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Abstract

A three-dimensional Cartesian cut-cell method for the large-eddy simula-

tion of two-phase flows with moving bodies is presented in this study, which

combines a volume-of-fluid method to capture the air-water interface and a

moving body algorithm on a stationary, non-uniform, staggered, Cartesian

grid. The filtered Navier–Stokes equations are discretised using the finite

volume method with the PISO algorithm for velocity-pressure coupling and

the dynamic Smagorinsky subgrid-scale model is employed to compute the

effect of the unresolved (subgrid) scales of turbulence on the large scales. In

the present study, the small cut-cells are unmodified and due to the use of an

implicit time integration no instabilities occur during the computations. The

versatility and robustness of the present two-phase flow model is illustrated

via various two- and three-dimensional flow problems with fixed/moving bod-

ies, such as dambreak flows with and without a square cylinder, a moving

cylinder in a quiescent fluid, dambreak flow over a wet bed with a moving

gate, water entry and exist of a circular cylinder, and landside-generated
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waves. Good agreement is obtained between the numerical results and the

corresponding experimental measurements.

Keywords: Cartesian cut-cell method, Finite volume method, two-phase

flow, moving bodies, volume-of-fluid method

1. Introduction1

Two-phase flows with moving bodies appear in many scientific and engi-2

neering applications, e.g. marine renewable energy, hydrodynamics of open3

channels, naval architecture, hydraulic structures, coastal and offshore engi-4

neering, biomedical engineering, oil-and-gas transportation systems, and geo-5

physical flows. These applications typically have the motion of a deformable6

gas-liquid/liquid-liquid interface and its interaction with a fixed/moving struc-7

ture. Development of computational methods for predicting such flows,8

which involve turbulence, breaking waves, air entrainment, impact and fluid-9

structure interaction is highly challenging.10

A key requirement for simulating numerically free-surface/two-phase flows11

is the tracking or capturing of the interface [1, 2]. Numerous methods have12

been proposed and used to simulate free-surface/two-phase flows on a fixed13

mesh, such as marker-and-cell [3], volume-of-fluid (VOF) [1, 4, 5], front-14

tracking [6], level set [7, 8], phase field [9]. Alternatively, moving mesh [10]15

and meshless (particle) [11] methods have been proposed. In addition, recent16

developments include three-phase flow methods [12, 13]. Among these meth-17

ods, the VOF method, a transport equation for the volume fraction of the two18

phases, is probably the most popular method on a fixed grid and is widely19

used due to its inherent properties of: mass conservation, computational effi-20
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ciency and easy implementation. From a general point of view, there are two21

classes of algorithms to solve the transport equation of the volume fraction:22

geometric and algebraic computation [5]. In the geometric VOF methods23

[1], interfaces are first reconstructed from the volume fraction data so that24

a geometric profile is found which approximates the actual interface loca-25

tion. Then changes in volume fraction are calculated by integrating volume26

fluxes across cell boundaries, using flux splitting or unsplitting schemes. In27

the algebraic computation [14–16], the interface is captured by solving the28

transport equation of the volume fraction with a differencing scheme with-29

out reconstructing the interface, such as the flux-corrected transport scheme30

[14] and using the normalised variable diagram (NVD) [17] concept to switch31

between different differencing schemes [15].32

Most two-phase flows in engineering applications are turbulent and there-33

fore need different treatment for the turbulence. In many engineering prac-34

tices, only the time-averaged flow is of interest. Therefore the Reynolds-35

averaged Navier–Stokes (RANS) equations are usually solved, in which all36

of the unsteadiness is averaged out and all of the effects turbulence on the37

mean flow is modelled by one of a number of available turbulence models.38

As a result, RANS models cannot provide instantaneous flow characteristics.39

The increase in computer power has led to the development of more power-40

ful but more computationally demanding methods. The most accurate and41

most straightforward approach is the mthod of direct numerical simulation42

(DNS), in which the Navier–Stokes equations are solved directly without any43

modification. All scales of the turbulent flow are captured with DNS, which44

implies that the grid size must be no larger than the Kolmogorov scale [18].45
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Due to the high demand of DNS in terms of the number of grid points (which46

is proportional to Re9/4 in 3D, where Re is the Reynolds number), it has been47

mostly used for relatively low Reynolds number flows or flows in a relatively48

small flow domain. As DNS is out of reach for practical applications, recent49

developments have focused on the method of large-eddy simulations (LES)50

[19, 20], in which the large-scale eddies are resolved, i.e. calculated directly,51

while the effects of the small eddies on the large-scale turbulence are approx-52

imated. LES has been already employed for practical problems where the53

Reynolds number is high and the computational domain is large.54

To deal with complex geometries with fixed or moving motion in engineer-55

ing applications, overlapping grids, boundary-fitted grids and unstructured56

grids can be used. Unstructured grids provide great flexibility in conform-57

ing to complex boundaries, and can easily be refined or coarsened in specific58

regions of the flow domain depending on the flow feature. However, they re-59

quire additional computational efforts and further complicate the algorithm60

implementation as there is no pre-defined order of the control volumes and61

their geometric layouts need to be calculated. Furthermore, generating high-62

quality boundary-fitted or unstructured grids is usually very cumbersome63

[21], especially for moving body problems, where the mesh has to be regen-64

erated at every time step. Cartesian grid methods which can simulate flow65

with complex geometries on fixed Cartesian grids, avoid these problems. The66

primary advantage of the Cartesian grid method is that only little modifica-67

tion of the flow solver on Cartesian grids is needed to account for complex68

(immersed) geometries. It also has the advantage of simplified grid genera-69

tion and simulating flows with moving boundaries whilst avoiding deforming70
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grids. The two most popular methods are the immersed boundary method71

[21–25] and the Cartesian cut-cell method [26–31]. There are some examples72

for two-phase flows with moving bodies using immersed boundary method73

in two-dimensional (2D) [32] and three-dimensional (3D) [33] simulations.74

Compared to immersed boundary methods, the Cartesian cut-cell method75

is very attractive as it enforces strict conservation of mass, momentum and76

energy, and in particular near solid boundaries. The present study focuses on77

the Cartesian cut-cell method hence only relevant studies using this method78

are mentioned hereafter.79

The Cartesian cut-cell method is based on a stationary Cartesian back-80

ground grid, in which the solid boundary is intersected with boundary cells81

(named as cut-cells), and regular grid cells are truncated to conform to the82

solid (immersed) boundary interface. There is no modification for standard83

regular grid cells whereas special treatments are needed for the cut-cells. For84

fixed, solid boundaries, the Cartesian cut-cell method has been developed85

for 2D Poisson [34], and advection-diffusion [35] equations. It has also been86

applied to study single-phase fluid flow problems, such as for 2D aeroacous-87

tics [36], 2D hypersonic boundary layer transition [37], 2D shallow water88

equations [38], 2D incompressible viscous flow [27, 28, 31], 2D compress-89

ible viscous flow [39], 3D inviscid flow [40], 3D incompressible viscous flow90

[30], 3D compressible viscous flow [41, 42], and 3D LES studies [43–45]. The91

Cartesian cut-cell method has also been used to study free-surface/two-phase92

flows in 2D using a two-fluid approach [46], height function [47], volume-of-93

fluid method [48–50], in the form of a coupled level-set and volume-of-fluid94

approach [51], and 3D DNS and LES studies [52, 53].95
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For moving bodies, Cartesian cut-cell methods have been developed for96

solving the 2D heat [54] and 2D shallow water equations [55], 2D viscous flow97

[26], 3D rarefied gas flows [56], 3D inviscid flow [57], and 3D compressible98

viscous flow [58–60]. Some early development of the cut-cell method for99

single-phase flows can be found in [29]. For 2D two-phase flows, different100

approaches have been employed for the interface tracking/capturing, such101

as the Langrangian marker [61], level-set method [62], and the two-fluid102

approach [63, 64]. In 3D, the Euler equations have been solved together103

with a density function to capture the air-water interface for a water impact104

problem in [65] and a cut-cell method with moving body has been developed105

to study the 3D wave impact problem with a single-phase volume-of-fluid106

method in [66]. Recently, there are some development for fluid-structure107

interaction problems for 2D two-phase flow [67] and 3D single-phase flow108

[68]. To date, there has been relatively little work on cut-cell methods with109

moving bodies for the 3D Navier–Stokes equations with two-phase flows and110

turbulence.111

The objective of this paper is, therefore, to present and validate thor-112

oughly an efficient finite volume method based on the Cartesian cut-cell113

method for the unsteady, turbulent, incompressible, two-phase Navier–Stokes114

equations with moving bodies on a three-dimensional, non-uniform, stag-115

gered, Cartesian grid. The method of large-eddy simulation is employed to116

compute directly large-scale turbulence of the flow by solving the filtered117

Navier–Stokes equations and employing the dynamic Smagorinsky sub-grid118

scale model to account for the unresolved (subgrid) scales of turbulence.119

An algebraic VOF scheme is employed and modified in cut-cells to capture120
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the air-water interface in the two-phase flow model. Solid boundaries are re-121

solved by the Cartesian cut-cell method, with detailed 3D cut-cell generation122

and finite volume discretisation. The moving body algorithm (as an internal123

source function by taking the solid volume change into account) is imple-124

mented to simulate moving bodies on a fixed Cartesian grid. Moreover, an125

implicit time integration scheme is used for time integration, which prevents126

common instability problems in small cut-cells as reported in the literature.127

The organisation of this paper is as follows. The description of the math-128

ematical model for the two-phase flow is described in Section 2. The nu-129

merical method and implementation of the cut-cell method are presented130

in Section 3. The versatility, robustness and accuracy of the present two-131

phase flow model is demonstrated by solving various 2D and 3D two-phase132

flow problems with moving bodies in Section 4. Finally, the paper ends with133

conclusions in Section 5.134

2. Mathematical model135

2.1. Governing equations136

The governing equations used for the incompressible immiscible Newto-137

nian two-phase flow are based on the Navier–Stokes equations, given as:138

∇ · u = 0, (1)

∂(ρu)

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · [µ(∇u+∇

Tu)] + ρg, (2)

where u is the velocity vector, t is the time, p is the pressure, g is the grav-139

itational acceleration vector, ρ and µ are the density and dynamic viscosity140
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of the fluid.141

2.2. Interface modelling142

2.2.1. Volume-of-fluid method143

The volume-of-fluid method is employed here to capture the air-water144

interface in the two-phase flow solver during the simulation. F is the volume145

fraction defined as:146

F =




1, if only water is present;

0, if only air is present.

(3)

The air-water interface is then within the cells where 0 < F < 1. A147

particle on the surface stays on the surface and the volume fraction F has a148

zero material derivative:149

dF

dt
=
∂F

∂t
+ u · ∇F = 0. (4)

2.2.2. Physical properties150

After interface capturing for the volume fraction field, the momentum151

equation (Eq. (2)) is closed with the constitutive relations for the density152

and dynamic viscosity of the fluid as given by:153

ρ = Fρw + (1− F )ρa, (5)

µ = Fµw + (1− F )µa, (6)

where the superscripts ‘w’ and ‘a’ denote water and air, respectively.154
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2.3. Moving body algorithm155

In order the simulate the moving body in a fixed Cartesian grid system,156

rather than applying a interpolated body force over the grid as used in the157

IBM, the source function approach [69, 70] is employed here. The motion158

of a solid can be followed and interacts with the background Cartesian grid159

as shown in Fig. 1. At time t, considering a cell containing a solid with160

its volume as Vsolid(t), if the volume of solid increases ∂Vsolid(t)/∂t > 0, the161

volume of fluids decreases, and vice versa. Thus, the conservation of mass162

for the continuity equation (Eq. (1)) in a cell with volume V can be modified163

as:164

∇ · u =
1

V

∂Vsolid(t)

∂t
= ψ(t), (7)

where ψ(t) is a internal source function depending on the volume change of

the solid in the cell at time t. Thus, the momentum equation (Eq. (2)) is

also modified as:

∂(ρu)

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · [µ(∇u+∇

Tu)] + ρg + ρuψ(t). (8)

2.4. Subgrid-scale model165

The large-eddy simulation (LES) approach is adopted in this study, for166

which the large-scale eddies are solved and a subgrid-scale model is employed167

to compute the unresolved scales of turbulence. The governing equations168

used for incompressible two-phase flow are based on the spatially filtered169

Navier–Stokes equations of Eq. (7)and Eq. (8), given as:170

∇ · ū = ψ(t), (9)
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Figure 1: Schematic of 2D cut-cells undergoing a volume change due to boundary motion

in a two-phase flow model. The light blue and red colours show the fluid regions for the

water and air where the solid domain is represented as yellow region. The yellow area

between the red dashed line and blue solid line on the top are cut-cells whose volume

of solid increases ∂Vsolid(t)/∂t > 0; the yellow area with mesh inside between the red

dashed line and blue solid line on the bottom are cut-cells whose volume of solid decreases

∂Vsolid(t)/∂t < 0. The arrangement of variables (p, u, v) on a staggered Cartesian grid

are also shown, where the velocities are stored on the face of the control volume and the

pressure is stored at the centre of the control volume.
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∂(ρū)

∂t
+∇·(ρū⊗ū) = −∇p̄+∇·[µ(∇ū+∇

T ū)]+ρg+ρūψ(t)+∇τ sgs, (10)

where the overbar ·̄ denotes the spatial filtering over the grid in Cartesian171

coordinates (x, y, z), ū = (ū, v̄, w̄) is the filtered velocity vector and p̄ is the172

filtered pressure.173

The term τ sgs = ρ(ūū−uu) is the subgrid-scale (SGS) stress tensor and174

the anisotropic part of the SGS term is approximated by an eddy-viscosity175

model of the form [71]:176

τ sgs −
1

3
trace(τ sgs)I = 2µtS̄, (11)

where I is the unit tensor and S̄ is the strain rate tensor of the resolved field.177

µt is the turbulent eddy viscosity defined as:178

µt = ρCd∆̄
2
∣∣S̄

∣∣ , and
∣∣S̄

∣∣ =
√

2S̄S̄, (12)

with the cut-off length scale ∆̄ = (∆x∆y∆z)1/3 and the coefficient Cd =179

1
2

LijMij

MijMij
is calculated by the dynamic Smagorinsky model [72] in the present180

study, where Lij = ̂̄uî̄uj − ̂̄uiūj and Mij = ˆ̄∆2

∣∣∣ ˆ̄S
∣∣∣ ˆ̄Sij − ∆̄2

∣̂∣S̄
∣∣ S̄ij, and the181

hat ·̂ represents spatial filtering over the test filter. The symbol for spa-182

tial filtering ‘−’ is dropped hereinafter for simplicity. The advantage of the183

dynamic Smagorinsky model is that the dissipation of energy from the large-184

scale turbulence is approximated in analogy to dissipation on a molecular185

level without the need for empirical input (due to the dynamic approxima-186

tion of the Smagorinsky constant) and hence has found to work well for many187

applications of practical interest [19].188
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2.5. Initial and boundary conditions189

In order to completely describe the mathematical model it is necessary to190

define the boundary conditions in a computational domain. For the moving191

body, the motion is known and the velocity and position of the solid body’s192

boundaries can be prescribed for every time step. For the outlet, the zero-193

gradient or radiation boundary condition is applied for the flow. As both194

fluids in the air and water are solved simultaneously in the present two-phase195

flow model, the kinematic and dynamic free surface boundary conditions are196

inherently implemented in the VOF method and they do not need to be197

specified explicitly at the air-water interface.198

In the computation, the initial flow field at t = 0 has to be prescribed.199

For calculations with the fluids initially at rest, the flow field is initialised200

with zero velocity and hydrostatic pressure, and the volume fraction of the201

air-water interface is computed from the initial water depth. For the moving202

body, the velocity in the solid is initialised with its moving velocity.203

3. Numerical method204

3.1. Finite volume discretisation205

One option of discretising the governing equations is the finite volume206

method (FVM). In the FVM, also known as the control volume method, the207

entire flow domain is divided into a number of control volumes surrounding208

each grid point. The differential equation is integrated over each control vol-209

ume (CV) in order to derive the algebraic equation containing the grid-point210

values of ϕ, where ϕ is the dependent variable. The FVM is conservative211

and can deal with complex geometries [18, 73], thus it is particularly suitable212
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for modelling interfacial flows with moving bodies due to the requirement213

of mass conservation, the deformed interface and moving boundaries, and214

therefore it is adopted in the present study.215

Consider a volume of fluid Ω which has an arbitrary domain, the surface216

of the control volume is S and the unit outward normal vector to the face217

f is n. All the governing equations can be recast into a general integral218

formulation as below219

∫∫∫

Ω

∂

∂t
(ρϕ)dΩ +

∫∫

S

(ρu · n)ϕdS =

∫∫

S

Γ
∂ϕ

∂n
dS +

∫∫∫

Ω

QS
ϕdΩ, (13)

where ϕ denotes the dependent variable, Γ is the viscosity and QS
ϕ is the220

source term in the control volume.221

Table 1 shows the various values of ϕ, Γ and QS
ϕ in the general integral222

formulation to represent the Navier–Stokes equations and the volume fraction223

equation. It is noted that the final form of the continuity equation (9) used224

here is obtained under the assumption that the fluid is incompressible.225

Table 1: Values of ϕ, Γ and QS
ϕ

in the general integral formulation to represent the

Navier–Stokes equations.

Equation ϕ Γ QS
ϕ

Continuity 1 0 ρψ(t)

Momentum u µ+ µt −∇p+ ρg + ρuψ(t)

Volume fraction F 0 ρF∇ · u
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3.2. Computational grid226

In this study, a staggered, Cartesian grid, which has the advantage of227

strong coupling between the velocity and the pressure is used to discretise228

the flow domain. Figure 2(a) shows a typical variable arrangement in a 3D229

Cartesian grid, in which the velocities are located at the centre of the CV’s230

face, and the pressure, all other scalar variables and the volume fraction F231

are stored at the CV’s centre. Figure 2(b) shows a typical control volume232

used in the present study, in which P is the present grid point (or node), the233

upper-case letter E, W, N, S, B, and R denote neighbouring nodes on the234

east, west, north, south, back, and front with respect to the central node P.235

The lower-case e, w, n, s, b, and r denote the corresponding face of the CV236

whereas c denotes the centre of the CV.237

Thus, the CV’s volume is obtained as

Ω =

∫∫∫

Ω

dΩ = ∆x∆y∆z. (14)

The area of the face A is similarly calculated, e.g., the one of the east face

Ae is

Ae =

∫∫

e

dS = ∆y∆z. (15)

Unless stated otherwise the variable on the face is predicted with linear in-

terpolation

ϕe = λeϕP + (1− λe)ϕE, (16)

where λe is the interpolation factor defined as

λe =
|eE|

|PE|
. (17)

Analogous expressions can be derived for all other faces (f=w, n, s, b, r)238

by making appropriate index substitutions and will not be shown here.239

14



u(i,j,k)u(i−1,j,k)

w(i,j,k)

w(i,j,k−1)

v(i,j,k)

v(i,j−1,k)

φ(i,j,k)

x 

y 
z 

(a) variable arrangement (b) notation in a control volume

Figure 2: Variables used for the CV (i, j, k) in a 3D staggered grid. Velocities u(i, j, k),

v(i, j, k), and w(i, j, k) are stored at the centre of the east, back, and north face of the

CV. Pressure and other scalar quantities ϕ(i, j, k) are stored at the centre of the CV. ∆x,

∆y, and ∆z are the CV’s length, and i, j, and k are the unit vectors in the x, y, and z

directions, respectively.

3.3. Navier–Stokes solver240

3.3.1. Temporal discretisation241

A backward finite difference method is used for the time derivative, which242

leads to an implicit scheme for the Navier–Stokes equations243

QT
ϕ =

∫∫∫

Ω

∂

∂t
(ρϕ)dΩ =

ρn+1
c ϕn+1 − ρncϕ

n

∆t
Ω, (18)

where ∆t is the time step and the superscripts n + 1 and n mean the value244

in current and previous time step, respectively. The implicit scheme has245

the advantage of unconditional stability and thus can prevent the instability246

problem in small cut-cells discussed in Section 3.5.247
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3.3.2. Spatial discretisation248

The Navier–Stokes equations are discretised in space using a finite vol-249

ume formulation on a non-uniform, staggered, Cartesian grid as shown in250

Figure 2(b). The high-resolution scheme [74] is used for the advection terms.251

The second-order central difference scheme is used for diffusion terms, pres-252

sure gradient terms and the pressure correction equations. However in cut253

cells, all these disretised terms will need to be modified and this will be254

discussed in detail in Section 3.5.255

Substituting all the discretised terms into Eq. (13) and subtracting the256

continuity equation ∂ρ/∂t+∇ · (ρu) = ρψ(t) multiplied by ϕn+1
P , leads to257

aϕPϕ
n+1
P =

∑
aϕnbϕ

n+1
nb + bϕP, (19)

where aϕ is the coefficient, the subscripts P and nb = E,W,N, S,B,R denote258

the variables in the present and neighbouring cells respectively and bϕP is the259

source term.260

The algebraic equations are solved by the SIP (Strongly Implicit Proce-261

dure) method or Bi-CGSTAB (Bi-Conjugate Gradients Stablized) Method262

[75] in this study.263

3.3.3. Pressure-velocity coupling264

In the incompressible Navier–Stokes equations pressure and velocity are265

decoupled as the pressure term does not appear in the continuity equation.266

For some numerical discretisations this may cause convergence problems.267

However, when a staggered mesh is used, as in this work, coupling occurs268

as a result of the discretisation, as velocity updates on cell faces contain269
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pressure terms. In this study, the PISO algorithm [76] is employed for the270

pressure-velocity coupling. The PISO algorithm is used to calculate the271

corrected pressure twice and after solving the pressure correction equations,272

the updated pressure and velocity are added by the pressure and velocity273

correction terms respectively. Here only a brief summary is presented and274

more details can be found in [77]275

For a guessed pressure distribution p∗, the discretised momentum equa-

tions can be solved to produce the fluid velocities u∗, which satisfy

auPu
∗

f =
∑

aunbu
∗

nb + buP + Af(p
∗

P − p∗nb). (20)

To obtain the pressure correction, the updated fluid velocities are sub-

stituted into the discretised continuity equation Eq. (9) and the resulting

pressure correction equation has the following form

apPp
′

P =
∑

apnbp
′

nb + b′P, (21)

where the term b′P, called the mass residual, in the pressure correction equa-276

tion is the left-hand side of the discretised continuity equation evaluated in277

terms of the fluid velocities u∗.278

In the PISO algorithm [76], a second correction step is introduced as

apPp
′′

P =
∑

apnbp
′′

nb + b′′P, (22)

where the coefficients have the same value in the first pressure correction279

equation shown in Eq. (21) and the source term has been changed based on280

the value of first velocity correction u′.281

After solving the first and second pressure corrections, the solutions are
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updated as

p = p∗ + p′ + p′′,

u = u∗ + u′ + u′′,
(23)

where

u′

f =
Af

auP
(p′P − p′nb),

u′′

f =

∑
aunbu

′

nb + Af(p
′′

P − p′′nb)

auP
.

(24)

3.4. VOF solver for interface capturing282

A key requirement for simulating two-phase flows is a method for calcu-283

lating the shape of the interface. Numerous methods have been proposed and284

used for the simulation of free-surface/two-phase flows. However, the VOF285

method for capturing the interface is one of the most popular approaches286

due to its advantages: mass conservation, computational efficiency and easy287

implementation. From a general point of view, there are two classes of algo-288

rithms to solve the F transport equation (Eq. (4)): algebraic and geometric289

computation [78]. Excellent reviews on the VOF methods can be found in290

[78, 79].291

Considering the advantages of the VOF method and efficiency in alge-292

braic computation, the high resolution VOF scheme Compressive Interface293

Capturing Scheme for Arbitrary Meshes (CICSAM) is employed in this study294

to capture the air-water interface for two-phase flows. CICSAM is a high res-295

olution scheme based on the normalised variable diagram used by Leonard296

[17]. It contains two high resolution schemes and the weighting factor is297

based on the angle between the interface and the direction of motion. An298

outline of CICSAM is given below. Refer to [80] for more details.299
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The normalised variable F̃ is defined as300

F̃ =
F − FU

FA − FU

, (25)

where the subscript A indicates the acceptor and U the upwind cell. The301

Hyper-C scheme [17], which follows the upper bound of the Convection302

Boundedness Criteria (CBC) is used as it is highly compressive and can303

convert a smooth gradient into a sharp step.304

F̃fCBC
=





min



1,

F̃D

cD



 , when 0 6 F̃D 6 1

F̃D, when F̃D < 0, F̃D > 1

(26)

where subscript D indicates donor cell, cD =
∑

f max
{

−Vf∆t
ΩD

, 0
}
is the Courant305

number of the donor cell and Vf is the volumetric flux. However, the Hyper-C306

scheme is inadequate to preserve the shape of an interface which lies tangen-307

tially to the flow direction. Thus CICSAM switches to the ULTIMATE-308

QUICKEST (UQ) scheme [17]309

F̃fUQ
=





min




8cDF̃D + (1− cD)(6F̃D + 3)

8
, F̃fCBC



 , when 0 6 F̃D 6 1

F̃D, when F̃D < 0, F̃D > 1

(27)

in this case.310

Thus, depending on the angle between the interface and the flow, CIC-311
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SAM combines these two schemes, then312

F̃f = γfF̃fCBC
+ (1− γf)F̃fUQ

, (28)

in which the weighting factor is given as313

γf = min

{
kγ

cos(2αγ) + 1

2
, 1

}
, (29)

where kγ is a constant introduced to control the dominance of the different314

schemes and the recommended value is kγ = 1, αγ is the angle between the315

vector normal to the interface and the vector which convects the centres of316

donor and acceptor cells.317

The final expression for the face value of F is318

Ff = (1− βf)FD + βfFA, (30)

where the weight factor βf is obtained by319

βf =
F̃f − F̃D

1− F̃D

. (31)

It is noted that the normalised variable in Eq. (25) will be divided by320

zero if the volume fraction F has the same value in the acceptor and upwind321

cell. In the numerical implementation, the numerator and denominator of322

the weighting factor in Eq. (31) are multiplied by (FA − FU), resulting in a323

modified expression for the normalised variable on the face (not shown here),324

in order to avoid the singularity in the computation. In the present study,325

for cut-cells, the flux across each face of the control volume is modified when326

solving the volume fraction F equation, which will be discussed in Section 3.5.327
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3.5. Cartesian cut-cell method328

For Cartesian cut-cell methods, an instability problem might occur in329

small cells when explicit schemes are used. Thus, the cell-merging technique330

[81] as well as slightly modifying control volumes [66] are usually employed331

to avoid numerical instability, both of which effectively increase the size of332

the cut cell. As an alternative, flux-redistribution schemes [57–59] may be333

employed to deal with small cut-cells. This problem is very cumbersome es-334

pecially for moving body problems as cut-cells require updating/modification335

in every time step. In the present study, the cut cells are not modified and336

it is found that numerical instabilities are absent due to the implicit scheme337

used for time integration.338

3.5.1. Cut-cell information339

In the present study, the geometry of the solid is represented by a general340

level set function LS(x, y, z, t), in which the boundary of the moving body341

is represented by LS(x, y, z, t) = 0 while the fluid domain has the value342

of LS(x, y, z, t) > 0 and the solid domain is LS(x, y, z, t) < 0. The cut-343

cell interface between the fluid and solid is calculated by a piecewise linear344

interface (as shown in Fig. 1), which is a straight-line in 2D and a plane in345

3D.346

For each 3D Cartesian grid cell, the area of each surface and the total

volume available for fluids needs to be calculated. A θ function is defined

here, the value of which is 1 for a point accessible to fluid and 0 for a point

inside a solid. The average of this function over a control volume or cell face

is the fraction of the volume or area available to the flow. By using this
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approach, the volume of the solid can be obtained as:

Vsolid(t) = (1− θ(t))V. (32)

It is worth noting that θ is a function of time t here, for a stationary body,347

the θ function is only needed to be calculated once at the beginning as used348

for a fixed body simulation.349

In order to calculate the area and volume of the cut-cell, how the solid350

boundary cuts the Cartesian cell needs to be determined first. The marching351

tube algorithm [82] is employed and the grid nodes can be classified as inside352

or outside of the solid based on the sign of the level set function LS(x, y, z, t).353

For 3D, there are 8 grid nodes in each cell so that 28 configurations are354

possible. By using the inversion and rotation of different configurations, the355

256 cases can be reduced to 15 cases as shown in Fig. 3 for a typical cut cell356

in a 3D Cartesian grid, which includes zero, one, two, three, and four points357

being cut through the Cartesian grid cell.358

Once the configuration of the cut cell has been determined, the intersec-359

tion point along each edge can be obtained by linear interpolation of the level360

set function of two neighbouring grid nodes. Once the point of intersection361

of the line with the cut plane is found, the geometric information can be362

calculated. Finally, the face areas and total volume of the truncated cell are363

calculated by numerical integration. In contrast to a full fluid cell, the spatial364

discretisation at cell faces and cell centres are modified in a cut cell, which365

will be presented in the following terms.366
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(a) zero point (b) one point

(c) two points

(d) three points

(e) four points

Figure 3: Example of 3D cut cell configurations, which show how many points have been

cut through a Cartesian grid cell: (a) zero point (either pure fluid or solid cell); (b) one

point; (c) two points; (d) three points; (e) four points. There are 256 cases in total, but

after inversion and rotation, the 256 cases can be reduced to 15 cases shown here.
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3.5.2. Advection term367

The finite volume discretisation of the advection term in Eq. (13) is ob-368

tained as369

QC
ϕ =

∫∫

S

(ρu · n)ϕdS =
∑

f

(θA)f [(ρu · n)ϕ]f

=
∑

f

(ρu · nθA)fϕf

=
∑

f

mfϕf ,

(33)

where the subscript f denotes the corresponding face of the control volume,370

A is the area of the face and m is the mass flux through the face371

m = ρu · nθA. (34)

In cut cells, the mass flux has also to be modified by the θ function on372

the boundary. If θ = 0 (such as the west face of the first case in Fig. 3(e)),373

there is no mass flux through the face and the advective flux is obtained as374

mf = 0. (35)

The mass flux at the faces of the momentum control volume can be ob-375

tained by the interpolation of values of ρ and u, such as mf = ρfuf · nθfAf ,376

however, the mass conservation in the momentum control volume can be only377

guaranteed to the accuracy of the interpolation procedure [18]. Thus, in this378

study, the mf is obtained from the interpolation of the mass fluxes, which is379

already available at the faces of the continuity control volumes.380
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For interface capturing, the face value Ff is obtained from the CICSAM381

scheme in Eq. (31). For the momentum equations, the face value ϕf can be382

obtained from different schemes and more details can be found in [74]. A383

high resolution scheme [73], which combines the high-order accuracy with384

monotonicity, is used in this study to discretise the value at the face as385

ϕf
HRS = ϕFOU

f + Φ(rmf )Ψ(rϕf )(ϕ
SOU
f − ϕFOU

f ), (36)

in which ϕFOU
f and ϕSOU

f are the corresponding values obtained from the386

first-order and second-order upwind schemes.387

Ψ() is the limiter function where the minmod limiter [83], which is one388

of the simplest second-order TVD (Total Variation Diminishing) schemes, is389

used here390

Ψ(r) = max[0,min(r, 1)]. (37)

Similar results are obtained by using other limiter functions and a general re-391

view of various limiter functions can be found in [84] and will not be repeated392

here. rϕf represents the ratio of successive gradients of ϕ on the solution mesh393

and obtained as394

rϕf =
ϕA − ϕD

ϕD − ϕU

, (38)

where subscripts D, A, and U denote donor cell, acceptor cell, and upwind395

cell, respectively.396

As discussed in the previous study [74], Φ() is the step function and rmf397

is the variation for the mass, defined as the ratio of the mass flux between398
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the conservative and non-conservative forms399

rmf =
(ρu · nθA)f
ρc(u · nθA)f

. (39)

The step function Φ() takes the form400

Φ(r) =




1, if |r| 6 1;

0, otherwise,

(40)

which means that the present high resolution scheme switches to the first-401

order upwind scheme when the density on the cell face is larger than the402

density in the cell centre.403

3.5.3. Diffusion term404

The finite volume discretisation of the diffusion term in Eq. (13) is ob-405

tained as406

QD
ϕ =

∫∫

S

Γ
∂ϕ

∂n
dS =

∑

f

Γf

∂ϕ

∂n
(θA)f , (41)

where the viscosity on the face is obtained by the harmonic mean [85], for407

example, on the east face408

Γe =
ΓPΓE

λeΓP + (1− λe)ΓE

, (42)

where λe = |eE| / |PE|. Analogous expressions can be derived for all other409

faces (f=w, n, s, b, r) by making appropriate index substitutions and will410

not be shown here.411
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The gradient at the face is calculated by the finite difference approach as412

∂ϕ

∂n
=
ϕnb − ϕP

∆Pnb

, (43)

where ∆Pnb is the distance from the present point P to the neighbouring413

point nb.414

When the control volume is a cut cell, special attention has to be paid to415

the spatial discretisation. When the face of a momentum control volume is416

on the wall, the diffusion flux is obtained as417

∫∫

S

Γ
∂ϕ

∂n
dS =

∑

f

Γf

∂ϕ

∂n
(θA)f + τw[(1− θ)A]f , (44)

where ∂ϕ
∂n

is calculated by the finite difference approach in (43) and τw is the418

shear stress of the wall on the face of the control volume.419

3.5.4. Source term420

The finite volume discretisation of the source term in Eq. (13) is obtained421

as below:422

Pressure term. The finite volume discretisation of the pressure term is ob-423

tained as424

Qp
ϕ =

∫∫∫

Ω

−∇pdΩ = −∇pθcΩ, (45)

and the pressure gradient is calculated as425

∇p = (
∂p

∂x
,
∂p

∂y
,
∂p

∂z
)

= (
pe − pw
∆x

,
pb − pr
∆y

,
pn − ps
∆z

).
(46)
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Body force term. The finite volume discretisation of the body force term is426

obtained as427

QB
ϕ =

∫∫∫

Ω

ρgdΩ = ρcgθcΩ, (47)

where the value in the centre of the control volume is obtained by the volume428

averaging of two values on the face of the control volume.429

Internal source term. The finite volume discretisation of the internal source430

term is obtained as431

QI
ϕ =

∫∫∫

Ω

ρuψ(t)dΩ = ρcuψc(t)θcΩ. (48)

3.6. Procedure432

In summary, the overall solution procedure of the present two-phase flow433

model with moving bodies for one time step is detailed as:434

(1) Setup boundary conditions and moving bodies with pre-specified mo-435

tion: Section 2.5.436

(2) Calculate the cut-cell information and the θ function for the area and437

volume available for the flow in each cells, and compute the internal438

source function ψ(t): Section 3.5.1.439

(3) Solve the volume-of-fluid function F : Section 3.4.440

(4) Update the fluid properties, density ρ and dynamic viscosity µ: Section 2.2.2.441

(5) Calculate the turbulent eddy viscosity µt if the dynamic SGS model is442

used: Section 2.4.443
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(6) Setup the coefficients au and buP based on the latest pressure p∗ and444

velocity u and solve for the intermediate velocity u∗: Section 3.3.3.445

(7) Setup the coefficients ap and b′P and solve for the first pressure correc-446

tion p′ and calculate u′: Section 3.3.3.447

(8) Setup the coefficients b′′P and solve for the second pressure correction448

p′′ and calculate u′′: Section 3.3.3.449

(9) Update the pressure p = p∗ + p′ + p′′ and the velocity u∗ + u′ + u′′:450

Section 3.3.3.451

(10) Go back to step (6) if the mass residule is larger than a threshold,452

otherwise go to next time level in step (1): Section 3.3.453

4. Results and discussion454

A grid convergence study of the two-phase flow model, the benchmark455

problem of a 3D collapse of a water column without a structure is carried out456

first to test the interface capturing method at various grid resolutions. The457

validation of the cut-cell method is then demonstrated by studying dambreak458

flow interacting with a fixed square cylinder. Numerical results are quantita-459

tively compared with experimental data in terms of velocity and force acting460

on the cylinder. With the goal to validate the cut-cell method involving mov-461

ing bodies, a single-phase flow problem for a moving cylinder in a quiescent462

fluid is studied followed by a two-phase flow with moving bodies. Therefore,463

2D dambreak flow over a wet bed is studied with the movement of the gate464

being simulated directly using the proposed moving cut-cell method, and the465
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computed water surface behavior is compared qualitatively with experimen-466

tal observations. After that, the validation of the Cartesian cut-cell/VOF467

method with moving bodies is further demonstrated by studying the exit468

and entry of a circular cylinder into a fluid. Finally, the method is employed469

to study 3D water wave generation due to a sliding wedge.470

4.1. Convergence study - 3D collapse of a water column471

The classical benchmark case of a 3D dambreak flow is considered, which472

has been studied in detail experimentally in [86] and numerically, for instance473

in [87]. The motion of the water (i.e. water height on the wall and spread474

length on the bottom) during water collapse were recorded in the experiment475

and are used here to validate the present two-phase flow model.476

The computational domain is 4a × a × 4a in the streamwise, spanwise,477

and vertical directions, respectively. Initially, a column of water with 2a478

height and a width is placed on the bottom left of the tank and a = 0.25 m479

is used here. Here, b and c denote the time history of the remaining height480

and surge front position of the water column and the schematic is shown in481

Fig. 4. The computational domain is discretised with three different sets of482

uniform meshes with 32 × 8 × 32, 64 × 16 × 64, and 128 × 32 × 128 in the483

streamwise, spanwise, and vertical directions, respectively.484

Fig. 4 depicts snapshots of the remaining water height (left) and surge485

fron position (right) as computed together with experimental data [86]. As486

far as the water column height is concerned, simulation results on all three487

grids are in very good agreement with the experimental data (Fig. 4, left).488

As far as the surge front position is concerned, due to the fact that the489

dam cannot be removed instantaneously in the experiment, a small time490
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Figure 4: Results of the numerical simulations on three different meshes together with

experimental data [86] for remaining water column height b (left) and surge front position

c (right), both as a function non-dimensional time.

lag in the experimental data should exist, which is also observed in other491

numerical simulations. In general, the numerical results converge to the492

correct solution when refining the mesh and there is only a marginal difference493

in surge position between the medium and fine mesh simulations.494

In order to further study the convergence rate of the present method,495

the free surface profiles obtained by the simulations on the three meshes at496

an instant t = 0.2 s (shown in the schematic of Fig. 4) are compared with497

the benchmark solution. An additional simulation with an even finer mesh498

256 × 64 × 256 is carried out until t = 0.2 s and the so-computed air-water499

interface is taken as the benchmark solution. Fig. 5 shows the calculated L1,500

L2, and Linf errors with respect to the benchmark solution. It can be seen501

that the convergence rate is between first-order and second-order, and it is502

more close to second-order when approaching the fine mesh. This is expected503

as although second-order discretisation is used for the diffusion term, the504
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Figure 5: Error norm as a function of grid resolution for the 3D collapse of a water column.

Lines for first-order and second-order behavior are also plotted for reference.

advection term is discretised by a high-resolution scheme, which combines505

the high order accuracy with monotonicity for the first-order scheme.506

4.2. 3D dambreak flow interacting with a fixed square cylinder507

In this section, a 3D two-phase flow interacting with a fixed structure is508

considered to verify and validate the implementation of the Cartesian cut-509

cell method. The dambreak flow interacting with a square cylinder is often510

considered as a benchmark case and this has been studied in [70], among511

others. The computational setup (shown in Fig. 6) is the same as in [70]512

except that a full domain is considered in the present study, rather than513

using only half of the domain with symmetry boundary conditions along514

the centre of the domain as was used by [70]. The tank dimensions are 1.6515

m × 0.61 m × 0.60 m in the streamwise, spanwise, and vertical direction,516

respectively. The initial height of the water behind a thin gate is 0.4 m and a517
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Figure 6: Computational setup for the 3D dambreak flow over a square cylinder. The red

dot indicates the location where velocity measurements were carried out.

thin layer of water of 0.01 m depth is set downstream of the gate. The square518

cylinder (with 0.12 m edge) is placed 0.5 m downstream of the gate and the519

lateral distance to the sidewalls is 0.24 m. In the experiments, the net force520

on the cylinder was measured and an LDV system was employed to monitor521

the fluid velocity at a fixed location (0.146 m upstream of the centre of the522

cylinder and 0.026 m off the floor of the tank) indicated as a red point in523

Fig. 6. The computational domain is discretised with a 160×61×60 uniform524

mesh, where ∆x = ∆y = ∆z = 0.01 m, the same as used in [70].525

Fig. 7 presents snapshots of the air-water interface as the flow interacts526

with the square cylinder. Initially, the water column collapses due to gravity527

and a two-dimensional bore is generated. When the bore hits the cylinder,528

three-dimensional flow is observed. Part of the bore reflects back in front of529
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Figure 7: Snapshots of the air-water interface at selected instants in time
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Figure 8: Time-history of horizontal velocity (left) and force acting on the square cylinder

(right). The location where velocities are measured is indicated as red point in Fig. 6).

the cylinder while other parts wrap around the cylinder. The separated two530

bores merge together in the wake zone downstream and start to climb on the531

end wall. After that, the main bore collapses and is reflected back from the532

end wall to catch up with the reflected bore from the cylinder, generating533

splash-up and air entrainment. These snapshots qualitatively agree well with534

the simulation results in [70].535

The fluid velocity and net force acting on the cylinder as a function of536

time are plotted in Fig. 8. Overall, the numerical results (solid lines) agree537

well with the experimental data (symbol), especially peak value of horizontal538

velocity and phase of the force acting on the square cylinder, which demon-539

strates the accuracy of the Cartesian cut-cell method in the two-phase flow540

model.541

4.3. Moving circular cylinder in a quiescent fluid542

After validating the two-phase flow model interacting with a fixed body,543

moving body problems are considered with the goal to validate the moving544
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body algorithm with the cut-cell method. First, a single-phase flow problem545

of a moving circular cylinder in a quiescent fluid is studied. At each time546

step the solid volume (Eq. (7)) and hence the cut-cells require updating as547

the cylinder changes its position whilst fluid movement is computed in the548

entire domain. The computational domain is [−10D, 30D] × [−20D, 20D]549

with a uniform mesh of 1280 × 1280. The cylinder is initially positioned at550

x = 20D and suddenly set into motion with a constant velocity of −Umov551

moving to the left until x = 0D. Zero velocity fluid is set for the initial552

condition and the no-slip boundary condition is applied at all boundaries. A553

Reynolds number of Re = UmovD/ν = 40 is considered. A constant time step554

with CFL number of 1.0 is used in the simulation in order to demonstrate the555

capability of the implicit time integration treatment for the cut-cell method.556

Fig. 9 shows snapshots of vorticity contours around the impulsively mov-557

ing circular cylinder at non-dimensional time of 1, 5, 10, and 20. A symmetric558

vortex pair develops during the movement of the cylinder. The flow reaches559

a steady state and no vortex shedding occurs at this Reynolds number, in560

analogy to many other studies of constant flow past a stationary cylinder at561

Re = 40. The drag coefficient CD as a function of time is plotted in Fig. 10562

and the value obtained at the final stage is compared with other experimen-563

tal and computational studies for fixed and moving cylinders in Table 2. It564

is worth mentioning that although we use a large CFL number (1.0) and565

the non-dimensional computational time is shorter than the case for fixed566

cylinder, our simulation compares well with other studies.567
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Figure 9: Snapshots of contours of the vorticity around a moving circular cylinder for

Re = 40 at non-dimensional times of 1, 5, 10, and 20.

37



0 5 10 15 20

 t*U
mov

/D

0

1

2

3

4
C

D

Figure 10: Drag coefficient of a circular cylinder moving through a quiescent fluid at

Re = 40.

Table 2: Comparison between the experiment, other simulations, and the present study

for a cylinder at Re = 40.

Study method CD

Tritton [88] experiment 1.59

Fornberg [89] fixed cylinder 1.50

Marella et al. [90] fixed cylinder 1.52

Shirgaonkar et al. [91] moving cylinder 1.52

Wu et al. [92] moving cylinder 1.554

Present moving cylinder 1.58
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Figure 11: Computational setup for the 2D dambreak flow over a wet bed (not to scale).

The gate is moving with a constant vertical velocity Ugate = 1.5 m/s.

4.4. Dambreak over a wet bed with a moving gate568

After successful validation of the moving body algorithm using the cut-569

cell method for single-phase flows, moving body problems for two-phase flows570

are considered. The dambreak flow over a wet bed with a moving lock gate571

is studied using experimental data reported in [93]. In the experiment, the572

tank has two parts with a lock gate separating a channel and a lock as shown573

in Fig. 11. The length of the channel downstream is 9.55 m covered by 0.018574

m deep water and the length of the lock upstream is 0.38 m and its initial575

height of water is 0.15 m. In the experiment, the gate separating the lock576

and the channel was moved upward with an approximate constant velocity577

of Ugate = 1.5 m/s. The computational domain of dimensions 9.93 m × 0.3578

m is discretised by a 800× 80 non-uniform mesh in the streamwise, vertical579

directions, respectively. The fine mesh of ∆x = ∆y = 0.0025 m is deployed580

near the gate at the lower part of the computational domain.581

The calculated progression of the dambreak flow over a wet bed is vi-582

sualised by the blue contours indicating the water face in the right column583

of Fig. 12. Also depicted in the left column are photographs of the experi-584
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ment of [93] at the same instants in time as the numerical simulation. Due585

to gravity, the water in the lock (left of the gate) pushes the still water586

on the wet bed away after removal of the gate. The simulation produces a587

“mushroom”-shaped jet initially, which agrees well with the experiment. The588

direct simulation of the moving gate plays an important role here, because589

some fluid is dragged upwards with the gate and the initial release of the590

water is restricted and somewhat delayed. Later, the “mushroom” jet devel-591

ops into a plunging jet, touching down on the water surface and generating592

a secondary jet with an air cavity underneath; simultaneously the remains of593

the“mushroom” jet impinge on the water surface on the upstream side of the594

front with air entrainment during the breaking process. Overall, a good qual-595

itative match is obtained between the simulation and experiment in terms of596

behaviour of the fluid, capturing well the breaking waves, splash-up and air597

entrainment.598

4.5. Water exit and entry of a circular cylinder599

Water exit and entry of solid objects have both theoretical and prac-600

tical applications, especially in ocean and offshore engineering. Such fluid-601

structure interaction flows have been studied numerically using the boundary602

element method (BEM) [94], 2D single-phase free surface models with par-603

tial cell treatment [32] and 3D two-phase flow models with the immersed604

boundary method [33]. The same parameters as those used in [32] are cho-605

sen here: the radius of a circular cylinder is R = 1.0 m and its centre is606

initially located at a distance d = 1.25 m below the still water level. The607

gravitational acceleration is g = 1.0 m/s2 and the upward velocity of the608

cylinder is Ucylinder = 0.39 m/s. As the focus is on the impact region, a609
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(a) experiment (b) simulation

Figure 12: Visualised dambreak flow as observed in the experiment [93] (a) and as numer-

ically predicted (b). The gate is simulated with a constant upward velocity Ugate = 1.5

m/s.
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smaller computational domain 20R × 10R is used and it is discretised by a610

uniform mesh 400 × 200 in the streamwise and vertical directions, respec-611

tively. The mesh resolution ∆x = ∆y = 0.05R is the same as in [32, 33] for612

the fine mesh region in a non-uniform grid. The simulation is carried out613

until the non-dimensional time T = |Ucylindert/D| = 3.614

Fig. 13 shows snapshots of the air-water interface together with the cylin-615

der for the water exit problem. As the cylinder reaches T = 0.2, the air-water616

interface deforms in the region above the cylinder. At T = 0.4 and T = 0.6,617

more significant water surface deformation is obeserved taking the shape of618

the cylinder in its vicinity. At these two time instants, the predicted results619

compare well with the BEM results by [94] (red symbols). At T = 0.8 and620

T = 1.0, a thin layer of fluid is found on the surface of the cylinder and621

as displaced fluid flows back into the water body a depression of the water622

surface is observed on either side of the cylinder. The thin layer of fluid623

around the cylinder eventually dries up (T = 2.0) before the cylinder exists624

the water completely (T = 3.0). The present results are similar to those625

obtained by the single-phase flow model of [32] and very close to those given626

by the two-phase flow model of [33]. The thin water film over the cylinder627

appears better resolved with two-phase flow models.628

For the water entry problem, the overall setup is the same as the water629

exist problem except that the cylinder starts at a distance d = 1.25 m above630

the still water level and moves with a constant downward velocity Ucylinder =631

−1.0 m/s.632

Fig. 14 shows profiles of the air-water interface at selected instants in633

time for water entry of a moving cylinder. Two oblique jets are generated634
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Figure 13: Snapshots of the air-water interface profile (blue line) for water exit of a

horizontal cylinder. Also plotted are the BEM results of [94] in (c) and (d).
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during the impact and the triple point between air-water-solid moves along635

the cylinder surface. There is a water surface depression when the cylinder636

moves further downward. After the cylinder is completely submerged, the637

elevated areas of water meet in the centre above the cylinder and generate a638

small upward jet. The simulation results agree with those given in [32] albeit639

a slightly different jet shape occurs, probably due to the different approach640

used here.641

4.6. Water wave generation by a 3D sliding wedge642

The water waves generated by a 3D sliding wedge has been studied both643

experimentally and numerically in [95]. In the experiments, the initial po-644

sition of the wedge varied from subaerial to submerged. The subaerial case645

has been studied in [33, 95] and here the focus is on the submerged wedge646

case. The setup is the same as in the experiment and details can be found in647

[95]. The computational domain of 6.6 m × 3.7 m × 3.3 m is discretised by648

a 220 × 160 × 220 uniform Cartesian grid in the streamwise, spanwise, and649

vertical directions, respectively, with its origin being setup at the shoreline650

along the central plane. The motion of the sliding wedge in the simulation651

is prescribed and is the same as in the experiment.652

Fig. 15 shows snapshot of the air-water interface profile together with653

the location of the wedge as it moves down the slope. At the beginning, the654

submerged wedge induces downward velocity above the wedge, which causes655

a depressed air-water interface above the wedge and push the water surface656

upward in front of the wedge. A small positive wave and a large negative657

wave are generated as the wedge reaches its full speed. A positive wave is658

also generated behind the wedge when it moves down. It can be seen that659
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Figure 14: Profiles of the air-water interface for water entry of a horizontal cylinder at

slected instants in time.
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three-dimensional waves are generated due to the 3D wedge, propagating660

laterally offshore. In the shoreline region, because of the slide movement, the661

runup height has negative values at the beginning and a rebounding wave662

causes the shoreline to rise up later and propagate outward.663

In order to quantitatively assess the simulation’s accuracy, the time his-664

tory of the computed water surface elevation and the wave gauge data of665

the experiment are plotted in Fig. 16 for comparison. The two wave gauges666

(one in front of the wedge’s initial location and the other is at the side of the667

wedge’s initial location shown in Fig. 15). The overall agreement between668

simulation and measurement is quite convincing, especially at the beginning669

of the sliding process.670

5. Conclusions671

In this paper, a Cartesian cut-cell/volume-of-fluid method has been de-672

veloped for the computation of 3D two-phase flows with moving bodies. The673

method is based on the 3D two-phase flow model over fixed complex topog-674

raphy of [96] to which a moving body algorithm with the source function675

approach [69, 70] has been added. The method of large-eddy simulation has676

been adopted, i.e. it is solves the space filtered Navier–Stokes equations and677

employs the dynamic Smagorinsky subgrid-scale model to compute the un-678

resolved scales of turbulence. The finite volume method has been adopted679

to discretise spatial derivatives with the PISO algorithm for the pressure-680

velocity coupling, and a backward finite difference discretisation to integrate681

the equations in time, leading to a fully implicit scheme for the govern-682

ing equations. The air-water interface is captured using the high resolution683
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Figure 15: Air-water interface at selected instants in time. The wedge’s initial position is

0.1 m below the mean water level. The time interval between plots is 0.3 s. The two wave

gauges are located at (x, z) = (1.83, 0) and (x, z) = (1.2446, 0.635) shown as vertical lines

on the top left figure.
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Figure 16: Computed and measured time history of the water surface elevation at two

wave gauges. The location of wave gauges (a) and (b) are at (x, z) = (1.83, 0) and (x, z) =

(1.2446, 0.635) relative to the centre of initial shoreline.

VOF scheme CICSAM, and detailed implementation of the Cartesian cut-cell684

method has been discussed for fixed and moving bodies.685

In order to validate this method, several benchmark cases with different686

features have been studied. A 3D collapse of a water column has been com-687

puted first. The position of the water front and height of the remaining water688

surface have been compared with the experimental data and good agreement689

between numerical and experimental data has been obtained. Thereafter,690

3D dambreak flow over a vertical square cylinder has been calculated, where691

quantitative comparisons for the velocity and force on the cylinder have been692

made between numerical simulations and corresponding experimental data.693

The occurence of plunging jet impact and subsequent splash-up have been694

captured well in the numerical simulation. Then a moving circular cylinder in695

a quiescent fluid has been studied with the aim to validate the moving body696
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represented by the cut-cell method. Next, a 2D dambreak flow over a wet697

bed with a moving gate and the water exit and entry of a cylinder have been698

carried out. The air-water interface profiles have been compared with exper-699

imental data and other numerical results, in which good agreement has been700

obtained. Finally, a 3D water wave generation due to a submerged sliding701

wedge has been simulated to show the capability of the present 3D two-702

phase flow model with moving bodies. Snapshots of the air-water interface703

have been presented and computed water surface profiles showed convincing704

agreement with experimental data.705

This study demonstrates the capability of the present Cartesian cut-706

cell/volume-of-fluid model to predict 2D and 3D two-phase flow with moving707

bodies. The model can act as a complementary approach to experimental708

investigations to gain further insight into the kinematics and dynamics of709

three-dimensional wave-structure interaction problems. Future research will710

focus on the fully coupled fluid-structure interaction and also the adaptive711

mesh method in order to reduce the computational effort.712
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