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Abstract 

The exceptional eggshell assemblage from Çatalhöyük was studied using an integrated approach 

combining morphology (by optical and scanning electron microscopy) and palaeoproteomics (by 

mass spectrometry). We provide taxonomic classification for 90 fragments, of which only 11 

remain undetermined. The striking predominance of Anseriformes (probably including greylag 

geese, as well as ducks and swans) in all types of deposits examined, including middens and burial 

fills, suggests that these eggs were exploited as food and, at the same time, had a special 

significance for the inhabitants of the site. We detected the presence of crane eggshell in contexts 

associated with both the world of the living and the world of the dead (consistent with the well-

known importance of this bird at Çatalhöyük), as well as the possible but infrequent occurrence of 

bustards and herons. Overall, we suggest that eggshell analysis, together with osteological data 

and the archaeological context, can provide the basis for a nuanced understanding of the 

relationship between humans and birds in the past.  
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1. Introduction 

The role of birds in the lives of human beings can vary widely: from food resource including meat 

and eggs (but not necessarily both at the same time and in all cultures), to source of ornamental 

“goods” (feathers, talons; e.g. Romandini et al., 2014; Blasco et al., 2019; Finlayson et al., 2019) 

or even objects of cult (Russell and McGowan, 2003; Russell, 2019a). Birds also have a parallel 

role beyond death: ritual food offerings, symbols of rebirth, active subjects in funerary rituals (for 

example, defleshing by vultures; Pilloud et al., 2016). In some instances, birds may be thought of 

as the link between the world of the living and that of the dead (e.g. Best and Mulville, 2017). 

Active behaviours of humans towards birds include observing, fearing, worshipping, catching, 

managing in captivity, taming, mimicking, domesticating, feeding, killing, butchering, selecting 

any desired anatomical parts, and disposing of the remains (Serjeantson, 2009). The relationship 

between birds and their human counterparts can vary dramatically, not only by species, but also 

by the lifestage of the bird. 

 

The study of archaeological avian bone assemblages is crucial in order to unpick these different 

strands. For example, the bird bones at Çatalhöyük suggest that cranes had ritual significance, but 

also were a food item (Best et al., in prep; Russell 2019a, 2019b). Complementary information on 

bird-human relationships can also be obtained through the analysis of eggshell assemblages. 

Fragments of avian eggshell can be studied and identified morphologically (Keepax, 1981; Sidell, 

1993) or using mass-spectrometry-based proteomic analyses (Stewart et al., 2013; Presslee et al., 

2017). The extent of resorption of the mammillae can potentially provide information on 

incubation stage and hatching (Chien et al., 2009), although taphonomy plays an important and 

yet poorly understood role (Sichert et al., 2019). For example, the ritual role of (possibly fertilised) 

chicken eggshell has been recently highlighted in conversion period (12th–13th century AD) graves 

from Kukruse in Estonia (Jonuks et al., 2018), as well as Late Roman burials from Ober-Olm 

(Sichert et al., 2019). Lack of interactions between humans and avifauna can also be inferred from 

the eggshell record; e.g. the excellent preservation of proteins in Accipitridae eggshell at the 

Palaeolithic cave of El Mirón (northern Spain) allowed us to infer that bearded vultures and 

humans probably did not occupy the site at the same time (Demarchi et al., 2019).   

 



The largest-known Neolithic proto-city of Çatalhöyük (Figure 1) in modern-day Turkey (7100–

6000 cal BC), is an exceptional site in its own right, but also because the relatively small (Mulville, 

2014) assemblage of bird bones has been thoroughly studied and recently published (Russell and 

McGowan, 2003; Russell, 2019a, 2019b). Russell’s work highlights a striking pattern whereby 

birds at Çatalhöyük were obviously valued for their feathers, clearly had a symbolic role (notably 

cranes, vultures, crows, and spoonbills), but were not necessarily an important food resource. This 

is in contrast to other sites in the same region (Baird et al., 2018), despite the extensive presence 

of marshes and wetlands around the site (Charles et al., 2000).  

 

Extensive recovery by flotation and hand-collection during Ian Hodder’s excavations at the site 

has resulted in an assemblage of unparalleled size and preservation; over 940 units produced 

eggshell, equivalent to at least 5kg of material (Sidell and Scudder, 2004; Mulville, 2014). 

Preliminary analysis on a subsample of eggshells (n fragments = 40) in 2015 showed that the 

assemblage was dominated by Anseriformes species, probably more than one on the basis of the 

surface morphologies (Best et al., 2015). Here we analyse a further sample (n fragments = 50) of 

eggshells, selected on the basis of their morphology and archaeological context, in order to have a 

representative sample from midden layers, burial infills, floors and activity areas. We also 

reconsider the 2015 results in response to updated analysis techniques. By combining the results 

from the 2015 and 2019 studies we aim to:  

 

1) Identify and characterise the 90 fragments of eggshells from the site, using a 

combination of morphological observations (by optical and scanning electron microscopy) 

and protein analyses (MALDI-MS and LC-MS/MS)  

2) Highlight any patterns in avian eggshell representation in living areas (floors, 

middens) vs areas pertaining to the world of the dead (burial fills) 

3) Compare the information obtained by analysing eggshell with that obtained by 

osteological studies of the Çatalhöyük material.  

 

 

Approximate location of Figure 1 



2. Materials and methods 

2.1 Samples analysed 

Permission was obtained to export eggshell for analysis in 2014 and in 2018. The material was 

selected to encompass the temporal breadth of the site, and to represent different areas of the 

settlement. A first batch of 40 samples was selected randomly and analysed in 2015 (hereafter 

“2015 batch”), in order to assess which birds dominated the eggshell assemblage, and characterise 

the protein preservation. A further 50 samples were deliberately selected in order to obtain 

identification of morphologically distinct eggshell fragments (hereafter “2019 batch”). Table 1 

shows the details of the 90 samples analysed, including the archaeological unit, the Hodder level, 

the deposit categories inferred from the Çatalhöyük project database (midden, floors, burial fill, 

fill, activity and midden activity). We also report the identification obtained by morphological 

observation and protein analysis, the inference derived from the combination of the two methods, 

any signal relative to developmental stage and/or taphonomy, and the eggshell’s thickness.   

 

2.2 Microscopy 

All specimens were examined by optical microscopy and Keyence Digital Microscope (VHX 5000 

series). Where detailed morphological features of the mammillae were present (and were not too 

damaged by taphonomy or chick development) SEM analysis was employed. For all specimens, 

measurements were taken of the mean number of pores and mammillae per mm², the ratio of the 

mammillae to palisade layer, and eggshell thickness, following Sidell (1993) and Keepax (1981). 

The eggshell thickness is averaged from 10 measurements for each specimen and considered a 

useful but rough indicator for establishing size groupings, since Maurer and colleagues (2012) 

have demonstrated that thickness can vary significantly within an individual egg. Where SEM 

analysis took place, the internal surface of each sample was examined and described following set 

criteria to aid taxonomic identification, including: 

1. The regularity, size, shape and spacing of the mammillae; 

2. The depth of fissuring and the sutures form and depth; 

3. Fiber trails and struts; 

Examination of the internal surface was conducted at 300x, 800x and 1000x magnification to allow 

further comparison with reference materials. 

 



Changes to the surface of the mammillae were also recorded for all specimens (Table 1). This can 

be caused by both chick development (resorption caused by the chick mobilising calcium from the 

eggshell), or by taphonomic processes (such as acidic corrosion) - these markers can be very 

difficult to separate morphologically and terminology for recording this is often used 

interchangeably. However, no evidence for damage indicates that the egg was freshly laid or 

infertile. Meanwhile, changes in the mammillae surface may either indicate stage of chick 

development/hatching (Beacham and Durand, 2007) or inform on taphonomic processes in the 

burial environment (Sichert et al., 2019). In this paper we used “no resorption” to indicate a lack 

of developmental activity, and we use “corrosion” where developmental and taphonomic signals 

cannot be conclusively separated. Corrosion is described by its regularity/irregularity, and intensity 

of mammillae destruction (minimal, moderate, high, very high). Where corrosion is very regular, 

it is more likely to result from chick development, whereas patchy, irregular corrosion is often 

taphonomic in nature (Morel 1990; Sichert et al., 2019).  
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CH15_1 18174 South.

P 

Midden Anserifor

mes 

Goose Anseriformes - 

goose 

Moderate, 

uniform 

corrosion 

0.55 

CH15_2 18174 South.

P 

Midden Anserifor

mes-like 

Unknown, 

size 

indicates 

swan 

cf. swan Moderate, 

uniform 

corrosion 

0.74 

CH15_3 18174 South.

P 

Midden Anserifor

mes 

cf. goose Anseriformes - 

cf. goose 

Moderate, 

uniform 

corrosion 

0.63 

CH15_4 18174 South.

P 

Midden Small Unknown, 

possibly 

heron 

Unknown - 

heron? 

Moderate, 

uniform 

corrosion 

0.25 

CH15_5 18174 South.

P 

Midden Anserifor

mes 

Goose Anseriformes - 

goose 

Moderate, 

uniform 

corrosion 

0.6 

CH15_6 19564 North.G Midden Anserifor

mes-like 

Unknown, 

possibly 

swan 

cf. large 

Anseriformes 

No resorption 0.69 



CH15_7 19564 North.G Midden Anserifor

mes-like 

cf. goose Anseriformes - 

cf. goose 

No resorption 0.63 

CH15_8 19564 North.G Midden Anserifor

mes 

Goose Anseriformes - 

goose 

No resorption 0.57 

CH15_9 14012 South.

Q 

Midden Anserifor

mes 

Goose or 

swan? 

Anseriformes - 

large 

Patchy, very 

minimal 

corrosion 

0.68 

CH15_1

0 

19564 North.G Midden Anserifor

mes-like 

Unknown, 

size 

indicates 

swan 

cf. swan No resorption 0.71 

CH15_1

1 

19564 North.G Midden Anserifor

mes 

Goose Anseriformes - 

goose 

No resorption 0.58 

CH15_1

2 

13191 4040-

Post 

Chalch

olithic 

Burial 

fill 

Anserifor

mes 

cf. duck Anseriformes - 

cf. duck 

High, uniform 

corrosion 

0.38 

CH15_1

3 

12654 4040.I Midden Anserifor

mes 

Goose Anseriformes - 

goose 

No resorption 0.56 

CH15_1

4 

19380 South.

M 

Fill Anserifor

mes 

Goose Anseriformes - 

goose 

No resorption 0.61 

CH15_1

5 

14126 4040.I Midden Anserifor

mes 

Goose Anseriformes - 

goose 

No resorption 0.62 

CH15_1

6 

14126 4040.I Midden Anserifor

mes 

Goose/swan Anseriformes - 

large 

No resorption 0.67 

CH15_1

7 

14135 South.

Q 

Activity Anserifor

mes 

Goose Anseriformes - 

goose 

No resorption 0.64 

CH15_1

8 

13182 4040-

Post 

Chalch

olithic 

Burial 

fill 

Anserifor

mes 

Goose Anseriformes - 

goose 

Patchy, 

minimal 

corrosion 

0.63 

CH15_1

9 

13182 4040-

Post 

Chalch

olithic 

Burial 

fill 

Anserifor

mes 

Goose Anseriformes - 

goose 

No resorption 0.55 

CH15_2

0 

13182 4040-

Post 

Chalch

olithic 

Burial 

fill 

Anserifor

mes 

cf. goose Anseriformes - 

cf. goose 

Moderate, 

uniform 

corrosion 

0.57 

CH15_2

1 

11369 South.

Q 

Midden Anserifor

mes 

cf. goose Anseriformes - 

cf. goose 

Moderate, 

mostly uniform 

corrosion 

0.59 

CH15_2

2 

19114 South.

P 

Midden Anserifor

mes 

Goose Anseriformes - 

goose 

No resorption 0.63 

CH15_2

3 

19114 South.

P 

Midden Undeterm

ined, 

poss. 

Accipitrifo

rmes 

Unknown, 

possibly 

vulture 

Undetermined No resorption 0.6 

CH15_2

4 

13103 4040.I Midden Anserifor

mes 

cf. goose? Anseriformes - 

large 

Very high, 

uniform 

corrosion 

0.61 



CH15_2

5 

13103 4040.I Midden Undeterm

ined 

Unknown 

not same as 

15_4. 

Undetermined Very high, 

uniform 

corrosion 

0.5 

CH15_2

6 

13151 4040.I Activity Low-

quality 

spectrum 

Unknown, 

possibly 

duck? 

Unknown - 

duck? 

Some physical 

damage, no 

resorption 

0.29 

CH15_2

7 

13151 4040.I Activity Low-

quality 

spectrum 

cf. goose Anseriformes - 

cf. goose 

No resorption 0.56 

CH15_2

8 

19245 South.

O 

Fill Anserifor

mes 

Goose Anseriformes - 

goose 

Patchy, very 

minimal 

corrosion 

0.66 

CH15_2

9 

19245 South.

O 

Fill Low-

quality 

spectrum 

Possibly 

heron 

Unknown - 

heron? 

Patchy, 

minimal 

corrosion 

0.25 

CH15_3

0 

12508 South.

P 

Midden Anserifor

mes 

Goose Anseriformes - 

goose 

No resorption 0.63 

CH15_3

1 

19116 South.

P 

Midden Anserifor

mes 

cf. goose Anseriformes - 

cf. goose 

Patchy, 

moderate 

corrosion 

0.55 

CH15_3

2 

12654 4040.I Midden Anserifor

mes 

Goose Anseriformes - 

goose 

No resorption 0.68 

CH15_3

3 

12654 4040.I Midden Anserifor

mes 

Goose Anseriformes - 

goose 

No resorption 0.64 

CH15_3

4 

30625 South.

H 

Midden Large Probable 

crane 

Gruiformes - 

large cf. crane 

No resorption 0.6 

CH15_3

5 

18192 South.

P 

Midden Anserifor

mes 

cf. goose Anseriformes - 

cf. goose 

Moderate, 

uniform 

corrosion 

0.54 

CH15_3

6 

18192 South.

P 

Midden Anserifor

mes 

cf. goose Anseriformes - 

cf. goose 

Moderate, 

uniform 

corrosion 

0.61 

CH15_3

7 

18192 South.

P 

Midden Small Possible 

heron 

Unknown - 

heron? 

Patchy, very 

minimal 

corrosion 

0.23 

CH15_3

8 

11367 South.

Q 

Midden Anserifor

mes 

cf. goose Anseriformes - 

cf. goose 

High, uniform 

corrosion 

0.58 

CH15_3

9 

11367 South.

Q 

Midden Low-

quality 

spectrum 

cf. goose cf. goose Slightly 

patchy, 

moderate 

corrosion 

0.57 

CH15_4

0 

11367 South.

Q 

Midden Anserifor

mes 

cf. goose Anseriformes - 

cf. goose 

High, uniform 

corrosion 

0.53 

CH19_1 22641 North.G Burial 

fill 

Low-

quality 

spectrum 

cf. goose cf. goose Burnt. No 

resorption 

0.67 

CH19_2 22641 North.G Burial 

fill 

Low-

quality 

spectrum 

Possible 

duck? 

Possible 

heron? 

Undetermined Moderate, 

uniform 

corrosion 

0.28 

CH19_3 22641 North.G Burial 

fill 

Low-

quality 

spectrum 

Goose Anseriformes - 

goose 

No resorption 0.55 



CH19_4 22351 South.

K 

Midden Large Very 

probable 

crane 

Gruiformes - 

large cf. crane 

No resorption 0.54 

CH19_5 22351 South.

K 

Midden Large Very 

probable 

crane 

Gruiformes - 

large cf. crane 

No resorption 0.51 

CH19_6 22351 South.

K 

Midden Undeterm

ined 

cf. goose? Undetermined patchy 

minimal 

corrosion 

0.6 

CH19_7 32106 North.?

H 

Midden Anserifor

mes 

Goose Anseriformes - 

goose 

Minimal, 

uniform 

corrosion 

0.6 

CH19_8 22676 North.G Burial 

fill 

Low-

quality 

spectrum 

Goose Anseriformes - 

goose 

No resorption 0.54 

CH19_9 22676 North.G Burial 

fill 

Low-

quality 

spectrum 

Possibly 

swan 

cf. swan Burnt, physical 

damage, but 

no resorption 

0.73 

CH19_1

0 

32692 ,South.

?I,Sout

h.?H, 

Midden Anserifor

mes 

Goose Anseriformes - 

goose 

No resorption 0.61 

CH19_1

1 

32692 ,South.

?I,Sout

h.?H, 

Midden Anserifor

mes 

Goose Anseriformes - 

goose 

No resorption 0.62 

CH19_1

2 

32692 ,South.

?I,Sout

h.?H, 

Midden Low-

quality 

spectrum 

cf. goose cf. goose Burnt. No 

resorption 

0.6 

CH19_1

3 

32692 ,South.

?I,Sout

h.?H, 

Midden Undeterm

ined/medi

um? 

Unknown. 

Possible 

bustard? 

Unknown - 

bustard? 

No resorption 0.41 

CH19_1

4 

23634 North.F Midden Anserifor

mes 

Goose Anseriformes - 

goose 

No resorption 0.66 

CH19_1

5 

32145 North.G Midden Anserifor

mes 

cf. duck Anseriformes - 

duck 

Very high, 

uniform 

corrosion 

0.3 

CH19_1

6 

32145 North.G Midden Anserifor

mes 

Goose Anseriformes - 

goose 

Patchy, very 

minimal 

corrosion 

0.58 

CH19_1

7 

32128 North.G Midden Anserifor

mes 

cf. goose Anseriformes - 

goose 

High, uniform 

corrosion 

0.62 

CH19_1

8 

32128 North.G Midden Large Unknown. Gruiformes Minimal, 

uniform 

corrosion 

0.4 

CH19_1

9 

32128 North.G Midden Anserifor

mes 

cf. duck Anseriformes - 

duck 

Unclear. 

Probably 

minimal 

corrosion 

0.31 

CH19_2

0 

21814 South.

K 

Burial 

fill 

Anserifor

mes 

Duck Anseriformes - 

duck 

No resorption 0.3 

CH19_2

1 

21814 South.

K 

Burial 

fill 

Medium Possible 

bustard? 

Unknown - 

bustard? 

No resorption 0.49 



CH19_2

2 

21814 South.

K 

Burial 

fill 

Large Very 

probable 

crane 

Gruiformes - 

large cf. crane 

No resorption 0.63 

CH19_2

3 

21814 South.

K 

Burial 

fill 

Anserifor

mes 

Goose Anseriformes - 

goose 

No resorption 0.6 

CH19_2

4 

21814 South.

K 

Burial 

fill 

Anserifor

mes 

Duck Anseriformes - 

duck 

No resorption 0.33 

CH19_2

5 

32107 North.?

H 

Midden 

Activity 

Anserifor

mes 

cf. duck Anseriformes - 

duck 

High, uniform 

corrosion 

0.31 

CH19_2

6 

32107 North.?

H 

Midden 

Activity 

Anserifor

mes 

Goose Anseriformes - 

goose 

No resorption 0.58 

CH19_2

7 

32107 North.?

H 

Midden 

Activity 

Low-

quality 

spectrum 

Unknown, 

possibly 

goose? 

Undetermined Patchy, 

damaged, high 

corrosion 

0.55 

CH19_2

8 

32106 North.?

H 

Midden Anserifor

mes 

cf. goose Anseriformes - 

large 

Moderate, 

uniform 

corrosion 

0.56 

CH19_2

9 

32106 North.?

H 

Midden Anserifor

mes 

Unknown, 

probably 

goose? 

Anseriformes Very high, 

uniform 

corrosion 

0.55 

CH19_3

0 

32106 North.?

H 

Midden Small Unknown Undetermined High, uniform 

corrosion 

0.28 

CH19_3

1 

32764 North.F Floor Low-

quality 

spectrum 

Unknown. Undetermined Unclear. 

Damaged 

0.65 

CH19_3

2 

32764 North.F Floor Low-

quality 

spectrum 

cf. heron Undetermined No resorption 0.26 

CH19_3

3 

32123 North.G Floor Anserifor

mes-like 

cf. duck Anseriformes - 

duck 

Patchy, 

moderate 

resorption 

0.28 

CH19_3

4 

32123 North.G Floor Low-

quality 

spectrum 

Unknown Undetermined Unclear 6.5 

CH19_3

5 

32123 North.G Floor Anserifor

mes 

Unknown, 

possibly 

goose? 

Anseriformes Damaged. cf. 

very high 

corrosion 

0.48 

CH19_3

6 

22512 South.

K 

Burial 

fill 

Large Very 

probable 

crane 

Gruiformes - 

large cf. crane 

No resorption 0.54 

CH19_3

7 

22512 South.

K 

Burial 

fill 

Medium Unknown. 

Possible 

bustard? 

Unknown - 

bustard? 

Unknown 0.48 

CH19_3

8 

22512 South.

K 

Burial 

fill 

Small Possible 

heron 

Unknown - 

heron? 

No resorption 0.28 

CH19_3

9 

22512 South.

K 

Burial 

fill 

Anserifor

mes 

Goose Anseriformes No resorption 0.55 

CH19_4

0 

21661 North.G Midden Anserifor

mes 

Duck Anseriformes No resorption 0.25 

CH19_4

1 

32764 North.F Floor Low-

quality 

spectrum 

Unknown - 

possible 

coot 

Undetermined No resorption 0.3 



CH19_4

2 

32764 North.F Floor Large Very 

probable 

crane 

Gruiformes - 

large cf. crane 

No resorption 0.51 

CH19_4

3 

32111 North.?

H 

Midden 

Activity 

Anserifor

mes-like 

cf. goose Anseriformes Moderate, 

uniform 

corrosion 

0.62 

CH19_4

4 

23203 South.

K, 

South.?

I 

Floor Medium Unknown. 

Similar to 

Ch19_37 

Unknown - 

bustard? 

No resorption 0.51 

CH19_4

5 

32405 South.

K 

Floor Large Very 

probable 

crane 

Gruiformes - 

large cf. crane 

Patchy, very 

minimal 

corrosion 

0.54 

CH19_4

6 

32405 South.

K 

Floor Large Possible 

crane 

Gruiformes Patchy, very 

minimal 

corrosion 

0.47 

CH19_4

7 

32405 South.

K 

Floor Low-

quality 

spectrum 

Possible 

cormorant?? 

Undetermined No resorption 0.45 

CH19_4

8 

32114 North.G Midden Anserifor

mes 

cf. goose Anseriformes - 

cf. goose 

Moderate, 

uniform 

corrosion 

0.52 

CH19_4

9 

32114 North.G Midden Anserifor

mes 

Duck Anseriformes - 

duck 

Patchy, very 

minimal 

corrosion 

0.37 

CH19_5

0 

32114 North.G Midden Anserifor

mes 

cf. goose Anseriformes - 

cf. goose 

High, uniform 

corrosion 

0.58 

 

Table 1: Summary of the samples analysed in this study, their context and the identification 

provided by paleoproteomics, microscopy and the combination of the two; changes in the 

surface of the mammillae (e.g. no resorption, corrosion); taphonomy (e.g. burning), and the 

eggshell’s thickness. 

 

2.3 Palaeoproteomics 

Samples for ancient protein analyses were prepared according to published protocols (Presslee et 

al., 2017). In brief, eggshell fragments were weighed (5-40 mg), powdered using clean micro-

pestles directly in eppendorf tubes, exposed to bleach (NaOCl, 12% w/v for 72 hours) in order to 

isolate the intracrystalline fraction (Stewart et al., 2013; Crisp et al., 2013; Demarchi et al., 2016; 

Presslee et al., 2017). Bleached powders were demineralised in cold 0.6M hydrochloridric acid 

(HCl), the solutions neutralised, lyophilised and resuspended in ammonium bicarbonate (50 mM). 

Alkylation / reduction of disulphide bonds was carried out using dithiothreitol (65°C, 60 min; 

Sigma Aldrich) and iodoacetamide (room temperature, 45 min; Sigma Aldrich). After overnight 



digestion at 37°C with trypsin (0.5 μg/μL), samples were acidified and purified using C18 solid-

phase extraction (Pierce zip-tip) according to the manufacturer’s instructions. Eluted peptides were 

spotted directly on a MALDI plate (see below) and the remaining volume evaporated to dryness 

using a centrifugal evaporator before LC-MS/MS analyses. 

 

All samples were analysed in triplicate by MALDI-MS (Bruker Ultraflex III MALDI-ToF mass 

spectrometer). 1 µl of sample was spotted onto an MTP384 Bruker ground steel MALDI target 

plate and 1 µl of α-cyano-4-hydroxycinnamic acid matrix solution (1% in 50% Acetonitrile/0.1% 

Trifluoroacetic acid (v/v/v)) was added and mixed. Samples were analysed using the following 

parameter settings: ion source, 25 kV; ion source, 21.4 kV; lens voltage, 9 kV; laser intensity 40–

55%; mass range 800–4000 Da. Peptide masses below 650 Da were suppressed. Each sample was 

externally calibrated against an adjacent spot containing a mixture of six peptides (des-Arg1 

Bradykin m/z = 904.681, Angiotensin I m/z = 1295.685, Glu1-Fibrinopeptide B m/z = 1750.677, 

ACTH (1–17 clip) m/z = 2093.086, ACTH (18–39 clip) m/z = 2465.198 and ACTH (7–38 clip) 

m/z = 3657.929). Data analysis was performed using the open-source software mMass (Strohalm 

et al., 2010): three replicates were averaged for each sample, then peaks with signal-to-noise ratios 

> 6 and height > 62% were considered and matched to a list of taxon-specific m/z values (Presslee 

et al., 2017). All spectra are reported in Supplementary Information 2.  

 

Five samples (CH15_7, CH15_12, CH15_34, CH19_21, CH19_38) were also analysed by LC-

MS/MS as described in Fischer and Kessler (2015) and following the guidelines for 

palaeoproteomics detailed in Demarchi et al. (2016) and Hendy et al. (2018). Briefly, peptides 

were separated on a PepMAP C18 column (75 μm × 500 mm, 2 μm particle size, Thermo) using a 

Dionex Ultimate 3000 UPLC at 250 nL/min and acetonitrile gradient from 2% to 35% in 5% 

dimethyl sulfoxide/0.1% formic acid. Blanks were analysed between each sample. Peptides were 

detected with a Q-Exactive mass spectrometer (Thermo) at a resolution of 70,000 @ 200 m/z. Up 

to 15 precursors were selected for High-energy Collision Dissociation (HCD) fragmentation. 

Resulting product ion spectra were searched against a protein database obtained from NCBI 

(restricting the taxonomy to “birds”, downloaded 22/02/2019) and containing common 

contaminants (cRAP: https://www.thegpm.org/crap/) using the software PEAKS (version 8.5). For 



PEAKS, FDR rate was set at 0.5%, with protein identifications accepted with −10lgp scores ≥ 40 

and ALC (%) ≥ 80.  

3. Results  

3.1 Representativity of the sample studied   

The eggshell fragments analysed were not evenly distributed among the different deposit 

categories (Figure 2): the majority of samples came from middens (n=51), followed by burial fills 

(n=18), floors (n=11), midden activity (n=4), activity (n=3), fill (n=3). As a consequence, the 

representativity of the sample is limited for activity areas, non-burial fills and floors, and the 

discussion will therefore mainly focus on midden deposits and burial fills, thus comparing and 

contrasting the world of the living and the world of the dead.  

3.2 Anseriformes  

The identification of Anseriformes eggshell was obtained on the basis of the taxon-specific 

markers of Presslee et al. (2017) detected in the MALDI-ToF spectra (Figure 2, Table 2) and of 

eggshell morphology. In order to obtain protein sequence data, which could further confirm the 

attribution of the spectra to eggshells of Anseriformes birds, we performed LC-MS/MS analyses 

of two samples (CH15_7 and CH15_12). In both instances, the majority of the protein sequences 

identified (ovocleidin-116, serum albumin, ovalbumin, lactadherin, serotransferrin, BPI-fold-

containing family B member 4-like; Supplementary Information 1) yielded a match to sequences 

from Anas and Anser (as shown by the pie charts in Figure 2).  

It is currently not possible to discriminate between different species of Anseriformes, neither using 

MALDI-MS markers nor sequence data, for two main reasons:  

i) The majority of the MALDI-MS markers (Table 2) belong to ansocalcin, a C-type lectin 

originally sequenced from goose eggshell (Lakshminarayanan et al., 2003) but, as discussed 

elsewhere (Presslee et al., 2017) detected in both goose and duck eggshells by palaeoproteomics.  

ii) Similarly, the sequences we identified by LC-MS/MS belonged to both Anser and Anas (other 

bird taxa also yielded a match, albeit less frequently, as seen in the pie charts reported in Figure 

2).  

 



In general, the agreement between the morphological and molecular analyses was very strong 

(Table 1), i.e. where diagnostic features were available all eggshell identified as Anseriformes or 

Anseriformes-like by mass spectrometry was also independently identified as certain or potential 

goose, duck (and possibly swan) by microscopy. Additionally, six eggshell fragments were 

classified as goose (or cf. goose) by microscopy, but produced low-quality spectra; three of these 

were either burnt or heat-stained. A single fragment (CH19_6) identified morphologically as cf. 

goose yielded a spectrum that could not be determined as Anseriformes. Relatively low protein 

coverages in the archaeological samples (around 50-60% for the top proteins, see Table 3) and 

lack of high-coverage genomes of various Anseriformes species prevent complete refinement of 

the taxonomic determination at this stage. However, microscopy indicated that geese were more 

common in the eggshell assemblage than ducks, and suggested that a range of species are 

represented in both groups. From the shell thickness and morphology, it is likely that the majority 

of the goose eggs belong to greylag geese (Figure 3A and Table 1). This is the only goose species 

that today breeds in the area, and as such the potential identification of multiple geese species is 

interesting (Russell, 2019a). It is possible that the reference materials currently available do not 

cover all variations within greylag goose eggshell, or for large duck species such as shelduck 

(Tadorna tadorna). Alternatively, this eggshell may include other species commonly identified in 

the bone assemblage by Best et al. (in prep.) and by Russell and McGowan (2005), such as the 

white-fronted goose (Anser albifrons) and the lesser white-fronted goose (Anser erythropus). 

Although neither of these breeds in the area today, interestingly the lesser white-fronted goose 

does breed in Eastern Turkey, Syria, and Greece, which may suggest different breeding 

distributions in the past (https://www.iucnredlist.org/, accessed 03/12/2019). At present, other 

related birds such as black geese [Branta] cannot be eliminated using mass spectrometry or 

microscopy.  

 

A small number of the eggshells are above the thickness range usually assigned to geese (Keepax, 

1981; Sidell, 1993; Maurer et al., 2012), and as such swan eggs may also be present in the 

assemblage, although none could currently be confidently identified by morphology (Figure 7). 

Overall, it is clear that the inhabitants of Çatalhöyük consistently exploited the eggs of various 

Anseriformes species (especially geese). Anseriformes represented more than 50% of the whole 

assemblage (54 out of 90 fragments confidently identified as Anseriformes, and 61 of 90 fragments 



when probable Anseriformes are included). Interestingly, Anseriformes represented over 75% of 

the fragments from the randomly-selected 2015 batch (30 out of 40 fragments), indicating that 

their true prevalence is probably underestimated in this small-scale analysis.  

 

Just over half of the Anseriformes and probable Anseriformes (31 of 61 samples) exhibited no 

resorption, indicating that the majority of eggs were taken when recently laid (Figure 3B). A 

further 6 specimens had very patchy corrosion which is likely to be taphonomic damage. The 

remaining 24 fragments had mostly uniform corrosion which could represent either chick 

development, taphonomic damage, or a combination of the two. Of these, 11 fragments had high 

levels of corrosion which may indicate live young hatching on site, or eggshell material collected 

at point of hatch (although taphonomy cannot be eliminated here). The majority of these highly 

corroded fragments came from the midden, but with one from a burial fill and another from a house 

floor.  

 

Approximate location of Figure 2 

 

Approximate location of Table 2 

Protein 
Accession 

Protein name Peptide Theoretical 
[M+H]+ 

Modifications PEPTIDE Found by 
BLAST search in 

gi|21541951 Ansocalcin 
* sequence removed 
from NCBI. 

GWLDFRG 850.9  Struthio camelus, 
Rhea americana, 

gi|14594826 Immunoglobulin 
alpha heavy chain,   
partial [Anas 
platyrhynchos] 

QSWDQGAEFS
CR 

1470.6 C (+57.02) Anas platyrhynchos, 
Anser cygnoides 
orientalis, Anser 
anser domesticus 

gi|21541951 Ansocalcin 
* sequence removed 
from NCBI. 

KRYSAWDDDE
LPR 

1666.8 W (+15.99)  

gi|356950524 Immunoglobulin 
alpha heavy chain  
partial [Anser anser 
domesticus] 

ETATLTCLASG
FRPR 

1679.8 C (+57.02) Anser anser 
domesticus, Anser 
cygnoides orientalis, 
Anas platyrhynchos 

gi|21541951 Ansocalcin 
* sequence removed 
from NCBI. 

GSCYGYFGQQ
LTWR 

1722.8 C (+57.02) 
Q → E (+0.98) 
W (+15.99) 

  

gi|21541951 Ansocalcin 
* sequence removed 
from NCBI. 

GSCYGYFGQQ
LTWR 

1739.7 C (+57.02) 
Q → E (1) 

  

gi|21541951 Ansocalcin 
* sequence removed 
from NCBI. 

VIHAGCHLASL
HSPEEHTAV 
AR 

2392.2 C (+57.02) 
A → T 

  

 

Table 2: Peptide markers detected in samples CH15_07 and CH15_12 (MALDI-ToF MS 



 

Approximate location of Table 3  

Sample Accession -10lgP 
(protein 
score) 

Coverage 
(%) 

#Peptides #Unique Protein name 

CH15_7 XP_013041782.1 214.36 56 61 4 Serotransferrin isoform X1 
[Anser cygnoides domesticus] 

XP_013053956.1 206.83 41 57 4 BPI fold-containing family B 
member 4-like [Anser 
cygnoides domesticus] 

XP_013046053.1 191.23 52 37 2 Serum albumin [Anser 
cygnoides domesticus] 

XP_021238987.1 122.38 41 20 18 Ovocleidin-17-like [Numida 
meleagris] 

XP_013048453.1 146.08 39 18 7 Ovocalyxin-32-like [Anser 
cygnoides domesticus] 

XP_013056574.1 125.43 39 17 2 Ovalbumin-like [Anser 
cygnoides domesticus] 

ADC33129.1 126.19 35 8 6 Immunoglobulin light chain V-J 
region  partial [Anser sp. 
GIGLV2009] 

CH15_12 XP_027312777.1 242.06 53 91 38 Ovocleidin-116 [Anas 
platyrhynchos] 

EOB06364.1 225.39 47 65 9 Hypothetical protein 
Anapl_00855 partial [Anas 
platyrhynchos] 

EOB06318.1 210.28 64 51 8 Serum albumin partial [Anas 
platyrhynchos] 

XP_013046053.1 205.49 66 48 4 Serum albumin [Anser 
cygnoides domesticus] 

XP_027321930.1 197.34 51 47 15 Lactadherin isoform X2 [Anas 
platyrhynchos] 

XP_027307484.1 188.61 59 51 9 Ovalbumin-related protein Y 
[Anas platyrhynchos] 

XP_005027969.2 183.82 60 29 15 Ovomucoid [Anas 
platyrhynchos] 

XP_013056564.1 171.26 54 48 4 Ovalbumin-related protein Y-
like [Anser cygnoides 
domesticus] 

EOA99916.1 141.71 46 28 3 Serine protease inhibitor A3M 
partial [Anas platyrhynchos] 

XP_027311251.1 127.11 49 16 16 Prepronociceptin isoform X3 
[Anas platyrhynchos] 

XP_021238987.1 124.45 44 31 29 Ovocleidin-17-like [Numida 
meleagris] 

 

Table 3: Top-scoring proteins for samples CH15_7 and CH15_12 (LC-MS/MS analysis). 

 

Approximate location of Figure 3 

 

3.3 Non-Anseriformes 



Initial microscopic identification indicated that a wide range of species were present in the 

assemblage, including non-Anseriformes. For the CH19 batch a diverse range of morphologically 

distinct samples were deliberately selected by one of us (JB), in the hope of achieving accurate 

identification of these other taxa.  

The non-Anseriformes eggshell appears to be diverse, and in several instances identification is not 

possible. Within this, three MALDI-ToF spectral “fingerprints” could be identified, which were 

then associated to three broad size-categories of eggshell (not necessarily reflecting the size of the 

birds that they came from): small-sized (n=4; representative spectrum shown in Figure 5A), 

medium-sized (n=3; representative spectrum shown in Figure 5B) and large-sized (n=9; 

representative spectrum shown in Figure 5C). The spectra are clearly different, but we were unable 

to univocally identify these taxa on the basis of the published MALDI-MS markers of Presslee et 

al. (2017): each spectrum showed the presence of markers pertaining to different species, contrary 

to what was observed for the Anseriformes samples (see Figure 2). Therefore, LC-MS/MS 

analyses were conducted on three samples (all data are included in Supplementary Information 1): 

CH19_38 (small-size), CH19_21 (medium-size) and CH15_34 (large size). Bioinformatic 

searches of the product ion spectra against the NCBI birds proteomes did not yield straightforward 

identification of the three taxa: indeed, the pie charts in Figure 5 are strikingly different from those 

obtained for Anseriformes (Figure 2).  

 

Approximate location of Figure 4 

 

The large-size bird (eggshell) could be tentatively identified as a Gruiformes on the basis of the 

higher proportion of spectra that could be assigned to this order (Figure 5F), and via microscopy, 

which indicated that several measurements (including mammillae density, characteristics and 

eggshell thickness) were appropriate for crane. However, species not represented in the 

microscopic reference material could not be unequivocally ruled out. Of the nine fragments in this 

large group, six had no resorption of the shell, two had patchy, very minimal corrosion and one 

had minimal uniform corrosion (potentially indicating some initial chick development). 

 

In contrast, the medium-size sample yielded a mixed signal, with roughly an equal number of 

peptide sequences assigned to Gruiformes, Galliformes and Passeriformes (Figure 3E). 



Interestingly, the top-scoring protein for this sample was ovalbumin from Chlamydotis 

macqueenii, a bustard. Bustards are present at the site (Russell, 2019a), and the shell thickness 

measurements do fall within the range of another bustard species, Otis tarda (although 

comparative material for detailed morphological analysis was not available at the time of analysis). 

Therefore, it is possible that sample CH19_21 is indeed a fragment of eggshell pertaining to this 

taxon. However, more reference material for both proteomics and microscopy would be needed to 

rule out other possibilities; this will be a priority of our future work. Two fragments in this category 

had no resorption and one was too abraded to determine damage to the mammillae.  

 

Sample CH19_38, representative of the small-size category, could not be clearly determined. 

Microscopy suggested that a large heron such as Ardea cinerea is a potential candidate, and 

palaeoproteomic analyses gave a mixed signal, as identified peptides/spectra were assigned to 

proteins from a variety of avian orders (Figure 5D), which however do include Pelecaniformes. 

Herons are a very common bird at Çatalhöyük and, as such, their presence in the eggshell 

assemblage would not be surprising, particularly given the presence of juvenile heron bone 

remains at the site (Best et al., in prep; Russell 2019a). We will be sourcing additional reference 

material and conducting a more in-depth assessment in the future, based on the results of this 

preliminary identification. One of the fragments in this group showed no resorption, another had 

minimal patchy corrosion (probably taphonomic), one moderate uniform corrosion, and one very 

extensive uniform corrosion. It is probable that the latter two represent eggs with developing chicks 

inside. 

 

Four samples were undetermined by MALDI-MS and were not subjected to further in-depth 

palaeoproteomic analyses. CH15_25 was not identifiable by proteomics or microscopy, but 

CH15_23 was suggestive of a possible vulture egg morphologically, and two Accipitriformes 

markers (Demarchi et al., 2019) were observed in the MALDI mass spectrum. CH19_6 and 

CH19_13 can be assigned very tentatively to goose and bustard respectively based on morphology.  

 

Approximate location of Figure 5 



3.4 Distribution of eggshell taxa  

Figure 6 shows the distribution of eggshell taxa (identification obtained by combining 

proteomics and morphology, see Table 1) in different deposit categories. Anseriformes dominate 

the eggshell assemblages recovered from both middens and burial fills, demonstrating the 

importance of these birds, and particularly geese, at the site. Both geese and ducks are found in 

all three of these deposit categories. The overall profile between the middens and the burial fills 

are very similar. This may also suggest a lack of separation between the world of the dead and 

the world of the living, a recurrent theme at Çatalhöyük, with birds that had significance in life 

also playing a role in death. It appears that the eggshell fragments were intentionally 

incorporated into several of the grave environments, although it cannot be ruled out that some 

inadvertently entered the fill. Of the 18 samples from burial fills, five (28%) produced no usable 

proteomic data, compared to 10% of the samples from middens and associated activities. Given 

the generally excellent preservation of the proteins encountered in this study, we attribute this 

pattern to burning, which is supported by some of the fragments yielding low-quality spectra 

being from scorched layers. Several of the eggshell fragments from burial fills exhibit physical 

evidence of burning (for example, see Figure 6) but heat exposure is known to affect protein 

preservation even without visible alteration of the biomineral (e.g. Crisp, 2013). The data could 

therefore be interpreted as evidence of ritual burning of the remains interred with the dead, or the 

selection of burnt material for incorporation in the burial activities. It may also simply represent 

waste disposal or food discard, as there are also large quantities of burnt bone found at the site. 

The redeposition of material certainly needs to be considered as a factor influencing distribution 

of eggshell and its interpretation, especially at a complex site such as Çatalhöyük. As such, 

although we have identified some differences between midden and burial fills material (e.g. level 

of burning), we stress that this cannot be automatically assigned to intentional incorporation.  

 

Approximate location of Figure 6 

 

The large quantity of eggshell recovered from midden deposits suggests that many of the eggs 

were food or activity waste, although their presence may also have played some role in the closing 

of buildings. The large number of samples with no resorption or minimal/patchy corrosion 

suggests that many eggs would have been used as food or in other activities where undeveloped 



eggs are needed, e.g. as paint binders. This hypothesis is interesting and could be potentially tested 

by analysing paint remains using proteomics. Although quantifying eggshell is very challenging, 

the quantity recovered from the site suggests that bird eggs were a more common food item than 

bird meat, since the avian bone assemblage is relatively small (see Best et al., in prep.; Russell, 

2019a). Interestingly, 45% of the fragments from floor deposits (5 of 11 specimens) produced no 

usable proteomic data, indicating that these eggs may have suffered more taphonomic damage.  

Non-Anseriformes are represented in small numbers in the three largest deposit categories (floors, 

midden and burial), and it is probable that additional non-Anseriformes fragments are present in 

the unidentified material. 

 

Approximate location of Figure 7 

4. Discussion and conclusions 

This study focussed on the multi-disciplinary analysis of 90 eggshell fragments from Çatalhöyük. 

Each fragment was characterised using microscopy-based morphological observations and mass 

spectrometry-based protein analysis. The combination of the two approaches was successful in 

identifying the fragments, generally at order level, and with a high level of agreement between 

morphological and molecular data (Table 1). By combining the methods, we were able to provide 

higher resolution for several fragments than would have been possible using either technique in 

isolation. 

 

Most fragments (68%) were determined to be Anseriformes or very probable Anseriformes, 

highlighting the striking prevalence of geese and ducks at the site. The highest proportion of geese 

and ducks were recovered from midden deposits (world of the living), but they were also well 

represented in burial fills (world of the dead). Anseriformes eggs are a nutritious and seasonally-

abundant resource, clearly linked to the local environment, and the presence of wetlands. 

Therefore, while the use of bird meat as a food resource is not frequent at Çatalhöyük, as 

highlighted by a number of studies, including the most recent reassessment by Russell (2019a, 

2019b) and Best et al. (in prep.), the exploitation of eggs seemed to be a common feature. Food 

itself can be special, and egg consumption/use might have had symbolic resonance due to its link 

with the seasons’ cycle, or through association with the living birds that inhabited the landscape 



around Çatalhöyük and played many different roles in living at, and experiencing, the site. 

Seasonality and connotations of new-life may have made eggs an appropriate material for 

deliberate placement in graves.  

 

When combined with the proteomic analyses, the microscopy indicates that many of the 

Anserifomes are large geese, and the greylag goose in particular is a likely candidate for much of 

the eggshell material. Greylag geese still breed around the site today (Russell 2019a). These birds 

often gather to breed in colonies and could have radically changed the appearance and audiality of 

the landscape surrounding the site during their summer breeding season. It appears that 

Anseriformes egg collection was a key part of avian exploitation, potentially explaining why the 

adult birds do not seem to have been killed in large numbers, as this would have then deprived the 

fowlers of the valuable egg resources. It seems that life at Çatalhöyük involved an intimate 

knowledge of birds both in their use as food items, in their movement around the landscape and 

for their symbolic lives. 

 

Among non-Anseriformes, the presence of crane egg in particular should be noted. The crane 

seems to have been consumed as food but also played a ritual role at the site (Best et al. in prep; 

Russell, 2019a, 2019b). It is possible that like the birds themselves, their eggs may have also been 

used in both mundane and special ways. Whilst the wetland environments around the site would 

have provided suitable nesting environments for Anseriformes, Gruiformes and some 

Pelecaniformes, it is possible that some egg resources may have been brought from further afield 

or traded either as food or as special items.  

 

Overall, we confirmed the importance of an integrated zooarchaeological and molecular approach 

for the study of ancient eggshell. We also highlighted the excellent preservation of eggshell 

proteins at this 8000-year-old site, despite the hot environment. Fragments which did not yield 

proteins are therefore likely to having been burnt, possibly during ritual activities, as a high 

proportion of burnt eggshell was found in burial deposits. The high presence of burning in floors, 

where the highest proportion of undetermined eggshell was recovered, may result from cooking 

activities.  

 



We have also highlighted that while deep-branching Anseriformes (Galloanserae) can be readily 

identified via proteomics as their protein make-up is very distinctive (Figure 2), deciphering the 

eggshell proteome composition of Neoaves is more challenging (Figure 5). This is consistent with 

the later and “sudden” evolutionary radiation of Neoaves at around 50 million years ago. 

Phylogenetic analyses based on the reconstructed sequences of specific proteins will be the focus 

of future work, in the hope that these will improve taxonomic resolution for this and other sites. 

We hope to assess the rest of the Çatalhöyük assemblage as soon as resources allow. In the 

meanwhile, we will continue producing integrated focused datasets, which can provide a baseline 

for obtaining more nuanced interpretations of the role of birds in the lives of humans in the past.  
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FIGURE CAPTIONS 

Figure 1: Location of Çatalhöyük in present-day Turkey.  

  



 

 

Figure 2: MALDI-ToF spectra for Anseriformes samples CH15_07 (A) and CH15_12 (B), 

showing the main Anseriformes markers. Pie charts represent the taxonomic composition of 

proteomes, calculated as the proportion of spectra assigned to different avian orders by 

bioinformatic analysis of LC-MS/MS data obtained on samples CH15_07 (C) and CH15_12 (D). 

For each protein group, only the top-scoring protein identifiers were considered. Note that 

Anseriformes spectra clearly dominate the composition, i.e. the majority of the product ion spectra 

could be unequivocally assigned to Anseriformes.  

 



Figure 3: Goose eggshell fragments. A: CH15_5 Anseriformes - goose eggshell fragment, likely 

Anser anser, with an average thickness of 0.6 mm. B: CH15_19 Anseriformes - goose eggshell 

fragment showing no resorption, indicating that minimal chick development had taken place, or 

that the egg was infertile. 

 

 

Figure 4: Eggshell thickness for three specimens from the three MALDI-ToF “fingerprints” 

determined by MS analysis and also recognised by microscopy. A: CH19_38 (small), B: CH19_21 

(medium) and C: CH15_34 (large). 

 

 

 

 

 

Figure 5: MALDI-ToF spectra for non-Anseriformes samples CH15_38 (A), CH19_21 (B) and 

CH15_34 (C), showing the mixed-taxa markers. Pie charts represent the taxonomic composition 

of proteomes, calculated as the proportion of spectra assigned to different avian orders by 

bioinformatic analysis of LC-MS/MS data obtained on samples CH19_21 (D), CH19_38 (E) and 



CH15_34 (F). For each protein group, only the top-scoring protein identifiers were considered. 

Note that the taxonomic signal is mixed in all instances.  

 

 



Figure 6: Relative abundance of avian types identified in each deposit category. Geese silhouettes 

highlight the dominance of this taxon in midden and burial fill deposits, while floor sediments 

contained a higher proportion of undetermined fragments; low sample numbers imply that this 

information would not be meaningful for activity, midden activity and fill deposits. 

 

 

Figure 7. A highly charred eggshell fragment: CH19_9 from unit 22676 - a burial fill. This 

fragment is damaged but is most likely to be swan. A: external surface of eggshell. B: thickness 

and ratio of the mammillae to palisade layer. 



 


