
 

 

 

 

The role of CRAC channel inhibitor CM4620  
in pancreatic acinar cells as a potential therapy 

for acute pancreatitis  

 

 

Thesis submitted in accordance with the requirements of  

Cardiff University for the degree of Master of Philosophy (MPhil) 

 

 

 

Siân Lewis 

 

May 2020



 i 

Summary 
 

Introduction. Acute pancreatitis (AP) is a life-threatening disorder with 

significant morbidity, mortality and no specific therapy available in the clinic. 

Excessive alcohol consumption and gallstone biliary disease are the leading 

causative factors of AP. Excessive release of Ca2+ from intracellular stores 

and subsequent activation of Ca2+ release-activated Ca2+ (CRAC) channels 

instigates cytosolic Ca2+ overload, mitochondrial dysfunction, necrosis and 

premature activation of digestive enzymes. Currently, a novel selective 

CRAC channel inhibitor CM4620 (developed by CalciMedica) has reached 

phase III human trials. However, this inhibitor has a very short therapeutic 

window due to its profound effects on immune cells. Recently, another 

approach has emerged where cells are supplied with energy supplement 

galactose, reducing AP effects in vitro and in vivo. This thesis aimed to 

combine these two approaches in vitro and in vivo. 

 

Methods. The effect of 1 µM and 10 µM CM4620 on calcium entry was 

recorded, using fluorescence imaging, by depleting intracellular calcium 

stores and activating calcium influx. Different concentrations of CM4620 (100 

nM, 50 nM, 10 nM, 1 nM, 200 pM) were administered in the presence or 

absence of galactose (1 mM) and the effects on cellular necrosis levels, 

elicited by AP-inducing agents, was also measured using confocal 

microscopy. Additionally, the effect of nanomolar concentrations of CM4620 

in alcohol-induced in vivo models of AP was investigated. 

 

Results. The data presented in this thesis shows that CM4620 markedly 

protects against acinar cell necrosis in vitro at much lower concentrations 

(100 nM, 50 nM, 10 nM, 1 nM, 200 pM) than reported previously, following 

exposure to bile acids, alcohol metabolites and asparaginase. Combining 

CM4620 and galactose (1 mM) provided a higher degree of protection, 

reducing the extent of necrosis to near-control levels. Administering 0.1 

mg/kg CM4620 significantly diminished pancreatic histopathology in alcohol-

induced in vivo mouse models of AP.  
 

Conclusions. As a potential therapy for the incurable disease AP, the 

protective capability of low concentrations of CM4620 could also diminish 

side effects resulting from CRAC channel inhibition. The novel combination 

of CM4620 with galactose increases the effectiveness of treatments and is 

therefore a very promising therapeutic future avenue. 
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CHAPTER 1: Introduction 
 
 1.1 Acute pancreatitis 

Acute pancreatitis (AP) is a life-threatening, inflammatory disorder in which 

pancreatic tissue and its surroundings are digested. This process of 

autodigestion is caused by premature activation of digestive proenzymes 

inside pancreatic acinar cells (PACs) (as opposed to normal activation 

occurring when they are secreted into the gut). This results in necrosis and 

inflammation (Petersen et al., 2011). AP can vary considerably in its 

presentation, from a mild, self-limiting disorder, to a more severe disease 

coupled with significant mortality. Unfortunately, there is no specific 

pharmacological therapy available for this devastating disease (Pandol et al., 

2007; Petersen and Sutton, 2006). 

AP sufferers typically present with a wide range of symptoms, including 

severe upper abdominal pain, vomiting, nausea, fever, jaundice, diarrhoea, 

back pain and weight loss (Manohar et al., 2017). Incidence rates of up to 

100 people per 100,000 per annum have been reported for AP and have 

been continually increasing, on a global basis, for the past 40 years (Pandol 

et al., 2007; Spanier et al., 2008; Hamada et al., 2014). An increase in the 

number of cases of paediatric AP has also been documented during the past 

20 to 25 years (Lopez, 2002; Nydegger et al., 2007; Park et al., 2009b; 

Morinville et al., 2010). Although the majority of AP cases are mild to 

moderate and tend to resolve spontaneously with supportive care, AP 

generally has a sudden onset and carries a significant mortality rate of 

around 5% (Petersen and Sutton, 2006; Pandol et al., 2007). Furthermore, it 

is approximated that the disease state of 20% of patients will advance, with 

prolonged hospitalisation and more severe complications characterised by 

significant PAC necrosis, a systemic inflammatory response, multiple organ 

failure and an increased mortality of 30% (Pandol et al., 2007; Petersen et 

al., 2011; Krishnan, 2017). With 270,000 hospital admissions and an annual 

inpatient cost of $2.6 billion, AP was the single most common specific 

gastrointestinal diagnosis in the United States (US), in 2009 (Peery et al., 

2012). Furthermore, between 2017 and 2018, there were over 28,000 

hospital admissions recorded for AP in England (Hospital Admitted Patient 

Care Activity, 2018). This devastating disease is consequently creating an 

increasing burden on healthcare services. 
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It is well established in the literature that repeated attacks of AP can lead to 

Chronic pancreatitis (CP). This condition is characterised by progressive 

fibrosis, inflammation and scarring of the exocrine pancreas, ultimately 

causing damage and failure of the gland and its cellular contents (Sankaran 

et al., 2015; Ahmed et al., 2016; Majumder and Chari, 2016). This chronic 

syndrome also markedly increases the risk of developing pancreatic cancer, 

by up to 100-fold (Petersen and Sutton, 2006; Criddle et al., 2007; Petersen 

et al., 2009). With a devastating 5-year survival rate of 8% and an estimated 

44,330 deaths in the US in 2018, pancreatic cancer is described as one of 

the most intractable, rapidly progressive and fatal malignancies (Siegel et al., 

2018). The silent nature, relatively common and nonspecific symptoms of 

pancreatic cancer (including weight loss, abdominal pain, light-coloured 

stools and vomiting), account for its poor prognosis. Less than 10% of 

patients are diagnosed in the early stages of pancreatic cancer where 

symptoms are seldom as prominent (Kamisawa et al., 2016; Kikuyama et al., 

2018). 

Gallstone biliary disease and excessive alcohol consumption are the leading 

causative factors of AP, responsible for approximately 70-80% of cases 

(Spanier et al., 2008; Nesvaderani et al., 2015; Forsmark et al., 2016). 

Transient blockage of either the bile duct, pancreatic duct, or both by 

gallstone migration out of the gallbladder is the most common cause of AP. 

This obstruction can result in bile reflux into the pancreatic duct or an 

increase in pressure, exposing the pancreas to biliary components thus 

inducing pancreatic acinar cell injury (Petersen and Sutton, 2006; Perides et 

al., 2010b; Yadav and Lowenfels, 2013). Although the second most common 

cause of AP and the leading cause of CP, alcohol abuse is less well 

understood as only a fraction of heavy drinkers (2 to 5%) are at risk of 

developing pancreatitis. Significant alcohol use over a prolonged period i.e., 

four to five drinks per day over 5 years, is required for ethanol-induced 

pancreatitis (Coté et al., 2011). The mechanisms underlying alcohol-induced 

pancreatitis are highly complex. It is thought that alcohol and both its 

oxidative and non-oxidative metabolites predispose the exocrine pancreas 

to toxic effects, resulting in autodigestive damage or more chronic forms of 

pancreatitis (Apte et al., 2010). Other causes of AP include smoking, 

medication, hyperlipidemia, hypercalcemia, hyperparathyroidism, surgical 

complications, trauma, obesity and environmental toxins (Badalov et al., 

2007; Pandol et al., 2007; Sadr-Azodi et al., 2012; Manohar et al., 2017). 

Another cause of AP is L-asparaginase (ASNase), a treatment received by 
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patients suffering with acute lymphoblastic leukaemia (ALL). This is defined 

as asparaginase-associate pancreatitis (AAP). Although ALL is the most 

common type of cancer affecting children, antileukemic drugs based on 

ASNase have been used since the 1960s and are an essential element in 

treatments used in the clinic currently. The use of ASNase has markedly 

increased survival rates of childhood ALL (Wolthers et al., 2017). The most 

common purpose for ending ASNase treatment, however, is the 

development of AP as a serious adverse reaction which occurs in up to 10% 

of cases (Alvarez and Zimmerman, 2000; Silverman et al., 2001; Knoderer 

et al., 2007; Flores-Calderon et al., 2009; Kearney et al., 2009; 

Treepongkaruna et al., 2009; Raja et al., 2012). The pathophysiological 

mechanisms underlying this well-recognised complication have not been 

intensely investigated and are poorly understood. Despite a concerted 

research effort to significantly improve our knowledge of the pathogenesis 

and pathophysiology underlying AP, there is still no licensed therapeutic 

available. Developing an effective treatment for AP is vital to mitigate the 

suffering of individuals and minimise the burden of this life-threatening 

disease on global healthcare systems. 

1.2 The pancreas 

The human pancreas is a vital digestive and endocrine gland, lying 

retroperitoneally on the posterior abdominal wall, within the left upper 

abdominal cavity (Ellis, 2013; Vishy, 2016). It has a slight irregular shape, 

measuring around 15 cm in length and 5 cm wide, with a weight varying from 

82 to 117 g. For descriptive purposes, the pancreas is divided into four parts: 

the head, neck, body and tail (Fig. 1.1). The head and neck of the pancreas 

lie marginally to the right of the midline. The body of the pancreas passes to 

the left, arching anterior to the aorta and the vertebral column (at the level of 

L1), before verging upwards to become continuous with the tail which lies to 

the left of the midline, adjoining the hilus of the spleen. Physical examination 

of the pancreas is not possible due to its deep location, posterior to numerous 

abdominal viscera. The pancreas comprises a main pancreatic duct (duct of 

Wirsung) and an accessory pancreatic duct (duct of Santorini). The main 

pancreatic duct runs the length of the pancreas and unites with the common 

bile duct (CBD) to open into the duodenum through the ampulla of Vater, at 

the major duodenal papilla (Fig. 1.1). The accessory pancreatic duct opens 

approximately 2 cm proximal to the main duct opening, at the minor papilla 
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(Vishy, 2016). Macroscopically, the pancreas has a lobulated appearance 

and is enclosed within a fibrous capsule (Ellis, 2013). 

The pancreas has a fundamental dual function, executing a variety of 

multifaceted endocrine and exocrine functions (Ellis, 2013). The endocrine 

component consists of around one million islets of Langerhans which are 

small, clustered alpha (α), beta (β), delta (δ) and pancreatic polypeptide (PP) 

cells that constitute for only 1-2% of the developed pancreas (Chandra and 

Liddle, 2009) (Fig. 1.1). The islets secrete hormones such as glucagon (α 

cells), insulin (β cells), somatostatin and gastrin (δ cells) and PP cells, thus 

functioning in blood glucose homeostasis (Leung and Ip, 2006). The focus of 

this study however, the exocrine pancreas, accounts for 95-99% of the entire 

organ and primarily comprises PACs and ductal cells (Fig. 1.1). The exocrine 

pancreas is responsible for the organ’s finely lobulated exterior. Within these 

lobules are acinar cell units which individually contain multiple PACs, 

interconnected by tight junctions. Digestive enzymes required for nutrient 

digestion (such as trypsinogen, chymotrypsinogen, amylase and lipase) are 

secreted from the acinar cell units into a highly elaborate, branched ductal 

network which eventually opens into the second part of the duodenum. 

Whereas the duct cells secrete an alkaline bicarbonate-rich fluid that 

neutralises the acidic chime and gastric acid existing in the duodenum 

(Johansson and Grapin-Botton, 2002). 

 

 
 
Figure 1.1. The pancreas. The exocrine component of the pancreas consists of 
highly specialised pancreatic acinar cells (PACs). These cells secrete digestive 
enzymes into the second part of the duodenum, through the pancreatic duct system, 
for nutrient digestion. The endocrine function is mediated by a variety of hormones 
secreted into the bloodstream from cell types, including α and β cells within the islets 
of Langerhans. The micrograph demonstrates mouse pancreatic islets, surrounded 
by pancreatic acinar cells. Micrograph taken with x20 objective on an Olympus BX41 
brightfield microscope (adapted from Drake et al., 2014; Röder et al., 2016). 
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1.2.1 Structure and function of the pancreatic acinar cell  

The tightly polarised PAC is a terminally differentiated epithelial cell type with 

a round pyramid-like appearance (Low et al., 2010). PACs are highly 

specialised and each cell consists of two plasma membrane domains: the 

large basolateral membrane situated at the acinar periphery and the apical 

membrane which forms the boundary of the acinar lumen that abuts a small 

intercalated duct. Groups of intercalated ducts directly connect the acinar 

lumen to larger intralobular ducts which subsequently converge into 

extralobular ducts, forming the main collecting pancreatic duct that drains 

into the duodenum (Leung and Ip, 2006; Logsdon and Baoan, 2014). 

Organelles are distinctly located in PACs due to the high polarisation which 

is sustained by tight and adherens junctions to adjacent cells. Specific 

secretory granules, namely zymogen granules (ZGs), function as a storage 

unit for digestive enzymes. These granules are highly concentrated near the 

apical pole of the cell, which is in close proximity to the duct of the exocrine 

pancreas for efficient secretion (Fig. 1.2) (Low et al., 2010). Three main areas 

in the acinar cell accommodate mitochondria in order for the organelle to 

perform specific functions: 1) the nuclear region; 2) the sub-plasma 

membrane; 3) mainly around the ZG area, in the perigranular portion (Fig. 

1.2) (Tinel et al., 1999; Park et al., 2001; Petersen, 2012). The basolateral 

region of the acinar cell comprises the majority of the endoplasmic reticulum 

(ER) which surrounds the nucleus. The ER, however, also significantly 

extends into the apical region of the cell where strands of ER actually 

surround each ZG (Park et al., 2000; Gerasimenko et al., 2002).  

 

The exocrine pancreas was originally utilised as a model to discover the 

structural and functional organisation of the mammalian secretory pathway 

and has been extensively studied subsequently (Palade, 1975). PACs 

primarily mediate the synthesis, storage and regulated secretion of hydrolytic 

digestive enzymes required for food digestion and absorption within the small 

intestine (Williams, 2008; Husain and Thrower, 2009; Logsdon and Baoan, 

2014). Carbohydrates, fats and proteins are hydrolysed by α-amylase, lipase 

and proteases, respectively. These three classes of digestive enzymes are 

specifically secreted by PACs (Leung and Ip, 2006). The initial process of 

digestive enzyme synthesis transpires in the rough ER, forming the first 

secretory pathway compartment. This is followed by the sorting and packing 

of these inactive proenzymes into large, optically dense secretory (zymogen) 

granules, at the trans-Golgi network. Lastly, food ingestion initiates both the 

PAC secretion process as well as endocrine, neurocrine and paracrine 
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pathways that control the release of appropriate quantities of digestive 

enzymes to closely match dietary need. Food ingestion also evokes the 

release of particular secretagogues such as acetylcholine (ACh) and 

cholecystokinin (CCK) (Fig. 1.2). Upon binding of these secretagogues to 

their corresponding receptors on the acinar cell basolateral membrane, 

digestive enzyme secretion into the pancreatic ductal system ensues via 

exocytosis. Fusion of the granule membrane with the apical cell membrane 

permits movement of zymogens into the acinar lumen. A neutral chloride- 

and bicarbonate-rich fluid secretion from acinar cells and small ducts, 

respectively, enables zymogen movement from the ductal system into the 

gut (Leung and Ip, 2006). Under physiological conditions, inactive precursor 

forms of digestive enzymes (such as trypsinogen as the precursor of trypsin) 

are then solely activated extrapancreatically after their release into the 

duodenal lumen. Enteropeptidase, an enzyme secreted by small intestinal 

epithelial cells, converts trypsinogen into active trypsin which subsequently 

triggers an activation cascade of other proteolytic enzymes (Case, 1978; 

Petersen and Sutton, 2006). Therefore, the intermediate storage process of 

these harmful proenzymes in acidic ZGs is vital in preventing their premature 

activity and significant damage to pancreatic tissue (Leung and Ip, 2006).   
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A 

 
 
 
 
 
B                            

                                
 
 
Figure 1.2. Structure of a pancreatic acinar cell. (A) Schematic diagram of a 
highly polarised, pyramid-shaped acinar cell. The bulk of the endoplasmic reticulum 
is situated in the basolateral pole, with small projections into the apical region. The 
zymogen granules are found in the apical pole of the cell. Cell surface receptors are 
mainly located on the basal membrane of the cell. Mitochondria are localised into 
three main, sub-cellular areas: sub-plasmalemmal, perigranular and perinuclear 
(image adapted from Gerasimenko et al., 2006). (B) Transmitted light image of a 
typical doublet acinar cell, freshly isolated from a mouse pancreas. Dark zymogen 
granules are tightly clustered. Scale bar: 10 µm. 
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1.3 Physiological calcium signalling in pancreatic acinar 
cells 
 
As a universal, versatile intracellular messenger, the calcium ion (Ca2+) 

participates in the dynamic regulation of a myriad of key cellular functions in 

excitable and non-excitable cells (Berridge et al., 2000). These include gene 

expression, fertilisation, muscular contraction, neurotransmitter release, 

exocytosis and cell death (including apoptosis, autophagy and necrosis) thus 

accompanying cells throughout their lifespan. Ca2+ can operate from within 

microseconds at synaptic endings to driving cell proliferation processes over 

minutes to hours (Berridge et al., 2000; Li et al., 2014). In order to 

characterise these functions, it is essential for each cell type to have a 

specific Ca2+ signalling system with various spatio-temporal aspects that are 

derived from a unique Ca2+ signalling toolkit (Berridge et al., 2003). Under 

normal resting conditions within a eukaryotic cell, the cytosolic Ca2+ 

concentration ([Ca2+]i) is rigorously controlled at around 55 - 100 nM, 

compared with up to 1 mM in the extracellular fluid depending on the cell 

type (Chakrabarti and Chakrabarti, 2006). This intracellular Ca2+ regulation 

depends on an equilibrium between the basic “on” reactions that introduce 

Ca2+ signals into the cytoplasm and the “off” reactions that remove signals 

through the action of buffers, pumps and exchangers (Berridge et al., 2003). 

Dysregulation of Ca2+ signalling, however, is the hallmark of multiple human 

pathologies such as Alzheimer’s disease, cancer, cardiac disease and in 

relation to this thesis: acute pancreatitis (Ashby and Tepikin, 2002; Berridge, 

2011; Cartwright et al., 2011; Stewart et al., 2015; Gerasimenko et al., 2018). 

 

PACs have been widely used as models of non-excitable cells to investigate 

the role of Ca2+ signalling in the synthesis, processing, vectorial transport 

and secretion of proteins (Palade, 1975; Mikoshiba et al., 2008; Petersen 

and Tepikin, 2008; Ambudkar, 2012). Increases in cytosolic Ca2+ signals are 

essential for these PAC functions and are mostly transient and localised in 

the apical region of the acinar cell, under physiological conditions (Ashby 

and Tepikin, 2002). Stimulants acting on the outside of the acinar plasma 

membrane serve as triggers in activating this highly sophisticated Ca2+ 

signalling toolkit. These stimulants include the circulating hormone CCK, 

produced by intestinal endocrine cells and the neurotransmitter ACh which 

is released from vagal nerve endings (Iwatsuki and Petersen, 1977; Philpott 

and Petersen, 1979; Wakui and Petersen, 1990). The intestinal phase of 

digestion triggers the release of CCK which binds to its G-protein linked 

µM. 
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transmembrane receptor, CCK subtype 1 (CCK1) (Owyang, 1996). This 

interaction activates adenosine diphosphate-ribosyl cyclase which 

subsequently produces cyclic adenosine diphosphate-ribose (cADPR) and 

the Ca2+-releasing agent, nicotinic acid adenine dinucleotide phosphate 

(NAADP) (Yamasaki et al., 2005; Li et al., 2014). ACh is released during all 

stages of digestion and binds to the G-protein-coupled receptor, muscarinic 

receptor type 3 (M3) (Petersen, 1992; Nakamura et al., 2013). Upon 

receptor ligand binding, phospholipase C (PLC) is activated which then 

hydrolyses phosphatidylinositol 4,5-bisphosphate into the Ca2+-releasing 

messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) 

which mobilise Ca2+ and activate protein kinase C respectively (Fig. 1.5) 

(Williams, 2001; Li et al., 2014).  

1.3.1 Ca2+ release from intracellular stores 

Release of Ca2+ from intracellular stores in PACs is caused by the three 

second messengers, IP3, cADPR and NAADP. Although the main 

intracellular store of Ca2+ in PACs is the ER, acidic Ca2+ stores are present 

in the apical pole of the cell, namely the ZGs, late endosomes and lysosomes 

(Christensen et al., 2002; Lloyd-Evans et al., 2008; Lloyd-Evans and Platt, 

2011). The ZGs have previously been shown to release Ca2+ via Ca2+-

releasing messengers (Gerasimenko et al., 1996a; Yoo et al., 2000; 

Quesada et al., 2001; Mitchell et al., 2001; Quesada et al., 2003). It is also 

possible that other acidic organelles such as the Golgi, endosomes or 

lysosomes contribute towards the liberation of Ca2+ in response to Ca2+-

releasing messengers (Hirano, 1991; Grondin, 1996; Cerny et al., 2004; 

Yamasaki et al., 2004; Malosio et al., 2004). Overall, the acidic store 

demonstrates a high sensitivity to IP3, cADPR and NAADP signalling 

pathways (Fig. 4). Ca2+ is liberated following binding of these second 

messengers to specific Ca2+ sensitive ligand-gated Ca2+ channels (Petersen, 

2005; Petersen and Tepikin, 2008; Petersen, 2012). There are two main 

types of regulated Ca2+-release channels located on the ER membrane: the 

IP3 receptors (IP3Rs) and ryanodine receptors (RyRs).  
 

The IP3R is a tetrameric intracellular IP3-gated Ca2+ release channel, 

expressed in almost all cell types with various isoforms (Foskett et al., 2007; 

Mikoshiba, 2007). IP3R type 1 is primarily present in the nervous system 

whilst type 2 and 3 isoforms are expressed in a wide variety of organs, 

functioning in secretory regulation and proliferation (Futatsugi et al., 2005). 

IP3Rs in PACs are predominantly concentrated within the apical region and 
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require binding of both IP3 and Ca2+ for their activation (Thorn et al., 1993; 

Nathanson et al., 1994). Stimulation of a PLC-coupled cell surface receptor, 

such as the muscarinic ACh receptor through ACh binding, activates the IP3R 

which releases Ca2+ from the ER lumen. IP3R activation permits the 

movement of Ca2+ into the cytosol, down the concentration gradient (Fig. 

1.5). This potential difference across the ER membrane is sustained by the 

ER luminal free Ca2+ concentration (around 100 – 300 µM) (Mogami et al., 

1998). 

 

RyRs exist in three isoforms (RYR 1, 2 and 3) and are expressed in a variety 

of tissues. RyR1 and RyR2 were first found in skeletal and cardiac muscle, 

respectively and RyR3 was first detected in the brain (Takeshima et al., 1989; 

Nakai et al., 1990; Hakamata et al., 1992). In contrast to the localisation of 

IP3Rs, RyRs are evenly dispersed in both apical and basolateral regions of 

the PAC. RyRs are also, like IP3Rs, activated by Ca2+ but require second 

messengers such as cADPR and NAADP (Cancela et al., 2000; Yamasaki 

et al., 2005; Gerasimenko et al., 2015). Although IP3R activation requires the 

dual action of both IP3 and Ca2+, RyR-dependent Ca2+ release from 

intracellular stores can result from Ca2+ alone (Leite et al., 1999). It is thought 

that NAADP is a potential accessory protein for the activation of two-pore 

channels (TPCs) which are present on the membrane of acidic Ca2+ stores 

(Calcraft et al., 2009). The subsequent liberation of Ca2+ and the ensuing 

small increases in cytosolic Ca2+ concentration further activates additional 

IP3Rs and RyRs, inducing additional Ca2+ release from intracellular stores. 

This process is known as calcium-induced calcium release (CICR) 

(Gerasimenko et al., 2006; Gerasimenko et al., 2015). 

 

Physiological concentrations of ACh and CCK evoke repetitive, local 

cytosolic Ca2+ spiking that originates and is generally confined to the apical 

region of the cell, despite stimuli acting on receptors at the basolateral 

plasma membrane (Gerasimenko et al., 2003; Orabi et al., 2013). This Ca2+ 

signalling pattern is due to the dispersal of Ca2+ release channels in the 

acinar cell and CICR which permits propagation of a whole cell Ca2+ signal 

originating from RyRs in the basolateral region of the cell. These increases 

in [Ca2+]i, due to Ca2+ release from the ER in the apical pole, stimulates the 

secretion process. Secretory granules comprising digestive proenzymes are 

all situated at the apical pole of the cell, thus aiding the functional purpose of 

Ca2+ release.  
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1.3.2 Ca2+ extrusion and uptake mechanisms from the cytosol 

Although cytosolic Ca2+ spiking plays an essential role in physiological Ca2+ 

signalling mechanisms and the activation of digestive enzyme exocytosis, 

the effect of sustained global [Ca2+]i elevations on PACs can be fatal (Reed 

et al., 2011). In order to clear Ca2+ from the cytosol and maintain a resting 

[Ca2+]i level, eukaryotic cells employ a combination of extrusion mechanisms 

which involve components situated at both the plasma membrane and ER 

(Fig. 3) (Guerini et al., 2005). These extrusion mechanisms are activated 

whenever there is an increase in [Ca2+]i above 100 nM and include the 

sarcoplasmic/endoplasmic reticulum Ca2+-activated adenosine triphosphate 

(ATP)ase (SERCA) and plasma membrane Ca2+-ATPase (PMCA) pumps 

(Fig. 1.5) (Lytton et al., 1992; Carafoli, 1994; Brini and Carafoli, 2011). 

 

The SERCA pump, in PACs, is found on the ER membrane and is therefore 

predominantly situated at the basal pole of exocrine cells (Lee et al., 1997; 

Gerasimenko et al., 2002). Under normal, physiological conditions, SERCA 

actively re-uptakes Ca2+ from the cytosol into the ER lumen. This is to 

compensate for Ca2+ release evoked by physiological receptor stimulation 

whilst also allowing intracellular stores to refill (Petersen and Sutton, 2006; 

Garside et al., 2010). Once the cell surface receptor stimulation ceases and 

the ER Ca2+ release channels subsequently close, SERCA has a more 

profound effect on removing Ca2+ from the cytosol (Petersen and Tepikin, 

2008). In contrast, during unphysiological, sustained receptor stimulation, the 

ability of SERCA pumps to clear Ca2+ from the cytosol through re-uptake into 

the ER is insignificant due to the opening of Ca2+ release channels. Under 

these circumstances, the PMCA pumps are primarily accountable for Ca2+ 

clearance (Tepikin et al., 1992). 

 

Dissimilar to many excitable cells, PACs do not express functional Na+-Ca2+ 

exchangers (NCEs). The NCE is an important antiporter situated in the 

plasma membrane which removes Ca2+ out of the cell in exchange for Na+ 

ions entering the cell (Blaustein and Lederer, 1999). For example, following 

an action potential in electrically excitable cardiac cells, NCE is the principle 

mechanism to extrude Ca2+ from the cytosol in order to maintain and restore 

low [Ca2+]i levels (Berberián et al., 2012). In non-excitable PACs, however, 

the only process available for Ca2+ extrusion across the plasma membrane 

is PMCA (Fig. 1.5) (Zylińska and Soszyński, 2000; Ferdek et al., 2012; 

Gerasimenko et al., 2014a). In the majority of eukaryotic cells, the PMCA 



 13 

pump is universally expressed throughout the plasma membrane (Carafoli, 

1994). However, in order to actively pump Ca2+ into the extracellular 

environment from the region where it is largely liberated, PMCA pumps are 

primarily situated and confined to the apical part of PACs. Although there are 

low levels of PMCA expression on the basolateral membrane, the 

concentration of PMCA in the apical region is necessary for tightly regulating 

[Ca2+]i and preventing unwarranted and potentially harmful signal 

propagation of Ca2+ (Lee et al., 1997). The ATP-dependent PMCA pump has 

a high affinity for Ca2+ and is rapidly activated following any oscillation in 

cytosolic Ca2+. Under physiological conditions, it is estimated that PMCA-

mediated Ca2+ extrusion is activated at an agonist-elicited cytosolic 

concentration of 100-300 nM (Mangialavori et al., 2010; Brini and Carafoli, 

2011). The maintenance and restoration of [Ca2+]i is therefore fine-tuned due 

to the limited capacity of PMCA (Petersen and Sutton, 2006).  

 

Further to these processes, it is known that an additional Ca2+ store, the 

mitochondrion, also contributes towards cytosolic Ca2+ uptake and 

homeostasis in PACs (Tinel et al., 1999; Park et al., 2001; Voronina et al., 

2002b). Following increases in [Ca2+]i by physiological stimulation, 

mitochondria have the ability to limit rises in [Ca2+]i by taking up Ca2+ 

released from the ER or Ca2+ entering from the external environment 

(Bultynck and Parys, 2018). This is a rapid process, with the peak increase 

in mitochondrial Ca2+ concentration occurring soon after the peak cytosolic 

Ca2+ concentration (Szabadkai et al., 2003). Mitochondrial Ca2+ uptake 

occurs via a Ca2+-selective ion channel, the mitochondrial Ca2+ uniporter 

(MCU) and the driving force behind this uptake mechanism is the membrane 

potential across the inner mitochondrial membrane (Fig. 1.5) (Kirichok et al., 

2004; Leo et al., 2005; De Stefani et al., 2011). As mentioned previously, 

mitochondria are located in specific regions of the PAC, such as beneath 

the plasma membrane and surrounding the nucleus. Mitochondria also 

separate zymogen granules from the basolateral region of the cell by 

forming a distinct perigranular belt in the apical part of the cell (Tinel et al., 

1999; Park et al., 2001; Ashby and Tepikin, 2002; Voronina et al., 2002b; 

Bano et al., 2005; Reed et al., 2011). Following release of Ca2+ from the ER 

in the apical region, this mitochondrial belt functions as a Ca2+ buffer barrier 

by immediately taking up Ca2+ into the mitochondrial matrix thus confining 

cytosolic Ca2+ signals to the secretory region of the cell (Tinel et al., 1999; 

Straub et al., 2000; Petersen and Sutton, 2006). This perigranular belt also 

prevents spreading of Ca2+ to the basolateral part of the cell where the 

nucleus is situated (Fig. 1.2).  Furthermore, mitochondrial Ca2+ uptake 
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results in activation of the dehydrogenase enzymes of the Krebs cycle, 

driving ATP production. ATP production via the metabolic pathway of 

glycolysis and oxidative phosphorylation is imperative for physiological 

operations of the pancreas. The ATP produced is also required for SERCA-

mediated Ca2+ re-uptake into the ER and PMCA-mediated Ca2+ extrusion 

(Leo et al., 2005; Mukherjee et al., 2008; Reed et al., 2011).  

1.3.3 Store-operated Ca2+ entry 

Excitable cells such as neurones, myocytes and endocrine cells possess 

voltage-gated Ca2+ channels which open to allow Ca2+ entry, following 

membrane depolarisation by an action potential. Ca2+ influx, down the 

concentration gradient, results in [Ca2+]i elevations which activates the 

exocytotic machinery of these cells (Boquist et al., 1995). The plasma 

membrane in non-excitable cells, such as the PAC, however, is not 

electrically excitable and so does not possess these voltage-gated Ca2+ 

channels (Petersen, 1992). In further contrast, during stimulation of PACs 

with physiological concentrations of secretagogues, the cytosolic Ca2+ 

responses driving exocytotic enzyme or fluid secretion are repetitive, short-

lasting elevations. These elevations are primarily confined to the apical 

region and largely depend on Ca2+ release from intracellular stores (Yule et 

al., 1991). The secretory processes will eventually cease, however, after 

several minutes because not all Ca2+ released from the ER is taken up again, 

rendering these stores finite (Petersen and Ueda, 1976). A substantial 

portion of Ca2+ will be extruded out of the cell by PMCA pumps on the plasma 

membrane which are activated whenever [Ca2+]i increases. Therefore, all 

cytosolic Ca2+ signals are associated with an inevitable loss of Ca2+ from the 

cell.  In order to replenish these intracellular stores with the Ca2+ required for 

cellular functions, a specific compensatory pathway must exist whereby Ca2+ 

from the external environment enters the cell. In non-excitable cells, this Ca2+ 

entry is known as store-operated calcium entry (SOCE) and provides an 

almost limitless supply of Ca2+ to the ER from the basal pole, through 

SERCA-mediated pumping (Putney, 1986; Park et al., 2000; Putney, 2007; 

Petersen and Tepikin, 2008; Parekh, 2010). 

 

The notion of SOCE was first defined by Putney in 1986. This concept 

stemmed from several experiments using lacrimal and parotid acinar cells 

which demonstrated that Ca2+ entry refilled internal stores, independent of 

cell surface receptor stimulation (Putney, 1977; Parod and Putney, 1978; 

Putney, 1986). It was hypothesised that in non-excitable cells, the amount of 
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Ca2+ entry is dependent on the quantity of Ca2+ within the stores and this was 

initially termed “capacitative calcium entry” (Putney, 2007). A later study 

readily demonstrated the SOCE pathway with the use of thapsigargin, a 

specific SERCA pump inhibitor (Takemura et al., 1989). Ca2+ replenishment 

of the ER was blocked by thapsigargin, therefore resulting in store depletion, 

due to passive leak of Ca2+ from the ER. This in turn, activated Ca2+ influx 

via SOCE (Fig. 1.5). Thapsigargin and other inhibitors, such as cyclopiazonic 

acid (CPA), are still used as reagents for investigating SOCE currently 

(Michelangeli and East., 2011). Direct evidence demonstrating the SOCE 

concept was provided by Hoth and Penner in 1992 using extensive 

electrophysiological studies. A combination of patch-clamp and Ca2+ imaging 

techniques were used to observe membrane currents in mast cells, following 

emptying of internal stores. The authors revealed that a sustained Ca2+ 

inward current was activated following intracellular store depletion (Hoth and 

Penner, 1992). This non-voltage activated, inward rectifying current was 

named calcium release-activated calcium (CRAC) channel or ICRAC (Zweifach 

and Lewis, 1993; Parekh and Penner, 1997). Loss of this ICRAC through 

CRAC channels across the plasma membrane occurred when extracellular 

Ca2+ was removed (Hoth and Penner, 1992).  

 

1.4 The calcium release-activated calcium (CRAC) channel 
 
Several unique characteristics belonging to the CRAC channel as well as its 

distinctive activation by intracellular store depletion differentiate this channel 

from the numerous other known Ca2+-permeable channels. The CRAC 

channel has a remarkably high selectivity for Ca2+ with a permeability ratio 

for Ca2+:Na+ of >1,000 compared to the most selective Ca2+ channels 

documented, such as the voltage-gated L-type Ca2+ channel (Hoth, 1995). 

Furthermore, the channels can distinguish between monovalent and divalent 

cations as well as between differing divalent cations (Hoth and Penner, 

1992). Although the single channel Ca2+ conductance of the CRAC channel 

has to be measured indirectly as it is so small (estimated between 10 – 35 

fS), it is highly likely that these channels will open and therefore conduct Ca2+ 

after store depletion (Zweifach and Lewis, 1993; Prakriya and Lewis, 2006). 

CRAC channels also display intracellular Ca2+-dependent inactivation and 

extracellular Ca2+-dependent enhancement of channel activity (Hoth and 

Penner, 1992; Hoth and Penner, 1993).  
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Although CRAC-mediated SOCE is the principle pathway through which Ca2+ 

enters PACs, non-selective cation channels, or transient receptor potential 

(TRPC) channels also contribute towards store-operated acinar Ca2+ influx 

(Kim et al., 2009; Lur et al., 2011; Dingsdale et al., 2012; Gerasimenko et al., 

2013). The store-operated nature of TRPC channels is, however, still highly 

debated in the field (Clapham, 2003; DeHaven et al., 2009; Choi et al., 2014). 

TRPC1 knockdown studies in mouse salivary glands resulted in a reduction 

in SOCE evoked by thapsigargin-induced store depletion, providing 

supporting evidence for TRPCs as subunits of SOC channels (Liu et al., 

2000; Liu et al., 2007). Several confounding factors, however, pose 

significant difficulties in the acceptance of TRPCs as store-operated 

channels. TRPC channels respond to diverse stimuli (such as G proteins, 

Ca2+ and redox compounds) and numerous TRPC proteins form 

heteromultimers with other TRPC members which modifies their mode of 

activation (Yuan et al., 2007). The resulting Ca2+ selectivity and conductance 

of TRPCs fails to contend with the capability of ICRAC (Voets et al., 2001; 

Gross et al., 2009; Choi et al., 2014). Although the CRAC channel is the most 

well established and investigated SOCE channel, for almost two decades, 

the molecular components, biophysical properties and the mechanisms 

underpinning the opening of these channels, following store depletion, 

remained an unsolved mystery (Parekh, 1997; Prakriya and Lewis, 2004; 

Parekh and Putney, 2005).  

1.4.1 Stromal interaction molecule (STIM), an endoplasmic 
reticulum Ca2+ sensor 

The molecular identification of the ER Ca2+ sensor STIM (stromal interaction 

molecule) and the CRAC channel subunit Orai in 2005 and 2006 

respectively, paved the way for major advances in revealing the molecular 

mechanisms, components and functions of SOCE (Fig. 1.3) (Liou et al., 

2005; Roos et al., 2005; Feske et al., 2006; Vig et al., 2006; Zhang et al., 

2006; Prakriya and Lewis, 2015). Through the use of small interfering RNA 

(siRNA) screening in Drosophila S2 and HeLa cells, the STIM protein was 

discovered as a fundamental component in the SOCE pathway (Liou et al., 

2005; Feske et al., 2006). Two homologs of the protein exist in mammals, 

STIM1 and STIM2 with 61% homology. After knockdown of STIM1, the 

siRNA screens demonstrated suppression of SOCE and ICRAC in both Ca2+ 

imaging and electrophysiological experiments, thus strongly associating 

STIM1 to CRAC channel function. This dramatic reduction in store-operated 



 17 

Ca2+ influx was also shown in Jurkat T and HEK293 cells following STIM1 

knockdown (Roos et al., 2005). As type I single-pass ER membrane proteins, 

both STIM1 and STIM2 have an amino terminus situated inside the ER lumen 

and a cytoplasmic carboxy-terminal region with molecular weights of 77 kDa 

and 85 kDA, respectively (Collins and Meyer, 2011; Stathopulos and Ikura, 

2013). Although STIM1 is predominantly dispersed throughout the ER in 

resting cells, STIM1 was shown (through fluorescent labelling) to translocate 

into clusters or “puncta” near the plasma membrane (PM) upon ER store 

depletion (Fig. 1.4) (Liou et al., 2005; Zhang et al., 2005). This was the first 

indication of an ER Ca2+ sensing role for STIM proteins which was further 

reinforced by the intracellular location and the organisation of STIM1 

functional domains. The luminal, amino terminus of STIM1, which lies within 

the ER lumen, comprises a Ca2+-binding motif known as an EF-hand domain 

(Fig. 1.4). The EF hand has a typical helix-loop-helix structure that binds to 

one calcium ion between loops 1 and 2. This domain permits STIM1 to sense 

the ER luminal Ca2+ concentration and the content of the stores. Mutations 

of Ca2+-binding residues within this EF hand domain results in SOCE, 

regardless of the content of ER Ca2+ stores (Liou et al., 2005; Zhang et al., 

2005). A non-binding Ca2+ ER hand structure acts to stabilise the Ca2+-

binding domain via hydrogen bonding at this terminus. This region of the 

protein also comprises a sterile a-motif domain (SAM), enabling protein-

protein interactions. This SAM domain is stabilised by, and interacts with, a 

hydrophobic cleft which is formed from amino acids belonging to both EF 

hands (Stathopulos et al., 2008). On the cytoplasmic side, the most critical 

parts for SOCE include the coiled-coil CRAC activation domain (CAD) and a 

polybasic domain which both interact at the plasma membrane (Parekh, 

2010). 

1.4.2 Orai, a subunit of the CRAC channel  

Despite the integral Ca2+-sensing role of STIM1, its actions alone are not 

sufficient for CRAC channel function. One year after the identification of 

STIM1, several groups discovered the transmembrane domain channel 

protein, Orai1, which forms the subunit of the CRAC channel pore (Fig. 1.3). 

This resulted, initially, from human genetic linkage analysis of patients with 

a rare form of inherited severe combined immunodeficiency (SCID) as well 

as their families (Feske et al., 2006). Through this linkage analysis approach 

and positional cloning, the authors identified mutations in a gene localised 

on chromosome 12, covering approximately 74 genes, which was associated 

with the absence of SOCE and CRAC channel function. This abrogation of 
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ICRAC resulted from a single point mutation in Orai1 in the SCID patients, 

despite normal STIM1 expression. Furthermore, the wild-type expression of 

Orai1 in T cells isolated from the SCID sufferers fully re-established ICRAC and 

store-operated Ca2+ entry (Feske et al., 2006). The use of siRNA studies to 

test 23,000 genes for their contribution towards SOCE was conducted 

simultaneously in Drosophila cells. CRACM1 (CRAC modulator 1, also 

known as Orai1) was identified as an essential component of store-operated 

influx machinery (Vig et al., 2006). These conclusions were further reinforced 

from experiments by Zhang and colleagues in Drosophila S2 cells. They 

demonstrated almost complete inhibition of ICRAC following knockdown of 

Orai1, compared to control cells (Zhang et al., 2006). Although these studies 

implied that Orai1/CRACM1 is the structural CRAC channel 

component/gene, its role remained uncertain and there was still a possibility 

of an encoded, plasma membrane bound accessory protein controlling 

channel opening (Liou et al., 2005; Feske et al., 2006; Vig et al., 2006; Zhang 

et al., 2006). Several groups therefore carried out mutagenesis studies of 

highly conserved acidic residues in the transmembrane domains of Orai1. 

Orai1, and other members of its protein family (Orai2 and Orai3), consist of 

four transmembrane-spanning domains (TM1-TM4) and intracellular NH2 

and COOH termini facing the cytoplasm. In all three proteins, the C terminus 

has a coiled-coil domain which participates in protein-protein interactions 

(Fig. 1.3) (Hou et al., 2012). Following alterations of these acidic residues in 

HEK293 and Drosophila cells, the sensitivity of CRAC channels for Ca2+ was 

significantly reduced or the CRAC channel conduction was blocked, thus 

establishing Orai1 as the pore forming subunit of the CRAC channel 

(Prakriya et al., 2006; Vig et al., 2006; Yeromin et al., 2006). No other ion 

channel proteins are known to share homology with all three isoforms of Orai 

(Roberts-Thomson et al., 2010). Although Orai2 is predominantly expressed 

in the brain, lung, spleen and intestine, the ubiquitous expression of Orai1, 

Orai3 and STIM1 throughout the whole body highlights their functional 

importance (Gross et al., 2007). 
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Figure 1.3. Structure of Orai1. (A). Schematic diagram of the full-length, human 
Orai1 which shows the 4 transmembrane (TM) domains, the N- and C-terminal. 
(B). Diagram demonstrating a single Orai1 subunit, present within the plasma 
membrane with the 4 TM regions, terminal elongated N- and C- termini. Amino acid 
numbering signifies human Orai1 (adapted and taken from Fahrner et al., 2013). 
 

1.4.3 CRAC channel-mediated Ca2+ entry 

The mechanism of CRAC channel activation is a highly dynamic event that 

involves translocation of membrane proteins between two different cell 

compartments, the ER and the PM. Under resting conditions when internal 

Ca2+ stores are filled, STIM1 is homogeneously dispersed throughout the ER 

membrane (Fig. 1.4) (Baba et al., 2006; Park et al., 2009a; Covington et al., 

2010). Loss of Ca2+ from stores causes release of Ca2+ from the luminal Ca2+-

binding EF hand of STIM1 (Liou et al., 2005; Zhang et al., 2005). The 

subsequent weakening of intramolecular connections between the SAM 

domain and the two EF hands on the protein’s luminal terminus causes 

unfolding of STIM1. These conformational changes lead to the formation of 

STIM1 oligomers (Luik et al., 2008; Stathopulos et al., 2008). The oligomers 
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then re-distribute to specific ER-PM junctions where they co-accumulate in 

clusters, situated within 10 – 25 nm of the PM (Wu et al., 2006; Liou et al., 

2007; Varnai et al., 2007). This close localisation to the PM permits binding 

of STIM1 to Orai1, opening the CRAC channel which initiates Ca2+ entry into 

the cell (Fig. 1.4). Although STIM1 oligomers can form and accumulate 

without the cytosolic domain of the STIM1 protein, this is not sufficient to 

activate Orai1. The presence of the CRAC activation domain stabilises these 

STIM1 aggregates and binds directly to both the N- and C- termini of Orai1 

thus playing an essential role in CRAC channel activation (Park et al., 2009a; 

Zhou et al., 2010). Upon refilling of stores, SOCE concludes as STIM1 and 

Orai1 return to their original, highly dispersed distributions (Liou et al., 2005; 

Prakriya and Lewis, 2015). 

 

The physiological importance of CRAC channels is highlighted by the impact 

of CRAC channel dysregulation on human health as well as their high degree 

of conservation, from yeast to humans. CRAC channels are widely 

distributed in PACs as they are concentrated in both apical and basolateral 

membranes, thus traversing around 95% of the PAC surface (Lur et al., 

2011). In recent years, various human diseases have also been associated 

with abnormal CRAC channel activity, including severe disorders of the 

immune system, allergies, myocardial infarction, thrombosis, Alzheimer’s 

disease and cancer (Vig et al., 2008; Yang et al., 2009; Parekh, 2010; Kim 

et al., 2014; Sun et al., 2014; Lacruz and Feske, 2015).  
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Figure 1.4. Activation of the Ca2+ release-activated Ca2+ (CRAC) channel.  
(A) At resting state, when stores are filled with Ca2+, stromal interaction molecule 1 
(STIM1) is uniformly distributed throughout the endoplasmic reticulum (ER) 
membrane with its EF hand motif occupied with Ca2+. The channel protein Orai1 is 
comprised of four transmembrane domains with both NH2 and COOH termini facing 
the cytoplasm and the pore-forming subunit of the CRAC channel distributed within 
the plasma membrane (PM). (B) During store depletion, Ca2+ is released from the 
ER and is sensed by STIM1, which oligomerises and migrates to ER-plasma 
membrane junctions. At these locations, STIM1 puncta form and interact with Orai1, 
inducing CRAC channel activation and subsequent Ca2+ influx from the extracellular 
environment (adapted from Roberts-Thomson et al., 2010). 
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1.5 Pathological Ca2+ signalling in acute pancreatitis  
 

The overall agreement, hypothetically proposed in 1995, is that a disruption 

in Ca2+ signalling within the PAC leads to excessive cytosolic Ca2+ signals 

which in turn, initiates almost all pathological hallmarks of AP (Fig. 1.5) 

(Ward et al., 1995; Raraty et al., 2000; Krϋger et al., 2000; Voronina et al., 

2002a; Petersen and Sutton, 2006; Gerasimenko et al., 2014b). As 

mentioned previously, short-lasting, repetitive, transient oscillations in 

cytosolic Ca2+ confined to the apical pole of the acinar cell cause normal 

exocytosis of digestive enzymes (Maruyama et al., 1993; Thorn et al., 1993). 

Under pathophysiological conditions, however, sustained, global elevations 

of [Ca2+]i in PACs are the most damaging and result from pathological 

agents such as alcohol, bile, various drugs as well as high concentrations 

of ACh or CCK secretagogues (Petersen and Sutton, 2006; Gerasimenko 

et al., 2013). These stimuli instigate excessive release of Ca2+ from internal 

stores followed by excessive Ca2+ entry, or impair mechanisms acting to 

restore physiological levels of [Ca2+]i (Fig. 1.5). The toxic overload in 

cytosolic Ca2+ prematurely activates digestive enzymes intracellularly which 

results in the molecular cannibalism that digests the pancreas and triggers 

acute pancreatitis (Ward et al., 1995; Krüger et al., 2000; Raraty et al., 2000; 

Petersen et al., 2011). 

1.5.1 Alcohol-induced acute pancreatitis    

The close correlation between alcohol intake and AP has been 

acknowledged for some time. In 1788, an association between excessive 

alcohol consumption and diseases of the pancreas was made, with the first 

description of the Drunkard’s Pancreas by Friedrich ensuing a century later 

(Cawley, 1788). Increases in binge drinking and chronic alcohol intake has, 

in more recent decades, mirrored a dramatic elevation in hospital 

admissions for AP (Roberts et al., 2008). Furthermore, a population-based 

cohort study in 2008 demonstrated an increased risk of individuals 

developing AP after consuming more than 14 drinks per week (Kristiansen 

et al., 2008). A subsequent meta-analysis indicated that the risk of 

pancreatitis occurring is more than doubled when individuals imbibe in 

excess of 4 drinks per day (Irving et al., 2009). Interestingly, however, only 

a minority (less than 10%) of heavy drinkers actually develop AP (Pandol et 

al., 2011). Clarification of the pathobiology of alcoholic AP has been further 

complicated by the inability of alcohol ingestion to cause AP in experimental 

animal models. In this case, additional agents such as CCK are required to 
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induce alcoholic AP (Siech et al., 1991; Pandol et al., 1999; Lerch and 

Gorelick, 2013). Moreover, the direct application of high concentrations of 

ethanol (850 mM) to isolated PACs typically generates only modest 

increases in cytosolic Ca2+ (Criddle et al., 2004). Therefore, it is evident that 

other elements play a role in the mechanisms underlying alcohol-induced 

pancreatitis. 

 

The exocrine pancreas utilises both oxidative and non-oxidative routes to 

metabolise ethanol (Gukovskaya et al., 2002; Criddle, 2015). The oxidative 

metabolism of alcohol involves the catalysation actions of alcohol 

dehydrogenase (ADH) and cytochrome P450 2E1 (CYP 2E1) which yield 

reactive oxygen species (ROS) and acetaldehyde (Gukovskaya et al., 

2002). ROS are highly reactive, short-lived compounds and are potentially 

injurious to cellular components including lipid membranes, DNA and 

intracellular proteins. Cells have the ability under physiological conditions to 

effectively clear ROS within the cell through the actions of proteins (such as 

catalase, peroxidases, superoxide dismutase, glutathione and glutathione 

peroxidase). Oxidative stress, however, can result from an imbalance 

between these protective protein mechanisms and ROS production, 

instigating pancreatic cell death (Vonlaufen et al., 2008). Both ADH and 

CYP 2E1 enzymes are expressed in the pancreas, however, their 

expression is significantly higher in the liver. As a result, the capacity for 

oxidative metabolism of ethanol by the pancreas is substantially less than 

that of the liver (Haber et al., 1998; Norton et al., 1998; Clemens et al., 

2016). The non-oxidative metabolism of ethanol involves the esterification 

of free fatty acids (FAs) to produce highly lipophilic fatty acid ethyl esters 

(FAEEs) via FAEE synthases such as carboxylester lipase. The generation 

of these FAEE synthase enzymes occurs in the human pancreas at rates of 

approximately 54 nmol/min/g tissue. This level is higher than any other 

organ (Hamamoto et al., 1990; Diczfalusy et al., 2001; Haber et. al., 2004). 

Moreover, post-mortem studies of intoxicated patients reported that 

accumulations of FAEEs in the pancreas were higher than any other organ 

analysed. The capacity for non-oxidative metabolism of ethanol in the 

pancreas is therefore highly due to significant FAEE synthase activity 

(Laposata and Lange, 1986). Compared to oxidative metabolism of ethanol, 

non-oxidative alcohol metabolism by FAEE synthases and the generation of 

FAEEs likely has a more predominant contribution to the damaging effects 

of alcohol-induced pancreatitis (Criddle et al., 2006b; Criddle et al., 2007; 

Shalbueva et al., 2013; Mukherjee et al., 2016).  
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The significance of PAC organellar dysfunction, particularly in mitochondria 

and in the ER, in the initiation of AP has been emphasised through recent 

advances in the mechanisms underlying alcohol-induced damage. Non-

oxidative alcohol metabolites, FAEEs, induce global, sustained elevations 

in cytosolic Ca2+ concentration in pancreatic acinar cells thus prematurely 

activating digestive proenzymes and initiating AP (Criddle et al., 2004). This 

toxic effect has been demonstrated in both in vitro and in vivo experiments. 

The non-oxidative ethanol metabolite palmitoleic acid (POA) ethyl ester 

(POAEE), which is produced by hydrolysis of its parent FAEE, was 

administered to PACs and resulted in persistent and damaging increases in 

cytosolic Ca2+, in a concentration-dependent manner (Criddle et al., 2004; 

Criddle et al., 2006b). Activation of IP3Rs and subsequent Ca2+ liberation 

from the ER gives rise to these excessive increases in [Ca2+]i (Fig. 1.5). The 

successive activation of store-operated Ca2+ influx mechanisms is 

significant, pathologically, as it sustains cytosolic Ca2+ elevations (Criddle et 

al., 2006b; Gerasimenko et al., 2013). In addition to these damaging in vitro 

effects, FAEEs have induced protease (trypsinogen) activation, pancreatic 

oedema and vacuolisation in animal models. Intracellular vacuolisation 

involves the destabilisation and conversion of zymogen granules into empty-

looking vacuoles in the apical secretory granular pole of the acinar cell 

(Werner et al.,1997). These processes lead to digestion of the acinar cell 

and its surrounding tissue, thereby releasing cell contents and digestive 

enzymes, causing further digestion of PACs, namely autodigestion (Pandol 

et al., 2007). In general, it has been shown that trypsinogen activation, an 

early event in the initiation of AP, occurs within endocytic vacuoles (EV) 

which assemble in PACs following AP induction. Intracellular rupture and 

fusion of EVs to the plasma membrane can enable both the targeting of 

cytoplasmic and extracellular structures by trypsin as well as the release of 

digestive enzymes into the cytosol of PACs (Sherwood et al., 2007; 

Chvanov et al., 2018; De Faveri et al., 2019). These findings highlight the 

importance of depicting the intracellular processing of EVs which could 

improve our understanding of early events in AP pathology and potentially 

result in new therapeutic molecular targets being identified. 

 

Together with Ca2+ overload, loss of ATP is also a principle feature of 

alcohol-induced acute pancreatitis and leads to the induction of massive 

cellular necrosis (Criddle et al., 2004; Criddle et al., 2007; Mukherjee et al., 

2008; Gukovsky et al., 2011). In recent years, evidence has demonstrated 

that sustained rises in cytosolic Ca2+ in PACs, due to non-oxidative ethanol 

metabolites, causes excessive mitochondrial Ca2+ uptake which opens the 
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mitochondrial permeability transition pore (MPTP). This MPTP opening 

triggers mitochondrial dysfunction (Shalbueva et al., 2013; Mukherjee et al., 

2016). MPTP formation, as a result of mitochondrial Ca2+ overload and 

oxidative stress, occurs within the inner mitochondrial membrane (IMM). 

Opening of this multi-protein channel permeabilises the IMM and permits 

free movement of protons and substances weighing up to 1.5 kDA into the 

mitochondria. Therefore, the development of the MPTP dissipates the 

membrane potential and the proton gradient required for ATP production 

(Criddle et al., 2015). The subsequent mitochondrial ATP depletion within 

PACs, compromises ATP-dependent pumps such as SERCA and PMCA 

(Fig. 1.5) (Criddle et al., 2006b). SERCA pumps cannot replenish ER stores 

with Ca2+ and PMCA is unable to stabilise the effect of SOCE by extruding 

Ca2+ across the plasma membrane thus inadequately clearing elevated 

cytosolic Ca2+. This mitochondrial malfunction further contributes towards 

acinar necrosis, the extent of which, is a principle determinant of disease 

severity in AP (Gerasimenko and Gerasimenko, 2012). The prognosis of 

pancreatitis largely relies on whether apoptosis or necrosis cell death 

pathways occur (Criddle et al., 2007; Gukovskaya and Gukovsky, 2011). 

The plasma membrane remains intact during the tightly regulated 

“physiological” cell death process, apoptosis, which is a mechanism of 

programmed cell death. However, as the necrosis processes abolish the 

integrity of the plasma membrane, cellular constituents are expelled into the 

interstitial fluid which induces a detrimental inflammatory response. ATP is 

required for apoptosis thus in AP, where mitochondrial dysfunction ensues, 

necrosis is the only available cell death pathway (Petersen et al., 2011). 

1.5.2 Bile acid-induced acute pancreatitis   

As previously mentioned, migrating gallstones can obstruct the ampulla of 

Vater, the junction at which the common bile and pancreatic ducts unite. The 

acknowledgement of this site of blockage as a potential cause of AP dates 

back to the 20th century (Opie, 1901). In more recent years, gallstones have 

become a well-established and recognised cause of pancreatitis. Although 

gallstones are mainly asymptomatic, comprising cholesterol and bile salts, 

blockage of this junction can result in bile reflux into the biliopancreatic ductal 

system. This is termed the “common channel theory” of AP whereby a 

common channel is created behind the stone obstruction causing retrograde 

flow of bile into the pancreatic duct and pancreatic acinar cell injury 

(Armstrong and Taylor, 1986; Voronina et al., 2002a; Pandol et al., 2007; 

Vonlaufen et al., 2008). Pancreatic ductal hypertension can also arise from 
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gallstone blockage of the pancreatic duct, preventing the outflow of 

pancreatic juice into the duodenum (Petersen and Sutton, 2006). Although 

this additional theory is thought to instigate acinar cell damage, there is more 

evidence in favour of the bile reflux theory as an initiator of AP (Perides et 

al., 2010a). 

 

In PACs, bile acids can be taken up by transporters such as the HCO3-

dependent organic anion transporting polypeptide-1 (OATP1), situated on 

the basolateral membrane. Moreover, the Na+-dependent Na+ taurocholate 

co-transporting polypeptide (NTCP), located on the apical membrane of the 

acinar cell accounts for approximately 25% of bile acid uptake (Kim et al., 

2002). In order to respond to bile in the lumen of the duct, the widely 

expressed G-protein-coupled cell surface, bile acid receptor, Gpbar1 is also 

positioned at the apex of the cell (Perides et al., 2010b). The direct effect of 

bile acids such as taurolithocholic acid 3-sulfate (TLC-S) on isolated murine 

PACs was first reported in 2002 by Voronina and colleagues. Although TLC-

S evoked oscillatory elevations in cytosolic Ca2+ at low concentrations, 

application of higher TLC-S concentrations (300 – 500 µM) induced 

sustained, cytosolic Ca2+ increases (Voronina et al., 2002a). Higher 

concentrations of other bile salts, including sodium taurocholate and 

taurochenodeoxycholate, also triggered global, persistent increases in 

cytosolic Ca2+ in vitro (Kim et al., 2002; Voronina et al., 2002a). This data 

showed that the initial Ca2+ signal originated from intracellular Ca2+ release 

from both the ER and acidic intracellular stores through IP3 and ryanodine 

receptors. The effect of low concentrations of bile acid on [Ca2+]i has 

additionally been reported through SERCA pump inhibition with subsequent 

depletion of ER Ca2+ (Kim et al., 2002; Gerasimenko et al., 2006; Fischer et 

al., 2007; Malo et al., 2010). However, the persistent pathological Ca2+ 

elevations were derived from the extracellular environment through SOCE 

mechanisms. This was demonstrated during a maintained presence of bile 

acids and the removal of Ca2+ from the extracellular solution which resulted 

in intracellular Ca2+ levels rapidly returning to baseline. This highlighted the 

important role of Ca2+ influx in driving sustained cytosolic Ca2+ elevations 

induced by bile acids (Fig. 1.5) (Kim et al., 2002). This pathological cytosolic 

Ca2+ overload is taken up by the mitochondria, inducing organellular 

dysfunction and ATP depletion which triggers cell death pathways (Pandol 

et al., 2007). 
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1.5.3 Asparaginase-induced acute pancreatitis   

Another cause of AP, as formerly mentioned, is L-asparaginase, namely 

asparaginase-associate pancreatitis. Although 5-year survival rates of more 

than 90% for childhood acute lymphoblastic leukaemia are owing to the 

intensification of chemotherapy treatments, increased levels of therapy-

related toxicities have also ensued (Schmiegelow et al., 2017). One of the 

most common reasons for discontinuing ASNase treatment in patients 

suffering with ALL is the development of AAP. This is unfortunate due to the 

essential part ASNase plays in successful multiagent chemotherapeutic 

regimes for childhood ALL (Raja et al., 2012). There are three main sources 

of asparaginase used at present in the clinic, each with diverse 

pharmacodynamics, pharmacokinetic and immunogenic properties. The 

native L-asparaginase and the modified pegylated version, PEG-

Asparaginase are both derived from Escherichia coli (E. coli). Whereas, 

Erwinase originates from Erwinia chrysanthemi (Muller and Boos, 1998; 

Duval et al., 2002; Kurre et al., 2002). By hydrolysing asparagine to aspartic 

acid and ammonia, L-asparaginase acts to diminish exogeneous sources of 

asparagine. As the majority of malignant lymphoblasts fail to produce the 

levels of asparagine necessary for lymphoblastic metabolism and growth, 

depletion of asparagine pools by L-asparaginase will result in cell death 

(Jaffe et al., 1971; Muller and Boos, 1998; Duval et al., 2002; Kurre et al., 

2002; Berg, 2011).  

 

The mechanisms underlying the therapeutic effects of L-asparaginase on 

cancer cells in childhood ALL are, however, profoundly different to the 

actions by which asparaginase evokes acute pancreatitis (Broome, 1968). 

The latter of which have been largely unknown. Recent investigations, 

however, have revealed the mechanisms leading to AAP for the first time 

(Peng et al., 2016; Peng et al., 2018). ASNase primarily interacts with 

protease-activated receptor 2 (PAR2) to induce sustained elevations in 

cytosolic Ca2+ concentration in PACs, independent of asparagine (Peng et 

al., 2016; Peng et al., 2018). PARs are unique, G-protein-coupled seven 

transmembrane receptors and their activation results from an irreversible 

proteolytic mechanism. PAR2 is broadly expressed in human and animal 

tissues, including the pancreas and its activation is specifically carried out by 

trypsin and tryptase (Nystedt et al., 1994; Molino et al., 1997; Dery et al., 

1998). Although a role for PAR2 in AP pathology has previously been 

implicated, its precise function is debated in the field (Namkung et al., 2004; 

Gorelick, 2007; Singh et al., 2007; Laukkarinen et al., 2008). Activation of 
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PAR2 results in PLC activation and the generation of IP3 which leads to Ca2+ 

mobilisation. It is this signal transduction pathway that evokes [Ca2+]i 

overload through excessive release of Ca2+ from internal Ca2+ stores, 

followed by SOCE which induces pancreatitis, similar to the actions of 

FAEEs and BAs (Soh et al., 2010). This was confirmed by Peng and 

colleagues (2016) through the use of PAR2 inhibitors which prevented both 

ASNase-induced pathological [Ca2+]i elevations and ASNase-evoked 

necrosis. Moreover, investigations have demonstrated that ASNase 

significantly effects both Ca2+ influx and extrusion. This is due to 

mitochondrial depolarisation and sustained elevations in mitochondrial Ca2+ 

levels which depletes ATP production and therefore inhibits PMCA pumps 

from removing Ca2+ from the cell (Peng et al., 2016; Peng et al., 2018). 

Several formulations of ASNase were used to confirm the mechanistic action 

of ASNase, including Asparaginase from both E. coli and Erwinia 

chrysanthemi as well as the drug ELSPAR and PEG-Asparaginase. 
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Figure 1.5. Pathological Ca2+ signalling in acute pancreatitis. Schematic 
diagram demonstrating the therapeutic potential of CM4620 on inhibiting CRAC 
(Ca2+ release-activated Ca2+) channels in pancreatic acinar cells. CM4620 could 
inhibit sustained, global elevations in cytosolic Ca2+ concentrations which result from 
a variety of pathological agents. This would prevent further hallmarks of AP such as 
premature trypsin activation and necrosis (adapted from Gerasimenko and 
Gerasimenko, 2012). Abbreviations: ATP: adenosine triphosphate; Ca2+: calcium; 
IP3Rs: IP3 receptor; MCU: mitochondrial Ca2+ uniporter; MPTP: mitochondrial 
permeability transition pore; PAR2: protease-activated receptor 2; PMCA: plasma 
membrane Ca2+ ATPase; RyR: ryanodine receptor; SERCA: sacro/endoplasmic 
reticulum Ca2+-activated ATPase. 
 

1.6 Therapeutic avenues for acute pancreatitis  

There is currently no cure or specific therapy available for AP. Treatments 

are predominantly based on nutritional support, pain control and fluid 

resuscitation which do not combat the primary pathological event, a 

sustained [Ca2+]i overload in PACs causing premature intracellular protease 

activation (Petersen and Sutton, 2006; Wu and Banks, 2013). However, due 

to significant improvements in our understanding of the pathological Ca2+ 

signalling events in AP, numerous therapeutic targets have come to fruition. 
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The principal target for preventing pancreatic injury during AP ought to be 

the initial site of pancreatic damage, namely, the pancreatic acinar cells. 

Inhibition of Ca2+ release from intracellular ER stores, enhancing Ca2+ 

extrusion, protection of mitochondrial events and inhibition of Ca2+ entry are 

all possible therapeutic avenues for AP (Petersen and Sutton, 2006).  

1.6.1 Therapeutically targeting internal Ca2+ release 

Massive Ca2+ release from both the ER and acidic stores occurs via IP3R and 

RyR and plays a major role in the cytosolic Ca2+ overload that initiates AP 

disease progression. Some success of targeting this pathway therapeutically 

has been demonstrated. Pharmacological inhibition of IP3Rs in PACs and 

knock outs of type 2 and 3 IP3Rs in mice has been investigated 

(Gerasimenko et al., 2009). Following pathological stimulation with POAEE, 

low levels of Ca2+ release and trypsinogen activation were shown in type 2 

and 3 IP3R knock outs. An even more significantly diminished intracellular 

trypsin activity was observed in cells from POAEE-induced double IP3R 

knock outs. Additionally, antibodies against type 2 and 3 IP3Rs markedly 

reduced POAEE-evoked Ca2+ release and trypsinogen activation 

(Gerasimenko et al., 2009).  

Calmodulin is an intracellular Ca2+ sensor known to protect against 

excessive Ca2+ release and trypsinogen activation by regulating numerous 

IP3R mechanisms of Ca2+ entry (Michikawa et al., 1999; Gerasimenko et al., 

2011; Petersen et al., 2011). The therapeutic ability of calmodulin activator 

Ca2+-like peptides 3 (CALP-3) has therefore been investigated. CALP-3, at 

a concentration of 100 µM, effectively eliminated the characteristic effects 

of ethanol on intact PACs, such as Ca2+ release and necrosis. CALP-3 did 

not affect physiological ACh and CCK-evoked oscillations (Gerasimenko et 

al., 2011; Ferdek et al., 2017). Recently, the development of a more potent, 

modified CALP-3 led to investigations showing its effectiveness at much 

lower concentrations, such as 0.1 µM, further reinforcing its therapeutic 

potential at protecting PACs against pathological Ca2+ damage 

(Gerasimenko et al., 2014a).  

 

High concentrations of caffeine have also been reported to inhibit IP3R-

mediated Ca2+ release via inhibition of PLC-mediated IP3 production, in vitro 

(Toescu et al.,1992; Huang et al., 2017). Caffeine prevented sustained rises 

in [Ca2+]i, mitochondrial membrane potential deficiency and necrosis in 

PACs. 25mg/kg caffeine was also administrated in vivo in mouse models of 
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AP where it markedly ameliorated pancreatic injury. Caerulin (a CCK 

analogue), TLC-S and ethanol and POA were used to induce AP in these 

mouse models (Huang et al., 2017). Patients rarely receive treatment within 

48 hours after the start of AP disease progression, thus the successful 

impact of delayed caffeine administration (24 hours) in preventing numerous 

pathological hallmarks of AP further strengthens its therapeutic value 

(Gerasimenko et al., 2017). Although it has recently been shown that 

caffeine effectively inhibits cell death elicited by the amino acid L-arginine in 

vitro, necrosis responses to the basic amino acid L-ornithine were not 

significantly affected by caffeine and cell death caused by L-histidine was 

remarkably exacerbated by caffeine. In contrast to caerulin-, bile acid, fatty 

acid and ethanol-induced AP models, caffeine did not significantly protect 

against all the histopathological parameters in a L-arginine-induced murine 

model of AP (Zhang et al., 2019). Furthermore, additional effects of caffeine 

include activation of RyR-mediated Ca2+ release in the heart sarcoplasmic 

reticulum with the possibility of severe cardiac arrhythmias (Lur et al., 2011). 

Coupled with its relatively low affinity for the IP3R, the use of caffeine as a 

potential AP treatment is limited (Wakui et al., 1990).  

 

The anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein has also been shown 

to regulate Ca2+ release by binding to and influencing intracellular Ca2+ 

channels. Vervliet and colleagues demonstrated the ability of low 

concentrations of the Bcl-2-homology (BH) 4 domain of Bcl-2 to inhibit IP3Rs 

and RyRs through direct interaction. The BH4 domains of Bcl-2 and Bcl-XL 

also have the ability to inhibit, via RyR and IP3R blockage, pathological Ca2+ 

overload in PACs evoked by TLC-S. This subsequently minimises the 

damaging effects of TLC-S-induced necrosis (Vervliet et al., 2018). These 

studies demonstrated a novel use of the BH4 domains of Bcl-2 and Bcl-XL 

as peptide tools in reducing RyR-evoked Ca2+ overload in AP pathology 

(Vervliet et al., 2014; Vervliet et al., 2016; Vervliet et al., 2018). However, 

the shortage of specific IP3R and RyR inhibitors limit their usefulness as 

inhibitors of Ca2+ release from internal stores for AP therapy (Gerasimenko 

et al., 2017). As a modulator of intracellular Ca2+ homeostasis, the Bcl-2 

protein not only inhibits intracellular Ca2+ release, but also regulates PMCA 

activity. In 2012, Ferdek and colleagues revealed that Bcl-2 can suppress 

PMCA-mediated Ca2+ extrusion. Bcl-2 knock out cells more efficiently 

extruded Ca2+ from the cytosol compared to control PACs thus providing 

protection against the damaging effects of excessive extracellular Ca2+ 

(Ferdek et al., 2012). Inducing oxidative stress in PACs where Bcl-2 protein 
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expression is silenced, strongly promotes apoptotic pathways whilst 

protecting against excessive necrosis (Ferdek et al., 2012). 

 

Alternatively, blockage of NAADP-mediated Ca2+ release with, for example, 

the cell-permeable NAADP analogue and selective antagonist, Ned-19 has 

also been explored as a therapeutic avenue. At a high concentration of  

100 µM, Ned-19 blocked binding to the NAADP thus inhibiting NAADP-

mediated Ca2+ release (Rosen et al., 2009; Gerasimenko et al., 2015). The 

plant alkaloid, tetrandrine, has been shown to potently inhibit NAADP-

stimulated Ca2+ release and TPC-dependent Ca2+ currents (Sakurai et al., 

2015). There has been increasing interest into the anti-inflammatory effects 

of Tetrandrine due to its ability to regulate inflammatory cell function and 

inhibit both inflammatory mediator release and free radical damage (Choi et 

al., 2000; He et al., 2011). Although numerous attempts at therapeutically 

targeting excessive internal Ca2+ release in PACs have been made, none of 

the aforementioned examples have reached clinical trials. Furthermore, 

IP3Rs and RyRs are widely expressed and are vital for cellular functions 

such as secretion and proliferation. Therefore, blockade of Ca2+ overload 

via these receptors may detrimentally impact on other, important cell 

functions, so their safety as a therapy for AP is doubtful.   

1.6.2 Therapeutically targeting mitochondrial dysfunction 

A principle event in the initiation of AP induced by FAEE, bile acids and 

ASNase is mitochondrial dysfunction in which oxidative stress is 

exacerbated, hence it is considered as a significant target for drug 

development (Criddle et al., 2006b; Booth et al., 2011). Cyclophilin D is an 

important regulator of the MPTP which opens as a result of mitochondrial 

Ca2+ overload. Opening of the MPTP causes mitochondrial membrane 

depolarisation and ATP depletion thus preventing removal of Ca2+ from the 

cytosol through ATPase pumps (Halestrap and Richardson, 2015). In 2005, 

investigations showed that loss of cyclophilin D protects against damaging 

Ca2+ overload as well as the ensuing necrotic cell death thus improving cell 

fate (Baines et al., 2005; Nakagawa et al., 2005). Further findings 

demonstrated resistance of MPTP opening in cyclophilin D knock out mice 

which prevented the loss of mitochondrial membrane potential, inhibiting the 

subsequent acinar cell necrosis resulting from ATP depletion (Shalbueva et 

al., 2013). Utilising a combination of ethanol and CCK to evoke AP in 

cyclophilin D knockout mice afforded considerable protection against the 

hallmarks of AP as reduced necrosis, trypsin and serum amylase levels and 
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increased ATP levels were observed (Shalbueva et al., 2013). Therefore, 

cyclophilin D and MPTP blockade is clearly an important therapeutic target 

for preventing necrosis in diseases such as AP. Additionally, the 

administration of small molecule cyclophilin D molecules protected against 

mitochondrial membrane depolarisation and necrosis in murine and human 

PACs evoked by TLC-S. 

 

As previously mentioned, ROS have been shown to play a part in the 

development of AP due to increases in oxidative status and the diminished 

antioxidant capacity shown in clinical studies and in vivo experiments 

(Bjelakovic et al., 2012; Criddle et al., 2006a). Although controversial within 

the literature, the targeting of antioxidants to mitochondria could be a 

possible therapeutic approach for AP as well as for other diseases in which 

mitochondrial dysfunction is a core feature. However, there is evidence that 

antioxidant therapy can promote cellular processes such as melanoma 

metastasis (Le Gal et al., 2015). In PACs, application of the antioxidant N-

acetylcysteine (NAC) inhibited the production of BA-evoked ROS which 

subsequently initiated necrosis in place of apoptotic cell death (Criddle et al., 

2006a; Booth et al., 2011; Chvanov et al., 2015). This highlighted a 

significant role for ROS in influencing acinar cell fate. More recently, 

Armstrong and colleagues (2019) investigated and compared the effects of 

antioxidant MitoQ on PAC bioenergetics, ATP generation and cell fate 

against decyltriphenylphosphonium bromide (DecylTPP), a non-antioxidant 

control and the general antioxidant, NAC. MitoQ accumulates on the inner 

mitochondrial membrane whereby mitochondrial membrane potential drives 

its uptake into the organelle (Asin-Cayuela et al., 2004; Finichiu et al., 2013). 

Seahorse XF24 analysis of respiratory function and plate-reader analysis of 

cellular ATP and necrosis levels was used to compare the effects of these 

three compounds. Sustained elevations in basal respiration and blockage of 

spare respiratory capacity resulted from the application of both MitoQ and 

NAC. These effects were marginal following the use of DecylTPP, further 

confirming the capability of these antioxidants. Moreover, MitoQ and 

DecylTPP significantly decreased mitochondrial ATP turnover capacity and 

cellular ATP concentrations. Compensatory increases in glycolysis and 

concentration-dependent elevations in PAC apoptosis and necrosis resulted 

from all three compounds. The authors therefore proposed that a negative 

feedback control of basal cellular metabolism is significantly influenced by 

ROS. The targeting of antioxidants to mitochondria causes both specific and 

non-specific effects on bioenergetics which significantly influences PAC 

health (Armstrong et al., 2019).  
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ATP metabolism plays a major role in Ca2+ homeostasis and regulation in 

PACs (Hainóczky et al., 1995; Petersen, 2003; Smyth et al., 2008; Yadav 

and Lowenfels, 2013). Recent investigations by Peng and colleagues have 

shown that restoring ATP supply provides an impressively high degree of 

protection against pancreatic necrosis. The first, detailed studies into the role 

of glycolysis in AP in vitro and in vivo were subsequently carried out (Peng 

et al., 2016; Peng et al., 2018). Removal of extracellular glucose had a very 

minimal effect on ATP depletion, evoked by alcohol metabolites, bile acids 

or asparaginase, in isolated mouse PACs or clusters (Peng et al., 2018). This 

indicated that these AP-inducing agents severely inhibit glucose metabolism. 

However, when substituting glucose with both pyruvate and galactose as a 

source of energy supply, ATP loss, aberrant Ca2+ signals, mitochondrial Ca2+ 

responses, mitochondrial depolarisation and any succeeding necrosis was 

significantly reduced or inhibited. As galactose is converted into glucose-6-

phosphate independently of hekokinases (HKs), it is an alternative carbon 

energy source for glycolysis. Galactose is eventually metabolised to pyruvate 

via the glycolytic pathway and enters glycolysis by bypassing HK at a slower 

rate than glucose (Bustamante and Pedersen, 1977; Holden et al., 2003). 

These results indicate that glucokinase/HK activity is inhibited during AP 

pathology. However, under these pathological conditions, the protective 

effects of galactose and pyruvate suggest that mitochondrial oxidative 

phosphorylation can function effectively thus producing sufficient levels of 

ATP for the cell (Vervliet et al., 2016). Although pyruvate demonstrated a 

high degree of protection against pancreatic necrosis, galactose is more 

stable in solution, metabolised at a relatively slower rate and has been 

utilised in feeding and intravenous (IV) injection in vivo protocols (Berry et 

al., 1995; An et al., 2012; Sclafani and Ackroff, 2014). The safety of galactose 

administration in humans, even at high mM concentrations, has also been 

shown. At 100 mM, galactose is potently present in a variety of milk sources 

as the glucose-galactose disaccharide, lactose and is absorbed in the 

intestine as free galactose. Free galactose is also a component of breast milk 

at mM concentrations as well as existing in formula milk at concentrations of 

2 - 4 mM (Cavalli et al., 2006). In lactose-free milk, galactose is present at 

levels approaching 100 mM (Ohlsson et al., 2018). The remarkable effect of 

galactose was therefore further explored in mouse models of AP, induced by 

asparaginase or a combination of ethanol and fatty acids. Galactose 

markedly diminished acinar necrosis, oedema and inflammatory infiltration 

to more control-like values in both alcohol-induced pancreatitis and in the 

novel animal model of asparaginase-induced AP (Peng et al., 2018).  
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1.6.3 CRAC channel inhibitors  

Although numerous therapeutic targets have been investigated, none of the 

aforementioned avenues have reached clinical trial stage. The recognition of 

SOCE as a potential therapeutic target for acute pancreatitis (AP) dates back 

to as early as 2000 (Raraty et al., 2000). The pharmacological development 

of specific CRAC channel inhibitors for AP treatment has significantly 

expanded over recent years and is the principle focus of this study (Prakriya 

and Lewis, 2015). The substantial therapeutic appeal of CRAC channels is 

due to the dependence of intracellular protease activation on cytosolic Ca2+ 

overload which, preceding Ca2+ depletion of the ER, results from sustained, 

CRAC channel-mediated Ca2+ entry (Fig. 1.5) (Gerasimenko et al., 2013). 

Targeting Ca2+ entry would also remove the need for pharmacological 

intervention of intracellular components such as the ER and mitochondria 

(Petersen, 2014). Furthermore, aberrant CRAC channel activity has been 

implicated in other human disorders, mentioned in section 1.4.3. This has 

resulted in academic institutions and pharmaceutical companies expressing 

an interest and collaborating in CRAC channel inhibitor development 

(Parekh, 2010; DiCapite et al., 2011; Osherovich, 2013; Tian et al., 2016).  

 

Our knowledge of the molecular components of the CRAC channel has 

improved significantly, permitting the development of compounds targeting 

either STIM1 or the pore of the Orai channel, through inhibiting the pore itself 

or disrupting STIM-Orai communication (Tian et al., 2016). Pyrazole 

compounds such as GSK-7975A (2,6-difluoro-N-1(1-(4-hydroxy-2- 

(trifluoromethyl)benzyl)-1H-pyrazol-3-yl)benzamide), produced by 

GlaxoSmithKline, have been particularly effective as Orai1 and Orai3-

specific inhibitors (Derler et al., 2013; Gerasimenko et al., 2013). At low 

micromolar concentrations, the novel compound GSK-7975A was reported 

to completely inhibit CRAC-mediated Ca2+ influx in human lung mast cells, 

rat basophilic leukaemia (RBL-2H3) cells and mast and T-cells from human, 

rat, mouse and guinea pig preparations (Ashmole et al., 2012; Derler et al., 

2013; Rice et al., 2013). More importantly, in isolated murine PACs, GSK-

7975A markedly prevented toxic POAEE-evoked [Ca2+]i elevations, trypsin 

and protease activity and cellular necrosis. GSK-7975A also strikingly 

reduced both asparaginase-evoked Ca2+ influx and toxic levels of necrosis 

(Geraimenko et al., 2013; Peng et al., 2016).  
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1.6.4 Novel CRAC channel inhibitor, CM4620 

Due to a lack of specificity and high toxicity, the majority of CRAC channel 

inhibitors have not reached clinical trials. Over the past decade, however, 

the biotechnology company CalciMedica has generated numerous selective 

and potent CRAC channel inhibitors, including CM2489, which was the first 

to be tested in humans and complete Phase I clinical trials for moderate-to-

severe plaque psoriasis treatment (Jairaman and Parakirya, 2013). The 

compound CM_128 (also known as CM4620) successfully inhibited Ca2+ 

influx in human PACs at concentrations of 1 μM. In both mouse and human 

PACs, CM_128 was significantly more potent at inhibiting SOCE than GSK-

7975A. Furthermore, CM_128 prevented acinar necrosis and all local and 

systemic hallmarks of AP exhibited in three alcohol metabolite or bile acid 

induced mouse models (Wen et al., 2015).  

 

CM4620, a novel small molecular entity of Orai1 inhibitors developed by 

CalciMedica is the focus of this study. CM4620 has completed Phase I 

clinical trials and was granted fast-track designation by the FDA (Food and 

Drug Administration), for the treatment of AP. Furthermore, results are due 

to be published on CalciMedica’s CM4620-based Phase IIa clinical trial 

(NCT03709342) for treating moderate to severe AP (CalciMedica, 2019). 

This is the most advanced step, thus far, in therapeutic development for AP 

(Pevarello et al., 2014). A recent study by Waldron and colleagues sought to 

examine the effectiveness of CM4620 in in vivo models of pancreatitis. The 

inflammatory pathways relating to SOCE in PACs, immune cells and the 

recently discovered resident cells situated in close proximity with acinar cells 

in the periacinar space, namely pancreatic stellate cells (PaSCs) were also 

investigated (Apte et al., 2013; Waldron et al., 2019). Intravenous infusion of 

CM4620 in in vivo rat models of pancreatitis significantly diminished 

pancreatic oedema, acinar cell vacuolisation, intrapancreatic trypsin activity 

and acinar cell necrosis. The expression of inflammatory cytokines in 

pancreas and lung tissues and cytokine generation in human peripheral 

blood mononuclear cells and rodent PaSCs were markedly decreased thus 

revealing a role for Orai1/STIM1 in the cellular inflammatory pathways 

involved in AP. However, the long-term application of this inhibitor is doubtful 

due to these profound effects on immune cells (Waldron et al, 2019).  

Successful preliminary investigations on the effect of CRAC channel 

inhibitor, CM4620, on Ca2+ entry in mouse PACs influenced this thesis. 

These results are depicted in Figs. 1.6, 1.6.1 and 1.6.2. Freshly isolated 
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PACs were initially perfused with NaHEPES solution in the absence of 

external Ca2+. ER Ca2+ stores were then depleted using the specific SERCA 

pump inhibitor, CPA, in the absence of external Ca2+. This process activated 

SOCE, represented in Fig. 1.6 by a considerable peak of Ca2+ influx. After 

a stable [Ca2+]i plateau was reached, external Ca2+ was removed, causing 

Ca2+ efflux from the cytosol through extrusion pathways within the plasma 

membrane. This standard protocol was subsequently adapted to introduce 

the CRAC channel inhibitor (Fig. 1.6.1). PACs were preincubated with 1 μM 

(Fig. 1.6.1A) and 10 μM CM4620 (Fig. 1.6.1B) for approximately 30 minutes, 

prior to administration of external Ca2+. Higher concentrations of CM4620 

progressively depressed the [Ca2+]i plateau.  

10 μM CM4620 very significantly inhibited the amplitude of [Ca2+]i elevation 

due to Ca2+ entry, close to the initial control baseline, compared to untreated 

control cells (Fig. 1.6). 1 μM CM4620 also very markedly and significantly 

reduced the amplitude of Ca2+ influx (Fig. 1.6.2).  

 

 

 

Figure 1.6. The standard store depletion protocol. Typical representative control 
trace in which the endoplasmic reticulum (ER) Ca2+ stores of PACs (n = 25) were 
emptied using the ER Ca2+ pump inhibitor, cyclopiazonic acid (CPA) (10 μM), in a 
Ca2+-free solution. This resulted in a large rise in cytosolic Ca2+ (200 - 500 seconds) 
followed by a decline to baseline levels due to the absence of external Ca2+ (500 - 
1000 s). The addition of 5 mM Ca2+ to the external solution subsequently caused a 
marked rise in cytosolic Ca2+ which eventually plateaued (2000 - 2500 s). At this 
point, external Ca2+ was removed causing cytosolic Ca2+ levels to return to baseline 
(2500 - 3000s). 
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A 

 

 

B 

 
 
Figure 1.6.1. The inhibitory effect of pre-incubation of CM4620 on CRAC 
channel-mediated Ca2+ entry in PACs. Representative traces showing pre-
incubation of Fluo-4 loaded cells with (A) 1 μM (orange trace) and (B) 10 μM (green 
trace) CM4620 before the re-administration of 5 mM external Ca2+ at 2000 seconds 
which caused a significant reduction in Ca2+ entry (23 cells/group), compared to 
control cells shown in Fig 1.6. 
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Figure 1.6.2. Effect of CM4620 on mean [Ca2+]i amplitude change (ΔF/F0) as a 
result of Ca2+ entry in PACs. Quantitative analysis depicting a significant 
concentration-dependent difference (P < 0.0001) in averaged amplitudes of Ca2+ 
entry following pre-incubation with CM4620, compared with control cells is shown. P 
values were calculated using one-way ANOVA followed by a Tukey’s post-hoc test 
to confirm differences between groups, ****, P < 0.0001. Data presented as mean ± 
SEM.   
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1.7 Aims and objectives of the study  
 
The aim of this project is to continue to determine the effects of novel CRAC 

channel inhibitor, CM4620 on the pathogenesis of AP whilst investigating the 

potential therapeutic use of CM4620 in inhibiting AP pathology. This study 

has the following objectives:  

[1] Measure potential effects of CM4620 on physiological Ca2+ signalling and, 

in particular, recovery of the Ca2+ responses in isolated PACs induced by 

physiological concentrations of ACh.  

[2] Measure the effects of CM4620 on store-operated Ca2+ influx in vitro in 

mouse PACs. 

[3] Measure the in vitro effects of CM4620, at low nanomolar concentrations, 

on cellular necrosis elicited by AP-inducing agents, such as bile acids, 

alcohol metabolites and asparaginase. The effectiveness of combining low 

concentrations of CM4620 with energy supplement galactose on cell death 

levels, evoked by AP-inducing agents will also be investigated.  

[4] Measure the effects of nanomolar concentrations of CM4620 in vivo in 

mouse models of alcohol-induced pancreatitis. 
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CHAPTER 2: Materials and Methods 
 

2.1 Materials and reagents 
 

Acetylcholine (ACh) (cat. A6625-25G) was obtained from Sigma-Aldrich, 

Dorset, UK. It was prepared in water at a stock concentration of 10 mM, 

aliquoted and stored at -20°C.  

 

Bile acid (BA) (cat. S9875-100G) was also purchased from Sigma-Aldrich 

and contained a mixture of the sodium salts of taurocholic, glycocholic, 

deoxycholic and cholic acids. It was stored at room temperature, prepared 

fresh at 0.06% concentration in NaHEPES and used immediately.  

 

D-galactose (cat. G5388-100G), dimethyl sulfoxide (DMSO) (cat. D8418-

100ML), ethanol (cat. 459836-100ML) and formaldehyde (37% stock 

solution) (cat. F1635-4L) were obtained from Sigma-Aldrich as well as 

palmitoleic acid (POA) (cat. P9417-100MG), which was prepared fresh in 

ethanol at a 30 mM stock concentration and used immediately at 30 μM. 

 

Asparaginase (cat. AB73439) was purchased from Abcam, Cambridge, UK 

and prepared in NaHEPES buffer at a 5000 IU/ml stock concentration, 

aliquoted and frozen at -20°C. It was used at a 200 IU/ml final concentration. 

 

Calcium chloride (CaCl2) (cat. 21114-1L) was supplied by Fluka, 

Loughborough, UK. A 1 M stock solution was kept at room temperature. 

 

CM4620 was supplied by CalciMedica, La Jolla, California. A 10 mM stock 

concentration of CM4620 in DMSO was prepared, aliquoted and stored at  

-20°C. 

 

Cover glass 32 x 32 mm, thickness Number 1 and sterile phosphate-buffered 

saline (PBS) (cat. E504-100ML), stored at room temperature, were 

purchased from VWR International Leicestershire, UK.   

 

Cyclopiazonic acid (CPA) (cat. 1235) was obtained from Tocris, Bristol, UK, 

prepared in DMSO at 20 mM stock concentration and stored at -20°C. 

 

 



 43 

2.2 Preparation of solutions 

2.2.1 Preparation of NaHEPES solution 

 
NaHEPES buffer was prepared as follows: 140 mM sodium chloride (cat. 

S3014- 500G); 4.7 mM potassium chloride (cat. P9541-500G); 10 mM 

HEPES (4-(2-Hydroxyethyl)piperaxine-1-ethanesulfonic acid) (cat. H4034-

100G); 1 mM magnesium chloride (obtained from 1 M stock solution, cat. 

M1028-10X1ML); 10 mM D(+)glucose (cat. G8270-100G). NaOH 

(Calbiochem, Nottingham, UK) was used to adjust pH to 7.2. 1 mM CaCl2 

was added to the NaHEPES solution for pancreatic acinar cell isolation and 

the majority of experimental work, when required (Gerasimenko et al., 

1996a). All above reagents were purchased from Sigma-Aldrich, unless 

otherwise stated.  

2.2.2 Preparation of collagenase solution 

Type V collagenase (cat. C9263-100MG), obtained from Sigma-Aldrich, was 

prepared in NaHEPES buffer (supplemented with 1 mM CaCl2) to produce a 

31.25 CDU ml-1 stock solution. The solution was divided into 1 ml aliquots 

and stored at -20°C. 

2.2.3 Preparation of fluorescent dyes 

Fluo-4-AM (cat. F14201) was purchased from Thermo Fisher Scientific, 

Paisley, UK. A 2 mM stock solution was prepared in DMSO, aliquoted, frozen 

at -20°C and protected from light. 

 

Propidium iodide (PI) (cat. P3566), supplied by Thermo Fisher Scientific, was 

stored at 4°C at a 1 mg/ml stock concentration and protected from light. 

 

2.3 Isolation of pancreatic acinar cells 
 

All regulated procedures involving animals were performed in compliance 

with the UK Home Office regulations under the Animal (Scientific 

Procedures) Act, 1986. Training and oversight of procedures were 

conducted by competent Cardiff University employees and in accordance 

with national requirements. C57BL6/J male mice (6-8 weeks old, 23 ± 3 g in 

weight and shown in Fig. 2.1) were obtained from Charles River Laboratories 
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(Margate, UK). They were housed in Cardiff University’s School of 

Biosciences animal unit with corn cob bedding and an enriched environment, 

which included nesting material and cardboard tunnels. Up to five mice were 

kept in each plastic cage (12 hour light cycle) and a standard rodent chow 

diet with free access to water was maintained before and throughout 

experiments. According to Schedule 1 of the UK Animal (Scientific 

Procedures) Act 1986, the mice were humanely killed by cervical dislocation 

(Gerasimenko et al., 1996a). 

 

 

 

 
Figure 2.1. Photograph of a wild type C57BL6/J mouse used in this study. Mice 
were purchased from Charles River Laboratories (Margate, UK) and used for 
pancreatic tissue isolation procedures (adapted from C57BL/6 Mouse Model 
Information Sheet, 2019). 
 

 

The pancreas was rapidly dissected from a mouse and washed twice in 

NaHEPES buffer solution, supplemented with 1 mM CaCl2. The tissue was 

subsequently injected with 1 ml collagenase (31.25 CDU ml-1) and incubated 

in this solution, in a shaking water bath for 5-6 minutes at 37°C. This allowed 

partial digestion of the tissue. After incubation, the tissue was transferred into 

a 15 ml falcon tube and suspended in NaHEPES, to remove any remaining 

collagenase solution. Manual agitation of the tissue, by pipetting, was then 

performed to release single pancreatic acinar cells or small acinar clusters. 

The supernatant was collected and transferred to a fresh falcon tube with the 

addition of NaHEPES buffer. This step was repeated numerous times before 

the cells were centrifuged for one minute at 200xg. The supernatant was 

discarded and the cell pellet was re-suspended in fresh NaHEPES buffer 

solution and centrifuged a second time. The final cell pellet was suspended 

in 2 ml NaHEPES solution and used in experiments within 4 hours after 

isolation. All experiments were conducted at room temperature 

(Gerasimenko et al., 1996a).  
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2.4 Cytosolic Ca2+ measurements 

Freshly isolated, intact PACs were loaded with the AM form of the Ca2+ 

sensitive fluorescent probe, Fluo-4. A final concentration of 5 μM was used 

and cells were loaded for 45 minutes at room temperature. After incubation, 

the cells were centrifuged as described previously, re-suspended in fresh 

NaHEPES solution (supplemented with 1 mM Ca2+) and used for 

measurements of cytosolic Ca2+. The cells were adhered to glass coverslips 

and continuously perfused, in a flow chamber, with a NaHEPES-based 

extracellular solution (Gerasimenko et al., 1996a). An inverted Olympus IX71 

system (Tokyo, Japan: x 40 oil objective; excitation 470 nm; emission 515-

560 nm; 100 ms exposure time, 1 image/second) was used for Fluo-4 

measurements and to visualise cells. WinFluo software was used to collect 

and record data.   

2.5 Store depletion protocol 

Cells were continuously perfused with a Ca2+-free NaHEPES solution for 

approximately five minutes, in order to prevent Ca2+ entry. PACs were then 

treated with CPA (10 μM), a specific SERCA pump inhibitor, to deplete ER 

stores of Ca2+ in the absence of external Ca2+. ER store depletion resulted in 

SOCE channel activation, however, absence of external Ca2+ prevented 

further Ca2+ entry from occurring. Therefore, 5 mM Ca2+ was re-admitted to 

the extracellular solution, facilitating Ca2+ entry to the cytosol and enabling 

this phase of the response to be analysed. Extracellular Ca2+ was removed 

once a [Ca2+]i plateau was reached. The subsequent phase of Ca2+ extrusion 

across the plasma membrane was also further analysed and enabled the 

return of cytosolic Ca2+ to baseline levels. 

2.5.1 Store depletion with pre-incubation of CRAC channel 
inhibitor, CM4620 

To investigate the effect of CM4620 on SOCE into freshly isolated PACs, a 

similar protocol (as described previously in Section 2.5) was used for ER 

Ca2+ store depletion, but with the addition of both CM4620 (10 μM) and CPA 

(10 μM) at 200s. Therefore, during CPA-induced depletion of ER Ca2+ stores, 

PACs were incubated with CM4620 for approximately 30 minutes, again in 

the absence of external Ca2+. Extracellular Ca2+ (5 mM) was then re-admitted 

to solution, in the presence of CM4620 (10 μM), to enable Ca2+ entry. Once 
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maximal Ca2+ entry and the subsequent cytosolic Ca2+ plateau phase was 

established, extracellular Ca2+ was again removed from the solution, as 

previously described. The presence of CM4620 was continued until baseline 

cytosolic Ca2+ levels were reached. This protocol was further replicated to 

investigate the effect of lower CRAC channel inhibitor concentrations. Cells 

were instead pre-incubated with 1 μM CM4620, together with CPA (10 μM).  

2.6 Cellular necrosis assay 

PACs were freshly isolated as previously described in Section 2.3. The final 

cell suspension was equally divided into 1 ml aliquots in order to investigate 

different experimental conditions. Up to 4 conditions were measured during 

each experiment: (1) negative control in the form of untreated cells; (2) 

positive control in the form of a necrosis-inducing reagent; (3) primary 

protective agent and necrosis-inducing agent; (4) combination of primary and 

secondary protective agents and necrosis-inducing agent. These conditions 

are summarised in Table 2.1. Pre-incubation of cells with various 

concentrations of primary protective agent CM4620 (10 μM, 1 μM, 100 nM, 

50 nM, 10 nM, 1 nM, 200 pM) and the secondary protective agent, galactose 

(1 mM), were conducted for 30 and 20 minutes respectively. The subsequent 

treatment of cells with either BA, POA or asparaginase, to induce necrosis, 

lasted two hours. Each incubation was staggered at different time intervals, 

enabling sufficient time for imaging. At the end of the two-hour incubation 

period, cells were stained with PI (1 μg/ml final concentration) for 10 minutes 

and visualised on a Lecia confocal microscope TCS SPE (Leica 

Microsystems, Milton Keynes, UK), with a 40x oil objective. Positive PI 

staining (excitation 532 nm, emission: 585-705 nm), represented by intense 

red nuclei staining due to plasma membrane rupture, allowed for the 

detection of necrotic cells. 20 to 25 images, per condition, were taken and 

the total number of cells was calculated by counting the number of necrotic 

(PI positive staining) and viable (PI negative staining) cells. At least three 

independent experiments (N = 3) for each condition were performed (>100 

cells per condition). This enabled the average percentage of necrotic cells of 

the total number of cells ± SEM to be calculated and presented as a bar chart 

(Gerasimenko et al., 2013). 
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Table 2.1. Conditions measured during each cellular necrosis experiment. 

 

2.7 In vivo model of acute pancreatitis induced by fatty 
acid ethyl ester  
 
All animal procedures were ethically reviewed and performed according to 

the Animals Scientific Procedures Act (1986), under the UK Home Office (Dr 

Oleg Gerasimenko, PPL: PDFF54638; PIL: I925AC360). Adult C57BL6/J 

male mice (20-25 g) were housed as previously described in Section 2.3, in 

groups of 2-3 mice per cage. The mice received two hourly intraperitoneal 

(IP) injections of POA (150 mg/kg) combined with ethanol (1.35 g/kg) to 

induce alcohol/fatty acid AP (FAEE-AP). In order to reduce potential damage 

to peritoneal organs at the injection site, 200 µl sterile phosphate-buffered 

saline (PBS) was immediately injected before the ethanol/POA injection. 

Control mice received two hourly IP injections of PBS alone. 24 hours prior 

to FAEE-AP induction, analgesia was given by oral administration of 2.5 

µg/ml buprenorphine hydrochloride. Animals were randomly assigned to 

three groups for evaluation: (1) PBS (n = 2); (2) POA and ethanol 

combination, inducing FAEE-AP (n = 2); (3) FAEE-AP + 0.1 mg/kg CM4620 

(n = 3). In the treatment group, mice were co-administered IP injections of 

0.1 mg/kg CM4620 (dissolved in PBS) with ethanol/POA injections, at 1-hour 

intervals. Animals were sacrificed 24 hours after the first injection and 

pancreas tissues were extracted for histological analysis, to assess the 

severity of FAEE-AP. The experimental protocol for the in vivo model of 

FAEE-AP was repeated three times. 

 

 

Condition 
measured 

Treatment of cells 

Negative control (1) Cells untreated. No application of necrosis-inducing 

agents or protective agents. 

Positive control (2) Cells incubated for 2 hours with a necrosis-inducing 

agent, such as bile acid, palmitoleic acid or asparaginase. 

Primary protective 

agent (3) 

Cells incubated with a preventative CRAC channel 

inhibitor, CM4620 (30 minute pre-incubation), as well as 
a necrosis-inducing reagent. 

Primary and 

secondary protective 

agents (4) 

Cells pre-incubated with a combination of two protective 

agents, i.e. CM4620 and galactose (for 30 and 20 minutes 

respectively), followed by a necrosis-inducing agent. 
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2.8 Histology and evaluation of AP severity 
 
Pancreatic tissues were fixed in 4% formaldehyde, 24 hours before 

processing. Fixed pancreatic tissues were then embedded in paraffin and 

stained with haematoxylin and eosin (H&E) (4 µm thickness). 15 or more 

random fields (magnification, x200) per slide were assessed for oedema, 

inflammatory cell infiltration and acinar necrosis by two independent 

investigators in a blinded manner, as previously described (Wildi et al., 2007; 

Van Laetham et al., 1996). The histopathological scoring system (scale, 0-3) 

is summarised in Table 2.2., as described by Van Laetham and colleagues 

(1996). The sum of individual scores for pancreatitis severity for ³6 

mice/group was presented as a bar chart with mean ± SEM for each 

parameter. 

 
Table 2.2. Scoring criteria utilised for histological evaluation of acute 
pancreatitis severity (modified from Wildi et al., 2007 and Van Laetham et al., 
1996).  
 
Parameter Score Indication 
Oedema 0 

1 

2 

3 

Absent 

Focally increased between lobules 

Diffusely increased 

Acini disrupted and separated 

Inflammatory  

cell infiltrate 

0 

1 

2 

3 

Absent 

In ducts (around ductal margins) 

In the parenchyma (< 50% of the lobules) 

In the parenchyma (> 50% of the lobules) 

Pancreatic acinar 

cell necrosis 

0 

1 

2 

3 

Absent 

Periductal necrosis (< 5%)* 

Focal necrosis (5-20%) 

Diffuse parenchymal necrosis (20-50%) 

*Approximate percentage of cells involved per field examined 

 

2.9 Statistical Analysis 
 
For quantitative analysis of Ca2+ responses, all fluorescence values were 

normalised and plotted as F/F0 where F is the recorded fluorescence and F0 

is the baseline fluorescence of each trace. In order to correct experiments 

performed over a long duration, linear correction of focus drift was used. For 

[Ca2+]i measurements of ACh-elicited responses in the presence and 
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absence of CM4620, areas under individual traces were calculated. The 

formula: Σ(F/F0 – F1) × Δt, was used, where Δt is the time interval. Obtained 

values were then averaged and presented as bar charts. 

 

For every recorded [Ca2+]i trace for SOCE-based experiments, both phases 

of Ca2+ intrusion and extrusion were analysed and compared between control 

and PACs pre-incubated with CM4620. Changes in Ca2+ entry were 

determined by calculating the difference of the F:F0 ratio at the peak of Ca2+ 

influx and at the baseline (after store depletion). The amplitude changes in 

F/F0 (ΔF/F0) obtained for control PACs and cells treated with 10 μM and 1 

μM CM4620 were then averaged and presented as bar charts. Calculations 

of the initial rate of Ca2+ influx and efflux were also evaluated as time values 

(t1/2) corresponding to the half-maximal point of Ca2+ influx and efflux, 

respectively. The data for control and cells treated with 10 μM and 1 μM 

CM4620 were presented as bar charts with average t1/2 influx and efflux. 

 

Results are presented as mean ± SEM, where N represents the number of 

individual experiments and n corresponds to the number of single acinar 

cells. GraphPad Prism 5 and Excel 2019 were used to produce graphs, 

charts and calculations. Statistical significance and p-values were calculated 

using a two-tailed Student’s t-test or a one-way ANOVA for data from more 

than two conditions, with the threshold set at 0.05 and asterisks representing 

the range (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).  
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CHAPTER 3: The effect of pharmacological 
inhibition of CRAC channels on physiological 
[Ca2+]i responses in pancreatic acinar cells 
 
3.1 CM4620 efficacy in response to physiological and 
pathological responses elicited by ACh in pancreatic 
acinar cells  

The secretagogue ACh plays an important role both physiologically and 

pathologically in PACs, as mentioned previously. Small doses of ACh induce 

normal, cytosolic Ca2+ spiking which is fundamental for PAC secretory 

functions. The effect of CM4620-mediated CRAC inhibition on normal 

cytosolic Ca2+ spiking, evoked by ACh was therefore investigated. PACs 

were freshly isolated from the pancreas of a wild type C57BL6 mouse, as 

described before, and loaded with Fluo-4, AM. For untreated, control PACs 

(n = 19), NaHEPES solution, supplemented with 1 mM Ca2+ was first applied 

to cells for 200s before the application of ACh (20 nM and 1 μM). As seen in 

Fig. 3.1A, as expected, a small concentration of ACh (20 nM applied at 200s) 

stimulated transient cytosolic Ca2+ responses, or Ca2+ oscillations in control 

cells. These responses originated and subsequently declined to baseline 

levels. Whereas, stimulation with maximal secretagogue concentration (1 μM 

at 1200s) evoked one large, global cytosolic Ca2+ spike, lasting for around 

100s before returning to baseline levels (Fig. 3.1A).  

Following pre-treatment of cells with 1 μM CM4620 for 30 minutes (n = 31), 

the repetitive, local [Ca2+]i spikes induced by 20 nM ACh were not entirely 

inhibited by CM4620 (Fig. 3.1B, 200 – 1000s). Quantitative analysis of 

experiments of the types shown in Fig. 3.1 was carried out by comparing the 

effect of pre-treatment with CM4620 (1 μM) on [Ca2+]i elevations above the 

baseline (area under the curve) recorded during application of 20 nM ACh 

(Fig. 3.2) and 1 μM ACh (Fig. 3.3). The effect of CM4620-mediated CRAC 

blockade on normal [Ca2+]i spiking elicited by 20 nM ACh, although markedly 

reduced, was only entirely inhibited in 25.8% cells (3.2A, orange trace). 

Average [Ca2+]i elevations evoked by 20 nM ACh were significantly 

decreased (**, P < 0.01) from 95.15 ± 14.42 a.u. in control cells (grey trace 

and column in 3.2A and B) to 51.38 ± 6.29 a.u. in cells pre-incubated with  

1 μM CM4620 (orange trace and column in 3.2A and B). Although the 

averaged maximal amplitudes of the elevations in cytosolic Ca2+ were 

significantly lower in cells pre-treated with CM4620 (1.38 ± 0.069) compared 

to control cells (1.93 ± 0.15) following administration of 20 nM ACh, the 
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responses were not entirely prevented (Fig. 3.2A and C). The degree of 

reduction observed here is likely due to partial depletion of the ER during a 

lengthy period of incubation with CM4620. A more marked reduction (***,  

P < 0.001) in average areas under [Ca2+]i changes, induced by supramaximal 

concentrations of ACh (1 μM), was observed in cells pre-treated with 1 μM 

CM4620 (orange column, 247.1 ± 17.78 au) compared to control cells (grey 

column 351.8 ± 24.5 au) (Fig. 3.1B, 1200-00s and Fig. 3.3B). CM4620 was 

significantly effective at blocking the SOCE triggered by ACh. Interestingly, 

cells pre-incubated with CM4620 recovered to baseline levels at a 

significantly faster rate (97.7 seconds ± 6.68, *** P < 0.001) compared to 

untreated cells cells (141.6 ± 7.67), following maximal stimulation with 1 μM 

ACh (Fig. 3.3C). 
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A  
 

 
 
 
B  
 

 
 
 
Figure 3.1. Representative trace of the effect of CM4620 on [Ca2+]i spike 
generation evoked by acetylcholine (ACh) in mouse pancreatic acinar cells. 
(A). In untreated, control acinar cells, application of lower concentrations (20 nM at 
200s) of ACh initiated small, transient and fairly repetitive oscillations in [Ca2+]i which 
declined to baseline levels between spikes. Stimulation with 1 μM ACh (1200s) 
induced a sharp, global increase in cytosolic Ca2+ concentration which eventually 
returned to baseline levels (n = 19, grey trace). (B). Pre-treatment with 1 μM CM4620 
for 30 minutes only marginally reduces Ca2+ oscillations induced by a low 
concentration (20 nM at 200s) of ACh (n = 31, orange trace) compared with control. 
1 μM CM4620 inhibits the phase of [Ca2+]i elevation evoked by a high concentration 
of ACh (1 μM at 1200s). 
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Figure 3.2. Quantitative analysis of experiments measuring the effects of 
inhibiting CRAC channels on changes in cytosolic Ca2+ concentration, 
induced by 20 nM ACh. (A). Averaging [Ca2+]i elevations induced by 20 nM ACh 
recorded over a duration of 800s (200 – 1000s), resulted in a marked reduction in 
Ca2+ oscillations in cells pre-incubated with 1 μM CM4620 (for 30 minutes) (orange 
trace, n = 31) compared to untreated, control cells (grey trace, n= 19). [Ca2+]i 
responses induced by 20 nM ACh were completely inhibited in 25.81% cells pre-
treated with CM4620. (B). Comparison of the integrated [Ca2+]i rises above the 
baseline (area under the curve) evoked by 20 nM ACh in experiments shown in A. 
Averaged areas under [Ca2+]i responses in the presence of 1 μM CM4620 were 
slightly, but significantly lower (orange bar, 51.38 ± 6.29 au, ** P < 0.01) than in 
control (grey bar, 95.15 ± 14.42 au). (C). Comparison of the maximal amplitudes of 
the increases in [Ca2+]i shown in A. Averaged maximal amplitudes of the elevations 
in [Ca2+]i were significantly lower in cells pre-incubated with 1 μM CM4620 (1.38 ± 
0.069, *** P < 0.001) compared to control (1.93 ± 0.15). Data represent mean values 
± SEM, P values were calculated using a two-tailed Student’s t-test.. Experiments 
were performed in standard buffer containing 1 mM CaCl2. 
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Figure 3.3. Quantitative analysis of experiments measuring the effects of 
high concentrations of ACh (1 μM) on cytosolic Ca2+ responses, following 
pre-incubation of cells with 1 μM CM4620. (A). Average traces of [Ca2+]i 
responses evoked by a high ACh concentration (1 μM) recorded over a duration of 
800s (1200 – 2000s). In this case, blockade of CRAC channels with 1 μM CM4620 
(orange trace, n = 31) evoked a large initial rise in [Ca2+]i, similar to control cells 
(grey trace, n = 19), but significantly reduced the sustained plateau phase. [Ca2+]i 
returned to the pre-stimulation baseline level. (B). Comparison of the average 
areas under [Ca2+]i changes induced by a high concentration of ACh (1 μM applied 
at 1200s) in the traces shown in A. Grey bar represents untreated control cells 
(351.8 ± 24.5 au), whereas the orange bar represents cells incubated with 1 μM 
CM4620 for 30 minutes (247.1 ± 17.78). The mean values ± SEM of the responses 
in the presence of CM4620 were significantly lower (***, P < 0.001) than in control. 
(C). Comparison of the half-times of cytosolic Ca2+ recovery following maximal 
stimulation with 1 μM ACh shown in A. Cells pre-treated with CM4620 recovered to 
baseline levels at a significantly faster rate (97.7 seconds ± 6.68, *** P < 0.001) 
than control cells (141.6 seconds ± 7.67). Data represent mean values ± SEM, P 
values were calculated using a two-tailed Student’s t-test.  
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3.2 CM4620 does not affect resting [Ca2+]i responses in 
PACs  

In order for CM4620 to be considered an effective therapeutic for AP, its 
effect on resting [Ca2+]i concentrations should be minimal. Therefore, 1 μM 

CM4620 was applied to freshly isolated PACs for a duration of 800 seconds 

in standard buffer, supplemented with both 1 mM CaCl2 and 1 μM CM4620 

(n = 17, orange trace). As depicted by the representative traces in Fig. 3.4A, 

Ca2+ concentration (recorded by changes in Fluo-4) remained relatively 

stable with no substantial [Ca2+]i spikes observed, following CM4620 

treatment at 200s (orange trace). This was similar to the corresponding 

baseline recording (grey trace, Fig. 3.4B). The average trace of Ca2+ 

concentration following CM4620 treatment (n = 17, orange trace) compared 

to the average underlying baseline recording (n = 5, grey trace), portrayed 

as a control, is shown in Fig. 3.5. This data further depicts the stable 

responses when cells are at rest. When compared to the data shown in 

Section 3.1 (Figs. 3.2 and 3.3) where Ca2+ responses are significantly 

inhibited by CM4620 following ACh stimulation, these results suggest 

CM4620 does not block all Ca2+ influx. Therefore, only evoked cells show 

some modest differences.  
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Figure 3.4. The effect of CM4620 application on resting cytosolic Ca2+ 

concentration in acinar cells is minimal. (A). Representative trace of 1 μM 
CM4620 applied, alone, to freshly isolated pancreatic acinar cells for 800 seconds 
(orange trace). (B). Representative trace of underlying baseline recording portrayed 
as a control (grey trace). Experiments were performed for a total of 1000 seconds in 
standard buffer supplemented with 1 mM CaCl2. 
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Figure 3.5. Resting cytosolic Ca2+ concentration in acinar cells is stable 
following treatment of CM4620. Averaging [Ca2+]i responses induced by 1 μM 
CM4620 at 200s, recorded over a duration of 800s (200 – 1000s, n = 17). Levels of 
[Ca2+]i remained relatively stable and no substantial elevations or declines in 
cytosolic Ca2+ concentration were observed. Experiments were performed for a total 
of 1000 seconds in standard buffer supplemented with 1 mM CaCl2. 
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CHAPTER 4: Pharmacological inhibition of store-
operated Ca2+ influx in murine pancreatic acinar 
cells  
 
4.1 Pharmacological inhibition of store-operated Ca2+ 

influx, with CM4620, affects signalling in pancreatic acinar 
cells 

The effect of CRAC channel inhibitor, CM4620, on Ca2+ entry in mouse 

PACs was previously investigated and is represented by preliminary data 

shown in Fig. 1.6, 1.6.1 and 1.6.2, in section 1.6.4. The average traces 

depicted in Fig. 4.1 focus on the important phase of Ca2+ influx from 2000s 

onwards (Fig. 4.1B). 10 μM CM4620 very significantly inhibited the 

amplitude of [Ca2+]i elevation due to Ca2+ entry, close to the initial control 

baseline, by around 84% (P < 0.0001, n = 23), compared to untreated 

control cells (n = 25). 1 μM CM4620 also very markedly and significantly 

reduced the amplitude of Ca2+ influx by 65% (P < 0.0001, n = 23). The 

significant inhibitory effect of pre-incubation of PACs with CM4620 on SOCE 

occurred in a concentration-dependent manner and is quantitatively 

summarised in Fig. 4.1.1 as mean changes in [Ca2+]i amplitude due to Ca2+ 

influx. This figure was previously presented in section 1.6.4 as preliminary 

data. 
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Figure 4.1. Effect of CM4620 on mean [Ca2+]i changes as a result of Ca2+ entry 
in PACs. (A) Average [Ca2+]i responses from experiments shown also in Fig. 1.6. 
and 1.6.1, section 1.6.4. 200s – 1000s demonstrates CPA-induced [Ca2+]i elevation. 
Compared to isolated control acinar cells (dark grey trace, n = 25), pre-incubating 
cells with both 10 μM (green trace, n = 23) and 1 μM CM4620 (orange trace, n = 
23) throughout the store depletion protocol clearly reduces the extent of Ca2+ entry 
(2000s onwards). (B) Average [Ca2+]i responses shown from 2000s onwards in (A). 
Compared to isolated untreated PACs, pre-incubating cells with both 10 μM and  
1 μM CM4620 clearly reduces the extent of Ca2+ entry. 
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Figure 4.1.1. Effect of CM4620 on mean [Ca2+]I amplitude change (ΔF/F0) as a 
result of Ca2+ entry in PACs. Quantitative analysis of experiments shown in 
section 1.6.4 as well as from 2000s onwards in Fig. 4.1A and B. Significant 
concentration-dependent differences (P < 0.0001) in averaged amplitudes of Ca2+ 
entry following pre-incubation with both 10 μM (green bar, n = 23) and 1 μM 
CM4620 (orange bar, n = 23), compared with control cells (dark grey bar, n = 25),  
is shown. This figure is also previously displayed in Fig. 1.6.2. P values were 
calculated using one-way ANOVA followed by a Tukey’s post-hoc test to confirm 
differences between groups, ****, P < 0.0001. Bars presented as mean ± SEM. 
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Although the main focus of these investigations was the effect of CM4620 

on SOCE (presented in Fig. 4.1B and Fig. 4.1.1), the effect of CM4620 on 

CPA-induced calcium elevations was also recorded. The CRAC channel 

inhibitor did not significantly influence (P > 0.05) CPA-evoked Ca2+ release 

from intracellular stores (200 – 1000s, Fig. 4.1A), hence the first 2000 

seconds are removed from Fig. 4.1B. This is quantitively presented in Fig. 

4.1.2. which shows no changes in mean CPA-induced [Ca2+]i amplitude 

responses after CM460 pre-incubation.  

 

 

 

Figure 4.1.2. Effect of CM4620 on mean [Ca2+]I amplitude change (ΔF/F0) as a 
result of CPA-induced Ca2+ responses in PACs. Quantitative analysis of CPA-
induced [Ca2+]i elevations, shown in Fig. 4.1A, from 200 - 1000 seconds. Compared 
to untreated control cells, 1 μM and 10 μM CM4620 did not significantly influence 
averaged changes in amplitudes of the CPA-evoked [Ca2+]i increase. P values were 
calculated using one-way ANOVA followed by a Tukey’s post-hoc test to confirm 
differences between groups, n/s, P > 0.05. Bars presented as mean ± SEM. 
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4.2 CM4620 enhances Ca2+ influx and extrusion across 
the plasma membrane  

Figs. 4.2 and 4.3 show the relationship between CM4620 and changes in 

both the rate of rise and decline, depicted as half-times of [Ca2+]i responses, 

due to Ca2+ influx and efflux respectively, following CPA-induced Ca2+ 

release from ER stores. This analysis is based on the phase of SOCE shown 

in Figure 4.1A (2000s onwards) and emphasised in Fig. 4.1B. 

Pre-incubation of PACs with 1 μM CM4620 markedly slowed the initial rate 

of [Ca2+]i elevation due to Ca2+ entry (P < 0.0001, n = 23), compared to 

untreated, uninhibited cells. This is depicted in Fig. 4.2 by longer half-times 

of the response. 10 μM CM4620 also further decelerated the rate of rise of 

[Ca2+]i (P < 0.0001, n = 23), compared to untreated cells (n = 25) (Fig. 4.2). 

The half-time of Ca2+ entry was approximately five times longer in cells pre-

treated with 10 μM CM4620, compared to control.  

The extrusion of Ca2+ via plasma membrane pumps (described in section 

1.3.2) is represented in Fig. 4.3 by the decrease in [Ca2+]i upon the removal 

of 5 mM external Ca2+. The effect of CM4620 is summarised by the half-time 

of [Ca2+]i recovery. Pre-incubation of PACs with 1 μM and 10 μM CM4620 

did not significantly affect the rate of [Ca2+]i decline (half-time of the 

decrease) due to Ca2+ efflux (P > 0.05, n = 23), compared to untreated cells 

(n = 25) (Fig. 4.3).  
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Figure 4.2. CM4620 decelerates Ca2+ entry in isolated murine PACs. Following 
CPA-induced Ca2+ release from ER stores, the external solution was supplemented 
with 5 mM Ca2+ to compare the rate of rise of [Ca2+]i. due to Ca2+ entry (t1/2, seconds). 
Uninhibited, control cell (dark grey, n = 25) [Ca2+]i responses during the Ca2+ influx 
process were relatively quick. Whereas, in the presence of 1 μM CM4620 (orange, 
n = 23) the half time (t1/2) of Ca2+ influx was increased, representing slower [Ca2+]i 
responses following admission of external Ca2+ (P < 0.0001). This effect was 
concentration-dependent, with 10 μM (green, n = 23) CM4620 (23 cells/group) 
further decelerating [Ca2+]i responses. P values were calculated using one-way 
ANOVA followed by a Tukey’s post-hoc test to confirm differences between groups, 
****, P < 0.0001. Bars presented as mean ± SEM.   
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Figure 4.3. CM4620 does not affect extrusion in isolated murine PACs. After 
removal of external Ca2+, the half-time of the Ca2+ efflux phase was unaffected with 
CM4620 pre-incubation (P > 0.05), compared to control. P values were calculated 
using one-way ANOVA followed by a Tukey’s post-hoc test to confirm differences 
between groups, N/s, P > 0.05. Bars presented as mean ± SEM.   
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CHAPTER 5: The protective role of CM4620 
against necrosis in pancreatic acinar cells 
 

5.1 CM4620-mediated CRAC channel inhibition protects 
against bile-induced necrosis  

It is essential for CRAC channel inhibitors to effectively prevent Ca2+-

mediated acinar cell necrosis, in order to be considered a beneficial 

therapeutic for AP. Following successful investigations depicted by the data 

in Chapter 3 and 4, the present study was devised to continue researching 

the protective effects of the novel CRAC channel inhibitor, CM4620. The 

effect of CM4620 on activation of the necrotic cell death pathway in isolated 

mouse PACs, using various agents, such as BA, POA and ASNase was of 

particular interest. Although novel CRAC channel inhibitor, CM4620, is the 

first AP therapy to reach Phase III clinical trials, the long-term application of 

this inhibitor is doubtful due its profound effect on immune cells (Waldron et 

al., 2019). Therefore, this study investigated the effects of low, sub-

micromolar concentrations of CM4620 on BA-, POA- and ASNase-induced 

necrosis. This will facilitate the transition to researching the effects of 

CM4620 in in vivo experimental mouse models of AP whilst reducing the 

chances of potential side effects of CRAC channel inhibition. Furthermore, 

due to recent discoveries of the remarkable protective properties of 

galactose against necrosis, the effect of galactose in combination with 

CM4620 on bile-induced cell death was investigated. (Peng et al., 2018).  

CM4620 provided remarkable protection against BA-induced necrosis, as 

shown in Fig. 5.1 which depicts the effect of a CM4620-based cellular 

necrosis assay carried out in accordance with the protocol described in 

section 2.6. PACs were incubated for two hours with a BA mixture (0.06 g/ml 

sodium choleate) to evoke necrosis, representative of the most common 

cause of AP, gallstone biliary disease. In control cells, low levels of necrosis 

result from the process of PAC isolation as cells are alive and healthy (Fig. 

5.1, grey column). As expected, the results in Fig. 5.1 show a significant 

increase in the percentage of BA-induced necrotic cells, compared to 

untreated control cells (P < 0.0001). An average increase of 15.77% was 

recorded, from an average of 4.11 ± 0.21% necrosis in control cells to 19.88 

± 0.52% in PACs treated with BA. The level of necrosis elicited by BA 

treatment was significantly diminished when PACs were pre-incubated with 
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CM4620 alone (green columns), for 30 minutes before the lengthy BA 

incubation, at 50 nM, and 100 nM (P < 0.0001) (Fig. 5.1). This significant 

decrease in necrosis levels was also found in preliminary data (not shown) 

with 1 μM and 10 μM CM4620 (P < 0.0001). Although levels of necrosis were 

reduced, the effect of pre-treating cells with a concentration of 10 nM 

CM4620 before their 2-hour exposure to BA was not significant (P > 0.05). 

The percentage of necrotic cells was diminished but not completely inhibited 

following treatment with 100 nM and 50 nM CM4620 (11.33 ± 0.18% and 

13.66 ± 0.47%, respectively). However, pre-incubating PACs with 1 μM and 

10 μM CM4620 (preliminary data, not shown) generated necrosis levels that 

were only marginally higher from the control with no significant difference (P 

> 0.05) reported between 10 μM CM4620 and untreated PACs. 

5.2 CM4620 in combination with galactose significantly 
protects against bile-induced necrosis  

The degree of necrosis elicited by BA treatment was more significantly 

diminished when cells were pre-treated with energy supplement, galactose 

(20 minutes) in combination with all three nanomolar concentrations of 

CM4620 (100 nM, 50 nM and 10 nM, orange columns), compared to 

CM4620 alone (green columns) (Fig. 5.1). These values were decreased to 

almost the same level as the controls. It is clear that CM4620 can effectively 

protect PACs against BA-induced necrosis in a concentration-dependent 

manner, at 10 nM, 50 nM and 100 nM. But this protection is more effective 

when galactose is applied in combination with 10 nM (P < 0.0001), 50 nM 

(P < 0.01) and 100 nM (P < 0.05) CM4620.  
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Figure 5.1. CM4620 and galactose provide substantial protection against bile-
induced necrosis in PACs. Bile-induced (0.06 g/ml sodium choleate) necrosis is 
markedly reduced by adding 100 nM CM4620 (green column, 11.33% ± 0.18%, P < 
0.0001) and even further reduced to nearly control level by adding 1 mM galactose 
(orange column, 6.49% ± 0.75%, P < 0.0001), in comparison to BA alone (19.88% ± 
0.52%). Similar results depicted with 50 nM CM4620 (green column, 13.66% ± 0.47). 
Bile-evoked necrosis is not as effectively reduced by treating cells with 10 nM (18.09 
± 2.0%, P > 0.05). A combination of CM4620 (10 nM) and 1 mM galactose does 
markedly diminish cell death induced by BA (9.67% ± 1.25%, P < 0.0001). At least 
3 series experiments/group with more than 150 cells in each sample. Data presented 
as mean ± SEM. P values were calculated using one-way ANOVA followed by a 
Tukey’s post-hoc test to confirm differences between groups. n/s, P > 0.05; *, P < 
0.05; **, P < 0.01; ****, P < 0.0001.  
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5.3 CM4620-mediated CRAC channel inhibition protects 
against alcohol metabolite-induced necrosis  

The protective ability of low concentrations of CM4620 alone and in 

combination with galactose, against necrosis induced by BA (Figure 5.1) 

prompted an investigation into the effect of this CRAC channel inhibitor on 

POA-induced pathology. PACs were pre-treated with low concentrations of 

CM4620, such as 50 nM, 1 nM and 200 pM for 30 minutes. In the second 

treatment group, PACs were pre-incubated with both CM4620 and 1 mM 

galactose (for 20 minutes). Both treatment groups were then exposed to the 

alcohol metabolite, palmitoleic acid (30 μM), for 2 hours to elicit necrosis. 

The collective results of the experiments are shown in Fig. 5.2. 

In comparison to the average necrosis level of untreated control cells (4.67 

± 0.38%, grey column), treatment with POA substantially decreases the 

number of live cells, causing an increase in necrosis (18.47 ± 0.27%, red 

column) (Fig. 5.2). The overall protective capability of CM4620 pre-

incubation, alone (green columns), against POA-induced necrosis was more 

pronounced compared to BA-evoked necrosis, for all concentrations used 

(Fig. 5.2). Pre-treatment of PACs with 50 nM (green column) significantly 

reduces levels of necrosis (4.43% ± 0.22%) compared to POA alone (P < 

0.0001). Furthermore, these values were only marginally higher than control 

cells wherein no significant difference between 50 nM CM4620 and 

untreated cells was found (P > 0.05). This demonstrates a more profound 

protective therapeutic capacity compared to results from BA-induced 

necrosis and CM4620 treatment. The effectiveness of 1 nM and 200 pM 

CM4620 alone on reducing levels of necrosis (10.15% ± 0.66%, P < 0.0001, 

and 11.05% ± 0.97%, P < 0.0001, respectively), compared with POA 

treatment is also shown. In contrast to the effects shown in Fig. 5.1., applying 

50 nM with 1 mM galactose had no significant effect on POA-evoked necrosis 

levels (4.27% ± 0.5%, P > 0.05) compared to CM4620 alone. However, POA-

evoked necrosis levels were still more potently reduced with 50 nM CM4620-

galactose combination treatment (orange column) compared to this 

concentration of CM4620 applied alone.  

At even lower concentrations, the degree of necrosis elicited by POA 

treatment was dramatically and significantly diminished with a combination 

of 1 nM CM4620 and galactose (5.99% ± 0.62%, P < 0.001) together with 

200 pM CM4620 and galactose (7.89% ± 0.44%, P < 0.01), compared to 
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CM4620 alone (Fig. 5.2). This combination of treatments almost entirely 

inhibited POA-evoked necrosis. No significant difference was found when 

comparing the necrosis levels of 1 nM CM4620 in combination with galactose 

and control cells (P > 0.05). The results shown in Fig. 5.2 show that CM4620 

can successfully protect PACs against necrosis, evoked by POA, at 50 nM, 

1 nM and 200 pM concentrations. The addition of galactose with 50 nM 

CM4620 yields very similar levels of protection against necrosis to CM4620 

alone (n/s, P > 0.05). Whereas the combination of 1 nM and 200 pM CM4620 

with galactose provides a more significant reduction in POA-induced 

necrosis compared with the application of CM4620 individually. Overall, all 

concentrations of CM4620 alone and in combination with galactose markedly 

reduced levels of necrosis in comparison to POA applied solely to cells (P < 

0.0001). 
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Figure 5.2. CM4620 and galactose provide substantial protection against 
alcohol metabolite-induced necrosis in PACs. Palmitoleic acid (POA)-evoked (30 
μM) necrosis is significantly reduced by adding 50 nM (4.43% ± 0.22%, P < 0.0001), 
1 nM (10.15% ± 0.66%, P < 0.0001) and 200 pM (11.05% ± 0.97%, P < 0.0001) 
CM4620 alone (green columns). No significant difference was shown between 50 
nM CM4620 alone and 50 nM CM4620 in combination with 1 mM galactose (P > 
0.05). Adding galactose with both 1 nM and 200 pM CM4620 was significantly 
effective in reducing POA-induced necrosis levels in cells, compared to CM4620 
alone (P < 0.001 and P < 0.01, respectively). At least 3 series experiments/group 
with more than 150 cells in each sample. Data presented as mean ± SEM. P values 
were calculated using one-way ANOVA followed by a Tukey’s post-hoc test to 
confirm differences between groups, n/s, P > 0.05; **, P < 0.01; ***, P < 0.001; ****, 
P < 0.0001. 
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5.4 CM4620-mediated CRAC channel inhibition protects 
against asparaginase-induced necrosis  

The protective effects of various Ca2+ entry channel inhibitors, including 

GSK-7975A and CM_128, against alcohol- and bile acid-related pancreatic 

pathology have been well documented (Gerasimenko et al., 2013; Voronina 

et al., 2015; Wen et al., 2015). However, investigations into the effectiveness 

of CRAC channel blockade on asparaginase-evoked necrosis is limited 

(Peng et al., 2016). This study therefore tested the result of CRAC inhibition 

(CM4620, 200 pM) on asparaginase-induced necrosis levels. As seen in Fig 

5.3, levels of ASNase-induced necrosis were reduced following treatment of 

PACs with 200 pM CM4620 alone (green column, P < 0.05) and 200 pM 

CM4620 in addition to 1 mM galactose (orange column, P < 0.001) compared 

to asparaginase (14.53 ± 0.68%, red column). Although pre-incubating cells 

with picomolar concentrations (200 pM) of CM4620 significantly diminished 

the level of ASNase-evoked necrosis (11.29 ± 0.49%), combining this CRAC 

channel inhibitor with galactose was more effective at protecting cells against 

necrosis (8.85 ± 0.38%, P < 0.05) (Fig. 5.3).  
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Figure 5.3. Asparaginase-induced necrosis is markedly decreased following 
CM4620 and galactose pre-treatment in PACs. Using substantially low 
concentrations of CM4620 (200 pM) still reduces the extent of necrosis (11.29% ± 
0.49%, P < 0.05) compared to AP-inducing agent, asparaginase (ASNase). Using a 
galactose-CM4620 combination approach in this case reduces ASNase-evoked 
necrosis further (8.85% ± 0.38%, P < 0.001). At least 3 series experiments/group 
with more than 150 cells in each sample. Data presented as mean ± SEM. P values 
were calculated using one-way ANOVA followed by a Tukey’s post-hoc test to 
confirm differences between groups, *, P < 0.05; ***, P < 0.001. 
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Representative images of PACs derived from the different experimental 

conditions measured in this study and their corresponding levels of PI 

staining, are presented in Fig. 5.4. When acinar cells were pre-incubated with 

CM4620 and a combination of CM4620 and galactose, the degree of cellular 

necrosis (PI positive staining), evoked by POA in this case, but also seen in 

BA- and ASNase-induced cells was significantly reduced to untreated, 

control cell levels. This reinforces the protective ability of CM4620 against 

this key hallmark of AP.  

 

 

 

 

 

 

 

 
 

 
 

 
 
 
 
Figure 5.4. Representative images of PI uptake in PACs from control, 
treatment and POA groups. Transmitted light (TL) images (above) and propidium 
iodide (PI)-stained fluorescence images (below) (scale bar: 5 μm) show the effect 
of POA on PI uptake into the cell, representing the extent of necrosis. Cells evoked 
by POA, as well as by BAs and ASNase, had the highest uptake of PI whereas the 
two treatment groups (CM4620 alone and CM4620 and galactose) showed less PI 
uptake. The level of necrosis in control cells was low with minimal PI uptake into 
the cell. 
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CHAPTER 6: The effects of nanomolar 
concentrations of CM4620 in in vivo mouse 
models of alcohol-induced pancreatitis 

The previous chapters (Chapters 4 and 5) have demonstrated the 

remarkable inhibitory capability of CM4620 on CPA-induced SOCE as well 

as its ability to protect against activation of BA-, POA- and ASNase-induced 

necrotic cell death pathways at low, nanomolar concentrations in vitro. In the 

majority of cases, combining CM4620 with galactose more effectively 

reduced levels of necrosis. The study described in this chapter sought to 

determine the role of low CM4620 concentrations in an experimental mouse 

model of AP in vivo. 

To evaluate the protective effects of CM4620 on disease severity in vivo, 

murine models of FAEE-AP were utilised in order to clinically represent 

alcohol-induced AP. Two intraperitoneal injections of sterile PBS (200 µl) 

were administered to control mice hourly. FAEE-AP was induced in mice 

through injections of POA (150 mg/kg) combined with ethanol (1.35 g/kg). 

Histological slides obtained from FAEE-AP mice (red columns) 

demonstrated pancreatic damage with extensive inflammation, necrosis and 

acinar cell oedema thus significantly increasing the total pathohistological 

score compared to control murine models (P < 0.0001) (Figs. 6.1 and 6.2). 

The co-administration of CM4620 (0.1 mg/kg) and ethanol/POA at 1-hour 

intervals significantly reduced all pancreatic parameters (Fig. 6.1, green 

columns), generating an overall average histological score of 1.85 ± 0.18%, 

which was significantly lower than the average total score for FAEE-AP (4.12 

± 0.08%, P < 0.0001).  
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Figure 6.1. CM4620 markedly diminishes pancreatic histopathology in 
alcohol/fatty acid (FAEE)-induced AP in vivo models. The FAEE-AP model (red 
columns) induced significant increases in inflammation (A), necrosis (B), oedema 
(C) and total histology score (D) compared to control (grey columns). Administration 
of 0.1 mg/kg CM4620 via intraperitoneal injections markedly protected against all 
pathological changes evoked by POA and ethanol (FAEE- AP) in vivo (green 
columns, P < 0.001). Data shown as mean ± SEM, ³6 mice/group. n/s, P > 0.05; ***, 
P < 0.001; ****, P < 0.0001, one-way ANOVA followed by Tukey’s post-hoc test. 
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Figure 6.2. Representative images of haematoxylin-eosin (H&E)-stained 
pancreatic acinar tissue sections. Micrograph images demonstrate (A) normal 
pancreatic histology (as a result of saline injection), (B) typical histopathology 
induced by FAEE-AP alone and typical histopathology from FAEE-AP with (C) 
administration of CM4620 (0.1 mg/kg). Magnification x200, Scale bar: 50 μm. 
Micrograph taken on an Olympus BX41 brightfield microscope. 
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CHAPTER 7: Discussion 
 
The aim of this thesis was to determine the effects of novel CRAC channel 

inhibitor, CM4620 on the pathogenesis of AP, a life-threatening disorder with 

no specific therapy or cure. This project investigated the potential 

therapeutic use of CM4620 in inhibiting cytosolic Ca2+ overload and whether 

low concentrations of this inhibitor could protect against necrosis thus 

targeting the primary triggers in acute pancreatitis pathology. Current 

treatments in the clinic for AP are largely supportive and include pain 

management and fluid balance (Wu and Banks, 2013). The vast majority of 

drugs that have reached clinical trials for AP have not been successful in 

preventing disease morbidity and mortality (Kambhampati et al., 2014; 

Singh et al., 2015). The failure of clinical development for a variety of 

pancreatitis therapeutics, such as protease inhibitors, immunomodulators, 

anti-secretory or anti-inflammatory agents and antioxidants, is likely due to 

their targeting of the disease in its latter stages. When attempting to halt 

disease progression at this stage, the principal hallmarks of AP, including 

protease activation, pancreatic necrosis and inflammation have 

unfortunately already transpired.  

 

Improving the design of clinical trials whereby therapeutic agents target the 

primary pathological event, namely the intracellular protease activation 

evoked and maintained by excessive Ca2+ signalling in pancreatic acinar 

cells, will be more beneficial in generating the first rational and effective AP 

treatment (Ward et al., 1995; Petersen and Sutton, 2006; Gerasimenko et 

al., 2014a; Lankisch et al., 2015). It is very well established in the literature 

that toxic elevations in cytosolic Ca2+ initially result from internal Ca2+ store 

release. However, the subsequent phase of CRAC-mediated Ca2+ entry 

plays a critical role in acinar cell damage as it drives the sustained phase of 

Ca2+ elevation resulting in intracellular Ca2+ overload, intracellular 

proenzyme activation thus triggering the development of AP (Raraty et al., 

2000; Petersen and Sutton, 2006; Petersen et al., 2009). CRAC channels 

have therefore become a popular focus of investigation in recent years as 

potential therapeutic targets for pancreatitis as well as other human 

diseases (Parekh, 2010; Prakriya and Lewis, 2015).  
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7.1 The effectiveness of CM4620 as a specific CRAC 
channel inhibitor in PACs  
 
The current data describing a novel molecular entity developed by 

CalciMedica, CM4620, provides fresh evidence for the importance of store-

operated Ca2+ entry via CRAC channels and their role in triggering the 

pathological Ca2+ signalling in PACs which drives cellular necrosis, causing 

AP. In particular, these results also strengthen previous evidence suggesting 

a potential role for CRAC blockade in AP therapy (Gerasimenko et al., 2013; 

Voronina et al., 2015; Wen et al., 2015; Waldron et al., 2019).    

 

The initial studies reported in Chapter 3 tested CM4620 efficacy in response 

to the classic acinar cell secretagogue ACh which evokes both physiological 

and pathological responses in PACs. Low, nanomolar and supramaximal 

concentrations of ACh were administered to Fluo-4-loaded murine PACs in 

the presence or absence of CM4620. The SOCE elicited by supramaximal 

concentrations of ACh was significantly reduced in cells pre-treated with 

CM4620. CM4620 also markedly reduced the rate of recovery to baseline 

in response to these high secretagogue concentrations. This has been 

previously investigated by Gerasimenko and colleagues (2013) with another 

CRAC channel inhibitor, GSK7975A (developed by GlaxoSmithKline). 

Similarly, GSK7975A reduced the late elevated [Ca2+]i plateau phase in 

response to stimulation with a high concentration of ACh. However, 

GSK7975A had minor effects on the normal, physiological Ca2+ oscillations 

induced by ACh or CCK (Geraimenko et al., 2013). Moreover, this study 

showed that directly applying CM4620 to freshly isolated PACs did not 

generate any substantial changes in [Ca2+]i. The results depicted in this 

thesis suggest that when cells are at rest (Fig. 3.4 and 3.5), there are no 

difference in resting Ca2+ levels. But if a cell is evoked with ACh, responses 

are markedly inhibited by CM4620. This suggests that CM4620 does not 

inhibit all Ca2+ influx thus only evoked cells demonstrate some modest 

differences. 

7.1.1 CM4620 significantly reduces toxic elevations of cytosolic 
Ca2+ 

In order to be considered an ideal therapeutic for AP, it is vital for a CRAC 

channel inhibitor to effectively inhibit Ca2+ influx, thus preventing toxic 

cytosolic Ca2+ overload and reducing levels of cellular necrosis that typically 

ensue. Preliminary results investigated the effect of pre-incubating mouse 
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PACs with CM4620 (1 μM and 10 μM). These high concentrations very 

significantly inhibited CPA-induced SOCE, measured using fluorescent Ca2+ 

imaging. Administration of CM4620 at high concentrations (10 μM) results 

in an 84% reduction in the amplitude of CRAC-mediated Ca2+ influx (Fig. 

1.6.1 and Fig. 1.6.2), compared with control cells in the presence of  

5 mM external Ca2+. The inhibitory effect of CM4620 on SOCE amplitude 

after decreasing the concentration from 10 μM to 1 μM is similarly efficient 

(65%) (Fig. 1.6.1 and Fig. 1.6.2). 

 

Although CM4620 does not completely block SOCE, these results are 

comparable to the percentage of SOCE inhibition generated by another 

CRAC channel inhibitor, GSK-7975A. The marked inhibition of toxic 

elevations in [Ca2+]i by GSK-7975A has been previously reported by 

numerous authors (Gerasimenko et al., 2013; Voronina et al., 2015; Wen et 

al., 2015). Wen and colleagues also investigated the effectiveness of CRAC 

channel inhibitor CM_128 (also known as CM4620) in vitro in murine and 

human PACs (Wen et al., 2015). CM_128 inhibited thapsigargin-evoked 

SOCE entry in human and mouse acinar cells more effectively than GSK-

7975A at 1 μM. A recent study further confirmed that CM4620 attenuates 

SOCE in murine acinar cells (Waldron et al., 2019). 

 

This thesis is in direct correlation with and further confirms the results 

presented by these authors, providing fresh evidence for the remarkable 

effect of CRAC channel blockade and specifically the ability of CM4620 to 

inhibit CPA-induced SOCE. Pre-treatment of cells with 1 μM and 10 μM 

CM4620 also slows the initial rate of SOCE, compared to control PACs (Fig. 

4.2), further validating the protective abilities of CM4620 as a CRAC channel 

inhibitor. Although the effectiveness of CRAC channel inhibition is mainly 

reported by the extent of Ca2+ influx, which contributes to overall toxic [Ca2+]i 

elevations in AP, changes in Ca2+ efflux were also analysed in this study. As 

expected, pre-treatment of cells with 1 μM and 10 μM CM4620 did not 

significantly affect the times taken to reach half maximal Ca2+ efflux, 

compared to control cells (Fig. 4.3).  
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7.1.2 CM4620, at low nanomolar concentrations, protects 
against cellular necrosis elicited by bile acids, alcohol 
metabolites and asparaginase  
 
The extent of cellular necrosis is one principal determinant of AP severity in 

both in vitro and in vivo experimental models (Kaiser et al., 1995; 

Gukovskaya and Pandol, 2004; Criddle et al., 2007). Therefore, reductions 

in the level of necrosis in PACs by CRAC channel inhibitors is an extremely 

valuable indication of their translational potential to the clinic. As a 

successful inhibitor of damaging elevations in cytosolic Ca2+, the next 

objective of this project was to test the protective effects of CM4620 on 

activation of the necrotic cell death pathway, evoked by toxic stimuli in 

murine pancreatic acini in vitro (Chapter 5). This was also investigated 

following successful preliminary findings using high concentrations (10 μM 

and 1 μM) of CM4620. These concentrations significantly diminished the 

extent of necrosis, relatively close to control levels when induced with 

sodium choleate – a mixture of various bile salts that mimic clinical biliary 

AP. As CM4620 is currently in clinical trials, it is paramount that we consider 

the risks as well as the benefits of inhibiting CRAC channel activity. In 2017, 

Ahuja and colleagues demonstrated the presence of intestinal bacterial 

outgrowth and dysbiosis in mouse pancreatic acini following genetic deletion 

of Orai1. This ultimately led to significant mortality within 3 weeks (Ahuja et 

al., 2017). Although this case involved complete and permanent genetic 

deletion of Orai1, the potential long-term effects of CRAC channel inhibitors 

on the immune system should be considered. The principle aim of this study, 

therefore, was to explore whether substantially reducing the concentration 

of CM4620 still effectively protects PACs against damaging levels of AP-

evoked necrosis. Therapeutically, lower concentrations would minimise any 

potential side-effects resulting from CRAC channel inhibition. 

 

At much lower concentrations than reported previously (Wen et al., 2015; 

Waldron et al., 2019), 100 nM and 50 nM of CM4620 markedly reduced the 

extent of bile-induced necrosis to levels of 11.33% and 13.66%, respectively 

compared to BA alone. However, this was still significantly higher than levels 

of necrosis in untreated cells. The effect of applying galactose as a form of 

ATP supplementation has recently shown remarkable protective effects 

against pancreatitis-induced necrosis (Peng et al., 2018). In this study, the 

addition of galactose to CM4620 (100 nM, 50 nM and 10 nM) significantly 

(P < 0.0001) reduced the percentage of bile-induced necrosis to near control 
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levels (Fig. 5.1). Combining 100 nM CM4620 with galactose had the most 

significant effect in protecting against BA-evoked necrosis.  

 

When using the alcohol metabolite, POA, to induce necrosis in PACs, 

CM4620 at novel concentrations of 50 nM, 1 nM and 200 pM, in combination 

with galactose (1 mM) had the most significant effect in reducing necrosis 

levels (Fig. 5.2). Again, these were almost equal to or minimally higher than 

control levels. All concentrations of CM4620 applied in combination with 

galactose were most effective at protecting cells against necrosis induced 

by POA. Additionally, in some cases, the protective effect of CM4620 (50 

nM) alone was not significantly different from combining CM4620 and 

galactose against POA-evoked cell death.  

 

Utilising concentrations of CM4620 as low as 200 pM significantly 

diminished levels of asparaginase-induced necrosis (Fig. 5.3). Galactose 

provided further protection when combined with 200 pM CM4620. These 

findings are particularly encouraging as only one other CRAC channel 

inhibitor, GSK-7975A at high concentrations of 10 µM, has been shown to 

protect against asparaginase-induced necrosis, to date (Peng et al., 2016). 

This further confirms the effectiveness of CM4620, in vitro, as a therapeutic 

inhibitor of AP-related necrosis as well as showing a novel benefit of utilising 

picomolar concentrations of CM4620 and the potential benefit of combining 

this CRAC channel inhibitor with galactose.  

 

This data confirms and reinforces the potential preventative capacity of 

CM4620 against necrosis evoked by all the principal AP-inducing agents. In 

the majority of cases, galactose can further improve this effect. It would be 

desirable to further expand this conclusion by comparing the combination 

treatment against galactose alone as a protective therapy against AP-

induced necrosis. The effects of galactose alone on pancreatic necrosis 

have previously been investigated and published (Peng et al., 2018). The 

novel findings presented in this thesis are particularly promising as some 

CRAC channel inhibitors, such as 2-APB, have been reported to actually 

cause cellular necrosis (Gerasimenko et al., 2013). Reductions in necrosis 

by CM4620 could, however, result from processes other than Ca2+ entry. 

Therefore, it is worthwhile noting that PACs ought to be exposed to 2-APB, 

which will evoke cell death and inhibit CRAC channels, before confirming 

the protective effect of CM4620 against cellular necrosis (Gerasimenko et 

al., 2013). Furthermore, the process of counting the number of necrotic and 
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viable cells should be double-blinded to avoid inherent experimenter bias. 

Similarly, GSK-7975A and CM_128 inhibited activation of the necrotic cell 

death pathway induced by aforementioned mediators of AP, in mouse and 

human PACs (Gerasimenko et al., 2013; Voronina et al., 2015; Wen et al., 

2015; Waldron et al., 2019). However, the lowest concentration of CRAC 

channel inhibitors used by these authors was 1 µM, reinforcing the novelty 

and magnitude of the protective ability of CM4620. Overall, the ability of 

CM4620 to inhibit CRAC-mediated Ca2+ entry (induced by intracellular store 

depletion) and necrosis (evoked by bile, alcohol metabolites and 

asparaginase) was an initial step towards in vivo mouse model 

investigations to confirm the effectiveness of low, nanomolar concentrations 

of CM4620 as a CRAC channel inhibitor.  

 

7.2 CM4620 administration reduces pancreatitis 
responses in alcohol-induced mouse acute pancreatitis  
 
In vivo investigations, shown in Chapter 6, of alcohol-induced AP involved 

administering CM4620 at a dosage equivalent to 50 nM in vitro (0.1 mg/kg) 

which is lower than reported previously (28 mg/kg, Wen et al., 2015; 20 

mg/kg, Waldron et al., 2019). The effect of 0.1 mg/kg CM4620 significantly 

improved pathohistological scores (measuring inflammation, necrosis and 

oedema). The findings presented in this study provide the first insight into 

the remarkable potency of CM4620 and are in agreement with other 

authors. Wen and colleagues (2015) administered GSK-7975A and 

CM_128 at various doses and time points to three experimental mouse 

models of clinical AP and reported amelioration of all local and systemic 

parameters of AP such as oedema, necrosis and inflammation. This 

comprehensive in vivo evaluation implied the potential translation of CRAC 

channel inhibition, as a novel therapeutic strategy, to clinical trials (Wen et 

al., 2015). Last year, Waldron and colleagues also reported protective 

effects of CM4620 in another in vivo mouse model (Waldron et al., 2019). 

The results presented in this thesis therefore further reinforce the 

therapeutic potential of CM4620 as a viable treatment for clinical AP, a 

devastating disease which currently lacks a specific cure. The novelty of 

utilising lower concentrations of CM4620 is particularly important in 

preventing any potential long-term immune side effects of CRAC channel 

blockade. 
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7.3 Clinical implications of CM4620 
 

CRAC channels have been functionally associated in the pathogenesis of a 

variety of diseases, other than AP. New data on breast cancer cell lines by 

Yang and colleagues (2009) revealed SOCE, facilitated by Orai1 and 

STIM1, plays a vital role in tumour migration in vitro and metastasis in vivo. 

The authors concluded that CRAC channel inhibitors could be utilised in 

preventing the formation of malignant secondary tumours in breast cancer 

cells (Yang et al., 2009). Braun and colleagues (2009) demonstrated that 

the CRAC channel is a significant mediator of ischemic cardiovascular and 

cerebrovascular events. Their research showed high expression of Orai1 in 

human and mouse platelets. Furthermore, platelets in Orai1-deficient mice 

exhibited defective SOCE which caused resistance to pulmonary 

thromboembolism, arterial thrombosis and ischemic brain infarction (Braun 

et al., 2009). It’s also been implied that CRAC channel inhibitors could 

successfully manage airway inflammation and bronchoconstriction in 

asthma. Oral administration of the CRAC channel inhibitor BTP2 prevented 

asthmatic bronchoconstriction and eosinophil infiltration in sensitised guinea 

pigs (Yoshino et al., 2007). Expression of Orai1 and STIM1 in human airway 

muscle has been reported thus strengthening the therapeutic potential of 

CRAC channel inhibitors as anti-asthma drugs (Peel et al., 2008). Use of 

CRAC channel inhibitor GSK-7975A in other in vitro and in vivo models of 

disease, including thrombotic events causing stroke and asthma, has also 

been described (Ashmole et al., 2012; van Kruchten et al., 2012). These 

findings, coupled with the effects of CM4620 observed in this study, indicate 

a wide variety of potentially valuable therapeutic approaches for CRAC 

channel inhibition.   

 

Although CRAC channels are ubiquitous cellular constituents, it was 

originally thought that these channels were predominantly situated in the 

immune system. Specific CRAC channel inhibitors have thus been 

produced to target immunological disorders by numerous companies, 

including CalciMedica (Parekh, 2010; DiCapite et al., 2011). CM4620 may 

have an additional advantageous therapeutic effect on the inflammatory 

process contributing towards AP pathobiology. It has been reported that 

CRAC channel inhibitors prevent SOCE in numerous immune cells and 

responses, such as mast and T-cells as well as neutrophil migration and 

activation, which exacerbates AP in its early stages (Bergmeier et al., 2013). 

CRAC channel blockade could inhibit distinctive immune responses, 
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protecting against pancreatic inflammation thus limiting the severity of AP 

and associated mortality (Gea-Sorli and Closa, 2010; Akinosoglou and 

Gogos, 2014). Indeed, a marked reduction in the severity of experimental 

pancreatitis as a result of immune response prevention has been observed 

(Gukovskaya et al., 2002). In 2019, Waldron and colleagues demonstrated 

that CM4620 decreases cytokine production as well as myeloperoxidase 

activity and cytokine expression in pancreas and lung tissues. These 

findings support the idea of Orai1/STIM1 channel participation in the 

inflammatory responses during AP (Waldron et al., 2019). It should be 

noted, however, that Vaeth and colleagues (2015) recently reported that 

phagocytosis and cytokine generation by macrophages is functionally 

dependent on cytosolic Ca2+ signals but not necessarily SOCE. While SOCE 

blockade in innate immune cells, through Orai1/STIM1 knockouts, impairs 

neutrophil and macrophage function, some aspects of their functionality are 

not completely prevented hence immune responses can still be instigated 

(Vaeth et al., 2015). Although T cells appear to be predominantly inhibited 

by CRAC channel blockers, they occur in smaller numbers in the inflamed 

pancreas (Demols et al., 2000; Akinosoglou and Gogos, 2014). While 

further confirmation on the distribution of CRAC channels in immune and 

pancreatic cells and their sensitivity to inhibitors is required, the role of these 

channels in Ca2+ entry is less pronounced in electrically excitable cells. Such 

cells, including cardiac myocytes, neurones and skeletal myocytes, possess 

and are dependent on other ion channels (for example, non-selective cation 

channels) to provide Ca2+ influx (Stiber et al., 2008; Moccia et al., 2015). 

Additionally, even though non-excitable cells (for example hepatocytes) 

mainly rely on CRAC-mediated Ca2+ entry for vital cellular processes like 

exocytosis, Gerasimenko and colleagues (2013) observed minimal effects 

of GSK-7975A on hepatocytes in vitro. These observations together with the 

minor effects of CRAC channels on excitable cell functionality reinforce the 

validity of targeting CRAC-mediated SOCE for AP therapy.  

 

7.4 Limitations  
 
This study utilised fluorescent microscopy measurements of intracellular 

Ca2+ concentration to investigate CRAC channel inactivation in PACs. 

Alternatively, electrophysiology techniques have been employed by several 

authors when measuring alterations in CRAC channel conductance, 

following channel inactivation, in various cell lines and in the presence of 

external Ca2+ (Hoth and Penner, 1993; Fierro and Parekh, 1999; Litjens et 
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al., 2004). Application of such techniques, for example whole cell patch 

clamp, allow measurements of current through specific ion channels, in 

isolation from other factors and ion channel fluxes. Although CRAC 

channels are the main mediators of SOCE in PACs, non-selective cation 

channels such as TRPC3 also contribute to Ca2+ influx, but to a lesser 

extent. Moreover, CPA-evoked store depletion could activate TRPC3, due 

to its speculated STIM1 binding capabilities, as well as CRAC channels (Lee 

et al., 2014). Recorded [Ca2+]i elevations, as reported in this study, would 

thus arise from both TRPC and CRAC-mediated Ca2+ entry. Assessing Ca2+ 

entry through each channel, with fluorescent Ca2+ indicators, is only viable 

when using their corresponding inhibitors. The lack of and poorly 

understood specificity and potency of novel CRAC channel blockers can 

therefore prove problematic when analysing their inhibitory effect on Ca2+ 

entry, using Ca2+-sensitive fluorescent probes such as Fluo-4. On the other 

hand, the distinctive biophysical fingerprints of CRAC and TRPC3 channel 

currents allow them to be distinguished during electrophysiological studies 

(Cheng et al., 2013; Prakriya and Lewis, 2015). In addition, concurrent 

measurements of channel conductance, with whole cell patch clamp, and 

intracellular Ca2+ changes, with fluorescent indicators and microscopy, have 

been successfully utilised in PACs to provide real time recordings of channel 

currents and spatiotemporal features of Ca2+ signalling (Voronina et al., 

2002b). Using electrophysiology would further reveal the impact of CM4620 

on CRAC channel Ca2+ influx.    

 

Furthermore, non-ratiometric measurements presented in this report of 

fluorescence signals, with Ca2+ indicator Fluo-4, were not converted to 

absolute [Ca2+]i concentrations. This can be achieved with additional 

calibration methods to further improve our understanding of CRAC channel 

inhibition in murine PACs. Such methods can be employed to Fluo-4 non-

ratiometric recordings using the following equation: [Ca2+]i = Kd  [(F – Fmin) / 

(Fmax – F)] (Grynkiewicz et al., 1985; Bootman et al., 2013). At the end of 

experiments, the Ca2+ depleted state (Fmin) and Ca2+ saturated state (Fmax) 

should be established. This protocol has been previously described and 

involves treating Fluo-4 loaded PACs with the Ca2+ ionophore, ionomycin 

(20 μM), and 2 mM EGTA (ethylene glycol tetraacetic acid), a Ca2+ chelator 

used to deplete Ca2+ from the cytoplasm, in a Ca2+- free buffer. This enables 

the determination of Fmin. Subsequently, ionomycin was added to the cells 

in a buffer with 2 mM CaCl2 to saturate the fluorescent indicator and to 

determine Fmax which is reached once a plateau is observed (Sherwood et 

al., 2007; McCombs and Palmer, 2008). Moreover, F is the fluorescence 
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ratio value whereas Kd represents the dissociation constant of Ca2+ binding 

site (~350 nM for Fluo-4; Gerasimenko et al., 2006).   

 

Interference of global Ca2+ influx measurements by fluorescent microscopy 

can results from Ca2+ efflux pathways across the plasma membrane, ER 

membrane and into the mitochondria. In this report, interference in the Ca2+ 

signal would predominantly arise from PMCA activation as CPA, a SERCA 

pump inhibitor, was utilised during CRAC channel activity recordings. To 

prevent this interference, previous investigators have used Ba2+ ions, 

instead of Ca2+, in the extracellular solution as Ba2+ readily passes through 

CRAC channels but cannot be extruded across the plasma membrane by 

Ca2+ ATPases (Kwan and Putney, 1990; Bakowski and Parekh, 2007; 

Zeiger et al., 2011). In this study, the effect of CRAC channel inhibitor, 

CM4620, on Ca2+ influx could have been more accurately measured by 

substituting Ca2+ ions for Ba2+ ions.  

 

Evidence of the effect of CM4620 on toxic [Ca2+]i elevations in PACs 

exposed to all AP-inducing agents utilised in this current study is required. 

Demonstrating inhibition of BA- alcohol- and asparaginase-evoked [Ca2+]i 

elevations with CM4620 will reinforce its protective effects against cellular  

necrosis presented here. As mentioned previously, it would be desirable to 

measure galactose alone as a protective treatment against AP-induced 

necrosis. Although investigations by Peng and colleagues (2018) have 

shown that galactose alone significantly protects against pancreatic 

necrosis, it would be interesting to directly compare galactose alone 

treatments against the effects of CM4620 and the CM4620-galactose 

combination. Furthermore, when considering the clinical application of 

CM4620, the necrosis findings presented in this study are limited as the AP-

inducing agents are added together with the CRAC inhibitor and galactose. 

In a clinical setting, CM4620 and a combination of CM4620 with galactose 

would be utilised as a treatment after AP has been induced in patients. 

Lastly, it would be important to investigate the capability of low nanomolar 

concentrations of CM4620, again depicted in the necrosis assays of this  

study, on inhibiting SOCE.  

 

7.5 Future considerations  
 
The CRAC channel is considered a viable drug target for AP therapy as it is 

the main channel for Ca2+ entry in acinar cells, a process which extensively 

facilitates aberrant intracellular Ca2+ signalling during AP thus contributing 
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towards hallmarks of the disease (Lur et al., 2009; Gerasimenko et al., 

2013). Several potential areas of interest for the future can be determined 

from this study to reinforce the therapeutic potential of targeting CRAC 

channels and more specifically, the benefits of using lower concentrations 

of CM4620. 

 

Firstly, it would be interesting and necessary to investigate the effects of 

various CM4620 concentrations on Ca2+ influx when treated in an acute 

manner. This would involve application of CM4620 following re-admission 

of external Ca2+ after CPA treatment, once a plateau is established. It is 

crucial for an effective AP intervention to have the ability to diminish Ca2+ 

entry when administered in the presence of a sustained [Ca2+]i elevation. 

The relatively long preincubation (30 minutes) of CM4620 reported in this 

study could prove problematic and result in slow time courses in [Ca2+]i 

decline. This may, however, signify periods of Ca2+ extrusion via the PMCA 

and remains to be determined. The effect of CM4620 on pathological 

mitochondrial Ca2+ responses as well as intracellular ATP levels, induced by 

AP-inducing agents, should also be investigated. The possible restoration 

of these mitochondrial Ca2+ and ATP levels to near control by CM4620 

would be appealing. Galactose has previously protected against ATP loss 

and has restored mitochondrial potential and Ca2+ levels to near control 

levels (Peng et al., 2016; Peng et al., 2018). 

 

The potential studies described in in vitro models would strengthen the 

findings presented here on murine acinar cell responses. Further 

investigations into the effects of CM5620 in in vivo experimental models of 

AP should be carried out. Ideally, multiple rodent models should be utilised 

with varying forms of AP disease induction, such as ductal injections of 

TLCS or intravenous administration of asparaginase which are widely used 

as representatives of acute biliary pancreatitis and asparaginase-associated 

pancreatitis, respectively (Laukkarinen et al., 2007; Lerch and Gorelick, 

2013; Wen et al., 2015). It would also be interesting to utilise other murine 

models by using, for example, high doses of basic amino acids (most often 

L-arginine) which are widely used in animal models of AP (Zhang et al., 

2019).CM4620 should successfully ameliorate all hallmarks of AP exhibited 

by these models to be considered an ideal therapeutic for AP. CM4620 

could also be tested in combination with galactose. Galactose is relatively 

stable in solution, slowly metabolised and has successfully been 

administered by both intraperitoneal injections and feeding (drink) in AP 

mouse models (Peng et al., 2018). Comprehensive, preclinical justification 
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for CM4620 CRAC channel blockade in early stage AP therapy can be 

reinforced by testing different time points of CM4620 administration in 

experimental models, following disease induction. This will ascertain the 

impact of early vs late drug administration on preventing pancreatic acinar 

injury and necrosis which is an important issue in clinical trials testing drugs 

for AP intervention (Wen et al., 2015). In clinical practice, the time frame in 

which AP patients present to hospital following the onset of symptoms and 

require treatment varies from hours to days. Rapidly administering the 

treatment following disease onset thus reducing the extent of pancreatic 

necrosis, injury and subsequent inflammation is thought to be fundamental 

in maximising therapeutic benefits (Wen et al., 2015).   

 
7.6 Concluding remarks  
 
The findings presented in this report confirm the hypothesis that CRAC 

channel blocker, CM4620, effectively inhibits both store-operated Ca2+ 

entry, induced by ER store depletion. This is of great importance as 

reductions in cytosolic Ca2+ would eliminate the premature activation of 

digestive enzymes and the subsequent autodigestion and cell death 

characteristics of AP. The novel results in this thesis demonstrate that low, 

nanomolar concentrations of CM4620 can prevent activation of the necrotic 

cell death pathway evoked by principal AP-inducing agents, including 

asparaginase, bile acids and alcohol metabolites in vitro in PACs. In the vast 

majority of cases, this protective effect is further improved when CM4620 is  

combined with galactose. Low doses of CM4620 were highly effective in 

reducing all disease parameters in representative in vivo animal models of 

alcoholic acute pancreatitis, one of the most common forms of the disease. 

 

These results reinforce the viability of CRAC-mediated Ca2+ influx as a 

potential therapeutic target and suggest that CM4620 in addition to, or in 

combination with galactose could be a useful tool, therapeutically. 

Administering low concentrations of CM4620 could also reduce the chance 

of side-effects resulting from CRAC channel inhibition. It is hopeful that 

CRAC channel blockade could be translated into clinical usage against the 

life-threatening condition of acute pancreatitis, to which there currently is no 

specific cure.   
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