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A B S T R A C T

Industrial advances and academic enquiry into the transition towards electrified mobility has been arguably
preoccupied with the earlier phases of technological development, while less consideration has been given to the
end-of-life phase. One example of this is the current technical and economic difficulties surrounding Battery
Electric Vehicle (BEV) recycling; and specifically, their high voltage lithium-ion batteries. In this study of the
automotive sector, we adopt a longer-term perspective to better understand the overall transition towards “zero-
emissions” road transport by empirically and theoretically contributing to the strategic management of lithium-
ion powered, vehicle electrification. Through the careful exploration of BEV end-of-life, this paper forecasts a
dynamic end-of-life stockpile of lithium-ion batteries, using the UK as a case study. By establishing the ‘dynamic
stockpile’ as the central problématique, this paper then describes various technical challenges, business model
implications and policy debates around reuse, recycling and disposal that countries will have to contend with as
first generation BEVs begin to enter technological obsolescence. While innovation and technological progress are
desirable, industry, governments and society must remain aware – and prepared – for the significant economic
and environmental costs and opportunities associated with not only the diffusion, but also the waste generated
by new technologies.

1. Introduction

The accelerated introduction of new electric vehicles (EVs) by au-
tomakers is an observable trend that has been welcomed due to im-
proved environmental performance [1,2] comprising zero emissions in
use and lower net carbon emissions per kilometre [3]. However, this
research is solely concerned with plug-in Battery Electric Vehicles
(BEVs) in the UK, sometimes called all-electric or pure-electric vehicles.
This paper does not account for Plug-in Hybrid Electric Vehicles or
PHEVs, which combine a conventional internal combustion engine with
some form of electric propulsion.1

Net carbon emissions from BEVs depend upon the source of elec-
tricity generation, where system boundaries and energy carriers are
clearly defined [3,5]. Over the last few years, average BEV range has
increased, battery durability has improved, and costs per kWh of charge

capacity has fallen. Combined with regulatory pressures, favourable
market incentives, and consumers’ dramatic pivot away from diesels2 in
the wake of the Volkswagen emissions testing scandal [6], the stage
seems set for increased displacement of traditional internal combustion
engine (ICE) passenger cars. This is further reinforced by the UK gov-
ernment's recent announcement of its intent to bring forward the ban on
petrol and diesel cars to 2035 [7].
However, less consideration has been given to the environmental

and economic implications for society as increasing numbers of BEVs
reach their end of life, and in particular, the reuse and recycling [8,9] of
rechargeable, high-voltage lithium-ion batteries (LIBs). Generally, BEV
batteries are composed of cells, modules and a pack. Battery cells are
the basic units of a BEV lithium-ion battery, where a fixed number (or
cluster) of cells makes up a module, and a cluster of modules makes up
a pack, which is the final shape of the core battery system [10].
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There is a growing appreciation of the environmental and economic
benefits of recycling LIBs, notably in those countries where the uptake
of BEVs is distinctively high [11]. China, for example, launched a trial
in 17 cities in 2018 with the expectation that 170,000 tonnes of LIB
waste would be processed [12]. However, recycling automotive LIBs
poses unique challenges and opportunities compared with more tradi-
tional lead-acid batteries, as is expanded upon in later sections. By more
carefully exploring LIBs’ end-of-life, this paper aims to answer the fol-
lowing research questions:

• RQ1: What will the UK's estimated ‘dynamic stockpile’ of obsolete
(i.e. end-of-life) lithium-ion battery packs (OLIBs) be by 2025?
• RQ2: What are the environmental, economic and policy challenges
of such an accumulation?

This paper proceeds in the following fashion: First, the neglected
theme of product retirement or disposal is discussed in Section 2. While
theories of new product adoption and the penetration of such tech-
nologies are long-established, theories related to product disposal (or
retention) are less well developed. Section 3 outlines this paper's em-
pirical research methods and how we used them to derive our forecasts
(results). It should be noted that in this paper, we define OLIBs or
Obsolete (end-of-life) LIBS as the share of battery packs in UK BEVs that
have either been retired from road use, or whose electric battery war-
ranty has expired. Later in this paper (Section 5.4.) we also discuss the
dilemma of out-of-warranty BEV batteries still in use. Accounting for
such an accumulation is important because accelerating sales and
consistent growth of the UK BEV segment means that there is an urgent
need to prepare for the environmental, economic, and regulatory
challenges of responsibly storing, recycling and disposing of OLIBs.
Thereafter, we present our forecasts of the rate of OLIB stockpiling

in the UK in Section 4. The penultimate Section 5 discusses the im-
plications – based on our findings in conjunction with relevant litera-
ture – for academics, regulators and those in the End-of-Life Vehicle
(ELV) industry to consider. A short conclusion (Section 6) highlights
some immediate considerations and areas for further research.

2. Product retirement in sociotechnical literature

Technological forecasting in general tends to relate to the in-
troduction of new products and services, or expectations on output,
Gross Domestic Product (GDP), and other socio-economic variables.
The intention of such research is largely to forecast how quickly an
individual technology might permeate a given market [13], and the
focus on consumer acceptance of new products has a tradition that goes
back to the Rogers model [14,15]. However, little attention is given to
various aspects of product retirement. We can distinguish at least two
‘modes’ of product retirement. The normal mode is when, with a mature
technology (albeit with an expected rate of product improvement) and
established market, there is a stable rate of product retirement related
to the passage of time or a decline in functionality. The second is an
‘accelerated’ mode of retirement that can occur in at least two settings.
First, when a mature technology in an established market suffers an
increase in retirement due to the emergence of superior competing
technology. Second, where an emergent technology progresses rapidly
through generational improvements in cost and performance, rendering
early versions more rapidly redundant. The broad aim of the paper is to
frame the accelerated retirement process of OLIBs in sociotechnical
terms.
Regarding BEVs, considerable research has gone into forecasting the

rate of market penetration. A particular focus has been to identify and
seek to remedy barriers to market penetration for these vehicles [2]. In
other words, the predominant research focus in this domain has been on
understanding the acceptance of BEVs, and hence the extent to which
traditional ICE cars will be displaced [16].
Research grounded in sociotechnical transitions theory is essentially

concerned with understanding how innovations permeate at a system
level, thereby creating new sociotechnical systems [13]. The End-of-
Life Vehicle (ELV) recycling structure can be understood as an existing,
if neglected, part of the current automobility sociotechnical regime. The
contention here is that the widespread uptake of BEVs will have dif-
ferential impacts across the automobility sociotechnical system and
require the creation of an End-of-Life Electric Vehicle (ELEV) recycling
structure. Trading of raw materials, goods and ultimately waste is
making use of a worldwide network of producers, manufactures and
recyclers. Put alternatively, the restructuring of the ELEV recycling
industry is likely to be a necessary condition for the establishment of
electro-mobility sociotechnical systems across the world, thereby re-
sonating with the wider concept of the circular economy. The caveat
here of course is that the systems of reuse and recycling that are
adopted will have to win in competition against less sophisticated
methods of disposal [17].
While there is considerable science, technology, engineering, and

mathematics (STEM) research (over 200 papers and 100 patents) aimed
at solving spent LIB recycling [18], sociotechnical research stops short
of investigating the eventual end-of-use phase of this technology. The
neglect of this issue with respect to cars is different to the attention
accorded other consumer items. There is a growing body of research
into the recycling of clothing and textiles, and small electronic items
under the Waste Electrical and Electronic Equipment (WEEE) Directive
for example [19]. There is an understanding that reverse logistics and
take-back systems will become more significant in the future as the
concept of the circular economy becomes manifest [17,20].
In the following section we review the prevailing car processing

system for End-of-Life Vehicles (ELVs), as well as automotive lead-acid
battery and consumer electronics (CE) LIB end-of-life. In this, we ex-
plain how the system works for prevailing cars with internal combus-
tion engines (ICEs) as well as other types of batteries as a context to
understanding why in some key respects the system will not work in the
same way with end-of-life automotive LIBs.

2.1. Car dismantling, scrapping and recycling in the uk

The academic neglect of car recycling might be attributable to
several factors. The sector is strongly regulated, and scrapped cars –
known as End-of-Life Vehicles (ELVs) – are subject to planning and
operational controls. Directive 2000/53/EC sets out quantified targets
for reuse, recycling and recovery of ELVs and components. The vehicle
dismantling and shredding industry is also subject to a range of EU and
national regulatory controls regarding equipment, facilities, processes,
and the collation of data, with clear targets for recycling. In the UK
there is an established and viable economic structure for recycling
based on the three-tiered system of dismantlers (Authorised Treatment
Facilities or ATFs), shredders, and smelters. The structure has been in
place a long time, with little by way of exciting technological change.
There is a distinctly ‘unglamorous’ image associated with the post-use
recycling of vehicles. Finally, there is a paucity of data across the sector.
The owner of a car who no longer wishes to keep it has essentially

three legal options: sell the car to another party; declare the car to be off
road (in the UK, a Statutory Off Road Notification or ‘SORN’ declara-
tion); or scrap the car themselves or through a third party such as a
charity e.g. Giveacar (giveacar.co.uk) via an ATF. Historically, the long-
run trend has been for the rate of car scrapping to be lower than the rate
of new car sales by approximately 50% in the UK,3 resulting in the
steady expansion of the overall stock of cars in circulation, also known
as the parc.
The rate of car scrappage is related to the size of the parc, the rate of

new car sales, and economic or other factors, such as deliberate

3 Calculated by cross referencing SMMT new registration data with EUROS-
TAT vehicle scrappage data 2010-2015
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government intervention to increase the rate at which old cars are re-
moved from the parc (typically to stimulate new car sales). Examples of
this are scrappage schemes in Germany and UK as a response to the
2008 global financial crisis [21,22]. Otherwise, normal mode car
scrappage is influenced by technical and economic considerations pri-
marily. A car loses value over time, and this depreciation rate varies but
is typically 50–60% over 36 months [23]. A car deteriorates in func-
tional and aesthetic condition. In addition, new cars brought to the
market embody new technologies, materials, features and performance
that render the older cars comparatively less attractive. Car scrappage
events are typically triggered at the annual Ministry of Transport tests
or simply ‘MOT’,4 when the required repair and maintenance costs are
seen to exceed the economic value of the car to the owner.
Cars become available for recycling through one of three basic

routes. First, the car is so damaged in a collision or other event that it is
beyond safe and / or economic repair, and so must be scrapped.
Insurance write-offs occur when an assessor deems the damage to a
vehicle to be beyond economic repair, but sometimes these vehicles can
return to the market. Second, the car is of such an age and condition
that the cost of keeping the vehicle outweighs the value of the vehicle.
The rationality of this calculation varies. For example, the owner of a
car of low value, who spends resources in keeping that vehicle on the
road, may still deem the maintenance costs as lower than the cost of
replacement with a (younger or better condition) vehicle. Moreover,
there may be emotional attachment to a vehicle that transcends eco-
nomic logic. Third, the car may be (illegally) abandoned resulting in
collection by a Local Authority. According to Morley [24], Freedom of
Information requests to over 400 UK councils revealed the number of
cars being reported as abandoned had risen nearly threefold from
40,876 in 2012 to 147,616 in 2016.
The EU [25] and other regional sources [26] state that in the EU,

typically 6 to 7 million cars are scrapped each year in compliance with
the ELV directive. However, about 3 to 4 million additional vehicles are
classed as ‘vehicles of unknown whereabouts’. These are vehicles that
are deregistered but without a Certificate of Destruction (CoD) issued,
and no documentation regarding export out of the EU. Further, EU
reports [25] discuss at length the difficulties of obtaining good quality
data for the region, though the UK appears to have stronger records
than many countries. Despeisse et al. [27] estimated that as much as
30% of ELVs generated in the UK were being illegally exported as used
vehicles to Eastern Europe and African countries.

2.2. Lead-acid battery end-of-life

Previous research has sought to examine the recycling of auto-
motive lead-acid (Pb-acid) batteries [28] as a template for automotive
LIB recycling, and there have been several insights gained. Approxi-
mately 90% of automotive Pb-acid batteries are recycled today, com-
pared to 5% of OLIBs [29,30]. In the United States (U.S.), Pb-acid
battery recycling rates saw significant fluctuation due to changes in the
market price of lead [31]. When lead prices were low – in conjunction
with stringent environmental regulations – end of life Pb-acid batteries
were either exported or dumped [32].
Pb-acid battery handling, transport and disposal has long been

stringently regulated in the U.S. and other markets because of their
well-known toxicity, with recycling being promoted at both state and
federal levels [32]. However, in the late 1980s, States began to ban the
dumping of Pb-acid batteries in landfills and additionally required that
they be recycled. In the wake of these policies, rates of recycling sig-
nificantly increased, resulting today's near 100% recycling rate [33].
In addition to increased government regulations, there are several

other factors that have contributed to the success of Pb-acid battery
recycling. For instance, these batteries share one common chemical
composition, and recycled lead is known for its high quality [28]. The
business model is further supported by well-established collection
centres and recovery technologies, which makes Pb-acid battery re-
cycling relatively simple and cost-effective [30].

2.3. Consumer electronics LIB end-of-life

Unlike the Pb-acid battery, LIB recycling has proven to be expensive
(even at scale) and profitability remains limited, despite some recyclers’
claims. It is estimated that 95% of all5 LIBs are landfilled (globally)
rather than recycled upon reaching end-of-life. Consumer electronics
(CE) accounts for 50% of the LIB global market and 39% of the cobalt
used in all LIBs [34]. Consumer electronics recycling research6 in North
America in 2016 shows [30] that cell/mobile phones make up about
68% of CE units sold, but represent only 20% of the CE battery mass
sold, and have an approximate recycling rate of 15%7 . Laptops make
up 20% of CE units sold but represent 73% of the battery mass sold, with
a much higher recycling rate of about 40%. Laptop LIBs are the heaviest
and hence have the highest rate of battery mass recycling, while cell/
mobile phones are the most used, but least recycled and hence their
lower share of battery mass recycled. Overall, the average recycling rate
for CE in North America stands at approximately 33% of battery mass
sold, and as a result the majority of LIBs are landfilled [30,33].
In the EU, prior to the implementation of new regulations in 2008,

the return rate for CE was estimated to be between 3% and 7% [33].
Despite 5% being often quoted as the recycle rate for LIBs in the EU
[36], present-day LIB recycling statics for the EU remain obscure, as LIB
data is mixed in with ‘other’ unspecified batteries [34].

2.4. Automotive LIB end-of-life

There is an assumed displacement effect, whereby BEVs substitute
existing ICE vehicle sales. Eventually, if BEV sales constitute the
dominant share of new cars sold, so the proportion of ICE vehicles in
use will decline towards zero. Thus, BEVs sold into the new car market
will be used and will eventually reach the end of their useful lives. As an
ELEV, the constituent technologies and materials of BEVs (e.g. OLIBs)
may not necessarily mirror the retirement patterns of ICE vehicle
components (e.g. Pb-acid batteries). Today's industrial LIB knowl-
edgebase mostly originated from firms in CE markets that established
robust supply chains and accumulated significant experience long be-
fore the emergence of modern battery-electric vehicles (circa 2010).
This knowledge was transferred across to the automotive industry and
applied to the production of traction duty LIBs [33].
Automotive LIB lifespan can be measured in either cycle life or

calendar life. Cycle life is the number of charge-discharge cycles a li-
thium-ion battery can endure before falling below a specific perfor-
mance threshold. Calendar life on the other hand is the amount of time
a battery can be stored, with minimal charging-discharging, before its
capacity is similarly diminished [4]. A battery is usually considered to
have reached its end-of-life when its maximum capacity is 80% of its
original fully charged state [37,38]. While LIB lifespan is highly un-
certain [39] for a variety reasons including the technology still being in
its infancy, most research places average LIB calendar life between 8
and 10 years [40–45], subject to favourable conditions. Factors that can
reduce LIB lifespan includes overcharging, rapid discharge, frequent
charging and high operating temperatures [4,46].
There also exist safety concerns regarding the safe disposal of OLIBs

4 The MOT is an annual test of a vehicle's safety, roadworthiness and exhaust
emissions. This is a requirement in the UK for most vehicles over three years
old.

5 Portable consumer electronics + automotive LIBs combined
6 Only cell phones, laptops and tablets were considered in the category of

‘consumer electronics’ in the research cited, with all other devices ignored.
7 Compared to a global average recycling rate of 10% [35]
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that include the release of hazardous chemicals under landfill condi-
tions and fire risks [30,47–49]. OLIBs can spontaneously ignite or even
explode, also known as thermal runaway [50], where the ignition of
one cell, leads to a rise in heat that spontaneously ignites its neighbors.
Once combustion has started, it is extremely difficult to stop. Of equal
concern is emerging research that confirms the presence of toxic
fluoride gas emissions – specifically, the notoriously lethal hydrogen
fluoride (HF) – from lithium-ion battery fires [51]! All of this suggests
that the post-use treatment of OLIBs will be expensive compared to the
12-volt lead-acid batteries found in traditional ICE vehicles. Alter-
natively, the OLIB packs and associated power components are likely to
have a relatively high absolute content of valuable metals e.g. cobalt,
copper, magnesium or lithium, the recovery of which via recycling may
be an attractive option [52,53].

2.5. ‘The shape of retirement’: theoretical underpinnings of technological
obsolescence in relation to OLIBs

This section is primarily concerned with accelerated retirement
linked to the concept of technological obsolescence. Technological
obsolesce has been the subject of many studies, but its dynamics are still
not very well understood (Amankwah-Amoah, 2017), specifically in the
context of accelerated retirement. Technological obsolescence occurs
when the functionality of a piece of technology is inferior, relative to
other available technologies, in its ability to address current and future
problems or tasks [54]. Technological obsolescence is characterized as
a problem that will only ‘get worse’ as time progresses, with studies
showing that approximately 3% of all global electronic components
become obsolete each month [55] or 30–50 million tons each year [56].
A more nuanced description of technological obsolescence, is that it

is a ‘mismatch between the life cycles of products, and the technologies
they incorporate’ [57], where fundamental interdependencies ulti-
mately result in varying degrees of technological obsolescence [54],
including accelerated retirement. Simply put, within a given techno-
logical product, there exists life cycles within life cycles, where the
function of that product partially depends on the functionality of its
components. Products with multiple components become obsolete over
time in multiple stages, and the inability to obtain and replace parts
only accelerates this process [58,59].
The inability to procure and replace parts – or component ob-

solescence – is said to be at the root of technological obsolesce at any
product level [58]. For example, large internet routers and military
systems have projected lifespans of two decades, but the electronic
components that support their functionality have around two years’
lifespan [60,61]. When product developers upgrade their technologies
and discontinue older technological components, this causes life-cycle
mismatch. This lack of backward or forward compatibility between old
and new components within the product package often leads to sys-
temic obsolescence [62]. Thus, BEVs and their corresponding LIBs’
lifecycles become mismatched due to high replacement costs of OLIBs
or damage due to automotive collisions [4], and hence complete sys-
temic obsolesce and accelerated retirement ensues. Compounding this
vulnerability, is the fact that there is presently no market for non-Ori-
ginal Equipment Manufacturer (OEM8) compatible batteries, making
the entire automotive LIB supply chain exclusively dependant upon
OEM support.

3. Research methods

Transport studies have often followed the epistemological practice
of using quantitative methods with a positivist world view [63,64],
which has at times been characterized as archaic [65,66]. Alternatively,

others have argued that qualitative approaches are increasingly con-
tributing to fuller understandings of transport practices and policies
[67–70]. Hence, there continues to be an appeal for more critical
(qualitative) analysis in transport studies, to compliment the already
well-established technical (quantitative) scholarship [71]. This research
combines these two approaches by forecasting our unit of interest –
end-of-life lithium-ion batteries – using statistics and discusses these
results within the context of an end-of-life document review of the
automotive industry.

3.1. Forecasting new car registrations in the UK from 2019 - 2025

First, we collected publicly available historical data from the UK
Driver and Vehicle Licencing Agency (DVLA) and Society of Motor
Manufacturers and Traders (SMMT) databases for all new car regis-
trations from 2011 – 2018. We chose to collect registration data from
2011 because that is when the UK launched its ‘plug-in car grant’ [72].
We then forecast total new car registration figures in the UK between
2019 and 2025 using a quadratic trend projection ( = + +y t tt 0 1

2
2 )

(see Fig. 1; Table A. 1. in Appendix A).
It has been long established in academic literature that the fitness of

competing forecast models can be tested using two specific information
criteria – the Akaike Information Criterion (AIC) and Schwarz
Information Criterion (SIC) [73,74]. When selecting between models,
the one with the smallest value of the criterion is recommended for
selection. In practice, when both criteria are applied, they often lead to
the selection of the same model.
Table 1 below shows the AIC and SIC criteria for the linear, quad-

ratic and exponential trend models applied to total new car registra-
tions (data graphed in Figure A. 1. in Appendix A). Both AIC and SIC
select the quadratic model. In a relatively mature and stable market in
which total change is largely incremental, this model gives a reasonable
and illustrative expectation forecast without recourse to more complex
approaches such as stock adjustment modelling.
It is important to note here that the process of the UK leaving the EU

(or ‘Brexit’) has been a source of significant uncertainty within the
automotive industry, and for this reason we chose to conservatively
project new car registrations. Another factor influencing our forecast
has been the slowing new car market in the UK, which has seen five
consecutive years of reduced growth, with the last two (2017, 2018)
actually resulting in negative growth (contraction) (see Fig. 2), despite
continued growth in the BEV segment (see Fig. 3) [75]. We are con-
fident that our forecast is reasonable, given that it aligns with estima-
tions made by other industry analysts [76,77].

3.2. Document and thematic analysis

The latter portion of this Review involves discussing our empirical
results within the context of documents published by the automotive
sector, official European Commission and UK government documents,
academic journals and press articles. While press articles are not widely
used for academic support, this secondary source of data proved in-
valuable in tracking the rapidly shifting landscape of the automotive
industry. Our document analysis provided the large-scale material
context of how OEMs develop and integrate LIBs into the automotive
value chain [78], and the challenges of sustainably transitioning these
technologies beyond their primary function. The use of secondary data
from various sources has the added benefit of contributing to the tri-
angulation of information as well as capturing relevant themes from the
perspectives of automakers, regulators and other industry stakeholders.
By analysing these documents, it then becomes possible to establish
linkages between collections of different sets of knowledge within the
industry [79], and render an account structured around central themes
that have emerged [80].

8 Within the automotive industry, automakers are typically referred to as
OEMs
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3.4. Defining Obsolete (end-of-life) Lithium-Ion Batteries’ (OLIBs)

As previously mentioned above, we define Obsolete Lithium-Ion
Batteries (OLIBs) as the share of lithium-ion battery packs in UK BEVs
that have either been prematurely retired from road use via insurance
write-off (Type 1) or whose high voltage electric battery manufacturer's
warranty has expired (Type 2). Our research shows that 8 years is the
average period that automakers will cover high voltage lithium-ion
batteries under warranty based on 2019 OEM policy data we collected
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Fig. 1. Historical and forecast of new car registrations in the UK: 2011 – 2025.

Table 1
AIC and SIC criteria for the linear, quadratic and exponential trend models for
total new car registrations 2011–2018.

Trend models Akaike Information
Criterion (AIC)

Schwarz Information
Criterion (SIC)

Linear Trend 27.25 27.29
Quadratic Trend 26.95 27.02
Exponential Trend 32.22 32.24

2011 2012 2013 2014 2015 2016 2017 2018

Units 1,941,25 2,044,60 2,264,73 2,476,43 2,633,50 2,692,78 2,540,61 2,367,14

Growth -4.4% 5.3% 10.8% 9.3% 6.3% 2.3% -5.7% -6.8%
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Fig. 2. Total new car registrations and annual growth (%) in the UK. Generated using SMMT data.
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(see Table 2 below). Thus, 2019 OEM policies seem to be in line with
average LIB calendar life expectations found in the literature (See
Section 2.4.).
In this study, we assume that the annual rate of attrition (insurance

write-offs) for vehicles in the UK is approximately 1.2% based on pre-
vious industry estimates [81]. This rate remains much the same today,
according to a more recent insurance group study [82] that showed
380,000 annual insurance write-offs within the parc of 32 million ve-
hicles. While high-voltage batteries present unique challenges to

automotive safety, over a decade of crash test reports indicate that BEVs
are just as robust as traditional internal combustion engine (ICE) ve-
hicles [83] in collisions. For this reason, we have applied the same 1.2%
rate of insurance write-offs to the population of BEVs, assuming that
they are no more likely to be written-off in road incidents.9

Therefore, in order to estimate the dynamic OLIB stockpile, we
combined insurance write-off BEV estimates (Type 1 OLIBs) with out of
warranty LIB estimates (Type 2 OLIBs). The reason being is that in both
circumstances, OEMs no longer manage these batteries’ ‘primary use’
functionality. We argue that this dynamic OLIB stockpile is a useful
indicator of BEV component obsolescence, as these batteries are now
technically only eligible for end-of-life processing (reuse, recycling or
disposal).
It must be noted that the 1.2% rate of attrition used only represents

insurance write-offs, which is just one of the three means by which a
vehicle enters end-of-life. Voluntary scrappage, and illegal abandon-
ment are omitted from this rate of attrition for two reasons. First, the
data is simply not available at the desired level of granularity, i.e. there
are no data on the volume of BEVs voluntarily scrapped or illegally
abandoned in the UK by year of registration. Secondly, vehicles that are
voluntarily scrapped or illegally abandoned are likely to be much older
in age. Insurance write-offs, however, are unaffected by age, and thus
are applicable across all cohorts of BEVs annually for our calculation
purposes. A final segment of the OLIB population that could not be
accounted for are battery packs that have been repaired or replaced
under warranty due damage or defect, and similarly, battery packs
replaced or repaired by owners during the warranty period, but whose
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Fig. 3. New BEV registrations and share (%) of new car registrations by year in the UK. Generated using SMMT data.

Table 2
Vehicle manufacturer warranty comparison of high-voltage LIBS in UK BEVs.
All data collected from manufacturers’ websites in January 2019.

Make and Model Lithium-ion Battery
warrantya

Battery capacity loss /
degradationb

BMW i3 8 yr / 100k miles 70%
Chevrolet Bolt EV 8 yr / 100k miles (2017, 60%, 2018 not

covered)
Fiat 500e 8 yr / 100k miles Not covered
Ford Focus Electric 8 yr / 100k miles Not covered
Kia Soul EV 10 yr / 100k miles 70%
Mitsubishi i-MiEV 8 yr / 100k miles Not covered
Nissan Leaf (24 kW) 5 yr / 60k miles 9 / 12 bars (approx. 70%)
Nissan Leaf (30 kW) 8 yr / 100k miles 9 / 12 bars (approx. 70%)
Nissan Leaf (40 kW) 8 yr / 100k miles 9 / 12 bars (approx. 70%)
Tesla Model S and X

(60 kW)
8 yr / 12k miles Not covered

Tesla Model S and X 8 yr / Unlimited Not covered
Tesla Model 3 (medium

range)
8 yr / 100k miles 70%

Tesla Model 3 (long range) 8 yr / 120k miles 70%
Volkswagen e-Golf 8 yr / 99.3k miles 70%
Jaguar I-PACE 8 yr / 100k miles 70%

a Each provides coverage until either the year, or total mileage figure is
reached - whichever comes first.
b This covers repairs needed to return battery capacity to the indicated% of

original battery capacity (if applicable). Usually the battery components are
repaired or replaced, and the original battery pack is returned to the vehicle. In
some cases, however, the battery pack is replaced with either a new or re-
manufactured Lithium-Ion Battery.

9 It must be noted here that during our research we interviewed a senior
manager at Thatcham Research, the UK's only Euro NCAP accredited crash
testing centre, and he challenged the findings that BEVs perform the same in
accidents as ICE vehicles for two reasons. First, BEVs carry relatively more mass
into collisions and thus can sustain more structural damage and secondly, a
growing trend in ‘non-repairable’ batteries fitted with pyrotechnic fuses that
discharge during impact often results in a total insurance write-off. An in-
surance claims specialist from Admiral Insurance that we interviewed had si-
milar concerns about “constructive total loss” of these vehicles in anything
other than a “low velocity impact” due to the cost of LIB repairs / replacement.
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repair or replacement costs were not covered by the manufacturer.

4. Results: forecasting the dynamic stockpile of OLIBs in the UK:
2011 - 2025

Using our forecast of total new car registrations from 2019 - 2025,
we calculated the UK's dynamic OLIB stockpile along three possible
trajectories based on low (4%), medium (8%) and high (24%) rates of
BEV market penetration (see Table A. 2. in Appendix A). The rates of
BEV market penetration used, reflect the most common forecasts made
by various investment banks and business intelligence firms regarding
the BEV market share of new vehicles in 2025. We used the lowest (4%)
and highest (24%) BEV penetration forecasts for 2025 directly from
these secondary sources [84–86]. Our medium forecast (8%) however,
was calculated using the average of all other forecasts which fell in
between the highest and lowest predictions (see Table A. 3. in
Appendix A).
As stated earlier, these estimates have been specifically dis-

aggregated to reflect BEV rates of penetration only, and do not include
Plug-in Hybrid Electric Vehicles or any other Alternative Fuel Vehicles
(AFVs). We use 2025 as our forecast ‘cut off’ year due to the common
industry belief that 2025 will be an inflection point for BEV market
penetration [87]. This is the point where growth in the BEV segment
ceases to rely on government incentives and regulations, and is instead
driven by BEV purchase price and Total Cost of Ownership (TCO) as it
reaches parity with ICE vehicles [88].
We applied the 1.2% annual attrition (insurance write off) rate to

each cohort of newly registered BEVs in the UK from 2011 to 2025 to
estimate the number of BEVs that exit the market prematurely (Type 1
OLIBs) and are added to the dynamic OLIB stockpile. This 1.2% annual
rate of attrition is applied for the first seven years of each BEV cohort,
and on the 8th year, the remainder of the cohort is added to the
stockpile as their high-voltage battery packs are now out of warranty
(Type 2 OLIBs). Hence while a 10-year-old BEV may still be on the road
in the UK, we consider its battery pack to be in an ‘end-of-life state’, and
thus part of our dynamic OLIB stockpile.
The main concern that emerges from our forecast above (Fig. 5.) is

the possibility that by 2025, the UK's dynamic stockpile could exceed
100,000 redundant battery packs, or 42,000 t of lithium-ion battery
waste, for which – as we will discuss below - there is there is no readily
available sustainable solution.

5. Discussion of results and implications for industry and
policymakers

Projecting new car registrations in the UK between 2019 and 2025
is quite challenging, given the ongoing uncertainty around Brexit and
the UK's unknown trading status afterwards, primarily with the EU. We
do project however, that new car registrations will settle at just above
two million in 2025, assuming less-than-ideal trading conditions, down
from 2.3 million at the end of 2018. This would put new registrations at
levels similar to what they were at the beginning of the 2008 global
financial crisis. From the predicted volume of BEVs, we derive pene-
tration rates based on assumptions of 4%, 8% and 24% penetration
(share of new car registrations) in 2025. These figures serve as insight
into the size of not only the BEV market, but more relevant to this
paper, the size of the eventual LIB end-of-life unit population.
Using our 3-scenario penetration rates (see Fig. 4), we estimated the

corresponding dynamic stockpile of OLIBs in the UK, which is the main
output of this paper, and objective of RQ1. The significance of the
dynamic stockpile estimations in Fig. 5 lies in its shape, which tells us
that each year after 2018, entire cohorts of lithium-ion batteries will
enter an ‘end-of-life state’. This OLIB stockpile will also exponentially
increase in size each consecutive year, if annual sales of BEVs in the UK
continue to increase.
What then, are the environmental, economic and political

challenges of an increasing dynamic stockpile of OLIBs in the UK
(RQ2)?
If society is to take a circular approach to the adoption of electrified

propulsion, then we must consider battery materials reuse or re-
manufacturing, recycling, and safe disposal in order to achieve max-
imum sustainability benefits across the entirety of a BEV's life cycle.
In the context of our research, reuse of an OLIB in a second appli-

cation – or second-life – refers to when an OLIB is no longer fit for
traction (its original purpose in a BEV), and is used as a stationary
power storage system for example. The reuse of OLIB cells or modules
could also be part of a remanufacturing process, or a complete battery
pack may be reused as replacement in a BEV, having passed appropriate
functionality checks. Remanufacturing refers to an OLIB being rebuilt
to the specification of a new OEM LIB, and in this context could include
some battery module replacement and/or software upgrades [44].
Second life or remanufacturing simply defers the point at which the
battery pack must be disposed of – though the longevity of the battery is
unknown and could possibly be longer than the original automotive
application.
The eventual safe disposal of OLIBs is equally important as there are

several environmental health and safety concerns regarding the impact
of this battery waste. Organic electrolytes in OLIBs are considered to be
the main toxicity and flammability risks, because in storage or landfill
conditions, OLIBs may explode or catch fire, and if the electrolyte is
exposed to water, hydrogen fluoride formation may eventuate [30].
Additionally, cobalt or reactive lithium salt concentrations in the sur-
face and underground water may rise above general environment levels
in locations where OLIBs are disposed [18]. OLIBs in landfills can also
introduce heavy metals such as copper and nickel, as well as carbo-
naceous materials (graphite and carbon black) into the environment
[4].

5.1. OLIB recycling

While recycling is environmentally preferable to mining, it still
needs to be carried out responsibly. For example, e-waste is informally
recycled (with low recovery rates) in many parts of the world under
hazardous working conditions, and as noted above, the environment is
exposed to dangerous toxins, heavy metals and acid fumes that can
result in severe illness and wider ecological damage [48].
Beyond that, it should be understood that the recyclability of the

OLIB waste stream will vary with the battery chemistry and form factor
(cell or module physical configuration) [4]. Therefore, the first, and
most pressing concern is the recognition that as of 2019 there is no
efficient or indeed sustainable method of recycling heterogeneous OLIB
feedstock, and thus, there is an urgent need for more powerful, in-
dustrialized methods of recovering materials from OLIBs. Each BEV-
specific OLIB is different, and thus the dynamic OLIB stockpile will
collectively possess a wide variety of proprietary chemical compositions
[89] and physical characteristics. Some batteries are developed for
power, some for energy density, and others for longevity, which in turn
makes OLIB recycling much more complicated and expensive, com-
pared to generic 12 V Pb-acid battery recycling [90].
Although there are various ways of recycling OLIBs, the two main

methods of processing within the EU are pyrometallurgy and hydro-
metallurgy. Pyrometallurgy (or smelting) uses high temperatures to
recover cobalt, nickel, copper and iron from OLIBs and spent
Nickel–Metal Hydride (NiMH) batteries. Unfortunately, the manganese,
aluminium and lithium contained in the slag (that is eventually land-
filled) cannot be recovered and are generally lost during this process.
Hydrometallurgy (or acid leaching + chemical precipitation) involves
mechanical pre-treatment and the use of chemicals to separate and
recover metals and using this process can also recover lithium. It is
quite common to combine these two processes, pyrometallurgy then
hydrometallurgy, however a purely hydrometallurgical process will
separate and recover more metals [41]. In a purely pyrometallurgical
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process, burning the plastics from the recycled OLIBs helps sustain the
furnace's high operating temperatures, and reduces the overall energy
consumption of the smelting process [33]. It must also be noted that
unrecovered cobalt and lithium from OLIBs are considered hazardous
waste materials [91]. At present, the UK's principal disposal route is
exportation to the European Union, where OLIB waste is treated at
Umicore. However, the UK's future arrangements for OLIBs may likely
change post-Brexit.
Although the recycling processes described above already exist

within the EU, they are still quite inefficient, and are not optimized for
high value metal recovery (e.g. lithium) [41,48]. Also, more strategic

battery design could permit for OLIB components to be more easily
separated or even robotically disassembled, thereby facilitating the
recovery of the various metal fractions [44,92].
Strategic chemical selection for LIB manufacturing could also affect

the economic feasibility of recycling OLIBs that ultimately ending up in
the waste stream [93]. For example, in a scenario where OLIBs of
Li2CO3 – Lithium Carbonate – (LCO) or mixed metal (NCM) cathode
chemistries are dominant, currently recycled materials might constitute
50% of the mass of materials in the waste stream, but account for 86%
of the economic value of that stream. However, as LIB manufacturers
push to improve performance and mitigate against the high cost and
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scarcity of Critical Raw Materials (CRMs) [94] by transitioning to
cheaper chemistries such as LiMn2O4 – Lithium Manganese Oxide –
(LMO) or LiFePO4 – Lithium Iron Phosphate – (LFP), the resulting value
of the currently recycled and recovered materials could be reduced [4].
Thus, the principal insight from this example is that a high percentage
of recovery by weight of recycled materials in the OLIB waste stream
may not translate into high economic returns from OLIB recycling, and
this is why some industry stakeholders are proposing value based re-
cyclability targets for CRMs instead of mass based targets. Nevertheless,
the development of cost-efficient recycling methods that recover high
value materials such as lithium and manganese could incentivize the
recycling of economically unattractive OLIB chemistries in the future.
The possibility of a change in rates of recycling due to the changing
value of recoverable materials implies the possibility of peaks in the
recycling of OLIBs based on desirable chemistries.
Another major issue that is frustrating the recycling and recovery of

OLIBs is the proper sorting and identification of the battery's chemistry, as
the more specific the process is, the more effective the recovery of mate-
rials will be. Although sorting machines have begun appearing on the
market in the hopes of reducing sorting and identification times, the need
for a universal mixed-waste processing technology that can take into ac-
count the different OLIB chemistries and form factors remains an urgent
priority [18].
It should be highlighted that recycling as a secondary supply of CRMs

(in addition to primary supply) would be an important source for any
future LIB manufacturing in the UK. Our results show that there is not yet
a significant volume of OLIBs on the market and the UK's current recycling
infrastructure is non-existent. The increasing ubiquity of LIB applications is
driving advances in recycling [48] and the waste industry in the UK should
be acutely aware of the looming volumes of OLIBs from BEVs.

5.2. OLIB reuse: ‘Second life’, stationary storage and remanufacture

Currently, recycling is the primary end-of-life management pathway
for OLIBs, however both industry stakeholders and researchers agree
that OLIBs retain approximately 70% - 80% of their initial capacity
intact [41,92]. Furthermore, beyond the initial 8 year calendar lifecycle
that is guaranteed by most OEMs via warranty, it is also estimated that
OLIBs used in second-life stationary storage applications can be of
service for a further 10 years before reaching their absolute end-of-life
[95]. From a sustainability standpoint, reuse is generally more efficient
than remanufacturing, which is more efficient than recycling [44].
Therefore, the reuse of OLIBs in these less demanding second-life

applications could provide environmental and economic benefits by
substituting the production of new LIB packs, as well as reducing direct
energy consumption from the electricity grid [96]. The problem is
however, that according to the EU Waste Batteries Directive (Directive,
2006/66/EC), OLIBS must be appropriately collected and recycled; and
thus the reuse of such batteries is yet to be accounted for in current EU
regulations [92]. In addition to this gap in regulations, there exists no
second-life standards guaranteeing the quality or performance of this
repurposed technology [96,97].
According to our results shown in Fig. 5, the first generation (co-

hort) of OLIBs in the UK are about to enter their end-of-life condition in
2019. While this may be an indicator of economic value for the sta-
tionary energy storage market, second-life applications face an addi-
tional challenge which is the falling costs of new LIBs. According to
analysts [97], this cost gap must remain sufficiently wide to warrant the
performance trade-off in second-life LIBs relative to new alternatives.
Now some in the industry believe that second-life applications are

the first logical port of call (as opposed to recycling) for OLIBs retiring
from traction duty, and this sentiment has been alluded to above. It is
also felt that second-life applications will “buy time” for the recycling
industry to get the appropriate infrastructure and efficient processes in
place. However, consider the following: Global EV battery sales (mea-
sured in power capacity) are expected to range between 400–1000

GWh/y in 2030, with OLIB volumes reaching the same order of mag-
nitude a decade or so later. However, the stationary storage battery
market in the EU is projected at or below 10 GWh /y for that same time
period [98]. This means that while second-life OLIBs could have a
positive impact on this market segment, the need for OLIB recyclability
will necessitate that recycling facilities remain the de facto destination
for OLIBs, due to their significant excess in quantity.
A final challenge to consider in second-life applications is the time

delay between new LIB production and OLIB availability for reuse.
Consider that design decisions for new car models are made several years
before they arrive on showroom floors. These newmodels generally have a
production life of up to seven years, longer for heavy vehicles. Let us as-
sume that OEM warranties on high voltage LIBs remain at eight years, and
estimate the average natural lifespan of BEVs between 8 and 25 years
[44]. Taking our forecasts into consideration, we can expect the large-scale
reuse and remanufacturing of OLIBs to begin 10 years after their design,
with full-cohort recycling occurring around the 20-year mark, and then
declining 30 years post-design. The problem with this scenario is the very
real possibility that specific reuse, and second-life applications may be-
come technologically obsolete and/or commercially irrelevant during this
timeframe. Therefore, LIB designs should be ‘futureproofed’ with as much
flexibility, reconfigurability and modularity as possible given the clear
need to plan LIB end-of-life processing decades in advance.

5.4. OLIB regulatory framework

A key lesson learned from the recycling of Pb-acid batteries has been
that favourable economics alone are insufficient and that context-specific
environmental policies are necessary to ensure that all recyclable materials
in end-of-life batteries are processed for recovery [4,33]. In short, new
regulatory drivers will be necessary for the development of a thriving LIB
recycling industry that will in turn keep OLIBs out of landfills.
The main EU policies / regulations / agendas concerning LIB end-of-

life [41] in the UK are:

• Batteries Directive (2006/66/EC) – is currently under review, with
lithium-ion battery collection and recycling efficiency rates under
consideration.
• Extended Producer Responsibility (EPR) under the above Batteries
Directive, is aimed at making producers responsible for the en-
vironmental impacts of their products right up until the end-of-
lifecycle. OEMs are already in the habit of entering EPR schemes to
meet similar obligations in other sectors.
• European Commission's 2nd Innovation Deal, which aims to assess
whether existing EU law hampers the recycling or reuse (second-
life) of EV OLIBs. The outcome of this assessment may result in
changes in EU law, of particular interest is the transfer of liability
when OLIBs enter second-life service.
• Ecodesign Directive (2009/125/EC) establishes a framework for
setting mandatory ecodesign requirements for energy-related pro-
ducts sold on the EU market. Automotive LIBs are not specifically
regulated here, but there have been suggestions about requiring
OEMs to provide technical documentation and make information
about EV batteries publicly available. Future amendments could also
include circularity requirements for EV batteries, for example on
durability, repairability and recyclability standards.

Currently, due to the EU's nascent regulatory regime in this area,
there exists no regulation that deals explicitly with lithium-ion bat-
teries. Our forecasts, however, indicate the rapid expansion of OLIBs on
the market from 2019 onwards, and hence, it is important that the EU
get its regulations and policies in place.10 It must be noted here that

10 An observation: The relevance of EU policies (to the UK) in the long run is
uncertain given the tumult that is Brexit.

J.-P. Skeete, et al. Energy Research & Social Science 69 (2020) 101581

9



some EU rules address OLIBs non-explicitly, with the scope to regulate
further [41].
An additional concern for OLIB policy is that there is no clear dif-

ferentiation between their status as "used batteries" or as "waste". Some
industry stakeholders [98] believe this policy gap exposes EU (and UK)
firms to unfair competition regionally and internationally for used,
reused or repurposed waste batteries. In this respect, the European
Commission has signalled that they intend to establish lithium-ion
batteries as a distinct category within the Batteries Directive as well as
including provisions that will accommodate OLIB reuse.
From the UK perspective, its Resources and Waste Strategy includes

a commitment to review domestic regulations that applies to producer
responsibility for LIBs in 2020. According to The Department for
Environment, Food and Rural Affairs (DEFRA), it is the UK
Government's view that producers should take greater responsibility for
the products they put onto the market, especially once they reach their
end-of-life. Extended producer responsibility (EPR) is a well-established
principle that has been adopted by many countries, and in this case, the
UK government is also motivated to ensure security of resources, spe-
cifically CRMs, for its domestic industry [48].
In China, the EPR programme known as "Interim Measures for the

Management of the Recycling and Utilization of Power Batteries for
New Energy Vehicles" was implemented to reduce OLIB waste.
However, it goes further by encouraging LIB manufacturers to design
batteries with easy disassembly and dismantling in mind.
Manufacturers must also make the technical details of their battery and
its dismantling available to the firms they supply. The “Interim
Measures” programme also aims to improve the traceability network
that has been developed by several supply chain stakeholders [99].
Regarding battery traceability more specifically, some EU firms in

consultation with the European Commission have proposed that some
minimum information be registered about each LIB/OLIB pack [96].
Suggestions have included chemical composition, capacity, weight and
(national) producer, with the option to update the latter if at any point
during its technical lifespan, the battery/modules/cells enter second-
life service.
European firms have also identified the burdensome transport re-

quirements of OLIBs within Europe as an area where additional updated
policies may be useful [35]. The transportation of OLIB batteries across
borders within Europe has been described as overly expensive and
fraught with needless delays. One example is the inconsistent classifi-
cation of OLIBs by EU Member States, where certain OLIBs with ‘green-
listed’ chemistries are ‘amber-listed’ under hazardous waste codes. A
second complaint is that the notification for shipping hazardous battery
waste across Member States is overly complex and slow. Costs can reach
several hundred euros per shipment, which is disproportionate given
that OLIBs are typically shipped individually rather than in bulk due to
presently low volumes. It is argued that these costs and delays lower
European firm competitiveness, and stakeholders suggest that under the
Waste Shipments Regulation, hazardous waste can be ‘fast tracked’ to
high-quality recyclers that have been audited as ‘pre-consented re-
covery facilities’ [35].
Finally, various industry stakeholders have been trying to negotiate

with the European Commission over some form of minimum standards
for recyclers and OLIB material recovery [35,96]. The shared sentiment
is that the EU should require that OLIBs only be treated by compliant
recyclers that meet minimum standards of efficiency and environmental
performance such as state-of-the-art processes that maximize the re-
covery of valuable metals and ensure the safe disposal of hazardous
substances.
It is also important to note here that the EU's End of Life Vehicles

Directive does not provide any economic incentives for industry,
compared to EU regulation 443/2009 that is currently driving the
transition to electrified automobility in Europe by imposing heavy fines
on OEMs whose fleet average tailpipe emissions exceed 95 g CO2/km as
of 2021 [6,44].

5.4. Theoretical reflections and limitations

We recognize that the conceptualization of a ‘dynamic OLIB stock-
pile’ is not perfect. After all, can the battery pack in a 10-year-old BEV
that is still in use be considered to be part of the dynamic stockpile?
Furthermore, could any out-of-warranty vehicle be considered as part
of some similar conceptual stockpile? We argue yes and no respectively.
We have seen in the literature that there can be a mismatch between

the life cycles of components in a single product [57], where the
function of that product partially depends on the functionality of its
constituent components. Products with multiple components become
obsolete over time in multiple stages, and this is defined as technolo-
gical obsolescence [54]. Crucially, it is the inability to obtain and re-
place parts that accelerates this process [58,59].
Our key argument here is that the lack of modularity and service-

ability inherent in current automotive LIB pack designs, leads to an
inability to (easily or affordably) procure and replace lithium-ion cells,
modules or battery packs in BEVs. As the technology is in its relative
infancy, Service Maintenance and Repair (SMR) infrastructures do not
exist at scale for the diagnosis, repair and remanufacture of LIBs.
Furthermore, some manufacturers have adopted overly cautionary
protectionist approaches around the repair of their vehicles, which may
control the market, drive up costs, and increase the rate of OLIB
scrappage. The resulting ‘EV skills gap’, also means that there is not a
sufficiently trained workforce, and given that some operations around
LIBs are inherently risky, it may not be desirable for these tasks to be
carried out by human operatives [100].
Therefore, upon the expiry of a BEV's LIB warranty (8 years), the

entire vehicle's life cycle becomes tied to that of its OLIB, and thus is a
major contributor of technological obsolesce and early retirement [58]
in BEVs. The lack of backward or forward compatibility between older
and newer model battery packs or modules in BEVs, or even between
different models of BEVs, also arguably contributes to these vehicles’
premature retirement [62]. More recent electric vehicle research by
Richa et al. [4] seems to strongly support this core argument, first by
establishing a similar differentiation between Type 1 and Type 2 EOL11

EV batteries (capacity fade and insurance write off respectively). Richa
et al. [4] go on to conclude that because of the “lifespan mismatch”
between LIBs and their host vehicles, batteries with high reuse potential
will prematurely enter the OLIB waste stream.
In the meantime, what do these bundled / mismatched lifecycles

mean for the future of BEV adoption? Especially when some argue that
BEVs must operate for at least 150,000 km before showing significant
environmental benefits over owning petrol or diesel vehicle [15,101]?
If a global standard [102] for LIB packs or modules were established,
then OLIBs would no longer condemn BEVs to product-level obsolesce
[54]. However, we are currently in the midst of a lithium-ion battery
‘arms race’ between manufacturers, and history has shown that the
steep slope of the technological s-curve is often characterized by the
wasteful incompatibility of proprietary systems [62].
The concerns that stem from our results also mirror a growing

sentiment in recent literature that while the majority of EV batteries on
the market have not yet reached their end-of-life, the EU's recycling
industry is not yet adequately equipped to meet the expected volumes
of OLIBs in years to come [41]. These concerns have also begun to
emerge in recent industry press releases where first generation Nissan
Leaf electric vehicles have been described as ‘barrelling’ toward their
end-of-life, as they approach their first decade on U.S. and EU roads
[103]. The article describes owners being worried about battery de-
gradation and desperately searching for an affordable replacement,
given that the battery pack is the most expensive component on an EV.
First generation Nissan Leaf models – arguably considered the first
mainstream BEVs – are the proverbial ‘canaries in the coal mine’ as

11 End of Life
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their LIBs’ fading charge capacity signals what is certain to become an
industrywide concern. One Nissan Leaf owner revealed that his 24-
kilowatt-hour battery had lost half its charging capacity by 60,000
miles. Up next on the dynamic OLIB stockpile are the first-generation
Tesla vehicles (Model S) launched in 2012, followed closely by BMW's
full-electric i3 launched in 2014, amongst others. The number of BEVs
that will need replacement batteries is approaching critical mass as
their eight-year battery warranty mark draws near [103]. Thus, keeping
a reasonably accurate account of this accumulation in the form of a
dynamic stockpile is our contribution to mitigating against a growing
problem that is certain to affect the United Kingdom in the near future.

6. Conclusion and considerations for the future of OLIBs

Our study shows that OLIBs will increasingly present themselves as
a future waste management challenge due to high volumes, complexity,
heterogenous chemistries and variety of materials forecast in the OLIB
waste stream. Thus, multiple waste management strategies must be
developed for OLIBs that include:

• Reuse pathways for healthy OLIBs packs, modules or cells.
• Recycling regimes capable of recovering high value materials from
heterogeneous OLIB feedstock, i.e. multiple electrode chemistries
and form factors (e.g. cylindrical, prismatic, and pouch) [97].
• Updated environmental regulations that drive the efficient collec-
tion and sorting of OLIBs, and the maximum recovery of all re-
cyclable materials, despite low initial OLIB volumes and uncertainty
regarding the full costs recycling [33].
• Safe disposal routes for materials with negligible secondary value or
non-existent means of recovery [4].

6.1. Traceability

Traceability of LIBs throughout their lifecycle has been flagged by
stakeholders as a feature that could have a significant impact on how
OLIB stockpile waste flows are managed in the future. The current
absence of reporting mechanisms or certification schemes is causing a
lack of traceability across the LIB lifecycle, resulting in materials
leakage and economic/value loss. The implementation of battery
identification e.g. a Quick Response (QR) code or via blockchain
technologies could provide a range of valuable data such as state-of-
health (usage, performance, charging history, charging capacity),
chemistry type, and can ideally be paired with common testing methods
and measurement standards [44,98,104]. This kind of battery data
could be crucial to the future of OLIB waste management particularly
for reuse or second-life endeavours in the UK.

6.2. Metals recovery

The dynamic OLIB stockpile is also a means of mitigating against ne-
gative impacts to automotive and battery manufacturer supply chains.
Cobalt, lithium and rare earths take the highest priority, given the pro-
jected future demand and supply risks of these metals [48]. Recovered
cathode materials from OLIBs could reduce total LIB pack cost by more
than 20% [33], and by 2030, it is estimated that OLIB recycling could
generate approximately 10% of Europe's cobalt consumption by the auto-
motive sector [25]. Thus, OLIB recycling could be especially beneficial to
future LIB manufacturing in the UK by helping to overcoming a key barrier
to domestic LIB production; the lack of a primary component raw material
supply chain (Mayyas et al., 2019).
In the long-term, the uncertainty of future LIB chemical compositions

remains the biggest challenge to OLIB recycling. If the industry pursuit of
decreasing cobalt content in LIBs is successful, then the future economic
viability of OLIB recycling could be in jeopardy. This concern therefore
brings into question the wisdom of developing costly and highly specia-
lized recycling processes, as the need for them could be obviated in as little

as a decade from implementation. Some suggest that flexible, low cost
recycling of as many products as possible is the way to go [33].

6.3. Closed-loop systems

One factor that our dynamic stockpile forecast cannot account for is
closed-loop systems. A closed-loop system is a take-back and recycling
scheme established by OEMs that can be integrated with the LIB
manufacturing process. For example, Tesla's recycling program physi-
cally separates electronic components and cases for reuse and recycles
the remaining OLIB. Tesla's aim is to create a closed-loop system that
recycles OLIBs – and in the same factory – reuse those recovered ma-
terials in new batteries [48]. Closed-loop systems can also be comprised
of allied firms, as is the case with Umicore (material recovery) and LG
Chem (battery manufacturer) [105] or Umicore and Audi (OEM) who
are collaborating on a closed-loop battery cycle in an effort to increase
recycling rates and material traceability. Testing of this optimized
process indicates that 95% of the cobalt, nickel and copper in the OLIBs
used can be recovered [99]. While our dynamic OLIB stockpile estimate
cannot account for closed-loop OLIBs that will never make it onto the
‘open market’, future databases may be able to subtract closed-loop
units from OLIB market forecasts.

6.4. Sustainable design: efficiency or modularity?

While exploring the difficulties in recycling OLIBs and efficient ma-
terial recovery, we came across a nuanced debate which we would like to
expand on here briefly. According to researchers, ‘rest-of-pack’ costs (not
related to cell or cell chemistry), which includes energy consumption and
weight cost, can account for between 45% to 61% of the total service life
cost of the battery pack [44,106]. Thus, given the significant potential for
cost reduction, OEMs are increasingly integrating battery pack design and
assembly as part of their core competence.
However other industry stakeholders posit whether a dominant design

(chemistry and/or prismatic form factor) LIB could improve the recycl-
ability of the waste stream [4]. One supporting argument is that currently
in Information and communications technology (ICT) product design,
smartphones, laptops and tablets make it difficult or impossible to replace
the battery without proprietary tools. This has led to advocacy for the easy
and non-destructive removal of consumer electronics LIBs by end-users in
order to facilitate the successful and cost-effective repair, refurbishment or
re-use of these batteries and their host products. Specific suggestions in-
clude removable batteries becoming a standard and banning the use of
soldering and glue in battery fitment [107]. While these comments seem
to be aimed more at ICT products specifically, it does foreshadow a di-
lemma we believe will be relevant to automotive LIB design, which is the
tension between OEMs’ optimising for battery efficiency with ‘sealed-in’
LIBs versus an ‘Eco-design’ approach that prioritizes disassembly and
material recovery at end-of-life.

6.5. Final thoughts

If we assume that BEV market penetration in the UK achieves an
optimistic 8% of total new car registrations in 2025, then our forecast
indicates that the dynamic OLIB stockpile would have reached ap-
proximately 75,000 units, or 28,000 t12 of lithium-ion batteries that are
eligible for end-of-life processing. While the economic viability of these
figures is beyond the scope of this paper, consider the following: If the
global stockpile of ‘retired’ BEV batteries is forecast to exceed 3.4
million units by 2025 [108], then according to our estimates, the UK's
share of OLIBs will represent approximately 2.5% of that global

12 Based on the average weight of the following battery packs: 1st gen Nissan
Leaf, 2nd gen Nissan Leaf, Tesla Model X and Geely 300 (approx. 380kg per
unit). Figures obtained from 3rd party teardown reports.
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stockpile. Future industry research in the UK should consider what
these estimates represent, especially given the limited availability of
information on the economics of recycling, amongst other things that
may be stifling investment in the sector [33].
As we debate these and other issues about the future of OLIB

management, it is worth repeating the two key lessons learned from Pb-
acid battery recycling: 1. Sustainability solutions require sustainable
business models [30], and 2. Despite favourable economics, regulations
are likely necessary to develop and maintain a viable end-of-life in-
frastructure [33].
Regarding this paper's potential to generalize about the wider po-

pulation of OLIBs and their end-of-life challenges; most of the auto-
motive industry's major stakeholders (automakers and suppliers) are
multinational firms [109], whose technologies are increasingly homo-
genized through the practice of “platform sharing” [110]. This is aimed

at cost reduction and simultaneous compliance with (often harmonized)
regulations [6] in several regional markets. Thus, we argue that due to
this industry's international portfolio, many of the arguments and
concerns presented in this paper will hold true beyond the United
Kingdom's national borders. This study's major limitation is a direct
reflection of the LIB ‘futureproofing’ dilemma discussed above. Because
of the need to plan LIB end-of-life processing decades in advance, some
of the proposed solutions (and debates around them found in this
paper) may become obsolete or irrelevant by the time they are needed.

Declaration of Competing Interest

None to declare.

Appendix A

Fig. A.1.
Table A.1, Table A.2, Table A.3.

0

500000

1000000

1500000

2000000

2500000

3000000

2010 2011 2012 2013 2014 2015 2016 2017 2018

Total New Car Registra�ons

Actual Linear Fi ed Quadra�c Fi ed Exponen�al Fi ed

Fig. A.1. AIC and SIC criteria for the linear, quadratic and exponential trend models applied to total new car registrations 2011 - 2018.

Table A.1
Historical and predicted new vehicle registrations from 2011
- 2025.

Year Total New Car Registrations

2011 1941,253
2012 2044,609
2013 2264,737
2014 2476,435
2015 2633,503
2016 2692,786
2017 2540,617
2018 2367,147
2019fa 2373,018
2020f 2364,211
2021f 2340,726
2022f 2302,562
2023f 2249,720
2024f 2182,199
2025f 2100,000

a f is Forecast of all new car registrations that year.
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Table A.3
List of secondary data sources (reports) projecting BEV penetration as a share (%) of new car sales in 2025.

Organization Year of
report

2025 BEV penetration forecast
(share of new sales)

Energy Policy Simulator
(EPS)

2017 6 −7% (US)

Goldman Sachs 2017 4% (Global)
Morgan Stanley 2017 9% (Global)
UBS 2017 24% (EU)
Bloomberg (BNEF) 2018 11% (EU)
BMO Capital Markets 2018 6% (Global)
Boston Consulting Group 2018 6% (Global)
J.P. Morgan 2018 9% (Global)
RBC Capital Markets 2018 8% (Western Europe)
IEA 2018 12% (Global)

Table A.2
Historical and predicted uptake of UK BEVs as a percentage (4%, 8% and 24%) of all new vehicle registrations in 2025.

BEV
Cohort
Year

Total new BEV
registrations @ 4%
penetration in 2025

Total new BEV
registrations @ 8%
penetration in 2025

Total new BEV
registrations @ 24%
penetration in 2025

2011 1082 1082 1082
2012 1262 1262 1262
2013 2512 2512 2512
2014 6697 6697 6697
2015 9934 9934 9934
2016 10,264 10,264 10,264
2017 13,597 13,597 13,597
2018 15,474 15,474 15,474
2019fa 15,892 16,321 45,562
2020f 16,227 17,150 66,198
2021f 22,251 30,559 102,992
2022f 32,041 52,348 167,627
2023f 45,595 82,518 244,770
2024f 62,915 121,069 356,135
2025f 84,000 168,000 514,080

a f is Forecast of new BEV registrations that year, based on a corresponding percentage forecast of total new registrations in the future.
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