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Abstract—Numerous workflow systems span multiple scientific
domains and environments, and for the Internet of Things
(IoT), Node-RED offers an attractive Web based user interface
to execute IoT service-based workflows. However, like most
workflow systems, it coordinates the workflow centrally, and
cannot run within more transient environments where nodes are
mobile. To address this gap, we show how Node-RED workflows
can be migrated into a decentralized execution environment for
operation on mobile ad-hoc networks, and we demonstrate this
by converting a Node-RED based traffic congestion detection
workflow to operate in a decentralized environment. The ap-
proach uses a Vector Symbolic Architecture (VSA) to dynamically
convert Node-Red applications into a compact semantic vector
representation that encodes the service interfaces and the work-
flow in which they are embedded. By extending existing services
interfaces, with a simple cognitive layer that can interpret and
exchange the vectors, we show how the required services can
be dynamically discovered and interconnected into the required
workflow in a completely decentralized manner. The resulting
system provides a convenient environment where the Node-RED
front-end graphical composition tool can be used to orchestrate
decentralized workflows. In this paper, we further extend this
work by introducing a new dynamic VSA vector compression
scheme that compresses vectors for on-the-wire communication,
thereby reducing communication bandwidth while maintaining
the semantic information content. This algorithm utilizes the
holographic properties of the symbolic vectors to perform com-
pression taking into consideration the number of combined
vectors along with similarity bounds that determine conflict with
other encoded vectors used in the same context. The resulting
savings make this approach extremely efficient for discovery in
service based decentralized workflows.

Index Terms—Decentralized Workflows, Vector Symbolic Ar-
chitecture, Machine Learning, Dynamic Wireless Networks

I. INTRODUCTION

This article is an extension of the work presented at
WORKS 2018 [1] and describes a new technique that uses
dynamic vector truncation to enable improved economies

of bandwidth by exploiting the holographic nature of VSA
representations.

Data analytic applications are increasingly making use of
distributed software services that support the rapid construc-
tion of new applications by dynamically linking the services
into different workflow configurations. New virtualization
technologies (e.g., containers, virtual machines) have fuelled
this growth with a growing trend of constructing complex
applications from smaller, repeatable components (i.e., micro-
services). In addition, the emergence of smart devices and
sensors, many of which are located at the edge of wireless
networks, collectively known as The Internet of Things (IoT),
represents a rapidly burgeoning requirement for distributed
service workflows that can be rapidly reconfigured to perform
a variety of distributed data analytic tasks. Increasingly IoT
devices and services are being used in more challenging decen-
tralized communication environments, such as Mobile Ad-Hoc
Wireless Networks (MANETs) [2, 3, 4], where constructing
and running applications that support distributed analytics
introduces a much more diverse set of requirements [5]. In
such environments, specifically, this work is targeting military
environments such as the Internet of Battlefield Things (IoBT),
a MANET is an interconnected set of wireless (and satellite)
nodes that form a multi-hop network infrastructure which
often results in low bandwidth, highly transient connectivity
where endpoint stability, network bandwidth, and connectivity
remain limited and transient and it becomes impractical, if
not impossible, to support centralized service registries and to
manage workflows executing at the edge.

Due to the complexity in controlling distributed service
workflows, a Workflow Management System (WFMS) is often
employed to assist in the data and task partitioning. A WFMS
provides a robust means of describing applications, the control,
data dependencies and the logical reasoning necessary for
distributed execution. It is often used to automate processes



that are frequently executed or to formalize and standardize
processes. Such workflows may be used to define and run
computational experiments or to conduct recurrent processes
on observational, experimental and simulation data.

Some WFMS use a programmatic style for data and task
partitioning, for example, Swift/T [6] and the very successful
Pegasus [7] scientific WFMS. Whereas others, such as Triana
[8] and Node-red [9], use service-based workflows and in-
clude a visual programming environment to enable black box
compute/data nodes to be wired together graphically.

For resource allocation and scheduling, modern WFMS
typically rely on the high bandwidth, stable, networks to
maintain a world view of the available resources from which
it can employ complex resource allocation and scheduling
algorithms to optimize the throughput of a shared set of
compute resources. In addition, message passing between the
partitioned sub-tasks always flows through the WFMS engine
because, having scheduled and instantiated the tasks, it is the
single point of control that is aware of the network location
of each sub-task. In the emerging IoT type environments, this
type of WFMS becomes impractical and there is, therefore,
a need for a new bandwidth-efficient WFMS approach that
can enable distributed application construction and workflow
orchestration without the need for a central point of control.

In previous work [1, 5, 10, 11, 12], we have addressed
this challenge by making use of a Vector Symbolic Architec-
ture (VSA) [13, 14, 15, 16] to encode functional representa-
tions of micro-services and workflows into symbolic semantic
vector representations. In the previous implementations, we
used 10,000 bit binary vectors to represent service descriptions
and a hierarchical binding scheme to represent workflows. We
described how VSA vectors can then be exchanged across
a Mobile Ad-Hoc Network (MANET) using multicast, to
perform service discovery, workflow construction and execu-
tion. Using this approach, micro-services can, using efficient
vector matching operations, be discovered an organized into
the required workflow in a completely decentralized way. The
approach is ideally suited to the transient, low bandwidth,
environments typically found in MANET environments.

In [1] we showed specifically how a VSA can be used to
encode Node-Red IoT services and associated workflows and
how the component services could be dynamically discovered
and executed in a MANET without the need to specify IP
locations and presented an implementation of this approach.
In this paper, we augment our VSA approach to focus on
bandwidth efficiency for service discovery. Our research con-
tribution of this paper is to present a new dynamic VSA
vector compression that is capable of applying a lossless com-
pression scheme, which allows the vectors to be compressed
for communication, without effecting the VSA bindings and
comparison performance. In this scheme, we use the under-
lying VSA approach to bind services into Workflow vector
representations and then we dynamically reduce (truncate) the
size of the VSA binary vectors. The scheme leverages the
fact that VSA vectors represent a true superposition of their
sub-feature vectors, like a hologram, which enables partial

vectors to be transmitted when the information content of the
VSA vector being transmitted is low. We show that the size
of the truncated vector depends on the number and semantic
similarity of service vectors that are bound into the workflow
vector. Further, we present a theoretical proof of the capacity
of VSA vector superposition and show how this can be used to
perform dynamic message sizing while maintaining the ability
to discover and orchestrate complex workflows.

The rest of the paper is structured as follows. In the next
section, we provide an overview of related work. In Section
III, we describe how the VSA approach is used to encode
service representations and in Section IV we describe how
VSA enables workflows to be encoded and orchestrated. In
Section V, we outline a simple use case that demonstrates
how the VSA enabled Node-RED can perform decentralized
data analytics. Section VI describes the architecture we have
employed to enable existing services to participate in a dis-
tributed workflow. Section VII describes the implementation
and methods used to meld our VSA architecture with Node-
RED. In Section VIII, we then provide a description of our
compression scheme, along with a mathematical proof and
in Section IX we present some quantitative evaluation result
that demonstrates how the compression scheme works using
example workflows being constructed in an emulated MANET
environment. Finally in Section X we draw conclusions and
outline the scope of our future work.

II. RELATED WORK

For wired networks, there have been a wide variety of work-
flow systems developed [17, 18, 19, 20, 21, 22, 23, 24, 25, 26].
Many systems, such as Hadoop/mapReduce [27, 28] focus
on delivering high-speed data analytics via highly parallel
data processing techniques in high bandwidth communication
environments on single cluster server farms. Geo-Distributed
MapReduce, for example, G-Hadoop [29], attempts to imple-
ment Hadoop/MapReduce techniques across widely dispersed,
heterogeneous data centres. Dolev et al. [30], surveys such
attempts and concludes that geo-distributed big-data process-
ing is highly dependent on task assignment, data locality, data
movement, network bandwidth, security, and privacy. For IOT,
with the advent of 4G and 5G networks, more and more
research is focusing on moving the data analytics task to
the edge. For example, Apache Edgent [31] focuses on data
analytics at the edge, typically to exploit sensor data and
perform anomaly detection at the edge.

We are not proposing that this VSA architecture might
replace such systems because our VSA approach is tackling
a problem that such systems do not need to solve; that is,
the dynamic discovery of services without using centralized
registries. For more conventional data analytics environments,
it is significantly more practical and efficient to maintain
centralized catalogues with load balancing via a centralized
system when high bandwidth reliable connections are avail-
able. Whereas the target environment for our VSA architecture
is low bandwidth, highly transient MANET networks such as
those operating in military battlefield scenarios.



In such environments, it is impossible to rely on central
registries because a single node can never be guaranteed to
be available all of the time and consequently, a decentralized
approach is needed. On-demand distributed analytics work-
flows for general collaborative environments need spontaneous
discovery of multiple distributed services without central
control [5]. Applying the current state-of-the-art workflow
research to such dynamic environments is impractical, if
not impossible, due to the difficulty in maintaining a stable
endpoint for a service manager in the face of variable network
connectivity; such workflows are focused on operating in
highly available distributed computing infrastructures using
TCP, centralized management, and service discovery. Service-
oriented systems, such as Taverna, have some support for
discovery [32] but service providers are centralized and require
manual configuration.

Consequently, service discovery is a key component in a
transient distributed networked environment. Service discovery
is a difficult problem even when services are hosted in central-
ized repositories, mainly because services are developed and
deployed independently or developed by loosely cooperating
developers in open environments. This has led to a complex
mix of disparate service architectures employing different
methodologies for the description of their inputs, outputs,
and configurations. Even with standardized protocols, such
as Multicast Domain Name Service (mDNS, [33, 34]) there
are no conventions for service templates. In support of such
situations, we are investigating vector based representations
as a means of representing service descriptions that can
be semantically compared within particular contexts, in an
extremely resource-efficient way. Using such vectors, seman-
tically rich queries in the form of vectors, can be sent out
to the network, using protocols such as multicast for efficient
querying in a complex space.

Hyperflow [26] is based on a formal model of computation
called Process Networks, which uses asynchronous signals to
coordinate flow. Such signals could operate in a decentralized
way but currently, there is no service discovery component,
rather it relies on the node.js [35] execution environment
and employs third-party tools, such as RabbitMQ [36], to
coordinate services. Petri net workflows [37] offer a decen-
tralized approach by using directed bipartite graphs, in which
the nodes represent transitions (i.e., events that may occur,
signified by bars) and places (i.e., conditions, signified by
circles). However, such workflows require predefined DAG-
based workflows with concrete endpoints to be defined before
deployment.

Newt [38] is designed to address network edge workflow
environments by providing a reusable workflow methodology
for decentralized workflows that incorporates decentralized
execution and logic, support for group communication (one
to many) and support for multiple transports e.g., TCP, UDP,
multicast, ZeroMq. However, although Newt has discovery
interfaces available, it currently only supports pre-configured
profiles for its nodes, so dynamic service discovery is not
possible. In the Newt paper, the authors used the dialogue from

William Shakespeare’s Hamlet [39] as a workflow, where each
actor is a node that decides what line to say and who to say
it to, and the sending of those lines represents the network
payloads. They argued that this example is highly illustrative
of group conversations or distributed analytics at the edge,
where complex local decisions are made and communicated
to the distributed node(s) in a decentralized way. The play
contains several instances where an actor speaks to several
actors, thus creating natural distributed communications and
there are other instances where an actor will speak to himself,
causing looping.

The DENEB [40] business workflow system (based on a
high-level type of Petri nets) does support runtime discovery
of the service objects required to execute a business workflow
and is an excellent implementation for mainstream internet
eCommerce and business logic workflows since it can use
formal methods to prove that the selected Petri net network
will implement the desired business logic correctly. It also
uses semantic web standards to facilitate service discovery.
However, once again, the platform is designed around a set
of manager middleware components that are unlikely to be
effective in our transient, low bandwidth environments.

In summary, like mainstream SOC, the fundamental chal-
lenges continue to be 1) Discovery and 2) Interoperability.
However, to fulfil the time-critical operational goals of our
target environment, the discovery of alternate workflow paths
and services becomes a much more critical objective since the
‘best’ path or service may not be available or indeed part of
it may go out of service during workflow execution!

In terms of 1) Discovery, we believe that the VSA approach
offers advantages over the reference semantic Web service
architecture because, in short, VSA, being a distributed rep-
resentation, converts what would typically be a hierarchical
XML service description based on some ontology into a super-
position of sub-features, that is, it represents all of the category
and value data of the XML description, ’simultaneously’ as
a single value. XML service descriptions that are similar to
each other, regardless of order, create VSA vector values that
are near to each other in the VSA vector space. Thus, we
believe service matching and discovery is greatly simplified.
Calculating the hamming-distance between two VSA service
description vectors provides a simultaneous comparison of all
service sub-features in a position-independent way and gives a
graded match. In addition, semantic vector word embeddings
such as those built using word2vec [41] can be leveraged
to solve the ontology matching issues described in [42]. For
example, the category ‘LastName’ is easily matched with
‘Surname’ and ‘FamilyName’. (Note, it is straightforward
to convert real number word embeddings into binary VSA
embeddings that maintain the semantic relationships between
words). In addition, using VSA to describe workflows objects
as well as service objects will enable our VSA architecture
to mine alternate workflow paths through the resulting VSA
vector space, another future work objective.

With respect to 2) Interoperability, while we have not solid-
ified a new approach to this complex problem, our current test



cases achieve inter-service communication by simply posting
to known endpoints, the VSA architecture can support the cur-
rent state of the art in this respect. This can be achieved during
workflow discovery via the local arbitration step referred to
in Section IV and fully described in [11, Section 7.2, Page
79]. To support the conversational negotiation required to con-
nect service objects at discovery time the available protocols
supported by a particular service object can be encoded as a
sub-feature of the service’s binary VSA description vector. In
this way, when a VSA requester multicasts a request for a
partner service, the responding services that best match will
likely have a matching protocol. During the discovery process
the local arbitration step, carried out by the requester, is then
leveraged to negotiate a protocol and confirm that the selected
partner is indeed able to communicate with the requester.
Should this negotiation fail then the requester service can
simply choose another responder or re-issue the query for
another responder. In addition, we discuss in Section III-B and
in [11, Section 4, Page 74] how the interoperability problem
might be simplified using VSA because parameter positions
and data types can be encoded in a simple manner. Further,
using the role-filler pairs methodology, as described in Section
III-B and [11], we see it as quite feasible to pass small data
(numbers, strings, etc.) as parameters bound into in a VSA
vector. Large data can be passed indirectly as a VSA vector
by encoding a file name/ID, which is the method used for
our Pegasus example. In the traffic congestion example, we
encode the endpoint name directly in the VSA workflow for
return to the Node-Red WMS. A future work objective is to
consider how to pass all data as semantic VSA pointers since
this would potentially neutralize the interoperability problem
because, by definition, VSA vectors hold both the data value
and are a description of the data value, see semantic pointers
[43]. In addition, using VSA to describe workflows objects
as well as service objects enables the VSA architecture to
discover alternate workflow paths through the resulting VSA
vector space.

VSA, a term originally coined by Gayler [14], use very
large vectors to represent objects and features of objects
within a hyper-dimensional vector space such that objects and
concepts that are semantically similar to each other in the
real world are positioned closer to each other in the vector
space. VSAs can be based on real-valued vectors, such as in
Plate’s Holographic Reduced Representation (HRR) [13], or
large binary vectors, such as Kanerva’s Binary Spatter Codes
(BSC) [15] that, typically, have N ≥ 10,000. For this work,
we have chosen to use Kanerva’s BSCs but we note that
most of the equations and operations discussed should also
be compatible with HRRs [44].

Since VSA vectors are stochastic in nature [45] they are not
compressible in the traditional sense. However, because VSA
vectors represent data in a distributed manner, i.e., each vector
element participates in the representation of many sub-feature
entities, and each sub-feature entity is represented collectively
by many elements of the VSA vector [44], any reasonable
length sub-section of a VSA vector can equally represent all

of the original data. The decodability of such a sub-segment,
so that all sub-features of the original vector can be decoded,
is directly related to its dimensionality, i.e., its length, or its
number of bits. Plate, [13], gives a thorough mathematical
analysis of the capacity of real number VSA vectors including
a mathematical derivation for the capacity when vectors are
similar [13, Appendix B.2]. Recchia/Kanerva et al. perform
a computational efficiency analysis of binary VSA compared
to real number HRR VSAs and obtain some empirical results
for the capacity of binary VSA vectors in [46] and Kleyko
derives a formula for the capacity of VSA vectors from which
he calculates that the capacity of a 10kbit VSA vector to be
approximately 89 [16]. The idea of truncating VSA vectors
based on the number of sub-feature vectors contained does
not seem to appear in the literature probably because VSA
vectors have not been used as a basis for communication across
networks before this work.

III. ENCODING SERVICE REPRESENTATIONS USING THE
VECTOR SYMBOLIC ARCHITECTURE

In [10] we describe in detail the use of VSAs to represent
service workflows. This section provides a brief recap of
the core principals to provide context for the Node-RED
integration.

A. Vector Symbolic Architecture background

A common technique for achieving such semantic repre-
sentations is to represent a high-level concept or feature by
a collection of its sub-features in a hierarchically recursive
manner[47] so that the sub-features themselves are also built
up of their sub-features which in turn are built of their own
and so on. Descending in this way, we eventually get down
to a sub-feature that cannot sensibly be broken down further
and define this as an atomic vector.

A key feature of VSA architectures is that all vectors have
the same size; that is the vector for a high-level concept, such
as the entire play Hamlet, is the same size as each of its
sub-features, i.e., acts, scenes, stanzas, sentences, words. In
order to achieve this, sub-feature vectors are combined using
a suitable bundling operator, which for BSCs1 is majority-
vote addition[10, 15]. The resultant vector is a superposition
of all sub-features in the sum such that each vector element
participates in the representation of many entities, and each
entity is represented collectively by many elements [44].
Normalized hamming distance (HD) can be used to probe
such a vector for its sub-features without unpacking or de-
coding the sub-features. XOR binding is used to build roll-
filler pairs[13, 15] which allow sub-feature vectors to remain
separate and identifiable (although hidden) within a concept
vector superposition[10, 13, 15]. In addition, binding can be
used to maintain positional and temporal relationships such as
those needed for the execution of workflows.

Binding is commutative and distributive over superposition
as well as being invertible [15, page 147]. This means that,

1Further references to operations used in VSA architectures are expressly
talking about binary vector operations



if Z = X ·A then X ·Z = X · (X ·A) = X ·X ·A = A since X ·X = 0, the
zero vector2. Similarly A ·Z =X . Due to the distributive property
the same method can be used to test for sub-feature vectors
embedded in a compound vector as follows:

Z = X ·A+Y ·B (1)
X ·Z = X · (X ·A+Y ·B) = X ·X ·A+X ·Y ·B (2)
X ·Z = A+X ·Y ·B (3)

Where ′.′ indicates XOR binding and ′+′ indicates majority-vote-add

Examination of Eq. (3) reveals that vector A has been exposed,
thus, if we perform HD(X ·Z,A) we will get a match. The second
term X ·Y ·B is considered noise because X ·Y ·B is not in our
known vocabulary of features or symbols. XOR-binding also
preserves distance, but produces a result that is uncorrelated
to its operands. Hence, if V = R ·A and W = R ·B then HD(V,W ) =

HD(A,B) even though, R, A and B have no similarity to V or W .
These operations allow us to create semantically comparable

compound objects analogous to data structures as follows:

P1v = FNr · Johnv +SNr ·Charlesv +Ager ·55yrsv +Healthr ·T 2Diabeticv

P2v = FNr ·Lucyv +SNr ·Charlesv +Ager ·55yrsv +Healthr ·T 2Diabeticv

P3v = FNr ·Charlesv +SNr ·Smithv +Ager ·55yrsv +Healthr ·T 2Diabeticv

Note that without role vectors, e.g., FNr
3 then HD(P1,P2) =

HD(P1,P3) = HD(P2,P3) since each record would be an un-
ordered bag of feature values. Thus role vectors can be used
to perform the important function of categorization within a
superposition. To test P1 for the surname Charlesv we perform,

HD(xor(SNr,P1v),Charlesv) (4)

For 10kbit vectors, if the result of Eq.(4) is less than 0.47
then the probability of Charlesv being detected in error is less
than 1 in 109 [15, page 143]. If our person records are
distributed over a network we could transmit or multicast the
request vector Z = SNr ·Charlesv +Ager · 55yearsv to the network.
Any listening distributed microservice, or node in a Parallel
Distributed Processing network, having person records con-
taining the surname Charlesv and age 55yearsv can check for
a match and respond or become activated.

B. Encoding service descriptions into semantic vectors

As described in Section III-A a common approach for
creating semantically rich representations is to represent a
high-level concept as a collection if its sub-features in a
recursive manner. Reviewing that Xr represents a role vector
and Yv a value vector, one such arrangement for services might
be,

Zv = Servr ·Servv +Resourcer ·ResPv +QoSr ·QoSv (5)
Servv = Inputsr · Inpv +Namer ·Namev +Descr ·Descv +Out putsr (6)
Inpv = Oner ·Floatr +Twor ·Floatr +T hreer ·Floatr +Oner ·BitMapr (7)

2Throughout this text, unless otherwise stated ′.′ indicates XOR binding
and ′+′ indicates majority-vote-add

3Note that throughout this text, a symbol having suffix r, (Yr) represents a
known atomic, role vector. A symbol having suffix v (Xv) indicates a vector
that is representing a value.

Thus, Zv, the high-level semantic vector representation of the
service, is made up of a nested superposition of its sub-feature
vectors. Listing 1 is an example of a JSON service description
for one of the Node-RED object detectors in our Traffic
Congestion use case. We now describe a new methodology
for converting JSON service descriptions into a semantically
comparable service vector descriptions.

Listing 1: Service Vector Description
{”service”:
{”service name”:”object detector 1”,

”service inputs”:[
{”input name”:”image”,
”input data type”:”char64jpg”,
”input related concepts”:[{

”concept name”:”location”}],
”required”:true}],

”service outputs”:[
{”output name”:”object list”,
”output data type”:”list string”,
”output related concepts”:[

{”concept name”:”car”},
{”concept name”:”person”},
{”concept name”:”bus”}]}],

”service average response time ms”:5000}}

The field-names within the JSON must be converted to
unique role vectors and the JSON values must be converted
to semantically comparable vector values. The value fields
are encoded using Eq. (8) which is described fully in [10].
This means that values can be complex and are semantically
comparable as long as, within a superposition, they are bound
to the same roles.

When using field-names as roles to categorise the feature
values of a service vector concept, one important issue is, how
can we guarantee that the role vectors created are unique and
have the same value across distributed service implementa-
tions. This is a particularly relevant question for Node-RED
integration since Node-RED is open source and functional
nodes/services can be created arbitrarily by an unrelated set of
developers. In the original implementation we simply assigned,
known, random hyper-dimensional vectors to each role/field-
name, however, this does not allow for unrelated developers
to invent new field-names and would require some sort of
central database lookup so that distributed services agreed on
the vector value of a role/field-name, otherwise they would
not be able to perform semantic matching.

In this paper, we describe an alternate vector encoding
method that ensures roles are always unique based on their,
case insensitive, spelling. The encoding algorithm used for
the field-names is chained XOR of a shared vector alphabet.
Cyclic-shift per character position is used to ensure unique
encodings for words such as ’AA’ and ’AAA’ which would
otherwise collapse into similar values, since XOR(A, A) = 0 and
XOR(XOR(A, A), A) = A. The algorithm to convert a field name
to a vector is shown in Listing 2.



Listing 2: Field name to Vector.
def field name to vec(name, vec alphabet):

n = name.lower()
v = vec alphabet[n[0]]
shift = 0
for c in n[1:]:

shift += 1
v = XOR(v, ROLL(vec alphabet[c], shift))

return v

To recursively encodes each feature chaining all field-
names together with the sub-feature roll-filler pairs we use
the json to vecs() function listed in Listing 3.

Listing 3: Chaining Field Names.
def json to vecs(json input):

if isinstance(json input, dict):
dd = []
for k, v in json input.iteritems():

rv = json to vecs(v) # Recurse
if isinstance(rv, list):

dd.extend([(”{} * {}”.format(k, i[0]),
# Chain XOR field−names with
# sub role−filler found in i[1]
XOR(field name to vec(k, symbol dict), i[1]))
for i in rv])

else:
dd.append((”{} * {}”.format(k, rv[0]), XOR(

field name to vec(k, symbol dict), rv[1])))
return dd

elif isinstance(json input, list):
dd = []
for item in json input:

rv = json to vecs(item) # Recurse
if isinstance(rv, list):

dd.extend([json to vecs(i) for i in rv]) # Recurse
else:

dd.append(rv)
return dd

else:
if isinstance(json input, tuple):

return json input
else:

return json input,
chunkSentenceVector(str(json input)).myvec

Where chunkSentenceVector creates semantically compara-
ble vectors. The algorithm produces a ‘bag’ (python list) of
role-filler vectors that are then further combined into a single,
semantically comparable, vector using simple ma jority vote
addition. The output of json to vecs() for JSON Listing 1 is
shown in schematic form in Listing 4.

Listing 4: Output from json to vecs().
service * service name * object detector 1
service * service average response time ms * 5000
service * service inputs * input data type * char64jpg
service * service inputs * input related concepts * concept name * location
service * service inputs * required * True
service * service inputs * input name * image
service * service outputs * output data type * list string
service * service outputs * output name * object list
service * service outputs * output related concepts * concept name * car

service * service outputs * output related concepts * concept name * person
service * service outputs * output related concepts * concept name * bus

Note, in the listing ′∗′ indicates XOR binding.

Each line in Listing 4 represents a compound vector entry
in the returned list. The rightmost vector is the value vector,
all vectors to the left of this are unique role vectors. Each
vector is XOR chained with the one to its left. Precedence is
as follows:

sub f eaturev = service ∗ (service name ∗ ob ject detector 1)

In the above example, ob ject detector 1 is the value vector
and service and service name are both role vectors. If Zv is the
result of the final ma jority vote superposition, then to extract a
noisy copy of the ob ject detector 1 value we would perform

ob ject detectorv ≈ XOR(service namer, XOR(Zv, servicer))

Note, as mentioned above, that the output of json to vecs()
is combined as a simple ma jority vote bag of vectors, this
helps makes the vectorization of JSON service descriptions
immune to ordering issues but does limit the number of service
line entries to approximately 100, the maximum capacity of a
single 10kbit binary vector [16].

In Node-RED such vector encodings are representative of
the required function. The encoded JSON may be a specific
known function that has been previously used, or a generic
JSON representing the type of functional service needed.

IV. DESCRIBING WORKFLOWS USING VECTOR SYMBOLIC
ARCHITECTURE

A workflow is a set of inter-related tasks that must be
carried out in a specific order. To compose a workflow some
methodology is needed to describe the various steps and what
data must be passed between each cooperating node in the
workflow. In our previous work, we showed how Pegasus[48]
DAX files could be parsed and converted into a VSA workflow.
In the Pegasus implementation, such DAX files are written
directly in XML script language, or, they can be generated pro-
grammatically via the Pegasus API, available in Java, Perl or
Python. Node-RED provides a graphical means of describing a
workflow by allowing graphical icons representing functional
operations to have their input/outputs connected. Fig. 1 shows
an outline of the Pegasus Montage 20 workflow composed via
the Node-RED graphical interface.

In our previous work [10], we explained how we can
combine functional vector service descriptions into a workflow
via our hierarchical VSA binding scheme Eq. (8) and Eq. (9).
The execution flow is achieved by sequentially unbinding
using Eq. (10).
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∑
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i .
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∏
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i

∏
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Omitting StopVec for readability, this expands to,
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0
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n .Z′n)
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Fig. 1: Pegasus Montage 20 composed using Node-RED.

In all of the above equations, the Zn terms are the semantic
vector representations built using the methods described in
Section III-B. In addition, for very large workflows the Zn

term may be a cleanup vector representing a large grouping
of smaller steps, or in Node-RED terms, analogous to a sub-
flow.

In [10] we also explain how discovery and workflow orches-
tration can be achieved using the above equations. For a linear
workflow, the workflow steps are bound and unbound using
Eq. (8) and Eq. (10) respectively. The p0, p1, p2, ... vectors
are role vectors used to define the current position/step in the
workflow. After the workflow has been built the unbinding
procedure essentially exposes each microservice description
in turn. Flow is controlled by the currently active node doing
its functional work and then performing the next unbinding
using Eq. (10) to activate the next node, no central controller
is needed.

Note that, because we are using semantic vector descriptions
for each exposed vector service request we fully expect to get
multiple replies. To avoid race conditions and to enable on the
fly load balancing we employ a method of local arbitration
described in [10, 11] whereby the currently active node acts
as the local arbiter for selection of the next workflow step.

Z′1 = (p0
0(T +Zx))

-1
= p-1

0 .T -1 + Z0
1 + p-1

1 .Z1
2 + p-1

1 .p-1
2 .Z2

3+... (11)
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1 .Z′1)

-1
= p-1

1 .p-2
0 .T -2 + p-1

1 .Z-1
1 + Z0

2 + p-2
2 .Z1

3 + . . . (12)

Equations (11) and (12) show the state of the workflow
vector after the first and second unbinding. Only Z1 is visible
in Eq. (11) and Z2 is visible in Eq. (12) because all other
vectors are permuted by position vectors[10].

For DAG workflows we extend this mechanism by employ-
ing three phases:[10]

1) A recruitment phase where services are discovered, se-
lected and uniquely named.

2) A connection phase where the selected services connect
themselves together using the newly generated names.

3) An atomic start command indicates to the connected
services that the workflow is fully composed and can be
started.

Thus, in mathematical terms, using Eq. (9):

WP = p00.(RecruitNodes)
1 +

p00.p10.(ConnectNodes)
2 + p00.p10.p20.Start3

RecruitNodes = p00.Z1
1 + p00.p10.Z2

1 + ...p00.p10.p20.p30.Z4
1 . . .

ConnectNodes =
(

p00.P1
1 + p00.p0

1.C
2
1
)
+(

p00.p10.p20.P3
2 + p00.p10.p20.p30.C4

2
)
+ ...

The resulting workflow, WP, is a single vector superposition
representing the linear sequence of steps needed to discover,
connect and initiate the workflow. That is, the WP vector
completely encapsulates all three phases needed to discover,
connect and start the DAG workflow. Once injected into the
network, via a multicast transmission, the vector will activate
matching distributed nodes which, in turn, unbind and pass
the vector around in a peer-to-peer fashion with no central
point of control. Once the last connection is made and the
DAG is composed and fully connected the arbitrary node that
makes this final connection causes the workflow to start when
it unbinds WP exposing the Start vector and multicasts this to
the network.

During the Recruitment phase; (a) real services respond
to matches via their VSA cognitive layer; (b) the currently
active node uses local arbitration[10] to select the best node
for the next Recruit nodes step; (c) selected nodes build
representations of their parent and child vectors which will
be used during the Connection phase so that each service can
be informed of its inputs and outputs. Notice that, during the
Connection phase, the WP vector has become a sequential
list of alternating parent P and child C vectors. This is how
each recruited node learns of its partner connections. Control
continues to pass from node to node but, during the connection
phase, when a node becomes activated by seeing its parent
vector it simply unbinds/multicasts the next vector, since in do-
ing so it will activate its associated child service, automatically
informing the child service of its IP address. When a service
receives a multicast that matches its child vector it stores the
parent’s IP-address and multicasts a response informing the
parent of its IP-address before unbinding and multicasting the
next vector.

When the final child request is processed, this is detected by
the ConnectNodes cleanup service[10] causing it to unbind and
multicast the StartVec indicating to all nodes that the workflow
has been fully constructed and processing can be started.
At this point each VSA-Agent sends an /init/ message to its
associated Workflow-Agent and the proper work is initiated,
see Section VII-A.

The scheme supports encoding of DAG workflows having



one-to-many, many-to-many, and many-to-one connections. In
[10] we show that the result provides several desirable features
and byproducts: it can encode workflows /sub-workflows that
can be unbound on-the-fly and executed in a completely
decentralized way; associated metadata can also be embedded
into the vector, e.g., security, configuration.; the vector rep-
resentation is extremely compact and self-contained and can
be passed around using standard group transport protocols;
and semantic comparisons or searches are scoped within a
sub-group of services in a workflow, allowing scoped service
matchmaking.

V. TRAFFIC CONGESTION USE CASE

In prior work, we identified traffic monitoring as a plau-
sible use case involving sensing (e.g., via a network of
traffic cameras) and decision making (e.g., routing traffic to
avoid congested areas) supported by an interactive question-
answering interface ([49], [50]). The concept for this interface
is to provide decision support for a user tasked with managing
the state of city or region-wide traffic. In [49], we explored
detecting traffic congestion using a number of services which
could be both distributed and owned by multiple agencies (e.g.,
operating as a coalition). In [50], we explored how natural
language queries relating to traffic could be answered by
taking advantage of the output of distributed data sources and
processing services. In both these pieces of work, we did not
outline the co-ordination of these distributed resources, merely
providing specific architectures and the Node-RED workflows
that could provide the required answers.

In this and the following sections, we show how VSA
enabled Node-RED can be used to semantically describe and
cognitively wrap the existing services and how we construct
the workflow vector that is used to orchestrate the discovery
and execution of the workflow across the distributed resources.

A. Data Sources & Processing Resources

For this work, the example we use (counting the number
of cars on a given street) takes advantage of a subsection of
data sources and resources used in prior work but our solution
featured in this paper can be applied to working with a wider
range of available services.

The main data source we have taken advantage of is the
Transport for London (TFL) traffic camera API4. This allows
access to imagery and video from around one-thousand traffic
cameras situated around London. The imagery and video is
updated every five minutes and the video provided is a ten
second clip recorded at the beginning of the five minute
interval.

To detect cars, we process the imagery from the traffic cam-
era feeds using an object detector (MobileNetSSD5) supplied
within the OpenCV (Open Source Computer Vision) library 6.
Finally, to convert the list of detected cars to a count we use
a simple service that is designed to count the items in a list

4http://www.trafficdelays.co.uk/london-traffic-cameras/
5MobileNet-SSD: https://github.com/chuanqi305/MobileNet-SSD
6https://github.com/opencv/opencv

it receives. Having this as a service (and not hard coded in
to the interface’s processing of the result for example) allows
for this “list to count” function to be used within workflow
construction.

B. Moving to a Dynamic and Decentralized Environment

Within a decentralized environment, these resources need
to be discovered dynamically amongst a distributed array of
services. Once the nature of the query is established, the
correct services must be identified and chained together to
answer the query. During the discovery process there are
two key considerations, services may be replicated identically
providing redundancy and thus there may be multiple services
that provide a “perfect fit” or the required functionality. These
must be discovered and selected appropriately. Secondly there
may be services available which, although do not meet the
functionality exactly, still provide the functionality required.
For example, when counting the number of vehicles on a
road, a vehicle detector (a detector that identifies cars, bikes,
vans etc) is a “perfect fit” but if detectors for these individual
concepts exist (individual car detector, van detector etc), their
output could be aggregated and provide an output that may
still be appropriate if no vehicle detector is available.

A method of discovery and execution within a distributed
setting must factor these two properties in to best take ad-
vantage of the resources made available and to maximize the
queries that are answerable.

VI. ARCHITECTURE

To manage and fuse these sensor feeds, an architecture is
required that integrates the services in a loosely coupled way
to support decentralized discovery and execution. This loosely
coupled nature ensures that existing services and resources
can be quickly set up to be discovered and take part in query
responses without having to be re-written from the ground up.

In Fig. 2, we illustrate the three layers of architecture. The
lowest layer (in grey), contains the services and resources we
wish to make available. These can be existing or newly created,
and can be unique services or redundant replications of the
same service. Simply these are end points which can be sent
a request and respond in kind.

The second layer (in green), contains our proposed solution
to handling workflow execution, the workflow agents. These
decentralized wrapper services are light weight and encompass
the “real” services below them. They manage the address of
the end point, the collection of the required input data, the
retrieval of the end point’s response and finally the forwarding
of this response to the next workflow agent in the chain.

The highest layer (in orange), is where the VSA agents re-
side which, in our solution, handle the discovery of appropriate
services using vector representations of the task (as detailed
in section IV).They have the required information about the
location of the workflow agent and a representation of the
function the linked service provides.

In summary, within this architecture diagram, the vertically
aligned agents and services represent the connected VSA



Fig. 2: Distributed architecture for answering the question
”How many cars on Oxford Street?”

agent, the workflow agent and the service itself which work
together to offer discoverability and execution of a particular
function amongst the array of services. The distinct columns
(three in our diagram) represent categories of service i.e., the
different functions that can be provided. The depth shown
at each layer within these columns represents redundant or
similar services for a function.

The VSA agent and the workflow agent are co-located on
the same hardware but the service itself can be located on
another platform that the workflow agent can communicate
with. In our use case, for example, the camera service is
a remote web-service that is only reachable from the node
running the corresponding workflow agent. To participate in
the VSA discovery scheme each ‘real’ service starts an in-
stance of the VSA cognitive layer and associated flask wrapper
service. We have trailed various methods of communication
between the VSA cognitive layer and the real service. In the
flask wrapper method, a simple flask wrapper is used as an
interface between the ‘real’ service and the VSA layer. The
existing service passes a description of itself, either in JSON,
XML or DAX description language to the VSA cognitive
component via the flask wrapper service. The VSA cognitive
component builds a VSA vector that represents its associated
service, opens a multicast listener and commences listening
for discovery request on this vector. In this way, it enables
discovery of the real service. Since the VSA layer is running
on the same device as the flask wrapper, which is acting as a
proxy to the real service, it could communicate to the wrapper
via any number of standard IPC methodologies. As mentioned
above our current implementation uses known endpoints. The
wrapper is intended to be a lightweight bespoke interface
to the real service and as such must be coded to enable
communication with the original service. Section VII describes
this in more detail and [11, Section 6] gives full details of the
current communication stack.

VII. NODE-RED INTEGRATION

In Fig. 1, we illustrated a typical Node-RED workflow. To
illustrate the integration of Node-RED with VSA, we make

use of the linear workflow shown in Fig. 3 that is used in the
simple traffic congestion use case.

Fig. 3: Typical Node-RED workflow.

In a conventional Node-RED implementation all messages
travel through the Node-RED workflow engine. This requires
the location of external services to be specified and these
must be known in advance. In this example, the external
service, ob ject detector 1, is defined using an Node-RED
http-request node as shown in Fig. 4.

Fig. 4: HTTP Requester properties for Object Detector 1

The HTTP request is enacted via the NODE-Red workflow
engine. The Node-RED engine makes a POST to the address
shown, it collects the reply and passes it, as a Node-RED
payload message, to the next node in the flow. This means
that all messages must pass through the central Node-RED
controller and, since the external service endpoint is hard-
coded, no alternate service can be selected. The architecture
described in Section VI is largely independent of Node-RED.
However, we integrate with Node-RED in two ways. First,
Node-RED is used as a front end graphical composition
interface, acting as the interface component located in the
top left corner of Fig. 2. Second, we have extended the VSA
Importer toolkit to parse Node-RED workflows, so we can
export Node-RED workflows into a decentralized discovery
and execution environment.

To integrate Node-RED as the front end to our VSA
workflow architecture we implemented a new Node-RED



Fig. 5: VSA workflow composition using vsa service node.

Fig. 6: Node-RED vsa service properties.

node type, the ’vsa service’ node. This node type has its
message passing component disabled because message passing
between distributed components is carried out by our VSA
architecture. The vsa service node has two properties, see Fig.
6. The ’Name’ property is a standard Node-RED property. The
’JSON’ property is used as an entry field to accept either a
file name or a literal JSON string which is used to describe
the service attributes and features of the particular service it is
representing. This JSON description is encoded by the VSA
architecture in to a single 10Kbit semantic vector as described
in Section III-B. When passed as a filename, if the filename
type is .bin, then the VSA architecture will load a previously
built 10kbit vector during workflow encoding, otherwise it
reads and vectorizes the JSON on the fly.

Real microservices that are participating in our VSA archi-
tecture also encode their functional description using the same
methods, hence, when the Node-RED service request is de-
ployed, the service flow, via the VSA architecture, can discover
and utilize the real services. Message passing does not rely
on returning each payload to the Node-RED engine. Rather,
the VSA architecture performs the discovery, selection and
connection of real worker services that are listening for work
in a distributed network. Once the workflow nodes have been
discovered and recruited and connected the VSA Workflow-
Agents execute the workflow as described in Section VII-B,

all messages are passed directly between the Workflow-Agents
without a central point of control. When each terminal node
Workflow-Agent, defined as one having no child endpoints, has
completed its work, it returns its output, if any, to Node-RED
via a HTTP POST.

In Fig. 5, the top right node, ’Deploy VSA Flow’ is a
conventional Node-RED sub-flow that extracts the Node-RED
flow JSON description from the flow’s page and sends it to
the VSA Workflow Importer using a HTTP POST request.
A simplified listing of the JSON extracted by ’Deploy VSA
Flow’ is shown below. The wires:[] list field, id: field, and
JSON: field are used by the VSA Workflow Importer to build
the workflow vector.

The bottom right node, ’VSA Flow Result’ is a conventional
Node-RED sub-flow that implements a Node-RED ’HTTP in’
node having endpoint /vsa work done/. This endpoint is used
by the Workflow-Agents to return their results to Node-RED.

Listing 5: Node-RED flow JSON.
{ ”nodes”: [

{ ”wires”: [
[”695e3ae2.e16854”]

],
”name”: ”tfl−camera”,
”JSON”: ”tfl camera tenyson road.json”,
”y”: 295,
”x”: 495,
”z”: ”1592cb0c.f2c005”,
”type”: ”vsa service”,
”id”: ”226dec54.165fe4”

},
{ ”wires”: [

[”dee64892.9d1a28”]
],
”name”: ”Object−Detection”,
”JSON”: ”object detection.json”,
”y”: 295,
”x”: 702,
”z”: ”1592cb0c.f2c005”,
”type”: ”vsa service”,
”id”: ”695e3ae2.e16854”

},
{ ”wires”: [

[]
],
”name”: ”Count−Objects”,
”JSON”: ”count objects.json”,
”y”: 295,
”x”: 915,
”z”: ”1592cb0c.f2c005”,
”type”: ”vsa service”,
”id”: ”dee64892.9d1a28”

}
],
”id”: ”1592cb0c.f2c005”,
”label”: ”VSA Car Counter”

}
# Node−RED JSON listing with non−vsa service nodes removed.

A. Implementation

We simulate real world operation using CORE/E-
MANE [51], a real-time network emulator. From Fig. 2, each
VSA-Agent and Workflow-Agent are co-located and run in



their own VM, each of which has its own IP-Address on
a simulated wireless mesh network. We instantiate multiple
similar services in separate VMs so that we simulate having
multiple possible services capable of satisfying a particular
workflow step. Node-RED runs on the host ubuntu server, thus,
we simulate an extended distributed/MANET environment for
our services and request flows from Node-RED. Between and
during runs we can move services in and out of range taking
them in and out of service.

Our VSA platform is implemented in Python2 and has a
modular architecture with several components that are capable
of being reused as plugins to other systems:

1) CORE/EMANE All VSA and Workflow agents are
started by loading a CORE configuration file defining
each of our services. Each service starts in its own
VM. the VSA-Agent loads its semantic vector service
description and starts listening on the VSA multicast
address for semantic vector messages.

2) The Workflow Importer component uses a general
plugin infrastructure that allows VSA to parse multiple
formats. It has an implementation for the Pegasus work-
flow description(DAX) and for this new implementation,
we added a module for parsing Node-RED workflows.
Once parsed the resulting graph is formed using VSA
primitives: NodeVectors and EdgeVectors for further pro-
cessing by the VSA Creator.

3) The VSA Creator is used to bind the lists of vectors into
a single vector, a reduced representation, of the workflow
using Eq. (8) and chunking[10, page 3]. Chunking is
performed bottom-up and vectors are recursively rebound
until the vector list (workflow) is reduced to a single
vector. The NodeVectors list and the EdgeVectors list are
combined separately producing two high level vectors,
the RecruitNodes vector and the ConnectNodes vector. The VSA
Creator then binds these two vectors together with the
Start vector into a single vector representing the entire
workflow, the WorkFlow vector. This WorkFlow vector
and all its associated sub-vectors are encapsulated in a
chunk tree object[10, page 3] which is then passed to the
VSA executor.

4) The VSA Executor implements the Workflow Agents part
of Fig. 2 by providing a decentralized overlay for wrap-
ping the underlying services. The services themselves
can be conventional request/response e.g., Web/REST
interfaces, and the role of the Workflow Agents are to
bind to these underlying services and wiring the inputs
and outputs to such services to serve the service in a
decentralized way. This local wrapping aspect of the im-
plementation is important because it enables decentraliza-
tion over non-decentralized services. The VSA Executor
essentially flattens the workflow by distributing copies of
all non-terminal chunk vectors into the terminal (bottom
level/worker) nodes. Non-terminal nodes are distributed
to the first child of a parent node to decode the first vector
in a higher level vector. For robustness, the VSA Executor

can be made to distribute more than one copy of the
cleanup objects into other terminal node objects.

5) The Logging Component collects metrics as the work-
flow runs to feed into external processors. Logging cur-
rently collects a trace of the nodes and edges that are
being processed by the workflow.

6) The Visualization Component takes the log output and
generates a DAG layout graph using Graphviz [52].

B. Workflow Execution
The Workflow-Agents (WA) are currently implemented as

python flask services. The VSA component knows the end-
point of the WA which is wrapping the underlying functional
service. The WA has a number of HTTP endpoints/routes that
are used to control it and facilitate message passing between
nodes.

1) /init/ The VSA-Agent POSTs the list of its discovered
input/outputs to its partner Workflow-Agent. The parent
addresses are used as keys in a python tracker dictionary
to collect data on this WA’s inputs.

{
”name”: ”tfl camera”, ”server id”: ”192.168.0.72:4612”),
”child connections”: [[’192.168.0.72’, 4612], [’192.168.0.72’, 4614]],
”parent connections”: [[’192.168.0.72’, 4623], [’192.168.0.72’, 4617]]
}
# /init/ input message from VSA−Agent

{
”192.168.0.72:4623”: ”False”,
”192.168.0.72:4617”: ”False”
}
# Input tracker Dictionary

2) /start/ Those services that do not have any input(parent)
connections call their DoWork() function and send the
resulting data to each /work/ endpoint in this worker’s
child list. Those services that do have parent connections
return and await /work/ messages. All messages are
currently passed as a JSON dictionary with the following
format, (Note that the sender’s listening address:port is used for the
server id field because it uniquely identifies the sender.)
{
”name”: ”tfl camera” # The Sender’s name string
”server id”: ”192.168.0.72:4612” # The Sender’s server address
”data”: ”A valid JSON serializable python object”
”status”: ”good” # Alternatively ”UNEXPECTED”
}
# Workflow Agent: Work data message.
# Input and output messages have the same format.

3) /work/ On receipt of a ’work’ message each work mes-
sage is stored in the input tracker until all inputs have
been received. At this point, the DoWork() function is
called passing in the data from the messages it received.
Any output from the DoWork() function is then sent to
each /work/ endpoint in this worker’s child list. If the
Workflow-Agent receives an empty child connections list
via the /init/ message it is considered a terminal node and
POSTS its output, if any, back to the known Node-RED
listener.



4) DoWork() The DoWork function is specific to each
task and must be customized by the developer who is
implementing, or wrapping, a real service. For a producer
service, e.g., a tfl camera, it simply packages and returns
its data. For a producer-consumer, it processes the data
collected and returns a packaged response which will
usually be some transformation of its input data.

Further details of the VSA platform and workflow execution
can be found in [11].

VIII. A MATHEMATICAL MODEL FOR VSA VECTOR
TRUNCATION OPTIMIZATION

In Section III-A we explained that the symbolic vectors we
use are typically 10,000 bit vectors. In previous work, we
have maintained the vector size and have exchanged vectors
of this size irrespective of the number of bound sub-vectors
that it contains. One of the important properties of these large
binary vectors is that they are a distributed or holographic
representation of the bound sub-vectors. As such, if the
number of sub vectors is small then successful comparisons
can still be made if both vectors are truncated to the first
n-bits. This holographic property of the symbolic vectors sug-
gests an approach for compressing the message payloads that
are exchanged over the communications network. Essentially
vectors can be truncated without effecting the VSA bindings
and comparison performance. In this section, we consider the
mathematical basis for such a scheme and later, in Section IX,
we describe how the scheme is used in practice and the typical
network bandwidth savings that are possible.

When multiple VSA sub-feature vectors are combined using
majority vote addition the resultant vector is a single VSA
vector of the same size as its sub-features and represents the
set of sub-features. This can be an ordered set, for example,
a workflow composed via Eq. 10, or an un-ordered bag of
roll-filler pairs as described in Section III-B describing the
functionality of a micro-service.

Such compound vectors might be thought of as a represen-
tation of the concept implied by the collection of sub-feature
vectors be it ordered, in the case of a workflow, e.g., track car,
or unordered such as a person record. In VSA, these type
of compound vectors are commonly called chunk vectors and
the number of sub-feature vectors in a chunk is its ChunkSize
[46, 53].

An important property of such chunk vectors is that the
distribution of 1s and 0s remains random. This is because
chunks are ultimately made from random atomic vectors at
the bottom of the chunk hierarchy. Note that, when binding
via Eq. 8 the permutation vectors ensure that each sub-feature
vector is orthogonal to the other vectors in the sum.

Another important property is that for VSA vectors ma-
jority vote addition creates a superposition of the sub-vectors
such that each sub-vector is represented by many, but not all,
binary bits of the chunk vector and each sub-vector has a
unique random distribution of bits in the chunk vector. Hence,
the chunk vector could be considered a digital analogue of
a hologram in that each sub-vector is represented equally in

any reasonably long sub-segment of the chunk vector. For
example, the expected hamming distance of a chunk vector
S containing two sub-vectors S = [A+B] is HD = 0.25. This
means that 75% of the bits in S will match to A and a different
75% of the bits in S will match with B. If we compare S to
a random vector not contained S then it is easy to see that
50% of the bits will match. Thus, 25% of the bits in A, (or B)
actively differentiate it from a random vector. If we take any
reasonable length segment of S, for example, the first 1000
bits and perform a hamming distance comparison to A we
will still get approximately the same 0.25 result. Hence, if
there are only a small number of sub-vectors in a chunk then
we can truncate the chunk vector before transmission and any
listening VSA-Service agent will still be able to match to the
vector. On ’seeing’ a truncated vector the VSA-Service simply
truncates its vector description to the same length and performs
a hamming distance match.

The limit to which a chunk-vector can be truncated whilst
maintaining the ability to detect the sub-vectors it contains
is directly related to the number of sub-vectors contained.
The degree of similarity between sub-vectors in the known
vocabulary/cleanup memory is also an important factor in
determining the minimum size to which a chunk vector can
be truncated. When matching to a truncated chunk vector, it
is necessary to be able to distinguish between the actual sub-
vector embedded in preference to some similar sub-vector that
is not part of the chunk. Truncating a chunk vector to its
minimum useful size is a direct corollary for the capacity of a
chunk vector which has been extensively studied [13, 16, 53].
Since VSA vectors are effectively an IID sequence of 1s and
0s with probability 0.5 they can be effectively modelled via
the binomial distribution as shown in Fig. 7.

For a VSA vector of dimension D, Eq. 13 shows the
expected value (normalized hamming distance) µy of a single
sub-vector when it is compared to a chunk vector containing
n sub-vectors.

µy = 1− 1
2m

m

∑
i=bm/2c

(
m
i

) {
m = n i f n even.

m = n−1 i f n odd.
(13)
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m
i

)
(14)

is the number of combinations of i from m. The corresponding
variances are given by:

σy =
√
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√
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(15)

The combined probability distribution is:
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2
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The probability of decoding one sub-vector successfully is
given by:
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Fig. 7: Vector hamming distance distributions for random
vectors with mean µx = 0.5 and a vector comprising m
sub-vectors having a mean µy. Also shown is the resulting
combined probability distribution.
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and similarly probability of decoding all m vectors is given
by:

Pm = (1−P1)
m(m−1) (18)

Using Eq. 13 through Eq. 17 it is possible to compute
the minimum number of bits that are required to ensure that
the unbound target service vector will be correctly matched
with the corresponding service vector, in cases where all the
service vectors are orthogonal (i.e., 0% similarity) and for
different levels of similarity between the target service and
other services. This is shown in Fig. 8.

The different curves show the minimum number of bits
needed for various levels of similarity between the target ser-
vice vector and other service vectors. The greatest compression
is obtained when all services are orthogonal to each other.

When a potentially matching cognitively enabled service
is attempting to make a comparison between the unbound
vector and its vector it needs to use an appropriate hamming
distance threshold to determine if it does indeed match. The
threshold value is again obtained from Using Eq. 13 through
Eq. 17. The HD-Expected curve is the expected hamming
distance whilst the HD-Upper Bound is the required threshold
value, taking account of variance, to ensure that a match is
only possible with an error of 1 in 10e6. This upper-bound
occurs when the compression method assumes zero similarity
between listening VSA-Services because, referring to Fig 8,
the highest similarity is obtained when expected similarity
between alternate services is zero.
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In the following section we show how the theoretical model
is used in practice.

IX. APPLICATION OF THEORETICAL MODEL IN PRACTICE

The mathematical model presented in Section VIII can be
applied to complex workflows, which involves multiple levels
of symbols that are combined (bound) together to represent
higher concepts (services and workflows). In practice, the
binding strategy, along with the data representation, ultimately
has an impact on the level we can compress (truncate)
the vectors whilst maintaining the comparable integrity of
the vectors we wish to differentiate between. To highlight
this, consider the extreme case in which we are required to
differentiate between two vectors that are only different in
one, unknown, bit position. Clearly, no compression would be
possible. In other words, the number of symbols we choose
to combine along with commonality, (or similarity factor)



of those combined vectors between different higher level
concepts defines the probabilistic bounds on the the amount we
can truncate the vectors during transmission on the network.
As a simplified example, consider the case where we want to
compare workflow vectors built from a limited set of defined
symbols:

1) SINE +FFT +POWER SPECT RUM
2) SINE +FFT +AUTO CORRELAT ION
3) AUDIO ST REAM+AUTO CORRELAT ION

+EV ENT DET ECT ION
4) SINE +EV ENT DET ECT ION +DEEP LEARNING
In the above simple example, comparing at the workflow

level, workflow 1 has a 66% similarity to any other workflow
in the network. This is the same for Workflow 2. Workflow 3,
due to ordering (recall that the binding process contains a per-
mutation, see Eq. (8), to establish ordering), has 0% correlation
with other workflows. Workflow 4 has 33% correlation with
other workflows in the system. It is intuitive to see, in this case,
that Workflow 3 should have the best level of compression,
followed by Workflow 4, then Workflows 1 and 2 would have
the worst rate of compression. This concept is used within the
overall strategy, which can be described with the aid of Fig.
8 and Fig. 9.

We applied these ideas to our original test-cases which
were fully described in [10]. All service descriptions (service
objects) and workflows graphs are still built with 10kbit
VSA vectors as described in III-B and workflow objects are
built using Eq. (8). The discovery and orchestration scheme
remains unchanged as described in Section III-B, except for
the inclusion of the minimum vector size calculation and
truncation of the vectors before transmission.

Workflow 10k s60 s50 s60% s50%

ACT 1 72.71 57.15 49.57 78.60 68.18
ACT 2 61.74 48.74 43.14 79.37 69.87
ACT 3 78.25 62.21 54.39 79.50 69.52
ACT 4 55.55 45.25 38.72 81.46 69.71
ACT 5 59.37 46.93 40.86 79.06 68.83

TABLE I: Bandwidth savings (MB) and compression ratio
for Hamlet workflow, chunk size variable based on sentence
length.

Workflow 10k s50 s40 s50% s40%

Epigen 24 0.87 0.45 0.35 53.23 41.94
Montage 25 1.24 0.66 0.52 56.51 44.15
Inspiral 40 1.43 0.77 0.60 58.08 45.54
Inspiral 100 3.66 2.03 1.59 53.85 41.96
Montage 100 6.07 3.43 2.68 55.46 43.44
Epigen 997 34.48 19.95 15.62 58.09 45.35
Inspiral 1k 33.69 19.57 15.28 51.72 40.23
Montage 1k 59.07 34.31 26.90 57.86 45.30

TABLE II: Bandwidth savings (MB) and compression ratio
for discovery of various Pegasus worklfows, ChunkSize = 23.

The interest here was to investigate how much bandwidth
could be saved by truncating the vector requests for both

Workflow 10k s50 s40 s50% s40%

Epigen 24 0.83 0.51 0.40 60.94 48.19
Montage 25 1.22 0.79 0.62 64.96 50.82
Inspiral 40 1.39 0.90 0.69 64.32 49.64
Inspiral 100 3.57 2.49 1.92 67.71 53.78
Montage 100 5.89 4.16 3.24 70.56 55.01
Epigen 997 32.54 23.55 18.69 72.39 57.44
Inspiral 1k 31.97 23.13 18.18 72.36 56.87
Montage 1k 57.07 41.51 32.44 72.74 56.84

TABLE III: Bandwidth savings (MB) and compression ratio
for discovery of various Pegasus worklfows, ChunkSize = 29.
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discovery and orchestration, on the fly, based on the number
of sub-vectors that each VSA concept vector contains. The
owner of every VSA concept vector knows how many sub-
vectors it contains (since it was built by adding sub-vectors)
and therefore it can use the information contained in Fig. 8
to calculate the minimum vector size needed to transmit its
vector. For example, the ’Hamlet’ workflow vector contains
seven sub-vectors (the five acts plus some meta-data). If the
system can assume it is safe to use a similarity factor of 50%
the Fig. 8 indicates that the 10kbit vector can be truncated
to 1680 bits. This vector is unbound to reveal the Act 1
vector and multicast to the network. Each service compares
this vector with the first 1680 bits of their vector and measure
the hamming distance. Since the number of bits is now 1680
the service computes the threshold from the information in Fig.
9, which is a value of 0.42, and if the measured hamming
distance is less than the threshold then the service follows
the protocol for determining if it should respond or not. If it
responds and is selected then it takes its clean vector which
is 5 scenes long and requiring ten vectors so it truncates the
vector to 2751 bits and the process continues.

Table I shows the results obtained for the bandwidth savings
achieved using the Hamlet linear workflow test-case. For this
test-case we used two different word binding methods, posi-
tional and XOR chaining, when building the representation so



that we were able to manufacture different levels of similarity.
The positional binding scheme creates words vectors that
are similar to each other whereas the XOR chaining scheme
creates unique vectors for words (but not sentences, since the
positional scheme was used at the sentence level in both cases).
In Table I, column ’10k’ is the bandwidth consumed without
vector truncation. Columns ’s60’ and ’s50’ are the bandwidths
consumed when a similarity factor of s60=60% (used for
the positional binding scheme) and s50=50% (used for the
XOR binding scheme). Columns ’s60%’ and ’s50%’ are the
compression ratios obtained for the respective similarity factor.
It is interesting to note that we could not get consistently
clean runs when using a similarity factor of ’s50%’ and the
positional binding scheme, nevertheless the positional binding
scheme allows for better semantic matching of the sentence
and word concepts we are using to model workflow and service
objects in this test-case.

Tables II and III show the bandwidth savings obtained
using the same approach for discovery and connection of
various Pegasus workflow examples. There is less similarity
between differing service objects in these Pegasus examples
and so these runs were conducted at similarity factors of
’s50’ and ’s40’. Note that, the Pegasus workflow examples
were used as a means to test that the VSA architecture could
successfully encode, discover and connect DAG workflows
in a verifiable way. The savings listed represent purely the
savings in the message bandwidth generated for discovery
and parameter passing. We do not suggest that it would be
sensible to attempt to execute these highly data intensive tasks
in our low bandwidth transient environment. No actual data
processing was executed since our CORE/EMANE network
emulator does not have enough compute power. The Pegasus
runs were used to verify that such DAG workflows could be
discovered and connected without a central point of control
and had more hardware been available these workflow tasks
would have been executable.

Fig. 10 shows how compression ratio varies with chunk
size and similarity factor and is an experimental verification
of the theoretical compression ratios shown in Fig. 8. All
graphs where obtained by building the Montage 100 test
case at various chunk sizes and then running discovery on
these workflows using different similarity factors. The obvious
conclusion from Fig. 10 is that small chunk sizes give better
compression ratios and it should be noted that the recursive
nature of Eq. (8) enables the use of small chunk sizes for
concepts containing many sub-features, however, in [11] we
showed that smaller chunk sizes reduce the semantic matching
capabilities of the resulting concept vectors. This is an area
for future investigation.

X. CONCLUSIONS AND FUTURE WORK

In this paper we have identified that the majority of exist-
ing workflows rely on centralized management and therefore
require a stable endpoint to deploy such a manager. One such
workflow system is Node-RED, which is designed to bring

workflow-based programming to the IoT. However, the ma-
jority of scientific workflow systems, and specifically systems
like Node-RED, are designed to operate in a fixed networked
environment, which rely on a central point of coordination to
manage the workflow.

In more dynamic settings, such as MANETs, on demand
workflows that are capable of spontaneously discovering mul-
tiple distributed services without central control are essen-
tial. In these types of environments distributed pathways are
complex, and in some cases impossible to manage centrally
because they are based on localized decisions, and operate
in extremely transient environments. Consequently, in dy-
namic environments, a new class of workflow methodology is
required—i.e., a workflow which operates in a decentralized
manner.

We have described how to migrate Node-RED workflows
into a decentralized execution environment, so that such work-
flows can run on Edge networks, where nodes are extremely
transient in nature. We have demonstrated that such a new
class of workflow can be realized by using vector symbolic
architectures (VSA) in which symbolic vectors can be used
to encode workflows containing multiple coordinated sub-
workflows in a way that allows the workflow logic to be
unbound on-the-fly and executed in a completely decentralized
way.

We have demonstrated the feasibility of such an approach by
showing how we can migrate a centralized Node-RED based
traffic congestion workflow into a decentralized workflow by
adding a cognitive-aware wrapper which uses the VSA to se-
mantically represent the component services and the associated
workflow. The traffic congestion algorithm is implemented as
a set of Web services within Node-RED and we have archi-
tected and implemented a system that proxies the centralized
Node-RED services using cognitively-aware wrapper services,
designed to operate in a decentralized environment.

We further extend this work by introducing a new dynamic
VSA vector compression scheme that compresses vectors
for on-the-wire communication, thereby reducing communi-
cation bandwidth while maintaining the semantic information
content. This algorithm utilizes the holographic properties
of the symbolic vectors to perform compression taking into
consideration the number of combined vectors along with
similarity bounds that determine conflict with other encoded
vectors used in the same context. From the test-case results we
note that, while the resulting bandwidth savings may appear
low in terms of MB saved, and would be not important in
a fixed network infrastructure, savings of 45% in our target
environment will prove to be extremely important. This is
because, for tactical edge military networks, bandwidth can
become a critical resource when unmanned aerial vehicles or
even soldiers move around, distancing themselves from their
nearest neighbour with increasingly less bandwidth and even
becoming fragmented from the network.

Symbolic vector representation can also be used to represent
not just the workflow but also the semantics of the component
services at various levels of semantic abstraction. This leads



directly to the concept of self-describing services and data. We
believe that in future the VSA approach offers the potential
to combine the workflow, self-describing services and data
into vector representations that will enable alternative service
compositions to be automatically constructed and orchestrated
to perform tasks specified at higher levels of semantic de-
scription. Our future work will therefore focus on such self-
describing service compositions in order to realize the vision
set out in [5].
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