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Abstract: The past 20 years has seen significant advances in

main group chemistry and their use in catalysis. This Minire-
view showcases the recent emergence of phosphorus and

arsenic containing heterocycles as catalysts. With that, we
discuss how the Group 15 compounds diazaphospholenes,
diazaarsolenes, and their cationic counterparts have proven

to be highly effective catalysts for a wide range of reduction

transformations. This Minireview highlights how the initial
discovery by Gudat of the hydridic nature of the P@H bond

in these systems led to these compounds being used as cat-
alysts and discusses the wide range of examples currently

present in the literature.

Introduction

During the course of this century, there has been a growing

surge in using main-group compounds to replicate the roles of
transition metals.[1, 2] This is driven in part by the ever growing

need to find more economically viable and environmentally

sustainable alternatives to these metals, but also by scientific
curiosity. In the past six years, diazaphospholenes (DAPs) have

emerged as an interesting class of heterocycle that has proven
to be effective at catalyzing a plethora of reduction-based

transformations under mild conditions. The diazaphospholene
heterocycle may be simply defined as an N-heterocyclic phos-

phine contained within a five membered unsaturated ring. Dia-

zaphospholenes started to garner attention in the late 1990s
where it was discovered that they could act as precursors to

forming diazaphosphenium cations (NHPs),[3, 4] which were
themselves receiving significant focus.[5]

Initially independently reported by both Fleming and Hutch-
ins in 1972,[6, 7] NHPs are cationic, divalent phosphorus(III) spe-

cies which possess a lone pair of electrons and a vacant p-orbi-

tal. These properties mean NHPs have ambiphilic character
and can act as both a Lewis acid and Lewis base. However, al-

though comparisons can be made between NHPs and the fa-
miliar Arduengo N-heterocyclic carbenes (NHCs), NHPs have in-

verse electronic properties (Figure 1). That is, NHPs are weaker
s-donors but much stronger p-acceptors; a consequence of

the formal positive charge and + 3 oxidation state at phospho-

rus.[3, 8–12]

In the early 2000s the structure and reactivity of diazaphos-

pholenes were extensively studied by Gudat, who has since re-
viewed this.[13] Gudat’s studies revealed that DAPs possess 6p-
delocalization in the five-membered ring unit, but to achieve

this the s*(P–X)-antibonding orbital is required. This in turn re-

duces the bond order of the P@X bond and transfers additional
negative charge on the X-atom. Thus, a compromise is reached

where greater energetic stabilization in the DAP ring is ach-
ieved but at the cost of a loss of the degree of covalency in

the P@X bond.[14] It was observed that when X = H, hydridic be-

havior was observed, contrasted to the classically observed
protic character of the hydrogen atom in the P@H bond. This

was exploited by stoichiometrically reducing benzaldehyde.[15]

This observation of hydridic behavior would be key for the use

of DAPs in catalytic reduction reactions. Furthermore, Gudat
and colleagues reported that diazaphospholenes may be used

as organocatalysts for phosphorus-carbon bond formation

from the condensation of silyl phosphine with alkyl chlor-
ides.[16]

Another key discovery on the road to DAP assisted catalysis
was from Radosevich and colleagues, who in 2012 first report-

ed the reversible two-electron redox cycling of PIII/PV, which en-
abled it to be used for transfer hydrogenation of ammonia

borane to reduce azo benzene. This was achieved by using a

three-coordinate phosphorus species with an NO2 type pincer
ligand that forced a strained, planar T-shaped geometry

(Scheme 1).[17]

In contrast to the vast studies and attention diazaphospho-

lenes and phosphenium cations have received, their arsenic

Figure 1. Diazaphospholene heterocycle and frontier orbital representations
of N-heterocyclic carbenes and diazaphosphenium cations.

Scheme 1. Proposed catalytic cycle for the reduction of azo benzene via PIII/
PV redox cycling.
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counterparts have remained largely unexplored. The arsenic
analogue of the diazaphospholene is termed diazaarsolene.

Early examples of diazaarsolidines (five membered ring hetero-
cycle containing arsenic but a saturated backbone) were re-

ported by Wolf and Cowley,[18, 19] but a literature search into di-
azaarsolenes gave few results. Minkin and colleagues computa-

tionally looked at the energy barrier of pyramidal inversion in
diazarsolenes,[20] but synthetic work is limited. Examples in-
clude work from Nieger et al. , who synthesized 2-halogeno-

1,3,2-diazarsolenes,[21] as well as reports from Gudat and Rago-
gna.[22, 23]

The first isolated and structurally characterized arsenium cat-
ions were reported by Burford in 1992,[24] and although much

rarer than phospheniums, a number of examples do
exist.[19, 23, 25, 26] Although a lone pair and a vacant p-orbital are

still present, their bonding to transition metals is typically con-

fined to Lewis acid chemistry, where there is little to no s-don-
ation from the lone pair.[27, 28] This is due to the heavier pnicto-

gen elements having a greater reluctance to form a trigonal
planar geometry and so the lone pair adopts more s-orbital

character.[10, 29]

Herein, this review looks to explore the examples currently

present in the literature of diazaphospholene, diazaarsolene,

and their cationic counterparts in performing reduction-based
organic transformations, and to highlight the versatility these

systems have. Furthermore, the catalytic cycles are discussed
and mechanistic differences between the catalysts debated.

Diazaphospholene and Diazaarsolene Assisted
Reduction

Transfer hydrogenation

The journey to using DAPs as catalysts was first paved by the
discovery of the hydridic nature of the P@H bond[15] and the

catalytic reduction of azobenzene using PIII$PV redox cy-

cling.[17] These two observations led to the Kinjo group in 2014
to use 2-H-1,3,2-diazaphospholene (1) for the first time as a
catalyst for the reduction of azobenzenes using ammonia-
borane as the hydrogen source. After optimization, 5 mol % of

the diazaphospholene 1 with four equivalents of ammonia-
borane were used for the reduction of a range of (E)-azo-com-

pounds, giving the corresponding hydrazine product. Unlike in
the PIII$PV redox cycling case (Scheme 1), mechanistically this
catalysis proceeded firstly by the addition of the P@H bond in

1 to the N=N bond to give a phosphinohydrazine. This then
undergoes hydrogenolysis of the exocyclic P@N bond by hy-

drogen transfer from ammonia-borane to give the desired
product and regenerate 1 (Scheme 2). Investigating the mech-

anism further using deuterium kinetic isotope effect (DKIE)

found that cleavage of the B@H and N@H bonds takes place
via a concerted double cleavage pathway in the rate-determin-

ing step.[30]

Reduction of carbonyl groups

Since the report on azobenezene reduction,[30] a series of addi-

tional reductions have been reported. Although aldehydes and
ketones have previously been reduced stoichiometrically by di-

azaphospholenes,[14, 31] in 2015 this was performed catalytically
in the first metal-free catalytic hydroboration of carbonyl deriv-

atives with pinacolborane (HBpin).[32] Here catalytic amount of
the same diazaphospholene as used for azobenezene reduc-

tion (1) was able to reduce aldehydes (using 0.5 mol % 1) and
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Scheme 2. Reduction of azobenzenes with ammonia-borane using 2-H-1,3,2-
diazaphospholene as a catalyst.
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ketones (using 10 mol % 1) with HBpin (1.0 equiv and
1.3 equiv, respectively). A wide substrate scope was performed

and 1 was found to be tolerant to both aliphatic and aromatic
aldehydes, as well as a variety of ketones. This catalytic reac-

tion proceeds by the formation of an alkoxyphosphine inter-
mediate from the addition of 1 to the carbonyl substrate,

where subsequent cleavage of the P@O bond and the B@H
bond in HBpin gives the hydroborated product and regener-

ates catalyst 1. Kinetic studies along with DFT calculations

found that the bond dissociation is involved in the rate-deter-
mining step in the transition state and that the process is step-

wise, albeit almost concerted (Scheme 3).
Given our groups previous interest in arsenic chemistry,[33, 34]

we looked to determine whether arsenic could mimic this reac-
tivity by performing hydroboration of aldehydes with HBpin.

Although our systems included the fusing of a benzene ring

on the backbone, recent work by Yang and Chen on the nucle-
ophilicity of different diazaphospholenes showed that these

should still be hydridic.[35] A range of diazaarsolenes and di-
thiaarsolenes were synthesized, including the chloro- and ben-

zyloxy- derivatives as well as their cations. Optimization studies
found that 5 mol % of diazaarsolene 2 proved to be the most

effective pre-catalyst (Scheme 4). Proceeding with the sub-

strate scope, 2 was shown to be an efficient pre-catalyst for
this catalysis, reducing both electron withdrawing and electron

donating substrates; albeit 10 mol % catalyst loading was re-
quired for the latter. Mechanistic investigations found that the

catalysis proceeds in an analogous fashion to Kinjo.[32] The dia-
zaarsolene pre-catalyst reacts with HBpin to form the proposed

active arsenic-hydride catalyst (Scheme 4) via s-bond metathe-

sis, where the mechanism then follows the proposed catalytic
cycle shown in Scheme 3.[36]

This reactivity was then compared to that of the phosphorus
derivative. A series of diazaphospholene, dithiaphospholene,

and dioxaphospholene pre-catalysts were produced, as well as
using their cationic counterparts (Scheme 5). In this case opti-

mization reactions found that the diazaphosphenium triflate

cation 3 was the best performing pre-catalyst. Using 10 mol %
3 with one equivalent of HBpin, a series of both electron with-

drawing and electron donating aldehydes were smoothly re-
duced. Mechanistically we proposed that this catalysis did not

perform in a similar fashion to the carbonyl reduction de-
scribed above,[32] and instead involved the formation of a boro-

nium species. However, attempts to attain mechanistic insight

were thwarted by the detection of the decomposition product
PH3 at d=@238.5 ppm.[37] From here a number of comparisons

could be made between the arsenic and phosphorus systems
(Scheme 6).

The neutral arsenic compounds showed greater catalytic ac-
tivity than their phosphorus analogues; for example, the di-

thiaarsolene pre-catalyst gave 64 % conversion of 4-(trifluoro-

methyl)-benzaldehyde to the hydroborated product after
12 hours, whereas the phosphorus analogue only achieved 9 %

Scheme 3. General Scheme and proposed catalytic cycle for carbonyl reduc-
tion. 0.5 mol % 1 for aldehyde reduction and 1.0 equiv HBpin; 10 mol % 1
for ketone reduction and 1.3 equiv HBpin.

Scheme 4. Top: Arsenic pre-catalysts used in the optimization study.
Bottom: Formation of the proposed active arsenic hydride catalyst.

Scheme 5. General aldehyde reduction Scheme and pre-catalysts used in op-
timization study.
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conversion after 24 hours in CDCl3. On the other hand, a less

clear picture emerged from the comparison of the cationic
complexes but comparing the diazaarsenium triflate to the dia-

zaphosphenium triflate showed higher reactivity for the latter.

For the former, 50 % product conversion of the hydroborated
product was detected after 24 hours in CH2Cl2, whereas for the

latter >95 % product conversion in CDCl3 was observed
(Scheme 6).

Reduction of imines

Reduction reactions of imines is another area which has been
explored using diazaphospholene based homogeneous cata-
lysts. In 2017, Speed and colleagues looked at the reduction of
imines with HBpin to produce amines (Scheme 7). A diaza-
phospholene similar to 1 was used in which the hydrogen
atom is replaced by a neopentyloxy group (4). The purpose

behind this was the P@H bond is sensitive to oxygen/moisture,
thus the inclusion of the neopentyloxy group offers more sta-
bility to the system, making handling the diazaphospholene
much more convenient for use in organic transformations.
Thus 4 is a pre-catalyst which generates the active catalyst 1
via addition of HBpin. Screening results for the optimum con-
ditions found that 2 mol % 4 with one equivalent of HBpin at

room temperature were best. Proceeding with the substrate

scope, a range of imines were explored, with sterically hin-
dered indanone-derived imine and aldimines with different

steric demand tolerated. A Lewis basic pyridyl ring was found
to give no detrimental effect and, using a p-methoxybenzyl

(PMB) protecting group gave the expected reduced product.
Aqueous (acid/base) work-up then gave the amine product.

Mechanistically, the formation of the active catalyst 1 from 4
occurs, which is then able to deliver a hydride and reduce the

imine substrate.[38]

This reduction of imines was speedily followed up by the
report of the first example of enantioselective reduction using
a chiral diazaphospholene. Needing a source of chirality, a
chiral diimine was used. This was reacted with PBr3 and cyclo-

hexene to produce a chiral diazaphospholene, bearing a P@Br
bond, which was then reacted with neopentyl alcohol to pro-

duce the pre-catalyst (Scheme 8). For the catalysis, the same

optimized conditions were used as above, albeit with THF not
CH3CN as the solvent. Asymmetric reduction of imines with

HBpin was then undertaken using 2 mol % of the chiral diaza-
phospholene pre-catalyst 5. A broad substrate scope of imines

flanked by aromatic groups revealed high enantiomeric ratios
of up to 88:12. These results at the time were the best report-

ed for alkyl imine hydroboration with HBpin.[39] The mechanism

for this reduction is proposed to proceed as above.
Further work on asymmetric imine reduction later led to a

chiral diazaphosphenium triflate species (6) that could perform
the catalysis. Although the use of diazaphosphenium cations

as catalysts for reduction chemistry had previously been re-
ported,[40] this was the first example of using them for asym-

metric catalysis. To make the diazaphosphenium chiral, the

same ligand scaffold that was used in diazaphospholene 5 was
again employed. With that, optimization reactions found that

1 mol % of diazaphosphenium 6 with 1.2 equivalents of HBpin
were sufficient for the reduction. Expanding the scope, cyclic

imines were found to undergo reduction, giving aryl pyrroli-
dines as products, with enantiomeric ratios of up to 97:3.

Moreover, imines incorporating functional groups such as pyr-

idyl rings and thiophenes, which are traditionally challenging
for transition metal catalysts, were efficiently reduced.

Owing to the cationic nature of 6, the mechanism is found
to be dissimilar to that with diazaphospholene 4 and is pro-
posed to be similar to other phosphenium based reduction

Scheme 6. Arsenic vs. phosphorus pre-catalyst comparison.

Scheme 7. General Scheme for imine reduction and selected products.
Scheme 8. Top: General Scheme for synthesis of chiral pre-catalyst. Bottom:
Pre-catalyst 5 used for asymmetric imine reduction.
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(e.g. see reduction of pyridines later).[40] The first step is the
phosphenium cation abstracts a hydride from the activated

imine-HBpin complex, where it is then redelivered to the sub-
sequent boranyl-substituted iminium cation species. This gives

the desired reduced imine and regenerates the catalyst. The
proposed catalytic cycle is shown in Scheme 9.[41]

1,2,4,3-triazaphospholenes have likewise been employed as
catalysts. The triazaphospholene ring is similar to a diazaphos-
pholene, except it contains three nitrogen atoms instead of

two. Synthesis of the triazaphospholene pre-catalyst is similar
to diazaphospholenes but uses amidrazones as the starting

ligand. Screening studies of a range of triazaphospholenes
with varying steric properties found that 7 and 8 (Scheme 10)
were the most suitable to proceed with a substrate scope.
Using 10 mol % pre-catalyst with 1.1 equivalents of HBpin, a va-

riety of imines were found to undergo hydroboration readily,
but more interestingly imines derived from aniline were also
readily reduced. This is of interest as these substrates do not

undergo reduction using diazaphospholene catalysts. Mecha-
nistically this catalysis is intriguing since, unlike the catalytic

examples discussed so far, no evidence of P@H bond formation
was observed. Instead it is proposed that the pre-catalyst is

ionized in CH3CN, giving the cation, leading to an interaction

between the positively charged phosphorus and N atom from
the imine substrate. Hydride transfer via a six-membered tran-

sition state (I) then occurs, after which the active catalyst is re-
generated by releasing the borylated amine via II.[42] The pro-

posed catalytic cycle, as found from DFT studies, is given in
Scheme 10.

In a further attempt to develop stable main group catalysts,

Speed employed air and water stable phosphine(V) oxide pre-
catalysts in the reduction of imines. In these systems the pre-

catalyst will be reduced into the catalytically active diazaphos-
pholenes upon addition with HBpin. This work initially resulted

from the observation that the diazaphosphole pre-catalyst 4
undergoes hydrolysis to the phosphine oxide 9 over time. It

was also observed that when HBpin was present, reduction of

9 to generate active catalyst 1 occurred (Scheme 11). Inspired
by this, 9 was prepared from the addition of the bromide pre-

cursor to 1 and triethylamine, followed by addition of water.
With 9 in hand, its suitability as a pre-catalyst was tested by

performing reduction catalysis that diazaphospholenes were
known to catalyze. Note that this catalysis is a variation of the

Scheme 9. Proposed catalytic cyclic for imine reduction using a chiral diaza-
phosphenium cation.

Scheme 10. Proposed catalytic cycle for the reduction of imines using a tria-
zaphospholene pre-catalyst.

Scheme 11. Top: Synthesis of diazaphospholene from secondary phosphine
oxide. Bottom: Secondary phosphine oxides used in catalysis.
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above-mentioned imine reduction with pre-catalysts 4 and 5
(Scheme 7). With that, 1 mol % of 9 was used to catalyze the

reduction of imines with 1.1 equivalents of HBpin (Scheme 12).
Developing this further, enantioselective imine reduction was

performed using a chiral secondary phosphine oxide (10). For
the asymmetric catalysis, 5 mol % 10 was used, which could

reduce selected imines to the corresponding amine with com-
parable enantioselectivity to using the chiral diazaphospho-

lenes previously discussed (Scheme 12).[43]

Conjugate reduction

Having previously shown that diazaphospholene 1 can pro-
mote transfer hydrogenation and reduce carbonyl bonds,[30, 32]

it was then shown that 1 can also enable the reduction of a,b-

unsaturated esters. To begin with, two initial stoichiometric re-
actions were performed: (i) reduction of methyl methacrylate

using 1 to afford the 1,4-addition product and, (ii) subsequent
addition of ammonia borane to give the C=C reduced ester

product (Scheme 13).
Two catalytic variants based on the above stoichiometric re-

actions were explored, the first using ammonia borane as the

reductant, affording saturated esters, and the second using
HBpin to afford b-ketoesters after a follow-up reaction with a

nitrile. In the first case, 1 mol % of 1 was used along with stoi-
chiometric ammonia borane (Scheme 14, top). 1,4-hydrobora-
tion of a,b-unsaturated esters required 10 mol % 1 at 90 8C and
the resulting boryl enolate intermediate was then reacted with

nitriles to form the b-ketoester product following hydrolysis
(Scheme 14, bottom).

Both reactions proceed via the formation of phosphinyl enol
ether from 1,4-hydrophosphination of the a,b-unsaturated

ester (first step Scheme 13). Addition of ammonia borane then
cleaves the P@O bond, generating an enol intermediate which

tautomerizes to saturated esters. On the other hand, addition
of HBpin again affords P@O bond cleavage, but through s-

bond metathesis, generating a boryl enolate intermediate. This
then undergoes coupling with nitriles.[44]

The Cramer group have previously had interest in the closely

related diazaphospholidine heterocycle (diazaphospholene but
with a saturated backbone), which they have used as ligands

for metal-based catalysis.[45, 46] Therefore, given the groups in-
terest in phosphorus heterocycles and chiral ligand design, in

2018 Cramer and colleagues reported the enantioselective
conjugate reduction of a,b-unsaturated carbonyl derivatives

using diazaphospholene catalysis. To begin with, a number of

chiral pre-catalysts were synthesized, but screening results
found that pre-catalyst 11 (Figure 2), which contains 3,5-xylyl

substituents and a methoxy group in the backbone, gave the
best performance for the conjugate reduction of acyl pyrrole

(reaction type shown in Scheme 15). Performing a substrate
scope on a range of a,b-unsaturated acyl pyrroles using the

conditions 5 mol % 11 and 1.5 equivalents of HBpin in toluene

solvent gave reduced products in yields and enatiomeric ratios
of up to 97 % and 95.5:4.5 respectively. In addition, chalcones

were found to reduce smoothly to the corresponding ketone
and the more challenging a,b-unsaturated amides were toler-

ated, with an enantiomeric ratio of up to 86:14.
Upon explaining the origin of enantioselectivity in the catal-

ysis, knowing that the P@H bond in the active catalyst is in a

Scheme 12. Reduction of imines using pre-catalysts 9 and 10.

Scheme 13. Stoichiometric addition of methyl methacrylate to diazaphos-
pholene 1 followed by stoichiometric addition of ammonia borane.

Scheme 14. Top: Reduction of a,b-unsaturated esters. Bottom: 1,4-hydrobo-
ration and subsequent C@C coupling of a,b-unsaturated esters.

Figure 2. Chiral pre-catalyst 11 and selectivity model for the asymmetric re-
duction.
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perpendicular position to the ring (a consequence of the pyra-
midal local geometry), two accessible quadrants are available

away from the bulky aromatic backbone. This led to Cramer
proposing the depicted stereoselectivity shown in Figure 2.

Two potential catalytic cycles were proposed; Path A and Path
B. In Path A, the diazaphospholene hydride is the active cata-

lyst, where the hydride is delivered upon addition of the conju-

gated substrate, after which regeneration of the active catalyst
occurs via addition of HBpin. This in turn gives a boron eno-

late, which after hydrolytic work-up generates the final prod-
uct. Alternatively, in Path B the first part of the catalytic cycle is

the same, but the coordinated intermediate II undergoes s-
bond metathesis with pinBOMe (produced from the earlier s-

bond metathesis step), regenerating 11 and giving the boron
enolate (Scheme 15).[47] Note Path A is the same as that report-
ed with catalyst 1.[44]

Phosphine oxide pre-catalyst 9 could also enable conjugate
reduction, where chalcone was smoothly reduced using

1 mol % of 9 and 1.1 equivalents of HBpin (Scheme 16).

Reductive Claisen rearrangement

Following the report of conjugate reduction of a,b-unsaturated
carbonyl derivatives, the use of the benzyloxy derived diaza-
phospholene 12 as a pre-catalyst for the reductive Claisen rear-
rangement was reported (Scheme 17).[48] This is a transforma-
tion in which a [3,3]-sigmatropic rearrangement converts allyl
vinyl ethers to unsaturated carbonyl species.

Using catalytic diazaphospholene 12 for this transformation,

the optimization studies exposed allyl 2-phenylacrylate to an
array of terminal reductants, where HBpin proved most effec-
tive for the transformation in combination with 1 mol % 12. A
substrate scope followed, where a wide array of allylic acrylates
bearing various functional groups were found to be tolerated
for the rearrangement, which was also enantiospecific for sub-

strates with existing stereogenic centers. Investigations into
the diasteroselectivity found it could be tuned by varying the
solvent as well as changing the diazaphospholene catalyst,

suggesting several pathways exist depending on the nature of
the pre-catalyst and substrate. Thus, two possible mechanisms

are proposed for the reaction. In the first proposed pathway
(Scheme 18), the addition of the active catalyst 1 gives inter-

mediate I, which reacts with HBpin to form boron enolate III
via s-bond metathesis. In turn, intermediate III rearranges to V.

Scheme 15. Proposed catalytic cycle for conjugate reduction with HBpin.
Where Y = pyrrole fragment. Diazaphospholene shown is a simplified repre-
sentation of 11.

Scheme 16. Conjugate reduction using pre-catalyst 9.

Scheme 17. General Scheme for diazaphospholene catalyzed reductive Clais-
en rearrangement.

Scheme 18. Proposed first mechanistic pathway for reductive Claisen rear-
rangement. [P]-H = 1.
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On the other hand, a second mechanistic pathway may take
place (Scheme 19), where addition of the active catalyst gives

intermediate II. From here two options are possible and both
involve a [3,3]-sigmatropic rearrangement and elimination of

catalyst 1 and differ only in their ordering. Intermediate II
forming intermediate IV is most desirable as this would allow

greater control of the diastereoselectivity and enantioselectivi-
ty by the bound diazaphospholene.

Reduction of pyridines

Dihydropyridines are commonly found in biological molecules

such as NADH (nicotinamide adenine dinucleotide) and are

also useful in synthetic chemistry (e.g. Hantzsch esters). Their
synthesis from the corresponding pyridines is nevertheless

challenging owing to the stability of the aromatic ring and
usually preactivated systems are required. In 2018, diazaphos-

phenium cations were found to serve as an effective pre-cata-
lyst for the reduction of pyridines with HBpin. After a series of

screening reactions with different cations of varying steric

properties, the diazaphosphenium 13 proved to be the most
effective pre-catalyst to proceed with. Along with 1.05 equiva-

lents of HBpin, 5 mol % 13 was used for the substrate scope,
where a variety of substituted pyridines were found to be

smoothly reduced with both regio- and chemo-selectivity.
Good functional group tolerance was observed when the pyri-

dine ring was substituted in the meta-position, however substi-

tution in the ortho- and para-position proved more challeng-
ing. Given the cationic nature of 13 this catalysis does not pro-

ceed in an analogous fashion to that with the neutral diaza-
phospholene 1. Instead, investigations found that the first step

involves hydride transfer from HBpin to 13, generating diaza-
phosphenium-hydride and the boronium salt [(py)2Bpin]OTf.

The second step is then reduction of the activated pyridine via

hydride delivery from the diazaphosphenium-hydride
(Scheme 20).[40]

It was found that neutral diazaphospholenes can also be
used for this reduction, with 2.5 mol % pre-catalyst 4 effective

for reducing pyridines with HBpin (1 equiv). Substrates bearing
electron-withdrawing groups in the meta-position worked well,

but again ortho- and para-substituted pyridines were more
challenging. Mechanistically this pyridine reduction is different

to the example reported above. The first step is postulated to
be formation of the active catalyst 1 via s-bond metathesis,

after which pyridine reduction takes place from hydride deliv-
ery. From here B@P hydride transfer is speculated to occur,

giving the desired hydroborated pyridine product and regener-

ating catalyst 1 (Scheme 21).
Comparing reductions of neutral diazaphospholenes with

cationic diazaphospheniums shows that the latter is able to
tolerate more electron rich pyridines, whereas the former re-

quires more electron withdrawing groups attached to the pyri-
dine ring for smooth reduction to take place. On the other

hand, the diazaphospholene pre-catalyst operates well in low

polarity solvents (such as [D6]benzene), whereas the diazaphos-
phenium cation does not.[49]

Finally, the phosphine oxide pre-catalyst 9 described earlier
was also used for pyridine reduction, which when using

1 mol % pre-catalyst with 1.1 equivalents of HBpin, niconitrile
was found to be effectively reduced. Interestingly, 3-acetylpyri-

dine was selectively reduced, with the ketone moiety remain-
ing untouched (Scheme 22).[43]

Reduction of CO2

The use of CO2 as a C1 source is potentially very powerful as it
offers a non-toxic way to build more synthetically useful prod-

ucts in a cheap manner, but also gives a use for this harmful

greenhouse gas.[50] As a result of this, the catalytic reduction of
CO2 has been investigated using the diazaphospholene cata-

lyst 1. The diazaphospholene was found to undergo a hydro-
phosphination reaction with CO2 (1 atm), producing a diaza-

phospholene species with a formate group attached
(Scheme 23, top). This transformation is a consequence of the

Scheme 19. Proposed second mechanistic pathway for reductive Claisen re-
arrangement. [P]-H = 1.

Scheme 20. Proposed catalytic cycle for pyridine reduction using diazaphos-
phenium 13 as a pre-catalyst.
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oxygen group from CO2 inserting into the P@H bond of 1
along with hydride transfer to the carbon atom of CO2. It was

postulated that the formate group should readily transfer to
an acceptor. Thus, the formate intermediate was reacted with

half an equivalent of Ph2SiH2. Ph2Si(OCHO)2 resulted as the
major product and the siloxane (Ph2SiO)3 as a minor product

(2.3:1 respectively) (Scheme 23, bottom). Moreover, it was later
discovered that the formate transfer step can be accelerated
by adding 5 mol % 1.

Subsequently, the one-pot N-formylation of amines with
CO2, using 5 mol % 1 as a catalyst (Scheme 24) was performed.
For the catalysis, a wide substrate scope of both primary and
secondary amines was used. For the secondary amines, less-

hindered aliphatic amines gave the N-formylamine in excellent
yields of >90 %, but an increase in sterics afforded N-methylat-

ed amines. Secondary amines containing aryl substituents

were found to be tolerated. Expanding the scope, all aliphatic
and aromatic primary amines tested were found to work well,

with yields in the range of 72 % to 99 %.[51]

Conclusions and Outlook

In this Minireview, the use of the heterocyclic diazaphospho-

lenes, diazaarsolenes and their cationic counterparts as cata-

lysts for organic reduction transformations has been evaluated.
In 2014, the catalytic reduction of azobenzene using 2-H-1,3,2-
diazaphospholene was first reported, making use of the hydri-
dic P@H bond these complexes possess. Since then the reduc-

tion of carbonyls, imines, a,b-unsaturated esters, pyridines and
CO2 have all been reported. In these cases a number of diaza-

phospholene species have been utilized, with the use of an
alkoxide derived co-ligand providing an advancement in the
field due to increased moisture/oxygen tolerance compared to

2-H-1,3,2-diazaphospholene. Further advances have come from
the inclusion of a chiral ligand scaffold allowing for enatiose-

lective catalysis. Halide abstraction from diazaphospholenes re-
sults in cationic phosphenium formation, and these cations

have proved to be highly effective for these reductions, and in
certain cases outperforming the neutral diazaphospholene. In
addition to this, heavier Group 15 arsenic pre-catalysts have

been developed, including diazaarsolenes and diazaarsenium
cations. However, in general, the reactivity and tolerance were

diminished compared to the phosphorus counterparts.

Scheme 21. Proposed catalytic cycle for pyridine reduction using diazaphos-
pholene 4 as a pre-catalyst.

Scheme 22. Pyridine reduction using 9 as a pre-catalyst.

Scheme 23. Top: Hydrophosphination of CO2 with 1. Bottom: Formate trans-
fer with Ph2SiH2 to regenerate 1.

Scheme 24. Top: Catalytic N-formylation primary. Bottom: secondary amines
with CO2 using 5 mol % 1 as a catalyst.
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Although several similar mechanisms operate in these reac-
tions, a key feature is the formation of a P@H bond in the cata-

lytic cycle. Importantly, the hydridic nature of the P@H bond
opens the possibility for these phosphorus containing hetero-

cycles to be used for a vast array of reduction reactions. We
are only at the beginning of the field and it is likely that many

more catalysts and differing reactivity will be uncovered in the
near future.
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