. 2010). Very large insertions or 

deletions of 1,000 to 400,000 base pairs are called structural variants or copy number 

variants (CNV) if they are common in the population (Sharp et al. 2005; McCarroll and 

Altshuler 2007). INDELS and CNVs are less common than SNPs and are estimated to 

account for approximately 20% of all variants in the human genome (Frazer et al. 2009). 

 Monogenic Traits  

In monogenic traits or diseases, the phenotype is determined by a single genetic variant, 

usually having a Mendelian pattern of inheritance. Humans are diploid organisms 

(having two sets of chromosomes), with the potential for two different alleles at each 

genomic location, meaning individuals can either be homozygous (have a pair of similar 

alleles at the genetic point of interest) or heterozygous (have different alleles at the 

same location). In Mendelian traits, the way that these two alleles interact with one 

another determines whether the phenotype follows a classical dominant, recessive, or 

more complex pattern. An example of a monogenic disorder is cystic fibrosis. Individuals 

having two loss-of-function alleles develop the disease, while those with just one 

defective copy are phenotypically normal; hence inheritance is said to be recessive 

(Kerem et al. 1989). With regard to ocular phenotypes, although uncommon, syndromic 

types of high myopia exist that are inherited through Mendelian patterns (Tang et al. 

2008). Mendelian inheritance follows simple rules, as shown in Table 1.1 A Punnett 

square demonstrating the potential offspring of two heterozygous parents. For a 
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dominant phenotype, offspring with either one or two copies of the defective ‘b’ allele 

will be affected. For a recessive phenotype, only offspring homozygous for the ‘b’ allele 

will be affected. 

 

 

 

 

Table 1.1 A Punnett square demonstrating the potential offspring of two heterozygous parents. 
For a dominant phenotype, offspring with either one or two copies of the defective ‘b’ allele will 
be affected. For a recessive phenotype, only offspring homozygous for the ‘b’ allele will be 
affected. 

 Complex and Polygenic traits 

Polygenic traits are influenced by a number of different loci (as opposed to the 

monogenic inheritance of Mendelian disorders). Phenotypes that have non-Mendelian 

inheritance patterns are called ‘complex traits’ (Lander and Schork 1994). Most 

polygenic traits are complex, meaning the phenotype is also influenced by gene-gene 

interactions, gene-environment interactions, and/or non-genetic factors (Lander and 

Schork 1994). Other ocular traits such as intra-ocular pressure, are complex, with 

numerous common variants causing subtle differences in phenotype (Gao et al. 2018). 

The genetic basis of complex disorders can range from a few key genes having a large 

effect on the outcome, such as in eye colour (Walsh et al. 2011), compared to traits such 

as height, in which more than 20,000 variants are thought to play a role (Lello et al. 

2018).  

 The Environment  

When discussing genetics, the term ‘environment’ has a broad meaning, encompassing 

factors both external to the organism but also within the organism and its constituent 

cells. For example, both the town someone lives in and the hormones in an individual’s 

body could be categorised as environmental variables (Lobo 2008). As environmental 

effects may be shared within a population or exclusive to the individual, potential gene-

environment interactions may also contribute to the presentation of phenotypes. An 

example of a gene-environment interaction is skin pigmentation caused by the MC1R 

gene and it’s response to UV: the MC1R gene shows different levels of expression to 

B = Normal allele 

b = Mutant allele 
B b 

B BB Bb 

B Bb bb 
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depending on the level of UV in the environment, which is turn affects pigmentation 

(Orazio et al. 2013). 

 Genotyping and Imputation  

Genotyping - determining the alleles present at a specific locus in the genome - can be 

done directly or indirectly (by imputation). A genotyping ‘array’ or ‘chip’ is commonly 

used to genotype individuals for hundreds of thousands of genetic variants, including 

SNPs & INDELs (Rabbee and Speed 2006). However, these several hundreds of 

thousands of directly genotyped SNPs only constitute a small minority of polymorphic 

sites in the human genome, and will miss most new mutations (LaFramboise 2009). 

Because of this, whole genome sequencing has been proposed as an alternative method 

of obtaining genotype data (Kingsmore 2015). However this is an expensive method. 

Hence, currently, genotyping arrays are the mainstay for genotyping in large-scale 

studies.  

Because SNP arrays only extract a small proportion of known genetic variants, 

imputation is used to ‘gap-fill’ the variants not directly assessed (Howie et al. 2012). 

Using knowledge about genetic variants that have been genotyped directly, it is possible 

to infer the likely alleles that would be present at nearby polymorphic sites that weren’t 

genotyped (Howie et al. 2012). Imputation operates by considering ‘haplotypes’. A 

haplotype is a group of closely situated alleles that are commonly inherited together 

(The International HapMap Consortium 2005). This non-random inheritance can be used 

to predict unknown nearby SNPs through imputation.  

Imputation is performed using reference panels, which are needed to infer which alleles 

are commonly found together in different populations. An example is the international 

HapMap consortium reference panel (The International HapMap Consortium 2007). 

Software such as IMPUTE (including all its updated versions) can be used to match 

haplotypes and impute non-genotyped SNPs through the use of these reference panels 

(Bycroft et al. 2018).  

Reference panels are developed from genetic data taken from hundreds or thousands 

of people; the 1000 genomes projects included the full genotyped data from 2,504 

individuals (The Genomes Project et al. 2015). This has been done across multiple 
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populations with different ethnicities and genetic ancestries, with the ability to 

determine which alleles are more commonly inherited by different populations. 

As imputation relies on a reference panel, it performs poorly for alleles that occur more 

rarely, i.e. variants with low MAF. This can lead to incomplete matching between 

haplotypes of the individuals in the analysis and the reference panel. IMPUTE software 

(Wiliams et al. 2012) provides a measure of imputation accuracy, allowing investigators 

to exclude variants that may be of poor imputation quality and confidence, saving any 

analyses performed from spurious associations that may occur. However, this 

diminishes the ability to test rare and low frequency variants for association with a trait, 

which may contribute a significant amount to the phenotype (Young 2019).  

 Linkage Disequilibrium 

As described in the previous section, imputation is made possible by the non-random 

transmission of alleles, and the existence of haplotypes (Howie et al. 2012). This non-

random inheritance of alleles that are physically close together on a chromosome is 

termed ‘linkage disequilibrium’ (LD) (Risch and Teng 1997; Terwilliger and Weiss 1998).  

If two genetic variants are in LD with one another, this means there is a statistical 

correlation between the alleles of the two variants. Therefore, if one of these variants 

shows a significant association with a trait of interest, the variant that is in LD will also 

demonstrate an association with the trait. This phenomenon leads to difficulty in 

determining the causal variant, as many variants in high LD with the causal variant would 

be associated (Goldstein and Weale 2001). Due to sampling variation, the causal variant 

will not necessarily be the most strongly associated variant.  

The relationship of two genetic variants in regard to their LD is often quantified through 

the r2 value (squared correlation coefficient) (Devlin and Risch 1995). An r2 value of 0 

indicates no LD and therefore random assortment. The highest r2 value of 1 indicates 

complete LD, where alleles at the two loci are always inherited together.  

 Heritability  

When looking at a complex phenotype, it may be desirable to estimate how much of the 

inter-individual variation in the phenotype is due to environmental factors, and how 

much is determined by genetic factors (Hill et al. 2008).  
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For polygenic traits, genetic effects are usually assumed to act additively, i.e. the 

polymorphic sites act independently of one another, and the number of copies of each 

allele has a linear effect on the phenotype (Hill et al. 2008). For example, if one group of 

individuals carries a single copy of a risk allele at a specific locus while another group 

carries two copies of the risk allele, the former group would have half the estimated 

phenotypic effect of the latter. Variants with non-additive genetic effects do exist, 

however, and include variants with very large effects that give rise to the Mendelian 

dominant and recessive inheritance patterns described in section 1.3.2.  

Heritability is the proportion of phenotypic variation that is attributable to genetic 

effects. It can be expressed in two ways, either narrow-sense heritability (designated as 

h2) or broad-sense heritability (designated as H2) (Visscher et al. 2008b). h2 is the amount 

of variation that is attributed to the additive effects of genetic variants, whereas H2 

includes both additive and non-additive effects. Visscher et al. (2008b) have pointed out 

that heritability is specific to the population measured, and is potentially influenced by 

shared environmental factors. Its value therefore varies depending on population 

demographics, and can fluctuate depending on age and ethnicity.  

When a trait is said to have a high heritability, this means that the variation found within 

the phenotype of interest is largely due to genetic variation. For example, height has 

been identified as a highly heritable trait (Yang et al. 2010; Pickrell et al. 2016; Lello et 

al. 2018), meaning it is largely genetically determined. Conversely, if a trait has low 

heritability, this would mean that non-genetic, e.g. environmental exposures, explain 

most of the phenotypic variance. Overall, heritability provides an indication of the likely 

success of genetic prediction (Tenesa and Haley 2013). In general, genetic prediction of 

traits with high heritability will be more accurate (as they are more reliant on the genetic 

effects which are estimated). 

For many years, heritability has been estimated largely through the use of family and 

twin based studies (Sanfilippo et al. 2010; Sanfilippo et al. 2011). However, recently, new 

statistical methods have been developed to allow the estimation of heritability in large 

samples of unrelated individuals (Bulik-Sullivan et al. 2015b). Genome wide complex 

trait analysis (GCTA) can be used for this task to calculate the ‘SNP heritability’, which is 

an estimation of phenotypic variance attributed to a selection of commonly occurring 
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genetic variants (Visscher et al. 2008b; Yang et al. 2010). GCTA works through estimating 

the proportion of the trait variance due to additive effects of SNPs, using a genetic 

relatedness matrix (an array that allows for the estimation of relatedness between 

individuals; GRM). The pairwise relatedness of individuals in this GRM is fitted as a 

random effect in a linear mixed model (see Methods 3.1.5) using restricted maximum-

likelihood (Yang et al. 2011b). Hence, this method is often referred to as GCTA-GREML 

(genomic-relatedness-based restricted estimate of maximum-likelihood) (Yang et al. 

2016).   

As heritability is sample specific, heritability estimates for the same trait measured in 

different samples can have a large discrepancy. However, there is a common trend seen 

between twin/family study derived estimates and those attained using common genetic 

variants: Twin-based heritability estimates are usually higher than other estimates 

(Sanfilippo et al. 2011). This discrepancy between heritability estimates has been called 

the “missing heritability” (Hemani et al. 2013; Zhu et al. 2015; Young 2019). Looking at 

height as an example, twin and sibling studies have estimated a heritability of roughly 

80% (Silventoinen et al. 2003; Visscher et al. 2006). However, when using SNP based 

analyses, the heritability is lower, with reports finding a SNP heritability of 45%-53% 

(Yang et al. 2010; Rawlik et al. 2016). When using only genome-wide significant SNPs, 

the heritability estimate was even lower at 10% (Visscher et al. 2012b). This discrepancy, 

stemming from the missing heritability phenomenon is commonly seen across most 

complex traits. 

There are several proposed explanations for the missing heritability. Firstly, it should be 

noted that twin and family studies estimate heritability using all genetic variants 

regardless of their MAF and effect size. By contrast, h2 due to GWAS variants typically 

only use common SNPs (MAF >1%). This means a significant number of genetic variants 

are not included in SNP based heritability estimates as they may be excluded due to MAF 

or small effect size (Pritchard 2001; Frazer et al. 2009). LD may also cause difficulty in 

determining which markers should be used for estimation and limit the accuracy of the 

estimate, reducing the heritability value obtained (Yang et al. 2010). 

Secondly, non-additive genetic effects that are not considered in GWAS studies may also 

add to the heritability. As well as gene-gene and gene-environment interactions, this 
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can include transgenerational epigenetic effects such as genetic methylation, in which 

adjacent C and G nucleotides (‘CpG’ sites) have a methyl group attached to them, 

rendering a portion of that gene transcriptionally inactive. It is estimated that an average 

of 80% of the CpG sites in a human genome are methylated (Ziller et al. 2013), but this 

varies from person to person and can change over a person’s lifetime. These methylation 

patterns are reprogrammed as an embryo develops and are therefore able to change 

between generations (Ladstätter and Tachibana-Konwalski 2016). However, because 

they impact on the transcription of genes, transgenerational epigenetic effects will 

impact the heritability of the trait.  

Thirdly, twin studies may have incorrectly assumed a common environment between 

siblings. Studies investigating heritability in twins assume that both monozygotic 

(identical) twins and dizygotic (fraternal) twins are brought up and live in the same 

environments with the same influences and exposures (Joseph 1998; Kim et al. 2015). 

Therefore, if monozygotic twins show a higher correlation of a trait than dizygotic twins 

(who share 50% of their alleles), the differences must be due to genetics (Richardson 

and Norgate 2005). However, this assumption has been heavily disputed (Joseph 1998; 

Richardson and Norgate 2005), as environmental exposures have been reported to be 

less similar between dizygotic twins compared to monozygotic twins. Thus, it may be 

that the heritability estimates for twin studies may be inflated, which may further 

contribute to the missing heritability.  

 Genetic Linkage Studies  

In linkage analysis, the inheritance of a trait is investigated in a sample of related 

individuals, such as a family. For example, Figure 1.4 shows a pedigree in which the 

transmission of the trait can be monitored over multiple generations (Balding 2006). By 

looking at which individuals in the pedigree have the trait of interest, and comparing 

their genomes, it may be possible to identify a genetic region that is common between 

them that may be the cause of the trait (Risch 1990).  
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Figure 1.4 Example of a pedigree diagram for Bornholm eye disease, an X chromosome linked 
high myopia and cone dysfunctional syndrome. Copied from Young et al. (2004). Circles and 
squares represent males and females, respectively. Affected individuals are highlighted with a 
solid colour, with carriers shown using partly solid symbols (either a shaded centre circle or half 
shaded square).   

As discussed in the LD section, some variants that are close together and within an ‘LD 

block’ are usually inherited together. This means that there are several continuous 

genetic sequences inherited together, which are separated through recombination (i.e. 

‘crossing over’ during meiosis) (Weiss and Clark 2002). This mechanism allows 

investigators to perform co-segregation analysis, which is the basis of linkage analysis.  

Co-segregation is where a phenotype and alleles at a known polymorphic genetic locus 

are transmitted together. If co-segregation occurs more than often than expected by 

chance, it is likely that the casual genetic variant is nearby to the known (‘marker’) 

genetic locus. However, it is not possible to narrow co-segregating regions down below 

the level of LD blocks (which often span across many millions of base pairs and genes), 

which is one of the major limitations of linkage analysis (Boehnke 1994). Further 

candidate gene studies are required to investigate genes within the identified region to 

confirm the causal gene (Lee et al. 2011). 

The design of linkage studies means that they are extremely effective when trying to 

identify rare variants with large effect sizes. This is because a family study would allow 
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easier identification if the causal variant is uncommon (meaning a smaller pool of people 

will have the trait and the variant would be easier to identify) and if it has a large effect 

(meaning that detecting the phenotypic influence is easy) (Hirschhorn and Daly 2005; 

Sanfilippo et al. 2010). However, a causal locus identified in one family may not 

demonstrate significant linkage in other families: sometimes loci elsewhere in the 

genome are responsible for causing a similar phenotype (genetic heterogeneity). 

Moreover, as linkage analysis relies on segregation of genotypes and phenotypes from 

parents to offspring, finding families large enough to provide statistically robust results 

is challenging.  

 Association Studies 

The lowered cost and improved accuracy of genotyping over recent years has facilitated 

genetic association studies in groups of unrelated individuals. This has led to the 

adoption of genome wide association studies (GWAS) as a method for identifying causal 

genetic variants (Visscher et al. 2008a). GWAS analyses test common variants situated 

throughout the genome for association with a particular phenotype.  

GWAS analyses are versatile, in that the phenotype of interest can be either continuous 

or dichotomous. Conventionally, GWAS variants are assumed to have an additive mode 

of inheritance (Monir and Zhu 2017; Bonnafous et al. 2018), as described in section 

1.3.7. For a continuous phenotype, such additive variants would have an effect size 

derived from the average phenotype of individuals carrying 0, 1 or 2 copies of the ‘risk’ 

allele. For a dichotomous trait, the effect size is quantified as the odds ratio for 

individuals carrying 0 vs. 1 (or 1 vs. 2) copies of the risk allele.  

However, GWAS analyses have limitations. Firstly, as GWAS studies are typically 

performed using imputed genotype data, spurious results or missed associations may 

occur due to inaccurate imputation (Howie et al. 2009). To rectify this, GWAS analysts 

typically remove variants with low imputation quality through quality control processes 

(Marees et al. 2018).  

Similar quality control issues occur when investigating variants with a low occurrence, 

e.g. MAF < 0.01. Because of their low MAF, there is very limited power to identify true 

associations correctly (Pritchard 2001). Furthermore, GWAS analyses of dichotomous 

traits are particularly sensitive to differences in allele frequencies; false associations may 
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be found if population stratification (uncontrolled population substructure; section 

3.1.2) or other population based confounders are not controlled for.  

Another issue is the number of statistical tests being performed. Specifically, as 

numerous variants are being tested one by one, a stringent P-value threshold is required 

to differentiate between true positive and false positive association signals. A P-value of 

5x10-8 is generally adopted for declaring ‘genome-wide significance’, because of the 

expected number of independent polymorphic sites that are tested, and non-random 

assortment of these due to linkage disequilibrium (Risch and Merikangas 1996; 

Dudbridge and Gusnanto 2008). Very large sample sizes are therefore required to detect 

variants with modest effect sizes in order to overcome this problem.  

Furthermore, most quantitative or continuous traits are assumed to follow a normal 

distribution, and if this is criteria is not met it can reduce the power of a GWAS analysis 

(Goh and Yap 2009). If a trait is not normally distributed, it can be transformed using 

“inverse rank-based normalisation” before analysis, which has been shown to improve 

the identification of the causal polymorphisms and improve the summary statistics 

accuracy (Goh and Yap 2009). However, this method can lead to interpretation 

difficulties, as the trait dimensions and estimated effects will no longer be on the same 

scale as the original trait.  

 Polygenic Risk Scores  

A polygenic risk score is a numerical measure used to quantify an individual’s genetic 

predisposition to a specific trait. It is often used to summarise the genetic effects of 

multiple markers to predict a trait value (or the relative risk of being affected by a 

disorder, in an intra-group analysis) (Dudbridge 2013). This summary of the estimated 

genetic contribution to a trait is derived in two steps. Firstly, a GWAS is performed on 

one sample of individuals, to estimate the effect size associated with each genetic 

variant tested. The second step, which must be carried out using an independent sample 

of participants, is to construct the polygenic risk score by taking account of an 

individual’s genotype for each genetic variant and the effect on the phenotype 

conferred by that variant (Dudbridge 2013). Prediction accuracy can be assessed 

through a statistical measure such as R2 or a receiver operating characteristic curve 

(ROC) analysis, depending on whether the phenotype is continuous or dichotomous. In 
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theory, if all associated SNPs are included in the analysis model, and the SNP effect sizes 

estimated very accurately, prediction accuracy should reach a similar level to the ‘SNP 

heritability’ (h2). In practice, most studies have reported much lower accuracies than 

this. Taking height as an example, although the SNP heritability of height is 0.45-0.53, 

the best reported polygenic risk score for height had an accuracy of  R2 = 0.40 (Lello et 

al. 2018). It has been proposed that the limitation of this method is largely due to 

insufficient GWAS sample size, which reduces the accuracy in estimating SNP effect sizes 

(Visscher et al. 2012a) as well as only using genome wide associated loci, or a limited 

number of SNPs (Vilhjálmsson et al. 2015).   

1.4 Introduction to Myopia Genetics 

 Heritability  

The heritability of refractive error has been estimated using both twin and family based 

studies as well as SNP-based methods. Twin studies have shown that refractive error has 

a high heritability, with estimates ranging from approximately 50% to 90% (Lyhne et al. 

2001; Wojciechowski et al. 2005; Chen et al. 2007a; Baird et al. 2010; Sanfilippo et al. 

2010; Schache and Baird 2012). Additive effects make up the majority of this heritability 

(Lyhne et al. 2001; Sanfilippo et al. 2010). Family based studies have shown comparable 

yet reduced estimates of heritability, with a range of 50% to 70% (Chen et al. 2007a; 

Peet et al. 2007).  SNP-based heritability estimates are lower than both of these, as 

expected, with estimates of 35% - 39% (Guggenheim et al. 2015; Shah et al. 2018). 

 Linkage Study Discoveries  

As linkage studies are best-suited to investigating rare variants of large effect, linkage 

analysis has mostly been used to study high myopia (at ≤-6.00D) (Farbrother 2003; Zhang 

et al. 2005). However, there have been studies into refractive error as a continuous trait 

using this method (Hammond et al. 2004; Klein et al. 2007), as well as low myopia (≤-

1.00D) (Stambolian et al. 2004; Chen et al. 2007b). A summary of the 25 myopia loci 

identified through linkage studies is presented in Table 1.2. The MYP24 and MYP25 loci 

were identified using a combination of linkage analysis and whole-exome sequencing (a 

technique that sequences all of the protein coding regions in the genome, known as the 

‘exome’) (Guo et al. 2014; Guo et al. 2015). MYP20 was investigated using a combination 

of GWAS and linkage methods (Shi et al. 2011b).  



   

26 
 

Table 1.2 List of myopia loci identified through linkage studies. Thresholds for classifying myopia are indicated with superscript numbers as follows: continuous 
trait analysis1, ≤-0.50D2, ≤-1.00D3, ≤-3.50D4, ≤-5.00D5, ≤-5.50D6, ≤-6.00D7, ≤-7.00D8, ≤-17.00D9

Myopia Loci  Chromosome  Myopia Category Replication Status References 

MYP1  X High Myopia7,7 Replicated (Guo et al. 2010; Ratnamala et al. 2011) 
MYP2 18 High Myopia7,7 Replicated (Young et al. 1998b; Young et al. 2001) 
MYP3 12 High Myopia7,7,5 Replicated (Young et al. 1998a; Farbrother et al. 2004; Nurnberg et al. 2008) 
MYP5 17 High Myopia6 Not Replicated (Paluru et al. 2003) 
MYP6 22 Low Myopia3,3 Replicated (Stambolian et al. 2004; Klein et al. 2007) 
MYP7 11 Low Myopia1 Not Replicated (Hammond et al. 2004) 
MYP8 3 Low Myopia1,3 Replicated (Hammond et al. 2004; Andrew et al. 2008) 
MYP9 4 Low Myopia1 Not Replicated (Hammond et al. 2004) 
MYP10 8 Low Myopia1,3 Replicated (Hammond et al. 2004; Stambolian et al. 2005) 
MYP11 4 High Myopia5 Not Replicated (Zhang et al. 2005) 
MYP12 2 Low/High Myopia8,2,2 Replicated (Paluru et al. 2005; Chen et al. 2007b; Schache et al. 2009) 
MYP13 X High Myopia7,8 Replicated (Zhang et al. 2006; Zhang et al. 2007) 
MYP14 1 Low Myopia4 Not Replicated (Wojciechowski et al. 2006) 
MYP15 10 High Myopia8 Not Replicated (Nallasamy et al. 2007) 
MYP16 5 High Myopia8 Not Replicated (Lam et al. 2008) 
MYP17/MYP4 7 Low/High Myopia4,5 Replicated (Ciner et al. 2008; Paget et al. 2008) 
MYP18 14 High Myopia7 Not Replicated (Yang et al. 2009) 
MYP19 5 High Myopia7 Not Replicated (Ma et al. 2010) 
MYP20 13 High Myopia7 Not Replicated (Shi et al. 2011b) 
MYP21 1 High Myopia7,7,7 Replicated (Shi et al. 2011a; Tran-Viet et al. 2012; Xiang et al. 2014) 
MYP22 4 High Myopia7 Not Replicated (Zhao et al. 2013) 
MYP23 4 High Myopia9,7 Replicated (Aldahmesh et al. 2013; Jiang et al. 2014) 
MYP24 12 High Myopia7,7 Replicated (Guo et al. 2014; Jiang et al. 2014) 
MYP25 5 High Myopia7 Not Replicated (Guo et al. 2015) 
MYP26 X High Myopia7 Not Replicated (Xiao et al. 2016) 
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 GWAS Studies 

Initial GWAS studies were performed on small samples of Asian ethnicity, which due to 

their limited power were not able to find any loci that reached genome-wide 

significance. Some examples include Nakanishi et al. (2009) who performed a GWAS on 

2,741 individuals from Japan, Li et al. (2011) who performed a GWAS on several 

Singaporean cohorts with a sample of 4,155 individuals, and Shi et al. (2011b) who 

performed an initial GWAS on 1,088 Han Chinese participants. Larger samples of 

individuals who had both genetic and refractive data were needed to identify loci at a 

genome-wide significance level (Hysi et al. 2010; Solouki et al. 2010).  

The Consortium for Refractive Error And Myopia (CREAM consortium) performed a 

GWAS meta-analysis for participants with either European or Asian ancestry (37,382 

European and 8,376 Asian participants), from 32 separate population based samples 

(Verhoeven et al. 2013). They identified 24 novel genome-wide significant loci.  

At a similar time, another larger scale study was performed using data from 45,000 

individuals from the 23andMe personal genomics company (Kiefer et al. 2013). 

Participants self-reported if they had been diagnosed with near-sightedness and their 

age of onset. In this study, 22 loci were identified that were genome-wide significant for 

age of myopia onset, with 20 shared loci having been identified in the aforementioned 

CREAM analysis (Verhoeven et al. 2013), and 2 loci being novel. This high level of 

replication - despite the different phenotypes studied (age of onset of myopia vs. 

refractive error) - indicated that the two phenotypic measures are closely correlated. 

Most of the loci identified were near genes related to extracellular matrix structures, 

photoreceptor functions, eye growth, and neuronal pathways.  

More recent GWAS analyses have been performed on even larger samples to further 

improve statistical power. A GWAS of 191,843 unrelated European participants from 

23andMe identified 183 loci for self-reported near-sightedness (Pickrell et al. 2016). This 

study considered myopia status as a simple binary trait, rather than analysing age of 

onset as done by Kiefer et al. (2013). Unfortunately, only the top 50 strongest 

associations were reported in the article published by (Pickrell et al. 2016).  

A sample of 160,420 participants were included in a GWAS for refractive error and 

myopia in a combined analysis by the CREAM consortium and 23andMe. This study 
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identified 161 independent genome-wide significant loci (Tedja et al. 2018). As with 

previous CREAM GWAS studies, a combined analysis of European and Asian participants 

was undertaken (n=44,192 and 11,935 participants, respectively). A second stage of 

meta-analysis included an additional 104,293 participants of European ancestry from 

23andMe. Novel associations near genes responsible for synaptic neurotransmission, 

anterior segment morphology and light-sensitive signalling cascades were reported.  

 Genetic Prediction of Refractive Error and Myopia 

As refractive error heritability studies have suggested that the genetic variance is largely 

additive (Lyhne et al. 2001; Sanfilippo et al. 2010), genetic prediction estimates are 

performed using an additive polygenic risk score approach (section 1.3.10). 

The more recent GWAS studies for refractive error and myopia described above have 

reported the amount of phenotypic variance explained by the genome-wide significant 

loci discovered, i.e. the prediction accuracy using these loci. Kiefer et al. (2013) 

estimated the phenotypic variance explained by their 22 genome-wide significant 

variants to be 2.9%, using a Cox ‘survival analysis’ model for incident myopia. This was 

calculated as a pseudo-R2 (similar to a Naglekerke R2) as their phenotype was a binary 

outcome. Unfortunately, the genetic prediction analysis was performed in the same 

‘discovery’ dataset as their original GWAS analysis, meaning that the result will be 

upwardly biased and thus should be interpreted with precaution.  

(Verhoeven et al. 2013) found that the 24 loci identified in their GWAS study explained 

3.4% of the variance in spherical equivalent (in an independent sample), a modest 

increase from that found by Kiefer et al. (2013). When considering the capacity to 

identify individuals as either myopic (≤ -3.00D) or hyperopic (≥ +3.00D), Verhoeven et 

al.’s 24-variant polygenic risk score had an AUROC of 0.67.  

As GWAS sample sizes have increased and new loci for myopia have subsequently been 

identified, the prediction of refractive error and myopia has improved. When CREAM 

and 23andMe conducted their GWAS meta-analysis for refractive error, they identified 

124 new loci. The 7,307 most-strongly associated variants (those with P ≤ 5x10-3) 

explained 7.8% of the variance in refractive error in independent sample, an 

improvement from the previous estimate and the best reported to date (Tedja et al. 

2018). When used to categorize participants as either myopic (≤ -3.00D) or hyperopic (≥ 
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+3.00D), the polygenic risk score derived using these 7,307 variants had an AUROC of 

0.77 (Verhoeven et al. 2013). 

1.5 Aim of the PhD Project 

By better understanding the genetic factors that confer susceptibility to myopia, it may 

be possible to identify children who are predisposed to become myopic. Moreover, since 

genetic testing can be performed at any age, genetic prediction of at-risk children could 

be carried out at an earlier age than is possible using other predictive methods (Zadnik 

et al. 2015). Such at-risk children may benefit from the interventions described in section 

1.2.5 above. To achieve any of this, improvements to the accuracy of genetic prediction 

of refractive error and myopia are required. 

Thus, the primary aim of my PhD project was to leverage information about the genetic 

contribution to refractive error from the recently released UK Biobank dataset, and then 

to derive a polygenic risk score based on these new data. The accuracy and clinical utility 

of the polygenic risk score could then be assessed.  
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2 Dataset and Participants 
 

The analyses conducted in this thesis were done using two separate datasets collected 

from the UK. Both of these cohorts are discussed under the relevant subheadings below.  

2.1 UK Biobank 

UK Biobank was jointly-funded by the Wellcome Trust and the UK Medical Research 

Council as a prospective study to investigate environmental and genetic elements that 

contribute to common human diseases (Allen et al. 2014). The study placed a strong 

emphasis on diseases with a complex aetiology that are projected to increase within the 

UK population in future years, such as Parkinson’s disease and certain cancers (Sudlow 

et al. 2015). The age range of participants was chosen to be between 40 and 69 years of 

age to allow longitudinal assessment of these common diseases and their role in 

premature mortality, and as a compromise between the age at which common illnesses 

typically occur versus an age range prior to disease onset when risk factor exposure may 

be important (UK Biobank Team 2007). UK Biobank obtained NHS Research Ethics 

Committee approval before beginning the study (application reference 11/NW/0382). 

 Recruitment  

Everyone who was registered with the National Health Service and living within 25 miles 

of a study centre was invited to participate, through the use of posted information 

sheets. The study comprised of 22 assessment centres spread across England, Scotland, 

and Wales (Figure 2.1). These were purpose built/renovated centres, usually in town 

centres that would allow for good transport links and accessibility (Trehearne 2016). 

502,682 participants were recruited in total, from 2006 until August 2010.  
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 Self-Reported Medical History  

The initial assessment centre visit involved electronic informed consent from all 

participants. This was performed on touch screen questionnaires, after which 

demographic information and all medical history, including that of ocular history were 

collected. A copy of the questionnaire with all questions can be found using the link:  

https://www.ukbiobank.ac.uk/wpcontent/uploads/2011/06/Touch_screen_questionn

aire.pdf?phpMyAdmin=trmKQlYdjjnQIgJ%2CfAzikMhEnx6. 

Participants were also given an interview by a registered nurse, along with assessments 

of cognitive function, physical measurements, and the collection of blood and saliva for 

genetic study (Sudlow et al. 2015). Although ocular history information was collected for 

most participants, this was initially limited in scope, and further questions were included 

on refractive status (self-reported use of spectacles or clear vision for different 

distances) in the later phases of recruitment. These questions were bundled with an 

enhanced ophthalmic examination at 6 recruitment centres (see ocular phenotypes 

below). 

In total, participants were asked up to 8 questions regarding their ocular history, 

including two core questions in the original self-reported questionnaire: “Do you wear 

Figure 2.1 Locations of recruitment centres used in UK Biobank. Adapted from lecture by (Collins 
2014), accessed online 27/10/2018, URL: http://www.ukbiobank.ac.uk/wp-
content/uploads/2014/06/0940-Collins-UKB-Frontiers-2014-1.pdf. 
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glasses or contact lenses to correct your vision?” and “Do you have any other problems 

with your eyes or your eyesight?” along with a possible six other follow up questions.  

A total of 501,707 people answered if they wore any ocular correction for refraction 

(89% answered ‘yes’, 11% ‘no’, and less than 0.1%  ‘prefer not to answer’), (UK Biobank 

Team 2018). If applicable, this was followed with "What age did you first start to wear 

glasses or contact lenses?” which was answered by 444,542 participants. 16,088 of 

respondents did not know the age of their first visual correction, while 243 people 

preferred not to answer.  

The enhanced questionnaire introduced during the later recruitment phase included a 

question on the reason why ocular correction was needed i.e. asking if the participant 

was myopic, hyperopic, or presbyopic, and which eye the condition affected. A total of 

143,561 participants answered this question, with the option of selecting multiple 

reasons. 64,868 stated they wore spectacles for myopia, 33,415 for hyperopia, 67,615 

for presbyopia, and 19,259 for astigmatism. A further 10,995 reported that their 

correction was for less common conditions such as amblyopia or strabismus, with 2,774 

stating that they did not know or preferred not to answer (UK Biobank Team 2018).  

 Phenotype Information  

Six assessment centres in the study (5 in England and 1 in Wales) performed ophthalmic 

assessments on participants (Cumberland et al. 2015). 117,279 participants (making up 

23% of the entire cohort) underwent this enhanced assessment, which included several 

ocular measurements, including refractive error measured with non-cycloplegic auto-

refraction using a Tomey RC 5000 autorefractor/keratometer (Tomey Corp., Nagoya, 

Japan). The refractive error was measured up to 10 times on each eye, and rated for its 

reliability from 0 to 9, with any score ≤ 4 considered to be reliable (lower scores were 

deemed as more reliable). Any poor reliability readings were excluded from the analyses 

before averaging. These results were then transformed to average mean spherical 

equivalent, by adding the spherical component and half of the cylindrical component 

power together. This was then averaged between the two eyes. The equation for this 

phenotype, Autorefraction Mean Spherical Equivalent (Autorefraction MSE) is shown in 

Equation 2.1.  
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Autorefraction MSE = ((R.Sph1 + 0.5 * R.Cyl1) + … (R.Sphn + 0.5 * R.Cyln)) /n + ((L.Sph1 + 0.5 * L.Cyl1) + 

… (L.Sphn + 0.5 * L.Cyln)) /n 

2                

Equation 2.1. Where R and L are for the right and left eye, respectively, and n is number of valid 
measurements taken. 

Individuals who had declared they had any previous eye surgery or certain ocular 

pathologies were excluded from analysis. This was because a history of complications 

or surgery may change the refractive error measurement from what the patient would 

have naturally developed, introducing error in the phenotype e.g. refraction can 

change due to IOL surgery or cataract development. Answering ‘yes’ to any of the 

following resulted in exclusion (Plotnikov et al. 2019): 

 Previous injury or trauma resulting in loss of vision 

 Any serious eye problems  

 Previous cataract surgery or glaucoma surgery e.g. lens extraction or 

trabeculectomy 

 Any other previous ocular surgery in the last 4 weeks 

 Refractive laser eye surgery 

 Corneal graft surgery 

 Self-reported cataracts or retinal detachment 

 This resulted in 42,617 participants being removed from analyses in which 

autorefraction-measured refractive error was the phenotype of interest.  

 Genotype Information  

DNA samples from participants were genotyped by means of genotyping arrays. UK 

Biobank used two different genotype arrays; the UK Biobank Lung Exome Variant 

Evaluation (BiLEVE) Axiom array or the UK Biobank Axiom array (Bycroft et al. 2018). A 

subset of 49,950 individuals were genotyped on the BiLEVE array, which had some 

distinct variants chosen because of their suspected involvement in lung function and 

related diseases. All other participants were genotyped with the Axiom array, 

specifically designed for UK Biobank. Overall these genotype arrays shared 825,927 

(95%) of markers between them. Genetic data were released in two phases, of which 
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the second wave included data for 488,377 participants. Data from this second phase 

were used in all analyses.  

From the ~800,000 directly-genotyped markers on the genotyping array, Bycroft et al. 

(2018) imputed genotypes at ~87 million loci in the genome using IMPUTE4 (see section 

1.3.5 in Chapter 1). This was done using a reference panel created from the UK10K and 

Haplotype Reference Consortium (HRC), while the 1000 Genomes Phase 3 panel was 

used for phasing (The 1000 Genomes Project Consortium et al., 2015; The UK10K 

consortium et al. 2015; Loh et al., 2016). Genetic data were available for 443,063 

participants after undergoing quality control filters for heterozygosity, a mismatch 

between self-reported and genetic sex, and non-European ancestry. A full flowchart of 

the participants available from UK Biobank is shown in Figure 2.2. 

  

 Figure 2.2 (overleaf) Flowchart indicating the steps taken to filter UK Biobank participants to the 
groups used in several analyses in this thesis, which included participants with European ancestry. 
The number of participants with refractive data who had self-reported European ancestry but did 
not have genetic data has also been stated for the analysis in chapter 6. For this subgroup, those 
with self-reported ‘white’ ancestry who had all covariate data and did not have any phenotypic 
exclusion criteria were included.  
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UK Biobank 
participants 
N = 502,631 

Participants remaining after removing those whose self-reported and genetic sex 
were not matched, or those lacking data for genotype or age. 

N = 444,857 

 

Participants who are within ±10 standard deviations of the mean 20 PCs for 
European ancestry 

N = 444,517 

Participants remaining after exclusion 
for previous surgery and other ocular 

history criteria 
N = 400,446 

 

Participants with valid autorefraction data 
N = 95,505 

(N = 98,870 inc. those without genetic data) 

Participants in whom 
refractive error could be 
imputed based on age of 
onset of spectacle wear  

N = 287,448 

Participants remaining after filtering outliers for 
heterozygosity 

N = 443,063 
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 Cohort Limitations  

Although UK Biobank is a valuable resource for investigating complex traits, it does have 

limitations that should be considered, particularly for ocular traits. For example, as 

already stated above, not all participants underwent refractive error measurement. 

Thus, although UK Biobank has genotype information on over 480,000 individuals, only 

117,279 of them had refractive error data. After data quality control filters and exclusion 

criteria have been applied, the resulting dataset comprises fewer participants than other 

studies reported in the literature (Pickrell et al. 2016; Tedja et al. 2018). Therefore, in 

my analyses, consideration was given into how to utilize the participants in the cohort 

who did not undergo autorefraction in order to increase the effective sample size for 

GWAS analyses (see section 4.1).    

The self-reported difficulty in distance/near vision that participants were asked was only 

ascertained for approximately 143,000 participants, most of whom also underwent the 

ophthalmic assessment. Therefore, any prediction or estimation of refractive error using 

this source of information in participants without autorefraction measurements would 

be limited due to the small sample size (only 37,000 participants without refractive error 

information were asked these questions).  

The demographics of the UK Biobank sample do not accurately represent the UK 

population. The aim of the UK Biobank project was to study common complex diseases, 

which tend to be more common in older individuals. Therefore, the target population 

age range of the study (40-70 years old) meant that children and young adults were not 

represented (Sudlow et al. 2015). Moreover, the study has an upward bias in its age 

range, with the greater majority of participants being 55 years of age or older. Therefore, 

UK Biobank is limited in its applicability to address research questions focussing on 

adolescent myopia development; for example, myopia reported by older individuals 

may be due to crystalline lens changes. However, many such cases of cataract-

associated myopia would have been excluded using the criteria specified in Section 2.1.3 

(Plotnikov et al. 2019). In addition, as UK Biobank participants would have spent their 

childhood in an era before smartphones and mobile devices were available, the 

adolescent environmental risk factor profile of the UK Biobank cohort may not reflect 

that of children growing up today.  
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The UK Biobank study has recruited more female than male participants on average (Fry 

et al. 2017). The socioeconomic status of UK Biobank participants was also higher than 

the UK population, with individuals more likely to own their own home and live in an 

area with a lower deprivation index (Fry et al. 2017). Furthermore, there is a ‘healthy 

participant selection bias’ overall within the cohort, with participants being leaner and 

less likely to smoke and demonstrating a lower mortality rate than the UK general 

population. The most important consequence of the lack of representation with the UK 

population is the potential for biased associations arising due to collider bias (Fry et al. 

2017; Munafò et al. 2018). 

The majority (95%) of participants in UK Biobank are of “white” ethnicity (i.e. European 

ancestry), which is representative of the 2001 census population (Fry et al. 2017). 

However, this meant that to control for population stratification (section 3.1.2), 

restriction to the largest homogenous ethnic sample (Europeans) would be required for 

the majority of the analyses performed, as failing to do so would present higher numbers 

of false positives due to confounding (McClellan and King 2010). Moreover, further 

difficulty arises because many participants are related; this again can lead to bias in 

genetic association studies (Thomson and McWhirter 2017). Therefore, when trying to 

maximise statistical power of my GWAS studies, consideration was also given regarding 

overcoming potential bias due to relatedness of individuals.  

2.2 ALSPAC cohort/Children of the 90’s  

The Avon Longitudinal Study of Parents and Children (ALSPAC), also known as ‘The 

Children of the 90’s study’ is a population-based, collaborative study working with the 

European Longitudinal Study of Parents and Children (ELSPAC), which in turn was 

designed due to the World Health Organisation (WHO) identifying the need for 

longitudinal studies in different environments to understand modifiable elements to 

children’s development  (Boyd et al. 2013). Original funding came from WHO Europe, 

with other sources of funding obtained from the early methodology and questionnaire 

pilots. The data currently available for the children are from birth up to 18 years of age, 

with the prospect of having lifelong follow-up results. Some information was collected 

by means of self-reported questionnaires and parental questionnaires. Physical 

measures were also taken during visits to the ALSPAC research clinic. Ethical approval 
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for all aspects of the study were obtained through the ALSPAC Ethics and Law 

Committee, along with Local Research Ethics Committees. 

 Recruitment  

The ALSPAC team recruited 14,541 expectant mothers (as the initial remit of the study 

was to evaluated the influences of the environment during pregnancy) who were due to 

give birth between April 1 1991 and December 31 1992 from the former county of Avon 

in South West England (Boyd et al. 2013). This included the city of Bristol, other nearby 

smaller towns, and surrounding rural areas, but excluded the city of Bath. Informed 

consent was obtained from all participants, along with the children’s agreement per 

visit.  

Expectant mothers were recruited via media advertisements and visiting community 

locations in the catchment area. If any interest was shown, or further details requested, 

an information pack was sent, with an ‘opt out’ system. Twelve months after the end of 

the recruitment phase, 13,988 of the babies were alive and included in the study. 

Recruitment had two additional phases. One was an attempt to recruit parents who had 

initially opted-out to re-join when their children were aged 7 years old, another when 

the children were aged 8 years old. Finally, 15,247 children were included in the study. 

 Phenotype Collection 

Measurements of the children’s refractive error were obtained using non-cycloplegic 

autorefraction with a Canon R50 (Canon USA, Inc., Lake Success, NY, USA) at the ages of 

7, 10, 11, 12, and 15 years old (Shah et al. 2017). At least 3 readings were taken at each 

visit, which were averaged. Participation was subject to attrition; not all participants 

attended appointments at all ages, with fewer returning for appointments at older ages. 

Some participants in the cohort did not attend for any refractive error or ocular 

assessments; 9,401 children presented at least one vision assessment clinic visit, 

meaning that 5846 (38%) had no refractive error data (Boyd et al. 2013). The average 

mean spherical equivalent refractive error at each clinic visit was calculated using 

equation 1 above (as per the UK Biobank cohort).  

Parents accompanying ALSPAC children attending the research facility when their child 

was 7 years old were also invited to sit for non-cycloplegic autorefraction if there was 
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sufficient time remaining. Overall, 1,516 ALSPAC parents (all of whom were mothers, 

aged 24 and over) took up the invitation to sit for autorefraction, which was performed 

with the same Canon R50 instrument.  

 Genotype Collection 

Researchers collected blood samples from both children and mothers, extracting DNA 

from immortalised lymphocytes. DNA from the ALSPAC mothers was analysed using the 

Illumina 660 W-quad chip (Fraser et al. 2013), whereas DNA from children was 

genotyped using the Illumina HumanHap550 quad chip genotyping platform (Taylor et 

al. 2016). This was performed for all children and mothers who gave consent. This 

resulted in over 10,000 children and mothers with genetic data (Fraser et al. 2013) 

As per the UK Biobank cohort, the majority of participants in ALSPAC are of European 

ancestry. After excluding related individuals (e.g. twins), those with poor quality 

genotype data, and participants who withdrew their consent, 7,981 children, and 1,516 

mothers remained in our sample who had available phenotypic data and were 

genotyped. After combining information from markers common to both genotyping 

arrays, genotypes for 477,482 variants were available. Imputation was performed (by 

the ALSPAC research team) with IMPUTE2 (Howie et al. 2009) against the first phase of 

the 1000 Genomes reference panel.   

 Cohort Limitations and Exclusion Criteria 

As mentioned in the phenotype section above, not all participants attended clinic visits 

at all available ages. There were 7,852, 7,310, 6,575, 6,582, and 4,899 children with 

refractive error measurements available at the ages of 7, 10, 11, 12, and 15, respectively. 

Furthermore, the numbers of participants at each age reduced to 5,634, 5,369, 4891, 

4895, and 3728 at ages 7, 10, 11, 12, and 15, respectively, for those with genotype data. 

Only 2,048 individuals with genetic data had refractive error measurements available 

for all 5 ages, with a general trend towards participants attending during early years of 

childhood and dropping out as they got older.   

As previously mentioned, the mothers of the ALSPAC children were not the primary 

focus of the original study, hence parental refractive error was measured only if time 

permitted. Repeated measures on each eye were not performed as consistently with 



   

41 
 

the ALSPAC mothers as with the ALSPAC children i.e. a different number of readings for 

each eye was done on the mothers (sometimes perhaps only one reading per eye). This 

may have resulted in less precise estimates of the true refractive error. 

ALSPAC children who attended for all visits tended to have a more myopic refractive 

error than those that did not, with an average MSE of +0.20D for children with 4 or less 

visits at the age of 15, against average MSE of +0.18D at the age of 7 for children that 

attended at all visits. However, this is not significant and unlikely to bias the result (t 

test, P = 0.56).  

Another important point to note is that the final autorefraction measurement in ALSPAC 

children was performed at the age of 15, when the phenotype may not have reached 

the level obtained by adulthood. This will mean that some participants may have been 

categorised as non-myopic, when in fact they will go on to develop myopia at an older 

age (Williams et al. 2013; Fan et al. 2016a), presenting a form of survivor bias (in which 

many people who have avoided becoming myopic before this age would be categorised 

as non-myopic hereafter). This mis-categorisation could lead to a measurement error, 

and thus limit the accuracy of genetic prediction.  
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3 General Methods 
 

This chapter describes the commonly-used methods employed in the experimental 

chapters of the thesis. When software applications are discussed, I describe the settings 

applied, along with a brief background explaining the theoretical basis underlying the 

tests performed. 

3.1 Data Preparation for GWAS analysis 

In order to perform a GWAS, data on the phenotype of interest, any covariates, and 

genotype are required. These data need to be organised so that information pertaining 

to each individual is matched and that it meets a certain level of quality. Therefore, 

before executing any GWAS analysis, quality control and exclusion criteria need to be 

applied to the data.  

 Data File Formatting 

For GWAS software packages to be able to read the input data, the data must be stored 

using a standard format. Historically, a popular format has been the PLINK text format 

(Purcell 2007), which comprises two file types: a ‘ped’ file containing information about 

the individuals, such as their phenotype and genotypes, and a ‘map’ file which includes 

information about the genetic markers and their genomic location. More recent versions 

of PLINK have switched to a three file format that uses compact binary coding for the 

genotype data: ‘bed’ binary files contain the participant ID and genotype data, ‘fam’ files 

contain individual and phenotype information, and ‘bim’ files contain details of the 

alleles and physical location of the markers (Purcell et al. 2007; Chang et al. 2015; Loh 

et al. 2018). As reading large text files can take a long time, the binary file format offers 

improved speed (Marees et al. 2018).  However, further advances have been made, with 

new BGEN binary files created to handle even larger datasets (Band and Marchini 2018), 

such as UK Biobank (Bycroft et al. 2018), in which genotytpe data can be handled with a 

faster processing speed due to greater data compression. BGEN format files can be 

accessed with most commonly used GWAS software (Chang et al. 2015; Loh et al. 

2015b). Thus, BGEN format files were used in Chapters 5 and 6 when analysing data 

from UK Biobank and PLINK binary format files were used in Chapters 4, 7, and 8 when 

analysing ALSPAC data. 
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 Principle Component Analysis 

Different ancestral populations have undergone genetic drift and thus can have different 

allele frequencies, which may lead to the case where a rare variant in one ancestry is 

relatively common in another (Byun et al. 2017). Using these differences in allele 

frequency and common genotype patterns it is possible to determine population 

structure and ancestry (Linck and Battey 2019). However, these differences between 

sub-populations can cause confounding bias (known as “population stratification”) 

when conducting an association study.  As GWAS testing is sensitive to these allele 

frequency differences, testing in a diverse, non-homogenous sample may lead to 

spurious associations on account of this population stratification (Price et al. 2006). For 

example, if a case-control investigation was performed for brown iris colour in a sample 

of Asian and Caucasian participants together, it would lead to false-positive associations 

as brown eyes are more common in Asian populations. Specifically, markers with a 

higher allele frequency in either Asians or Europeans would exhibit a spurious (non-

causal) association with eye colour.  

Originally, ‘genomic control’ was proposed to limit the inflation of P-values that would 

occur because of the high number of false positive associations from population 

stratification (Reich and Goldstein 2001; Devlin et al. 2004). However, this method has 

no ability to distinguish between true associations or false positives; genomic control 

corrects for stratification uniformly, leading to a loss of power. This is discussed later in 

section 3.2.1. 

Because of this potential confounder, the use of principal component analysis (PCA) has 

been proposed as an alternative or additional solution (Reich and Goldstein 2001; Price 

et al. 2006).  PCA works by determining patterns and trends in multi-dimensional data 

to infer structured genetic variation (Patterson et al. 2006). Then these identified 

patterns can be used to convert the correlated data into a list of linearly uncorrelated 

variables, transforming the data to have a reduced number of dimensions, which means 

that greater population trends (such as common allele frequency differences) can be 

controlled for (Price et al. 2006). PCA has the added advantage that it can reduce the 

number of correlated dimensions by any desired amount; i.e. the researcher can control 

for several different dimensions rather than one, which has the added benefit of 

allowing partitioning of multiple ancestries (Byun et al. 2017). Therefore PCA is 
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commonly used in GWAS analyses as a method to identify participants’ ancestral 

backgrounds and to control for sub-population trends (Bycroft et al. 2018; Marees et al. 

2018). An example of a PCA analysis for race is shown in Figure 3.1. 

 

 

 

 

 

 

 

For the investigations in this thesis, the PCs calculated by Bycroft et al. (2018) were used. 

The top 20 PCs were included as quantitative covariates in all GWAS analyses in order 

to reduce false positive associations due to population stratification. PCs were also 

utilized to identify a group of UK Biobank participants with European ancestry. The mean 

and standard deviation values for the first 20 PCs for individuals who self-reported their 

ethnicity as ‘White’ were calculated (444,517 participants). Then, participants whose 

PCs were within ±10 standard deviations of the mean for all 20 of the top PCs were 

considered as a homogenous group of European ancestry that could be analysed 

together in a GWAS analysis (N = 443,063) (please see section 2.1.3).  

 Covariates  

For all participants in UK Biobank, the age when the participant attended was recorded, 

including when they had their non-cycloplegic autorefraction performed. This age value 

was used as a quantitative covariate in all GWAS analyses. The sex of each participant 

was also used as a binary categorical co-variable, and any sex mismatched individuals (a 

difference found between self-reported and genotype-inferred sex) were excluded from 

analysis on account of potentially poor quality genotype data.  

Figure 3.1. Example of a graphical representation of principle component analysis differentiating 
principle components 1 and 2 for different ethnicities. Taken from Khera Amit et al. (2019). 
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As described in section 2.1.4, 2 different genotyping arrays were used for the collection 

of genetic information (either the BiLEVE or UK Biobank Axiom array) (Howie et al. 2009; 

Bycroft et al. 2018). To ensure the use of different genotyping arrays did not induce any 

spurious associations from differences in imputation, genotype array type was used as 

a categorical covariate. Any individuals who had missing data for the phenotypic trait of 

interest, or had missing covariate information were excluded from the GWAS analysis.  

 Additional GWAS Filters  

Both genetic and phenotypic information was filtered to ensure that it was suitable for 

GWAS analysis. The filters chosen were in accordance with those commonly used in 

GWAS publications (Marees et al. 2018). 

The maximum genetic data missing per individual and maximum missing per SNP were 

set at 5%, and 2% respectively, meaning that any person or SNP with missing data 

greater than these percentages would be excluded. Any SNP that deviated from Hardy 

Weinberg Equilibrium (HWE) was excluded. Usually, violations of HWE indicate 

genotyping error, or non-randomised mating/evolutionary selection (Knapp et al. 1995). 

The threshold for this filter was set at P < 1x10-6, which has been advised for quantitative 

traits (Marees et al. 2018). Participants with extremely high or low heterozygosity were 

also excluded, specifically those outside of ±4 standard deviations from the mean. This 

measure of genetic diversity would allow those with an atypical level of genetic variation 

to be excluded from the analysis (extremely high heterozygosity is suggestive of two 

DNA samples accidentally being mixed together; extremely low heterozygosity is 

indicative of a poor quality DNA sample that produces numerous incorrect genotype 

calls).  

 BOLT Software for GWAS Analysis 

BOLT-REML LMM version 2.3.1 (BOLT) was used for conducting all GWAS analyses in this 

thesis. BOLT is a commonly used software package able to run GWAS analyses of both 

continuous and categorical phenotypes while accounting for relatedness, both familial 

and cryptic (Loh et al. 2015b; Loh et al. 2018).  

BOLT does this by using a linear mixed model in the association testing for single 

polymorphic sites in a GWAS. This contrasts with many other GWAS software packages, 
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such as PLINK (Purcell 2007; Chang et al. 2015), which use simple linear or logistic 

regression models rather than a mixed model.  

Linear mixed models (LMM) have similar features to a simple linear regression, in which 

there are fixed effect estimations used in the model. However, linear mixed model can 

account for random effects within the data, which can be used to account for underlying 

population stratification and relatedness in the test sample. BOLT creates a genetic 

relatedness matrix (GRM), in which the degree of relatedness (kinship) between pairs of 

individuals is estimated through the similarity of their genotypes. BOLT conducts 

association tests using a ‘leave one chromosome out’ (LOCO) process, in which variants 

situated on the same chromosome as the test SNP are not assessed in the random 

effects of the linear mixed model during analysis (Loh et al. 2015b). This is done so that 

the test SNP is not included twice in the model, in both the fixed effects when tested for 

association and in random effects through relatedness. If the LOCO method was not 

used this would lead to an over-fitting of the model due to proximal contamination, and 

reduce the test power (Listgarten et al. 2012).  

This use of a LMM is a crucial improvement over traditional linear regression analyses 

used in GWAS, as previously being unable to account for relatedness led to reduced 

power in detection of associations and an increased number of false positive association 

signals and inflated P-values (Yang et al. 2014). The implementation of a linear mixed 

model to control for relatedness enables the inclusion of related individuals without 

introducing confounding bias, increasing the sample size available for GWAS testing and 

thus improving statistical power (Korte and Farlow 2013).  

To create the genetic relatedness matrix in BOLT, a set of variants genotyped with a high 

degree of certainty are recommended (Loh et al. 2015b). These are termed ‘high 

confidence’ variants.  For my analyses, 890,000 high confidence variants were selected, 

namely those with ‘rs’ prefixes, genotyped in at least 99% of individuals, which had a 

MAF of >0.05. These SNPs were LD pruned (see Section 3.2.5 for details) using a 50 

marker wide window, with one marker from any pair of markers removed if they had an 

LD r2 > 0.1. The windows were advanced in 5 marker steps.  

BOLT can implement two different models when performing GWAS analyses, an 

infinitesimal model, and a non-infinitesimal model (Loh et al. 2015b). The infinitesimal 
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model assumes that all variants in the analysis are causal, with each having a small effect 

the size of which is normally distributed. The non-infinitesimal model is more 

complicated, implementing a Bayesian approach that assumes effect sizes of genetic 

variants do not follow a single normal distribution as per infinitesimal models, and that 

a small number of variants with large effects are present, with the remaining variants 

having smaller effect sizes. These different probability distributions are calculated by 

BOLT, based on the input data, and incorporated into the linear mixed model. Should 

there be an improvement with the use of non-infinitesimal models, BOLT would signal 

this in the final output file. As there was no such improvement for any of the GWAS tests 

performed, all results were taken from the infinitesimal model analysis.  

3.2 Additional Genetic Analyses 

 Genomic Inflation Factor  

For all GWAS analyses performed, a genomic inflation factor (λgc) was calculated as the 

median observed χ2 statistic divided by the expected median χ2 statistic. This was used 

alongside quantile-quantile (QQ) plots to assess for possible genomic inflation. Should 

the λgc be greater than 1, this may indicate some population stratification bias that 

would need to be addressed. As mentioned above, adjusting GWAS summary statistics 

based on λgc has been argued to be overly stringent, as it does not account for potential 

polygenicity of the trait, in which a trait with many variants causing small effects leads 

to a higher λgc value (Bulik-Sullivan et al. 2015b). Therefore, although λgc was calculated 

to explore potential inflation in the GWAS tests conducted, it was interpreted in the 

context of other software (LDSC; described below) that allowed the assessment of 

polygenicity. 

 LD Score Regression: LD Score Regression Intercept  

To assess whether λgc had a value greater than 1 due to polygenicity, the LD Score 

Regression (LDSC) Intercept (λLDSC) was calculated to compare against λgc. The LDSC 

intercept is an estimation of the inflation of association test statistics due to population 

structure or genotyping errors (Bulik-Sullivan et al. 2015b). LDSC uses reference LD 

information from the HapMap3 reference panel for individuals with European ancestry 

(The International HapMap et al. 2010; Bulik-Sullivan et al. 2015b).  
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Initially an LD score for all variants included in the GWAS is calculated. The LD score is 

calculated using a regression analysis that examines the relationship between GWAS 

summary statistics for SNPs and linkage disequilibrium scores for those SNPs, computing 

the sum of the pairwise r2 values between the variant and all other variants within 1 

centimorgan (cM) (on average, 1 cM corresponds to approximately 7.5x105 base pairs) 

(Lodish H 2004). By doing this, it is possible to calculate SNP heritability estimates and 

genetic correlation (see below) estimates between pairs of traits using only GWAS 

summary statistics (Bulik-Sullivan et al. 2015a).  

The LD score intercept was calculated for all GWAS summary statistics, to test for any 

potential P-value inflation due to population stratification. 

 LD Score Regression: Genetic Correlation 

LD score software also allows the calculation of genetic correlations between pairs of 

traits using GWAS summary statistics. LDSC takes advantage of LD patterns in that GWAS 

effect size estimates for a SNP would encompass the effects of other SNPs in LD with 

that SNP (Bulik-Sullivan et al. 2015b). If a trait is polygenic, SNPS with higher LD scores 

would, on average, produce higher χ2 statistics relative to SNPs with lower LD scores 

(Yang et al. 2011a). LDSC works by calculating and controlling for LD patterns in the 

genome, and then assessing the genetic effects for two specified traits (Bulik-Sullivan et 

al. 2015a). This can then calculate the genetic correlation between these two traits; a 

value is given between -1 and 1, in which a value close to 1 or -1 would indicate that the 

genetic influences of two traits are identical, and a value of 0 would indicate complete 

independence in the traits genetic effects. All genetic correlations reported in this thesis 

were calculated using LDSC software.  

 Multi-Trait Analysis of GWAS (MTAG)  

Multi-Trait Analysis of GWAS (MTAG) software (Turley et al. 2018) was used as the 

primary statistical method for combining summary statistics from GWAS analyses of 

different traits should they demonstrate a genetic correlation. The standard approach 

for combining GWAS summary statistics is inverse-variance weighted meta-analysis, 

through software such as METAL (Willer et al. 2010), which has been used in previous 

GWAS analyses for refractive error (Verhoeven et al. 2013; He et al. 2014; Tedja et al. 

2018). However, MTAG has been argued to perform as well, or even better than 
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standard meta-analysis since, (i) it is computationally as fast as standard meta-analysis 

methods (by assuming that the variance–covariance matrix of effect sizes across the 

traits is the same), (ii) it permits the use of overlapping data samples when used for 

different phenotypes, and (iii) when used to combine information across multiple traits, 

it outputs regression coefficients that are specific for the trait-of-interest. For example, 

if the genetic correlation between Trait A and Trait B is 0.5, then conventional meta-

analysis would yield regression coefficients corresponding to a hybrid of these two, e.g. 

two GWAS results for one SNP with the effect sizes of +0.4 and +0.2 would (assuming 

equal standard errors) give an output of +0.3 in the meta-analysis. However, with MTAG, 

a separate regression coefficient output would be given for Trait A and for Trait B. MTAG 

also offers the benefit that output values can be transformed into the same units as the 

trait of interest, maintaining its translational nature when merging correlated traits 

measured using different units.  

The fundamental idea underpinning MTAG is that when GWAS estimates from different 

traits are correlated, the effect estimates for each trait can be improved upon by 

incorporating information contained in the GWAS estimates for the other traits (Turley 

et al. 2018). Traits can demonstrate correlation for two main overarching reasons: either 

from a true genetic correlation, or the estimation error of variant effects may be 

correlated between traits. This will usually be due to phenotypes of the two traits 

demonstrating correlation or underlying biases found between the SNP effect estimates, 

from sources such as population stratification or relatedness. MTAG uses these two 

sources of correlation to increase the statistical power of effect estimates for the trait 

of interest (Turley et al. 2018). All MTAG analyses were performed using the default 

settings, with the assumption of an infinitesimal SNP effects model (Turley et al. 2018).  

 LD Control: LDpred Software 

When calculating a genetic risk score for genetic prediction, the linkage disequilibrium 

(please see Section 1.3.6) between SNPs should be taken into account. This is because 

the presence of highly correlated SNPs being used together can lead to several SNPs 

essentially displaying the same information for the identified loci (i.e. the same 

information about a significant association with that section of the genome is given by 

several SNPs). Moreover, non-causal positive associations in GWAS studies make it 
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challenging to identify causative SNPs; a high correlation between SNPs (i.e. high LD), 

means that when trying to detect an association with a trait, several candidate SNPs will 

be identified. This can lead to inaccuracies in downstream analyses such as genetic risk 

score creation and trait risk estimation due to the use of non-independent predictors 

(Liu et al. 2013; Vilhjálmsson et al. 2015).  

A commonly reported approach to account for LD is ‘clumping and thresholding’ 

(Rydzanicz et al. 2011). Clumping is the process of taking index variants (i.e. variants 

identified as being ‘significantly’ associated with the trait-of-interest according to a pre-

specified p-value threshold), and grouping (‘clumping’) the index variant together with 

all nearby variants in a region of a pre-determined genomic length. The non-index 

clumped variants are then excluded from the downstream analysis. In LD-based 

clumping, instead of clumping all variants in the region of pre-specified length around 

each index variant, only variants with a pre-specified level of LD with the index variant 

are clumped together. Again, the non-index clumped variants are excluded from the 

downstream analysis. 

A typical LD-based clumping threshold would be an r2 = 0.1 and a typical region-based 

clumping distance would be 250 kb, i.e. 250,000 base pairs either side of the index SNP 

(Vilhjalmsson et al., 2015). After clumping and thresholding has been performed, SNPs 

in high or moderate LD with the index SNPs and within the same genomic region are 

removed from the analysis. However, the use of clumping and thresholding has 

limitations. The region size for clumping is chosen arbitrarily, and dismisses informative 

markers that may be nearby one another during the selection process, thereby limiting 

the obtainable phenotypic variance explained (Flister et al. 2013). The P value threshold 

chosen for defining index SNPs is also arbitrary. 

Another method of filtering genetic markers in LD is ‘LD pruning’ (Calus and Vandenplas 

2018). This is done by identifying a SNP and computing its LD (r2) with nearby SNPs in a 

pairwise fashion. Should 2 SNPs have LD higher than a certain threshold, one of the SNPs 

is removed (usually the one with the lower MAF). This process continues iteratively until 

there are no SNPs in LD remaining. Unlike clumping and thresholding, LD pruning can 

remove strongly associated SNPs (those with low P-values in a GWAS), and may lead to 

the output of only a few SNPs, or areas of the genome that have no representative SNP 
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at all (i.e. there is no grouping on relative distance of variants). This in turn may lead to 

a reduced number of variants being used in calculating a genetic risk score, thus reducing 

predictive accuracy. Thus, it has been suggested that LD-based clumping is superior to 

traditional LD pruning (Marees et al. 2018).  

An even more effective methodology proposed to account for LD is to down-weight 

variants that are in LD in the same way they would be in a regression model that fitted 

all variants simultaneously rather than one-by-one. A widely-used implementation of 

this approach is the LDpred software package (Vilhjálmsson et al. 2015). LDpred uses a 

Bayesian approach in calculating posterior mean effect sizes for all GWAS markers, 

based on LD patterns that are present in a reference panel with the same ancestry as 

the investigated sample.  

LDpred analysis has three steps. Firstly, genotype data from the reference panel is used 

to calculate LD (r2) values for pairs of markers. Secondly, these values are used to adjust 

the effect size weights of summary statistics, incorporating the LD structure from the 

first step, using Gibbs sampling.  A Gibbs sampler is a computational process using a 

Markov chain (in which the probability of an event depends on the state of a previous 

event or known value), which is used to calculate a posterior probability distribution. 

With regard to LDpred, this step involves the use of pairwise LD correlations obtained 

from an ancestry-match reference panel to infer the distribution of the genetic markers 

and the relative likelihood of pairs of alleles being inherited together. After running 

several iterations, the posterior probability distribution can be assessed to determine 

the likely genotype-phenotype relationship in the sample conditional on the genotype 

at other marker locations. The final step involves the application of these new SNP 

weights to an independent validation dataset (see the Polygenic Risk Score section 

1.3.10 below).  

This approach has been shown to improve the accuracy of genetic prediction compared 

to clumping and thresholding methods (Vilhjalmsson et al., 2015). Because of this, 

LDpred software (version 1.0.6) was used in chapters 7 and 8 with the aim of improving 

the accuracy of the genetic risk scores.  
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 Polygenic Risk Score Estimation 

All genetic risk score calculations were performed using the PLINK software ‘--SCORE’ 

function (Purcell 2007). This included the third (validation) step of LDpred analysis. 

Genetic risk scores were calculated using a formula in which the effect size of each SNP 

was weighted according to the degree of association in a GWAS analysis (i.e. the 

weightings corresponded to GWAS regression coefficients) and multiplied by the 

number of risk alleles present. All risk scores assumed an additive model as explained in 

Section 1.3.7. Thus, the risk score for each participant was calculated as the sum of the 

contribution from each locus; no interaction effects were modelled. The formula for the 

genetic risk score was: 

Predicted refractive error of an individual = (E1 * X1) + (E2 * X2) + (E3 * X3) + … (En * Xn) 

Equation 3.1 Equation for the genetically predicted refractive error for any given individuals. Ei is 
the regression coefficient (also known as “beta coefficient” or “effect size”) for variant i, and Xi 
is the number of risk alleles of variant i carried by the participant of interest. 

3.3 Statistical Analyses 

All other statistical analyses, such as logistic regression, linear regression, linear mixed 

models, survival analysis, and receiver operating characteristic curve (ROC) analysis 

were performed using R (version 3.5.0). Creation of tables and correlative data was done 

using a mixture of R and Microsoft Excel software (R scripts for analyses where 

applicable are in the Appendices, Chapter 1). Quality control filtering of genotype and 

phenotype data was performed using custom-written BASH scripts. GWAS analyses, use 

of LDpred, MTAG and LDscore were performed using the Cardiff University ARCCA 

RAVEN Supercomputing Cluster.  
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4 Prediction of Refractive Error in Children Using Either Genetic Risk 

Scores or Number of Myopic Parents 
 

4.1 Introduction 

The CREAM consortium have previously identified 149 variants that were genome wide 

significantly associated with refractive error in a CREAM meta-analysis and that  

demonstrated some evidence of replication (P < 0.05) in an independent sample (Tedja 

et al., 2018). In this experiment, these 149 variants were used in combination to create 

a polygenic risk score for predicting refractive error in children. 

A person’s number of myopic parents has been used for many years by researchers to 

estimate the risk of developing myopia (Hui et al. 1995; Wu and Edwards 1999; Mutti et 

al. 2002; Jones-Jordan et al. 2010), as described in Section 1.2.4. In this respect, the 

number of myopic parents (0, 1, or 2) has been proposed as a predictor variable that 

captures familial factors associated with the inheritance of myopia. Moreover, many of 

the above studies made the assumption that number of myopic parents primarily 

captures the genetic risk of myopia, thereby ignoring environmental influences that may 

also be associated with parental myopia.  

In this chapter, number of myopic parents was compared to the genetic risk score in 

order to assess the extent to which parental myopia reflects inherited genetic risk 

and/or other sources of influence. (The latter sources of influence would include 

‘genetic nurture’ (Zhang et al. 2015a; Richmond et al. 2017), i.e. non-inherited genetic 

risk arising from environmental effects associated with non-transmitted parental 

genotypes, as well as other environmental factors associated with parental myopia). 

Specifically, the hypothesis tested in this study was that using the genetic risk score 

would improve the prediction accuracy of refractive error in children beyond that of 

knowing their number of myopic parents. As well as examining the prediction of 

refractive error per se, a secondary aim was to test the hypothesis that the genetic risk 

score would also enhance the prediction of the incidence of myopia better than knowing 

the number of myopic parents alone. 
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4.2 Methods  

The methods are split into four sections: The determination of the best genetic risk score 

model, linear regression models for refractive error prediction accuracy, refractive error 

prediction trajectories, and the prediction of incident myopia. A summary of the 

participants used in the different sections of this chapter are shown in Figure 4.1.   

 Study Participants  

The children studied were participants in the Avon Longitudinal Study of Parents and 

Children (ALSPAC; see Section 2.2). The children were invited to attend the research 

clinics for a host of measures on an annual basis, although not all children attended at 

all years. Ocular measurements were taken at 5 different age visits, when the 

participants were aged 7, 10, 11, 12, and 15 years old (Williams et al. 2008b). Refractive 

error was measured using non-cyclopegic autorefraction. The average mean spherical 

error was calculated as described in Section 2.1.3.  

Genetic data were obtained through analysis of DNA extracted from blood samples. 

Approximately 10,000 ALSPAC children were genotyped (Boyd et al. 2013). There were 

7,981 children with full genome-wide genotype information remaining after excluding 

data that failed quality control assessments, participants that withdrew consent, 

participants that were related, and participants of non-European ancestry (in order to 

avoid issues relating to population stratification).  

Parental myopia was inferred using self-reported answers to an item on a questionnaire 

completed, separately, by the child’s mother (or guardian) and by their father (or 

guardian) when the mother was pregnant. Each parent was asked to complete the 

following question: “How would you rate your sight without glasses?” The options given 

for response were: “always very good”, “I can't see clearly at distance”, “I can't see 

clearly close up”, and “I can't see much at all.” Reponses were classified into being 

myopic or not, as a binary variable. This classification was optimised by comparing the 

answers given by parents whose refractive error was measured. Thus, the responses 

were categorised using the following methodology (Shah et al. 2017): parents whose 

responses for both eyes were, “I can't see clearly at a distance” or “I can't see much at 

all” or a combination of these two responses were classed as being myopic. Parents with 

both eyes categorized as “always very good” or “I can't see clearly close up” or a 
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combination of these two responses were classed as being non-myopic. Any other 

combination of responses resulted in the classification being set as “missing”. 

 Selection of Genetic Variants 

As explained in the introduction, the 149 lead variants from the CREAM and 23andMe 

meta-analysis (Tedja et al., 2018) that demonstrated evidence of replication in an 

independent sample were included in the genetic risk score creation. These variants 

were selected because they were from the largest GWAS for refractive error that had 

been published, and since the ethnicity of the CREAM and 23ndMe GWAS sample 

(European) matched the ethnicity of the majority of the ALSPAC participants. 

 Genetic Risk Modelling 

The PLINK software “--SCORE” function was used to generate genetic risk scores (as 

described in Section 3.2.6). Genetic risk scores were calculated using two different 

methods. 

The first genetic risk score model was an “allele score” (also termed a “raw genetic risk 

score”). In this model, the effect size is not used in the calculation and all variants are 

weighted equally in the creation of the genetic risk score i.e. the effect size is 1 for all 

variants, and therefore only the number of variants is counted and summed together to 

give the risk profile.  

The second model was a weighted genetic risk score, as described in Section 3.2.6, which 

should theoretically provide greater precision than the first model. The variant weights 

(beta coefficients) for this model were obtained from the GWAS for refractive error in 

UK Biobank participants. Hence, the genetic risk score “effect size” in this model would 

be expressed in dioptres. However, for ease of interpretation, the scores were 

standardised to have a mean of zero and a standard deviation of 1, i.e. converted to Z-

scores. 

Each child in the sample was assigned a genetic risk score (using both models) based on 

the genotypes for the 149 genetic variants. Linear regression models were created to 

identify how well these genetic risk scores explained the observed variance in refractive 

error (see below). The genetic risk score model (i.e. model #1 or #2, as described above) 

that gave the best accuracy in predicting refractive error was then compared against the 
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predictor variable “number of myopic parents” (coded as a categorical variable: 0, 1 or 

2). A combined model comprising of the genetic risk score as well as the number of 

myopic parents was assessed to test whether the combined model improved the 

accuracy of refractive error prediction above that of either predictor alone. 

 Refractive Error Linear Model Prediction 

Multivariable linear regression models were created using number of myopic parents 

and/or genetic risk score as predictor variables for refractive error (in Dioptres). Number 

of myopic parents was coded as a categorical variable with three levels (0, 1, or 2 myopic 

parents), with zero myopic parents used as the reference category. Genetic risk score 

was coded as a continuous variable (model 1: unweighted allele score; model 2: Z-score 

for weighted allele score). The better-performing of these two genetic risk score models 

was used for further analysis to compare against number of myopic parents. These 

prediction models were applied using all participants who had their refractive error 

measured at either 7 or at 15 years old.  In order to allow a comparison of predictive 

performance for children of different ages (i.e. age 7 vs. 15 years old) a sample of 

participants who had refractive data available at both ages was analysed to allow for a 

direct comparison.  

 Estimation of Refractive Error Trajectory  

The ALSPAC children’s longitudinal data gives the opportunity to model the 

development of refractive error. Linear mixed models were used to calculate refractive 

trajectories in a similar method to that done by Fan et al. (2016a). This was done for 

number of myopic parents, genetic risk score, and a combined model, for all children 

who had attended for at least 3 visits to measure refractive error (as not all children had 

attended for all ages). Fixed effects included in the model were: sex, age-at-visit (to the 

first, second, third, and fourth polynomial order), and the predictor variable(s) of 

interest (i.e. number of myopic parents, genetic risk score, or both). Individual-level 

random effects included the refractive error of each child in the baseline age 7 visit 

(random intercept), and the trajectory (random slope) of refractive error with age.   

The results for these models were plotted to display the estimated refractive trajectory. 

This was done to demonstrate the trajectories for children between the ages of 7 – 15 

years old with: 0, 1, or 2 myopic parents, a high, average or low genetic risk score, and 



   

59 
 

a combined model that categorised children into one of nine groups, determined by 

their number of myopic parents and their genetic risk category. An “average” genetic 

risk was defined as having a standardised genetic risk score of zero, and “low” and “high” 

genetic risk were defined as a genetic risk score of 1 standard deviation lower or higher 

than the mean value, respectively.  

 Prediction of Myopia Incidence  

In order to investigate if number of myopic parents, genetic risk score, or a combined 

model was more accurate at predicting incident myopia, survival analysis was conducted 

using Cox proportional hazards models (Breslow 1975; Guggenheim et al. 2012).  

Participants with a known number of myopic parents, a genetic risk score, and who had 

at least one auto-refraction measurement were included in these analyses (for more 

information please see Figure 4.1). Because ALSPAC children had their refractive error 

measured using non-cycloplegic autorefraction (Boyd et al. 2013), and this has been 

shown to give an average -0.25D measurement error compared to that of cycloplegic 

autorefraction in ALSPAC (Williams et al. 2008a; Northstone et al. 2013), participants 

were classified as myopic if their mean spherical equivalent was ≤ -1.00D. Age of onset 

of myopia was defined as the age of the child at the first clinic visit at which their 

refractive error was below the myopia threshold. For children who were classified as 

non-myopic at all of their clinic visits, their age at their last clinic visit was used as the 

right-censored time to event.  

Three models were created: a model for number of myopic parents (0, 1 or 2), a model 

for genetic risk score categorised as low, average, or high risk, and a model with both 

predictors. The genetic risk score category for these last two models was defined as 

above in the LMM methods (resulting in 3 categories in model 2, and 9 categories in 

model 3). All models included sex as a predictor variable.  
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Figure 4.1 Flowchart demonstrating participant selection (adapted from Ghorbani Mojarrad et al. (2018)). 

ALSPAC cohort  

N = 14,712  

Removal of participants with unknown number of myopic parents  

N = 4,358  

Removal of participants with consent withdrawn, non-European ancestry, sub-optimal genotype data quality, relatedness or missing genotypes 

N = 7,849  

Participants with age 7 
refractive data 

N = 3,320 

Participants with age 15 
refractive data 

N = 2,273 

Participants with refractive 
data at 3 different ages 

N = 3,047 
 

Participants used to identify best 

genetic risk model, and linear 

regression models to obtain R2 values 

for predictive model fit (Figure 4.4) 

Participants used in linear 

mixed models to estimate 

refractive error 

trajectories (Figure 4.5) 

Participants with refractive 
data at any age 

N = 3,780 
 

Participants with both age 
7 and 15 refractive data 

N = 2,048 

Participants used in 

survival model for 

incident myopia analysis 

(Figure 4.6) 

Participants used in linear 

regression models to 

identify age-comparative 

R2 results 
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4.3 Results 

Population demographics for the participants used in the analyses at ages 7 and 15 are 

shown in Table 4.1. There were a total of 3,350 and 2,273 children with a known number 

of myopic parents, genotype data, and who had autorefraction measurements at age 7 

or 15 years of age, respectively. An overlapping sample of 2,048 participants had 

refractive data for both ages 7 and 15 years old.  

Variable 
Age 7 years 

sample 
(N=3,320) 

Age 15 years 
sample 

(N=2,273) 

Age 7 and 15 
sample 

(N=2,048) 
   Age 7 Age 15 

Age (mean  SD) 7.47 ± 0.17 yrs 
15.41 ± 0.27 

yrs 7.45 ± 0.14 yrs 15.41 ± 0.26 yrs 

Percentage male 
(N) 51% (1,680) 47% (1,071) 48% (978) 

Refractive error 
(mean  SD) 

+0.17 ± 0.81 D -0.43 ± 1.24 D +0.16 ± 0.79 D -0.43 ± 1.19 D 

Percentage 
myopic (N) 

2.1% (71) 16.2% (369) 2.3% (48) 16.1% (329) 

Number of myopic 
parents 

   

  Zero (%) 1341 (41%) 886 (39%) 783 (38%) 

  One (%) 1535 (46%) 1052 (46%) 963 (47%) 

  Two (%) 444 (13%) 335 (15%) 302 (15%) 

Table 4.1. Demographics of the samples used in the linear regression prediction models. Samples 
from the first two rows were also used in the identification of the best genetic risk score model. 

 Genetic Risk Score as a Predictor Variable 

Two different genetic risk score models were evaluated, an unweighted model (model 

#1) and a weighted model (model #2). The predictive performance of these two models 

is displayed in Table 4.2. The distribution of the number of risk alleles carried by the 

participants is shown in Figure 4.2A, while Figure 4.2B demonstrates the distribution 

with standardised Z score values. 

The average number of risk alleles carried by the sample was 121 (with a range of 95 to 

151). The maximum possible would be 298 (149 risk variants x 2 copies of each allele). 

The weighted genetic risk score model (model #2) demonstrated a normal distribution 

(Shapiro-Wilks normality test W = 0.94, P = 0.1), whereas the number of risk alleles 

(model #1) did not (Shapiro-Wilks normality test W = 0.91, P = 0.04). By definition, the 
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mean and standard deviation of the standardised model #2 were approximately 0 and 

1, respectively.   

 

Figure 4.2 Histograms demonstrating the different distributions of A: number of risk alleles 
carried, B: a transformed standardised genetic risk Z score.   

The performance of the two models in predicting refractive error in children at 7 and 15 

years old is displayed in Table 4.2. The results show that the R2 when using the weighted 

Z score model was slightly higher at age 15 (model fit P = 0.06 and P = 0.05 for age 7 and 

15, respectively). Therefore, weighted genetic risk scores were used for all subsequent 

analyses in this chapter.  

Table 4.2. Performance in predicting refractive error for 2 different genetic risk score models. 
Values indicate the variance explained; R2 (95% confidence intervals).   

 Number of Myopic Parents as a Predictor Variable 

There were subtle yet significant differences found between number of myopic parents 

and the distribution of genetic risk scores. In comparison to participants with no myopic 

parents, the genetic risk score was 0.15 standard deviation units higher in those with 

one myopic parent, and 0.36 standard deviation units higher in children with 2 myopic 

parents (both P < 0.00001). The distribution of genetic risk scores in children with 

different numbers of myopic parents is illustrated in Figure 4.3. 

 
Age 

Model #1 
(Unweighted allele score) 

Model #2 
(Standardised, weighted Z score) 

7 Years Old 0.0087 
(0.001-0.016) 

0.0114 
(0.004-0.019) 

15 Years Old 
 

0.0222 
(0.009-0.035) 

0.0264 
(0.013-0.039) 
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Figure 4.3. Density plot displaying the distribution of genetic risk scores (Z-scores) for participants 
with 0, 1, and 2 myopic parents. Note that the sample sizes of these groups were not equal; there 
were 1,859, 1,946, and 553 participants with 0, 1, and 2 myopic parents, respectively. Adapted 
from Ghorbani Mojarrad et al. (2018). 

 Refractive Error Linear Model Prediction Results 

4.3.3.1 Number of Myopic Parents 

For ALSPAC participants aged 7 years old, the variance in refractive error explained (R2) 

by the number of myopic parents was 3.0% (95% CI 1.8-4.1%, P < 2.2x10-16). At the age 

of 15, the variance explained increased to 4.8% (95% CI 3.0-6.5%, P < 2.2x10-16). 

4.3.3.2 Genetic Risk Scores 

As described above, the weighted genetic risk score was also weakly predictive of 

refractive error at both ages. At age 7, the variation in refractive error explained was 

1.1% (95% CI 0.04-1.9%, P = 4.6x10-10). This increased to 2.6% (95% CI 1.3-3.9%, P = 

5.1x10-15) at the age of 15 years. 

4.3.3.3 Combined Genetic Risk Z Score and Number of Myopic Parents  

Combining the predictor variables together improved predictive performance at both 

ages. At 7 years, the R2 was 3.7% (95% CI 2.5-5.0%, P < 2.2x10-16) and at 15 years, 7.0% 

(95% CI 5.0-9.0%, P < 2.2x10-16). Adding an interaction term for both variables in the 

model showed no evidence for an interaction between genetic risk score and number 
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of myopic parents in the combined model at either age (P > 0.05). An improvement was 

found when comparing the combined models to the model with number of myopic 

parents alone (likelihood ratio test: P = 1.1x10-7 and 2.4x10-12, at ages 7 and 15, 

respectively). A summary of these results can be seen in Table 4.3 and Figure 4.4. 

4.3.3.4 Prediction Comparison at Ages of 7 and 15 Years of Age 

Prediction comparisons between children aged 7 and 15 years were carried out for the 

subset of 2,048 participants with information available at both ages (see Figure 4.1).  

When only the number of myopic parents was used as the predictor variable, the R2 

increased from 2.8% (95% CI 1.4-4.2%) when measured at age 7 years, to 4.6% (95% CI 

2.8-6.4%) at age 15 years. When using solely the genetic risk score, the R2 increased from 

0.7% (95% CI 0.0-1.4%) at age 7 years to 2.0% (95% CI 0.8-3.2%) at age 15 years. For 

prediction using a combined model, the R2 increased from 3.3% (95% CI 1.8-4.8%) at age 

7 years to 6.1% (95% CI 4.1-8.0%, P < 2.2x10-16) at age 15 years. Although the R2 values 

were higher at the age of 15 than at the age of 7, the overlapping confidence intervals 

mean that it is difficult to draw any firm conclusions as to whether the difference 

between prediction comparisons was significant.   
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Table 4.3.   Accuracy (R2) in predicting refractive error using linear regression models with predictor variables: number of myopic parents, genetic risk Z score, 
and a combined analysis model. The model A vs. model C significance was tested using a likelihood ratio test. 

 

 

 

 

 

 

 

 

 

 

 
Model A 
Number of myopic parents 

Model B 
Genetic risk score 

Model C 
Combined analysis 

Model 1 vs. 
Model 3 

 R2 95% CI P-value R2 95% CI P-value R2 95% CI P-value P-value 

Children aged 7 years 
(N=3,320) 

0.030 0.018-0.041 <2.2x10-16 0.011 0.004-0.019 4.6x10-10 0.037 0.024-0.050 <2.2x10-16 1.10x10-7 

Children aged 15 
years (N=2,273) 

0.048 0.030-0.065 <2.2x10-16 0.026 0.013-0.039 5.1x10-15 0.070 0.050-0.090 <2.2x10-16 3.93x10-12 

Figure 4.4. Bar chart illustrating the accuracy of predicting refractive error using number of myopic parents, genetic risk score, and a combined model, in 
children aged 7 or 15 years old. Error bars are 95% confidence intervals (adapted from Ghorbani Mojarrad et al., (2018)). 
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 Linear Mixed Model Refractive Error Trajectories 

3,047 participants were included in the linear mixed model analyses after excluding 

participants without genotype data or information about their number of myopic 

parents, and those who had attended fewer than 3 visits at different ages (Figure 4.1). 

Figure 4.5 displays the trajectories predicted using the best-fit models for number of 

myopic parents, genetic risk score and a combined model, respectively. All models 

indicated a progression towards a more myopic or negative refractive error with age 

across for all risk categories. This shift was less observable in the lower risk categories 

for both genetic risk score and number of myopic parents.  

A widening in the distribution of refractive error with age was evident in all three 

analyses, with the number of myopic parents showing a larger variation between 

individuals with different levels of the risk factor (i.e. 0, 1, or 2 myopic parents) at the 

age of 15 years old compared to the high vs. low genetic risk score. The graphical data 

suggest that children with 2 myopic parents have a higher degree of myopia at the age 

of 15 than those in the high genetic risk score category.   

Figure 4.5C illustrates the trajectory of participants’ refractive error using the combined 

predictor model. This model appears to stratify participants into a wider refractive error 

range than the other two models, with the lowest risk found in children with zero myopic 

parents and a low genetic risk score, whilst the highest risk was identified in participants 

with two myopic parents and a high genetic risk. For the combined model, there was 

evidence for a 3-way interaction between genetic risk score, number of myopic parents, 

and age of visit (P = 4.3x10-3). 

 Prediction of Incident Myopia 

Both a higher number of myopic parents and a higher genetic risk score were predictive 

of a higher rate of incident myopia. The survival curves from the Cox proportional hazard 

models are shown in Figure 4.6. Comparing panels A and B suggested that the increased 

risk of myopia conferred by having two vs. zero myopic parents was larger compared to 

having a high vs. low genetic risk score. The results from the combined model for 

incident myopia suggested that participants with two myopic parents and a high genetic 

risk score had the highest myopia incidence, while children with no myopic parents and 
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a low genetic risk had the lowest incidence rate. Inclusion of genetic risk score in the 

survival model (panel C) improved the model fit compared to using the number of 

myopic parents alone (P = 4.02x10-9). A test for an interaction between the number of 

myopic parents and the genetic risk score in the combined model showed no evidence 

of such an interaction (P > 0.05).  
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Figure 4.5. Refractive trajectories predicted using (A) number of myopic parents, (B) genetic risk Z score, and (C) a combined model with high, average, and 
low risk genetic risk categories for children with 0, 1, or 2 myopic parents. In (B) and (C), the high and low genetic risk categories correspond to children with 
a genetic risk score 1 standard deviation above or below the mean, respectively. This figure was created by using data from 2885, 2960, 2918, 2852, and 2368 
children who attended at the ages of 7, 10, 11, 12, and 15, respectively (these children were all part of a subset of the full cohort, comprising of a total n = 
3047 participants, who attended ≥3 research clinic visits). Adapted from Ghorbani Mojarrad et al. (2018). 
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Figure 4.6. Survival curves for remaining non-myopic across the 9-15 year age range as a function of (A) number of myopic parents, (B) genetic risk score, and 
(C) a combined model with genetic risk score and number of myopic parents. In (B) and (C), the high and low genetic risk categories correspond to children 
with a genetic risk score 1 standard deviation above or below the mean, respectively. Adapted from Ghorbani Mojarrad et al. (2018).
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4.4 Discussion  

The refractive error of children in the ALSPAC cohort was assessed longitudinally 

between the ages of 7 and 15 years-old. These data were studied in order to test two 

closely-related hypotheses. The first was that using the genetic risk score would improve 

the prediction accuracy of refractive error in children beyond that of knowing their 

number of myopic parents. The second hypothesis was that predicting incident myopia 

based on knowing the number of myopic parents would also be enhanced by 

considering a genetic risk score. The results demonstrated that the genetic risk score did 

indeed improve prediction accuracy beyond that obtained through knowledge of the 

number of myopic parents (both at 7 and 15 years old). Thus, the first hypothesis was 

supported. Furthermore, in support of the second hypothesis, prediction of incident 

myopia also improved when both predictors were combined, compared to prediction 

based on knowing the number of myopic parents alone (P = 5.1x10-10). This suggests that 

the number of myopic parents and the genetic risk score are at least partially 

independent of one another.  

Despite the improved predictive performance when combining the genetic risk score 

and the number of myopic parents, the highest R2 value achieved was ~7%. This is still 

too low to have clinical utility. This R2 value demonstrates the difficulty in predicting the 

development of refractive error in an individual compared to explaining the refractive 

trajectories of a group of individuals. This is the same phenomenon which causes 95% 

prediction intervals to be much wider than 95% confidence intervals. 

Comparison of the two different models for calculating genetic risk scores (the 

unweighted allele score model and the weighted allele score model) indicated that using 

the weighted allele score provided better predictive performance, although the 

improvement only had statistical support (P < 0.05) for the analysis at the age of 15. 

Although unweighted allele scores are simpler to determine, the weighted genetic risk 

score had the benefit of assigning more importance to variants with larger effect sizes.  

Commonly-occurring genetic variants have been reported to explain approximately 39% 

of the variance in refractive error (known as “SNP heritability”), and therefore in theory, 

genetic prediction is capable of achieving this level of accuracy (Guggenheim et al. 2017; 

Shah et al. 2018). The reason for the poor performance of the genetic risk score in this 
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circumstance was likely due to: (1) the omission of risk variants which did not reach 

genome-wide significance in the CREAM and 23andMe, and (2) using imprecisely-

estimated effect sizes for the 149 variants that were included. Both of these limitations 

could be improved by conducting a GWAS for refractive error in a larger sample, as well 

as including more variants in the analyses. This is supported by the results of Tedja et 

al., (2018), who reported a prediction accuracy of 7.8% for refractive error in an 

independent sample of adults when using over 7,000 genetic variants. Therefore, in 

future analyses to predict refractive error using genetic risk scores, a wider selection of 

genetic variants should be used to maximise the prediction accuracy. GWAS analyses on 

large available datasets would therefore be necessary to create genetic risk scores with 

a large number of variants included. This topic is the focus of Chapter 7, in which genetic 

risk scores are created using hundreds of thousands of genetic variants. 

There are a further two additional reasons that could account for the relatively poor 

performance of the genetic risk score. Firstly, refractive error was assessed using non-

cycloplegic auto-refraction, introducing a measurement error and thereby reducing the 

prediction accuracy. Secondly, refractive development continues into adulthood; 

therefore genetic risk scores created using GWAS summary statistics from adult 

populations are likely to perform better at predicting refractive error in adults than in 

children. Both the unweighted and weighted genetic risk score demonstrated improved 

accuracy at the age of 15, but not at age 7. This is likely to be due to phenotype 

immaturity at the age of 7. Extrapolating from these results suggests that refractive error 

prediction in this sample of ALSPAC participants will be more accurate when they have 

reached adulthood. 

Figure 4.3 illustrates the difference in genetic risk score between individuals with 

different numbers of myopic parents. Although this graph suggests that myopic parents 

carry more genetic risk variants and pass these on to their children (which was 

supported by the statistical analyses), the extensive overlap across groups is also very 

apparent. Interestingly, the increase in the average genetic risk score with 0 vs.1, and 1 

vs. 2 myopic parents of 0.15, and 0.36, respectively, suggests there is an approximately 

linear increase in genetic risk with the increase in the number of myopic parents. This 

would be consistent with a polygenic model of inheritance of refractive error. 
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It can be speculated that the reason for the improved predictive performance when 

combining the two predictors – number of myopic parents and genetic risk score – arises 

because number of myopic parents not only captures information about genetic risk, 

but also the risk from environmental factors. This suggests that myopic parents not only 

pass on their predisposing genes for myopia to their children, but also raise their 

children in a relatively myopia-inducing environment or manner. This suggestion has 

also been used to explain why estimates of the heritability of refractive error are higher 

in sibling-sibling comparisons vs. more distant relatives (Chen et al. 2007b). Overall, this 

indicates that using both a genetic risk score and knowledge of the number of myopic 

parents would be beneficial for myopia risk prediction. This would be possible at birth, 

as both of these predictive variables would not change throughout the child’s lifetime. 

There are several limitations for this work that should be taken into consideration. The 

ALSPAC children were all born within a few months of each other and recruited from the 

same geographic area. Results with a wider age range or from a larger geographic area 

may differ depending on the range and levels of myopia-inducing environment 

exposures (e.g. time outdoors and local schooling inconsistencies). Moreover, the 

analysis was restricted to participants of European ancestry; the results found would 

have likely have been worse for individuals with different ethnic backgrounds (Canela-

Xandri et al. 2016). This topic is investigated further in Chapter 8.  

Measuring refractive error with non-cycloplegic autorefraction typically leads to an age-

specific bias in estimation of refractive error (Williams et al. 2008a). This measurement 

error would be expected to reduce the accuracy of genetic prediction of refractive error 

(Guggenheim et al. 2015), although without invalidating the comparison made between 

models using different predictors. Additionally, number of myopic parents was assessed 

with a simple questionnaire at a single time-point. Consequently, parental myopia may 

have been inferred incorrectly (with some parents misunderstanding the questions, or 

completing the questionnaire after undergoing refractive surgery) reducing the 

reliability of these results.  

In conclusion, there was an improvement in the performance for predicting refractive 

error and incident myopia when information about genetic susceptibility and parental 

myopia was combined. Nevertheless, the predictive performance of even the best 
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model was poor (R2 ≤ 7%). This suggests that further steps will be required in order to 

improve the accuracy of genetic risk scores, such as (1) including more genetic variants, 

and (2) estimating beta coefficients in a larger GWAS sample size.  
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5 Genome-Wide Association Study for Autorefraction-Measured 

Refractive Error in UK Biobank Participants 
 

5.1 Introduction 

In Chapter 4, the prediction of refractive error and myopia using genome wide 

significantly associated SNPs demonstrated lower accuracy to previously published data 

(7.8% accuracy from Tedja et al., (2018)), and performed less accurately in predicting 

myopia than using the number of myopic parents. This inferior prediction accuracy is 

likely due to the restricted number of genetic variants used to develop the genetic risk 

score (Dudbridge 2013), and therefore conducting a GWAS to obtain summary statistics 

for a greater number of genetic variants would be beneficial. 

To carry out a GWAS for refractive error, a dataset of genotyped individuals with 

common ancestry who have had their refractive error measured is required. As 

discussed in Section 2.1, UK Biobank has released genetic data for a cohort of 

approximately 500,000 individuals from the UK, 23.3% of whom had refractive error 

measurements taken. Thus, these participants would be used for obtaining GWAS 

summary statistics that could be applied for genetic prediction. 

As with any GWAS, it is important to evaluate the results obtained to assess if they are 

reliable, as GWAS results can give spurious associations for reasons such as unknown 

sample biases and uncontrolled confounders (Korte and Farlow 2013; Thomson and 

McWhirter 2017). The gold standard method of validating the reliability of GWAS results 

is through replication (Bush and Moore 2012), requiring the initial dataset to be divided 

into a test and replication set. However, this approach has the disadvantage of reducing 

the size of the sample used in the discovery of associated variants. Therefore, as an 

alternative, here I used the largest available UK Biobank sample for the GWAS for 

refractive error, and the results were compared to previously published associations. 

Note that a key disadvantage of this approach was that novel associations, by definition, 

could not be validated using existing published GWAS results.  

At present, the two largest GWAS for refractive error or myopia were reported by 

Pickrell et al. (2016), and by the CREAM consortium and 23andMe (Tedja et al. 2018). 

The GWAS performed by Pickrell et al. (2016) was for the binary phenotype ‘self-
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reported near-sightedness’ (Yes/No) from customers of 23andMe Inc. (Section 1.4.3). 

The GWAS reported by the CREAM consortium was a ‘mega-analysis’ of two datasets (a 

GWAS meta-analysis for age-of-onset of myopia carried out by 23andMe, and a GWAS 

meta-analysis for refractive error in 37 separate study samples carried out by CREAM). 

The respective sample sizes were 191,483 and 160,420 participants.  

Here, a GWAS on the full dataset of 95,505 European participants from UK Biobank (who 

passed quality control filters and exclusion criteria) was performed, and the loci 

identified from this GWAS were compared to previously reported loci, to assess the 

concordance of the results. The hypothesis tested was that the GWAS performed on the 

UK Biobank participants would detect many loci associated with refractive error, and 

that these would be similar in their magnitude and direction of association with the 

phenotype to those of variants published previously.  

5.2  Methods 

 Participant Selection 

The UK Biobank dataset was used for this analysis. A total of 117,279 participants had 

refractive error information available (Cumberland et al. 2015). The refractive error 

phenotype (“Autorefraction MSE”) was calculated as the mean spherical equivalent 

averaged between the two eyes, as described in Section 2.1.3.  

To ensure participants were of a similar genetic background, the principal component 

analysis (PCA) results from Bycroft et al. (2018) were used (see Section 3.1.2). 

Participants were classified as having European ancestry if their first 20 principal 

components (PCs) were within ± 10 standard deviations of the mean for all those with 

self-declared “white British” ethnicity. Thus, individuals with ambiguous self-reported 

ethnicity (e.g. reported “prefer not to say” or “other”) may still have been included in 

the analysis if they were clustered within the first 20 PC thresholds.  After applying other 

participant quality control filters and the appropriate exclusion criteria (as described in 

Section 3.1.4), 95,505 participants were left who had sufficient data to conduct the 

GWAS for Autorefraction MSE.  Note that as BOLT-LMM software was used (see below 

and Section 3.1.5), these participants were not filtered to remove related individuals, as 

BOLT uses a genetic relationship matrix to account for familial and cryptic relatedness.  
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 GWAS for Autorefraction MSE 

As stated above, BOLT-LMM software (Loh et al. 2015b) (version 2.3.2) was used to 

conduct the GWAS for Autorefraction MSE. Quality control filters for genetic variants 

used in this analysis are listed in Section 3.1.4. A QQ plot was created to allow 

comparison of the distribution of the observed association test statistics to that 

expected, with the corresponding lambda gc (λgc) value calculated to assess if there was 

any genomic inflation (Section 3.2.1). The LDscore regression intercept (Bulik-Sullivan et 

al. 2015b) was calculated to assess how much of this inflation was due to polygenicity 

(Section 3.2.2).  

 Comparison to GWAS Summary Statistics in Published Literature 

The GWAS summary statistics for Autorefraction MSE were compared to those publicly 

available from the two studies mentioned in the introduction (Pickrell et al. 2016; Tedja 

et al. 2018). Comparison was performed regarding three different aspects of the 

summary statistics: 

1. The location of genome wide significant associations, i.e. were the same lead 

variants (or variants at the same locus and in high LD with previously-associated 

variants) replicated in all three GWAS analyses?   

2. Direction of effect. The direction of effect at each locus would be expected to be 

the same across all 3 GWAS analyses. For example, if the literature reports the 

myopia-predisposing risk allele of a specific variant as ‘A’, the risk allele from the 

GWAS for Autorefraction MSE would also be expected to be the ‘A’ allele for this 

variant. A variant with a discordant direction of effect would not constitute a 

valid replication even if the variant was found to be associated with refractive 

error in 2 or more of the 3 GWAS analyses. 

3. The estimated contribution (“effect size”) of each variant to the phenotype. 

Effect sizes were compared to see how well these correlated across different 

GWAS. 

Only the top 50 associated variants were available from the GWAS reported by Pickrell 

et al. (2016) due to publication restrictions. This meant that a direct comparison of all of 

the genetic loci identified was not possible between the three studies.  
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Due to the different GWAS analyses sometimes highlighting different lead variants at 

the same locus, the LDlink online reference tool (https://ldlink.nci.nih.gov/?tab=home) 

was used to identify nearby variants in high LD with lead variants that could serve as a 

surrogates for one another. Variants within 1 million base pairs of one another, and 

demonstrating high LD (r2 ≥ 0.9), were accepted as belonging to the same locus. Miami 

plots for the different studies were created to compare the genetic loci from pairs of 

GWAS analyses. 

For variants at the same locus, risk alleles from the GWAS for Autorefraction MSE were 

compared to those from the previous GWAS publications to ensure they matched. If a 

different variant was identified as a lead SNP at the same locus, the LDlink online 

reference tool (see above) was used to identify which alleles were most commonly 

inherited together. Should the two variants identified at the loci in the two studies be in 

high LD (as explained above), and demonstrate consistency in the alleles inherited 

together, then they were deemed to have the same risk allele attributed. In other words, 

if the risk allele for the SNP identified in one GWAS was commonly inherited alongside 

the other risk allele for the SNP identified in the other GWAS, they would be categorised 

as the same loci. For example, if allele ‘SNPX’ from GWAS #1 had an LD r2 of 0.9 with 

allele ‘SNPy’ from GWAS #2 located 50,000 base pairs away, they would be classed as 

the same locus. Should the two alleles have a lower r2 value or be more than 1 million 

base pairs apart, or have the opposite allele stated as the risk allele, then they would be 

categorised as different loci.  

Effect sizes were compared by calculating the correlation of effect sizes of replicated 

lead variants from the GWAS of Autorefraction MSE and the CREAM consortium GWAS 

(Tedja et al., 2018). As Z scores were reported for the CREAM consortium meta-analysis, 

effect sizes from the GWAS for Autorefraction MSE were transformed to Z scores to 

allow comparison.  

5.3 Results 

 GWAS for Autorefraction MSE 

There were 587 variants associated with Autorefraction MSE at the conventional 

genome-wide statistical significance threshold of P < 5x10-8. These variants were 
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distributed across 150 distinct genetic loci. The results are presented as a Manhattan 

plot in Figure 5.1. The QQ plot for the association statistics is shown in Figure 5.2. The 

genomic inflation factor λgc had a value of 1.26, indicating deviation from the expected 

value of 1.00, suggesting the possibility of an upward bias. However, the LD score 

regression intercept had a value of 1.03, indicating that the majority of this deviation 

was due to polygenicity.   

 

Figure 5.1 Manhattan plot demonstrating the results from a GWAS for Autorefraction MSE in 
95,505 participants from UK Biobank. The red and blue lines indicate the conventional thresholds 
for declaring genome-wide statistical significance (P < 5x10-8), and suggestive significance (P < 
5x10-5), respectively. 
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 Comparisons of GWAS results to other refractive error GWAS reports 

Comparisons of the Manhattan plots of my GWAS for Autorefraction MSE and those of 

Tedja et al. and Pickrell et al. are shown as Miami plots in Figure 5.3 and Figure 5.4. In 

total, 100 of the 150 loci that reached genome wide significance (5x10-8) in the 

Autorefraction MSE GWAS were replicated in the CREAM GWAS (Tedja et al., 2018). Full 

results are shown in Table 5.1. As described in the Methods, loci were deemed to 

replicate previously-reported associations if genome-wide significant variants in the two 

studies either (a) had the same rsID and location, or (b) were within 1cMB and in high 

LD (r2 ≥ 0.9). Table 1 also highlights those variants that were amongst the top 50 variants 

in the GWAS for self-reported myopia published by Pickrell et al. (2016). In total, all 50 

of the 50 variants reported by Pickrell et al. replicated in the UK Biobank GWAS for 

Autorefraction MSE, with 49 of these same loci also being replicated in the CREAM 

consortium GWAS (Tedja et al., 2018), i.e. they were replicated in all three analyses.  The 

single locus from Pickrell et al. that was not replicated in the CREAM analysis was on 

chromosome 11, replicating in the Autorefraction MSE GWAS. Table 5.1 also indicates 

which allele is the myopia-predisposing risk allele, and whether the direction of effect 

was consistent across GWAS analyses. 

 

 

 

Figure 5.2 Quantile-quantile plot for the GWAS of Autorefraction MSE. λgc = 1.26. 
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Figure 5.3 Miami plot comparing the results of the GWAS from Autorefraction MSE and CREAM 
consortium. The top panel shows data from the CREAM consortium analysis (adapted from Tedja 
et al. 2018), whereas the bottom panel shows data from the GWAS of Autorefraction MSE, an 
adaptation of Figure 5.1. 
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Figure 5.4 Miami plot comparing the results of the GWAS from Autorefraction MSE and self-
reported myopia. The top panel shows data from Pickrell et al. (2016), and the bottom panel 
shows data from the GWAS of Autorefraction MSE, taken from Figure 5.1. The original data from 
the Pickrell et al. study was unavailable and therefore it should be noted that the alignment and 
scaling of this Miami plot are imprecise. 

 

 

 

 

 

Table 5.1 (Overleaf) Variants exhibiting genome-wide significant association in the GWAS for 
Autorefraction MSE. Whether the variant replicated in the CREAM analysis (Tedja et al. 2018) 
and reported by Pickrell et al. (2016) as one of the top 50 loci is also indicated (8th & 9th column). 
The direction of the effect size and it’s concordance between the three GWAS tests (if applicable) 
is shown in the 10th column.  
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Marker CHR POS 
Effect 
Allele 

Other 
Allele 

BETA SE 
Replication in 

CREAM analysis? 
Replication in Pickrell 

et al. analysis? 
Direction 

rs2808511 1 200336096 T C -0.095 0.011 Y Y --- 

rs12028838 1 219778675 T G -0.092 0.012 Y  -- 

rs9787108 1 158033331 C T -0.089 0.012 Y Y --- 

rs112867366 1 113488343 A G -0.103 0.014 Y  -- 

rs579728 1 61185927 A G -0.083 0.012 Y Y --- 

rs12046000 1 91192396 A T -0.075 0.012 N  - 

rs663431 1 108085902 T C -0.066 0.011 Y  -- 

rs1550094 2 233385396 G A -0.198 0.013 Y Y --- 

rs2695760 2 178835711 A G -0.130 0.012 Y Y --- 

rs62169542 2 146937226 T C -0.102 0.012 Y Y --- 

rs75120545 2 44271496 T C -0.278 0.036 Y Y --- 

rs41393947 2 56011517 A G -0.115 0.017 Y  -- 
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Marker CHR POS 
Effect 
Allele 

Other 
Allele 

BETA SE 
Replication in 

CREAM analysis? 
Replication in Pickrell 

et al. analysis? 
Direction 

rs576950451 2 157386310 A C -0.085 0.013 Y Y --- 

rs6736034 2 30468348 C G -0.076 0.013 N  - 

rs13010104 2 208369213 C T -0.091 0.015 N  - 

rs13382950 2 227956067 C T -0.067 0.011 Y  -- 

rs10188860 2 55237 T C -0.131 0.023 N  - 

rs2110399 2 60516388 A G -0.066 0.012 N  - 

rs62182439 2 172799794 A G -0.075 0.013 Y Y --- 

rs72772496 2 16430349 C T -0.120 0.022 Y  -- 

rs1582874 3 141115219 T C -0.100 0.012 Y Y --- 

rs502410 3 8182658 C A -0.094 0.012 Y  -- 

rs35135108 3 41166291 C T -0.088 0.012 N  - 

rs9824877 3 98896242 A G -0.103 0.015 N  - 
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Marker CHR POS 
Effect 
Allele 

Other 
Allele 

BETA SE 
Replication in 

CREAM analysis? 
Replication in Pickrell 

et al. analysis? 
Direction 

rs17497118 3 127334598 G A -0.087 0.015 N  - 

rs2304577 3 53778621 A G -0.098 0.017 Y  -- 

rs1700943 3 24231030 C G -0.068 0.012 Y Y --- 

rs1568072 3 11041606 G A -0.079 0.014 N  - 

rs4685282 3 15998835 A G -0.065 0.012 Y  -- 

rs35667547 3 64547477 C G -0.097 0.018 N  - 

rs74764079 4 81952637 A T -0.311 0.036 Y Y --- 

rs536204902 4 120915393 G T -0.084 0.012 N  - 

rs13107325 4 103188709 C T -0.140 0.022 N  - 

rs59473955 4 89757082 T C -0.077 0.014 Y Y --- 

rs147792504 4 174336590 A T -0.231 0.042 Y Y --- 

rs554831360 4 138198041 C A -0.238 0.043 N  - 
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Marker CHR POS 
Effect 
Allele 

Other 
Allele 

BETA SE 
Replication in 

CREAM analysis? 
Replication in Pickrell 

et al. analysis? 
Direction 

rs62395084 5 178338733 G A -0.095 0.018 Y  -- 

rs12193446 6 129820038 A G -0.422 0.020 Y Y --- 

rs7744813 6 73643289 A C -0.216 0.012 Y Y --- 

rs4145443 6 22068174 T G -0.092 0.012 Y  -- 

rs3812112 6 116444607 A T -0.088 0.012 Y Y --- 

rs12202798 6 84339255 G A -0.089 0.013 N  - 

rs418092 6 28533946 T C -0.086 0.012 Y Y --- 

rs2746646 6 50818239 T C -0.081 0.011 Y Y --- 

rs6931604 6 98578215 T C -0.075 0.012 N  - 

rs6917995 6 26327814 C T -0.073 0.011 N  - 

rs2327222 6 10036083 C T -0.074 0.012 N  
 

-  
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Marker CHR POS 
Effect 
Allele 

Other 
Allele 

BETA SE 
Replication in 

CREAM analysis? 
Replication in Pickrell 

et al. analysis? 
Direction 

rs2326838 6 6901663 A G -0.070 0.012 N  - 

rs11751433 6 163792854 A G -0.067 0.012 N  - 

rs62485858 7 158893020 T G -0.120 0.014 Y  -- 

rs4278108 7 84317206 G A -0.093 0.014 Y  -- 

rs11764212 7 2067593 C A -0.066 0.012 N  - 

rs72621438 8 60178580 C G -0.172 0.012 Y Y --- 

rs869422 8 40723970 A G -0.136 0.014 Y Y --- 

rs4738094 8 71423744 A G -0.086 0.012 Y  -- 

rs7465621 8 53333700 G A -0.103 0.018 N  - 

rs10100265 8 10633159 C A -0.066 0.012 Y  -- 

rs4738828 8 61727587 G T -0.067 0.012 Y  -- 

rs7042950 9 77149837 G A -0.117 0.014 Y  -- 
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Marker CHR POS 
Effect 
Allele 

Other 
Allele 

BETA SE 
Replication in 

CREAM analysis? 
Replication in Pickrell 

et al. analysis? 
Direction 

rs1340044 9 18362105 A T -0.099 0.012 Y Y --- 

rs11145746 9 71834380 A G -0.099 0.014 Y Y --- 

rs72773790 9 129109080 T C -0.080 0.012 Y  -- 

rs10978697 9 109763587 G A -0.109 0.018 N  - 

rs11596489 10 79054560 T C -0.128 0.012 Y Y --- 

rs4517452 10 86021024 C T -0.132 0.013 Y Y --- 

rs17747324 10 114752503 C T -0.111 0.014 Y Y --- 

rs4491171 10 49412862 G C -0.094 0.013 Y Y --- 

rs1658471 10 60291911 A T -0.078 0.012 Y Y --- 

rs80325284 10 102633779 G C -0.134 0.021 Y  -- 

rs36212732 10 124215198 G A -0.085 0.014 N  - 

rs4747241 10 74036429 T C -0.070 0.012 Y  -- 
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Marker CHR POS 
Effect 
Allele 

Other 
Allele 

BETA SE 
Replication in 

CREAM analysis? 
Replication in Pickrell 

et al. analysis? 
Direction 

rs1254701 10 126810140 A G -0.090 0.015 N  - 

rs6584962 10 111689904 A G -0.093 0.016 Y  -- 

rs541791855 10 94983203 C A -0.068 0.011 Y  -- 

rs999951 10 90036367 C G -0.076 0.014 Y  -- 

rs11602008 11 40149305 T C -0.218 0.016 Y Y --- 

rs7944541 11 30054610 T G -0.116 0.014 N  - 

rs4943906 11 84638826 T A -0.097 0.012 Y Y --- 

rs10895869 11 105600358 A C -0.096 0.012 Y Y --- 

rs1550870 11 18751041 C T -0.085 0.012 N Y -- 

rs6421566 11 117671398 A G -0.080 0.011 Y Y --- 

rs2195526 11 119236751 T C -0.098 0.015 N  - 

rs1015053 11 131933511 A T -0.074 0.012 Y Y --- 
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Marker CHR POS 
Effect 
Allele 

Other 
Allele 

BETA SE 
Replication in 

CREAM analysis? 
Replication in Pickrell 

et al. analysis? 
Direction 

rs198442 11 61506468 T C -0.073 0.012 N  - 

rs227061 11 108205329 A G -0.072 0.011 N  - 

rs2172998 11 43290063 C A -0.074 0.012 Y  -- 

rs654169 11 128691920 A G -0.070 0.013 Y  -- 

rs1938929 11 86334064 C T -0.069 0.013 N  - 

rs3138142 12 56115585 C T -0.213 0.014 Y Y --- 

rs5442 12 6954864 A G -0.261 0.022 Y Y --- 

rs12146879 12 46408489 G A -0.092 0.013 Y  -- 

rs12423535 12 22533320 C A -0.077 0.012 Y  -- 

rs10842914 12 9275778 T C -0.078 0.013 Y Y --- 

rs2160729 12 14071844 C T -0.079 0.013 Y  -- 

rs892251 13 100647612 G A -0.126 0.012 Y Y --- 
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Marker CHR POS 
Effect 
Allele 

Other 
Allele 

BETA SE 
Replication in 

CREAM analysis? 
Replication in Pickrell 

et al. analysis? 
Direction 

rs837344 13 101186056 T C -0.098 0.012 Y  -- 

rs12853508 13 85607848 T G -0.097 0.013 Y  -- 

rs2281827 13 29001721 C T -0.094 0.014 Y  -- 

rs45502300 13 36246512 G A -0.243 0.037 N  - 

rs7326825 13 50113450 A G -0.085 0.013 Y  -- 

rs1323971 13 94027893 A G -0.073 0.012 Y  -- 

rs2855530 14 54421917 C G -0.107 0.012 Y Y --- 

rs35320790 14 61108825 C A -0.103 0.011 Y  -- 

rs10483522 14 42275964 T C -0.100 0.015 Y Y --- 

rs2143975 14 33297398 G C -0.079 0.012 Y  -- 

rs74384554 14 74964903 T C -0.991 0.050 N  - 

rs7149665 14 92590120 C T -0.092 0.016 Y Y --- 
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Marker CHR POS 
Effect 
Allele 

Other 
Allele 

BETA SE 
Replication in 

CREAM analysis? 
Replication in Pickrell 

et al. analysis? 
Direction 

rs3211166 14 69703158 G A -0.071 0.013 N  - 

rs634990 15 35006073 C T -0.247 0.012 Y Y --- 

rs1961579 15 79380516 A G -0.154 0.012 Y Y --- 

rs7162310 15 63571234 C T -0.114 0.014 Y  -- 

rs75227249 15 48763008 A T -0.129 0.017 Y  -- 

rs893819 15 74229524 G A -0.077 0.012 N  - 

rs62017256 15 50990965 A G -0.219 0.035 N  - 

rs1112988 15 82318653 A G -0.075 0.013 Y  -- 

rs7188859 16 7460426 C T -0.175 0.012 Y Y --- 

rs28587148 16 67718563 C A -0.098 0.017 N  - 

rs12919036 16 80423907 G A -0.069 0.012 Y  -- 

rs1868289 16 10215813 T G -0.069 0.013 N  - 
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Marker CHR POS 
Effect 
Allele 

Other 
Allele 

BETA SE 
Replication in 

CREAM analysis? 
Replication in Pickrell 

et al. analysis? 
Direction 

rs2908972 17 11407259 A T -0.134 0.012 Y Y --- 

rs4794029 17 47280301 C T -0.117 0.013 Y  -- 

rs62067167 17 31251711 T C -0.139 0.015 Y Y --- 

rs1963456 17 54715143 C T -0.110 0.012 Y  -- 

rs9911460 17 79538841 T A -0.099 0.011 Y Y --- 

rs4793501 17 68718734 T C -0.079 0.012 Y  -- 

rs115152181 17 14136125 A T -0.078 0.012 Y  -- 

rs3785837 17 59468942 A G -0.088 0.014 N  - 

rs876493 17 37824545 G A -0.075 0.012 Y  -- 

rs9038 17 75495397 C T -0.068 0.011 Y Y --- 

rs55754534 18 47433745 C G -0.129 0.016 Y Y --- 

rs7235709 18 42899939 A G -0.119 0.016 Y  -- 
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Marker CHR POS 
Effect 
Allele 

Other 
Allele 

BETA SE 
Replication in 

CREAM analysis? 
Replication in Pickrell 

et al. analysis? 
Direction 

rs3829640 18 72174980 A G -0.086 0.014 N  - 

rs55728756 18 6460206 T C -0.067 0.012 N  - 

rs55765017 19 19368264 A G -0.099 0.016 Y  -- 

rs8104875 19 8234677 A G -0.074 0.011 N  - 

rs12462330 19 31806469 T C -0.073 0.012 N  - 

rs77128495 19 48533700 C T -0.114 0.019 N  - 

rs184784558 19 45434255 A T -0.101 0.018 N  - 

rs6054512 20 6761512 C T -0.074 0.012 Y  -- 

rs4911405 20 32674967 T C -0.076 0.012 Y  -- 

rs8132840 21 47326747 A G -0.089 0.011 Y Y --- 

rs2229741 21 16340289 T C -0.074 0.011 Y  -- 

rs9330813 22 46364161 A G -0.090 0.013 N  - 
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Marker CHR POS 
Effect 
Allele 

Other 
Allele 

BETA SE 
Replication in 

CREAM analysis? 
Replication in Pickrell 

et al. analysis? 
Direction 

rs546593346 22 42189847 G T -0.086 0.013 Y  -- 

rs9623017 22 39959057 A G -0.081 0.015 N  - 

rs17313971 23 20615249 T G -0.039 0.012 N  - 

rs54266568 23 13978733 I D -0.084 0.019 Y  -- 

rs376420707 23 9292236 A T -0.095 0.012 N  - 
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The lead variants at all replicated loci showed a concordant direction of effect with 

previously-published GWAS analyses (Table 5.1).  

Z scores for the 100 loci that replicated between UK Biobank and CREAM were compared 

(Figure 5.5). For this analysis all replicated loci were compared using the myopia-

predisposing allele. The correlation was r = 0.745.  

 

 

 

 

 

 

 

 

5.4 Discussion  

In this analysis a GWAS was performed for 95,505 individuals of European ancestry from 

UK Biobank who had their refractive error measured by autorefraction. This identified 

150 loci, 100 of which directly replicated or were within 1MB of a variant in high LD in 

the CREAM consortium GWAS reported by Tedja et al (2018). Moreover, of the 50 top 

variants associated with self-reported myopia by Pickrell et al. (2016), all were replicated 

in the UK Biobank GWAS for Autorefraction MSE. A total of 49 of the 50 Pickrell et al. 

loci replicated in the CREAM GWAS analyses.  

The GWAS for Autorefraction MSE summary statistics had a high λgc of 1.26, indicating 

possible inflation. However, the λgc value from the GWAS for Autorefraction MSE was 

not dissimilar to those reported previously: λgc = 1.13 in the CREAM analysis (Tedja et al. 

2018), and λgc = 1.23 in the self-reported myopia analysis (Pickrell et al. 2016). There are 

Figure 5.5 Scatter plot demonstrating the relationship between the direction and magnitude of 
association for lead variants at 100 loci displaying genome-wide significant association in a 
GWAS for Autorefraction MSE in UK Biobank and a GWAS for refractive error published by the 
CREAM consortium (Tedja et al., 2018). Effect size is quantified using the Z score. 
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three reasons why a λgc value may be inflated i.e. greater than one: population 

stratification, relatedness (either through direct ancestry or cryptic relatedness), or 

polygenicity (Bulik-Sullivan et al. 2015b). The selection of individuals within the ±10 

standard deviations of the first 20 PCs for European ancestry means that hidden 

population stratification is unlikely to be the cause. Moreover, related individuals were 

used in the GWAS for Autorefraction MSE, but the use of a genetic relatedness matrix 

created within BOLT software accounted for this. As the LDscore regression intercept 

reported a value of 1.03 (95% CIs 1.01-1.05), this indicated that the inflation was largely 

due to the polygenicity. Thus, this means that the UK Biobank summary statistics are 

unlikely to contain false positive findings caused by bias. Inflation of λgc values due to 

polygenicity is commonly seen with GWAS of large sample size.  

As this experiment used all individuals available from UK Biobank in the GWAS for 

refractive error, with a view to maximising the sample size, there was no possibility of 

repeating the GWAS in other UK Biobank participants (i.e. there was no separate UK 

Biobank replication sample to validate the findings). However, replication in at least one 

other published GWAS for refractive error was considered as evidence of independent 

replication. 49 of the genome wide significant SNPs from the Autorefraction MSE GWAS 

were not identified in the publicly available results from the CREAM consortium (Tedja 

et al., 2018). If a random non-overlapping sample of UK Biobank participants had been 

kept aside for replication, it may have been possible to reproduce the association for 

the 49 SNPs not seen in the CREAM analysis. Furthermore, the loci from this GWAS that 

did not reach genome wide significance in the CREAM summary statistics data may have 

demonstrated association at the lower suggestive threshold (i.e. 5x10-5). It is likely that 

this lack of replication is due to the reduced power of the Autorefraction MSE GWAS to 

detect signals and associations for refractive error in comparison to the GWAS from 

Tedja et al., due to having a smaller sample size. Therefore, identifying a greater number 

of signals, including those identified by the CREAM consortium may be possible if the 

effective sample size can be increased.  

The variant for self-reported myopia in the Pickrell et al. GWAS that did not replicate in 

the CREAM consortium results (but did show an association in the GWAS for 

Autorefraction MSE) was on chromosome 11; lead variant rs1550870. This variant is in 

a coding region for the Protein Tyrosine Phosphatase Non-Receptor Type 5 (PTPN5) 
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gene, also commonly known as the human STEP locus (an acronym for STriatal-Enriched 

protein tyrosine Phosphatase). This gene has been shown to be expressed in the brain, 

largely in the cerebral cortex (Lombroso et al. 1991). It has been shown to have an 

association with Alzheimer’s disease, schizophrenia, and Parkinson’s disease (Zhang et 

al. 2010; Carty et al. 2012; Kurup et al. 2015), with the respective diseases showing 

increased activity in this region alongside stress disorders (Yang et al. 2012). It is 

unknown how this variant may biologically impact pathways that induce myopia. In the 

GWAS for Autorefraction MSE, this variant had a P value of 4.5x10-13, similar to that in 

the report by Pickrell et al. (2016); P = 9.9x10-13. The locus was not genome-wide 

significant in the CREAM GWAS, which may be due to post-analysis quality control, or 

simply lack of significance after meta-analysis. 

The most strongly associated variants showed evidence of good reproducibility (Figures 

4.3-4.5). Not only did the loci mostly replicate between all three GWAS, but the top 9 

loci in the UK Biobank analysis also appeared in the list of the top 9 loci in the other two 

GWAS analyses, (although not in the same descending order). The top variant in all three 

analyses was rs12193446 on chromosome 6. This variant lies in an intron of the LAMA2 

gene, and has previously been reported to have a strong association with refractive error 

and myopia (Verhoeven et al. 2013; Verhoeven et al. 2014; Li et al. 2015). It had the 

largest effect size for a genetic variant at -0.42D in the UK Biobank sample. This variant 

had the smallest P values of 1.1x10-118, 5.4x10-102, and 1.6x10-101 in the CREAM analysis, 

Pickrell et al. (2016) analysis, and Autorefraction MSE analysis respectively, alongside Z 

scores of -22.9, -21.7, and -21.9, respectively.   

The correlation between the effect sizes for the top 100 variants that replicated can be 

seen more generally in Figure 5.5. All variants demonstrated the same direction of effect 

between UK Biobank and CREAM. Moreover, the correlation coefficient of 0.745 

indicates that there was a generally strong positive correlation between the effect sizes 

estimated from each locus in the CREAM consortium GWAS (Tedja et al., 2018) and 

Autorefraction MSE GWAS. Although this value only relates to the top 100 loci in 

common between these two studies, all of the variants published by Pickrell et al. (2016) 

also had the same directionality for the identified risk alleles. That these 3 GWAS 

analyses identified a majority of the same loci, same risk alleles, and had similar effect 



   

98 
 

sizes increases the confidence that results of the GWAS for Autorefraction MSE are 

reliable and similar to previously published refractive error GWAS analyses.  

It should be noted that the CREAM and Pickrell et al. GWAS analyses may have had 

partially overlapping samples (Pickrell et al. 2016; Tedja et al. 2018). All participants in 

the Pickrell et al. GWAS analysis were customers of 23andMe, as were 104,293 of the 

CREAM GWAS study participants. However, since the phenotypes studied in the Pickrell 

et al. and CREAM GWAS analyses were based on different questionnaire responses 

completed by 23andMe customers, the exact degree of overlap is unknown. 

Furthermore, the lack of availability of the full list of genome-wide significant loci in the 

Pickrell et al. GWAS limited the ability to compare associations across the 3 sets of GWAS 

summary statistics. 

An additional limitation of the GWAS in UK Biobank participants was that only European 

participants were studied, meaning that the applicability to other ethnicities may be 

limited. It should also be noted that distinct phenotypes were analysed in the 3 GWAS 

studies (refractive error; myopia case-control status; age-at-onset of myopia). Although 

an adequate comparison was possible after transformation of effect sizes to Z scores, 

this difference in phenotype may have led to discrepancies in the results, e.g. leading to 

a reduced correlation coefficient.  

In conclusion, a GWAS for Autorefraction MSE in UK Biobank participants identified 150 

genome-wide significant loci. Amongst the top 50 GWAS variants identified previously 

by Pickrell et al. (2016), all were replicated in the Autorefraction MSE GWAS. Moreover, 

100 of the loci were also replicated in the GWAS performed by Tedja et al. (2018), 

showing the same direction of effect and comparable effect sizes. Nevertheless, 49 

genome wide significant SNPs did not show replication in previously published data at 

genome wide significance, likely due to an underpowered analysis of limited sample size. 

Therefore, identifying a method in which to increase the effective sample size used in 

GWAS analyses which could be used in downstream analysis to develop genetic risk 

scores may be beneficial.  
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6 Creation of Predictive Phenotypes and Comparison to Autorefraction 

MSE 
 

6.1 Introduction  

As discussed in Section 1.3.10 and Chapter 4, a limitation for the identification of genetic 

variants associated with refractive error and myopia is insufficient statistical power due 

to a limited sample size, which in turn can limit the accuracy of a genetic risk score 

(Dudbridge 2013). Because of this a GWAS for autorefraction MSE was performed; 

95,505 UK Biobank participants of European ancestry with refractive error data were 

available, after applying quality control filters. These participants were studied in 

Chapter 5, in which a GWAS for refractive error (Autorefraction MSE) was carried out. 

However, as discussed in the literature review (Section 1.4.3), the largest refractive error 

GWAS meta-analysis conducted to date included 160,420 individuals (Tedja et al., 2018), 

more than in the Autorefraction MSE GWAS. A polygenic risk score derived using the top 

7,307 variants identified in the Tedja et al. study had a prediction accuracy of R2=7.8%, 

which is greater than the accuracy found in Chapter 4. The Tedja et al. study was notable 

because the authors meta-analysed summary statistics from a GWAS for refractive error 

and a GWAS for self-reported age of myopia onset. The resulting genetic risk score was 

more accurate (R2=7.8%) than that previously reported in 2013 from a GWAS for 

refractive error in only 45,758 participants (R2= 3.4%) (Verhoeven et al. 2013), with 

sample size likely to be the key factor (Dudbridge 2013). Thus, performing a meta-

analysis of GWAS summary statistics for refractive error and a similar correlated trait 

may help improve the genetic risk score accuracy. 

Myopia onset usually occurs between the ages of approximately 8 to 12 years, with 

some individuals developing myopia – to a much lesser extent – as young adults (Saw et 

al. 2002; Wojciechowski 2011; Pärssinen et al. 2014). In contrast, hyperopia is often 

established at birth or in early infancy, with spectacles often being prescribed before the 

age of 6 years-old (Mutti et al. 2007). Thus, refractive error is likely associated with the 

age of onset of spectacle wear (AOSW). 

Moreover, as described in Section 1.2.3.2 (Vitale et al. 2009; Wen et al. 2013; Williams 

et al. 2015a), there is much evidence indicating an increase in the prevalence of myopia 
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over the past few decades, in Europe, the United States and East Asia. Therefore, adults 

born in later birth cohorts were at a higher risk of developing myopia and a more 

myopic/negative refractive error, on average. Thus, an individual’s year-of-birth (YOB) 

is also associated with refractive error, and therefore likely explains some of the inter-

individual variation of refractive error in the general population.  

In this Chapter, these two variables, AOSW and YOB, were used to develop a statistical 

model for estimating refractive error. The model was optimised in a sample of UK 

Biobank participants who underwent autorefraction and who reported their AOSW. 

Once the model was optimised, it was employed to estimate the refractive error of UK 

Biobank participants who did not undergo autorefraction. A GWAS for predicted 

refractive error (‘AOSW-inferred MSE’), using AOSW and YOB was performed. Tests 

were then carried out to determine if AOSW-inferred MSE was an effective surrogate 

phenotype for refractive error measured by autorefraction. 

6.2 Methods  

All statistical analyses were performed using R. All GWAS analyses were run using BOLT. 

A flow diagram of participant inclusion criteria for all samples used is shown in Figure 

2.2.  

 Creation of a Predictive Model for Refractive Error Using Age of Spectacle Wear 
(AOSW) and Age 

UK Biobank participants were stratified into two groups, dependent upon 

autorefraction-measured refractive error data availability. The sample of participants 

with refractive error data available was used to create and refine a model defining the 

relationship between AOSW and autorefraction-measured MSE. The model was then 

used to predict refractive error (‘AOSW-inferred MSE’) in participants whose refractive 

error was not known.  The statistical model employed was a multivariable linear model 

that incorporated polynomial terms to account for non-linear relationships between 

refractive error and AOSW and between refractive error and YOB.  

386,318 UK Biobank participants of European ancestry who self-reported their AOSW 

were used in this analysis (after applying quality control filters and exclusion criteria; 

Section 3.1.4). Of this sample, 98,870 participants (‘Group 1’) had a known refractive 

error from autorefraction, while 287,448 participants (‘Group 2’) did not have data 
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available for autorefraction. There was an approximately 1:3 ratio of participants with 

known average mean spherical equivalent data (Autorefraction MSE sample) and 

unknown refractive data (AOSW-inferred MSE sample). 

AOSW was coded as a continuous variable. Self-reported Age was used as a surrogate 

for YOB (since for the UK Biobank sample, Age and YOB are very highly correlated). Age 

was also coded as a continuous variable in the model. A multivariable linear regression 

model was generated, which included these two predictor variables (AOSW and Age), 

along with Sex (coded as a binary variable). The distributions of AOSW and Age are 

shown in Figure 6.1. The 98,870 participants of European ancestry with known refraction 

were used to generate the model (see Figure 2.2 for more detail as to how these 

individuals were identified and extracted).  

 

Figure 6.1. Distributions of AOSW (Panel A) and Age (Panel B). 

An R script was written that contained a set of nested loops, in order to determine the 

optimal polynomial order for the variables Age and AOSW. The R function ‘poly’ was 
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used to adjust polynomial order. A mixture of lower-order and higher-order polynomial 

terms enabled the complex, non-linear relationship between refractive error and AOSW 

to be modelled accurately. An advantage of the R ‘poly’ function is that it generates 

orthogonal polynomials, which have the useful property of being uncorrelated; 

therefore avoiding unstable model fits as a result of multi-collinearity.  

The linear regression model took the form: 

      𝑎𝑣𝑀𝑆𝐸       𝛼 + (𝛽ଵ  × 𝐴𝑔𝑒)   +    (𝛽ଶ × 𝐴𝑂𝑆𝑊)  +  (𝛽ଷ × 𝑆𝑒𝑥) 

Equation 6.1. Estimation of refractive error. Here, j and k represent polynomial orders. 

The optimal polynomial order was determined by empirical testing. Specifically, a 

likelihood ratio test was used to compare between a model with vs. without a one-step 

increase in polynomial order (e.g. 𝐴𝑔𝑒ାଵ compared to 𝐴𝑔𝑒 ), for both Age and AOSW 

separately to determine optimal values for values j and k. If the likelihood ratio test 

between the previous polynomial order and new increased order yielded a significant 

improvement (P < 0.05) in model fit for the more complex model, the higher order model 

was selected. This approach was continued until increasing the polynomial order further 

did not yield a significant improvement in model fit. A full example of the code used to 

calculate polynomial orders is available in the appendix. 

The model optimisation was done in a sample of participants with known refractive 

error. First, the Autorefraction MSE sample was split into 2 subgroups: a ‘training’ 

dataset and a ‘test’ dataset. These two groups were equal in size (containing 49,435 

participants each). Regression models for selecting the optimal polynomial orders were 

fitted using the ‘training’ dataset. The optimal polynomial orders and regression 

coefficients from the training dataset model were then used to infer (i.e. predict) 

refractive error in the participants from the ‘test’ dataset based on their AOSW, Age and 

Sex. The coefficient of determination was calculated for the autorefraction-measured 

MSE vs. AOSW-inferred MSE relationship in the ‘test’ dataset.  

 Using the Optimised Model to Estimate Refractive Error in Participants With 
Unknown MSE 

The R function ‘predict’ was used to apply the optimised model in the 287,448 

participants in the ‘AOSW-inferred MSE’ sample. This step applied the optimised model 
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parameters to the AOSW, Age, and Sex of each participant in order to estimate their 

refractive error, i.e. to generate a value for the AOSW-inferred MSE phenotype of each 

individual. 

 

6.2.2.1 Transformation of AOSW inferred MSE to a Normal Distribution (‘AOSW norm 

MSE’) 

Once the AOSW inferred MSE phenotype had been calculated for each participant, 

consideration was also given as to whether transforming the distribution of the AOSW-

inferred MSE phenotype would be beneficial to prediction accuracy. AOSW-inferred 

MSE values were transformed to a normal distribution using an inverse rank-based 

normalisation method (also known as van der Waerden transformation). Estimates of 

AOSW-inferred MSE values were listed in numerical order, and individuals were assigned 

a rank based on their position (thus each person was given a rank from 1 to 287,448 

depending on their relative AOSW-inferred MSE value). Once ranked, 287,448 values 

from a simulated normal distribution (with a mean of 0 and a standard deviation of 1) 

were drawn, ranked in order as per the original AOSW-inferred MSE values, and then 

assigned to the dataset. This phenotype will be referred to as ‘AOSW norm MSE’.  

 GWAS for ‘AOSW-inferred MSE’ and GWAS for ‘AOSW norm MSE’ 

Once AOSW-inferred MSE and AOSW norm MSE had been calculated for the 287,488 

individuals in the AOSW-inferred MSE sample (i.e. those participants that did not have 

refractive error data from autorefraction), a GWAS for each trait was carried out. This 

was done using BOLT-LMM software (Section 3.1.5). Quality control filters and 

exclusions were applied as described in Section 3.1.4. λgc was also calculated to test for 

genomic inflation, and the LDSC regression intercept calculated if λgc  demonstrated any 

potential bias. 

 Comparison of GWAS Summary Statistics for ‘Autorefraction MSE’ vs. ‘AOSW-
inferred MSE’ and ‘AOSW norm MSE’ 

The GWAS summary statistics for Autorefraction MSE (i.e. the results from Chapter 5) 

and AOSW-inferred MSE or AOSW norm MSE were compared using two measures. 

Firstly, the genetic correlation between the two traits was calculated using LD score 
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regression (Section 3.2.3). Secondly, Pearson’s correlation was calculated for the genetic 

‘effect size estimate’ (i.e. GWAS regression coefficient) for markers strongly associated 

with one or both traits. For the latter analysis, markers were selected based on their P-

value for association with the trait of interest.  

 

6.3 Results 

 Determination of AOSW-inferred MSE model 

Increasing the polynomial order for the variables AOSW and Age improved the fit of the 

regression model shown in Equation 6.1 for participants in the ‘training’ dataset. The R2 

of the models was calculated for each polynomial step until the optimal polynomial 

order was reached (Table 6.1 and 6.2 and Figure 6.2 and 6.3).  

Polynomial Order 
for AOSW R2 of Model  

1 0.167818  
2 0.168501  
3 0.209257  
4 0.245416  
5 0.258757  
6 0.26354  
7 0.264839  
8 0.265659  
9 0.269904  
10 0.271878  
11 0.272424  
12 0.272684  
13 0.272713  
14 0.272726  
15 0.272726 

Table 6.1. The R2 of a model for autorefraction-measured refractive error estimated from Age of 
Onset Spectacle Wear (AOSW) of different polynomial orders. There was no significant change 
in the R2 after a polynomial order of 13 (i.e. likelihood ratio test P > 0.05). 
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Figure 6.2. Graphical presentation of the changes in R2 with different polynomial orders for Age 
of Onset Spectacle Wear (AOSW). 

 

 

 

 

 

 

 

 

Table 6.2. The R2 of a model for autorefraction-measured refractive error estimated from Age at 
different polynomial orders. There was no significant change in the R2 after a polynomial order 
of 6 (i.e. likelihood ratio test P > 0.05). 

 

Polynomial Order R2 of Model 
1 0.046504 
2 0.046641 
3 0.046762 
4 0.047046 
5 0.047093 
6 0.047192 
7 0.047182 
8 0.047171 
9 0.047175 
10 0.047166 
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Figure 6.3. Graphical presentation of the changes in R2 with different polynomial orders for Age. 

The optimal polynomial orders were 13 and 6 for AOSW and Age, respectively. 

Consistently, AOSW achieved higher R2 values than Age.  

Using AOSW, Age, and Sex combined in a single predictive model with the selected 

polynomial orders, gave an R2 of 0.30 (95% CI: 0.29 –0.31) in the independent ‘test’ 

dataset. The mean absolute error (MAE) for AOSW-inferred MSE was 1.54D (95% CI: 

1.53D – 1.55D).   

The mean value for AOSW-inferred MSE in participants with refractive data in the ‘test’ 

dataset was -0.30D, which was the same mean value for Autorefraction MSE. However, 

there was a difference between the standard deviations of AOSW-inferred MSE and 

Autorefraction MSE (1.55D and 2.80D, respectively) indicating that the distributions of 

these traits were different. 

Figure 6.4 and Figure 6.5 demonstrate the distributions of refractive error for 

Autorefraction MSE and AOSW-inferred MSE.  



   

107 
 

 

Figure 6.4. A histogram of Autorefraction-measured MSE in the ‘test’ dataset (N = 49,435).   

 

Figure 6.5. A histogram of AOSW-inferred MSE in the ‘test’ dataset (N = 49,435). 

 Transformation to a Normal Distribution: The ‘AOSW norm MSE’ trait 

An inverse rank-based normalisation method was applied to transform AOSW-inferred 

MSE values to have a normal distribution with a mean of 0 and standard deviation of 1. 

The resulting trait was termed ‘AOSW norm MSE’. The distribution of AOSW norm MSE 

is presented in Figure 6.6.  
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Figure 6.6. Histogram of AOSW norm MSE in individuals without refractive error data (N = 
287,448). 

 

For participants with Autorefraction MSE data available (N = 95,505), the AOSW norm 

MSE variable had a higher coefficient of determination than that of AOSW-inferred MSE 

(R2 = 0.45 vs. R2 = 0.30) in relation to the Autorefraction MSE. Thus, GWAS analyses were 

performed for both AOSW-inferred MSE and AOSW norm MSE.  

 Comparison of Results from GWAS for Autorefraction MSE, AOSW-inferred 
MSE, and AOSW norm MSE 

A GWAS Manhattan plot for Autorefraction MSE has already been presented in Figure 

5.1. It has been adjusted and fitted into the Miami plots in Figure 6.7 and Figure 6.8 to 

demonstrate the differences between the associations identified in the Autorefraction 

MSE GWAS compared to AOSW-inferred MSE and AOSW norm MSE, respectively.  
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Figure 6.7 Miami plot comparing the GWAS results for Autorefraction MSE (top) and AOSW-
inferred MSE (bottom). The blue and red lines indicate levels of suggestive significance and 
genome wide significance (5x10-5 and 5x10-8), respectively. 
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Figure 6.8 Miami plot comparing the GWAS results for True MSE (top) and Predicted Normalised 
MSE (bottom). The blue and red lines indicate levels of suggestive significance and statistical 
significance (5x10-5 and 5x10-8), respectively. 

 

 Genetic Correlations 

Table 6.3 demonstrates all the pairwise genetic correlations between the three traits. 

All correlations were above +0.92.  
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Table 6.3. Genetic correlations for the traits Autorefraction MSE, AOSW-inferred MSE, and AOSW 
norm MSE. 95% confidence intervals are shown in brackets.  

 Effect Size Correlations for Most Strongly Associated Markers 

Figure 6.9 demonstrates the correlations of regression (beta) coefficients for genetic 

variants from the GWAS analyses for Autorefraction MSE and AOSW-inferred MSE. 

There was a significant amount of noise seen when all variants were plotted, however 

as the variants were filtered by their significance of association to the phenotype (i.e. P 

value), a positive correlative was observed (note that P value filtering was applied to 

both traits (i.e. the same P value threshold was applied to both traits simultaneously 

when determining the correlation). Table 6.4 shows the correlation coefficients for 

these different levels of significance. 

The correlation of beta coefficients for the traits Autorefraction MSE and AOSW norm 

MSE are shown in Figure 6.10. A similar pattern of positive correlation was observed 

after filtering by the degree of association. The correlation coefficients are shown in 

Table 6.5. 

 

 

 Autorefraction 
MSE 

AOSW-inferred  
MSE 

AOSW norm  
MSE 

Autorefraction MSE 1.00 
0.92 

(0.92 to 0.92) 
0.94 

(0.93 to 0.94) 

AOSW-inferred MSE 
0.92 

(0.92 to 0.92) 1.00 
0.99 

(0.98 to 0.99) 

AOSW norm MSE 
0.94  

(0.93 to 0.94) 

 

0.99 
(0.98 to 0.99) 

1.00 
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Figure 6.9. Graphs demonstrating the correlation of effect sizes for variants in the GWAS for Autorefraction MSE and AOSW-inferred MSE. Panels A to F 
indicate the P value filter: (A) no filter, (B) P < 0.5, (C) P < 0.05, (D) P < 0.005, (E) P < 0.0005, (F) P < 0.00005, applied in both the Autorefraction MSE and 
AOSW-inferred MSE data. 
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Figure 6.10. Graphs demonstrating the correlation of effect sizes found in the genetic variants of the GWAS summary statistics for Autorefraction MSE and 
AOSW norm MSE. Panels A to F indicate the P value filter: (A) no filter, (B) P < 0.5, (C) P < 0.05, (D) P < 0.005, (E) P < 0.0005, (F) P < 0.00005 applied in both 
the Autorefraction MSE and AOSW-inferred MSE data.
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Table 6.4. Effect size correlations between variants in the Autorefraction MSE and AOSW-inferred 
MSE GWAS summary statistics. Variants were filtered by GWAS P value.  

 

Table 6.5. Effect size correlations between variants in the Autorefraction MSE and AOSW 
normalised MSE GWAS summary statistics. Variants were filtered by GWAS P value.  

6.4 Discussion 

The analyses reported in this chapter attempted to make use of the 287,448 individuals 

of European ancestry from the UK Biobank cohort who did not have refractive data 

available. The results demonstrated that AOSW, age and gender could be used to infer 

refractive error. Both AOSW and age had non-linear relationships with refractive error. 

(Note that it was not possible to determine if the association with age (or YOB) was due 

to changes that occur to an individual’s refractive error with age, or a cohort effect in 

the overall population, such as a shift towards more a negative refraction in younger 

generations). The optimised prediction model employing these 3 variables yielded an 

‘AOSW-inferred MSE’ phenotype and an ‘AOSW norm MSE’ phenotype that explained 

approximately 30% and 45% of the variance of refractive error, respectively. Moreover, 

the strong genetic correlation (rg > 0.92) identified for AOSW-inferred MSE and AOSW 

norm MSE compared to Autorefraction MSE gives support to the idea that these two 

Filtered Significance 
Level 

Number of Genetic Variants 
remaining 

Effect Size Correlation  
(95% CI) 

None (all variants) 9,767,769 0.317 (0.316 – 0.317) 

5x10-1 265,812 0.898 (0.897 – 0.899) 

5x10-2 79,498 0.964 (0.963 – 0.965) 

5x10-3 40,213 0.972 (0.972 – 0.973) 

5x10-4 25,733 0.976 (0.975 – 0.977) 

5x10-5 17,146 0.979 (0.978 – 0.980) 

Filtered Significance 
Level 

Number of Genetic Variants 
remaining 

Effect Size Correlation  
(95% CI) 

None (all variants) 9,767,769 0.292 (0.293 – 0.294) 
5x10-1 232,539 0.889 (0.889 – 0.890) 
5x10-2 76,544 0.962 (0.961 – 0.962) 
5x10-3 43,284 0.968 (0.967 – 0.969) 
5x10-4 32,123 0.976 (0.975 – 0.977) 
5x10-5 18,256 0.976 (0.976 – 0.977) 
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imputed phenotypes are reasonable surrogates for autorefraction-measured refractive 

error. This conclusion is further supported by the positive correlation in effect sizes 

demonstrated in Figure 6.9 and Figure 6.10.  

The R2 of 0.30 for the linear regression model of AOSW-inferred MSE demonstrates that 

the factors used in the regression model explain approximately 1/3 of the inter-

individual variation in refractive error.  This can be extrapolated to mean that the AOSW-

inferred MSE trait is ~30% as effective at explaining the variation in refractive error as 

autorefraction data would be, and therefore having a sample of participants with known 

AOSW-inferred MSE of approximately 3x the size of the Autorefraction MSE sample 

would provide an approximate doubling of the effective sample size. For example, in 

terms of GWAS statistical power, 286,515 participants with known AOSW-inferred MSE 

would be equivalent to 95,505 participants with known Autorefraction MSE. This is 

similar to the number of AOSW-inferred MSE participants actually available (N = 

287,448). Therefore, by performing a GWAS in the AOSW-inferred MSE sample, it is 

possible to increase the effective sample size in detecting refractive error variants by 2-

fold compared to the level when only using participants with known Autorefraction MSE.  

In a similar manner, the R2 of AOSW-norm MSE was higher at 0.45, indicating that it 

explained a greater proportion of the variance in refractive error than the AOSW-

inferred MSE trait. Therefore, as a better predictor of refractive error, a GWAS for this 

trait should further improve the ability to detect loci for refractive error compared to a 

GWAS for AOSW-inferred MSE.  

Both GWAS Miami plots demonstrated similarly located loci for the predicted 

phenotypes and Autorefraction MSE. However, the GWAS analyses for the predicted 

phenotypes yielded much reduced log P values. This occurs as a result of the imprecision 

in predicting refractive error using the prediction method above.  

Genetic correlations calculated with LDscore regression yielded positive values for all 

pairwise trait comparisons, with the highest genetic correlation being between AOSW-

inferred MSE and AOSW norm MSE. This is likely to be an inflated result as the two 

phenotypes are related to each via a simple, non-linear transform. 
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The next largest genetic correlation was for AOSW norm MSE vs. Autorefraction MSE, at 

rg = 0.94, which was higher than that for non-transformed AOSW-inferred MSE vs. 

Autorefraction MSE (rg = 0.92). Moreover, since the confidence intervals of these 

correlations do not overlap, this implied a statistically significant difference for the two 

genetic correlations (this was confirmed using the correlation difference test in R; P < 

0.001). The improvement in genetic correlation after transforming the phenotype to a 

normal distribution may be due to the distribution of AOSW norm MSE being more 

similar to the distribution of Autorefraction MSE (see Figure 6.4 and Figure 6.6). 

Moreover, this result suggests that in future analyses designed to combine GWAS 

summary statistics from different traits, AOSW norm MSE may perform better for 

prediction when combined with Autorefraction MSE than AOSW-inferred MSE. 

However, broadly speaking it appears that all 3 traits demonstrate a strong positive 

correlation, meaning that all trait summary statistics (other than the 2 inferred 

phenotypes) could be combined to increase the effective sample size used for analysis, 

and potentially obtain a more accurate prediction estimate for refractive error and 

myopia.  

The trend of increasing positive correlation between predicted phenotypes and 

Autorefraction MSE when filtering on significance indicates that loci associated with 

refractive error were being identified accurately in the GWAS for the inferred 

phenotypes. Nevertheless, this also suggests that if we are to combined GWAS summary 

statistics from different phenotypes to create genetic risk scores, it may be beneficial to 

restrict variants to those that are statistically significant. However this theory is 

contraindicated by the literature, which suggests that limiting the number of SNPs used 

for genetic risk score calculation limits predictive accuracy (Vilhjálmsson et al. 2015) (see 

Section 1.3.10). Therefore, it may be beneficial to include as many variants as possible 

in future analyses, i.e. both significant and non-significantly-associated variants, despite 

the potential to add noise.  

In conclusion, an optimised multivariable model was used to impute a new phenotype 

termed ‘AOSW-inferred MSE’, from the variables AOSW, Age and Sex. (An inverse-

normal transformed phenotype, ‘AOSW norm MSE’ was also imputed). The AOSW-

inferred MSE phenotype provided approximately one third of the effective statistical 

power to detect genetic variants compared to using participants’ autorefraction-
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measured refractive error, meaning that a samples with the imputed phenotypes would 

need to be 3x larger in order to provide a doubling of the effective sample size for a 

GWAS.  

Combining GWAS summary statistics for Autorefraction MSE and AOSW-inferred MSE 

(or Autorefraction MSE and AOSW norm MSE) should result in an effective GWAS sample 

size larger than the largest GWAS meta-analysis for refractive error reported to date 

(160,420 participants) (Tedja et al. 2018). Such a combined GWAS sample would have 

the potential to improve genetic risk score prediction accuracy compared to previous 

reports (Pickrell et al. 2016; Tedja et al. 2018).  

  



   

118 
 

  



   

119 
 

7 Prediction of Refractive Error Using Correlated Traits 
 

7.1 Introduction 

In Chapter 4, an analysis was conducted to determine whether knowing a child’s number 

of myopic parents (i.e. having 0, 1 or 2 myopic parents) or a genetic risk score for 

refractive error would have better accuracy at predicting the child’s refractive error. The 

analysis used a genetic risk score derived from 149 genetic variants that had been 

identified in a GWAS for Autorefraction MSE in 95,505 European UK Biobank participants 

and a GWAS carried out by the CREAM consortium. The results demonstrated that the 

number of myopic parents was a better predictor of refractive error and incident myopia 

in children than the genetic risk score.  

In this chapter, a similar analysis was conducted, but with the aim of creating an 

improved genetic risk score for refractive error. Here, the key question was whether the 

variance in refractive error explained by the new (improved) genetic risk score would 

reach a level sufficient to achieve clinical utility.  

The limitations of the genetic risk score used in Chapter 4 – and the approaches used to 

validate it and assess its clinical applicability – were considered, with the aim to 

overcome the previous limitations and make improvements where possible. Firstly, the 

independent ‘validation sample’ of participants used for testing the accuracy of the 

genetic risk score was changed from children to adults. An adult validation sample would 

be expected to overcome the potential inaccurate estimation of refractive error at 

earlier ages when the phenotype has not developed completely and stabilized. In other 

words, using a validation sample comprised of children could conceivably lead to an 

incorrect categorisation of refractive group, e.g. an individual from the ALSPAC cohort 

who became myopic in their late teens, beyond the age of 15, would have been 

miscategorised as non-myopic. Additionally, the children from ALSPAC had their 

refractive error measured using non-cycloplegic autorefraction (Williams et al. 2008a). 

There is known to be some discrepancy between the results obtained with and without 

cycloplegia prior to autorefraction (Williams et al. 2008a; Northstone et al. 2013). This 

body of literature has identified inaccuracy in non-cycloplegic autorefraction when 

testing children or young adults (Krantz et al. 2010; Mimouni et al. 2016; Sankaridurg et 

al. 2017). Using an adult validation sample was expected to overcome this issue and 
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improve the reliability in the refractive measurements obtained, due to the fact that 

non-cycloplegic autorefraction is the gold-standard in adults (Sanfilippo et al. 2014) and 

may therefore improve the accuracy of the prediction found using a genetic risk score.  

Secondly, previous studies have suggested that using a genetic risk score composed only 

of variants associated with the trait-of-interest at genome-wide statistical significance 

level usually leads to inferior levels of genetic prediction than if additional variants not 

reaching this significance level had been included (Dudbridge 2013; Marquez-Luna et al. 

2017; Lee et al. 2018). This phenomenon has been suggested to be a result of using 

under-powered GWAS analyses due to insufficient sample sizes, which may have led 

many truly trait-associated SNPs to show only suggestive levels of association. The 149 

genetic variants used in the previous genetic risk score analysis may therefore not have 

been the optimal choice of variants. Indeed, for biobank-scale datasets, it has been 

suggested that all available variants should be included in a genetic risk score to improve 

accuracy (Khera et al. 2018). Therefore, in the current analysis, all of the genetic variants 

available in the GWAS summary statistics from UK Biobank were included when creating 

the genetic risk scores.  

Thirdly, another approach to increase the power and accuracy of a genetic risk score is 

to combine information from multiple GWAS analyses (Tedja et al. 2018; Turley et al. 

2018). The MTAG (Multi-Trait Analysis of GWAS) software package allows GWAS 

summary statistics for two or more related (i.e. genetically correlated) traits to be 

combined together. This approach may be ideally suited to combining the GWAS 

summary statistics for refractive error, AOSW-inferred MSE, and even educational 

attainment (see below). Combining the results from any of these GWAS could potentially 

improve predictive accuracy (e.g. combining AOSW-inferred MSE, educational 

attainment, and Autorefraction MSE would increase the effective sample size for our 

trait-of-interest) and therefore increase the predictive power. This approach is discussed 

further in the Methods section.  

A genetic correlation between educational attainment and refractive error was 

expected based on the literature suggesting strong evidence for both the correlation of 

educational attainment and myopia risk (Fan et al. 2016b; Morgan et al. 2017) as well as 

evidence for the causal role of educational attainment in myopia development (Cuellar-
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Partida et al. 2015; Mountjoy et al. 2018). Thus, to increase the effective sample size by 

including genetically correlated traits, summary statistics from a GWAS for educational 

attainment performed by Okbay et al. (2016) would be used, which were available 

through an open access website. 

When creating a genetic risk score, the LD (section 1.3.6) of nearby SNPs has to be taken 

into account. The reason for this can be appreciated through an extreme example: 

consider two SNPs in perfect LD (i.e. r2 = 1), one of which has a major causal role in 

myopia while the other has no causal role whatsoever. In a GWAS analysis, the 

regression coefficient for both SNPs would be the same. Consequently, a genetic risk 

score derived without considering LD would, erroneously, assign equal weight to each 

SNP, whereas ideally the effect assigned to one of the SNPs should be zero (Vilhjálmsson 

et al. 2015). Thus, ignoring LD biases the apparent effect size of neighbouring non-

causative SNPs, which reduces the accuracy of the effect estimate of adjacent causal 

SNPs, leading to a reduced genetic risk score accuracy. Here, LDpred software (Section 

3.2.5) was used to account for LD, and improve the accuracy of genetic prediction.    

The analyses in this experiment were used to investigate the following hypotheses:  

1. That combining GWAS summary statistics of genetically correlated traits with the use 

of MTAG would improve the genetic prediction accuracy for refractive error compared 

to the GWAS summary statistics used for each trait in isolation. 

2. Combining GWAS summary statistics using MTAG would improve the genetic 

prediction accuracy for refractive error compared to conventional inverse-variance 

weighted meta-analysis.   

3. That the accuracy of using a genetic risk score calculated from a larger effective 

sample size to predict refractive error and myopia in adults would reach the level 

required for clinical utility. 

7.2 Methods  

 Participant Selection  

The selection of UK Biobank participants and the resultant sample sizes have been 

discussed in Section 2.1.3. 
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The following summary statistics were used in the analyses described in this chapter: 

1) GWAS summary statistics for the phenotype ‘Autorefraction MSE’ obtained from a 

sample of N = 95,505 UK Biobank participants of European ancestry (see Section 5.2).  

 

2) GWAS summary statistics for the phenotype ‘AOSW-inferred MSE’ in a sample of N 

= 287,448 UK Biobank participants of European ancestry (see Section 6.2.1 for details 

of how the AOSW-inferred MSE phenotype was derived, and Section 6.2.3 for how 

the GWAS summary statistics were obtained).   

 

3) GWAS summary statistics for the phenotype ‘AOSW norm MSE’ in a sample of N = 

287,448 UK Biobank participants of European ancestry (see Section 6.2.2.1 for 

details of how the AOSW-inferred normalised MSE phenotype was derived, and 

Section 6.2.3 for how the GWAS summary statistics were obtained). Note that the 

GWAS for this phenotype included exactly the same sample of participants as the 

GWAS for AOSW-inferred MSE. However the phenotype differs in that AOSW norm 

MSE was derived by rank-based inverse-normal transformation of the AOSW-

inferred MSE, such that the distribution of the trait was normal prior to GWAS 

analysis. As the AOSW-inferred MSE and AOSW norm MSE groups have 100% overlap 

in their participants, their GWAS summary statistics were not combined in 

subsequent analyses. 

 

4) GWAS summary statistics for the phenotype ‘EduYears’ (years spent in full time 

education) for N = 328,917 participants of European ancestry from Okbay et al. 

(2016). These summary statistics were downloaded from the Social Science Genetic 

Association Consortium (SSGAC) website (https://www.thessgac.org/data). All 

SSGAC participants had been questioned about their level of education at the age of 

30 or above, when it would be expected that most participants would have attained 

their highest level of full-time education. The SSGAC GWAS meta-analysis included 

participants distributed across many different educational systems and countries of 

birth; therefore, the outcome variable ‘EduYears’ was derived by Okbay et al. using 

the 1997 International Standard Classification of Education from the United Nations 

to allow for comparative and collective analysis. It should be noted that 
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approximately 40,000 individuals from the interim UK Biobank release were included 

in the Okbay et al. GWAS analysis, which will have led to a degree of overlap with 

the above-mentioned samples. However, MTAG meta-analysis (see below) can allow 

for some overlap in the samples used, and therefore these summary statistics were 

deemed suitable for inclusion in the current study. However, conventional meta-

analysis methods require the use of non-overlapping samples, and therefore for this 

reason the GWAS summary statistics for the EduYears phenotype were excluded 

from the conventional meta-analysis. 

As described in Section 3.1.4, all GWAS summary statistics were filtered to remove any 

potential low quality data or missing/incorrect genetic data. 

Numbers of participants in the samples for analysis for all traits, is shown in Table 7.1.  

Table 7.1. A table of all traits and trait combinations with their respective sample sizes used to 
create a genetic risk score. Whether MTAG was used is also listed. Trait combinations used for 
conventional inverse-variance weighted meta-analysis with METAL are also listed. 

  

Traits and Trait Combinations Number of 
Participants 

Use of 
MTAG 

Use of 
METAL 

Autorefraction MSE 95,505 N N 
AOSW-inferred MSE 287,448 N N 

AOSW norm MSE 287,448 N N 

EduYears 328,917 N N 

Autorefraction & AOSW-inferred MSE 383,067 Y Y 

Autorefraction & AOSW norm MSE 383,067 Y Y 

Autorefraction MSE & EduYears 424,536 Y N 
Autorefraction MSE, AOSW-inferred 

MSE, EduYears 711,984 Y N 

Autorefraction MSE, AOSW norm 
MSE, EduYears 

711,984 Y N 
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 Independent Validation Sample 

Mothers from the ALSPAC cohort were chosen as the independent validation sample 

(Section 2.2). There were N = 1,516 ALSPAC mothers of European genetic ancestry who 

had autorefraction data available and who passed quality control filtering as described 

in Section 3.1.4. 

 Genetic Correlation Assessment 

Genetic correlations for Autorefraction MSE, AOSW-inferred MSE, and AOSW norm MSE 

were calculated in the previous chapter (Section 6.3.4). However, additional genetic 

correlations involving EduYears were calculated here, using LD score regression (Section 

3.2.3).  

 Multi-Trait Analysis of Genome Wide Association Summary Statistics (MTAG) 

MTAG software was used to combine genetically correlated traits together for 

downstream analysis. Details of MTAG analysis are provided in Section 3.2.4. In order 

for data files to be read by MTAG, beta values from GWAS summary statistics were 

transformed to Z scores, and column headers were changed to the MTAG input file 

defaults. As MTAG gives separate output files for each of the traits used in the analysis 

(i.e. it gives different weighted output files for each trait of interest), the MTAG output 

file for the desired trait (Autorefraction MSE) was taken and used in all successive 

analyses. These results were then processed with LDpred (Section 3.2.5; see below) to 

account for LD. 

  Conventional Inverse Variance Weighted Meta-Analysis Using METAL  

Two combinations: Autorefraction MSE and AOSW-inferred MSE, and Autorefraction 

MSE AOSW norm MSE, were combined using the inverse variance weighted method 

implemented in METAL (Willer et al. 2010). This was performed using the MTAG input 

files with beta coefficient transformed Z scores. The Z scores were then reconverted to 

beta values post analysis. The output from the meta-analysis was then processed with 

LDpred (see below). The accuracy of the genetic risk scores derived using METAL meta-

analysis were then compared to those derived from MTAG.  
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 LDpred 

All analyses were run using the ‘LDpred-inf’ option i.e. assuming an infinitesimal model 

(Section 3.2.5). LDpred analysis was carried out for each trait separately (Autorefraction 

MSE, AOSW-inferred MSE, AOSW norm MSE, and EduYears) as well as for the MTAG and 

METAL combined trait combinations (Table 7.1).  

The first step of LDpred requires a reference panel to calculate LD patterns. As a sample 

of at least 2000 unrelated individuals has been recommended as the reference panel for 

LDpred (Vilhjálmsson et al. 2015), 2500 unrelated female participants of European 

ancestry were chosen at random from the UK Biobank sample for use as the LD 

reference panel. Only females were used in the creation of the panel in order to enable 

the X chromosome to be modelled using the same approach as for autosomes, i.e. 

individuals would have genotypes of 0, 1 or 2 rather than simply 0 or 1.  

For the second step, LDpred uses a Gibbs sampler, which is a mathematical process of 

determining probabilities of variables using their relative comparison to other variables 

which can be determined. Gibbs sampler algorithms allow the estimation of unknown 

factors (in this case the genotype-phenotype association for specific pairs of genetic 

variants), through a multivariable probability distribution when directly sampling the 

raw genotype data is not possible, which occurs when only GWAS summary statistics 

and estimates of the population-side LD from a reference panel are available. LDpred 

uses the results from this Gibbs sampler to alter posterior effects from GWAS summary 

statistics by accommodating LD patterns identified in the first step. The software also 

provides options to adjust settings within the algorithm for this second step, such as the 

number of iterations or ‘loops’ the algorithm performs to determine the mean relative 

probability of genetic variants being present together. 

For this experiment, the ‘LD radius’ parameter was selected as 1000 base pairs. This 

value corresponds to the number of SNPs on either side of the test SNP for which LDpred 

adjusts LD, i.e. the larger the LD radius, the larger the region that is adjusted for LD. An 

LD radius of 1000 was chosen for logistical reasons to minimise computational time, but 

still maintain the best predictive ability. Furthermore, Vilhjalmsson et al. (2015) 

recommend at least 60 iterations of the Gibbs sampler during LDpred. Here, 200 

iterations were used, since the use of fewer iterations sometimes led to failure of the 
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Gibbs sample to converge for one or more chromosomes (which led to a poor 

performance of the generated genetic risk score).  

In the final step, the variant weights obtained using LDpred were used to create a 

genetic risk score (Section 3.2.6). A ‘raw’ genetic risk score was also created using the 

non-LDpred-adjusted variants weights (i.e. weights obtained directly from MTAG or 

METAL, without adjustment for LD) for comparison.   

 Assessment of Refractive Error and Myopia Risk  

Each genetic risk score (both raw and weighted) derived from all phenotypes and 

phenotype combinations, was used as a predictor variable in a regression analysis for 

the outcome variable autorefraction-measured refractive error in the validation sample 

of 1,516 ALSPAC mothers. Prediction accuracy was quantified using the R2 value. To 

estimate the accuracy of prediction of myopia in the validation sample, the area under 

the receiver operating characteristic (AUROC) curve was calculated. This was performed 

for three myopia severity thresholds: any level of myopia (MSE ≤ -0.75D); moderate 

myopia (MSE ≤ -3.00D); high myopia (MSE ≤ -5.00D). Likewise, to determine if the 

genetic risk score was able to discriminate the risk of myopia development, the odds 

ratio for myopia was calculated for participants in the validation sample in the top 25th, 

10th, and 5th percentile of the genetic risk score vs. the remaining lower risk participants.  

7.3 Results  

 Genetic Correlations 

Genetic correlations calculated using LD score regressions are listed in Table 7.2.  

Table 7.2. Genetic correlations between traits. Values in brackets indicate 95% confidence 
intervals. Adapted from Table 6.3 to also include genetic correlations between ocular phenotype 
traits and EduYears.  

 Autorefraction 
MSE 

AOSW-
inferred MSE 

AOSW norm 
MSE 

EduYears 

Autorefraction 
MSE 1.00 

0.92 
(0.92 to 0.92) 

0.94 
(0.94 to 0.94) 

-0.26 
(-0.26 to -0.26) 

AOSW-inferred 
MSE 

0.92 
(0.92-0.92) 1.00 

0.99 
(0.99-1.00) 

-0.35 
(-0.35 to -0.35) 

AOSW norm 
MSE 

0.94 
(0.94 to 0.94) 

0.99 
(0.99-0.99) 1.00 

-0.33 
(-0.33 to -0.33) 

EduYears -0.26 
(-0.26 to -0.26) 

-0.35 
(-0.35 to -0.35) 

-0.33 
(-0.33 to -0.33) 1.00 
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As shown in Table 7.2, negative genetic correlations were observed between EduYears 

and the refractive error-related traits. These negative genetic correlations arise because 

a negative refractive error is associated with greater educational attainment. Traits with 

a positive or negative genetic correlation are equally suitable for combining using MTAG 

(the alleles for either trait can be switched to obtain beta coefficients of the same 

magnitude but opposite direction). This ‘correction’ is performed by MTAG 

automatically. Therefore, EduYears was used in the combined trait MTAG analyses 

without manual adjustment of the beta coefficients. 

 Comparison of Genetic Prediction Between METAL and MTAG  

Table 7.3. Accuracy in predicting refractive error in an independent validation sample for pairs 
of refractive error-related traits meta-analysed using either MTAG or METAL. Note that variant 
weights were adjusted for LD using LDpred after performing the meta-analysis. 95% confidence 
intervals are shown in brackets. 

 Table 7.3 presents the prediction accuracy results (R2 values) for traits meta-analysed 

using either METAL or MTAG (note that variant weights were adjusted for LD using 

LDpred prior to use in calculating genetic risk scores). For both pairs of traits examined, 

the MTAG-derived genetic risk score had a better predictive performance than the 

METAL-derived genetic risk score (model fit; P ≤ 0.001 for both).  

 

 

 

 

 

Trait Combination 

Prediction accuracy (R2) 

METAL  

meta-analysis 

MTAG  

meta-analysis 

Autorefraction MSE and  

AOSW-inferred MSE 

7.6% 

(6.3 –8.9%) 

10.8% 

(7.9 – 13.8%) 

Autorefraction MSE and  

AOSW norm MSE 

7.4% 

(6.1 – 8.7%) 

9.7% 

(7.0 – 12.6%) 
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 Accuracy of Genetic Risk Scores in Predicting Refractive Error  

Table 7.4 and Figure 7.1 show the prediction accuracy (R2 values) for genetic risk scores 

derived using the GWAS summary statistics for each trait separately or combined (using 

MTAG). Results are presented for both raw and LD-adjusted (LDpred) variant weights.  

The model with the best predictive accuracy for refractive error was the model with 

combined Autorefraction MSE, AOSW-inferred MSE, and EduYears, with an R2 of 11.2%. 

Although confidence intervals overlapped for many of these genetic risk scores, the 

model fit indicates that the addition of information relating to educational attainment 

improved predictive performance compared to the genetic risk score with the second 

highest accuracy, combined Autorefraction MSE and AOSW-inferred MSE (R2 11.2% vs. 

R2 10.8%, P = 0.005).  
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Table 7.4 Raw and weighted genetic risk score effects of all traits and combined traits. R2 values have been provided in percentage format. 95% confidence 
intervals have been provided in brackets. 

Trait/Trait Combination R2 raw effects R2 weighted effects 

Autorefraction MSE 
5.0%  

(2.8-7.1%) 

7.1% 

(4.7 – 9.7%) 

AOSW-inferred MSE 
3.7% 

(1.9-5.6%) 

6.9% 

(4.5 – 9.4%) 

AOSW norm MSE 
2.8% 

(1.2-4.4%) 

5.2% 

(3.1 – 7.5%) 

EduYears 
0.01% 

(0.0-0.1%) 

0.14% 

(0.0 – 0.6%) 

Autorefraction MSE & AOSW-inferred MSE 
5.8% 

(3.5-8.1%) 

10.8% 

(7.9 – 13.8%) 

Autorefraction MSE & AOSW normalised MSE 
5.3% 

(3.1-7.5%) 

9.7% 

(7.0 – 12.6%) 

Autorefraction MSE & EduYears 
4.8% 

(2.7-6.9%) 

7.9% 

(5.4 – 10.6%) 

Autorefraction MSE, AOS-inferred MSE & EduYears 
5.8% 

(3.8-8.0%) 

11.2% 

(8.3 – 14.2%) 

Autorefraction MSE, AOSW normalised MSE & EduYears 
5.2% 

(3.1-7.4%) 

10.1% 

(7.3 – 13.0%) 
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Figure 7.1. Accuracy in prediction of refractive error using a genetic risk score derived from a range of single or combined GWAS summary statistics. Raw 
effects correspond to variant weightings not adjusted for LD, Weighted effects correspond to variant weighting adjusted for LD using LDpred. Error bars 
indicate 95% confidence intervals. 
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 Predicting Myopia Status using Genetic Risk Scores 

The accuracy of the LD-adjusted weighted genetic risk scores in predicting myopia was 

examined, using the AUROC to quantify potential clinical utility. Three separate 

thresholds for classifying myopia severity were considered: any myopia (≤-0.75D), 

moderate myopia (≤-3.00D), and high myopia (≤-5.00D). The results are shown in Figure 

7.2 and Table 7.5. There was a general trend for the various models to yield AUROC point 

estimates of higher accuracy for the trait ‘moderate myopia’ compared to ‘any myopia’ 

or ‘high myopia’. However, 95% confidence intervals often over-lapped, indicating a lack 

of statistical evidence to support a clear difference between predictive performance for 

the different myopia severities. The combined model created using GWAS summary 

statistics for Autorefraction MSE, AOSW-inferred MSE, and EduYears had the best 

predictive ability, consistent with the results for predicting refractive error (Table 7.5). 

Using a bootstrap ROC test comparison measure between this model, and the model 

that included Autorefraction MSE and AOSW-inferred MSE (which provided the next 

best prediction values) found a slightly improved AUROC for myopia (0.668 vs. 0.674, P 

= 0.02) but not the AUROC for moderate or high myopia (0.745 vs. 0.742, P = 0.61, and 

0.730 vs. 0.730, P = 0.98, respectively).   

  

Figure 7.2. (Overleaf) ROC curves quantifying the accuracy of predicting myopia of varying degrees 
of severity using a genetic score created using GWAS summary statistics for the specified trait or 
trait combinations. The AUROC is indicated at the bottom right of each ROC curve panel. 
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Table 7.5. Accuracy of predicting myopia of varying degrees of severity using a genetic score. Values show AUROC (with 95% CI). Each column gives the results 
of a genetic risk score model created using GWAS summary statistics for the specified trait or combination of traits. Genetic risk score variant weights were 
adjusted for LD using LDpred.   

Myopia 

severity 

threshold 

Autorefractio
n MSE 

AOSW- 
inferred MSE 

AOSW norm 
MSE 

EduYears 
Autorefractio

n & AOSW-
inferred MSE 

Autorefractio
n & AOSW 
norm MSE 

Autorefractio
n MSE & 
EduYears 

Autorefraction 
MSE, AOSW-
inferred MSE 
& EduYears 

Autorefraction 
MSE, AOSW 
norm MSE & 

EduYears 

≤-0.75D 
0.629 

(0.600-0.659) 

0.646 

(0.617-0.676) 

0.631           

(0.601-0.612) 

0.547 

(0.515-0.579) 

0.668 

(0.639-0.698) 

0.661 

(0.631-0.690) 

0.642 

(0.612-0.672) 

0.674 

(0.645-0.704) 

0.666 

(0.637-0.696) 

≤-3.00D 
0.705 

(0.661-0.749) 

0.694 

(0.650-0.737) 

0.662          

(0.617-0.707) 

0.556 

(0.505-0.607) 

0.742 

(0.702-0.784) 

0.727 

(0.685-0.768) 

0.710 

(0.666-0.754) 

0.745 

(0.704-0.786) 

0.727 

(0.685-0.769) 

≤-5.00D 
0.694 

(0.620-0.768) 

0.699 

(0.632-0.766) 

0.675       

(0.607-0.743) 

0.537 

(0.452-0.622) 

0.730 

(0.661-0.799) 

0.716 

(0.649-0.786) 

0.695 

(0.620-0.770) 

0.730 

(0.660-0.801) 

0.715 

(0.644-0.785) 
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 Assessment of Clinical Utility 

The results above suggested that the most accurate genetic risk model for predicting 

refractive error and myopia was the model created by combining GWAS summary 

statistics for Autorefraction MSE, AOSW-inferred MSE, and EduYears. This model yielded 

an accuracy R2 = 11.2% and an AUROC of 0.67 for refractive error and myopia prediction, 

respectively. Therefore, this model was further examined to evaluate the clinical utility 

of using genetic prediction for detecting individuals at high risk of developing myopia. 

Odds ratios for myopia (of severity level: any, moderate, or high) were calculated for 

individuals with genetic risk scores in the top 25%, 10%, and 5% of the sample compared 

to the remaining 75%, 90% and 95% as the reference sample. A visual representation of 

this analysis is shown in Figure 7.3.  

 

Figure 7.3. Selection of participants with genetic risk scores in the top 25%, 10% or 5% of the 
distribution. The genetic risk scores have been standardised to aid interpretation. A more positive 
Z score value indicates a higher genetic risk of myopia. The shaded regions correspond to the top 
25th, 10th, and 5th percentile of the population, which were examined as the high risk groups.  
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The results show an increased risk of being myopic when being in the top 25% or higher 

genetic risk categories than would be expected by chance. Full results are shown in Table 

7.6.  

There appears to be a gradual increase in the odds of being myopic for individuals with 

increasingly higher levels of genetic risk i.e. the risk of being myopic for individuals in 

the top 25%, 10%, and 5% of the genetic risk distribution was associated with a steady 

increase in the risk of myopia (from 3x , to 4.6x, and 4.9x, respectively). This 

accumulative risk pattern was also be seen for moderate and high myopia, with the 

greatest risk of high myopia (≤ -5.00D) found in the top 5% of individuals, who were at 

6.5x increased risk compared to the remaining 95% of the sample. Furthermore, the 

level of risk appeared to be greater when looking at individuals at higher risk percentiles 

compared to lower ones. For example, the risk of being highly myopic for the top 25%, 

10%, and 5% of individuals was 4.6x, 5.4x and 6.5x, respectively. Overall, it appears as 

though stratification on the basis of genetic risk was predictive of both the chance of 

developing myopia and the degree of myopia an individual is likely to attain. 

Table 7.6. Odds ratios for having myopia of at least ≤-0.75D, ≤-3.00D, and ≤-5.00D for individuals 
categorised as being at high risk according to their genetic risk score (being in the top 25%, 10% 
or 5% of the distribution). Odd ratios were calculated by comparing those in the high risk group 
to the remainder of the population (reference group). 

 

Trait 
Risk 

group 

Reference 

group 
Odds ratio (95% CI) P-value 

Myopia ≤ -0.75D Top 25% Remaining 75% 3.06 (2.40 – 3.91) 1.75x10-19 

 Top 10% Remaining 90% 3.47 (2.43 – 4.91) 9.70x10-13 

 Top 5% Remaining 95% 4.57 (2.84 – 7.51) 7.11x10-10 

     

Myopia ≤ -3.00D Top 25% Remaining 75% 4.66 (3.06 – 7.03) 3.93x10-13 

 Top 10% Remaining 90% 4.89 (3.41 – 7.06) 8.14x10-18 

 Top 5% Remaining 95%  5.42 (3.17 – 9.03) 1.95x10-10 

     

Myopia ≤ -5.00D Top 25% Remaining 75% 4.90 (2.81 – 8.72) 3.22x10-8 

 Top 10% Remaining 90%   6.11 (3.36 – 10.87) 1.20x10-9 

 Top 5% Remaining 95%   6.50 (3.14 – 12.48) 1.37x10-7 
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7.4 Discussion 

In this Chapter, GWAS summary statistics for the traits Autorefraction MSE, AOSW-

inferred MSE, AOSW norm MSE, and EduYears were used to derive a series of genetic 

risk scores for predicting refractive error in an independent validation sample. Multiple 

traits were combined using MTAG, and used to derive genetic risk scores. LD between 

nearby genetic markers was adjusted for using LDpred. Prediction accuracy varied from 

approximately 0.1% to 11.2% at the maximum. Individuals with genetic risk scores in the 

top 10% were approximately 6-fold more likely to develop myopia of ≤-5.00D, which 

suggests the model could have some clinical utility.  

The genetic correlation between the refractive error phenotypes was discussed in 

Chapter 6. Genetic correlations between the refractive phenotypes and educational 

attainment showed a moderate negative correlation. The values of -0.35 and -0.33 for 

the genetic correlations of AOSW-inferred MSE and AOSW norm MSE with EduYears, 

respectively, were numerically higher than the genetic correlation with Autorefraction 

MSE at -0.26. The 95% confidence intervals for these correlations did not overlap, 

suggesting that genetic variants associated with educational attainment may be more 

comparable to genetic variants for the age of first wearing glasses/need for ocular 

correction, rather than autorefraction-measured refractive error.  

The findings in relation to the comparison of METAL and MTAG indicate that genetic risk 

scores derived from MTAG meta-analysis gave better predictions of refractive error than 

those from METAL when using the same data (R2 = 7.6% vs. 10.8%, and R2 = 7.4% vs. 

9.7%; model fit, P < 0.001 for both). There was an improvement in prediction accuracy 

after combining information for Autorefraction MSE along with the traits AOSW-inferred 

MSE or AOSW norm MSE, irrespective of whether the meta-analysis was performed with 

MTAG or METAL. The improvement in prediction accuracy after combining 

Autorefraction MSE and AOSW-inferred MSE with MTAG was 3.7% (7.1%, 95% CI 4.7 – 

9.7% vs. 10.8%, 95% CI 7.9 – 13.8%; P = 0.001). The improvement in prediction accuracy 

after combining the two phenotypes with METAL was 0.5% (7.1%, 95% CI 4.7 – 9.7% vs. 

7.6% (95% CI 6.3 –8.9%); P = 0.004). The results for AOSW norm MSE were similar to 

those for AOSW-inferred MSE, with their combination using both MTAG and METAL 

showing an improved prediction accuracy compared to Autorefraction MSE alone, and 
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a higher accuracy found when combining the traits through MTAG rather than using 

METAL.  

Lee et al. (2018) conducted a study in which educational attainment and the correlated 

traits of self-reported maths ability, cognitive performance, and highest maths class 

level taken, were combined using MTAG. The authors stated that they had combined 

these traits because they all had a genetic correlation of 0.50 with their trait-of-interest, 

and therefore it was permissible to use MTAG to combine the traits together. My results 

suggest that a lower threshold genetic correlation of 0.26 is an acceptable genetic 

correlation level for a trait to be included in an MTAG meta-analysis, as the inclusion of 

EduYears to the genetic risk score model derived only from Autorefraction MSE 

summary statistics improved the model fit (7.9% vs. 7.1%; model fit, P = 0.0002).  

Table 7.7 lists studies that have used MTAG to combine traits, and the minimum genetic 

correlation between the primary trait-of-interest and the other traits.  

Study Number of Traits Minimum Genetic Correlation 

Day et al. (2018) 3 0.69 

Hill et al. (2018) 2 0.70 

Lee et al. (2018) 3 0.51 

Table 7.7. Studies that have used MTAG and the minimum genetic correlation between the 
primary trait of interest and the other traits. 

 

Both raw and weighted genetic risk scores were evaluated (Table 7.5). The prediction 

accuracy (R2 value) for the weighted risk score was up to 50% higher than that for the 

raw score, illustrating the importance of accounting for LD. Therefore, all subsequent 

analyses used the LDpred-weighted genetic risk scores.  

The maximum prediction accuracy achieved with a genetic risk score was of R2 = 11.2%, 

which was larger than the previous highest figure of 7.8% reported for a genetic risk 

score derived from a meta-analysis of GWAS summary statistics for refractive error and 

age of onset of myopia (N = 160,420 participants) carried out by the CREAM consortium 

and 23andMe (Tedja et al., 2018). 
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The results in Section 6.2.1 indicated that a GWAS for AOSW-inferred MSE (and AOSW 

norm MSE) in 286,515 participants should have similar statistical power as a GWAS for 

Autorefraction MSE in 95,505 participants. (This was because the variance in refractive 

error explained by the AOSW-inferred MSE phenotype was R2 ≈ 0.3, and there were 

approximately 3 times more participants with data for AOSW-inferred MSE compared 

to Autorefraction MSE). This would imply they should have a similar ‘effective’ sample 

size. This was supported in the genetic risk score analyses: the predictive accuracy of 

Autorefraction MSE and AOSW-inferred MSE were very similar (R2 = 7.1% vs. 6.9%, 

respectively; model fit, P = 0.45). However, AOSW norm MSE performed significantly 

worse in refractive error prediction than AOSW-inferred MSE (R2 = 7.1% vs. 5.2%; model 

fit, P = 0.0001). This result was unexpected, and the reason for the inferior performance 

of AOSW norm MSE is currently unclear. 

As mentioned above, combining Autorefraction MSE and AOSW-inferred MSE produced 

a genetic risk score that performed better than using Autorefraction MSE alone (10.8% 

vs. 7.1%; likelihood ratio test, P < 0.0001). Nevertheless, the improvement in accuracy 

was not double, despite the doubling of the ‘effective’ sample size. This is likely due to 

the reduced improvement in predictive accuracy that is expected as the GWAS sample 

size increases. Further evidence of this phenomenon of ‘diminishing returns’ with 

increasing sample size was noted for EduYears, too (see below). It should be noted that 

this is also likely to be due to the lower genetic correlation between EduYears and 

Autorefraction MSE, and poorer overall predictive performance of EduYears when used 

in isolation (genetic risk score derived from EduYears alone: R2 = 0.014%).   

Nonetheless, combining GWAS summary statistics for EduYears with the refractive 

error-related traits did marginally improve the fit of predictive models (as mentioned 

above). For example, the inclusion of EduYears in the MTAG meta-analysis improved the 

fit of prediction models when combined with: Autorefraction MSE (7.1% vs. 7.9%, P = 

0.0002), Autorefraction and AOSW-inferred MSE combined (10.8% vs. 11.2%, P = 0.005), 

and Autorefraction and AOSW norm MSE (9.7% vs. 10.1%, P=0.006).  

On average, there was a 0.6% increase in accuracy for the weighted genetic risk score 

after combining information from the EduYears trait. Thus, it can be concluded that 
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including summary statistics for educational attainment is beneficial for genetic 

prediction of refractive error, even though the degree of improvement is modest. 

Although the inclusion of EduYears when deriving genetic risk scores always enhanced 

the prediction of refractive error, this was not always the case for the prediction of 

myopia. The inclusion of GWAS summary statistics for EduYears along with those for 

Autorefraction MSE did significantly improve prediction of ‘any myopia’: AUROC = 0.629 

vs. 0.642 (P = 0.01). Conversely, the inclusion of GWAS summary statistics for EduYears 

did not improve prediction of moderate or high myopia (P = 0.5 and P = 0.9, 

respectively). This pattern was also seen when GWAS summary statistics for EduYears 

were combined with those for Autorefraction MSE and AOSW-inferred MSE. Prediction 

of ‘any myopia’ improved (AUROC = 0.668 vs. 0.674, P = 0.02), but there was no 

improvement found for predicting moderate and high myopia (P > 0.70). This raises the 

question of whether the inclusion of EduYears in myopia prediction has any real value, 

particularly as it showed poor prediction accuracy when used alone. 

The above findings suggest that the inclusion of EduYears improves the accuracy with 

which the level of refractive error can be predicted (i.e. higher R2 value), and also the 

accuracy of predicting low levels of myopia, but not in predicting more severe levels of 

myopia. It may be that individuals who are already at high genetic risk of severe myopia 

are not at an appreciably higher risk if they are genetically predisposed to educational 

attainment, but that individuals who are not as genetically predisposed to myopia may 

become so due to increased educational attainment. Although the ability to draw strong 

conclusions is limited, based on the data from this chapter the results are consistent 

with the theory that education is influencing the distribution of refractive error in the 

population currently. Nonetheless it is highly probable that if the sample size of 

Autorefraction MSE was to increase, that this finding of an improvement in prediction 

of ‘any myopia’ following the inclusion of an EduYears may be contradicted. Thus, the 

benefit of incorporating information about EduYears may reflect the limited sample size 

of the Autorefraction MSE GWAS, consistent with the lack of improved prediction by 

inclusion of EduYears once AOSW-inferred MSE had already been combined with 

Autorefraction MSE.  However, the use of a GWAS for EduYears in a much larger sample 

of participants may be beneficial in predicting myopia, should larger GWAS samples for 

refractive error not be forthcoming in the future.  
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There was a significant difference in the prediction of ‘any myopia’ when comparing 

models created using GWAS summary statistics for Autorefraction MSE alone vs. AOSW-

inferred MSE alone (0.629 vs. 0.646, ROC bootstrap test, P = 0.01). However, this was 

not the case for predicting moderate or high myopia.  

The pattern of results regarding the prediction of myopia had an overarching 

correspondence to the pattern of results for prediction of refractive error, e.g. both 

displayed optimal performance for the 3 trait MTAG model incorporating Autorefraction 

MSE, AOSW-inferred MSE and EduYears. There was also a common trend for models 

created using AOSW norm MSE to perform more poorly than those incorporating (the 

unadjusted) AOSW-inferred MSE. For this reason, the former model was used in 

assessing the clinical utility of genetic prediction of myopia. 

As discussed by Torkamani et al. (2018), a polygenic risk score that achieves a sufficient 

level of prediction will allow for stratification of the population into different sub risk 

categories. My analysis confirmed that categorisation of individuals into groups with 

different risks of myopia is possible. The results shown in Table 7.6 demonstrate that an 

increasingly high level of genetic risk is associated with an increased risk of myopia as 

well as with a more severe level of myopia. For example, the genetic risk score could be 

used to divide a population into a group at low risk of myopia development, comprising 

of 75% of the starting sample, and a high risk group comprising of the remaining 25% of 

the sample who are at 3-times increased risk of developing myopia. This high risk sample 

could be subdivided further, to select 5% or 10% of the population who are at a further-

increased risk of moderate or high myopia.  

Thus, in theory genetic risk scores could be used by eye care providers to tailor patients 

to different management options, such as more regular screening of at-risk individuals. 

Children in the upper 5-25% of the genetic risk score model could be advised to attend 

more regular screening check-ups and spend more time outdoors. The top 5% of the 

genetic risk score distribution - who are at a 6.5 times increased risk of high myopia - 

may benefit strongly from prophylactic time outdoors, as well as other optical and 

pharmaceutical myopia intervention methods for delaying myopia onset, should any 

become established.  
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The best level of myopia prediction achieved for the genetic risk score, AUC = 0.75 for 

moderate myopia, is still not as good as that found by other studies. The CLEERE study 

(Zadnik et al. 2015) calculated an AUC of 0.87 for the development of myopia when using 

a cycloplegic autorefraction of +0.75D or less at the age of 6 years. However, genetic 

prediction still holds some value, as it can be done before the age of 6 years (e.g. from 

birth) before any biological mechanisms in leading to myopia development or ‘pre-

myopia’ may have started. It is currently uncertain whether the genetic risk score could 

be combined with the cycloplegic autorefraction of children at the age of 6 to 

significantly improve predictive efficacy. Current work suggests not (Chen et al., 2019), 

but it should be noted that the study by Chen et al. was performed on children between 

the ages of 7-15 years old, many of whom were already myopic when attending their 

clinic visits.  

GWAS sample size has been argued to be the largest factor limiting in the accuracy of 

genetic prediction (Dudbridge 2013). Identifying non-additive effects and including 

them in the genetic risk score model may also help improve accuracy. Nonetheless, as 

discussed previously, these approaches will be limited in their ability to give drastic 

improvements in genetic prediction (according to quantitative genetics theory). 

Currently, SNP-heritability estimates for refractive error put the upper limit of prediction 

accuracy at 39% (Shah et al. 2018). The analyses here resulted in a predictive accuracy 

of 11.2%, i.e. approximately 29% of this upper limit.  

In conclusion, the results obtained in this chapter showed that using the trait 

combination of Autorefraction MSE, AOSW-inferred MSE, and EduYears (incorporating 

GWAS summary statistics data for a combined sample size of N = 711,984) yielded a 

genetic risk score with the best prediction accuracy; namely, an R2 value of 11.2% when 

testing in an independent European sample. This result is an improvement over the 7.8% 

accuracy reported by the CREAM consortium and 23andMe (Tedja et al., 2018), and is 

the most accurate genetic prediction estimate for this phenotype to date. Combining 

genetically correlated traits (|rg| > 0.25) using MTAG improved the accuracy in 

predicting refractive error and myopia. The genetic risk score created in this chapter 

may have some clinical utility for detecting children aged < 6 years old at risk of myopia 

and high myopia. Thus, a personalised medicine approach for myopia management is 

feasible, at least in theory.  
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8 Prediction of Refractive Error in Individuals with Non-European 

Ancestry 
 

8.1 Introduction  

In Chapter 7, genetic risk score models were created using a range of GWAS summary 

statistics either on their own and or combined through MTAG. The accuracy of these 

genetic risk score models to predict refractive error and myopia in an independent 

sample of ALSPAC mothers with European ancestry was tested. Compared to the 

previous literature, the accuracy in predicting refractive error and myopia was improved 

with the new, multi-trait MTAG models. Furthermore, combining summary statistics 

from genetically correlated traits was found to be beneficial in improving the genetic 

prediction of refractive error.  

However, the results in Chapter 7 were only applicable to individuals of European 

ancestry. To date, there have been no published reports of the performance of a genetic 

risk score for predicting myopia in individuals of non-European ancestry, although 

Marquez-Luna et al. and Perry et al. have assessed the performance of cross-ethnic 

polygenic prediction for disorders such as diabetes (Marquez-Luna et al. 2017; Perry et 

al. 2018). The two latter studies showed that genetic prediction in participants of non-

European ethnicity was poorer than in Europeans, and that this deficit represents a large 

limitation of current genetic research being undertaken worldwide. Diabetes differs in 

prevalence across the world, being more common in non-Caucasian ethnicities (Wild et 

al. 2004), which suggests that it would be beneficial to investigate genetic factors and 

prediction in these ethnicities. This issue is also pertinent to myopia; there is a large 

discrepancy in the prevalence of myopia across the world (as discussed in Section 1.2.3). 

In general, the prevalence of myopia is higher in East and Southeast Asian countries, and 

in individuals of Asian ethnicity (Pan et al. 2012; French et al. 2013b; Morgan et al. 2017). 

Thus, identifying individuals at a higher risk of developing myopia in non-European 

populations, particularly in those of East Asian ethnicity, would be useful clinically.  

In this chapter, the genetic risk score models created in the previous chapter were tested 

in individuals of various non-European ethnicities. The analysis was focussed on the 

relative accuracy in predicting refractive error and myopia in different ethnic groups. To 

do this, the performance of models to predict refractive error and myopia was compared 
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to those described in Chapter 7 for the European ALSPAC sample (see Methods). It was 

hypothesised that if the genetic loci influencing refractive error are shared between 

different ethnicities, then the prediction of refractive error and myopia will be similarly 

accurate in individuals of European and non-European ancestry.  

8.2 Methods  

To compare the accuracy of genetic prediction of myopia for individuals of non-

European vs. European ancestry, genetic prediction was carried out in UK Biobank 

participants of non-European ancestry. These results were then compared against the 

findings reported in Chapter 7 for the N = 1,516 ALSPAC mothers (European ancestry 

independent sample; Section 7.2.2).  

 Participant Selection 

UK Biobank participants of non-European ancestry with information available for 

refractive error were studied. Specifically, individuals who self-reported Asian, Chinese, 

or Black ethnicity were used in this analysis, resulting in samples of 3,651, 455, and 3,368 

adults, respectively. As self-reported ethnicity is not always an accurate portrayal of 

ethnic background (Mersha and Abebe 2015), individuals were clustered to ensure 

ancestral homogeneity using principal component analysis (PCA; see Section 3.1.2). The 

mean and standard deviation for each of the first 10 PCs were calculated, separately, for 

UK Biobank participants whose self-reported ethnicity was either Asian, Chinese, or 

Black using PC data from Bycroft et al. (Bycroft et al. 2018). Any individual outside of ±10 

standard deviations from the mean of any PC value was then excluded from the 

analyses. This filtering step ensured that any participant whose genetic ancestry did not 

cluster with other participants of the same self-reported ethnicity category would be 

excluded.  

 Genetic Risk Score Modelling  

Once the above filters for genetic ancestry were applied, weighted genetic risk scores 

were calculated for the remaining participants. The weights used were those obtained 

from the MTAG meta-analysis and LDpred analysis for the 3 GWAS traits Autorefraction 

MSE, AOSW-inferred MSE and EduYears, as described in Section 7.2.4 and 7.2.6, i.e. the 

effect size weights were those derived using GWAS summary statistics from European 
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samples and a European LD reference panel. The “--SCORE” function in PLINK 1.9 (Purcell 

et al. 2007) was used to calculate genetic risk scores for each participant (Section 3.2.6).  

A linear regression of genetic risk score on autorefraction-measured MSE was carried 

out to calculate the prediction accuracy (R2 value) in each ethnic group (Asian, Chinese, 

and Black). Following the protocol adopted in Chapter 7, prediction accuracy was 

assessed for each of the 9 MTAG-LDpred models. This resulted in 36 different analyses: 

9 MTAG-LDpred models x 4 ethnic groups (Asian, Chinese, Black, and European).  

The model with the best predictive accuracy for refractive error (estimated by R2) in each 

ethnic group was evaluated for its efficacy in predicting myopia development. This was 

done using the area under the receiver operating characteristic curve (AUROC), for the 

three thresholds used in Chapter 7, namely: any level of myopia ≤ -0.75D; moderate 

myopia ≤ -3.00D; and high myopia ≤ -5.00D. Odds ratios for low, moderate and high 

myopia were calculated for those in the highest 25th, 10th and 5th percentile of genetic 

risk compared to the remaining sample.   

8.3 Results  

 Participant Filtering   

Table 8.1 demonstrates the number of participants removed by the PCA filtering step 

(shown visually in Figure 8.1).  

Table 8.1. Principle component analysis filtering to exclude participants whose genetic ancestry 
did not cluster with other participants of the same self-reported ethnicity.  

Self-reported 

Ethnicity 

Participants before PCA 

filtering 

Participants after PCA 

filtering 

Asian 3,599 3,500 

Chinese 454 444 

Black  3,366 3,132 
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Figure 8.1. Visual depiction of the effect of the PCA filtering step on participants with different self-reported ethnicity. The figure shows a scatterplot of PC1 
vs. PC2. Panel A shows the participants before PCA filtering, and Panel B shows participants after filtering. Note that the European sample is comprised of 
1,516 randomly selected UK Biobank participants with self-reported White British ethnicity (this group was included in the graphs rather than the ALSPAC 
Mothers sample since PCs derived from one sample are not directly applicable to another sample i.e. values from the ALSPAC mothers cannot be directly 
comparable to the samples in UK Biobank). 
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 Refractive Error Prediction  

Table 8.2 and Figure 8.2 display the results for the refractive error prediction accuracy. 

 

Figure 8.2. Predictive accuracies of 9 different genetic risk score models in individuals of European, Asian, Chinese, and Black ancestry. Error bars indicate 95% 
confidence intervals.  
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Table 8.2. Predictive accuracies for the 9 different genetic risk score models for individuals of European, Asian, Chinese, and Black ancestry. R2 values are 
displayed as percentages. Values in brackets indicate the 95% confidence intervals.

Trait/Trait Combination European Asian Chinese Black 

Autorefraction MSE 
7.1% 

(4.7 – 9.7%) 
3.7% 

(2.5 – 4.9%)  
2.4% 

(0.0 – 5.6%) 
1.2% 

(0.4 – 2.0%) 

AOSW-inferred MSE 
6.9% 

(4.5 – 9.4%) 
3.7% 

(2.4 – 4.9%) 
5.0% 

(1.2 – 9.2%) 
0.7% 

(0.1 – 1.4%) 

AOSW norm MSE 
5.2% 

(3.1 – 7.5%) 
3.2% 

(2.0 – 4.3%) 
4.7% 

(1.2 – 8.8%) 
0.6% 

(0.1 – 1.3%) 

EduYears 
0.14% 

(0.0 – 0.6%) 
0.8% 

(0.5 – 1.2%) 
0.1% 

(0.0 – 0.4%) 
0.0% 

(0.0 – 0.2%) 

Autorefraction MSE & AOSW-inferred MSE 
10.8% 

(7.9 – 13.8%) 
6.2% 

(4.7 – 7.7%) 
5.9% 

(1.8 – 10.4%) 
1.5% 

0.7 – 2.4%) 

Autorefraction MSE & AOSW norm MSE 
9.7% 

(7.0 – 12.6%) 
5.7% 

(4.2 – 7.2%) 
5.5% 

(1.6 – 9.6%) 
1.5% 

(0.6 – 2.4%) 

Autorefraction MSE & EduYears 
7.9% 

(5.4 – 10.6%) 
5.0% 

(3.6 – 6.3%) 
2.9% 

(0.0 – 6.0%) 
1.3% 

(0.5 – 2.0%) 

Autorefraction MSE, AOSW-inferred MSE & EduYears 
11.2% 

(8.3 – 14.2%) 
6.4% 

(4.9 – 8.0%) 
6.2% 

(2.0 – 10.8%) 
1.5% 

(0.7 – 2.5%) 

Autorefraction MSE, AOSW norm & EduYears 
10.1% 

(7.3 – 13.0%) 
6.0% 

(4.5 – 7.6%) 
5.8% 

(1.8 – 10.3%) 
1.5% 

(0.6 – 2.3%) 
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The genetic risk score derived using GWAS summary statistics for Autorefraction MSE, 

AOSW-inferred MSE, and EduYears combined performed better for prediction of 

refractive error than the other models in all 4 ethnic groups. Genetic prediction of 

refractive error was most accurate in Europeans, intermediate in Chinese and Asians, 

and least accurate in individuals of Black ethnicity.  

 Myopia Prediction 

The prediction model using GWAS summary statistics for Autorefraction MSE, AOSW-

inferred MSE, and EduYears combined was used to estimate the sensitivity and 

specificity of predicting myopia (quantified as the AUROC). Figure 8.3 displays the ROC 

curves with the corresponding AUROC values for all four ethnicities using the 

Autorefraction MSE, AOSW-inferred MSE, and EduYears model. 
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Figure 8.3. The receiver operating characteristic (ROC) curves for predicting any myopia, 
moderate myopia, and high myopia in the four different ethnic groups using the genetic risk score 
model derived from Autorefraction MSE, AOSW-inferred MSE, and EduYears. The corresponding 
area under the curve for each ROC curve in the panel is noted. The results for individuals of 
European ancestry are those from Chapter 7. 

 Clinical Applicability 

The results demonstrated prediction of refractive error was most accurate with the 

genetic risk score model derived from GWAS data for the 3 traits: Autorefraction MSE, 

AOSW-inferred MSE and EduYears. This was the case for all 4 ethnicities. Accuracy (R2 
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value) was 11.2%, 6.4%, 6.2%, and 1.5% for European, Asian, Chinese, and Black 

ancestries, respectively. As the clinical applicability of the genetic risk score in Europeans 

has been addressed in Section 7.3.5 and the discussion of Chapter 7, it will not be 

repeated here. However, a similar analysis was performed for the other 3 non-European 

ancestries: the top 25%, 10%, and 5% of individuals identified as “high risk” were 

compared to the corresponding remainder of 75%, 90% or 95% of individuals. The odds 

ratios for predicting any myopia, moderate myopia and high myopia in participants of 

each ethnicity are presented in Table 8.3, Table 8.4, and Table 8.5.  

Table 8.3. Odds ratios for myopia of at least ≤-0.75D, ≤-3.00D, and ≤-5.00D in Asian individuals 
categorised as having a high genetic risk score. Odd ratios were calculated by comparing those 
in the high risk group to the remainder of the population (reference group). 

 

 

 

 

 

Trait Risk group Reference group Odds ratio (95% CI) P-value 

Myopia ≤ -0.75D Top 25% Remaining 75% 2.60 (1.56 – 3.95) 3.9x10-4 

 Top 10% Remaining 90% 3.51 (1.77 – 5.39) 6.1x10-5 

 Top 5% Remaining 95% 4.02 (1.98 – 6.37) 7.9x10-3 

     

Myopia ≤ -3.00D Top 25% Remaining 75% 1.98 (1.36 – 3.15) 4.4x10-4 

 Top 10% Remaining 90% 3.84 (1.99 – 6.63) 3.0x10-6 

 Top 5% Remaining 95% 2.81 (1.16 – 6.02) 2.1x10-2 

     

Myopia ≤ -5.00D Top 25% Remaining 75% 1.65 (1.00 – 2.69) 4.5x10-2 

 Top 10% Remaining 90% 2.83 (1.52 – 5.44) 5.1x10-2 

 Top 5% Remaining 95% 3.50 (1.47 – 8.35) 6.4x10-2 
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Table 8.4. Odds ratios for myopia of at least ≤-0.75D, ≤-3.00D, and ≤-5.00D in Chinese individuals 
categorised as having a high genetic risk score. Odd ratios were calculated by comparing those 
in the high risk group to the remainder of the population (reference group). 

Table 8.5. Odds ratios for myopia of at least ≤-0.75D, ≤-3.00D, and ≤-5.00D in Black individuals 
categorised as having a high genetic risk score. Odd ratios were calculated by comparing those 
in the high risk group to the remainder of the population (reference group). 

Trait Risk group Reference group Odds ratio (95% 
CI) 

P-value 

Myopia ≤ -0.75D Top 25% Remaining 75% 2.26 (1.45 – 3.60) 4.2x10-4 

 Top 10% Remaining 90% 3.86 (1.89 – 8.73) 4.6x10-5 

 Top 5% Remaining 95% 3.26 (1.27 – 10.01) 2.1x10-2 

     

Myopia ≤ -3.00D Top 25% Remaining 75% 1.91 (1.23 – 2.97) 3.7x10-4 

 Top 10% Remaining 90% 3.10 (1.66 – 5.93) 4.4x10-5 

 Top 5% Remaining 95% 3.02 (1.29 – 7.41) 1.2x10-2 

     

Myopia ≤ -5.00D Top 25% Remaining 75% 1.67 (1.01 – 2.73) 4.1x10-2 

 Top 10% Remaining 90% 2.70 (1.40 – 5.12) 2.6x10-3 

 Top 5% Remaining 95% 3.57 (1.50 – 8.42) 3.4x10-3 

Trait Risk group Reference group 
Odds ratio (95% 

CI) 
P-value 

Myopia ≤ -0.75D Top 25% Remaining 75% 1.52 (1.19 – 1.93) 8.2x10-4 

 Top 10% Remaining 90% 1.69 (1.19 – 2.37) 2.8x10-3 

 Top 5% Remaining 95% 1.64 (1.02 – 2.60) 3.9x10-2 

     

Myopia ≤ -3.00D Top 25% Remaining 75% 1.68 (1.22 – 2.30) 1.4x10-3 

 Top 10% Remaining 90% 2.05 (1.34 – 3.07) 6.8x10-4 

 Top 5% Remaining 95% 1.80 (0.98 – 3.11) 4.5x10-2 

     

Myopia ≤ -5.00D Top 25% Remaining 75% 1.38 (0.85 – 2.17) 4.210-1 

 Top 10% Remaining 90% 1.56 (0.81 – 2.79) 1.5x10-1 

 Top 5% Remaining 95% 1.12 (0.36 – 2.59) 8.1x10-1 
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For all three non-European ethnic groups, those in the upper percentiles of the genetic 

risk score distribution were at higher risk of myopia compared to the remainder of the 

population (P < 0.05). The trend observed for Europeans (Error! Reference source not 

found.) in which the risk of myopia and the risk of a higher severity level of myopia 

increased gradually for participants with a higher genetic risk score, were not observed 

in these non-European samples (this point is discussed in the next section). 

For those with black ancestry, there was no significant difference found for having high 

myopia (≤ -5.00D) between the higher and lower risk groups at any of the top 25th, 10th, 

and 5th percentiles. Conversely, a significant difference was found between all risk 

groups for any myopia and moderate myopia. These findings are likely to be due to the 

model’s reduced predictive performance in this ethnic group, limiting the power of 

genetic prediction to differentiate and stratify individuals.  

The ability of the genetic risk score to predict myopia severity level was better in those 

of Asian and Chinese ancestries. An increased risk of myopia was observed for 

individuals in the higher percentiles of the genetic risk score, however this was less 

consistent than in those with European ancestry.  

8.4 Discussion  

In this experiment, SNP weights derived from European GWAS samples were used to 

create genetic risk scores for refractive error that were subsequently assessed in 3 non-

European ethnic groups. By doing this, it was possible to assess how accurate predictions 

in participants of Asian, Chinese, and Black ethnicity would be using the best genetic 

prediction model currently available. The results supported the hypothesis that genetic 

prediction using information derived from one ethnic population is inferior when 

applied to a different ethnic group. There was an approximately 44% reduction in the 

accuracy of genetic prediction of refractive error in Asian and Chinese individuals 

compared to prediction in European participants (R2 = 6.2% and 6.4% vs. 11.2%). 

Moreover, the similarity of the genetic prediction accuracies in Asian and Chinese 

individuals most likely reflects their closer ancestry to one another than to Europeans 

(Jorde and Wooding 2004; Tateno et al. 2014; 1000 Genomes Project et al. 2015; Wall 

2017). The results also suggested an even poorer predictive ability for participants of 

Black ethnicity, with an 87% reduction in accuracy (R2 = 1.5% vs. 11.2%).  



  

154 
 

The accuracy of prediction in all three non-European participant samples followed the 

same pattern of improvement found in European participants, with the use of genetic 

risk score models derived from summary statistics for genetically correlated traits 

combined using MTAG showing improved accuracy. The 3-trait MTAG model 

(Autorefraction MSE, AOSW-inferred MSE, and EduYears) gave the best-performing 

genetic predictions for all three ethnicities, however, it can be observed that the level 

of improvement when combining genetically correlated traits was markedly lower than 

in European participants, particularly when combining the GWAS summary statistics for 

EduYears. Moreover, as per the European participants, using EduYears on its own gave 

the poorest prediction of refractive error and myopia. 

The clearest example of the lack of improvement in predictive accuracy (R2 value) when 

including EduYears in the MTAG model was in Black participants. The R2 value was nearly 

identical with the use of SNP weights calculated from the 2 traits Autorefraction MSE 

and AOSW-inferred MSE when compared to that from the 3 traits Autorefraction MSE, 

AOSW-inferred MSE, and EduYears (increase in R2 < 0.1%; P = 0.89). Thus, there was no 

evidence that the inclusion of EduYears improved genetic prediction accuracy in the 

Black ethnicity sample. The addition of other correlated traits (namely AOSW-inferred 

MSE and AOSW norm MSE) did appear to give an increase in accuracy compared to using 

a model derived from Autorefraction MSE alone (model fit; P < 0.04 for all) in Black 

participants. However, the improved model fit was not accompanied by an appreciable 

improvement in prediction accuracy, which remained fixed at approximately R2 = 1.5%. 

Thus, overall, the performance of the genetic prediction model in participants of Black 

ethnicity was very poor (R2 = 1.5%).  

Further evidence for EduYears not having a greater role in predicting refractive error can 

also be seen in other populations (Table 8.2). In Asians, the inclusion of GWAS summary 

statistics for EduYears in the genetic risk score models did not improve the variance 

explained over and above that for the model incorporating only Autorefraction MSE and 

AOSW-inferred MSE (R2 = 6.4% vs. 6.2%; P = 0.21). Moreover, this was also the case for 

the Chinese and Black ethnic groups (R2 = 6.2% vs. 5.9%; P = 0.13 and R2 = 1.5% vs. 1.5%; 

P = 0.66, respectively). However, for the Asian and Chinese ethnicities (but not Black 

participants) the combination of EduYears and Autorefraction MSE did improve the 

genetic prediction of refractive error compared to Autorefraction MSE alone (Model fit, 
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P < 0.05 for both). Therefore, this would suggest that in assessing Asian and Chinese 

individuals for myopia risk using genetic information (and Europeans, as discussed in the 

previous chapter), the inclusion of GWAS summary statistics for educational attainment 

may improve accuracy - if the education GWAS sample is large enough.  

Accordingly, while the model using Autorefraction MSE, AOSW-inferred MSE, and 

EduYears did provide some discriminating ability for the 10-25% of Black participants 

most at risk of any myopia, moderate myopia, and high myopia (OR  1.5), performance 

was deemed not sufficient for clinical utility. This was due to the limitation of the model 

to differentiate different levels of risk accurately and to explain the variance in refractive 

error. These results could also be partly explained by the smaller proportion of 

participants with myopia in the Black ethnic group compared to the other samples 

(prevalence of any myopia = 27% in the Black sample, compared to 54%, 42%, and 31% 

for Chinese, Asian, and European participants, respectively). It may also be reasonable 

to assume that another reason for the limited success in genetic prediction for Black 

ancestry may be due to having the most diverse genetic profile (Jorde and Wooding 

2004; 1000 Genomes Project et al. 2015). As genetic diversity is inversely correlated with 

LD, controlling for LD patterns may have caused poorer tagging of causal variants in the 

GWAS lead SNPs for the Black sample. Thus, the process of controlling for LD using a 

different reference sample may be increasingly detrimental for genetic prediction in 

black ancestry, compared to other ancestries.  

The performance of genetic prediction in the Asian and Chinese samples provided more 

promise. Interestingly, EduYears showed better prediction accuracy in Asian participants 

than in the other 3 ethnicities (0.8% vs. 0.1%). It has been suggested (as discussed in 

1.2.3) that the increase in myopia prevalence in many East Asian countries has been due 

to the impact of education (Morgan et al. 2017), and that countries that have a culture 

of putting great importance on educational attainment are also the countries that are 

demonstrating a marked increase in myopia prevalence. The higher proportion of the 

variance of refractive error explained via genetic preposition to education in Asians vs. 

non-Asians is consistent with this hypothesis. It should be noted however, that the 

EduYears-based genetic prediction result for Chinese individuals does not support the 

hypothesis: the R2 for the EduYears-only model was low (0.1%) despite the expectation 

that Chinese individuals would be exposed to similarly high levels of education as the 
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Asian group. Furthermore, the R2 95% confidence intervals for the Chinese and Asians 

overlap, and are very close between Asians and Europeans, suggesting the relatively 

high EduYears-based genetic prediction result in Asians compared to all other ethnicities 

may be a false positive finding for this sample. Notably, due to the relatively smaller 

sample of participants with self-reported Chinese ethnicity, the genetic prediction 

estimate for the EduYears-only model in Chinese had wide confidence intervals. 

Therefore, the inconsistency of the EduYears-based genetic prediction results in Asian 

and Chinese individuals means that it is hard to draw any conclusion as to whether 

EduYears does explain more of the variation in refractive error in ethnicities with 

stronger educational emphasis, or whether this is a spurious finding.  

The limited (44%) drop in accuracy of genetic prediction in Asian and Chinese individuals 

compared to Europeans suggests there are shared genetic loci for refractive error in 

Europeans, Asians, and Chinese individuals. The higher variance explained using the 

European derived GWAS summary statistics in Asian and Chinese vs. Black individuals is 

likely to reflect their more similar respective genetic ancestry in comparison to 

Europeans (Gabriel et al. 2002; Keinan et al. 2007; Tateno et al. 2014; 1000 Genomes 

Project et al. 2015; Wall 2017). With this level of accuracy, the genetic risk score model 

may provide some utility for prediction of myopia in individuals of Asian and Chinese 

ethnicities. The model showed modest performance to detect individuals at increased 

risk of myopia for those with a genetic risk score in the top 25%, 10%, and 5% percentile 

compared to the rest of the sample. Specifically, individuals in the high genetic risk score 

categories had a 3-fold to 4-fold increased risk of any, moderate or high myopia for the 

best-performing models. However, these models had wide confidence internals, with 

minimal evidence for improved risk prediction for more severe levels of myopia. For 

both the Asian and Chinese ethnicities, there was a numeric trend of a higher point 

estimate of the risk of high myopia (≤ -5.00D) in those in the top 25% vs 10% and 10% 

vs. 5% genetic risk score percentile. However, the 95% confidence intervals for these 

estimates overlapped. Such a trend was less evident for any myopia (≤ -0.75D) and 

moderate myopia (≤ -3.00D). This is likely to be a limitation of the accuracy of the model, 

suggesting it is able to distinguish individuals with an increased risk, but not able to 

differentiate them further.  
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Torkamani et al. (2018) have argued that genetic risk scores could be used for different 

purposes, some of which would require more accurate and detailed risk stratification, 

e.g. selecting individuals who would benefit from a therapeutic intervention. It is likely 

that the genetic risk score model developed here is not accurate enough to select 

individuals who would benefit from an intervention that also carried a risk. This is 

because a risk-benefit analysis would be less favourable for intervention given that the 

risk of myopia with a high genetic risk score is not only uncertain, but there would be no 

predictive information regarding the degree of myopia that an individual would go on 

to develop. However, more benign interventions such as recommending increased time 

outdoors or more regular sight tests would increase the positive aspects of a cost-

benefit analysis (i.e. relatively low risk and cheap to implement), thus meaning that our 

genetic risk score may be of some merit for a benign intervention.  

Genetic prediction accuracy was higher in the European sample than in the Asian and 

Chinese samples. This finding could be due to one, or a combination, of the following 

factors: 

1. Not all genetic risk variants contributing to refractive error development are 

shared between Europeans and Asians/Chinese individuals 

2. The effect size of causal variants differs between Europeans and 

Asians/Chinese individuals 

3. Genetic variants included in the genetic risk score tag causal variants poorly 

in Asians/Chinese individuals compared to Europeans, due to differences in 

LD structure 

4. There are differences in the heritability of refractive error between 

Europeans and Asians/Chinese individuals. 

In relation to the first point, a ‘POPCORN’ analysis identified a high genetic correlation 

(rg = 0.79) for refractive error in Asians vs. Europeans (Tedja et al. 2018). This 

demonstrated that - at least for commonly occurring genetic variants - the same variants 

cause susceptibility to refractive error in the two ethnic groups. In relation to the second 

point, the POPCORN analysis described above also suggests that genetic variant effect 

sizes are similar in Asians vs. Europeans. Therefore, the first and second points are 

unlikely to be major reasons for the lower accuracy of genetic prediction in Asians.  
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As regards the third point, it is well-known that patterns of LD vary between Europeans 

and Asians (Evans and Cardon 2005). Furthermore, the true causal variants contributing 

to variation in refractive error are unknown, such that the variants that are strongly 

weighted by LDpred will not always be causal variants (which implies that causal variants 

will sometimes be assigned weights that are too low). Accordingly, the differing patterns 

of LD between Europeans and Asians could be a major contributor to the poor 

performance of genetic risk scores in Asians. In regards to the fourth point, as discussed 

in Section 1.3.7, heritability estimates are dependent on the sample being assessed and 

their exposure to environmental risk factors. Therefore, it may be that heritability is 

different in European and Asian populations. If refractive error was less heritable in 

Asians, for example due to a relatively greater contribution of lifestyle risk factors, then 

this ancestry group would have a lower SNP-heritability and would yield lower 

prediction accuracy for genetic risk scores.  

To improve the accuracy of the genetic risk score prediction and achieve clinical 

relevance, the results could be improved by collecting large cohorts of Asian, Chinese, 

and Black participants with genetic and refractive data, in order to conduct GWAS 

analyses in each ancestry. This would be expensive and time consuming. However, at 

present, alternative approaches for improving genetic risk scores have not been 

forthcoming.  

In conclusion, there was an approximate efficacy of ~56% (R2  6.3% vs. 11.2%) 

prediction accuracy when using a genetic risk score model derived from European 

participants to predict refractive error in individuals of Asian or Chinese ethnicity. This 

indicates substantial sharing of genetic loci for refractive error between these 

ancestries. The genetic risk score model did not perform as well for those with self-

reported Black ethnicity (R2  1.5%). Although the accuracy of genetic prediction in Asian 

and Chinese participants was relatively low (R2  6.3% on average), the prediction 

models did have some ability to discriminate those at risk of myopia development (e.g. 

the odds ratio for myopia was 3x higher in those with a genetic risk score in the top 25% 

vs. the remainder). Arguably, this may provide sufficient discriminative performance to 

advise lifestyle changes or more regular screening for those at a high genetic risk of 

myopia.  
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9 Discussion, Conclusions, and Future Work 
 

9.1 General Discussion 

The aim of the research performed in this thesis was to explore the concept of genetic 

prediction for myopia and refractive error, making use of recently released genetic data 

for the UK Biobank cohort. Initially, 149 GWAS loci identified in a GWAS carried out by 

the CREAM consortium (Tedja et al., 2018) were used to create a genetic risk score, 

which was evaluated in an independent dataset of children from the ALSPAC cohort. The 

genetic risk score was compared to another predictive factor that would potentially be 

available for children from birth onwards, namely the child’s number of myopic parents. 

It was found that the genetic risk score and the number of myopic parents were partially 

independent in their capacity to predict refractive error and myopia. Nevertheless, the 

genetic risk score derived from the 149 genome wide significant GWAS variants showed 

limited accuracy (R2  1.1 - 2.6%), and did not perform as well as knowledge of the child’s 

number of myopic parents (R2  3.0 - 4.8%). Because of this, a GWAS was then conducted 

for autorefraction measured refractive error in 95,505 UK Biobank participants. Genetic 

variants identified at a genome-wide significance level (P < 5 x 10-8) were compared to 

those published by the CREAM consortium (Tedja et al., 2018) and Pickrell et al. (2016). 

This demonstrated some evidence of replication; 100 SNPs replicated in the CREAM 

analysis, and all the available 50 SNPs from Pickrell et al. were replicated. 49 SNPs did 

not show genome wide significant replication, most likely due to the smaller sample size 

used, leading to reduced power. This therefore meant that using only the summary 

statistics for the GWAS of Autorefraction MSE would likely show limited improvement 

in predicting refractive error accurately.  

Steps were taken in order to improve the accuracy of a genetic risk score compared to 

the model derived from the top 149 GWAS variants, or that likely obtained from the 

Autorefraction MSE GWAS. Specifically, these steps were: increasing the effective 

sample size by incorporating information from a GWAS for AOSW-inferred refractive 

error, adjusting the genetic variant weightings (GWAS beta coefficients) by 

incorporating information from a genetically correlated trait (educational attainment), 

increasing the number of genetic variants used to derive the genetic risk score (from 149 

to approximately 1.1 million), and using an independent validation sample of adults 
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rather than children (since adults would have established phenotypes, and be 

unaffected by the lack of cycloplegia). This led to a better prediction accuracy model for 

refractive error: R2 = 11.2%, and an AUC of 0.75 for the prediction of moderate myopia 

(≤-3.00D). The marked improvement in accuracy of this model demonstrated the ability 

of the genetic risk score to stratify individuals with different levels of risk.  

Moreover, an investigation was carried out into the accuracy with which the 1.1 million 

variant genetic risk score derived from GWAS analyses in Europeans could predict 

refractive error in individuals of non-European ancestry. This is the first time such an 

approach has been examined with regards to refractive error. The results indicated a 

reduction in predictive accuracy for non-European ancestries. For example, accuracy in 

Asian and Chinese participants was R2 = 6.4% and 6.2%, respectively, a 55-57% efficacy 

compared to that in European individuals. This result still suggested the genetic risk 

score would have some clinical utility in identifying individuals with an elevated risk of 

myopia, although not as effectively as those with European ancestry. In contrast, the 

analysis showed that the existing genetic risk score was ineffective at predicting 

refractive error accurately in Africans (R2 = 1.5%) leading to an inconsistent 

identification of at-risk individuals.  

Overall, the results suggest that the use of genetic information to predict refractive error 

is a plausible option in individuals of European ancestry, and indicates a potential route 

to personalised myopia management. Genetic information could be evaluated to 

identify at-risk children who might benefit from frequent screening to identify the onset 

of myopia, at which point ‘myopia control’ treatment could be instigated. Information 

about a child’s high genetic risk may act as an incentive for parents to bring their children 

for regular sight tests. In turn, the more regular screening of at-risk individuals would 

allow clinicians to initiate myopia management to reduce the progression of myopia at 

an earlier stage (which is anticipated to improve treatment efficacy (Loh et al. 2015a; 

Gifford et al. 2019)). Clinicians could prescribe an optical or pharmacological 

intervention, as described in the literature review (Section 1.2.5).  

The use of genetic risk scores may also allow clinicians to suggest myopia prevention 

approaches to high risk individuals at an early age, before any other key risk factors have 

become established. This would likely include advising lifestyle changes such as 

increased time outdoors, so parents with at-risk children would be aware of the benefits 
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of regular time outdoors throughout childhood, not only after the child has had a 

significant myopic refraction change. Potentially this would reduce the incidence of 

myopia (Barry et al. 2016). Nevertheless, this approach may be overly cautious, since a 

recommendation to spend more time outdoors would be likely to benefit all children, 

not only those with a high genetic risk of myopia. Moreover, it would not allow the 

opportunity to take advantage of the stratified levels of relative myopia risk highlighted 

by the genetic prediction model; time outdoors would be beneficial and easy to safely 

implement in those with any level of increased risk of myopia. Therefore, should any 

other prophylactic methods for reducing myopia incidence or delaying myopia onset be 

found, these interventions could also be offered to parents whose children are at high 

genetic risk. Depending on the level of safety, and the potential benefit (due to efficacy 

or low cost of application), a risk-benefit analysis may be required. If it was deemed 

worthwhile, the new prophylactic interventions could be proposed for the individuals 

with the greatest risk of high myopia, as identified by the genetic risk model.  

A strength of genetic risk scores for calculating myopia risk is that they can be 

implemented in children at any age, even before myopia has manifested i.e. before ‘pre-

myopia’ (Flitcroft et al. 2019). This contrasts sharply with the current best available 

predictor of incident myopia - cycloplegic autorefraction. As future high myopes 

typically develop a myopic refraction before the age of 12, genetic prediction could be 

assessed in infancy or at birth, and would be easy to perform. However should there be 

any large-scale screening implemented for myopia risk (which would potentially raise 

ethical concerns, see below), the results should be interpreted with caution, as being 

categorized in a higher risk groups is not a formal diagnosis; it is only indicative of the 

relative chance of developing myopia for that individual compared to others. Thus, 

genetic prediction is useful in giving indications of relative trends amongst individuals 

within a defined population, but cannot exactly predict the future refractive error of any 

particular individual.  

Furthermore, it is important to note that the accuracy obtained through genetic 

prediction is not as high as other methods for predicting myopia that could potentially 

be used as a screening protocol, such as large-scale cycloplegic autorefraction at the age 

of 6 to identify children with a prescription of  ≤ +0.75D (Zadnik et al. 2015). Recent 

evidence has shown that the inclusion of a genetic risk score does not improve the 
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prediction accuracy for refractive error when age, sex, and current refractive data are 

taken into account for Chinese children aged 6-8 years old (Chen et al. 2019). However, 

it may still be valuable when trying to identify at-risk children under the age of 6. It is 

also worth considering whether the identification of children with a higher relative risk 

of developing myopia may help with a targeted approach to cycloplegic autorefraction 

screening for children aged 6. If the genetic risk score is implemented in infancy, a more 

selective screening process for myopia could take place, with only genetically high risk 

individuals undergoing cycloplegic autorefraction at 6 years old, potentially saving many 

children with low myopia risk from unnecessarily undergoing this assessment, and in 

turn saving costs on trained eye care professionals and cycloplegic medication. It may 

also help identify at-risk children who would have already developed myopia by the age 

of 6. However, the relationship between genetic risk and refraction at 6 years old would 

have to be further investigated to assess the practicality of this approach and refine any 

parameters and thresholds that would improve its sensitivity and specificity.  

This work has provided novel insights into aspects of myopia genetics; it has included 

working with the largest GWAS for refractive error, with the use of MTAG as an 

alternative form of meta-analysis to improve accuracy compared to the standard meta-

analysis method.  Moreover, the analyses performed in this thesis have taken advantage 

of larger samples of genetic data available for educational attainment, and used them 

alongside refractive error in a meta-analysis to show a successful improvement in 

genetic prediction accuracy. This has also provided evidence for how phenotypes with a 

relatively low genetic correlations of less than 0.35 can be combined and exploited to 

improve summary statistics for refractive error.  

9.2 Wider Context 

The theoretical limit of genetic prediction accuracy is governed by the SNP heritability 

estimate.  For example, the most successful genetic prediction accuracy obtained for a 

complex trait has been for ‘height’, in which a genetic risk score can explain 40% of the 

variance in an independent sample (Lello et al. 2018). Height is highly heritable: SNP 

heritability is estimated to be 45 - 63% (Silventoinen et al. 2003). The SNP heritability of 

refractive error has been estimated to be 39% (Shah et al. 2018). Thus, genetic 

prediction of refractive error is much more difficult than for height. 
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Regarding other ophthalmic traits, studies investigating intra-ocular pressure (IOP) have 

developed a genetic risk score model using loci associated with IOP to predict the 

relative risk of developing glaucoma (through the development of IOP genetic risk 

scores, and applying them in a regression model for glaucoma risk). Analysing data from 

the UK Biobank, Khawaja et al. (2018) combined 133 loci from their GWAS meta-analysis 

together to create a genetic risk score, which explained up to 9% and 17% of the 

variation in IOP (depending on the independent validation sample used), a level of 

accuracy slightly greater than the genetic risk score for refractive error created in this 

thesis (R2  11%). The reason proposed by Khawaja et al. for the wide variation in 

accuracy (9% vs. 17%) in the prediction of IOP was that in the 9% accuracy sample, 

participants only had their IOP measured once and then this was averaged between the 

two eyes. In the sample with 17% accuracy, an average of 3 IOP readings per eye were 

averaged. Measurement error due to a single phenotypic measurement may have also 

been applicable to the measurement of refractive error in ALSPAC mothers, as the 

results obtained from the mothers was done at the end of the visit, and may have been 

performed only once per eye. If the ALSPAC mothers had more readings taken and 

averaged per eye, this may have led to an increased accuracy in genetic prediction of 

myopia.  

Prediction of other ocular phenotypes has also been investigated with varied success. 

Age-related macular degeneration (AMD) genetics has been intensively studied 

(Arakawa et al. 2011; Fritsche et al. 2013; Seddon et al. 2013). Assuming a prevalence of 

5% within the adult population, it appears that AMD has a SNP heritability of 47%, with 

27% of the disease variance being explained when using known and associated genetic 

variants (Fritsche et al. 2016). In contrast, the trait of central corneal thickness 

demonstrates a poorer prediction performance (R2 = 8.3%) in individuals of European 

ancestry (Lu et al. 2013), despite the estimated heritability of 95% (Dimasi et al. 2010). 

This is likely due to the small GWAS sample size of just over 20,000 individuals used.  

Other non-ocular traits that have a polygenetic aetiology show varied prediction 

accuracies depending on their heritability; type 2 diabetes has a heritability of 

approximately 25% (Almgren et al. 2011) (note that heritability varies depending on the 

study cohort used and on the age of onset assumed). The accuracy of genetic prediction 

of type 2 diabetes is no more than 10% (Voight et al. 2010). Recent genetic studies of 
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educational attainment have demonstrated that variants from a GWAS for self-reported 

educational attainment could explain 11% of the variance for years in full time 

education, despite the heritability of the trait being only 18% (Lee et al. 2018). This high 

degree of accuracy relative to the heritability of the trait may be due to the very large 

sample size of the GWAS for education (N = 1,100,000).  

9.3 Ethical Considerations 

The ability to predict phenotypes at birth would allow clinicians to screen the population 

early in life, before the onset of symptoms or relevant and potentially harmful 

physiological changes occur. Moreover, because many published GWAS reports have 

given insight into associated genes and variants for a variety of health conditions, a 

report on potential risk categories (such as high or low risk) for many of these could be 

supplied relatively cheaply. If desired, parents could have their children screened for 

many potential diseases and health conditions at any time from a simple blood test.  

Although many arguments for using genetic screening stem from the proposed benefit 

of reducing mortality, non-life-threatening disorders such as myopia can be analysed 

within the same assessment. One report showed that newborn genetic screening for 

susceptibility to hearing loss demonstrated beneficial information to participants and 

clinicians in diagnosis; 13% more hearing-impaired infants were identified through 

genetic testing than using hearing screening alone (Wang et al. 2019). The efficiency of 

performing this form of assessment has also increased over time; the cost and time 

required for genetic screening could now be argued to be less than the time for an 

assessment by a healthcare professional, and has now given scope for the combination 

of many potential risk investigations. A recent study by Ceyhan-Birsoy et al. (2019) has 

shown that whole genome sequencing has been beneficial in newborns; 9.4% of the 

babies sampled carried a significantly higher genetic risk for childhood onset diseases 

identified through this method without the prospect of detection from other clinical 

tests or family history investigation. Thus, it could be argued that newborn screening 

and genetic testing should be an option provided for concerned parents and guardians, 

who can give informed consent to either perform genetic testing or decline the 

procedure. To include a risk report on the likely ocular refractive status of the child (and 

therefore the increased risks of secondary sight-threatening conditions they may have) 

alongside this test would be desired by some parents, particularly those who have had 
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previous family members with ocular conditions and high refractive errors. However, 

the ability to test genetic susceptibility during a child’s lifetime, particularly at very early 

stages of life raises some potentially important ethical concerns that need to be 

considered.  

Whole genome sequencing results can be difficult to interpret clinically, as in many 

instances the findings are inconclusive, e.g. identification of ‘variants of uncertain 

significance’ (VUS). A potentially thorny issue is the large number of potential false 

positives identified using genetic screening (Kingsmore 2015) i.e. if more children with 

greater potential risks for disease are identified, at what level of risk should clinicians 

intervene? Or would this screening increase unnecessary referrals and add further 

demand on already-strained healthcare service providers who would inherit a large 

body of individuals that would require closer observation? It is unlikely that all children 

who have a relatively greater risk of developing a condition would go on to do so, and it 

would be difficult to determine a threshold for said risk that would be safe in all 

instances of potential disease. Subsequently, increased management guidelines for 

these newly identified at-risk individuals may lead to theoretically excessive 

unnecessary interventions being performed and potentially harmful measures taken 

prophylactically. Making clinical judgements on the topic of what levels of risks are 

acceptable to be left without prophylactic intervention would be difficult to standardise, 

and may require further training for healthcare professionals. A risk-benefit analysis 

would have to be implemented for each child, and it would be important that 

interpretation and management using relative genetic risk be approached 

conservatively. 

An example of a potential harmful prophylaxis process is that used in breast cancer. 

Genetic variants in the BRCA1 and BRCA2 genes increase the risk of developing breast 

cancer significantly: 72% and 69% of carriers for specific variants in these two genes 

develop breast cancer respectively, a much higher proportion than the population 

average (Kuchenbaecker et al. 2017). Consequently, people with a strong family history 

of breast cancer, or who are concerned about their risk of developing cancer have 

considered undergoing genetic testing to investigate whether they have inherited these 

predisposing genes. Should a risk mutation be identified, many clinicians advocate 

prophylactic mastectomies, with a significant number of people following advice and 
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opting to undergo this surgery (Alaofi et al. 2018). This has shown success, with 90 – 95% 

of individuals staying breast cancer free having undergone this preventative measure 

(Warner 2018). However, theory suggests that nearly a third of the women carrying risk 

variants would not have developed breast cancer, therefore a life-changing procedure 

with lasting psychosocial effects (Heidari et al. 2015) would have been performed 

needlessly.  

Nevertheless, with respect to genetic testing for refractive error and myopia, it could be 

argued that the consequences of this knowledge and current interventions are minor in 

comparison. Myopia is not a life-threatening condition, and the interventions proposed 

for either avoiding myopia onset or reducing its progression are less life-changing, 

permanent, and easily rescindable. Although the cost of potential intervention would 

have to factor into any decision making (with the current use of myopia control contact 

lenses, spectacles, and atropine all self-funded within the UK), there is relatively little 

long term health/welfare concern. Contact lens wear in children poses an increased risk 

of eye infections, which is one of the greatest concerns. However, this risk is no higher 

than that for the average adult contact lens wearer, in whom contact lens use has been 

deemed safe (Bullimore 2017). Spending time outdoors would be cost free, and 

potentially have other benefits for the children’s mental and physical health (Thompson 

Coon et al. 2011) while also having minimal risks (taking precautions for UV light from 

the sun for example), and thus would raise few ethical concerns.  

In summary, it is likely that some ethical issues will arise from newborn genetic testing, 

but that investigating myopia risk would likely be one of the least controversial traits to 

conduct screening for. There is some evidence that offering genetic screening for 

concerned parents may be beneficial, ensuring to factor in what would be best for the 

child and parents on a case by case basis to make an informed decision. In this manner, 

myopia risk could be supplemented into screening platforms for a broader range of 

diseases, or on its own if desired.  

9.4 Future Work 

In this study of genetic prediction, a GWAS meta-analysis using a large combined sample 

of participants (mostly from UK Biobank) was used to create summary statistics that 

demonstrated a higher prediction efficacy for refractive error and myopia risk than 

previously reported. However, there is still the potential to improve the genetic 
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prediction of myopia further, and understand more about the genetic contribution to 

myopia development.  

As meta-analysis using MTAG was shown to improve genetic prediction accuracy, it may 

be beneficial to combine the currently-used summary statistics with those from GWAS 

analyses of other traits. For example, combining the existing summary statistics with 

those from the CREAM consortium (Tedja et al. 2018) and 23&Me (Pickrell et al. 2016) 

would dramatically increase the effective sample size. The summary statistics for 

educational attainment used could also be updated to include results from a more 

recent GWAS of 1.1 million people to see if this would improve the genetic prediction 

accuracy further (Lee et al. 2018). However, this approach would likely not improve the 

accuracy of prediction greatly, since quantitative genetics theory suggests diminishing 

returns in the relationship between sample size and genetic prediction accuracy. 

Furthermore, although an investigation into genetic prediction of myopia in non-

Europeans was done, the prediction accuracies would probably be greater if summary 

statistics were computed from participants with the ancestries of interest. Greater 

numbers of participants from other ethnicities would be useful in running separate 

GWAS analyses for other non-European ancestries, so that specific weights for each 

population - along with population-specific variants - could be identified. However, the 

collection of new datasets for non-European ancestry populations would be extremely 

costly both in time and resources.  

New statistical methods could be developed that implement higher order genetic 

structures (such as tertiary structures of genetic material in ocular tissue such as 

chromatin) or utilise deep learning methods to improve prediction. Quantile regression 

could be used to improve accuracy for genetic prediction by adjusting the summary 

statistic SNP weights for individuals based on their relative genetic risk score positioning 

(their quantile), as a recent study has demonstrated different genetic ‘effect sizes’ are 

present for individuals with different refractive errors (currently, genetic effect sizes are 

assumed to be the same in every individual) (Pozarickij et al. 2019).  

It may also be possible to look at other possible influences on refractive error such as 

epigenetics or environmental factors to give more precise prediction of refractive error 

(although the use of epigenetics in refractive error prediction requires validation as this 

has not been investigated). However, these factors are subject to change throughout 
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life, meaning that the prediction result would be reliable only at the time the test was 

conducted, and may not be as accurate if done at birth, losing its applicability in testing 

newborns and infants.  

Furthermore, it would be interesting to investigate how genetic information and myopia 

predisposition can be further included in the assessment of suitability for myopia 

management. The following ideas may warrant investigation:  

1. Exploring whether certain genetic loci are associated with a more successful 

outcome from interventions to reduce myopia progression.  

2. Investigating if individuals with greater genetic risk obtain more or less benefit 

from clinical interventions (rather than those who become myopic through a 

greater influence from environmental factors).  

3. Investigating whether individuals with specific genetic profiles will respond 

better to one intervention rather than another, i.e. if a precision medicine 

approach is warranted. 

These considerations would require the initiation of clinical trials for myopia 

management, recruiting a large sample of participants with genetic information to 

detect any potential relationships.   

In conclusion, a polygenic risk score has been derived that provides increased accuracy 

for the genetic prediction of refractive error and myopia. This polygenic risk score can 

be used to stratify individuals in an independent cohort based on different levels of risk, 

and thereby to identify those with the greatest genetic susceptibility of developing 

myopia. However further investigation will be required to discover if genetic 

susceptibility to myopia, as inferred from the genetic risk score, is predictive of 

treatment responses to myopia control interventions. If so, then genetic prediction may 

have a role in the management of childhood myopia, or in other words, a personalised 

medicine approach to myopia management.  
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10 Appendices  

 

The following appendices display the code and scripts used to conduct the data 
analyses in this thesis (where used). The appendices have been organised into 
separate sections for each experiment chapter. The code used has been written in 
black, notes describing what is being performed are presented in green, and variable 
names that allow for quick replacement in repetitive scripts are highlighted in red text 
(only done for noted areas).  

10.1 Appendix A Analyses for Chapter 4, Experiment 1 

 
============= 
Creation of allele and weighted polygenic risk scores - Unix 
============= 
 
#!/bin/bash 
#  
#PBS -q serial 
#PBS -l select=1:ncpus=1 
#PBS -l walltime=2:00:00 
#PBS -N plink_score2 
#PBS -o plink_score2_out 
#PBS -e plink_score2_err 
#PBS -P PR300 
  
# ------------------------------- 
# ALSPAC GWAS SCORE 
# ------------------------------- 

module load plink/1.9c3 
 
##weighted scores  
plink \ 
  --bfile 
/scratch/share_PR300/Neema/ALSPAC/yp_cream2017_hits_allchr \ 
#location of files specifying information on ALSPAC children 
  --missing-code -9,0,NA,na \ 
  --maf 0.05 \ 
#to ensure no unreliable rare variants are used that may be 
present 
  --score 1 2 4 /scratch/share_PR300/Neema/ALSPAC/scorefile.txt 
\ 
#location of variant effect weights to apply for ALSPAC 
  --out /scratch/share_PR300/Neema/ALSPAC/weightedscores.out 
#output file for analysis 
 
##allele scores – comments as above 
plink \ 
  --bfile 
/scratch/share_PR300/Neema/ALSPAC/yp_cream2017_hits_allchr \ 
  --missing-code -9,0,NA,na \ 
  --maf 0.05 \ 
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  --score 1 2 
/scratch/share_PR300/Neema/ALSPAC/allelescorefile.txt \ 
  --out /scratch/share_PR300/Neema/ALSPAC/nonweightedscores.out 
 
module unload plink/1.9c3 
 
======================= 
script for calculating prediction linear models - R 
======================= 
 
## read in calculated weighted scores 
library(readr) 
SNPSUM <- read_delim("~/weightedscores.txt",+     " ", 
escape_double = FALSE, trim_ws = TRUE) 
 
##read in phenotype measures and NMP file 
nmpdata <- ALSPAC_parentalmyopia 
 
names(SNPSUM)[1] <- "rupal_id_new" 
names(SNPSUM)[2] <- "qlet" 
names(nmpdata)[1] <- "rupal_id_new" 
names(nmpdata)[2] <- "qlet" 
#adjust names of columns for merging 
 
SNPsumfull <- merge.data.frame(SNPSUM, nmpdata, 
by=c("rupal_id_new","qlet")) 
#merge files 
SNPsumfull <-  SNPsumfull[!(is.na(SNPsumfull$NumMyopicParents) | 
SNPsumfull$NumMyopicParents==""), ] 
#remove missing information 
shapiro.test(SNPsumfull$SCORE)  
#data indicates normal 
SNPsumfull$newSCORE <- ((SNPsumfull$SCORE - 
mean(SNPsumfull$SCORE))) /sd(SNPsumfull$SCORE) 
#standardise z-score for mean 0 sd 1 
 
##read in allele scores 
library(readr) 
SNPALL <- read_delim("~/nonweightedscores.txt",+     " ", 
escape_double = FALSE, trim_ws = TRUE) 
nmpdata <- neema_parentalmyopia_2016_12_06 
names(SNPALL)[1] <- "rupal_id_new" 
names(SNPALL)[2] <- "qlet" 
names(nmpdata)[1] <- "rupal_id_new" 
names(nmpdata)[2] <- "qlet" 
#all as above but for allele score 
 
SNPALLfull <- merge.data.frame(SNPALL, nmpdata, 
by=c("rupal_id_new","qlet")) 
SNPALLfull <-  SNPALLfull[!(is.na(SNPALLfull$NumMyopicParents) | 
SNPALLfull$NumMyopicParents==""), ] 
#merge and remove all with missing NMP data  
shapiro.test(SNPALLfull$SCORE)  
#data indicates not normal 
 
yr7data <- SNPsumfull[which(!is.na(SNPsumfull$Yr7_avMSE)),] 
yr15data <- SNPsumfull[which(!is.na(SNPsumfull$Yr15_avMSE)),] 
count(yr7data$NumMyopicParents) 
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count(yr15data$NumMyopicParents) 
yr7data2 <- SNPALLfull[which(!is.na(SNPALLfull$Yr7_avMSE)),] 
yr15data2 <- SNPALLfull[which(!is.na(SNPALLfull$Yr15_avMSE)),] 
count(yr7data2$NumMyopicParents) 
count(yr15data2$NumMyopicParents) 
# identifying numbers in each prediction group for allele and 
weighted 
 
## identify which of the models is best for predicting 
refractive error 
Allelescorecalculation7 <- lm(yr7data2$Yr7_avMSE ~ 
yr7data2$SCORE) 
Allelescorecalculation15 <- lm(yr15data2$Yr15_avMSE ~ 
yr15data2$SCORE) 
Summary(Allelescorecalculation7) 
Summary(Allelescorecalculation15) 
#summaries give values for adj.rsq 
 
weightscorecalculation7 <- lm(yr7data$Yr7_avMSE ~ yr7data$SCORE) 
weightscorecalculation15 <- lm(yr15data$Yr15_avMSE ~ 
yr15data$SCORE) 
Summary(weightscorecalculation7) 
Summary(weightscorecalculation15) 
#summaries give values for adj.rsq – values higher than allele 
score 
 
anova(weightscorecalculation7, allelescorecalculation7)  
anova(weightscorecalculation15, allelescorecalculation15) 
#calculate significance of differences between allele and z 
score PRS 
 
#calculation of model fits 7 and 15 
nmpyr7model <- lm(yr7data$Yr7_avMSE ~ yr7data$NumMyopicParents) 
alleleyr7model <- lm(yr7data$Yr7_avMSE ~ yr7data$SCORE) 
combinedmodel7 <- lm(yr7data$Yr7_avMSE~yr7data$NumMyopicParents 
+ yr7data$SCORE +  
yr7data$NumMyopicParents:yr7data$SCORE) 
 
nmpyr15model <- lm(yr15data$Yr15_avMSE ~ 
yr15data$NumMyopicParents) 
alleleyr15model <- lm(yr15data$Yr15_avMSE ~ yr15data$SCORE) 
combinedmodel15 <- 
lm(yr15data$Yr15_avMSE~yr15data$NumMyopicParents + 
yr15data$SCORE + yr15data$NumMyopicParents:yr15data$SCORE) 
 
library(psychometric) 
mysum <- summary(modelx) #delete and replace modelx as needed 
CI.Rsq(rsq=mysum$r.squared, n=(mysum$df[1]+mysum$df[2]), k=mysum 
#calculate confidence int. for the models 
 
#comparison of age 7 to age 15 in children who attended both 
Comparisondata <- merge.data.frame(yr7data, yr15data 
by=c("rupal_id_new","qlet")) 
 
nmpyr7modelcomp <- lm(Comparisondata$Yr7_avMSE ~ 
Comparisondata$NumMyopicParents) 
alleleyr7modelcomp <- lm(Comparisondata$Yr7_avMSE ~ 
Comparisondata$SCORE) 



  

200 
 

combinedmodel7comp <- 
lm(Comparisondata$Yr7_avMSE~Comparisondata$NumMyopicParents + 
Comparisondata$SCORE) 
#recalculate scores for combined subset of children 
 
nmpyr15modelcomp <- lm(Comparisondata$Yr15_avMSE ~ 
Comparisondata$NumMyopicParents) 
alleleyr15modelcomp <- lm(Comparisondata$Yr15_avMSE ~ 
Comparisondata$SCORE) 
combinedmodel15comp <- 
lm(Comparisondata$Yr7_avMSE~Comparisondata$NumMyopicParents + 
Comparisondata$SCORE) 
#as above, but for age 15 
 
============================ 
Linear Mixed Model analysis - R 
============================ 
 
rm(list=ls()) 
library(nlme) 
library(reshape) 
library(ggplot2) 
#load up packages as needed 
 
data1 <- neema_parentalmyopia_2016_12_06 
data2 <- SCOREfile 
#load data 
data1$visits <- 5 - is.na(data1$Yr7_avMSE) - 
is.na(data1$Yr10_avMSE) - is.na(data1$Yr11_avMSE) - 
is.na(data1$Yr12_avMSE) - is.na(data1$Yr15_avMSE) 
#set out how many visits people attended 
data1.5 <- subset(data1, (!is.na(data1[,5]))) 
data1.75 <- data1[which(data1$NumMyopicParents>=0, 
!is.na(TRUE)),] 
#remove those with missing data or no attendance 
 
#first lmm for GRS 
names(data2)[1] <- "rupal_id_new" 
names(data2)[2] <- "qlet" 
data2$PHENO <- NULL 
data2$CNT   <- NULL 
data2$CNT2  <- NULL 
#organise files as needed 
data3 <- merge(data2,data1.5,by=c("rupal_id_new","qlet")) 
data4 <- data3[which(data3$visits >= 3),]  
n    <- dim(data4)[1] 
#merge and count the number that have over 3 attendances 
 
data5 <- melt(data4, id.vars = c("rupal_id_new"), measure.vars = 
c("Yr7_avMSE","Yr10_avMSE","Yr11_avMSE","Yr12_avMSE","Yr15_avMSE
")) 
data6 <- melt(data4, id.vars = 
c("rupal_id_new","sex","SCORE","visits"), measure.vars = 
c("age7","age10","age11","age12","age15")) 
#melt data to allow LMM to take place 
names(data5)[2] <- "avMSE" 
names(data5)[3] <- "avMSE_at_visit" 
names(data6)[5] <- "age" 
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names(data6)[6] <- "age_at_visit" 
#rename the columns for easier understanding 
data7 <- data5[order(data5$rupal_id_new),] 
data8 <- data6[order(data6$rupal_id_new),] 
data7$visit <- rep(1:5,n) 
data8$visit <- rep(1:5,n) 
#order and organise file for LMM 
data9 <- merge(data7,data8,by=c("rupal_id_new","visit")) 
#merge data 
mod1 <- lme(avMSE_at_visit ~ sex + SCORE + poly(I(age_at_visit - 
7.53),4) + SCORE:I(age_at_visit - 7.53),  
        random=~I(age_at_visit - 7.53) | rupal_id_new,  
        correlation = corCAR1(form = ~ visit | rupal_id_new),  
        na.action = na.omit,  
        method="ML", 
        data=data9) 
summary(mod1) 
#create first model 
 
a <- summary(mod1) 
table2 <- a$tTable 
table2 
#find coefficients and place in table 
meann <- mean(data9$SCORE) 
ci <- sd(data9$SCORE) 
#calculate mean and stan dev of PRS 
minscore  <- min(data9$SCORE) 
fifth  <- meann-2*ci 
lowrisk <- data9[which(data9$SCORE < mean-ci),] 
highrisk <- data9[which(data9$SCORE > mean+ci),] 
avrisk <- data9[which(data9$SCORE > mean-ci & data9$SCORE < 
mean+ci),] 
maxscore  <- max(data9$SCORE) 
medscore  <- median(data9$SCORE) 
#identify other values for PRS  
 
 
pdata     <-expand.grid(age_at_visit=seq(7,15,by=1), 
SCORE=c(highrisk,avrisk,lowrisk), sex=c(1.5), 
avMSE_at_visit="1") 
pdata[,4] <-predict(mod1, pdata, level=0) 
#expand and apply lmm model data  
 
pdata$SCORE <- as.factor(pdata$SCORE) 
names(pdata)[2] <- "GeneticRiskScore" 
levels(pdata$GeneticRiskScore) <- c("High Risk", "Average Risk", 
"Low Risk.") 
#restructure PRS LMM for preparation of figure 
 
fig1 <- ggplot(pdata, aes(age_at_visit, avMSE_at_visit))  + 
                labs (x="Age (Years)", y=NULL, linetype="Genetic 
Risk Score",colour="Genetic Risk Score")  + 
                scale_linetype_manual(values=c(1,1,1)) + 
                geom_line  (size=1.5, 
aes(linetype=pdata$GeneticRiskScore, colour=GeneticRiskScore), 
show.legend = F) +  
                geom_point (size=4, 
aes(colour=GeneticRiskScore)) + 
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                #geom_errorbar(aes(ymin=meann-ci, ymax=mean+ci), 
width=.1) + 
                scale_shape_manual(values = c(16,16,16))  + 
                scale_x_continuous(limits=c(7, 15.5), 
breaks=seq(7, 15, 1)) + 
                scale_y_continuous(limits=c(-1.5, 0.60), 
breaks=seq(-1.5,0.5,0.25)) + 
                scale_colour_manual(values=c("lightskyblue", 
"green", "red")) + 
                scale_fill_manual(values=  c("#FFFFFF", 
"#00D800", "#000099", "#009E73", "#F0E442", "#0072B2", 
"#D55E00", "#D55E00","#CC79A7")) + 
                theme(legend.position=c(0.2,0.15), 
axis.text=element_text(size=12),axis.title=element_text(size=14,
face="bold"), panel.grid.major = element_blank(), 
panel.grid.minor = element_blank(),panel.background = 
element_blank(), axis.line = element_line(colour = "black")) + 
guides(colour = guide_legend(reverse=T) + theme(legend.key.width 
= unit(2, "cm"))) 
fig1 
#create LMM figure 
 
 
#second lmm – noting not repeated in areas seen before  
 
names(data2)[1] <- "rupal_id_new" 
names(data2)[2] <- "qlet" 
data2$PHENO <- NULL 
data2$CNT   <- NULL 
data2$CNT2  <- NULL 
 
data3 <- merge(data2,data1.5,by=c("rupal_id_new","qlet")) 
data4 <- data3[which(data3$visits >= 3),]  
n    <- dim(data4)[1] 
 
data5 <- melt(data4, id.vars = c("rupal_id_new"), measure.vars = 
c("Yr7_avMSE","Yr10_avMSE","Yr11_avMSE","Yr12_avMSE","Yr15_avMSE
")) 
data6 <- melt(data4, id.vars = 
c("rupal_id_new","sex","NumMyopicParents","visits"), 
measure.vars = c("age7","age10","age11","age12","age15")) 
names(data5)[2] <- "avMSE" 
names(data5)[3] <- "avMSE_at_visit" 
names(data6)[5] <- "age" 
names(data6)[6] <- "age_at_visit" 
data7 <- data5[order(data5$rupal_id_new),] 
data8 <- data6[order(data6$rupal_id_new),] 
data7$visit <- rep(1:5,n) 
data8$visit <- rep(1:5,n) 
data9 <- merge(data7,data8,by=c("rupal_id_new","visit")) 
head(data9) 
 
mod1 <- lme(avMSE_at_visit ~ sex + NumMyopicParents + 
poly(I(age_at_visit - 7.53),4) + NumMyopicParents:I(age_at_visit 
- 7.53),  
            random=~I(age_at_visit - 7.53) | rupal_id_new,  
            correlation = corCAR1(form = ~ visit | 
rupal_id_new),  
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            na.action = na.omit,  
            method="ML", 
            data=data9) 
summary(mod1) 
 
a <- summary(mod1) 
table2 <- a$tTable 
table2 
 
 
minscore  <- 0 
maxscore  <- 2 
medscore  <- 1 
#done to reflect the categorical natures of NMP 
 
pdata     <-expand.grid(age_at_visit=seq(7,15,by=1), 
NumMyopicParents=c(minscore,medscore,maxscore), sex=c(1.5), 
avMSE_at_visit="1") 
pdata[,4] <-predict(mod1, pdata, level=0) 
 
pdata$NumMyopicParents <- as.factor(pdata$NumMyopicParents) 
levels(pdata$NumMyopicParents) <- c("Zero","One","Two") 
 
fig <- ggplot(pdata, aes(age_at_visit, avMSE_at_visit))  + 
  labs (x="Age (Years)",y="Refractive Error (D)", 
linetype="Number of Myopic Parents",colour="Number of Myopic 
Parents")  + 
  scale_linetype_manual(values=c(1,2,3)) + 
  geom_line  (size=1.5, aes(linetype=pdata$NumMyopicParents), 
show.legend = T) +  
  geom_point (size=4) + 
  #geom_errorbar(aes(ymin=meann-ci, ymax=mean+ci), width=.1) + 
  scale_shape_manual(values = c(16,16,16))  + 
  scale_x_continuous(limits=c(7, 15), breaks=seq(7, 15, 1)) + 
  scale_y_continuous(limits=c(-1.50, 0.60), breaks=seq(-
1.50,0.6,0.25)) + 
  scale_colour_manual(values=c("navyblue", "darkred", "purple")) 
+ 
  scale_fill_manual(values=  c("#FFFFFF", "#00D800", "#000099", 
"#009E73", "#F0E442", "#0072B2", "#D55E00", 
"#D55E00","#CC79A7")) + 
  theme(legend.position=c(0.28,0.15), 
axis.text=element_text(size=12),axis.title=element_text(size=14,
face="bold"), panel.grid.major = element_blank(), 
panel.grid.minor = element_blank(), panel.background = 
element_blank(), axis.line = element_line(colour = "black")) + 
guides(colour = guide_legend(reverse=F)) + 
theme(legend.key.width = unit(2, "cm")) 
fig 
 
#3rd combined lmm – noting not done in areas seen before  
 
names(data2)[1] <- "rupal_id_new" 
names(data2)[2] <- "qlet" 
data2$PHENO <- NULL 
data2$CNT   <- NULL 
data2$CNT2  <- NULL 
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data3 <- merge(data2,data1.5,by=c("rupal_id_new","qlet")) 
data4 <- data3[which(data3$visits >= 3),]  
n    <- dim(data4)[1] 
#data4$combined <- lm(data4$avMSE_at_visit ~ 
data4$NumMyopicParents+data9$SCORE) 
data5 <- melt(data4, id.vars = c("rupal_id_new"), measure.vars = 
c("Yr7_avMSE","Yr10_avMSE","Yr11_avMSE","Yr12_avMSE","Yr15_avMSE
")) 
data6 <- melt(data4, id.vars = 
c("rupal_id_new","sex","NumMyopicParents","SCORE","visits"), 
measure.vars = c("age7","age10","age11","age12","age15")) 
names(data5)[2] <- "avMSE" 
names(data5)[3] <- "avMSE_at_visit" 
names(data6)[6] <- "age" 
names(data6)[7] <- "age_at_visit" 
data7 <- data5[order(data5$rupal_id_new),] 
data8 <- data6[order(data6$rupal_id_new),] 
data7$visit <- rep(1:5,n) 
data8$visit <- rep(1:5,n) 
data9 <- merge(data7,data8,by=c("rupal_id_new","visit")) 
head(data9) 
 
 
mod1 <- lme(avMSE_at_visit ~ sex + NumMyopicParents + SCORE + 
NumMyopicParents:SCORE + poly(I(age_at_visit - 7.53),4) + 
NumMyopicParents:I(age_at_visit - 7.53) + SCORE:I(age_at_visit - 
7.53) + NumMyopicParents:SCORE:I(age_at_visit - 7.53), 
            random=~I(age_at_visit - 7.53) | rupal_id_new,  
            correlation = corCAR1(form = ~ visit | 
rupal_id_new),  
            na.action = na.omit,  
            method="ML", 
            data=data9) 
 
 
summary(mod1) 
a <- summary(mod1) 
table2 <- a$tTable 
table2 
 
meann <- mean(data9$SCORE) 
ci <- sd(data9$SCORE) 
 
 
lowrisk <- data9[which(data9$SCORE < mean-ci),] 
highrisk <- data9[which(data9$SCORE > mean+ci),] 
avrisk <- data9[which(data9$SCORE > mean-ci & data9$SCORE < 
mean+ci),] 
 
meanx <-1 
maxx<- 2 
min<- 0 
 
pdata     <-expand.grid(age_at_visit=seq(7,15,by=1), 
SCORE=c(lowrisk,averagerisk, highrisk), 
NumMyopicParents=c(min,meanx,maxx), sex=c(1.5), 
avMSE_at_visit="1") 
pdata[,5] <-predict(mod1, pdata, level=0) 
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pdata$SCORE <- as.factor(pdata$SCORE) 
names(pdata)[2] <- "GeneticRiskScore" 
 
pdata$NumberofMyopicParents <- 
as.factor((pdata$NumMyopicParents)) 
levels(pdata$NumberofMyopicParents) <- c("None","One","Two") 
levels(pdata$GeneticRiskScore) <- c("High Risk","Average Risk", 
"Low Risk") 
#specify new levels for individuals to fit into with both 
variables 
 
fig2 <-ggplot(pdata, aes(age_at_visit, avMSE_at_visit)) + 
  labs (x="Age (Years)", y=NULL, linetype = "Number of Myopic 
Parents", color="GeneticRiskScore") + 
  scale_linetype_manual(values=c(1,2,3)) + 
  geom_line  (size=1.5, aes(colour=GeneticRiskScore, 
linetype=NumberofMyopicParents), show.legend = T) + 
  geom_point (size=4, aes(colour=GeneticRiskScore, 
fill=GeneticRiskScore)) + 
  scale_shape_manual(values = c(21,21,21))  + 
  scale_x_continuous(limits=c(7,15.5), breaks=seq(7, 15, 1)) + 
  scale_y_continuous(limits=c(-1.50, 0.6), breaks=seq(-
1.75,0.75,0.25)) + 
  theme(axis.text.x = element_blank() ) + 
  theme(legend.position=c(0.25,0.22),panel.grid.major = 
element_blank(), panel.grid.minor = 
element_blank(),panel.background = element_blank(), axis.line = 
element_line(colour = "black"), 
axis.text.x=element_text(size=12), 
axis.text.y=element_text(size=12),axis.title=element_text(size=1
4,face="bold")) + guides(colour = guide_legend(reverse=F)) + 
theme(legend.key.width = unit(2, "cm")) + 
  #annotate("text", x = 15, y=0.25,label = "a",cex=11, hjust = 
0.5) + 
  
scale_colour_manual(values=c("lightskyblue","green","red","light
skyblue","green","red","lightskyblue","green","red")) + 
  scale_fill_manual(values=c("#000000", "#FFFFFF", "#000099", 
"#009E73", "#F0E442", "#0072B2", "#D55E00", 
"#D55E00","#CC79A7"))  
fig2 
 
====================== 
survival analysis scripts - R 
==================== 
rm(list=ls()) 
 
library(ggplot2) 
library(dplyr) 
library(survival) 
library(survminer) 
#load up required packages 
 
myp_threshold <- (-1.00) 
#set myopia threshold 
data0 <- neema_parentalmyopia_2016_12_06  
data1 <- cream2017_ukbb_rep_profile_2018_01_02 



  

206 
 

#load up the data  
names(data1)[1] <- "rupal_id_new" 
names(data1)[2] <- "qlet" 
data2       <- 
merge.data.frame(data0,data1,by=c("rupal_id_new","qlet")) 
#merge genetic and phenotype/NMP data 
data2$event7     <- ifelse(data2$Yr7_avMSE  <= myp_threshold, 1, 
0) 
data2$event10    <- ifelse(data2$Yr10_avMSE <= myp_threshold, 1, 
0) 
data2$event11    <- ifelse(data2$Yr11_avMSE <= myp_threshold, 1, 
0) 
data2$event12    <- ifelse(data2$Yr12_avMSE <= myp_threshold, 1, 
0) 
data2$event15    <- ifelse(data2$Yr15_avMSE <= myp_threshold, 1, 
0) 
#identify dates that someone became myopic 
data2$evermyopic <- 
ifelse((rowSums(data2[,c("event7","event10","event11","event12",
"event15")], na.rm=TRUE) > 0), 1, 0) 
data2$evermyopic <- ifelse((is.na(data2$event7) & 
is.na(data2$event10) & is.na(data2$event11) & 
is.na(data2$event12) & is.na(data2$event15)), NA, 
data2$evermyopic)  
#to find out if someone ever became myopic and remove any 
missing info participants  
 
data2$firstmyopic  <- ifelse(data2$event15==1, data2$age15, NA) 
data2$firstmyopic  <- ifelse(data2$event12==1, data2$age12, 
data2$firstmyopic) 
data2$firstmyopic  <- ifelse(data2$event11==1, data2$age11, 
data2$firstmyopic) 
data2$firstmyopic  <- ifelse(data2$event10==1, data2$age10, 
data2$firstmyopic) 
data2$firstmyopic  <- ifelse(data2$event7==1,  data2$age7,  
data2$firstmyopic) 
#to correctly allocate the onset of myopia in the sample  
 
data2$lastnevermyopic <- ifelse((data2$event7==0  & 
data2$evermyopic==0), data2$age7, NA) 
data2$lastnevermyopic <- ifelse(is.na(data2$event10), 
data2$lastnevermyopic, ifelse((data2$event10==0 & 
data2$evermyopic==0), data2$age10, data2$lastnevermyopic)) 
data2$lastnevermyopic <- ifelse(is.na(data2$event11), 
data2$lastnevermyopic, ifelse((data2$event11==0 & 
data2$evermyopic==0), data2$age11, data2$lastnevermyopic)) 
data2$lastnevermyopic <- ifelse(is.na(data2$event12), 
data2$lastnevermyopic, ifelse((data2$event12==0 & 
data2$evermyopic==0), data2$age12, data2$lastnevermyopic)) 
data2$lastnevermyopic <- ifelse(is.na(data2$event15), 
data2$lastnevermyopic, ifelse((data2$event15==0 & 
data2$evermyopic==0), data2$age15, data2$lastnevermyopic)) 
data3 <- data2[,c("rupal_id_new","sex", "NumMyopicParents", 
"SCORE", "visits","evermyopic","time")]  
data4 <- data3[which(data3$visits > 0 & 
!is.na(data3$NumMyopicParents)),] 
#finalise and subset individuals who have refractive data, NMP 
data and have correct accurate myopia data 
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data4$newscore <- ((data4$SCORE - 
mean(data4$SCORE))*1)/sd(data4$SCORE) 
#z score standardise PRS 
data4$NumMyopicParents <- as.factor(data4$NumMyopicParents) 
#state that NMP is a factor 
 
#meanscore <- mean(data4$SCORE) 
#highci <- meanscore + 2*sd(data4$SCORE) 
#lowci <- meanscore - 2*sd(data4$SCORE) 
#serve as reminders  
data4$GeneticRisk <- NULL 
#create new column for grouping 
data4$GeneticRisk <- ifelse(data4$newscore >= -1 & 
data4$newscore <= 1, 2, 0) 
data4$GeneticRisk <- ifelse(data4$newscore <= -1, 
1,data4$GeneticRisk) 
data4$GeneticRisk <- ifelse(data4$newscore >= 1, 3, 
data4$GeneticRisk) 
#subset the individuals into high med and low genetic risk 
categories 
data4$GeneticRisk <- as.factor(data4$GeneticRisk) 
#change to factor to allow for levels in survival 
levels(data4$GeneticRisk) <- c('Low Risk', 'Average Risk', 'High 
Risk') 
 
data4$NumMyopicParents <- as.integer(data4$NumMyopicParents) 
data4$combined <- data4$NumMyopicParents *10  
#alter NMP to integer to allow manipulation of two grouped 
categories 
data4$combined <- data4$combined + data4$GeneticRisk 
#add genetic risk to NMP risk to allow for different groups 
ranged from these two variables 
data4$combined <- as.factor(data4$combined) 
#reaffirm combined score into a categorical variable 
library(plyr) 
data4$combined <- revalue(data4$combined, 
c("1"="LowGR;NoMP","2"="AvGR;NoMP","3"="HighGR;NoMP","11"="LowGR
;OneMP","12"="AvGR;OneMP","13"="HighGR;OneMP","21"="LowGR;TwoMP"
,"22"="AvGR;TwoMP","23"="HighGR;TwoMP")) 
#label the groups according to risk 
 
mod1  <- coxph(Surv(time, evermyopic) ~ sex + NumMyopicParents + 
newscore + NumMyopicParents:newscore, ties="breslow", 
data=data4) 
summary(mod1) 
mod2  <- coxph(Surv(time, evermyopic) ~ sex + NumMyopicParents, 
ties="breslow", data=data4) 
summary(mod2) 
mod3  <- coxph(Surv(time, evermyopic) ~ sex + newscore, 
ties="breslow", data=data4) 
summary(mod3) 
#create models for different survival analyses 
 
mod2  <- survfit(Surv(time, evermyopic) ~ NumMyopicParents, 
data=data4) 
plot1 <- ggsurvplot(mod2, data=data4, xlim = c(8.5,15), 
break.x.by =1, palette = c("black", "black", "black"),linetype = 
c(1,2,3), censor=FALSE, legend=c(0.3,0.15), legend.title="Number 
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of myopic parents", legend.labs=c("Zero","One","Two"), xlab="Age 
(years)", ylab="Proportion remaining non-myopic") 
plot1 
#create NMP plot 
mod3  <- survfit(Surv(time, evermyopic) ~ GeneticRisk, 
data=data4) 
plot2 <- ggsurvplot(mod3, data=data4, xlim = c(8.5,15), 
break.x.by =1, censor=FALSE, legend=c(0.25,0.15), 
legend.labs=c("High Risk","Average Risk","Low Risk"), 
legend.title="Genetic Risk Score", xlab="Age (years)", ylab=NULL 
+theme(legend.key.width = unit(2, "cm")) + guide_legend(reverse 
= TRUE)) 
plot2 
#create PRS plot 
mod4  <- survfit(Surv(time, evermyopic) ~ combined, data=data4) 
plot3 <- ggsurvplot(mod4, data=data4, xlim = c(8.5,15), 
break.x.by =1, linetype = c(1,1,1,2,2,2,3,3,3), palette = 
c("red", "green","steelblue2", "red", 
"green","steelblue2","red","green","steelblue2"),  censor=FALSE, 
legend=c(0.36,0.23), legend.title="Combined Analysis", 
legend.labs=c("High Genetic Risk; No Myopic Parents","Average 
Genetic Risk; No Myopic Parents","Low Genetic Risk; No Myopic 
Parents","High Genetic Risk; One Myopic Parent","Average Genetic 
Risk; One Myopic Parent","Low Genetic Risk; One Myopic 
Parent","High Genetic Risk; Two Myopic Parents","Average Genetic 
Risk; Two Myopic Parents","Low Genetic Risk; Two Myopic 
Parents"), legend.key.width=unit(5, "cm"), xlab="Age (years)", 
ylab =NULL) 
plot3 
#create combined plot 
 

10.2 Appendix B Analyses for Chapter 5, Experiment 2 

================================= 
Filtering outliers and quality control purposes for GWAS - 
Unix 
================================= 
 
dataset <- ukb_european 
 
#PCA filtering done as per bycroft et al. therefore other 
quality control filters applied to sample 
dataset <- dataset[which(!is.na(dataset$Sex_matched)),] 
dataset <- dataset[which(!is.na(dataset$Age)),] 
 
#below is for participants after heteozygosity filtering  
meaneuro <- mean(dataset$Heterozygosity)  
sdeuro <- sd(dataset$Heterozygosity)  
datasetheterozycorrected <- dataset 
[which(dataset$Heterozygosity <(meaneuro+(4*sdeuro))  
& dataset$Heterozygosity >(meaneuro-(4*sdeuro))),]  
#remove these last two lines if you want to use people for 
predicted phenotypes and remove ! to allow only NA 
dataset <- dataset[which(dataset$outlierMSE == 0),]  
dataset <- dataset[which(!is.na(dataset$avMSE)),] 
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write.table(datasetheterozycorrected, file = 
"avMSEphenoeuropean", sep = " ", row.names = FALSE,  append = 
FALSE, quote = FALSE) 
#write the file that includes participants for analysis  
 
======================= 
Bash script example for BOLT GWAS in autorefraction MSE – Unix  
n = chromosome number of interest, change as needed 
======================= 
#!/bin/bash 
#  
#PBS -q workq 
#PBS -l select=1:ncpus=8:mem=81GB 
#PBS -l walltime=40:00:00 
#PBS -N bolt 
#PBS -o bolt_fullout 
#PBS -e bolt_fullerrorr1 
#PBS -P PR300 
#  
cd /scratch/share_PR300/Neema/Fullukbiobankwork/Boltscripts 
#  
#chr="n" 
# ------------------------------- 
# Full dataset for Chr’n’ UKBB GWAS 
# ------------------------------- 
./bolt \ 
#call up software 
 --
bgenFile=/scratch/share_PR300/EGA/imputed/ukb_imp_chrn_v2.bgen \ 
 --
bfile=/scratch/share_PR300/EGA/imputed/bolt/ukb_bolt_high_conf_h
rc_r0-05 \ 
 --sampleFile=/scratch/share_PR300/EGA/imputed/ukb_imp_v2.sample 
\ 
 --
LDscoresFile=/scratch/share_PR300/Neema/Fullukbiobankwork/Tables
/LDSCORE.1000G_EUR.tab.gz \ 
 --
geneticMapFile=/scratch/share_PR300/Neema/Fullukbiobankwork/Tabl
es/genetic_map_hg19.txt.gz \ 
 --
phenoFile=/scratch/share_PR300/Neema/Fullukbiobankwork/phenofile
s/avMSEphenoeuropean \ 
#specify the files and location of data required for the BOLT 
GWAS to be performed 
 --lmm \ 
#LMM analysis 
 --phenoCol=avMSE \ 
#name of phenotype 
 --
remove=/scratch/share_PR300/Neema/Fullukbiobankwork/Tables/newre
movefile.remove \ 
#individuals to exclude (withdrawn etc) 
 --maxMissingPerSnp=0.02 \ 
 --maxMissingPerIndiv=0.05 \ 
 --bgenMinMAF=0.01 \ 
 --bgenMinINFO=0.5 \ 
#QC measures 
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 --qCovarCol=Age \ 
 --qCovarCol=PC{1:20} -Unix \ 
#covariates to control for 
 --
covarFile=/scratch/share_PR300/UKB/qc/covarianteuropeanfile.txt 
\ 
 --covarCol=Geno_array \ 
 --covarCol=Sex_matched \ 
#specify covariate location and further covariates  
 --noBgenIDcheck \ 
#flag to avoid checking IDs throughout file 
 --
statsFile=/scratch/share_PR300/Neema/BOLT/chrnresults_250118.out
\ 
 --
statsFileBgenSnps=/scratch/share_PR300/Neema/BOLT/chrnresults_bg
en_250118.out\ 
#state output file locations for GWAS analysis 
 
==============================  
Script to merge all chromosomes into one file post analysis 
- Unix 
============================== 
 
myfolder="/scratch/share_PR300/Neema/BOLT/avMSEresults" 
#state folder location for work 
# if MAF>0.01 and HWE -log10P<6 and INFO>0.5 then retain 
#  
echo "snpID rsID chr pos genpos A1 A0 A1freq INFO beta se P_bolt 
majorAllele MAF HWE_log10P" > 
${myfolder}/cat_chr_all_17052017.out 
#state headings for new file to be created and the filters used  
awk '{$12=$2":"$3"_"$5"_"$6};{print $0}' 
/scratch/share_PR300/Neema/BOLT/avMSEresults/chr1.out | sort -
k12b,12 > ${myfolder}/cat1_chr1.out 
#take out relevantr information from chr1 file 
awk '{print $1,$8,$15,$16}' 
/scratch/share_PR300/Neema/summary_stats_impv1_chr1.txt | sort -
k1b,1 > ${myfolder}/cat2_chr1.out 
#take out relevant information from other files needed to carry 
over  
join -1 12 -2 1 ${myfolder}/cat1_chr1.out 
${myfolder}/cat2_chr1.out > ${myfolder}/cat3_chr1.out 
#join two files together having sorted both into order to match 
awk '{if($14>0.01 && $15<6 && $9>0.5) print $0}' 
${myfolder}/cat3_chr1.out >> ${myfolder}/cat_chr_all_dated.out 
#apply QC filters  
 
rm ${myfolder}/cat1_chr1.out 
rm ${myfolder}/cat2_chr1.out 
rm ${myfolder}/cat3_chr1.out 
#remove temporary files 
 
#as the headings were done via chr1, can loop the rest of the 
information to be printed underneath through same filtering 
process 
for chr in {2..22}; do 
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awk '{$12=$2":"$3"_"$5"_"$6};{print $0}' 
/scratch/share_PR300/Neema/BOLT/avMSEresults/chr${chr}.out | 
sort -k12b,12 > ${myfolder}/cat1_chr${chr}.out 
awk '{print $1,$8,$15,$16}' 
/scratch/share_PR300/Neema/summary_stats_impv1_chr${chr}.txt | 
sort -k1b,1 > ${myfolder}/cat2_chr${chr}.out 
join -1 12 -2 1 ${myfolder}/cat1_chr${chr}.out 
${myfolder}/cat2_chr${chr}.out > ${myfolder}/cat3_chr${chr}.out 
awk '{if($14>0.01 && $15<6 && $9>0.5) print $0}' 
${myfolder}/cat3_chr${chr}.out >> 
${myfolder}/cat_chr_all_dated.out 
 
rm ${myfolder}/cat1_chr${chr}.out 
rm ${myfolder}/cat2_chr${chr}.out 
rm ${myfolder}/cat3_chr${chr}.out 
 
done 
 
================================== 
Script to make a manhattan plot and QQ plot - R 
================================== 
Library (qqman) 
manhattan(cat_chr_all, col = c("red", "blue")) 
#create manhattan plot with all variants 
manhattan(cat_chr_all, col = c("red", "blue"), ymax = 20) 
#create manhattan plot but with only those more than p x10-20 
for visibility 
qq(cat_chr_all$P_bolt) 
#qqplot creation  
 

10.3 Appendix C Analyses for Chapter 6, Experiment 3 

==================================== 
Calculation for AOSW inferred MSE - R 
==================================== 
data1 <- ukb_caucasian 
#load data 
data1$Sex <- as.factor(data1$Sex) 
levels(data1$Sex) <- c("Male","Female") 
#state sex as factor and rename for ease 
data2 <- data1[which(!is.na(data1$avMSE)),] 
data5 <- data1[which(is.na(data1$avMSE)),] 
#create two sets for those with and without refractive data 
respectively 
data2$sample <- rbinom(n = dim(data2)[1], size = 1, p = 0.5) 
datatest <- data2[which(data2$sample == 1),] 
datatraining <- data2[which(data2$sample ==0),] 
#divide sample with MSE data into two equal size datasets for 
training and test  
#Run Loop for polynomial of Age 
threshold                <- 0 
poly_count1              <- 0 
graph_data               <- 
as.data.frame(matrix(nrow=2,ncol=30)) 
names(graph_data)        <- c("Polynomial_order", 
"Rsquared_of_model") 
#create table and set out parameters to be used in loop  
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while(threshold < 0.05){ 
  poly_count1              <- poly_count1 + 1 
  first_model              <- lm(avMSE ~ poly(Age, poly_count1)+ 
Sex, data=datatraining) 
  second_model             <- lm(avMSE ~ poly(Age, poly_count1 + 
1) + Sex, data=datatraining) 
  stat_summary             <- anova(first_model, second_model) 
  first_model_summary      <- summary(first_model) 
  graph_data[poly_count1,1] <- poly_count1 
  graph_data[poly_count1,2] <- first_model_summary$adj.r.squared 
  threshold                <- unlist(stat_summary)[[12]] 
} 
#objective loop that prints to table the rsq and if it’s more 
significant to use higher order poly 
 
# Now for AgeOnsetSpex – mostly as above, but different 
parameter 
threshold                <- 0 
poly_count2              <- 0 
graph_data               <- 
as.data.frame(matrix(nrow=2,ncol=30)) 
names(graph_data)        <- c("Polynomial_order", 
"Rsquared_of_model") 
 
while(threshold < 0.05){ 
  poly_count1              <- poly_count2 + 1 
  first_model              <- lm(avMSE ~ poly(AgeOnsetSpex, 
poly_count2)+ Sex, data=datatraining) 
  second_model             <- lm(avMSE ~ poly(AgeOnsetSpex, 
poly_count2 + 1) + Sex, data=datatraining) 
  stat_summary             <- anova(first_model, second_model) 
  first_model_summary      <- summary(first_model) 
  graph_data[poly_count2,1] <- poly_count2 
  graph_data[poly_count2,2] <- first_model_summary$adj.r.squared 
  threshold                <- unlist(stat_summary)[[12]] 
} 
calc1 <- lm(avMSE ~ poly(Age,poly_count1)+ Sex, data=datatest) 

calc2 <- lm(avMSE ~ poly(AgeOnsetSpex,poly_count2)+ Sex, 

data=datatest) 

#calculations to work out the rsq of these in independent sample 
combinedcalc <- lm(avMSE ~ poly(Age,poly_count1)+ 
poly(AgeOnsetSpex,poly_count2)+ Sex, data=datatest)  
#work out rsq in combined sample 
datatest$predicted_avMSE <- predict(combinedcalc,  
data=datatest)  
#created predicted MSE in datatest  
rsq <- lm(avMSE ~ predicted_avMSE, data=datatest) 
summary(rsq)  
#recheck to see if rsq is the same with the predicted phenotype 
datax$predicted_MSE <- predict(combinedcalc, data=data5) 
#apply to all individuals with no rx after independent sample 
validation 
write.table(data5, file = "aoswMSEphenoeuropean", sep = " ", 
row.names = FALSE,  append = FALSE, quote = FALSE) 
#This is to be used in BOLT GWAS as pheno file 
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================================== 
Script to inverse normalise transform to normal distribution - R 
================================= 

data2$ranked<-rank(data2$predicted_MSE, na.last = NA, 
ties.method = c("first"))   
#to rank according to predicted MSE  
 
# new dataset for creating rank against. 
data3 <- as.data.frame(matrix(nrow=98870,ncol=2)) 
data3[1] <- rnorm(n=98870, mean=0, sd=1) 
#creation of the dataset with same no of rows, normal 
distribution of values 
names(data3)[1] <- "predictednormalised" 
names(data3)[2] <- "ranked" 
data3$ranked<-rank(data3$predictednormalised, na.last = NA, 
ties.method = c("first")) 
#rename columns to inform, rank them to allow merge  
data4 <- merge.data.frame(data2, data3, by = "ranked") 
#merging the dataframes together 
newrsq <- lm(avMSE ~ predictednormalised, data=data4) 
#rsq.adj reasonable, continue to use transformed dataset too for 
estimating phenotype in non-mse individuals 
 
# new normalised dataset for creating rank against. 
data5 <- as.data.frame(matrix(nrow=287448,ncol=2)) 
data5[1] <- rnorm(n=287448, mean=0, sd=1) 
names(data5)[1] <- "predictednormalised" 
names(data5)[2] <- "ranked" 
data5$ranked<-rank(data4$predictednormalised, na.last = NA, 
ties.method = c("first")) 
#same as above but to different sample size as required 
data7 <- merge.data.frame(data6, data5, by = "ranked") 
#merging the dataframes together, applied to all individuals 
with no rx after validation in those with rx   
write.table(data7, file = "aoswnormMSEphenoeuropean", sep = " ", 
row.names = FALSE,  append = FALSE, quote = FALSE) 
#This is to be used in BOLT GWAS as normalised pheno file 
 

======================= 

Script to run Bolt GWAS analysis for AOSW inferred MSE and AOSW 

normalised MSE - R 

======================= 

#example of script for AOSW-inferred MSE and AOSW normalised MSE 

GWAS, chromosomes and phenotype can change when needed 

#for AOSW-inferred MSE chr n 

#!/bin/bash 
#  
#PBS -q workq 
#PBS -l select=1:ncpus=8:mem=91GB 
#PBS -l walltime=30:00:00 
#PBS -N bolt 
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#PBS -o bolt_fulloutpred 
#PBS -e bolt_fullerrorpred1 
#PBS -P PR300 
#  
cd /scratch/share_PR300/Neema/Fullukbiobankwork/Boltscripts 
#file location 
# 
#chr="n" 
# ------------------------------- 
# Full dataset for Chrn UKBB GWAS 
# ------------------------------- 
 
./bolt \ 
#recall software 
 --
bgenFile=/scratch/share_PR300/EGA/imputed/ukb_imp_chrn_v2.bgen \ 
 --
bfile=/scratch/share_PR300/EGA/imputed/bolt/ukb_bolt_high_conf_h
rc_r0-05 \ 
 --sampleFile=/scratch/share_PR300/EGA/imputed/ukb_imp_v2.sample 
\ 
 --
LDscoresFile=/scratch/share_PR300/Neema/Fullukbiobankwork/Tables
/LDSCORE.1000G_EUR.tab.gz \ 
 --
geneticMapFile=/scratch/share_PR300/Neema/Fullukbiobankwork/Tabl
es/genetic_map_hg19.txt.gz \ 
 --
phenoFile=/scratch/share_PR300/Neema/Fullukbiobankwork/phenofile
s/aoswMSEphenoeuropean \ 
#as per avMSE, files and locations stated for GWAS for predicted 
phenotypes 
 --lmm \ 
 --phenoCol=predicted_avMSE \ 
 --
remove=/scratch/share_PR300/Neema/Fullukbiobankwork/Tables/newre
movefilepred.remove \ 
#remove exclusions/withdrawn 
 --maxMissingPerSnp=0.02 \ 
 --maxMissingPerIndiv=0.05 \ 
 --bgenMinMAF=0.01 \ 
 --bgenMinINFO=0.5 \ 
#QC data 
 --qCovarCol=Age \ 
 --qCovarCol=PC{1:20} \ 
 --covarFile=/scratch/share_PR300/UKB/qc/ukb_geno_mse2017-08-
29.txt \ 
 --covarCol=Geno_array \ 
 --covarCol=Sex_matched \ 
#covariate files and columns as per avMSE  
 --noBgenIDcheck \ 
 --
statsFile=/scratch/share_PR300/Neema/BOLT/chrnresultspred_160218
.out\ 
 --
statsFileBgenSnps=/scratch/share_PR300/Neema/BOLT/chrnresultspre
d_bgen_160218.out\ 
#output files  
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#For prednorm in any chr ‘n’, relabel the phenotype file   

#manipulate script from autorefraction MSE to merge all 

chromosomes for AOSW inferred and AOSW normalised MSE into 1 file. 

Same script to create manhattan plots 

=========================== 

Prepare and calculate genetic correlations - Unix 

=========================== 

#!/bin/bash 
#  
#PBS -q serial 
#PBS -l walltime=00:06:00 
#PBS -l select=1:ncpus=1:mem=10GB 
#PBS -N geneticcor 
#PBS -o geneticcorOUT 
#PBS -e geneticcorERROR 
#PBS -P PR300 
 
cd 
/scratch/share_PR300/Neema/BOLT/trueMSE/genetic_correlation/ldsc 
 
module load ldsc/latest 
module load python/2.7.4-ldsc 
#load modules for software to run on RAVEN 
 
# Munge Data – format files so they work with LDSC 
./munge_sumstats.py \ 
--sumstats 
/scratch/share_PR300/Neema/BOLT/trueMSE/genetic_correlation/ldsc
/pre_munge_chr_normpred \   
#change to pre_munge_chr_pred or pre_munge_true for munging and 
preparing other phenotypes  
--snp snp \ 
--a1 a1 \ 
--a2 a2 \ 
--N 287448 \ #change value when performing for true 
--p p \ 
--frq [colname] \ 
--signed-sumstats beta,0 \ 
#state column names for each aspect of the munging process 
--out 
/scratch/share_PR300/Neema/BOLT/trueMSE/genetic_correlation/ldsc
/fullprednormalised.munged \ #change for each phenotype output 
--merge-alleles w_hm3.snplist 
#output file for munged data 

#now munged, use LDSC for GC 

./ldsc.py \ 
#use LDSC 
--ref-ld-chr eur_w_ld_chr/ \ 
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#reference file for LD 
--out threephenotypes.out \ 
#output files 
--rg 
fulltrue.munged.sumstats.gz,fullprednormalised.munged.sumstats.g
z,fullpred.munged.sumstats.gz \ 
--w-ld-chr eur_w_ld_chr/  
#run genetic correlation comparisons between these files  
 
module unload ldsc/latest 
module unload python/2.7.4-ldsc 
#unload modules used on RAVEN 
 
================================ 
Scripts to assess correlation between predicted phenotypes 
and autorefraction measured phenotypes - R 
================================ 
preddata <- pre_munge_pred [,c("SNP", "BETA", "P")] 
#change to pred normalised when needed 
truedata <- pre_munge_actual [,c("SNP", "BETA", "P")] 
colnames(preddata)[2] <- "PREDBETA" 
colnames(preddata)[3] <- "PREDP" 
colnames(realdata)[2] <- "REALBETA" 
colnames(realdata)[3] <- "REALP" 
combined <- merge.data.frame(preddata, realdata, by = "SNP") 
#rename columns to allow merging of both files without confusion 
library(ggplot2)  
 
#test correlations at different p values which get smaller 
throughout. Also plot the corresponding correlation 
plot <- qplot(x = REALBETA, y = PREDBETA, data = combined, geom 
= "point") + geom_smooth(method = "lm", colour = "red") 
cor.test(combined$PREDBETA, combined$REALBETA) 
combined1 <- combined [which(combined$REALP <= 0.5),] 
combined1 <- combined [which(combined$PREDP <= 0.5),] 
cor.test(combined$PREDBETA, combined$REALBETA) 
plot0 <- qplot(x = REALBETA, y = PREDBETA, data = combined2, 
geom = "point") + geom_smooth(method = "lm", colour = "red") 
plot0 
combined2 <- combined1 [which(combined$REALP <= 0.05),] 
combined2 <- combined2 [which(combined2$PREDP <= 0.05),] 
cor.test(combined2$PREDBETA, combined2$REALBETA) 
plot1 <- qplot(x = REALBETA, y = PREDBETA, data = combined2, 
geom = "point") + geom_smooth(method = "lm", colour = "red") 
plot1 
combined3 <- combined2 [which(combined2$REALP <= 0.005),] 
combined3 <- combined3 [which(combined3$PREDP <= 0.005),] 
cor.test(combined3$PREDBETA, combined3$REALBETA) 
plot2 <- qplot(x = REALBETA, y = PREDBETA, data = combined3, 
geom = "point")+ geom_smooth(method = "lm", colour = "red") 
plot2 
combined4 <- combined3 [which(combined3$REALP <= 0.0005),] 
combined4 <- combined4 [which(combined4$PREDP <= 0.0005),] 
cor.test(combined4$PREDBETA, combined4$REALBETA) 
plot3 <- qplot(x = REALBETA, y = PREDBETA, data = combined4, 
geom = "point")+ geom_smooth(method = "lm", colour = "red") 
plot3 
combined5 <- combined4 [which(combined4$REALP <= 0.00005),] 



  

217 
 

combined5 <- combined5 [which(combined5$PREDP <= 0.00005),] 
cor.test(combined5$PREDBETA, combined5$REALBETA) 
plot4 <- qplot(x = REALBETA, y = PREDBETA, data = combined4, 
geom = "point") + geom_smooth(method = "lm", colour = "red") 
plot4 
#save all plotted correlations found  
 

10.4 Appendix D Analyses for Chapter 7, Experiment 4 

============================ 

Genetic correlations, the inclusion of education - Unix 

============================ 

#munge then run through LDSC  
module load ldsc/latest 
module load python/2.7.4-ldsc 
 
./ldsc.py \ 
--ref-ld-chr eur_w_ld_chr/ \ 
--out allphenotypes.out \ 
--rg 
fulltrue.munged.sumstats.gz,fullprednormalised.munged.sumstats.g
z,fullpred.munged.sumstats.gz, fulledu.munged.sumstats.gz \ 
--w-ld-chr eur_w_ld_chr/  
 
module unload ldsc/latest 
module unload python/2.7.4-ldsc 
#as before, load and run LDSC on munged sumstats, but include 
education summary statistics to allow 4 way comparison 
 

=========================== 

Use of MTAG software for all correlated traits - Unix 

=========================== 

#mtag all correlated traits as required. Change traits as 

necessary and add a third when needed, by replacing the MTAG trait 

label 

#!/bin/bash 
#  
#PBS -q workq 
#PBS -l walltime=01:00:00 
#PBS -l select=1:ncpus=1:mem=35GB 
#PBS -N MTAGtrait1trait2 
#PBS -o MTAGtrait1trait2 
#PBS -e MTAGtrait1trait2err 
#PBS -P PR300 
# 
cd /scratch/share_PR300/Neema/BOLT/trueMSE/mtag 
 
module load python/2.7.11-genomics 
module load ldsc/latest 
#load modules needed to run MTAG software 
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./mtag.py \ 
#call software to use 
 --sumstats 
/scratch/share_PR300/Neema/BOLT/trueMSE/mtag/MTAGREADYTRAIT1.txt
,/scratch/share_PR300/Neema/BOLT/trueMSE/mtag/MTAGREADYTRAIT2.tx
t\ 
#recall the MTAG trait summary statistics to MTAG 
 --out 
/scratch/share_PR300/Neema/BOLT/trueMSE/mtag/trait1trait2files/t
rait1andtrait2\ 
#state output file 
 
module unload python/2.7.11-genomics 
module unload ldsc/latest 
#unload modules from RAVEN 
 

=============================== 

Use of METAL for correlated traits. Comparison in meta-

analysis - Unix 

=============================== 

##script to run METAL software meta-analysis  
./metalsoftware 
#call software to use 
SCHEME   STDERR 
#state which form of metaanalysis – call for inverse variance form 
MARKER   SNP 
#variant names to meta anaylse 
ALLELE   ALLELE1REF ALLELE2ALT 
#allele labels  
EFFECT   BETA 
#effect size label 
STDERR   SE 
#Standard error label – needed for this meta-analysis method 
PROCESS METALreadyTrait1 
#first file name for meta-analysis 
 
#for second file, labels stated as above, and file name given in 
process. Note change METALreadyTrait2 to AOSW norm MSE when needed 
MARKER   SNP 
ALLELE   ALLELE1REF ALLELE2ALT 
EFFECT   BETA 
STDERR   SE 
PROCESS METALreadyTrait2 
 
ANALYZE 
#command to run analysis  
 
============================ 
Use of LDpred software to account for LD – Unix  
========================== 
 
## LDpred software script. change trait name ‘trait1’ for 
different trait or combined trait as required 



  

219 
 

 
#!/bin/bash 
#  
#PBS -l select=1:ncpus=1:mem=60GB 
#PBS -l walltime=40:00:00 
#PBS -N LDP_matrait 
#PBS -o LDP_ma_outtrait 
#PBS -e LDP_ma_errtrait 
#PBS -P PR300 
 
LD_validation_file="/scratch/share_PR300/Neema/Fullukbiobankwork
/LDvalidationfile.grm.id" 
#file needed to create reference coordinate file  
in_file="/scratch/share_PR300/Neema/BOLT/trait1/mtag/ldpred/ldpr
ed-master/ldpred/LDpredreadytrait1" 
#summary statistics for trait of interest – trait 1 
out_file="/scratch/share_PR300/Neema/BOLT/trait1/mtag/ldpred/ldp
red-master/ldpred/OUTFILEtrait1" 
#state output file 
cd /scratch/share_PR300/Neema/BOLT/trait1/mtag/ldpred/ldpred-
master/ldpred 
#location to use workspace 
 
#coordination first step to create and set up required LD 
reference panel  
./coord_genotypes.py \ 
 --gf ${LD_validation_file} \ 
 --vgf ${LD_validation_file} \ 
 --ssf ${in_file} \ 
 --N 95505 \  
#change as per size of sample for each trait/combination 
 --out ${out_file}-  
 
#using coordination step files, start LDpred using the gibbs 
sampler 
./LDpred.py \ 
 --coord ${out_file} \ 
 --ld_radius 1000 \ 
 --num_iter 200 \ 
#state input options for gibbs sampler  
 --local_ld_file_prefix ${out_file} \ 
 --N 95505 \  
#as above, change when needed  
 --out ${out_file} 
 
##third step involes transferring out file from second step to 
create PRS values. This has been done in plink 
 
module load plink/1.9c3 
#load plink software 
plink \ 
  --bfile 
/scratch/share_PR300/Neema/Fullukbiobankwork/validationsamplebfi
les \ 
#locate the files for information on the independent sample 
wishing to create risk scores for 
  --missing-code -9,0,NA,na \ 
  --score 2 3 6 ${out_file}\ 
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#score file as found in LDpred second step 
  --out /scratch/share_PR300/Neema/ALSPAC/ trait1outfilefinal 
#outfile specification  
 
module unload plink/1.9c3 
#unload software from RAVEN 
 
============================= 
Identifying significant differences between using lone and 
combined traits for genetic prediction - R 
============================= 
#Change name of trait ‘trait1’ as needed 
data1 <- trait1file 
data2 <- trait1andcombinationfile 
#two risk score outputs to compare 
linearmodel <- lm(data1$PHENO ~ data1$SCORE) 
summary(linearmodel)  
#to identify same file and same R2 as previous noted step 
 
data1           <- data1[,c("IID","PHENO","SCORE")] 
names(data1)    <- c("IID","true_phens","PRS_True") 
data2           <- data2[,c("IID","SCORE")] 
names(data2)    <- c("IID","PRS_TrueEdu") 
#cut out unnecessary columns and rename  
datax           <- merge(data1,data2,by="IID") 
#merge the two models together  
model1          <- lm(datax$true_phens ~ datax$trait1) 
model2          <- lm(datax$true_phens ~ datax$traitcombination) 
model3 <- lm(datax$true_phens ~ datax$trait1 + 
datax$PRS_traitcombination) 
anova(model2, model3) 
#run linear regression models and anova to identify if models 
significantly different. However not nested  
datax$Diff      <- datax$PRS_traitcombination - datax$PRS_trait1 
#identify the difference in the values  
model5          <- lm(datax$true_phens ~ 
datax$PRS_traitcombinaion+ datax$Diff) 
#create a model that accounts for difference between the 
estimated risk scores in combined vs lone phenotypes 
summary(model5) 
anova(model1, model5, data=datax) 
#run likelihood ratio test – identify if significant  
library(psychometric) 
mysum <- summary(model5) 
#change model name as needed 
CI.Rsq(rsq=mysum$r.squared, n=(mysum$df[1]+mysum$df[2]), 
k=mysum$df[1], level = 0.95) 
#calculate CI values  
 
============================ 
Script example for AUC calculations - R 
============================ 
#change the datafile and trait name as needed for each 
calculation 
 
datafortrait1 <- trait1ldpredoutput  
#or mtag output if combined trait used 
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#ROC and corresponding AUC calculation for any myopia threshold 
for genetic risk  
datatrait1only$myopic <- as.numeric(datatrait1only$PHENO <= -
0.75) 
model1 <- glm(myopic ~ datatrait1only$SCORE 
,data=datatrait1only,family=binomial()) 
roc1 <- roc(response=model1$y, predictor=model1$fitted.values)  
ci(model1) 
 
#ROC and corresponding AUC calculation for moderate myopia 
threshold for genetic risk  
datatrait1only$myopic <- as.numeric(datatrait1only$PHENO <= -
3.00) 
model1 <- glm(myopic ~ datatrait1only$SCORE 
,data=datatrait1only,family=binomial()) 
roc2 <- roc(response=model1$y, predictor=model1$fitted.values)  
ci(model1) 
 
#ROC and corresponding AUC calculation for high myopia threshold 
for genetic risk  
datatrait1only$myopic <- as.numeric(datatrait1only$PHENO <= -
5.00) 
model1 <- glm(myopic ~ datatrait1only$SCORE 
,data=datatrait1only,family=binomial()) 
roc3 <- roc(response=model1$y, predictor=model1$fitted.values)  
ci(model1) 
 
#to identify any differences between AUROCs, use the following. 
Change models to test as required 
Roc.test(model1, model2, method =c(“bootstrap”)) 
 
============================== 
Script to compare different stratifications of genetic risk - R 
============================== 
 
data <- autorefractionaoswedufile  
#should you want to change trait phenotype, can change file 
input 
linearmodel <- lm(data$PHENO ~ data$SCORE) 
summary(linearmodel)  
#to identify same file and getting same R2 as before! 
 
data$rank <- rank(data$SCORE, na.last = NA, ties.method = 
c("first"))  
#create new variable for allowing a new dataset join that can be 
ranked to identify the top 25,10, and 5% at risk 
1516*0.25 
1516*0.10 
1516*0.05 
#use these to identify and group individuals who are at highest 
risk based on their relative location to these following ranks  
datawithrank <- data 
 
datawithrank$myopic <- ifelse(datawithrank$PHENO <=-0.75,1,0) 
datawithrank$modmyopic <- ifelse(datawithrank$PHENO <=-3,1,0) 
datawithrank$highmyopic <- ifelse(datawithrank$PHENO <=-5,1,0) 
#label individuals with real refractive error who meet these 
values 
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percent <- 10 
#state the level of which ranked individuals are defined as high 
risk 
datawithrank$highrisk <- ifelse(datawithrank$rank > 
quantile(datawithrank$rank, prob = 1 - percent/100),1,0) 
#label those high risk  
riskmodel1 <- glm(datawithrank$myopic ~ datawithrank$highrisk, 
family = binomial()) 
#run glm for risk of any myopia 
summary(riskmodel1) 
exp(coef(riskmodel1))  
(exp(cbind(OR=coef(riskmodel1), confint(riskmodel1)))) 
#identify odds ratio of being at risk when in this category 
 
#same as above but for moderate risk  
riskmodel2 <- glm(datawithrank$modmyopic ~ 
datawithrank$highrisk, family = binomial()) 
summary(riskmodel2) 
exp(coef(riskmodel2))  
(exp(cbind(OR=coef(riskmodel2), confint(riskmodel2)))) 
 
#as above but for high level risk 
riskmodel3 <- glm(datawithrank$highmyopic ~ 
datawithrank$highrisk, family = binomial()) 
summary(riskmodel3) 
exp(coef(riskmodel3))  
(exp(cbind(OR=coef(riskmodel3), confint(riskmodel3)))) 
 
#as above, but for different percentile of risk 
percent <- 5 
#change threshold for labelling high risk 
datawithrank$highrisk <- ifelse(datawithrank$rank > 
quantile(datawithrank$rank, prob = 1 - percent/100),1,0) 
riskmodel1 <- glm(datawithrank$myopic ~ datawithrank$highrisk, 
family = binomial()) 
summary(riskmodel1) 
exp(coef(riskmodel1))  
(exp(cbind(OR=coef(riskmodel1), confint(riskmodel1)))) 
 
riskmodel2 <- glm(datawithrank$modmyopic ~ 
datawithrank$highrisk, family = binomial()) 
summary(riskmodel2) 
exp(coef(riskmodel2))  
(exp(cbind(OR=coef(riskmodel2), confint(riskmodel2)))) 
 
riskmodel3 <- glm(datawithrank$highmyopic ~ 
datawithrank$highrisk, family = binomial()) 
summary(riskmodel3) 
exp(coef(riskmodel3))  
(exp(cbind(OR=coef(riskmodel3), confint(riskmodel3)))) 
 
#as above for lower percentile of risk 
percent <- 25 
 
datawithrank$highrisk <- ifelse(datawithrank$rank > 
quantile(datawithrank$rank, prob = 1 - percent/100),1,0) 
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riskmodel1 <- glm(datawithrank$myopic ~ datawithrank$highrisk, 
family = binomial()) 
summary(riskmodel1) 
exp(coef(riskmodel1))  
(exp(cbind(OR=coef(riskmodel1), confint(riskmodel1)))) 
 
riskmodel2 <- glm(datawithrank$modmyopic ~ 
datawithrank$highrisk, family = binomial()) 
summary(riskmodel2) 
exp(coef(riskmodel2)) 
(exp(cbind(OR=coef(riskmodel2), confint(riskmodel2)))) 
 
riskmodel3 <- glm(datawithrank$highmyopic ~ 
datawithrank$highrisk, family = binomial()) 
summary(riskmodel3) 
exp(coef(riskmodel3)) 
(exp(cbind(OR=coef(riskmodel3), confint(riskmodel3)))) 
#translate odds ratios calculated into table along with their 
corresponding Cis identified for all percentiles and thresholds 
of risk  

10.5 Appendix E Analyses for Chapter 8, Experiment 5 

 
============================== 
Script to remove participants not within +/- 10 SD mean PC 
- R 
============================== 
 
totalparticipantlist <- ukb_phenotypefile_ethnicityxonly  
#change ethnicityx as needed 
 
#Loop for mean and SD of different PCs 
PCA <- 1 
column_number <-12 
#starting column and PCA value for loop 
results_table <-as.data.frame(matrix(nrow=20, ncol=3)) 
colnames(results_table) <- c("PCA","MEAN","SD") 
#create table to transcribe PCs to 
 for(loop in 1:10) { 
   results_table[loop,1] <- PCA 
   results_table[loop,2] <- mean(dataset[,column_number], 
na.rm=TRUE) 
   results_table[loop,3] <- sd(dataset[,column_number], na.rm = 
TRUE) 
   PCA<- PCA+1 
   column_number<- column_number+1  
} 
#calculate mean and SDs for PC values for different PCs in a 
loop as continuing  
dataset$PCApass <- ifelse(((dataset$PCA{n} > 
mean(dataset$PCA{n}) – 10*sd(dataset$PCA{n})) & ((dataset$PCA{n} 
< mean(dataset$PCA{n}) + 10*sd(dataset$PCA{n}))1,0)  
#change as needed for different PC values of n 
newpasseddataset <- dataset[which(dataset$PCApass == 1),] 
#filter out those that are within top 10 PC values for the self-
reported trait  
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write.table (newpasseddataset, file =”newethnicityxpcafiltered” 
sep = " ", row.names = FALSE,  append = FALSE, quote = FALSE 
#create file for ethnicity of interest to calculate risk scores  
 
 
==================================== 
Script to calculate risk scores using PLINK - Unix 
==================================== 
 
#as no change to mtag and phenotypes used just need to adapt 
risk scores for these individuals that have been filtered. 
change trait name for trait or traitconmbination as required, as 
well as name and files for ethnicity of interest with ethnicityx 
 
#!/bin/bash 
#  
#PBS -l select=1:ncpus=1:mem=60GB 
#PBS -l walltime=40:00:00 
#PBS -N LDP_matraitethnicityx 
#PBS -o LDP_ma_outtraitethnicityx 
#PBS -e LDP_ma_errtraitethnicityx 
#PBS -P PR300 
 
#load plink as before, and run software on new ethnicity 
module load plink/1.9c3 
plink \ 
  --bfile 
/scratch/share_PR300/Neema/Fullukbiobankwork/ethnicityx/validati
onsampleethnicityxbfiles \ 
  --missing-code -9,0,NA,na \ 
  --score 2 3 6 newethnicityxfiltered \ 
#use ethnicity file created. Change for each ethnicity 
  --out /scratch/share_PR300/Neema/Fullukbiobankwork/ethnicityx/ 
trait1outfilefinalethnicityx 
 
module unload plink/1.9c3 
#output file written and unload software from RAVEN 
 
=========================== 

Script to find if including a trait combination is better 

than trait alone - R 

=========================== 

##calculate intra-ethnic differences in models used. based on 
previous chapter likelihood ratio model. change trait and 
ethnicityx as needed 
data1 <- trait1ethnicityxfile 
data2 <- trait1andcombinationethnicityxfile 
linearmodel <- lm(data1$PHENO ~ data1$SCORE) 
summary(linearmodel) 
#to identify same file and getting same R2 as LDpred software 
 
#script for analysis similar to previous chapter, change only to 
input file from each ethnicity being tested 
data1           <- data1[,c("IID","PHENO","SCORE")] 
names(data1)    <- c("IID","true_phens","PRS_True") 
data2           <- data2[,c("IID","SCORE")] 
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names(data2)    <- c("IID","PRS_TrueEdu") 
 
datax           <- merge(data1,data2,by="IID") 
 
model1          <- lm(datax$true_phens ~ datax$trait1) 
model2          <- lm(datax$true_phens ~ datax$traitcombination) 
model3 <- lm(datax$true_phens ~ data5$trait1 + 
data5$PRS_traitcombination) 
summary(model1) 
summary(model2) 
anova(model2, model3 
 
datax$Diff      <- datax$PRS_traitcombination - datax$PRS_trait1 
model5          <- lm(datax$true_phens ~ 
datax$PRS_traitcombinaion+ datax$Diff) 
summary(model5) 
anova(model1, model5, data=datax) 
library(psychometric) 
mysum <- summary(model5)#change model as needed 
CI.Rsq(rsq=mysum$r.squared, n=(mysum$df[1]+mysum$df[2]), 
k=mysum$df[1], level = 0.95) 
 
=========================== 
Script for ROC and corresponding AUC calculations - R 
=========================== 
 
dataforethnicityx <- autorefractionaosweduldpredoutput 
#change as required for ethnicity of interest 
 
#as previous analyses, compare each ethnicity AUC when looking 
at best myopia prediction model 
dataforethnicityx$myopic <- as.numeric(dataforethnicityx$PHENO 
<= -0.75) 
model1 <- glm(myopic ~ dataforethnicityx$SCORE 
,data=dataforethnicityx,family=binomial()) 
roc1 <- roc(response=model1$y, predictor=model1$fitted.values)  
 
dataforethnicityx$myopic <- as.numeric(dataforethnicityx$PHENO 
<= -3.00) 
model1 <- glm(myopic ~ dataforethnicityx$SCORE 
,data=dataforethnicityx,family=binomial()) 
roc2 <- roc(response=model1$y, predictor=model1$fitted.values)  
 
dataforethnicityx$myopic <- as.numeric(dataforethnicityx$PHENO 
<= -5.00) 
model1 <- glm(myopic ~ dataforethnicityx$SCORE 
,data=dataforethnicityx,family=binomial()) 
roc3 <- roc(response=model1$y, predictor=model1$fitted.values)  
 
#to identify any differences between AUROCs, use the following. 
Change models to test as required 
roc.test(model1, model2, method =c(“bootstrap”)) 
 
============================== 
Script to compare different stratifications of genetic risk 
in different ethnicities - R 
============================== 
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#script for calculating different risks based on stratification, 
as per previous chapter. Change of first couple of lines allows 
script to run as per previous script 
 
data <- autorefractionaoswedufilethnicityx  
#should you want to change ethnicity, change the name of 
ethnicityx 
linearmodel <- lm(data$PHENO ~ data$SCORE) 
summary(linearmodel)  
#to identify same file and getting same R2 as software 
 
 
data$rank <- rank(data$SCORE, na.last = NA, ties.method = 
c("first"))  
#create new variable for allowing a new dataset join that can be 
ranked to identify the top 25,10, and 5% at risk 
1516*0.25 
1516*0.10 
1516*0.05 
#use these to identify and group individuals who are at highest 
risk based on their relative location to these following ranks  
datawithrank <- data 
 
datawithrank$myopic <- ifelse(datawithrank$PHENO <=-0.75,1,0) 
datawithrank$modmyopic <- ifelse(datawithrank$PHENO <=-3,1,0) 
datawithrank$highmyopic <- ifelse(datawithrank$PHENO <=-5,1,0) 
 
percent <- 10 
 
datawithrank$highrisk <- ifelse(datawithrank$transformedgrs > 
quantile(datawithrank$transformedgrs, prob = 1 - 
percent/100),1,0) 
riskmodel1 <- glm(datawithrank$myopic ~ datawithrank$highrisk, 
family = binomial()) 
summary(riskmodel1) 
exp(coef(riskmodel1))  
(exp(cbind(OR=coef(riskmodel1), confint(riskmodel1)))) 
 
riskmodel2 <- glm(datawithrank$modmyopic ~ 
datawithrank$highrisk, family = binomial()) 
summary(riskmodel2) 
exp(coef(riskmodel2))  
(exp(cbind(OR=coef(riskmodel2), confint(riskmodel2)))) 
 
riskmodel3 <- glm(datawithrank$highmyopic ~ 
datawithrank$highrisk, family = binomial()) 
summary(riskmodel3) 
exp(coef(riskmodel3))  
(exp(cbind(OR=coef(riskmodel3), confint(riskmodel3)))) 
 
percent <- 5 
 
datawithrank$highrisk <- ifelse(datawithrank$transformedgrs > 
quantile(datawithrank$transformedgrs, prob = 1 - 
percent/100),1,0) 
riskmodel1 <- glm(datawithrank$myopic ~ datawithrank$highrisk, 
family = binomial()) 
summary(riskmodel1) 
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exp(coef(riskmodel1))  
(exp(cbind(OR=coef(riskmodel1), confint(riskmodel1)))) 
 
riskmodel2 <- glm(datawithrank$modmyopic ~ 
datawithrank$highrisk, family = binomial()) 
summary(riskmodel2) 
exp(coef(riskmodel2))  
(exp(cbind(OR=coef(riskmodel2), confint(riskmodel2)))) 
 
riskmodel3 <- glm(datawithrank$highmyopic ~ 
datawithrank$highrisk, family = binomial()) 
summary(riskmodel3) 
exp(coef(riskmodel3))  
(exp(cbind(OR=coef(riskmodel3), confint(riskmodel3)))) 
 
 
percent <- 25 
 
datawithrank$highrisk <- ifelse(datawithrank$transformedgrs > 
quantile(datawithrank$transformedgrs, prob = 1 - 
percent/100),1,0) 
riskmodel1 <- glm(datawithrank$myopic ~ datawithrank$highrisk, 
family = binomial()) 
summary(riskmodel1) 
exp(coef(riskmodel1))  
(exp(cbind(OR=coef(riskmodel1), confint(riskmodel1)))) 
 
riskmodel2 <- glm(datawithrank$modmyopic ~ 
datawithrank$highrisk, family = binomial()) 
summary(riskmodel2) 
exp(coef(riskmodel2)) 
(exp(cbind(OR=coef(riskmodel2), confint(riskmodel2)))) 
 
riskmodel3 <- glm(datawithrank$highmyopic ~ 
datawithrank$highrisk, family = binomial()) 
summary(riskmodel3) 
exp(coef(riskmodel3)) 
(exp(cbind(OR=coef(riskmodel3), confint(riskmodel3)))) 
#as previously, results need to be transcribed to table with 
corresponding CIs, and for different ethnicityx required 
 
 
 
 
 
 
 
 
 
 

  


