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Key points: 

 We develop a unified methodological framework to compare viable approaches for 

reconstructing and predicting globally gridded GRACE fields. 

 Predicted total water storage change fields fit better to the observations than those 

simulated by hydrological models. 

 Reconstructed total water storage change correctly reproduces a strong anomalous signal 

in the tropical river basin during the El Niño periods. 
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Abstract: The Gravity Recovery and Climate Experiment (GRACE) mission ended its 

operation in October 2017 and the GRACE Follow-On mission was launched only in May 

2018, leading to approximately one year of data gap. Given that GRACE-type observations 

are exclusively providing direct estimates of Total Water Storage Change (TWSC), it would 

be very important to bridge the gap between these two missions. Furthermore, for many 

climate-related applications, it is also desirable to reconstruct TWSC prior to the GRACE 

period. In this study, we aim at comparing different data-driven methods and identifying the 

more robust alternatives for predicting GRACE-like gridded TWSC during the gap and 

reconstructing them to 1992 using climate inputs. To this end, we first develop a 

methodological framework to compare different methods such as the Multiple Linear 

Regression (MLR), Artificial Neural Network (ANN), and AutoRegressive eXogenous 

(ARX) approaches. Second, metrics are developed to measure the robustness of the 

predictions. Finally, gridded TWSC within twenty-six regions are predicted and reconstructed 

using the identified methods. Test computations suggest that the correlation of predicted 

TWSC maps with observed ones is more than 0.3 higher than TWSC simulated by 

hydrological models, at the grid scale of 1° resolution. Furthermore, the reconstructed TWSC 

correctly reproduce the El Nino-Southern Oscillation (ENSO) signals. In general, while MLR 

does not perform best in the training process, it is more robust and could thus be a viable 

approach both for filling the GRACE gap and for reconstructing long-period TWSC fields 

globally when combined with statistical decomposition techniques. 

 

1. Introduction 

The Gravity Recovery and Climate Experiment (GRACE) mission, launched by the 

National Aeronautical and Spatial Administration (NASA) and the German Aerospace Centre 

(DLR) and flown from March 2002 to October 2017, was dedicated to observe temporal 

changes in the Earth’s gravity field (Tapley et al., 2004). Changes in gravity detected by 

GRACE can be used to derive estimates of Total Water Storage Change (TWSC) (Syed et al., 

2008; Landerer & Swenson, 2012), for hydrology studies (Chandan & Nagesh, 2018), 

drought or flood detection (Yirdaw et al., 2008; Chen et al., 2009; Leblanc et al., 2009; 

Frappart et al., 2012; Long et al., 2014; Thomas et al., 2014; Chao et al., 2016; Forootan et 

al., 2019) and for constraining water storage in hydrological models (Reichle et al., 2008; 

Van et al., 2014; Eicker et al., 2014; Tangdamrongsub et al., 2015; Khaki et al., 2017). 

Quantifying the total water budget, i.e. the balance of precipitation (P), evapotranspiration 

(E), runoff (Q) and the changes in total water storage at the Earth’s surface, is key to 

understanding the global water cycle among the Earth’s land, ocean, and atmosphere 

(Sheffield et al., 2009). Several studies also apply GRACE data to the measurement of ice 

mass loss (Velicogna, 2009; Khan et al., 2010; Velicogna et al., 2014; Mnhajeran et al., 2018; 

Ran et al., 2018; Tapley et al., 2019) and to the ocean mass balance (Hsu & Velicogna, 2017; 

Peralta & Woodgate, 2017; Chen et al., 2018; Jeon et al., 2018; Uebbing et al., 2019). 

However, after more than fifteen years in orbit, the GRACE mission ended its operation 

in October 2017 and its successor - the GRACE Follow-On (GRACE-FO) mission - was only 

launched in May 2018 leading to approximately one year of missing data. Although several 

alternative sensors and data processing techniques have been proposed to derive surface mass 

change maps prior to the GRACE period and during the gap between the two generations of 

GRACE missions, e.g., from satellite laser ranging (Nerem et al., 2012; Talpe et al., 2017), 

global GNSS inversions (Wu, 2003; Rietbroek et al., 2013), or from the Swarm satellite 
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mission (Jäggi et al., 2016; Bezděk et al., 2016; Lück et al., 2018; Teixeira Encarnação et al., 

2019), none of these appear to be able to provide a spatial resolution or accuracy comparable 

to that of GRACE. 

Several studies have introduced approaches in reconstructing TWSC prior to the GRACE 

era (i.e. before April 2002) by constructing empirical relationships between GRACE TWSC 

and related climatic and hydrological variables (e.g., rainfall, temperature, sea surface 

temperature, soil moisture, etc.). For example, a simple approach was to extend basin-mean 

GRACE total water storage change time series beyond the GRACE observation period based 

on an Artificial Neural Network (ANN, Rao, 2000) model, in which the ANN learns the 

relationship between GRACE TWSC and climatic or hydrological variables and this was then 

used to reconstruct basin-averaged TWSC time series over the past decades (Long et al., 

2014). Another approach was introduced in Forootan et al. (2014) to reconstruct gridded 

TWSC over a specific region. In their formulation, spatial patterns and temporal modes of the 

GRACE-derived TWSC were firstly separated, then TWSC fields were reconstructed by 

deriving the relations between the GRACE temporal modes and related predictors. The 

Independent Component Analysis (ICA, Forootan & Kusche, 2012) method was suggested to 

separate the GRACE signal and the AutoRegressive eXogenous (ARX, Ljung, 1987) method 

was applied to derive the relations and produce the reconstructions. Another approach, 

proposed by Humphrey et al. (2017), reconstructs total water storage changes at each grid 

point globally using the main climate indicators that were selected to be precipitation and 

temperature fields. They firstly decomposed the gridded GRACE TWSC time series, as well 

as precipitation and temperature, into a linear trend, an inter-annual component, a seasonal 

component, and a high-frequency residual component. They then reconstructed the de-

seasoned (i.e. inter-annual and residual) component of TWSC at the global scale by deriving 

relations between the de-seasoned component of GRACE TWSC and precipitation and 

temperature (the linear trend and seasonal components were not reconstructed). In their 

approach, they employed the Seasonal-Trend decomposition based on Loess (STL, Cleveland 

et al., 1990) procedure to decompose the GRACE and climate signals and use the Multiple 

Linear Regression (MLR, Myers, 1986) approach to derive the relationships between TWSC 

and its predictors. Recently, these authors have advanced their method to generate global de-

seasoned total water storage changes at a spatial resolution of 0.5°, at both daily and monthly 

scales over the period 1901 to present (Humphrey & Gudmundsson, 2019). Finally, a Deep 

Convolutional Neural Network (CNN) was recently applied in Sun et al. (2019) to predict 

spatial and temporal modes of mismatch between GRACE TWSC and water storage change 

as simulated by hydrological models, and to continue the correction of model-simulated 

TWSC fields. In their approach, the spatial representation of mismatch between GRACE 

TWSC and model-simulated TWSC was firstly predicted using maps of model-simulated 

TWSC, temperature, and precipitation at each epoch based on the CNN, then, total water 

storage changes was reconstructed by removing the predicted mismatch from model-

simulated TWSC map. 

Though all the mentioned studies are categorized as data-driven techniques and appear 

useful for reconstructing GRACE-like TWSC fields, to the best of our knowledge, no studies 

so far have compared their characteristics in a unified framework - i.e. for the same target 

region, with the same input climate data, the same temporal extension period (e.g., focusing 

on long-term trends or rather at seasonal scales) and spatial data resolution. Existing studies 

also did not yet assess the skills of these methods under identical conditions - e.g., length of 
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training and evaluation periods. However, with the GRACE data gap it is now of great 

concern to identify a reliable and repeatable approach to reconstruct a long and uninterrupted 

time series, and possibly also to reconstruct the TWSC prior to the GRACE period. The 

primary objective of this paper is therefore to provide a comparison of different methods for 

TWSC prediction or reconstruction. In this study, we place different methods in a unified 

methodological framework (Figure 1) to assess their skills based on identical climate input 

data, and finally identify a robust combination of them for the GRACE gap filling or for long 

term total water storage change reconstructions. 

As a case study, we then assess the skills of combinations of data-driven methods such as 

Principal Component Analysis (PCA, Wold 1987), ICA, Least Squares (LS, Durbin & 

Watson, 1992), STL, ANN, ARX, and MLR methods for extrapolating the GRACE gridded 

TWSC time series outside the GRACE period over twenty-six river basins using 

precipitation, land surface temperature, climate indices, and Sea Surface Temperature (SST) 

data as indicators. We identify the most robust combination of these methods for all study 

regions, and our tests indicate that the extrapolated (up to six years in our case) gridded total 

water storage change maps, in all study regions, have much higher correlation with the 

observed GRACE data as compared to simulated water storage changes from hydrological 

models. 

Following this introduction, in Section 2, the unified framework and the details of the 

applied data-driven methods are described. In Section 3, we introduce the GRACE, Swarm, 

climate, and hydrological data, and in Section 4, experiment results and discussions are 

provided for twenty-six study regions. We provide conclusions in Section 5. 

 

2. Methods  

2.1. Unified Methodological Framework 

For an unbiased comparison, we deem it necessary to place methods in a unified 

framework first, to assess their prediction skills with identical input and validation data (see 

Figure 1), for the same region and using the same metrics. 

In general terms, all methods utilize decomposition methods (usually ICA or PCA, 

Forootan et al., 2014) to partition the GRACE TWSC maps over a specific region and the 

suspected climate drivers (we employ precipitation, land surface temperature, climate indices, 

and SST) into spatial patterns and temporal modes. Then, time series analysis methods such 

as the STL procedure (Cleveland et al., 1990) or a simple Least Squares (LS) fitting method 

are used to further separate the individual modes of GRACE and climate data into typically a 

linear trend, seasonal, inter-annual, and the residual part. Third, the seasonal and de-seasoned 

(i.e. inter-annual and residual) components of the GRACE temporal modes are then 

reconstructed or predicted from empirical relationships between the temporal modes of 

GRACE and climate data as identified for a training period from either ANN, ARX or MLR 

method. Eventually, the GRACE-derived linear trend is commonly added to the reconstructed 

seasonal and de-seasoned components to extrapolate the full GRACE temporal modes. Here 

we would like to mention that linear and other long-term (e.g., accelerated) trends in GRACE 

data are often caused by ice and glacier melt, dam management, human water abstractions, 

and these factors could vary over time, so it may lead to misinterpretation when one simply 

extrapolates GRACE trends. Furthermore, the long-term trend (estimated over 10 years of 

GRACE data) could be affected by inter-annual and decadal variability, which might also 

bias the trends estimation. A focus on the reconstruction of total water storage trends would 
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require a specific regional treatment of all factors mentioned above, which is out of the scope 

of this study. Finally, GRACE-like gridded TWSC maps are reconstructed and predicted by 

combining the GRACE-derived spatial patterns with the reconstructed temporal modes. It is, 

however, unclear how the choice of the particular spatial and temporal decomposition 

methods affects the skills of the forecasted maps. Moreover, no systematic study exists which 

compares the sensitivity of the predictions or reconstructions to the type of empirical 

relationship which is trained from GRACE and climate data residuals. Therefore, in what 

follows we derive different combinations of methods and assess them within our unified 

framework. All possible method combinations are abbreviated as PCA-STL-ANN, PCA-

STL-ARX, PCA-STL-MLR, PCA-LS-ANN, PCA-LS-ARX, PCA-LS-MLR, ICA-STL-

ANN, ICA-STL-ARX, ICA-STL-MLR, ICA-LS-ANN, ICA-LS-ARX, and ICA-LS-MLR. 

The nomenclature of the abbreviations follows the 3-tier pattern XXX (Spatial-temporal 

decomposition method, Section 2.2.1) - YYY (time series decomposition method, Section 

2.2.2) - ZZZ (predictive method, Section 2.3). 

Here, we will focus on isolating the sensitivity of the prediction with respect to one 

group of techniques while keeping the other two groups consistent, i.e. we will firstly employ 

the method combinations PCA-LS-ANN, PCA-LS-ARX, and PCA-LS-MLR to compare the 

performances of three predictive models (i.e. ANN, ARX, and MLR) and identify the most 

robust method for the TWSC prediction, then this strategy will be applied to compare the 1) 

two spatio-temporal decomposition techniques ICA and PCA or 2) two time-series 

decomposition techniques LS and STL. Figure 1 visualizes the flow of computation via these 

various combinations, here we will select several (e.g., m) climate predictors for each 

decomposed component (i.e. seasonal, inter-annual, or residual) of detrended GRACE total 

water storage change temporal modes. For instance, if we identify six dominant (as to 

reconstruct a given percentage of the signal energy, e.g., 95%) GRACE temporal modes for a 

specific region, then we will reconstruct eighteen (6 modes multiplied by 3 components) 

GRACE components using m×18 relevant predictors. 

 

2.2. Signal Separation Methods 

2.2.1. Spatio-temporal Decomposition 

The GRACE maps have a resolution of approximately 300 km, but it would be 

computationally expensive and not justifiable to try to predict or reconstruct unobserved 

TWSC at each (e.g., 100 km) grid point globally. Thus, for dimensionality reduction, we 

assume one will use a statistical decomposition method to identify the main patterns and 

modes of GRACE-observed TWSC, and continue with predicting only their temporal 

evolution. In the end, gridded GRACE signals will be reconstructed assuming that the 

dominant spatial patterns do not change over time. This is a caveat of all methods; however it 

is a common assumption in the reconstruction of unobserved climate data which e.g. has been 

used for GRACE in Becker et al. (2011) and Forootan et al. (2014), or for sea level 

reconstruction from tide gauges in Church et al. (2004). 

The PCA method seeks to separate the original data (i.e. GRACE and climate signals) 

into orthogonal spatial patterns (EOFs) and their associated temporal modes (EOF modes) as 

follows (Wold, 1987): 

 =n t n n n tX E T    (1) 

The data matrix n tX  , with n rows for each spatial grid cell and t columns for each 



 

 

©2020 American Geophysical Union. All rights reserved. 

epoch, represents the mean-centered original data. Columns of 
n nE 

 contain the separated 

spatial patterns and rows of 
n tT 

 the related temporal evolution. The first r dominant modes 

will contribute to the majority of the original signal (Wold, 1987). In this case, we choose r as 

to retain 95% of the total signal variance. The original matrix can be approximately restored 

by: 

 ˆ ˆ ˆ=n t n r r tX E T    (2) 

where ˆ
n tX   represents the restored signal, columns of ˆ

n rE  are the r dominant EOFs and rows 

of ˆ
r tT   are the associated EOF modes.  

Forootan & Kusche (2012) suggested to replace the PCA method by Independent 

Component Analysis (ICA) in GRACE signal decomposition, motivated by the assumption 

that physically independent real-word processes will more likely exhibit statistical 

independence than orthogonality (Forootan et al., 2014). In the ICA method one additionally 

rotates the dominant EOFs and the temporal modes with a rotation matrix R to maximize 

their statistical independence: 

 ˆ ˆ ˆ ˆ ˆ= T

n t n r r r r r r tX E R R T       (3) 

where the rotated ˆ ˆ
n r r rE R   

are then denoted as independent components (ICs) in the context, 

and the ˆ ˆT

r r r tR T   represent the temporal modes (IC modes) identified by the ICA method. 

Several methods have been proposed to determine the rotation matrix R, based on different 

procedures to define statistical independences (e.g., minimizing third-order or fourth order 

statistical cumulants). Here we employ the method introduced by Cardoso (1999) and 

implemented in Forootan & Kusche (2012). 

 

2.2.2. Time-series Decomposition 

In order to retain and extrapolate the observed trends, and to apply statistical prediction 

techniques on the anomalous signals only, one commonly partitions the temporal evolution of 

observed EOF/IC modes into 1) a linear trend, 2) inter-annual, 3) seasonal, and 4) residual 

signals. These components are then considered individually. When decomposing time series 

into seasonal, inter-annual, etc. components, observation errors are typically not taken into 

account and they are not considered in this study as well. Drawing on Figure 1, we consider 

the Least-Squares (LS) and Seasonal-Trend decomposition based on Loess (STL) methods to 

estimate these deterministic signals in the observed modes. In the LS method, linear trend, 

inter-annual, and seasonal components are estimated e.g. by linear regression, segmented 

cubic polynomial function, and annual sine-waves, and the residual or anomalous signal is 

obtained by removing these. In the segmented cubic polynomial, the first step is to partition 

the total time series into several shorter time series (or sub-series), then the second step is to 

fit each sub-series using a cubic polynomial function: 

 
2 3( ) , 1,2,3...,y t a bt ct dt t n       (4) 

where ( )y t , t=1,2,3,…,n represent the segmented sub-series, t is the time and n represents the 

length of the sub-series. In this case, we set n=19 months corresponding to the smoothing 

parameter that was used in the STL procedure for decomposing the inter-annual component 

as described in Cleveland et al. (1990). 

STL is a filtering procedure, which was introduced by Cleveland et al. (1990) and 

applied by e.g. Baur (2012); Frappart et al. (2013); Hassan & Jin (2014); and Humphrey et al. 

(2016) to GRACE data, it allows decomposing a time series into three components trend (i.e. 
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linear trend and inter-annual in this study), seasonal, and residual: 

 c c cY T S R     (5) 

where Y  is the original time series; cT , cS , and cR  represent the trend, seasonal, and 

residual components separated from the original time series, respectively; c is the cycle-index 

in the inner loop of the STL procedure (Cleveland et al., 1990). The trend decomposed by 

STL comprised of linear trend and inter-annual components, so we then separate the linear 

trend using linear regression and the inter-annual is obtained by removing the linear trend 

from the STL-derived trend. Thus, equation (5) can be expressed as: 

 c c c cY L I S R      (6) 

where cL  and cI  are the linear trend and inter-annual components of the original time series. 

In this study, we implemented STL as in Cleveland et al. (1990). 

STL, which consists of applying a sequence of smoothing operations, is computationally 

more intensive and generally retains more detailed features of the acquired time series when 

fitting seasonal components as compared to the LS method. Such difference between STL 

and LS may also lead to different prediction results when applying them in the prediction or 

reconstruction of GRACE total water storage changes as described in Section 2.1. In this 

study, we employ and compare both LS and STL methods and assess their performances for 

the TWSC predictions. 

 

2.3. Three Predictive Models 

Predictive models seek to learn a relationship between a group of predictors (here, 

precipitation, temperature, sea surface temperature fields, and climate indices) and the target 

variable (gridded GRACE TWSC) (Bishop, 2006). Previous studies have successfully 

employed Artificial Neural Network (ANN), AutoRegressive eXogenous (ARX), and 

Multiple Linear Regression (MLR) models to predict and reconstruct GRACE TWSC time 

series. In this study, we place these three models in a unified framework and compare them 

with the focus on prediction of GRACE total water storage changes. 

 

2.3.1. Artificial Neural Network (ANN) Model 

The Multi-Layer Perceptron (MLP) ANN model has been proposed in the past for 

predicting GRACE time series (Sun & Alexander, 2013). We implement this ANN model 

therefore for learning relations between decomposed components (i.e. seasonal, inter annual, 

and residual) of detrended temporal modes in GRACE data and the supposed climate 

predictors. In the most simple MLP model there are three layers i.e. the input, hidden, and 

output layers (Bishop, 2006; Long et al., 2014). In this study, the output layer of the ANN 

model is separately chosen to represent each decomposed component of detrended GRACE 

temporal modes and the inputs (predictors) comprise selected m sensitive components of 

climate temporal modes. The selected climate components (predictors) are determined based 

on their correlations as related to each target GRACE component - i.e. we select the 

predictors by retaining the most correlated climate components. The number of input 

'channels' is set to m=3 because we find no obvious improvement when using a larger number 

of predictors. The hidden layer consists of u artificial neurons and each neuron represents a 

sum of weighted predictors. We set the number of artificial neuron to u=7 in the hidden layer 

based on the criterion as described in Forman et al. (2014). It is difficult to reasonably 
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initialize the weights of the artificial neurons in the ANN training process; such that we 

randomly choose start weights hundreds of times and repeat the training process, in order to 

finally generate the final prediction as a mean over several ANNs with different start weights. 

In this case, we write the ANN codes based on the Matlab_R2014b neural network function 

to develop all MLP networks for this study. 

 

2.3.2. AutoRegressive eXogenous (ARX) Model 

The ARX model, which formulates another type of relationships between a group of 

inputs and the output, is governed by a system of linear equations (Ljung, 1987): 

 ,

1 1 1

( ) ( ) ( ( 1)) ( )
a bn nm

i q l q

i q l

y t a y t i b x t l t
  

         (7) 

where ( )y t , t=1,2,…,n represent the target variables, t is the time epoch and n is the length of 

the time series; ( )qx t , q=1,2,…,m represent m channels of inputs (m=3 in this case); 
an  and 

bn  are the orders of the autoregressive exogenous model with respect to the output and input 

respectively. ( )t  allows for a random Gaussian-noise input. Here, ia  and 
,q lb  are the 

coefficients that need to be estimated in the training step using both inputs and output data; 

thus they play a role similar to the weights as in the artificial neural network approach. In this 

case, we set both an  and bn  to 3 as discussed in Forootan et al. (2014). After obtaining ˆ
ia , 

,
ˆ
q lb ,

 
ˆ

an , and ˆ
bn  one can predict the target variable beyond the training period based on these 

coefficients and parameters: 

 
ˆ ˆ

,

1 1 1

ˆˆ ˆ ˆ( ) ( ) ( 1)
a bn nm

n i n q l q n

i q l

y t a y t i b x t l
  

         (8) 

where ˆ( )ny t  represents the predictand of the ARX model at the epoch nt . More details about 

the application of the ARX model to predict GRACE temporal modes can be found in 

Forootan et al. (2014). In this case, we write the ARX codes by referring to the equations as 

described in Forootan et al. (2014) and we use identical inputs and output data as employed 

in the ANN process (see Section 2.3.1) to train the ARX model and to extrapolate the 

GRACE TWSC time series - i.e. we choose three sensitive components of climate temporal 

modes to predict and reconstruct each decomposed component of detrended temporal modes 

of GRACE TWSC using the autoregressive exogenous model (equation (7) for training and 

equation (8) for testing/predicting). 

 

2.3.3. Multiple Linear Regression (MLR) Model  

The MLR model prescribes linear relationships between multiple input and one output 

variables (Sousa et al., 2007). In this case, we use the multiple linear regression function from 

Matlab_R2014b. The inputs will be three selected components of climate temporal modes 

while the output will be the decomposed component of detrended GRACE temporal modes. 

Again, for a fair comparison, we will employ identical input and output data as used in the 

ANN and ARX models to train the MLR representation. Here, we choose the least squares 

method for the estimation of the MLR coefficients, and then we predict the target variables 

based on the estimated coefficients. 

 

2.3.4. Comparison 

The artificial neural network model can fully derive nonlinear relationship between the 
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input and output data, but it is difficult to optimally determine the number of artificial 

neurons and it may lead to overfitting the problem. Furthermore, it is computationally 

intensive to repeat the ANN training process for improving the predictand. The ARX and 

MLR models both employ linear relations, so they cannot be expected to predict nonlinear 

relationships too well. Within the ARX model, each predicted value depends on the nearest 

former predictand - i.e. ˆ( )ny t  in equation (8) is predicted by using ˆ( )ny t i  i=1,2,…, na - so 

the predicting error of the autoregressive exogenous model is easily accumulated over time. 

Therefore, the multiple linear regression method will be likely a better choice on the 

condition that there are no nonlinear relationships between the input and output data. 

 

2.3.5. Error Perturbations 

In order to study the error propagation characteristics in the three predictive models, we 

generate a series of Gaussian-like uncertainties to perturb each target variable (i.e. GRACE 

seasonal, inter-annual, or residual component) based on the Monte Carlo approach (Challa & 

Hetherington 1988). The perturbed target variables could be expressed by the equation as 

follows: 

 ( ) ( ) ( ), 1,2,3,...,i iP t G t t t n     (9) 

where ( )iP t  (t=1,2,3,…,n) is the i-th perturbed GRACE TWSC, i is the count of iteration 

times (or random sample number); t is the time epoch and n is the length of the GRACE time 

series; ( )G t represents unperturbed GRACE TWSC; and ( )i t  is the Gaussian-like 

uncertainties generated by the Monte Carlo approach. Here, we first predict the GRACE-like 

gridded total water storage changes using the unperturbed GRACE TWSC as target variable, 

then we predict another group of GRACE-like gridded TWSC using the perturbed GRACE 

TWSC as target variables, and the error propagation bars are estimated by the mismatch 

between the unperturbed and perturbed GRACE-like gridded TWSC: 

 2

1

( ) ( ( ) ( )) , 1,2,3,...,
m

i

i

B t PT t UT t t n


     (10) 

where ( )B t  is the error propagations in the predictive model, t is the time epoch; ( )iPT t  is 

the GRACE-like gridded TWSC predicted using the i-th perturbed GRACE TWSC as target 

variable and ( )UT t  is the GRACE-like gridded TWSC predicted by the unperturbed GRACE 

TWSC; m represents the sum of iteration times of error perturbations. 

 

3. Data and Processing 

3.1. Total Water Storage Change Data 

We use the RL06 GRACE monthly mascons, developed with a 1° resolution using 

Tikhonov regularization in a geodesic grid domain (Save et al., 2016; Save & Himanshu, 

2019) by the Center for Space Research (CSR), between April 2002 and June 2017 as the 

target variables. The storage anomalies, which capture all the signals observed by GRACE 

within the measurement noise level, are given in equivalent water thickness units (cm) and 

the correlated error has been intrinsically removed, thus, these products do not need to be 

additionally destriped or smoothed. In this study, we unify the spatial resolution of all input 

data to 1°×1° (corresponding to the CSR mascons) to eliminate inconsistent resolutions 

between the input and output data. 

The GRACE Follow-On (GRACE-FO) mission has been operated since May 2018 and 

we use the GRACE-FO TWSC as a criterion to evaluate the accuracy of the predicted TWSC. 
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The GRACE-FO temporal gravity field models, from June 2018 to December 2018, derived 

by the CSR are employed to estimate the GRACE-FO TWSC over all study regions based on 

the methods and strategies as described in Li et al. (2018).  

During the gap of the two GRACE missions, the Swarm satellites may serve as an 

alternative to derive Earth’s gravity field models albeit at much lower resolution. As a 

verification to our predicted TWSC, the RL06 Swarm time-variable gravity field models 

from December 2013 to December 2018 calculated by Lück et al. (2018), with a max degree 

of 40, are also employed to estimate the Swarm total water storage changes. Here, we only 

use the Swarm gravity field models complete to degree and order ten, to suppress excessive 

noise at higher orders.  

 

3.2. Climate Data 

3.2.1. Global Precipitation 

The Climate Prediction Center (CPC) global daily unified gauge-based analysis of 

precipitation (Chen et al., 2008), with a spatial resolution of 0.5°, are employed in this study. 

The monthly precipitation is obtained by averaging the CPC global daily precipitation 

corresponding to the GRACE time interval, and both daily and monthly precipitation from 

October 1991 to March 2019 are used to reconstruct and predict the GRACE-like TWSC out 

of the GRACE period. For improving the correlation between precipitation and GRACE 

temporal mode de-seasoned terms (i.e. inter-annual and residual), we reconstruct the de-

seasoned components of monthly precipitation temporal mode using the daily precipitation 

temporal mode based on a time delay parameter as introduced by Humphrey et al. (2016). 

The spatial resolutions of both daily and monthly precipitation are made consistent to 1°. 

 

3.2.2. Global Land Surface Temperature 

Global Historical Climatology Network version 2 and the Climate Anomaly Monitoring 

System (GHCN CAMS), developed at CPC, National Centers for Environmental Prediction 

(NCEP), is a monthly global land surface temperature dataset (0.5°×0.5°) from 1948 to near 

present (Fan & Dool 2004). We use this dataset between October 1991 and March 2019 as 

one of the input climate data to reconstruct and predict GRACE-like TWSC time series. As 

discussed before, the spatial resolution of this dataset is sampled onto 1° cells. 

 

3.2.3. Sea Surface Temperature (SST) 

Sea surface temperature drives ocean evaporation, which in turn affects atmospheric 

moisture transport and, eventually, rainfall over land areas and water storage. For example, 

the temporal evolution of GRACE TWSC in west Africa is highly correlated with the SST 

anomalies in the Pacific, Atlantic, and Indian oceans (Forootan et al., 2014). To take 

advantage of this kind of climate data, we use the SST in several oceans and seas that are 

located near the study regions (Figure 2) as one kind of input data. In our case, the monthly 

Optimum Interpolation (OI) sea surface temperature, with a resolution of 1°, provided by 

National Oceanic and Atmospheric Administration (NOAA) is employed (Reynolds et al., 

2002). 
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3.2.4. Climate Indices 

Climate indices are by definition constructed to capture large-scale variability in fields 

such as SST or surface pressure, which are related to land precipitation and temperature 

through atmospheric teleconnections. Therefore, several publications (e.g., Anyah et al., 

2018) have shown that they play a key role in representing inter-annual GRACE water 

storage variations. In this study, seventeen climate indices - i.e. Multivariate ENSO Index 

(MEI), North Atlantic Oscillation (NAO), Extreme Eastern Tropical Pacific SST (Niño 1+2), 

Eastern Tropical Pacific SST (Niño 3), Central Tropical Pacific SST (Niño 4), East Central 

Tropical Pacific SST (Niño 3.4), North Tropical Atlantic SST Index (NTA), Oceanic Niño 

Index (ONI), Pacific Decadal Oscillation (PDO), Pacific North American Index (PNA), 

Quasi-Biennial Oscillation (QBO), Southern Oscillation Index (SOI), Tropical Northern 

Atlantic Index (TNA), Trans-Niño Index (TNI), Tropical Southern Atlantic Index (TSA), 

Western Hemisphere Warm Pool (WHWP), and Western Pacific Index (WP) - are involved 

as another kind of input data. 

 

3.3. Hydrological Models 

Hydrological models simulate soil moisture, near surface air temperature, accumulated 

snow, water/energy flux, and other hydrological components on land. Several studies have 

shown that model outputs relate well with GRACE TWSC although model schemes do not 

include, e.g., all water reservoirs, because the temporal evolution of the different water 

reservoirs is often highly connected (Humphrey et al., 2017). We use model outputs, 

including the NASA Global Land Data Assimilation System (GLDAS) NOAH 10M series 

model (Rodell et al., 2004) and CPC soil moisture (Fan et al., 2004) from January 1992 to 

December 2018, to evaluate the reliability of the reconstructed and predicted total water 

storage change. Moreover, we also employ the newest WaterGAP Global Hydrology Model 

(WGHM) version 2.2d results, over January 1992 to December 2016, in this study. Compared 

to the 2.2a version (Döll et al., 2014) the water balance is closed, the calibration routine is 

changed, and the human water use values and the groundwater recharge algorithm is 

improved. 

 

4. Results 

We choose twenty-six major river basins of the world, as delineated in 

https://www.grida.no/resources/5782, as the study regions (Figure 2). For representing the 

amplitude of GRACE TWSC, we calculate the Root-Mean-Square (RMS) of each gridded 

CSR mascon over the study regions (Figure A1). To make full use of the SST data in the 

TWSC reconstruction and prediction, we divide the global sea surface temperature data into 

fourteen patches as shown in Figure 2 and use each of them as one of input data. 

 

4.1. Signals Separated from the GRACE Data 

4.1.1. Dominant Temporal Modes of GRACE Total Water Storage Change 

As discussed in Section 2.2.1, the dominant modes identified by the PCA or ICA 

methods contribute to the majority of the GRACE signal. We predict each selected GRACE 

EOF/IC temporal mode individually based on the methods as described in Section 2 and find 

that forecasting modes with less energy (i.e. less variance explained of the GRACE signal) 

tend to have relatively higher standard errors as estimated by the CSR mascons, thus, while 

https://www.grida.no/resources/5782
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choosing more dominant EOF/IC modes in the TWSC prediction will reduce the signal 

leakage (i.e. signals from discarded modes), this will also increase the prediction 

uncertainties. Consequently, it is difficult to choose the optimal number of modes to be 

selected. An optional approach could be that one first predicts the TWSC based on a different 

number (e.g., from 3 to 10) of retained modes, and then uses a GRACE solution to test the 

uncertainties of TWSC predicted by these different numbers of modes to identify a best 

number for each study region. It is important to highlight that although the GRACE solution 

cannot be viewed as an unambiguous reference, it could be used to estimate the accuracy of 

the prediction because the reference (i.e. GRACE solution in this study) should be 

accompanied by a ‘conservative error estimate’. It is clear that further tuning the methods 

would improve the reconstruction/prediction skills for a specific basin. But for applying our 

approach globally, i.e. to a large number of basins, tuning for each basin would not be in the 

interest of repeatability, and it is not clear how robust such over-tuned approaches would be. 

Thus, in what follows we rather define unified criteria for all study regions based on 

extensive testing on only a few representative basins. Here, we set a unified criterion - i.e. the 

number of modes that jointly explain at least 95% of the total variance - to identify the 

number of dominant modes automatically by the algorithm. We note that we set the number 

of selected climate modes equal to the number of selected GRACE modes just to minimize 

the inconsistency between the input and output data, but this is not strictly required for the 

algorithm. 

 

4.1.2. Linear trend, Seasonal, Inter-annual, and Residual Components of the Dominant 

GRACE Temporal Modes 

After identifying the dominant EOF/IC modes, we decompose each temporal mode of 

both GRACE EOFs and ICs using the LS or STL method as described in Section 2.2.2. The 

decomposed components for a case region (i.e. the Amazon basin) are shown in Figure A3. 

These results indicate that there is no large difference between the LS and STL methods for 

decomposing the linear trend and inter-annual components, and the two methods perform 

almost the same in separating the seasonal component from the temporal mode which has a 

strong periodicity (e.g., temporal modes of GRACE EOF1 and EOF2 in Figure A3). When 

decomposing a high frequency time series, the LS and STL methods exhibit some differences 

in separating seasonal signals - i.e. seasonal signals separated by STL method show more 

detailed features and larger oscillations (e.g., the temporal mode of GRACE EOF6 in Figure 

A3). 

 

4.2. Prediction and Reconstruction of Total Water Storage Change for Twenty-six 

Study Regions 

4.2.1. Selection of Climate Inputs for the Total Water Storage Change Prediction 

In this study, we predict and reconstruct the inter-annual, seasonal, and residual 

components of significant GRACE TWSC temporal modes for each study region based on 

the predictive models that was introduced in Section 2.3. These predictive models seek to 

derive the relationship between the input and output data. Typically, there are a few months 

of lag time between the climate variations and GRACE TWSC, thus, our algorithm is 

designed to automatically move each climate driver (i.e. the inter-annual, seasonal, or 

residual of climate temporal modes) time series for a few months (i.e. 0 to 3 months) to 
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search for the strongest correlation, and for this we also interpolate the GRACE TWSC time 

series to fill the missing data. In addition, we reconstruct the de-seasoned components of 

precipitation temporal modes based on a time decay parameter that was developed by 

Humphrey et al. (2016) to further improve the correlation between the precipitation and 

GRACE components. 

For selecting the ‘best’ input data, the correlation coefficients between each target 

variable (i.e. the inter-annual, seasonal, or residual of GRACE EOF and IC temporal modes) 

and related climate drivers are automatically computed and sorted by our algorithm, e.g., for 

a specific basin we calculate the correlation coefficients between the inter-annual component 

of GRACE EOF1 mode and inter-annuals from precipitation, land temperature, SST (in 

fourteen different oceans and seas) EOF modes, and seventeen climate indices and sort them 

by size, then this process is successively applied to GRACE EOF1 mode seasonal, GRACE 

EOF1 mode residual, GRACE EOF2 mode inter-annual, and so on. Here, the sensitive input 

data is sorted only by correlation coefficients, and for the selection this method may reject a 

predictor that is not very highly correlated but brings new information compared to other 

highly correlated predictors. So, before the selection of inputs, we use the stepwise regression 

method (Summers, 1985) to remove the highly correlated predictors which do not bring 

sufficient new information. In addition, we would like to make a cautionary note that 

correlation between climate input and the GRACE data does not necessarily represent 

causation, and in this case our (like any other similar) techniques may derive a ‘right answer 

due to the wrong reasons’, but of course may fail in extrapolating well. 

As discussed in Section 2.3, we choose three sensitive climate drivers as predictors to 

extrapolate each target variable. Furthermore, we identify one most sensitive climate driver 

for each target variable as listed in Table 1. We find that the temporal evolution of GRACE 

total water storage change seasonal component is highly related to the seasonal component of 

SST (see the third column in Table 1), and the time series of GRACE TWSC inter-annual and 

residual components are strongly correlated with the inter-annual and residual of both sea 

surface temperature and precipitation variations (see the fourth and fifth columns in Table 1). 

 

4.2.2. Metrics for Methods Comparison and Estimation of Prediction Uncertainties  

4.2.2.1. Criteria for Identifying the Most Robust Method 

There are more than fifteen years of GRACE data altogether (April 2002 - June 2017). In 

the data processing, we set the training section to April 2002 - June 2011 and set the testing 

period to July 2011 - June 2017, i.e. we use the GRACE data from April 2002 to June 2011 to 

train the predictive models and to test the uncertainty of the next six years (i.e. July 2011 - 

June 2017) of prediction. Then, we use the CSR mascons to calculate the standard error of 

both training and testing TWSC. We note that one can determine ‘absolute’ errors, including 

the systematic and random errors, only in the training phase. In the computations, we set the 

testing section within the GRACE period just for assessing the uncertainty of predicted 

TWSC. As discussed in Section 3.1, the CSR mascon contains the GRACE measurement 

noises. Several studies (e.g., Landerer & Swenson, 2012) have assessed the measurement 

errors that are contained in the GRACE-derived total water storage changes. These 

measurement errors may falsify the validation between the predicted/reconstructed TWSC 

and the CSR mascons, but it is difficult to exactly determine the exact influences of GRACE 

measurement errors on the TWSC prediction. Through we do not assess this influence, one 
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can estimate to what extent the GRACE measurement error may affect the predicted TWSC 

by computing the root-sum-square of the GRACE measurement errors and the prediction 

errors. 

As discussed in Section 3, three groups of data-driven techniques - i.e. 1) Spatio-

temporal decomposition techniques ICA and PCA; 2) time-series decomposition techniques 

LS and STL; and 3) machine learning methods ANN, ARX, and MLR - are employed in this 

study. Here, we firstly fix the Spatio-temporal decomposition and time-series decomposition 

techniques to PCA and LS and compare the robustness of three machine learning techniques 

ARX, ANN, and MLR in twenty-six river basins. 

In this case, we used three criteria - i.e. 1) standard error of TWSC, 2) correlation 

coefficients of TWSC, and 3) correlation coefficients of de-seasoned TWSC as used in 

Reichle et al. (2004) - to identify the most (or more) robust method. Table 2 lists the standard 

errors of training and testing TWSC by using the three machine learning methods as 

evaluated by the CSR mascons at both grid and basin scales. The correlation coefficients of 

training/testing TWSC and TWSC anomaly (i.e. de-seasoned TWSC) as compared to the 

CSR mascons are listed in Table 3 and Table 4 respectively. We here summarize the optimal 

methods - i.e. methods with minimal standard error or maximal correlation coefficients at the 

grid scale - for each river basin and highlight them in blue fonts (see Table 2 - Table 4). 

Within the training section, the ANN model simulates the TWSC best in 18 river basins 

as estimated by the criterion of standard error (see fourth column in Table 2) and simulates 

the TWSC best in 19 regions and 20 regions assessed by the other two criteria as shown in 

Table 3 and Table 4. ARX performs best in 12 basins, 16 basins, and 10 basins within the 

training phase as assessed by the criteria standard error of TWSC, correlation coefficients of 

TWSC, and correlation coefficients of de-seasoned TWSC respectively, and MLR simulates 

the TWSC worse in all river basins than ARX or ANN (see column 2 to column 7 in Table 2 

- Table 4). These results indicate that MLR performs worst and ANN performs best within 

the training period. 

The MLR method, in the testing period, shows the best skill in 19 regions, 18 regions, 

and 19 regions as evaluated based on the three criteria, respectively. Obviously, the ANN and 

ARX models perform worse than MLR in the testing period as listed through column 8 to 

column 13 in Table 2 - Table 4. Here, we also calculate the average standard error or 

correlation coefficient over 26 river basins for each predictive method and in both training 

and testing period as listed in last rows of Table 2 - Table 4. All these results indicate that 

though MLR perform worst within the training phase, it is the most robust method for the 

prediction. 

For ANN and ARX, we use a group of unified empirical parameters for predicting the 

TWSC grids. With these empirical parameters (e.g., number of input predictors), ANN and 

ARX perform better than MLR in some regions while they perform worse in the other 

regions, indicating that these parameters are not optimal in all study regions and might lead to 

some overfitting problems. One alternative is to try all different combinations of these 

parameters for ANN and ARX and find a best combination for each study region, this may 

suppress the overfitting problem but will also dramatically expand the testing works and it is 

computationally expensive to apply them to all river basins globally. Therefore, we suggest 

one to try ANN and ARX if he/she aims at predicting only a few basins, and the MLR 

method is a more robust alternative if one wants to predict the TWSC over a large number of 

river basins. After our tests with three predictive methods, we then choose the spatio-
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temporal decomposition and machine learning techniques to PCA and MLR to compare the 

performances of STL and LS in all study regions. We use the CSR mascons and the three 

criteria to evaluate the precision of testing/training TWSC from STL and LS methods (see 

Table B1-Table B3) and we find that the LS method performs better in most of the cases 

compared to STL in those study regions. Finally, we use the same metric to compare the PCA 

and ICA methods. As listed in Table B4 - Table B6, the standard errors of testing TWSC 

from PCA are smaller than those from ICA and the correlation coefficients of both TWSC 

and de-seasoned TWSC from PCA are higher in most river basins, indicating that PCA is 

more robust than ICA for such application. 

 

4.2.2.2. Error Propagation in Three Predictive Models 

In this case, for studying the error propagation characteristics in three predictive models, 

we first repeat the error perturbations and TWSC prediction and calculate the error bars for 

the testing TWSC at grid cell scale as described in Section 2.3.5. Then we divide the study 

period into different sections, i.e. training period, the first year past the training period, the 

second year past the training period, and etc. Figure A4 shows the propagated errors in each 

divided time section for the three predictive models at the grid scale. As expected, we find 

that the error bars, from both ANN and ARX methods, in the testing sections (first yr. - sixth 

yr.) are larger than those in the training section (the second and third columns in Figure A4) 

and the error bars from the MLR method are almost constant in both training and testing 

sections (the first column in Figure A4), indicating that the multiple linear regression method 

is more stable than the ANN and ARX methods in coping with random input uncertainties. 

This enhances our confidence to choose the MLR method for the prediction and 

reconstruction. In addition, the results also show that the distribution of propagated 

uncertainties in predictive methods depend on the amplitude of gridded GRACE TWSC, such 

as the GRACE total water storage changes with larger amplitudes (e.g., TWSC in the middle 

of the Amazon basin) also show larger uncertainties (Figure A4).  

 

4.2.2.3. Prediction Uncertainties of the Identified Methods 

Based on the testing results in Table 2 - Table 4, Table B1 - Table B6, and Figure A4, the 

combination of PCA, LS, and MLR methods are identified to be the most robust combination 

for extrapolating the GRACE TWSC map.  

Figure 3 shows the standard errors of both training and testing GRACE-like gridded total 

water storage changes as evaluated by CSR mascons at the grid scale, and we find that the 

regions with larger amplitude of TWSC also show larger standard errors.  

Figure 4 shows the correlation coefficients of training TWSC, testing TWSC, and TWSC 

simulated by the hydrological models as related to the GRACE mascons over twenty-six river 

basins. The averaged correlation coefficients (i.e. averaging the correlation coefficients of all 

grids in twenty-six river basins) of training TWSC, testing TWSC, GLDAS TWSC, CPC 

TWSC at the grid scale are 0.91, 0.86, 0.51, and 0.45 as compared to the CSR mascons. We 

also remove the seasonal cycles of the related TWSC at the grid scale as described in Reichle 

et al. (2004) and obtain the correlation coefficients of de-seasoned/anomaly TWSC signals 

(see  

Figure 4e -  

Figure 4h), the correlation coefficients of anomaly signals are 0.77, 0.68, 0.44, and 0.46, 
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respectively. Results indicate that both training and testing GRACE-like gridded total water 

storage changes have much stronger correlations with the GRACE mascons than the model-

simulated TWSC. Furthermore, both training and testing TWSC time series at the basin scale 

fit the CSR mascons well in almost all study regions as shown in Figure 5. 
 
4.2.2.4. Identification of the Optimal Region Size 

In this study, we apply our methods to all river basins respectively. For understanding at 

which basin size the predicting methods work best, we firstly divide the Europe-Asia 

continent into different sizes of sub-continent (see Figure 6), then the identified methods 

combination is applied for the TWSC prediction in each sub-continent. Again, standard errors 

are derived by comparing to the CSR mascon solution as shown in Figure 6. The averaged 

standard errors in Figure 6 (a) - Figure 6 (d) are 2.86, 2.88, 2.74, and 2.84 cm respectively, 

indicating that dividing the Europe-Asia continent into four parts (~10-15 million km2 per 

sub-continent) will be an optimal option for the prediction of TWSC based on our identified 

methods. Thus, we suggest an optimal region size 10-15 million km2 for readers who want to 

predict the TWSC using our method. 
 
4.2.3. Extrapolating the GRACE Total Water Storage Change Outside the GRACE 

Period 

As discussed in Section 4.2.2, the PCA, LS, and MLR methods are identified to predict 

and reconstruct the GRACE-like gridded total water storage change over twenty-six river 

basins, i.e. in each river basin 1) we use the PCA method to identify significant modes of the 

GRACE and climate signal; 2) we use the LS method to separate inter-annual, seasonal, and 

residual components of GRACE and climate temporal modes; 3) we use the separated 

components from GRACE and climate data between April 2002 and June 2017 to train the 

multiple linear regression model, and then predict the GRACE-like gridded TWSC over July 

2017 to December 2018 and reconstruct TWSC from January 1992 to March 2002. El Nino-

Southern Oscillation (ENSO) represents natural variability in the climate system, which may 

cause some climate extremes especially in the tropical regions (Juan et al., 2016). Isolating 

the de-seasoned signal in total water storage change enables one to detect climate extreme 

events such as hydrological drought (Thomas et al., 2014). In an attempt to investigate the 

response of water storage to ENSO, we show the predicted, training, and reconstructed 

TWSC time series of four tropical river basins - i.e. Amazon, Parana, Congo, and Zambezi 

basins - at the basin scale (see  

Figure 7). For a comparison, we also plot the GRACE TWSC (April 2002 - June 2017), 

Swarm TWSC (December 2013 - December 2018), GRACE-FO TWSC (June 2018 - 

December 2018), and the TWSC (January 1992 - December 2018) simulated by hydrological 

models in  

Figure 7. Within our analysis period, there were two significant El Niño events, i.e. the 

years 1997/1998 and 2015/2016 that were significant can be derived from ENSO indicators. 

We find that, after removing the seasonal cycle, the reconstructed total water storage change 

shows strong abnormal signals in four tropical regions during the first significant El Niño 

periods (i.e. 1997/1998), which is consistent with the de-seasoned GRACE TWSC during 

another significant El Niño period (i.e. 2015/2016) (see the dark area of  

Figure 7). As shown in  
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Figure 7, the GRACE-FO TWSC fits well with the predicted TWSC in four tropical river 

basins. The hydrological model does not explicitly simulate groundwater redistribution and 

its skills in representing anthropogenic water withdrawals are limited, this may explain most 

differences between TWSC from the hydrological model and those from GRACE, GRACE-

FO, or Swarm mission seen in  

Figure 7. The Swarm TWSC fits well with the GRACE total water storage change in the 

Amazon basin, but shows larger deviations and uncertainties in the other regions, this shows 

some potential of the Swarm mission to detect large amplitude water storage changes. We 

also find that the Swarm TWSC has larger uncertainty in 2013 and 2014 than later, this is 

mainly caused by the more active ionosphere during these two years as discussed in Schreiter 

et al. (2019). In addition, the predicted and reconstructed TWSC in the other river basins 

could be found in Figure A5 and Figure A6. The results clearly suggest that the predicted 

TWSC over June 2018 to December 2018 fit well with the GRACE-FO TWSC in almost all 

study regions. 
 

4.2.4. Comparison to Previous Studies 

Except Humphrey & Gudmundsson (2019), we do not know other studies that aim at the 

reconstruction of GRACE-like gridded total water storage change for the global land surface. 

Thus, we restrict the comparison of our method to the method as used in Humphrey & 

Gudmundsson (2019). 

In their TWSC reconstruction, Humphrey & Gudmundsson (2019) focused on a grid cell 

representation using precipitation and temperature as inputs. However, it appears difficult 

with their approach to make use of additional input datasets originating from outside the 

study regions (e.g., the SST data or climate indices), and they did not reconstruct the seasonal 

signal of the GRACE TWSC as described in Humphrey & Gudmundsson (2019). 

In this study, the decay filter, MLR, and STL techniques employed in Humphrey et al. 

2017 are included in our unified framework, but we had to combine these in a somewhat 

different way. Different from Humphrey’s original method, we focused our attention on the 

reconstruction of dominant GRACE modes, and we feel it is beneficial to involve additional 

data which have been shown before to be highly related to the evolution of dominant GRACE 

temporal modes as inputs (e.g., the SST, climate indices, etc.). Therefore, our implementation 

is able to assimilate more information to support the TWSC reconstruction. Furthermore, 

besides aiming at the de-seasoned anomalous TWSC signals, we also reconstruct the seasonal 

signals based on their high correlations with the seasonal signals of SST (see Table 1). Thus, 

our implementation seems able to reconstruct a more complete picture of the GRACE TWSC 

record as compared to the method originally developed by Humphrey & Gudmundsson 

(2019). 

In addition, we would like to mention that it is the first time that three groups of data-

driven techniques - i.e. spatio-temporal decomposition, time series decomposition, and 

machine learning - are formulated in a unified way for the reconstruction or prediction of 

leading modes identified in GRACE-derived total water storage grids. 

 

5. Conclusions 

In this study, a unified methodology framework is developed to compare different data-

driven techniques for predicting and reconstructing gridded GRACE-like total water storage 

variations outside the GRACE period. We find that both ARX and ANN methods simulate 
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the target variable better than the MLR method, but they are not robust enough for the 

prediction on account of some overfitting problems. The PCA-LS-MLR methods 

combination is identified as the most robust alternative through our framework for predicting 

and reconstructing the gridded TWSC over all river basins. One encouraging result is that our 

testing TWSC (six years lead time with regard to the GRACE period) from the identified 

methods show much stronger correlation with the CSR mascons compared to the model-

simulated TWSC at almost each grid of the study regions, thus, our results could be an 

alternative for the mass balance constraint for hydrological models beyond the GRACE 

period (e.g., Eicker et al., 2014). We also find the temporal evolution of the seasonal 

component of the GRACE total water storage change in the study regions are closely related 

to the seasonal variation of SST and the de-seasoned (i.e. inter-annual and residual) 

components of GRACE TWSC have strong correlation with the de-seasoned changes of both 

sea surface temperature and precipitation. These results may improve our understanding of 

roughly relationships between the TWSC and the related climate drivers. 

We study the error propagation in the adopted predictive models, and the results indicate 

the MLR method is more stable and robust than the ANN and ARX methods in coping with 

error perturbations. Finally, we predict 1.5 years (i.e. July 2017.7 - December 2018) of 

gridded TWSC past the GRACE period and reconstruct more than ten years (i.e. January 

1992 - March 2002) of gridded TWSC. At the basin scale, the de-seasoned signal of 

reconstructed TWSC exhibits a strong abnormal signal in the tropical basin during significant 

El Niño periods. The total water storage change derived from the GRACE Follow-on mission 

fits well with the predicted TWSC in almost all study regions and the Swarm TWSC shows 

potential to detect extreme climate events but it contains large uncertainties. 

The approach identified from our framework presents a viable alternative for bridging 

the data gap of the GRACE missions and can also be used for extrapolating the global 

GRACE gridded TWSC time series outside the GRACE period for a longer time. 
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Codes and output dataset 

The related codes and TWSC dataset produced in this study are available at: 

https://github.com/strawpants/twsc_recon. Noting that the Github is not an appropriate 

repository and we put them in Github just for review purposes, thus, the data archiving is 

underway and we plan to move the codes/data to the repository Open Science Framework 

(OSF). 
 

Appendix C: Robustness Tests of the Identified Methods 

In the test computations, we had to choose some options, such as setting the training 

section to April 2002 - June 2011, setting the input number of climate drivers to three, etc., 

http://www2.csr.utexas.edu/grace/RL06_mascons.html)
https://isdc.gfz-potsdam.de/grace-fo-isdc)
https://www.esrl.noaa.gov/psd/)
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https://github.com/strawpants/twsc_recon
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and identified an optimal methods combination i.e. PCA-LS-MLR. But the prediction skill 

may vary with different options. Therefore, in this section we will tell how robust this 

optimal combination is with respect to different meta-parameters, predictors, and reference 

data periods. Since it is impossible to test all possible applications, we will consider a few 

typical choices here and show for a few basins how robust our results are. We choose five 

river basins located within different continents and climate zones - i.e. the Amazon, Congo, 

Yangtze, Mississippi, and Danube basins - for the robustness tests. 

We chose three sensitive climate drivers as the input for the prediction previously. For 

understanding how robust the number of selected sensitive climate drivers affects the 

prediction results, we now set this number from 1 to 15 in the prediction and use the CSR 

mascons to assess the standard error of testing total water storage change respectively. The 

standard error based on different numbers of inputs are shown in Figure C1. We find that the 

standard error of testing TWSC based on less than 8 (i.e. from 1 to 8) of inputs do not show 

large differences, but the standard error could increasing when we use a larger number of 

inputs, e.g., more than 12 inputs in Congo basin. Thus, we do not suggest the users to set the 

number of inputs larger than 8 for the prediction when using our method. In the previous 

experiments we had chosen the number of selected modes by using a unified criterion, such 

as to retain 95% of the total energy; in what follows we will vary the number of modes 

between 3 and 10 to find how robust this criterion is. Figure C2 shows the standard errors of 

testing TWSC as compared to the CSR mascons and the results indicate that the uncertainty 

of predictions will be stable when choosing more than 5 modes for the prediction. As 

discussed in Humphrey et al. (2016), there is a few months of time delay between the climate 

changes and (affect) water storage changes. Our algorithm has been designed to maximize 

lag-correlation within a window of three months (0…3), in what follows we will extend this 

window successively to six months, e.g., if the window is set to four months then we will 

move the climate driver from 0 to 4 months to search for its highest correlation as related to 

the GRACE data. We predict the TWSC in five river basins based on different values of 

window (i.e. from 0-0 to 0-6) and then we estimate the standard errors of prediction using the 

CSR mascons as shown in Figure C3. The results indicate that the prediction uncertainties are 

reduced when we turning the time window from 0 to 3, and there is no obvious improvement 

when the window is increased from 3 to 6 months. For testing the robustness of the reference 

data period, we firstly fix the length of training section to eight years and we fix the length of 

the testing section to six years, i.e. we firstly use the GRACE data from April 2002 to March 

2010 (totaling eight years) to train the predictive models and to predict the next six years (i.e. 

April 2010 - March 2016) of TWSC. Then we move the training and testing sections over 

time (e.g., move the training section from April 2002 – March 2010 to May 2002 – April 

2010) and predict the TWSC using different periods of reference data respectively. Finally, 

we use the CSR mascons to evaluate the standard errors of the testing total water storage 

change in all moving time sections and we show them in Figure C4. The results indicate that 

the standard error of predictions from different time sections do not show large differences in 

five study regions, which demonstrating the robustness of our method for this variation. 
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Table 1 
Classification of the Most Sensitive Climate Drivers for GRACE Seasonal, Inter-annual, and 
Residual Components in Twenty-six River Basins. SST=sea surface temperature; 
P=precipitation; T=land surface temperature 
 

Basin ID Name 

Most sensitive 
climate drivers 

for GRACE 
seasonal 

component 

Most sensitive 
climate drivers for 

GRACE inter-
annual component 

Most sensitive 
climate drivers 

for GRACE 
residual 

component 
1 Yukon SST SST SST 
2 Mackenzie SST SST SST 
3 Nelson SST p SST 
4 Mississippi SST P P 
5 St Lawrence SST SST P 
6 Amazon SST SST P 
7 Parana SST P P 
8 Niger SST SST SST 
9 Lake Chad SST SST SST 
10 Nile SST SST SST 
11 Congo SST SST SST 
12 Zambezi SST SST P 
13 Orange SST SST SST 
14 Danube SST P P 
15 Euphrates SST P P 
16 Volga SST SST P 
17 Ob SST P P 
18 Yenisey SST SST SST 
19 Lena SST SST SST 
20 Kolyma SST SST SST 
21 Amur SST P P 
22 Huang He SST SST P 
23 Yangtze SST P P 
24 Ganges SST T P 
25 Indus SST SST P 
26 Murray 

Darling 
SST P P 
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Table 2 

Standard Errors of Training and Testing TWSC at Both Grid and Basin Scales by Using 
Three Predictive Models in Twenty-six River Basins as Compared to CSR Mascons. Noting 
that All Results Listed in This Table are Calculated by Fixing The Spatio-temporal 
Decomposition and Time-series Decomposition Techniques to PCA and LS. 
 

Basin 

Training  Testing 
MLR(cm) ANN(cm) ARX(cm)  MLR(cm) ANN(cm) ARX(cm) 
gri
d 

basi
n 

gri
d 

basi
n 

gri
d 

basi
n 

 
gri
d 

basi
n 

gri
d 

basi
n 

gri
d 

basi
n 

Yukon 2.0 1.2 1.7 1.0 1.8 1.0  2.2 1.3 2.3 1.4 2.8 1.6 
Mackenzi
e 

1.5 0.7 1.2 0.5 1.3 0.7 
 

1.9 1.0 2.1 1.0 2.2 1.2 

Nelson 2.4 1.8 1.7 1.0 1.4 0.7  2.5 1.7 3.0 2.3 2.9 2.2 
Mississip
pi 

2.5 1.1 2.4 0.7 2.3 1.3 
 

2.8 1.7 3.2 1.6 3.0 1.9 

St 
Lawrence 

2.4 2.0 1.8 0.9 2.1 1.5 
 

3.7 3.0 4.1 3.4 4.8 5.2 

Amazon 5.4 2.0 4.8 1.5 5.4 2.9  7.1 3.9 7.8 4.2 7.8 4.6 
Parana 3.7 1.5 3.1 1.2 3.1 1.5  4.9 2.0 5.4 2.1 4.0 1.9 
Niger 1.4 0.9 1.2 0.7 1.5 1.0  1.8 1.0 1.7 1.0 2.1 1.3 
Lake 
Chad 

1.1 0.7 0.9 0.5 1.0 0.5 
 

1.5 1.0 1.4 0.9 2.0 1.6 

Nile 1.9 0.9 1.4 0.6 1.7 0.6  2.2 1.2 2.7 1.6 3.1 2.3 
Congo 3.1 1.5 2.5 1.0 3.0 1.2  3.4 1.7 3.6 1.7 5.0 3.6 
Zambezi 4.8 3.2 3.3 1.2 3.3 1.8  5.2 3.4 6.3 4.2 5.9 4.0 
Orange 1.4 1.1 1.1 0.8 0.9 0.6  1.5 1.1 1.5 1.1 1.4 1.0 
Danube 2.4 1.6 2.0 1.3 1.8 0.9  2.8 2.0 3.8 2.7 3.0 1.9 
Euphrates 2.1 1.7 1.7 1.3 1.3 1.0  3.3 2.7 3.0 2.3 3.2 2.5 
Volga 2.2 1.4 1.7 0.9 2.0 1.4  3.8 3.2 3.9 3.0 4.5 2.9 
Ob 2.0 1.0 1.8 1.0 2.3 1.8  3.1 2.4 3.5 2.7 3.6 2.8 
Yenisey 2.5 1.6 2.0 1.2 2.2 1.5  2.9 1.9 3.2 2.0 2.9 1.6 
Lena 1.6 1.0 1.1 0.5 1.3 0.8  2.5 2.1 2.5 1.9 2.2 1.6 
Kolyma 2.0 1.6 1.1 0.7 2.0 1.8  2.1 1.6 2.7 2.3 3.3 3.1 
Amur 1.6 0.8 1.4 0.7 1.3 0.6  2.0 1.3 2.2 1.3 2.7 1.4 
Huang He 1.3 0.8 1.1 0.5 1.0 0.4  1.8 1.1 2.1 1.4 1.7 1.0 
Yangtze 2.2 0.9 1.9 0.8 1.9 0.7  2.6 1.3 2.9 1.4 3.1 1.6 
Ganges 3.5 1.6 3.0 1.1 3.2 1.5  4.2 2.0 4.7 2.4 5.1 2.6 
Indus 2.2 1.4 1.8 1.0 1.6 0.9  2.3 1.4 2.8 1.7 2.6 1.7 
Murray 
Darling 

2.1 1.8 1.2 0.8 1.2 0.8 
 

2.7 2.4 3.3 3.1 3.2 2.7 

Average 2.3 1.3 1.8 0.9 1.9 1.1  3.0 1.9 3.3 2.1 3.4 2.3 
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Table 3 
Correlation Coefficients of Training and Testing TWSC at Both Grid and Basin Scales by 
Using Three Predictive Models in Twenty-six River Basins as Compared to CSR Mascons. 
Noting that All Results Listed in This Table are Calculated by Fixing The Spatio-temporal 
Decomposition and Time-series Decomposition Techniques to PCA and LS. 
 

Basin 

Training  Testing 

MLR(cm) ANN(cm) ARX(cm)  MLR(cm) ANN(cm) ARX(cm) 

grid basin grid basin grid basin  grid basin grid basin grid basin 

Yukon 0.92 0.97 0.93 0.98 0.93 0.98  0.91 0.96 0.90 0.96 0.87 0.94 

Mackenzie 0.93 0.98 0.96 0.99 0.95 0.98  0.90 0.96 0.87 0.96 0.86 0.95 

Nelson 0.84 0.88 0.93 0.96 0.95 0.98  0.81 0.85 0.69 0.73 0.67 0.76 

Mississippi 0.90 0.97 0.94 0.99 0.93 0.96  0.86 0.93 0.81 0.94 0.84 0.92 

St 
Lawrence 

0.85 0.89 0.94 0.97 0.92 0.93 
 

0.76 0.87 0.77 0.87 0.68 0.53 

Amazon 0.94 0.99 0.95 0.99 0.94 0.98  0.93 0.97 0.91 0.96 0.91 0.95 

Parana 0.88 0.96 0.91 0.98 0.91 0.96  0.77 0.93 0.71 0.94 0.78 0.94 

Niger 0.88 0.99 0.89 0.99 0.89 0.99  0.82 0.99 0.83 0.99 0.83 0.98 

Lake Chad 0.75 0.98 0.80 0.99 0.79 0.98  0.68 0.96 0.69 0.97 0.62 0.89 

Nile 0.87 0.97 0.91 0.99 0.89 0.98  0.86 0.95 0.83 0.91 0.82 0.84 

Congo 0.95 0.93 0.96 0.97 0.96 0.96  0.93 0.92 0.93 0.91 0.86 0.73 

Zambezi 0.90 0.96 0.95 0.99 0.96 0.99  0.92 0.96 0.90 0.96 0.88 0.94 

Orange 0.83 0.85 0.89 0.92 0.94 0.96  0.80 0.88 0.77 0.84 0.79 0.87 

Danube 0.94 0.96 0.96 0.97 0.96 0.99  0.91 0.95 0.83 0.91 0.88 0.95 

Euphrates 0.92 0.96 0.95 0.98 0.97 0.99  0.77 0.89 0.80 0.89 0.84 0.89 

Volga 0.95 0.98 0.97 0.99 0.96 0.98  0.87 0.90 0.88 0.93 0.83 0.91 

Ob 0.93 0.98 0.94 0.98 0.91 0.93  0.86 0.93 0.85 0.91 0.82 0.90 

Yenisey 0.87 0.94 0.91 0.96 0.91 0.94  0.85 0.93 0.82 0.92 0.82 0.94 

Lena 0.92 0.96 0.96 0.99 0.95 0.97  0.85 0.83 0.83 0.91 0.82 0.89 

Kolyma 0.88 0.92 0.96 0.98 0.88 0.89  0.90 0.95 0.83 0.88 0.80 0.80 

Amur 0.86 0.93 0.90 0.95 0.90 0.96  0.85 0.90 0.81 0.88 0.67 0.88 

Huang He 0.82 0.93 0.87 0.96 0.88 0.96  0.62 0.79 0.51 0.69 0.66 0.81 

Yangtze 0.88 0.96 0.91 0.96 0.91 0.97  0.81 0.90 0.78 0.86 0.75 0.87 

Ganges 0.94 0.99 0.95 0.99 0.95 0.99  0.92 0.98 0.90 0.97 0.89 0.97 

Indus 0.87 0.93 0.91 0.96 0.93 0.97  0.87 0.91 0.83 0.91 0.82 0.85 

Murray 
Darling 

0.86 0.88 0.95 0.98 0.96 0.97 
 

0.66 0.81 0.53 0.62 0.72 0.83 

Average 0.89 0.95 0.93 0.98 0.92 0.97  0.84 0.92 0.80 0.89 0.80 0.87 
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Table 4 
Correlation Coefficients of Training and Testing TWSC after Removing the Seasonal Cycle 
at Both Grid and Basin Scales by Using Three Predictive Models in Twenty-six River Basins 
as Compared to CSR Mascons. Noting that All Results Listed in This Table are Calculated 
by Fixing The Spatio-temporal Decomposition and Time-series Decomposition Techniques 
to PCA and LS. 
 

Basin 

Training  Testing 

MLR(cm) ANN(cm) ARX(cm)  MLR(cm) ANN(cm) ARX(cm) 

grid basin grid basin grid basin  grid basin grid basin grid basin 

Yukon 0.65 0.85 0.75 0.89 0.74 0.86  0.60 0.65 0.57 0.59 0.49 0.52 

Mackenzie 0.74 0.84 0.85 0.94 0.81 0.86  0.60 0.64 0.47 0.62 0.48 0.48 

Nelson 0.78 0.81 0.91 0.94 0.93 0.97  0.65 0.67 0.39 0.27 0.42 0.49 

Mississippi 0.80 0.90 0.89 0.96 0.85 0.88  0.75 0.82 0.66 0.86 0.71 0.77 

St 
Lawrence 

0.71 0.78 0.88 0.95 0.83 0.88 
 

0.43 0.79 0.47 0.80 0.41 0.19 

Amazon 0.71 0.84 0.74 0.91 0.70 0.75  0.66 0.72 0.60 0.73 0.57 0.63 

Parana 0.75 0.89 0.84 0.94 0.83 0.90  0.65 0.90 0.54 0.92 0.64 0.91 

Niger 0.75 0.90 0.79 0.93 0.76 0.87  0.64 0.87 0.65 0.87 0.61 0.79 
Lake Chad 0.68 0.89 0.75 0.94 0.72 0.93  0.56 0.80 0.69 0.97 0.62 0.89 

Nile 0.70 0.87 0.80 0.94 0.75 0.95  0.66 0.76 0.62 0.66 0.52 0.40 

Congo 0.75 0.86 0.84 0.95 0.79 0.92  0.70 0.80 0.70 0.80 0.53 0.54 

Zambezi 0.71 0.86 0.86 0.98 0.86 0.96  0.68 0.88 0.58 0.85 0.59 0.82 

Orange 0.78 0.84 0.86 0.91 0.92 0.96  0.66 0.88 0.65 0.83 0.68 0.87 

Danube 0.84 0.90 0.90 0.94 0.90 0.96  0.75 0.85 0.55 0.73 0.67 0.83 

Euphrates 0.84 0.89 0.89 0.92 0.93 0.98  0.49 0.54 0.45 0.35 0.49 0.38 

Volga 0.84 0.90 0.91 0.95 0.86 0.91  0.63 0.61 0.67 0.70 0.46 0.60 

Ob 0.76 0.91 0.81 0.92 0.71 0.72  0.60 0.83 0.51 0.80 0.50 0.76 

Yenisey 0.72 0.67 0.81 0.82 0.79 0.73  0.73 0.74 0.66 0.67 0.69 0.75 

Lena 0.83 0.90 0.92 0.97 0.90 0.94  0.59 0.39 0.56 0.63 0.53 0.51 

Kolyma 0.69 0.75 0.91 0.95 0.71 0.69  0.76 0.87 0.58 0.64 0.47 0.33 

Amur 0.82 0.92 0.87 0.94 0.87 0.95  0.82 0.89 0.77 0.87 0.63 0.86 

Huang He 0.77 0.91 0.83 0.95 0.85 0.95  0.47 0.70 0.37 0.60 0.48 0.71 

Yangtze 0.71 0.87 0.79 0.89 0.80 0.89  0.51 0.77 0.45 0.68 0.45 0.74 

Ganges 0.79 0.91 0.84 0.95 0.83 0.93  0.68 0.88 0.65 0.85 0.62 0.83 

Indus 0.79 0.87 0.86 0.94 0.88 0.94  0.72 0.78 0.64 0.77 0.62 0.67 

Murray 
Darling 

0.84 0.87 0.95 0.97 0.95 0.97 
 

0.49 0.74 0.35 0.51 0.56 0.81 

Average 0.76 0.86 0.85 0.93 0.83 0.89  0.63 0.76 0.57 0.71 0.56 0.66 
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Figure 1. Illustration of the data flow in our unified framework for comparing different data-
driven methods. TWSC means total water storage change; P for precipitation; T for land 
surface temperature; and SST for sea surface temperature. ICA/PCA are independent and 
principal component analysis techniques; LS/STL are least squares and seasonal-trend 
decomposition based on loess procedure; and ANN/ARX/MLR are artificial neural network, 
autoregressive exogenous, and multiple linear regression models. 
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Figure 2. The study regions (i.e. twenty-six river basins) and divided oceans and seas. The 
river basins are numbered from 1 to 26 and the divided oceans or seas are numbered from 
S1 to S14 as shown in this figure. 
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Figure 3. The standard errors of (a) training TWSC (i.e. April 2002 - June 2011), and (b) 
testing TWSC (over July 2011 - June 2017) based on the PCA, LS, and MLR methods at 
each grid as evaluated by the CSR mascons. 
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Figure 4. Correlations between the CSR mascons and (a) training TWSC, (b) testing TWSC, 
(c) GLDAS TWSC, and (d) CPC TWSC over twenty-six river basins. (e)-(h) are the 
correlations computed by the related de-seasoned signals. 
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Figure 5. The training TWSC (blue line) and testing TWSC (green line) relative to the CSR 
mascons (red line) at the basin scale for twenty-six river basins. 
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Figure 6. Standard errors of the testing TWSC (over July 2011 - June 2017) by dividing the 
Asia-Europe continent into (a) one, (b) two, (c) four, and (d) eight parts as evaluated by the 
CSR mascons. Here we first divide the continent into one, two, four, and eight parts 
respectively, and then we apply the identified methods to each divided part and use the CSR 
mascons to estimate the prediction uncertainties as shown in this figure. 
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Figure 7. The TWSC (up) and de-seasoned TWSC (down) time series at the basin scale in 
the (a) Amazon, (b) Parana, (c) Congo, and (d) Zambezi basins. Gray phases represent the 
strong El Niño years (i.e. 1997/1998 and 2015/2016). For a fair comparison, the linear trend 
of each time series (except the GRACE-FO) has been removed. 
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Appendix A: Figures 
 

 
 
Figure A1. The RMS of mean-centered CSR mascons (from April 2002 to June 2017) over 

twenty-six river basins. 
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Spatial pattern of IC1                           Temporal mode of IC1 
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Figure A2. Spatial patterns and temporal modes of identified GRACE TWSC EOFs and ICs 
in the Amazon basin. Results on the maps represent the spatial modes and the time series 
on the right side of each map represents the corresponding temporal mode. 
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Figure A3.  Decomposed components (i.e. linear, seasonal, inter-annual, and residual) of 
identified GRACE TWSC EOF and IC temporal modes in the Amazon basin based on the LS 
and STL methods. The red and blue lines represent the components decomposed by LS and 
STL methods, respectively. 
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Figure A4. Error propagation in the three predictive models assessed using Monte Carlo 
uncertainties in twenty-six river basins at the grid scale. We derive the uncertainties from the 
simulating period to the sixth year past the training phase individually, e.g., the gridded 
uncertainties of the third year are estimated by using only the third year of preditand. 
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Figure A5. Reconstructed, training, and predicted TWSC relative to the TWSC from 
GRACE, GRACE-FO, Swarm, and hydrological data at the basin scale for twenty-two river 
basins. 
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Figure A6. Same as Figure A5 about for the de-seasoned signal. 



 

 

©2020 American Geophysical Union. All rights reserved. 

 
 

Figure C1. Standard errors of testing TWSC at the grid scale by turning the number of input 
climate drivers from 1 to 15 in five river basins as evaluated from the CSR Mascons. 
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Figure C2. Standard errors of testing TWSC at the grid scales by turning the number of 
selected modes from 3 to 10 in five river basins as evaluated from the CSR Mascons. 
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Figure C3. Standard errors of testing TWSC at the grid scales by turning the time window 
from (0…0) to (0…6) in five river basins as evaluated by the CSR Mascons. 



 

 

©2020 American Geophysical Union. All rights reserved. 

 
 

Figure C4. Standard errors of testing TWSC at the grid scales by moving the training and 
testing periods from 1 to 15 times in five river basins as evaluated by the CSR Mascons. 
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Appendix B: Tables 
 
Table B1 
Standard Errors of Training and Testing TWSC at Both Grid and Basin Scales by Using STL 
and LS Methods in Twenty-six River Basins as Compared to CSR Mascons. Noting that All 
Results Listed in This Table are Calculated by Fixing The Spatio-temporal Decomposition 
and Predictive Techniques to PCA and MLR. 
 

Basin 
Training  Testing 

STL LS  STL LS 
grid basin grid basin  grid basin grid basin 

Yukon 1.9 1.1 2.0 1.2  2.3 1.4 2.2 1.3 
Mackenzie 1.8 0.9 1.5 0.7  1.8 1.0 1.9 1.0 
Nelson 2.5 1.7 2.4 1.8  2.5 1.7 2.5 1.7 
Mississippi 2.3 1.0 2.5 1.1  3.4 2.3 2.8 1.7 
St Lawrence 2.9 1.8 2.4 2.0  3.9 3.1 3.7 3.0 
Amazon 5.5 2.3 5.4 2.0  7.2 4.1 7.1 3.9 
Parana 3.5 1.6 3.7 1.5  5.5 2.4 4.9 2.0 
Niger 1.6 1.0 1.4 0.9  1.5 1.1 1.8 1.0 
Lake Chad 1.2 0.8 1.1 0.7  1.6 1.0 1.5 1.0 
Nile 2.0 1.0 1.9 0.9  2.3 1.2 2.2 1.2 
Congo 3.2 1.6 3.1 1.5  3.6 1.9 3.4 1.7 
Zambezi 4.9 3.4 4.8 3.2  5.7 3.6 5.2 3.4 
Orange 1.4 1.0 1.4 1.1  1.3 1.0 1.5 1.1 
Danube 2.5 1.6 2.4 1.6  3.0 2.1 2.8 2.0 
Euphrates 2.7 2.0 2.1 1.7  3.1 2.6 3.3 2.7 
Volga 2.2 1.4 2.2 1.4  3.6 3.1 3.8 3.2 
Ob 2.2 1.0 2.0 1.0  3.1 2.4 3.1 2.4 
Yenisey 2.3 1.5 2.5 1.6  3.0 1.9 2.9 1.9 
Lena 1.7 1.1 1.6 1.0  2.4 2.1 2.5 2.1 
Kolyma 2.0 1.6 2.0 1.6  2.2 1.7 2.1 1.6 
Amur 2.0 1.0 1.6 0.8  2.2 1.4 2.0 1.3 
Huang He 1.3 0.9 1.3 0.8  1.8 1.2 1.8 1.1 
Yangtze 2.2 0.9 2.2 0.9  2.8 1.5 2.6 1.3 
Ganges 3.6 1.7 3.5 1.6  4.6 2.2 4.2 2.0 
Indus 2.3 1.6 2.2 1.4  2.5 1.6 2.3 1.4 
Murray Darling 2.2 1.8 2.1 1.8  3.3 2.6 2.7 2.4 
Average 2.5 1.4 2.4 1.4  3.0 2.0 2.9 1.9 
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Table B2 
Correlation Coefficients of Training and Testing TWSC at Both Grid and Basin Scales by 
Using STL and LS Methods in Twenty-six River Basins as Compared to CSR Mascons. 
Noting that All Results Listed in This Table are Calculated by Fixing The Spatio-temporal 
Decomposition and Predictive Techniques to PCA and MLR. 
 

Basin 
Training  Testing 

STL LS  STL LS 
grid basin grid basin  grid basin grid basin 

Yukon 0.92 0.97 0.92 0.97  0.89 0.95 0.91 0.96 
Mackenzie 0.91 0.97 0.93 0.98  0.90 0.96 0.90 0.96 
Nelson 0.86 0.89 0.84 0.88  0.78 0.85 0.81 0.85 
Mississippi 0.90 0.97 0.90 0.97  0.79 0.88 0.86 0.93 
St Lawrence 0.82 0.86 0.85 0.89  0.74 0.85 0.76 0.87 

Amazon 0.93 0.98 0.94 0.99  0.92 0.96 0.93 0.97 
Parana 0.88 0.97 0.88 0.96  0.74 0.90 0.77 0.93 
Niger 0.85 0.96 0.88 0.99  0.84 0.97 0.82 0.99 
Lake Chad 0.74 0.97 0.75 0.98  0.70 0.94 0.68 0.96 
Nile 0.86 0.96 0.87 0.97  0.86 0.94 0.86 0.95 
Congo 0.94 0.93 0.95 0.93  0.92 0.90 0.93 0.92 
Zambezi 0.90 0.96 0.90 0.96  0.90 0.94 0.92 0.96 
Orange 0.83 0.85 0.83 0.85  0.83 0.89 0.80 0.88 
Danube 0.93 0.96 0.94 0.96  0.91 0.94 0.91 0.95 
Euphrates 0.87 0.91 0.92 0.96  0.81 0.90 0.77 0.89 
Volga 0.95 0.97 0.95 0.98  0.88 0.90 0.87 0.90 
Ob 0.92 0.97 0.93 0.98  0.86 0.93 0.86 0.93 
Yenisey 0.88 0.95 0.87 0.94  0.83 0.92 0.85 0.93 
Lena 0.91 0.95 0.92 0.96  0.83 0.85 0.85 0.83 
Kolyma 0.87 0.91 0.88 0.92  0.88 0.93 0.90 0.95 
Amur 0.83 0.86 0.86 0.93  0.82 0.81 0.85 0.90 
Huang He 0.81 0.91 0.82 0.93  0.63 0.83 0.62 0.79 
Yangtze 0.87 0.94 0.88 0.96  0.82 0.88 0.81 0.90 
Ganges 0.93 0.98 0.94 0.99  0.90 0.97 0.92 0.98 
Indus 0.85 0.92 0.87 0.93  0.84 0.87 0.87 0.91 
Murray Darling 0.85 0.88 0.86 0.88  0.70 0.84 0.66 0.81 
Average 0.88 0.94 0.89 0.95  0.83 0.90 0.84 0.92 
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Table B3 
Correlation Coefficients of Training and Testing TWSC after Removing the Seasonal Cycle 
at Both Grid and Basin Scales by Using STL and LS Methods in Twenty-six River Basins as 
Compared to CSR Mascons. Noting that All Results Listed in This Table are Calculated by 
Fixing The Spatio-temporal Decomposition and Predictive Techniques to PCA and MLR. 
 

Basin 
Training  Testing 

STL LS  STL LS 
grid basin grid basin  grid basin grid basin 

Yukon 0.68 0.85 0.65 0.85  0.53 0.56 0.60 0.65 
Mackenzie 0.70 0.78 0.74 0.84  0.59 0.60 0.60 0.64 
Nelson 0.78 0.83 0.78 0.81  0.61 0.68 0.65 0.67 
Mississippi 0.80 0.91 0.80 0.90  0.64 0.65 0.75 0.82 
St Lawrence 0.68 0.73 0.71 0.78  0.38 0.77 0.43 0.79 
Amazon 0.68 0.84 0.71 0.84  0.65 0.76 0.66 0.72 
Parana 0.76 0.92 0.75 0.89  0.61 0.86 0.65 0.90 
Niger 0.73 0.86 0.75 0.90  0.69 0.85 0.64 0.87 
Lake Chad 0.66 0.86 0.68 0.89  0.55 0.69 0.56 0.80 
Nile 0.67 0.85 0.70 0.87  0.63 0.74 0.66 0.76 
Congo 0.72 0.87 0.75 0.86  0.68 0.77 0.70 0.80 
Zambezi 0.69 0.84 0.71 0.86  0.61 0.81 0.68 0.88 
Orange 0.79 0.83 0.78 0.84  0.72 0.89 0.66 0.88 
Danube 0.84 0.90 0.84 0.90  0.74 0.82 0.75 0.85 
Euphrates 0.72 0.71 0.84 0.89  0.46 0.46 0.49 0.54 
Volga 0.83 0.90 0.84 0.90  0.63 0.60 0.63 0.61 
Ob 0.74 0.88 0.76 0.91  0.58 0.83 0.60 0.83 
Yenisey 0.76 0.80 0.72 0.67  0.70 0.69 0.73 0.74 
Lena 0.82 0.89 0.83 0.90  0.57 0.43 0.59 0.39 
Kolyma 0.68 0.73 0.69 0.75  0.74 0.83 0.76 0.87 
Amur 0.78 0.83 0.82 0.92  0.78 0.78 0.82 0.89 
Huang He 0.74 0.88 0.77 0.91  0.50 0.74 0.47 0.70 
Yangtze 0.70 0.81 0.71 0.87  0.55 0.72 0.51 0.77 
Ganges 0.77 0.91 0.79 0.91  0.66 0.85 0.68 0.88 
Indus 0.76 0.85 0.79 0.87  0.67 0.70 0.72 0.78 
Murray Darling 0.84 0.86 0.84 0.87  0.55 0.80 0.49 0.74 
Average 0.74 0.84 0.76 0.86  0.62 0.73 0.63 0.76 
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Table B4 
Standard Errors of Training and Testing TWSC at Both Grid and Basin Scales by Using PCA 
and ICA Methods in Twenty-six River Basins as Compared to CSR Mascons. Noting that All 
Results Listed in This Table are Calculated by Fixing The Time-series Decomposition and 
Predictive Techniques to LS and MLR. 
 

Basin 
Training  Testing 

ICA PCA  ICA PCA 
grid basin grid basin  grid basin grid basin 

Yukon 2.0 1.2 2.0 1.2  3.1 1.8 2.2 1.3 
Mackenzie 1.6 0.8 1.5 0.7  2.1 1.3 1.9 1.0 
Nelson 2.6 1.8 2.4 1.8  2.3 1.6 2.5 1.7 
Mississippi 2.7 1.2 2.5 1.1  3.5 2.2 2.8 1.7 
St Lawrence 2.8 2.2 2.4 2.0  4.0 3.2 3.7 3.0 
Amazon 6.1 2.5 5.4 2.0  7.4 4.2 7.1 3.9 
Parana 4.0 1.8 3.7 1.5  5.9 3.2 4.9 2.0 
Niger 1.8 1.1 1.4 0.9  2.0 1.1 1.8 1.0 
Lake Chad 1.2 0.7 1.1 0.7  1.5 1.0 1.5 1.0 
Nile 2.2 1.1 1.9 0.9  2.3 1.2 2.2 1.2 
Congo 3.0 1.4 3.1 1.5  3.5 1.8 3.4 1.7 
Zambezi 5.1 3.5 4.8 3.2  6.6 4.0 5.2 3.4 
Orange 1.5 1.1 1.4 1.1  1.5 1.0 1.5 1.1 
Danube 2.5 1.8 2.4 1.6  2.5 1.8 2.8 2.0 
Euphrates 3.0 2.1 2.1 1.7  4.0 3.4 3.3 2.7 
Volga 2.7 1.9 2.2 1.4  3.4 2.5 3.8 3.2 
Ob 2.9 1.7 2.0 1.0  3.2 2.5 3.1 2.4 
Yenisey 2.4 1.5 2.5 1.6  3.1 2.1 2.9 1.9 
Lena 2.3 1.5 1.6 1.0  2.1 1.9 2.5 2.1 
Kolyma 1.9 1.5 2.0 1.6  2.7 2.0 2.1 1.6 
Amur 1.7 1.0 1.6 0.8  2.2 1.4 2.0 1.3 
Huang He 1.6 1.0 1.3 0.8  1.8 1.1 1.8 1.1 
Yangtze 2.5 1.1 2.2 0.9  2.8 1.4 2.6 1.3 
Ganges 3.5 1.6 3.5 1.6  4.6 2.5 4.2 2.0 
Indus 2.3 1.5 2.2 1.4  2.7 1.6 2.3 1.4 
Murray Darling 1.9 1.6 2.1 1.8  2.0 1.6 2.7 2.4 
Average 2.6 1.5 2.4 1.4  3.2 2.1 2.9 1.9 
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Table B5 
Correlation Coefficients of Training and Testing TWSC at Both Grid and Basin Scales by 
Using PCA and ICA Methods in Twenty-six River Basins as Compared to CSR Mascons. 
Noting that All Results Listed in This Table are Calculated by Fixing The Time-series 
Decomposition and Predictive Techniques to LS and MLR. 
 

Basin 
Training  Testing 

ICA PCA  ICA PCA 
grid basin grid basin  grid basin grid basin 

Yukon 0.89 0.94 0.92 0.97  0.82 0.87 0.91 0.96 
Mackenzie 0.91 0.96 0.93 0.98  0.87 0.94 0.90 0.96 
Nelson 0.83 0.85 0.84 0.88  0.81 0.90 0.81 0.85 
Mississippi 0.88 0.94 0.90 0.97  0.82 0.87 0.86 0.93 
St Lawrence 0.86 0.89 0.85 0.89  0.83 0.83 0.76 0.87 
Amazon 0.92 0.97 0.94 0.99  0.91 0.98 0.93 0.97 
Parana 0.84 0.92 0.88 0.96  0.73 0.90 0.77 0.93 
Niger 0.86 0.97 0.88 0.99  0.84 0.97 0.82 0.99 
Lake Chad 0.72 0.97 0.75 0.98  0.68 0.95 0.68 0.96 
Nile 0.86 0.94 0.87 0.97  0.84 0.92 0.86 0.95 
Congo 0.95 0.92 0.95 0.93  0.93 0.88 0.93 0.92 
Zambezi 0.89 0.95 0.90 0.96  0.83 0.90 0.92 0.96 
Orange 0.80 0.83 0.83 0.85  0.73 0.86 0.80 0.88 
Danube 0.93 0.95 0.94 0.96  0.92 0.96 0.91 0.95 
Euphrates 0.86 0.89 0.92 0.96  0.80 0.78 0.77 0.89 
Volga 0.92 0.95 0.95 0.98  0.89 0.92 0.87 0.90 
Ob 0.86 0.90 0.93 0.98  0.83 0.92 0.86 0.93 
Yenisey 0.86 0.95 0.87 0.94  0.83 0.87 0.85 0.93 
Lena 0.90 0.93 0.92 0.96  0.86 0.89 0.85 0.83 
Kolyma 0.89 0.91 0.88 0.92  0.86 0.91 0.90 0.95 
Amur 0.82 0.90 0.86 0.93  0.77 0.84 0.85 0.90 
Huang He 0.70 0.83 0.82 0.93  0.60 0.77 0.62 0.79 
Yangtze 0.87 0.92 0.88 0.96  0.80 0.85 0.81 0.90 
Ganges 0.93 0.98 0.94 0.99  0.90 0.97 0.92 0.98 
Indus 0.85 0.92 0.87 0.93  0.83 0.87 0.87 0.91 
Murray Darling 0.89 0.92 0.86 0.88  0.82 0.90 0.66 0.81 
Average 0.86 0.92 0.89 0.95  0.82 0.89 0.84 0.92 
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Table B6 
Correlation Coefficients of Training and Testing TWSC after Removing the Seasonal Cycle 
at Both Grid and Basin Scales by Using PCA and ICA Methods in Twenty-six River Basins 
as Compared to CSR Mascons. Noting that All Results Listed in This Table are Calculated 
by Fixing The Time-series Decomposition and Predictive Techniques to LS and MLR. 
 

Basin 
Training  Testing 

ICA PCA  ICA PCA 
grid basin grid basin  grid basin grid basin 

Yukon 0.57 0.63 0.65 0.85  0.36 0.26 0.60 0.65 
Mackenzie 0.71 0.73 0.74 0.84  0.49 0.35 0.60 0.64 
Nelson 0.77 0.75 0.78 0.81  0.69 0.78 0.65 0.67 
Mississippi 0.75 0.79 0.80 0.90  0.67 0.60 0.75 0.82 
St Lawrence 0.74 0.80 0.71 0.78  0.65 0.74 0.43 0.79 
Amazon 0.63 0.66 0.71 0.84  0.68 0.86 0.66 0.72 
Parana 0.73 0.81 0.75 0.89  0.63 0.85 0.65 0.90 
Niger 0.68 0.77 0.75 0.90  0.63 0.73 0.64 0.87 
Lake Chad 0.62 0.85 0.68 0.89  0.55 0.78 0.56 0.80 
Nile 0.64 0.73 0.70 0.87  0.65 0.59 0.66 0.76 
Congo 0.77 0.84 0.75 0.86  0.69 0.71 0.70 0.80 
Zambezi 0.66 0.80 0.71 0.86  0.43 0.77 0.68 0.88 
Orange 0.76 0.82 0.78 0.84  0.61 0.85 0.66 0.88 
Danube 0.83 0.88 0.84 0.90  0.79 0.86 0.75 0.85 
Euphrates 0.67 0.63 0.84 0.89  0.42 0.22 0.49 0.54 
Volga 0.78 0.81 0.84 0.90  0.70 0.76 0.63 0.61 
Ob 0.59 0.69 0.76 0.91  0.51 0.82 0.60 0.83 
Yenisey 0.74 0.77 0.72 0.67  0.69 0.50 0.73 0.74 
Lena 0.80 0.83 0.83 0.90  0.67 0.56 0.59 0.39 
Kolyma 0.76 0.76 0.69 0.75  0.69 0.77 0.76 0.87 
Amur 0.78 0.88 0.82 0.92  0.72 0.81 0.82 0.89 
Huang He 0.61 0.78 0.77 0.91  0.46 0.65 0.47 0.70 
Yangtze 0.68 0.75 0.71 0.87  0.52 0.59 0.51 0.77 
Ganges 0.76 0.90 0.79 0.91  0.65 0.82 0.68 0.88 
Indus 0.76 0.85 0.79 0.87  0.66 0.67 0.72 0.78 
Murray Darling 0.88 0.91 0.84 0.87  0.72 0.88 0.49 0.74 
Average 0.71 0.78 0.76 0.86  0.61 0.68 0.63 0.76 
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Table B7 
The Acronyms that Involved in this Paper 
 

GRACE Gravity Recovery and Climate Experiment 
NASA National Aeronautical and Spatial Administration 
DLR German Aerospace Centre 
TWSC Total Water Storage Change 
ANN Artificial Neural Network 
ICA Independent Component Analysis 
ARX AutoRegressive eXogenous 
STL Seasonal-Trend decomposition based on Loess 
MLR Multiple Linear Regression 
CNN Convolutional Neural Network 
PCA Principal Component Analysis 
LS Least Squares 
SST Sea Surface Temperature 
EOF orthogonal spatial patterns 
ICA Independent Component Analysis 
MLP Multi-Layer Perceptron 
MCMC Markov Chain Monte Carlo 
CSR Center for Space Research 
CPC Climate Prediction Center 
GHCN 
CAMS 

Global Historical Climatology Network and the Climate Anomaly 
Monitoring System 

NCEP National Centers for Environmental Prediction 
NOAA National Oceanic and Atmospheric Administration 
MEI Multivariate ENSO Index 
NAO North Atlantic Oscillation 
Niño 1+2 Extreme Eastern Tropical Pacific SST 
Niño 3 Eastern Tropical Pacific SST 
Niño 4 Central Tropical Pacific SST 
Niño 3.4 East Central Tropical Pacific SST 
NTA North Tropical Atlantic SST Index 
ONI Oceanic Niño Index 
PDO Pacific Decadal Oscillation 
PNA Pacific North American Index 
QBO Quasi-Biennial Oscillation 
SOI Southern Oscillation Index 
TNA Tropical Northern Atlantic Index 
TNI Trans-Niño Index 
TSA Tropical Southern Atlantic Index 
WHWP Western Hemisphere Warm Pool 
WP Western Pacific Index 
GLDAS Global Land Data Assimilation System 
WGHM WaterGAP Global Hydrology Model 
GAM Generalized Additive Model 
ENSO El Nino-Southern Oscillation 

 
 


