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Abstract: 

In many conceptual designs of quasi-zero stiffness (QZS) vibration isolators, the 

negative stiffness elements are very inefficient in terms of weight and volume. This is 

because they often need to attach additional structural components, and require 

external constraints or forces to pre-stress some particular components. As a 

consequence, the volume and weight of the QZS vibration isolators increase to 

unacceptable levels for many practical applications, such as space equipment and 

aviation crafts. In this study, a novel QZS vibration isolator that applies bistable 

composite laminates as the negative stiffness element is proposed and designed to 

meet the practical requirements. This novel design of the QZS vibration isolator has a 

greatly simplified structural geometry forms, due to the inherent negative stiffness of 

bistable composite laminates. The mechanism of this novel QZS vibration isolator 

mainly lies in the ingenious use of negative stiffness properties of bistable composite 

laminates. Its structural performance is analyzed and simulated using the finite 

element methods in Abaqus. The numerical simulation results successfully approve 

the design principle and outperformed characteristics of this proposed novel design of 

QZS vibration isolator. 
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1 Introduction 

A linear passive vibration isolator can only function well when its natural 

frequency is much below the excitation frequency. Since a traditional linear passive 

isolator does not isolate vibrational behavior until the excitation frequency is greater 

than √2 times of its natural frequency, it is unable to isolate the low frequency and 

ultra-low frequency vibration [1]. Because of this reason, nonlinear vibration isolators 
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are proposed and widely used in many engineering applications[1, 2]. The concept of 

quasi-zero stiffness (QZS) vibration isolator attracts a lot of research interests due to 

its distinct characteristics, e.g. high static stiffness and low dynamic stiffness. The low 

dynamic stiffness of a QZS vibration isolation system makes it quite efficient in isolating 

low frequency and ultra-low frequency vibration[3]. Practical applications of QZS 

vibration isolators range from space research, e.g., zero gravity simulation[4], to 

manufacturing machines, e.g. isolation of high precision machinery [5, 6]. A QZS 

vibration isolator usually consists of a positive stiffness element and a negative 

stiffness element which are connected in parallel. In last decades, many novel forms 

of QZS vibration isolators were proposed, and one representative form is presented in 

Fig. 1 [3], in which four different designs of QZS are illustrated. The theories and 

experiments of these techniques in the field of low frequency vibration isolation have 

been extensively studied in previous research works [7-13].  

   

 

(a) QZS system achieved by combining a 

vertical spring acting as a positive stiffness 

element with two oblique springs acting as a 

negative stiffness element 

 

(b) QZS system achieved by combining a 

vertical spring acting as a positive stiffness 

element with symmetric horizontal springs and 

bars acting as a negative stiffness element 
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(c) QZS system achieved by combining a 

vertical spring acting as a positive stiffness 

element with a bucked beam acting as a 

negative stiffness element 

Buckled 

structure

Buckled 

structure

 

(d) QZS system achieved by combining a vertical 

spring acting as a positive stiffness element with 

two inclined Euler columns as a negative 

stiffness element 



 

(e) QZS system achieved by combining a vertical spring acting as a positive stiffness element with 

a Gospodnetic-Frisch-Fay beam as a negative stiffness element 

Fig. 1 Sketch maps of representative QZS vibration isolators[3] 

  

    For the QZS vibration isolators presented in Fig. 1, in common external restraints 

or forces are needed to apply the pre-stresses to the negative stiffness elements. 

Meanwhile, the sizes of negative stiffness elements are difficult to be reduced due to 

their principles. As a consequence, this type of QZS vibration isolators is complicated 

and bulky, which results in increased weight and installation space. However, in many 

practical application circumstances, such as the space crafts, satellites and planes, the 

weight and installation space is extremely limited. Therefore, there remains 

continuous demand to design simple, small and light negative stiffness elements for 

the QZS vibration isolators.  

 In this study, a novel QZS vibration isolator is proposed. In this new design, a 

bistable composite laminate is employed as the negative stiffness element. A bistable 

laminate has two stable configurations, and the stiffness of which exhibits negative 

when it is restrained at an unstable equilibrium saddle state [14-16]. The principle of 

this novel QZS vibration isolator is analyzed in details and its performance is 

numerically simulated using the finite element modelling. 

2 Design of the quasi-zero stiffness vibration 

isolator 

In this study, a hybrid metal-fiber bistable composite laminate is used and its layup 

is chosen to be [0/Al/90]. Previous studies have demonstrated that the [0/Al/90]] 

laminate has two stable cylindrical configurations due to the internal thermal strain, 

provided that the laminate dimensions are chosen, appropriately. For a square bistable 

laminate mounted at central, as illustrated in Fig. 2, the laminate transforms form a 

stable configuration to the other when loads are applied on the corner nodes. The 

classical strain energy curve and the force-displacement curve of a bistable laminate 

corresponding to the boundary conditions are presented in Fig. 3. Classical strain 



energy curve in Fig. 3 shows that a bistable laminate has two local potential energy 

wells, whereas the load-displacement curve demonstrates the negative stiffness 

property of the bistable laminate when it transforms form a potential energy well to 

the other.  
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Fig. 2 Sketch map of a square bistable laminate mounted at central 
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Fig. 3 Classical strain energy curve and load-displacement curves of a bistable laminate 

In this study, a quasi-zero stiffness vibration isolator is proposed, by connecting 

the bistable [0/Al/90] to a linear spring in parallel, the principle of which is illustrated 

in Fig. 4. In this vibration isolator, the bistable laminate is restrained at the corner 

points by hinges in vertical direction. The laminate central is connected to the base via 

a linear spring. In this system, the bistable laminate is constrained to stay at an 

unstable saddle state, and functions as a negative stiffness spring. With an appropriate 

choose the linear spring, its linear positive stiffness can be fully counteracted by the 



negative stiffness of the bistable laminate. Consequently, the whole system exhibits 

zero stiffness at the equilibrium state. 
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Fig. 4 Principle of the quasi-stiffness vibration isolator based on bistable laminate 

Based on the principle illustrated in Fig. 4, a prototype of the quasi-stiffness 

vibration isolator is designed, and presented in Fig. 5. The bistable laminate is 

connected to the up platform at corners by four hinges, and is connected to the spring 

by threaded rod. The linear spring is installed in a columnar box which is bolted on the 

up platform.  



Bistable laminate

Hinge

Spring

Threaded rod
 

Fig. 5 Prototype design of the quasi-zero stiffness vibration isolator 

3 Finite element analysis 

 This finite element analysis (FEA) of this novel QZS vibration isolator is performed 

using Abaqus. The material properties of the laminate are presented in Table. 1. The 

set-up of the finite element model is presented in Fig. 6. The bistable laminate 

dimension is 80mm×80mm, and modeled by shell elements S4R. A rigid platform is 

also established, the bistable laminate is connected to the rigid platform at corners by 

MPC-LINK constraints.  
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Fig. 6 Finite element model of QZS vibration isolator 

Table. 1 Material properties of carbon fibre reinforced polymer(CFRP) and 

aluminum(Al) 

CFRP 

CCF300/5428 

E11=145Gpa, E22=9.75Gpa, G12=5.69Gpa, ν12 =0.312, α11= 

0.4×10-6/°C, α22 = 25×10-6/°C, t=0.125mm  

Curing temperature 140 ℃ 

Al E=70Gpa, ν12 =0.3, α11= 23.3×10-6/°C 

 

The load-displacement relationships of a vibration isolator with different linear springs 

are simulated and plotted in Fig. 7. Concentrated load is applied on the laminate 

central along the vertical direction, and the rigid platform is restrained. In this isolator, 

the lay-up of the bistable laminate is [0t=0.25mm/Alt=0.2mm/90t=0.25mm], the stiffness of 

three selected different linear springs are 13KN/m, 16 KN/m and 20KN/m, respectively. 

FEA results show that, for a given bistable laminate, the stiffness of the isolator at the 

equilibrium point can be adjusted by the stiffness of spring. Theoretically, there is a 

critical value of spring stiffness, with which the isolator has zero stiffness at the 

equilibrium point. If the spring stiffness is larger than the critical value, the isolator has 

positive stiffness at the equilibrium. In contrast, the stiffness of the isolator at the 

equilibrium point is negative if the spring stiffness is smaller than the critical value. 

Therefore, the choice of the spring stiffness is critical for achieving the quasi-stiffness 

isolator. 



-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

L
o

ad
(N

)

Displacement(mm)

 K=13KN/m

 K=16KN/m

 K=20KN/m

 

Fig. 7 Load-displacement curves of the vibration isolator, the lay-up of the 

bistable laminate is [0t=0.25mm/Alt=0.2mm/90t=0.25mm], K is the stiffness of 

linear srping 

 To counteract the negative stiffness of bistable laminate in the isolator, the critical 

stiffness of the spring equals to the maximum negative stiffness of the bistable 

laminate in magnitude. Applying FEA, it is easy to obtain the negative stiffness of a 

bistable laminate via the load-displacement curve. The critical spring stiffnesses 

corresponding to different bistable laminates are predicted and are presented in Fig. 

8. It indicates that the critical stiffness of the spring varies nonlinearly with the 

thicknesses of CFRP ply and aluminum ply. In Fig. 8, there are top points for both curves, 

and this illustrates that for this type of QZS isolator, the stiffness off the equilibrium 

point cannot be increased endlessly by adjusting lay-up of the bistable laminate.  
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Fig. 8 Critical spring stiffnesses for the quasi-stiffness vibration isolators applying 

different bistable laminates 

To verify the effectiveness of this QZS vibration isolator, a typical design is 

employed for illustration. In which, a 80mm×80mm, [00.25mm/Al0.2mm/900.25mm] bistable 

laminate is applied in the isolator; the matched stiffness of the linear spring is 

16.295kN/m. The dynamic analysis of the isolator is conducted via the “Dynamic, 

Implicit” step in ABAQUS. In FEA, a concentrate mass is applied on the rigid platform, 

a period excitation is applied on the central of the bistable laminate in vertical direction, 

and the output acceleration of the rigid platform is monitored. The acceleration 

transmission rate is calculated by comparing the maximum acceleration magnitude of 

the rigid platform with the input acceleration. The predicted acceleration transmission 

rates are presented in Fig. 9, FEA indicates that the vibration isolator starts to function 

at quite low frequency. The acceleration transmission rate rapidly decreases to a small 

value and maintains as the excitation frequency grows. Due to the nonlinear stiffness, 

the initial working frequency of the QZS vibration isolator increases with the excitation 

acceleration while decreases with the isolated mass, and the maximum acceleration 

transmission rate increases with the isolated mass. The valid working frequency ranges 

of the QZS vibration isolator and a linear vibration isolator are compared in Table. 2. 

At valid working frequencies, the acceleration transmission rate of the isolator is 

negative. The QZS vibration isolator shows obvious advantage on the valid working 

frequency range over the linear vibration isolator. 
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Fig. 9 Predicted acceleration transmission rates of a QZS vibration isolator, a 

80mm×80mm, [00.25mm/Al0.2mm/900.25mm] bistable laminate is applied in the isolator 

 

Table. 2 Valid working frequency range of linear and QZS vibration isolators 

excitation acceleration, isolated mass 10mg,0.2Kg 30mg,0.2Kg 30mg,0.6Kg 

linear isolator, K=16.295KN/m ＞64.3Hz ＞37.2 

QZS isolator ＞5.6Hz ＞8.0Hz ＞6.8 

4 Experimental verification and discussion 

A prototype of the QZS vibration isolator is fabricated, as presented in 错误!未找

到引用源。. In this study, the effectiveness of the isolator is verified by the sweeping 

frequency experiment. The load displacement curve of the bistable laminate is 

measured by a test machine. The bistable laminate is supported at corners and vertical 

displacement load is applied on the laminate central by the test machine. The 

measured load-displacement curve of bistable laminate is presented in 错误!未找到

引用源。. The measured maximum magnitude of the negative stiffness of bistable 

laminate is 19.18KN/m, which is larger than the FEA value. The error of FEA with 

respect to experiment may be results of imprecise material properties of CFRP, 

imprecise ply thickness of the specimen and inaccurate curing temperature control in 

the manufacturing process. The ideal spring in the isolator should have the stiffness of 

19.18KN/m. However, in experiment it is difficult to precisely match the stiffness of 

the spring. Instead, a spring with the stiffness of 20KN/m is installed in the isolator. 



Bistable 

laminate

Rigid 

platform

Threaded rod

Spring

Cross 

hinge

Nut

 

Fig. 10 Prototype of a quasi-stiffness vibration isolator, the dimension and lay-up of 

the bistable laminate are 80mm×80mm, [00.25mm/Al0.2mm/900.25mm] 
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Fig. 11 Measured load-displacement curve of the QZS vibration isolator 

The settlement of the sweeping frequency experiment is illustrated in 错误!未找

到引用源。. In experiment, the magnitude of excitation acceleration is maintained at 

30mg, the sweep speed is 2oct/min. The acceleration transmission rate of the linear 

spring is also tested in experiment by removing the bistable laminate, and is compared 

with the QZS vibration isolator. The experimental results are presented in 错误!未找

到引用源。 . Experiment shows that the QZS vibration isolator has improved 

acceleration transmission rate with respect to a linear spring. The maiximum 

acceleration transmission rate is about 5dB for the QZS vibration isolator, which is 

much lower than that of the linear spring, 12.5dB. The vibration isolating frequency 

range of the QZS vibration isolator starts form 39Hz, while the linear spring starts to 



isolate vibration at 44Hz. As the excitation frequency increases, the acceleration 

transmission rate of the QZS vibration isolator is similar with the linear spring. 

Nevertheless, the performance of the QZS vibration isolator is not as excellent as 

predicted by FEA.  
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Fig. 12 Sweeping frequency experiment settlement 
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Fig. 13 Sweeping frequency experiment results of the linear spring and the QZS 

vibration isolator 

To explain the performance degradation of the QZS vibration isolator, two possible 

reasons are investigated, including the error of linear spring stiffness and the assembly 

error. In experiment, the measured negative stiffness of the bistable laminate is -

19.18KN/m. However the stiffness of the spring in the isolator is 20KN/m, which is 

larger than the ideal value, i.e. 19.18KN/m. the influence of larger spring stiffness is 

investigated by FEA, and the predicted results are presented in 错误!未找到引用源。. 

FEA shows that the error of spring stiffness has significant negative influence on the 



performance of the isolator. With only +5% error of the spring stiffness, the snap 

phenomenon of the acceleration transmission rate after the peak point disappears. 

Both the acceleration transmission rate and the isolation starting frequency increase 

with the error of spring stiffness. 
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Fig. 14 Predicted influence of spring stiffness error on the performance of QZS 

vibration isolator, the 80mm×80mm, [00.25mm/Al0.2mm/900.25mm] bistable laminate is 

applied in the isolator, the excitation acceleration magnitude is 10mg, and the isolated 

mass is 0.2kg 

 

 Theoretically, at the static equilibrium state, the stiffness of the QZS vibrator is 

zero. In experiment, to balance the gravity of the isolated mass and the rigid platform, 

the distance between the bistable laminate central and the linear spring is adjusted by 

a nut, which is presented in 错误!未找到引用源。. The adjusting amplitude equals 

to the compressing of the linear spring under gravity. However, in experiment, it is 

unlikely to minimize the assembly error to zero. If there is an unbalanced gravity of 

0.02N, for instance, FEA shows that the bistable laminate central is 0.144mm off the 

equilibrium point, and therefore at the static state the stiffness of the vibration isolator 

is nonzero. The acceleration transmission rate curve of a QZS vibration isolator with 

assembly error is compared with an ideal isolator is presented in 错误!未找到引用

源。. It indicates that the assembly error also has significant negative influence on the 

performance of the QZS vibration isolator. Further, the performance of a QZS vibration 

isolator with both spring stiffness error and assemble error is predicted by FEA, and is 

presented in 错误!未找到引用源。. FEA result indicates that the spring stiffness error 

and the assembly error have accumulative negative influences on the performance of 

the vibration isolator. 
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Fig. 15 Predicted influence of assemble error on the performance of QZS vibration 

isolator, the 80mm×80mm, [00.25mm/Al0.2mm/900.25mm] bistable laminate is applied in 

the isolator, the excitation acceleration magnitude is 10mg, and the isolated mass is 

0.2kg 

 

Table. 3 Predicted major characteristics of QZS vibration isolator with spring stiffness 

error and assembly error 

 
Maximum acceleration 

transmission rate 

Valid working 

frequency range 

0% 15.08dB ＞5.6Hz 

Spring stiffness error (+5%) 19.97dB ＞13Hz 

Spring stiffness error (+10%) 26.16db ＞21Hz 

Assembly error (unbalanced gravity 

0.02N) 
20.46dB ＞11Hz 

Spring stiffness error(+5%)+ 

Assembly error(unbalanced gravity 

0.02N) 

28.22dB ＞17Hz 

 

FEA indicates that the QZS vibration isolator in ideal condition is quite efficient in 

isolating vibration from quite low frequency. Although in experiment the performance 



of the isolator is better than a linear spring, the measured efficiency is far below the 

designed purpose. The spring stiffness error and the assembly error are demonstrated 

to have significant negative influence on the performance of the isolator. However, the 

errors can not be fully eliminated in the fabricating process. Meanwhile, some other 

imperfections such as the imprecise ply thickness of bistable laminate, material 

defects and inaccurate curing procedure of bistable laminate, etc., may also have 

negative influences on the isolator’s performance. If the isolated mass varies, the 

isolator has to be tuned simultaneously to balance the gravity. Thus, the robustness of 

this QZS isolator is poor and is needed to be improved, and this is a common problem 

for other types of QZS isolators[8]. Nevertheless, by applying bistable laminates, the 

proposed QZS vibration isolator has advantages including the simplicity in structure 

and light weight, and these advantages are highly valued in the application on weight 

controlled equipments, such as satellites and spaceships.Experimental verification and 

discussion 

A prototype of the QZS vibration isolator is fabricated, as presented in 错误!未找

到引用源。. In this study, the effectiveness of the isolator is verified by the sweeping 

frequency experiment. The load displacement curve of the bistable laminate is 

measured by a test machine. The bistable laminate is supported at corners and vertical 

displacement load is applied on the laminate central by the test machine. The 

measured load-displacement curve of bistable laminate is presented in 错误!未找到

引用源。. The measured maximum magnitude of the negative stiffness of bistable 

laminate is 19.18KN/m, which is larger than the FEA value. The error of FEA with 

respect to experiment may be results of imprecise material properties of CFRP, 

imprecise ply thickness of the specimen and inaccurate curing temperature control in 

the manufacturing process. The ideal spring in the isolator should have the stiffness of 

19.18KN/m. However, in experiment it is difficult to precisely match the stiffness of 

the spring. Instead, a spring with the stiffness of 20KN/m is installed in the isolator. 

5 Summary 

A novel QZS vibration isolator which takes advantages of the negative stiffness 

properties of the bistable composite laminates is proposed. The design concept is 

based on the inherent negative stiffness of bistable laminates, the system exhibits zero 

stiffness at the equilibrium point. Principle of this QZS vibration isolator is introduced 

and its structural performance is simulated and verified by finite element analysis. The 

FEA analysis results show that the proposed isolator starts from quite low frequency 

within the working frequency range. The acceleration transmission rate drops 

immediately to a low value as long as the excitation frequency exceeds a critical value. 

A prototype of QZS vibration isolator is fabricated and verified in the experiment. 

Although the measured performance of the isolator is much better than a linear 

isolator, it does not achieve the numerical prediction given by the FEA analysis. The 

negative influences of spring stiffness error and the assembly error is demonstrated 

by FEA, which explains the dissatisfactory performance that was measured in the 



experiment. Both experiment measurement and FEA simulation results indicate that 

the robustness of the proposed QZS vibration isolator needs to be improved. 

Nevertheless, the distinct advantages of applying bistable laminates for constructing 

high efficient, simple structural form, and lightweight vibration isolators had been 

clearly approved. 
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