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This paper is devoted to the study of the asymptotic behaviour of the high-frequency spectrum

of the wave equation with periodic coefficients in a ‘thin’ elastic strip Ση = (0, 1)× (−η/2, η/2),

η > 0. The main geometric assumption is that the structure period is of the order of magnitude

of the strip thickness η and is chosen in such a way that η−1 is a positive large integer.

On the boundary ∂Ση , we set Dirichlet (clamped) or Neumann (traction-free) boundary

conditions. Aiming to describe sequences of eigenvalues of order η−2 in the above problem,

which correspond to oscillations of high frequencies of order η−1, we study an appropriately

rescaled limit of the spectrum. Using a suitable notion of two-scale convergence for bounded

operators acting on two-scale spaces, we show that the limiting spectrum consists of two

parts: the Bloch (or band) spectrum and the ‘boundary’ spectrum. The latter corresponds to

sequences of eigenvectors concentrating on the vertical boundaries of Ση , and is characterised

by a problem set in a semi-infinite periodic strip with either clamped or stress-free boundary

conditions. Based on the observation that some of the related eigenvalues can be found by

solving an appropriate periodic-cell problem, we use modal methods to investigate finite-

thickness semi-infinite waveguides. We compare our results with those for finite-thickness

infinite waveguides given in Adams et al. (Proc. R. Soc. Lond. A, vol. 464, 2008, pp. 2669–

2692). We also study infinite-thickness semi-infinite waveguides in order to gain insight into the

finite-height analogue. We develop an asymptotic algorithm making use of the unimodular

property of the modal method to demonstrate that in the weak contrast limit, and when

wavenumber across the guide is fixed, there is at most one surface wave per gap in the

spectrum. Using the monomode property of the waveguide we can consider the gap structure

for the nth mode, when doing so, for traction-free boundaries, we find exactly one surface

wave in each n-band gap.

1 Introduction

We are concerned with the asymptotic analysis of a sequence of spectral problems for

the acoustic wave equation displaying rapidly oscillating coefficients of period η within a

strip Ση = (0, 1) × (−η/2, η/2), where η > 0 is such that η−1 is a large positive integer.
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Figure 1. (Colour online) A sketch of the strip geometry we consider in the analysis, for clarity

shown here with piecewise constant parameters to give a layered medium. (a)–(c) The problem as

η = N−1 → 0 as considered in the analysis of Section 2. (a) N = 1, (b) N = 2 and (c) N = 10.

(d) The semi-infinite strip geometry, which we consider in the numerical results of Section 3. The

coordinates (x, y) are equivalent to (x1, x2).

Figures 1(a)–(c) show how a guide with piecewise constant material parameters changes

in the limit as η → 0. The partial differential equation we consider is supplied with either

homogeneous Dirichlet or Neumann boundary conditions on the boundary ∂Ση. This

kind of problem models the acoustic vibrations of a periodic strip with clamped and/or

traction-free boundaries, and is of current interest for the physics community since it has

potential applications in acousto-optic polarizers, slow elastic waves and high-resolution

endoscopes (Pagneux & Maurel, 2002; Russell et al., 2003; Adams et al., 2008, 2009).

The interest in periodic structures has recently shifted from the analysis of their band

structure (Pendry, 1994) (well described in the one-dimensional setting by a Kronig–Penney

model, Kronig & Penney, 1931) to anomalous dispersion (e.g. very high dispersion, Lin

et al., 1996; vanishing dispersion, i.e. slow light, Figotin & Vitebskiy, 2006; or negative

group velocity associated with negative refraction Gralak et al., 2000) and defect states

(forming the foundation of cavities with unprecedented quality factors).

It is known in solid-state physics that for high curvature bands (i.e. small effective

mass), defect levels tend to remain close to the band edge: e.g. a shallow defect in a semi-

conductor can be described by a hydrogen atom model (Kohn & Luttinger, 1955) in which

the ionization energy, which is the energy of the defect’s ground state, is proportional

to the effective mass. This has recently drawn attention to the band-edge properties of
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periodic structures (Dossou et al., 2007), where manipulation of the dispersion curves

very close to a band gap edge can lead to extremely low group velocity over extended

frequency ranges (Figotin & Vitebskiy, 2006).

We assume that the frequency is high enough to warrant the existence of scale interaction

effects between the wavelength and the microscopic length scale of the medium. Several

works investigating this possibility using spectral asymptotic tools have been written by

Allaire and Conca, in the context of fluid–solid structures (Allaire & Conca, 1996, 1998a),

as well as for a scalar elliptic equation with Dirichlet boundary conditions (Allaire &

Conca, 1998b). Castro and Zuazua further investigated the asymptotic spectrum of a

clamped string with rapidly oscillating density, which displays stop bands and boundary

modes associated with concentration effects at the string ends (Castro and Zuazua, 1996;

Castro & Zuazua, 2000a, 2000b). Similar effects arise in multi-layered elastic (Camley et al.,

1983) and dielectric (Zolla et al., 2008) structures, in slow-diffusion problems for highly

heterogeneous media with an interface (Allaire & Capdeboscq, 2002) and in vibrating

systems with many concentrated masses (Lobo & Pérez, 2001 and references therein).

Whereas two of us previously used the tools developed by Allaire and Conca to look

at similar problems arising in the context of infinite three-dimensional photonic crystals

(Cherednichenko & Guenneau, 2007), where no concentration effects occur, our present

paper deals with a strip problem in the context of acoustic waves: the specific geometry

(periodic in one direction, finite in the other) requires an analysis of its own.

Some notational conventions that we adopt throughout the text have to be mentioned.

We think of any two functions u and v that take different values on a set of Lebesgue

measure zero as being the same, and write u = v. Also, in all formulae u,i denotes partial

differentiation with respect to the variable xi, i = 1, 2. Finally, x everywhere stands for

(x1, x2).

We analyse the propagation of transverse acoustic modes in a thin strip with clamped

or traction-free top and bottom walls, as shown in Figure 1. The typical heterogeneity

size along the waveguide (the thickness of the layers) is characterised by a small positive

parameter η and the shear modulus µη and density ρη are assumed to be of the form µη =

µ(x1/η, x2/η), ρη = ρ(x1/η, x2/η), where µ(x′
1, x

′
2), ρ(x

′
1, x

′
2) are measurable real-valued

functions that are 1-periodic in the variable x′
1 and such that 0 < c1 � µ, ρ � c2 < ∞

almost everywhere for some constants c1, c2. Throughout our work we assume that η−1

is an integer. The task of finding the modes in such a structure amounts to looking for

pairs (λη, uη) ∈ � ×H1(Ση) with uη � 0 that satisfy the following eigenvalue problem:

−ρ−1
(
x/η

)
∇ ·

(
µ(x/η)∇uη(x)

)
= ληuη(x), x ∈ Ση, (1.1)

uη|x1=0 = uη|x1=1 = 0 or (uη),x1
|x1=0 = (uη),x1

|x1=1 = 0, x2 ∈ (−η/2, η/2), (1.2)

uη|x2=−η/2 = uη|x2=η/2
= 0 or (uη),x2

|x2=−η/2 = (uη),x2
|x2=η/2

= 0, x1 ∈ (0, 1). (1.3)

The first pair of conditions in (1.2) (respectively, (1.3)) corresponds physically to the

case of clamped boundaries at x1 = 0, 1 (respectively, x2 = ±η/2), while the second pair

models the case when these boundaries are free to vibrate.

The problem (1.1)–(1.3) is understood in the weak sense, as follows. Denote by Hη the

closure in H1(Ση) of the set of infinitely smooth functions on Ση that vanish on those
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parts of the boundary ∂Ση that are clamped, and the set H1(Ση) itself in the case when

the whole of ∂Ση is free to vibrate (which corresponds to the second pair of conditions

in (1.2) and (1.3)). Then we say that (1.1)–(1.3) holds if uη ∈ Hη and the integral

identity ∫
Ση

µ(x1/η, x2/η)∇u(x) · ∇ϕ(x)dx =

∫
Ση

ρ(x1/η, x2/η)f(x)ϕ(x)dx (1.4)

holds with u = uη and f = ληuη, for any ϕ ∈ Hη. One can define an operator Aη on

a dense subset of L2(Ση), such that (1.4) is equivalent1 to Aηu = f for any f ∈ L2(Ση).

Clearly, for each η the operator Aη is self-adjoint and non-negative, so that the set of

λη in (1.1)–(1.3) is in fact a subset of [0,+∞). It is also known that for each η > 0 the

operator Aη has compact resolvent, and therefore its spectrum ση is a sequence {λjη}∞
j=1

of discrete eigenvalues with +∞ as the only accumulation point. For every eigenvalue λjη
there corresponds an eigenfunction vjη ∈ L2(Ση) such that ‖vjη‖L2(Ση) = 1, and the family

vjη is an orthonormal basis in L2(Ση) (see e.g. Bensoussan et al., 1978).

A natural problem is to determine the asymptotic behaviour of ση when the period η

tends to zero. In this paper we study the case when the wavelength remains in resonance

with the period/thickness η during the limiting process, i.e. we are looking for the high-

frequency regime within which so-called band gaps and localised modes may occur as in

Castro & Zuazua (2000b), Conca et al. (1995) and Figotin & Kuchment (1996). To be

more precise, we wish to study the asymptotic behaviour of the set η2ση as η → 0. In what

follows we pay special attention to both the analytical and numerical characterisation

of modes, whose support concentrates in the neighbourhood of the waveguide vertical

boundaries x1 = 0, 1.

2 The two-scale analysis of (1.1)–(1.3)

In this section we focus on the second, Neumann-type, case of boundary conditions in

(1.2) and (1.3). The analysis of the problems with Dirichlet-type conditions on some of

the four sides of ∂Ση is completely analogous and so, for brevity, is omitted. In order to

obtain the necessary a priori estimates and then use appropriate compactness principles,

we choose to study the operator Aη + η−2I rather than Aη, which obviously shifts the

spectrum of (1.1)–(1.3) through η−2 in the positive direction.

We denote N := η−1, recalling that N ∈ �, and make the rescalings x′ = x/η ≡
N(x1, x2) λη = η−2λ ≡ N2λ in the equation obtained at the previous step, which leads to

1 More precisely, define a quadratic form [·, ·] on Hη by the formula [u, u] =∫
Ση
µ(x1/η, x2/η)∇u(x) · ∇u(x)dx. For each f ∈ L2(Ση) the expression Ff(ϕ):=∫

Ση
ρ(x1/η, x2/η)f(x)ϕ(x)dx is a linear functional on Hη, which is continuous with respect

to the norm
√

[u, u]. Hence, by the Riesz theorem, there exists an element uη(f) ∈ Hη such that

[uη(f), ϕ] = Ff(ϕ) for any ϕ ∈ Hη. Note that if f� 0 then uη(f) � 0. Indeed, if uη(f) = 0 then for

a sequence ϕn ∈ Hη that converges in L2(Ση) to f we have 0 = [uη(f), ϕn] =
∫
Ση
fϕn → ‖f‖2

L2(Ση )

as n → ∞, hence f = 0. The operator Aη is now defined on the set {uη(f) : f ∈ L2(Ση)} by the

formula Aηuη(f) = f.
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the spectral problem

−ρ−1(x)∇ ·
(
µ(x)∇u(x)

)
+ u(x) = λu(x), x := (x1, x2) ∈ ΩN := (0, N) × (−1/2, 1/2),

(2.1)

u,1|x1=0 = u,1|x1=N = 0, u,2|x2=−1/2 = u,2|x2=1/2 = 0, (2.2)

where for convenience we write x instead of x′. As in the case of (1.1)–(1.3), the problem

(2.1)–(2.2) is understood in the weak sense, i.e. u ∈ H1(ΩN) and for any ϕ ∈ H1(ΩN) one

has ∫
ΩN

µ∇u · ∇ϕ+

∫
ΩN

ρuϕ = λ

∫
ΩN

ρuϕ. (2.3)

Denote by σN the set of eigenvalues λ in the problem (2.1)–(2.2).

In the rest of Section 2 we describe the limiting behaviour of the spectra σN as N → ∞.
In particular, we show that the appropriately defined limit of σN as N → ∞ consists of

elements of two types (which are not necessarily disjoint), namely those that we refer to

as the boundary spectrum and the standard Bloch spectrum of the related problem in

the strip � × (−1/2, 1/2). This is the subject of Section 2.2, following the definition of

the boundary spectrum in Section 2.1. Further, in Section 2.3 we show that the boundary

spectrum, like the Bloch spectrum, is contained in the spectrum σΠ of an appropriate

problem on the semi-infinite strip (0,+∞) × (−1/2, 1/2). Finally, in Sections 2.4 and 2.5,

using the concept of a ‘boundary two-scale convergence’ for sequences of functions on ΩN,

we establish the fact that σΠ is contained in the limit of the spectra σN as N → ∞. The

argument of Section 2 as a whole thus aims at a ‘sandwich-type’ formula (2.26), which

provides the basis for identifying, in Section 3, eigensequences of the ‘boundary-type’.

2.1 Boundary spectrum

We begin with a definition of the boundary spectrum.

Definition 1 We shall say that λ is an element of the boundary spectrum if there exists a

sequence of normalised (‖uN‖L2(ΩN ) = 1) eigenfunctions uN for the problems (2.1)–(2.2),

N ∈ �, whose eigenvalues λN converge to λ as N → ∞, and such that for any sequence

{aN}∞
N=1, aN > 0, N ∈ �, satisfying aN/N → 0 as N → ∞ one has ‖uN‖L2(ωN ) → 0 as

N → ∞, where ωN := (N/2 − aN/2, N/2 + aN/2) × (−1/2, 1/2).

Remark 1 It is clear that without loss of generality one can consider in the above definition

only those sequences aN for which aN < N/4, N ∈ �, and aN → ∞ as N → ∞, with other

requirements of the definition preserved.

Let us denote by σboundary the set of all possible values λ in the definition above.

Henceforth we also use the notation I1 := (0, 1), I2 := (−1/2, 1/2), �+ := (0,+∞),

Π := �+ × I2.
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For each θ ∈ [0, 1) consider the eigenvalue problem

−ρ−1(x)(∇ + 2πθe1) ·
(
µ(x)(∇ + 2πθe1)u(x)

)
+ u(x) = λ(θ)u(x), x ∈ I1 × I2, (2.4)

u|x1=0 = u|x1=1, u,1|x1=0 = u,1|x1=1, u,2|x2=−1/2 = u,2|x2=1/2 = 0, (2.5)

where e1 = (1, 0).

We define an operator S on L2(Π) by the formula Sf = u, where for each f ∈ L2(Π)

the function u ∈ H1(Π) is such that (cf. (2.3))∫
Π

µ∇u · ∇ϕ+

∫
Π

ρuϕ =

∫
Π

ρfϕ (2.6)

for any ϕ ∈ H1(Π). It is well known that the set σBloch (‘Bloch spectrum’) consisting of

the inverses λ(θ)−1 of all eigenvalues λ(θ) in (2.4)–(2.5) as θ ∈ [0, 1), is the continuous

spectrum of the operator S (see e.g. Kuchment, 1993).

2.2 The structure of the limit spectrum

We next show that a ‘completeness’ result holds as N → ∞, namely that the limiting values

of λ as N → ∞ in (2.1)–(2.2) are either of the ‘Bloch-type’, or of the ‘boundary-type’, or

both. In the proof of the following theorem we follow the approach of Allaire & Conca

(1998b) and Cherednichenko & Guenneau (2007).

Theorem 1 If 2 λ ∈ limN→∞ σN and λ � σboundary, then λ ∈ σBloch.

Proof Suppose λ ∈ limN→∞ σN \ σboundary. Then there exists a sequence of eigenfunctions

uN of the problem (2.1)–(2.2), ‖uN‖L2(ΩN ) = 1, with eigenvalues λN → λ as N → ∞, and

a sequence {aN}∞
N=1, aN > 0, N ∈ �, such that aN → ∞, aN/N → 0 as N → ∞, and

‖uN‖L2(ωN ) � c3 > 0 for any N ∈ �.
Consider a sequence of smooth functions ψN in (0, N) such that ψN(x1) = 1 for

x1 ∈ (N/2 − aN/2, N/2 + aN/2), ψN(x1) = 0 for x1 ∈ (0, N/2 − aN) ∪ (N/2 + aN,N) (recall

that we can assume that aN < N/4) and |ψ′
N(x1)| � 4/aN for any N ∈ �, x1 ∈ (0, N),

where ψ′
N(x1) := dψN/dx1; such sequences clearly exist. For the function

vN(x) = ‖uN(x)ψN(x1)‖−1
L2(ΩN )uN(x)ψN(x1)

extended by zero to Π \ ΩN , one has ‖vN‖L2(Π) = 1, and the expression

RN := −ρ−1∇ ·
(
µ∇vN

)
+ vN − λNvN,

as an element of the dual space3 H∗ to H1(Π), satisfies

‖wN‖−1
H1(Π)〈RN, wN〉 → 0 (2.7)

2 We say that σN converges to σ in the Hausdorff sense, and write σ = limN→∞ σN, if

max{supλ1∈σN infλ2∈σ |λ1 − λ2|, supλ2∈σ infλ1∈σN |λ1 − λ2|} → 0 as N → ∞.
3 The space of linear continuous functionals on H1(Π).
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as N → ∞ for any sequence wN ∈ H1(Π), where 〈·, ·〉 is the duality4 between H∗ and

H1(Π). Indeed, notice first that (2.3) with u = ϕ = uN yields

‖uN‖H1(ΩN ) � c4‖uN‖L2(ΩN ) = c4 (2.8)

for some c4 > 0. Hence, using the Cauchy–Schwarz inequality,

|〈RN, wN〉| = ‖uNψN‖−1
L2(ΩN )

∣∣∣∣
∫
ΩN

µ
(
∇(uNψN) · ∇wN − ∇uN · ∇(ψNwN)

)∣∣∣∣
= ‖uNψN‖−1

L2(ΩN )

∣∣∣∣
∫
ΩN

µψ′
N

(
uN(wN),x1

− wN(uN),x1

)∣∣∣∣
� ‖uN‖−1

L2(ωN )c2 max
x1∈(0,N)

|ψ′
N(x1)|‖uN‖H1(ΩN )‖wN‖H1(Π) � c−1

3 c24a
−1
N c4‖wN‖H1(Π).

Notice next that there exists a unique family {vjN}Nj=1 of functions in H1
per(I1 × I2) (see

Proposition 5 for a definition of H1
per(I1 × I2)) such that

vN(x) =

N∑
j=1

v
j
N(x) exp(2πix1N

−1j), x ∈ ΩN, (2.9)

where i2 = −1. Indeed, a direct calculation shows that if (2.9) holds then

v
j
N(x) = N−1

N∑
m=1

vN(x1 + m, x2) exp
(
−2πi(x1 + m)N−1j

)
, x ∈ ΩN, (2.10)

where the function vN is extended according to the rule vN(x1+N, x2) = vN(x1, x2), x ∈ ΩN.

Clearly, the functions vjN are 1-periodic in x1. Further, using an argument similar to that

employed in deriving (2.10) one has

‖vN‖2
L2(ΩN ) = N

N∑
j=1

‖vjN‖2
L2(I1×I2). (2.11)

Differentiating (2.10) yields vjN ∈ H1
per(I1 × I2) and

∇vN(x) =

N∑
j=1

(∇ + 2πiN−1je1)v
j
N(x) exp(2πix1N

−1j), x ∈ ΩN,

which in particular implies (cf. (2.11))

‖∇vN‖2
L2(ΩN ) = N

N∑
j=1

‖(∇ + 2πiN−1je1)v
j
N‖2

L2(I1×I2). (2.12)

4 For v ∈ L2(Π), we think of it as an element of the space H∗ acting according to the rule

〈v, ϕ〉 =
∫
Π
ρvϕ for any ϕ ∈ H1(Π). Likewise, for V ∈ [L2(Π)]2, ϕ ∈ H1(Π), we set 〈ρ−1∇ · V , ϕ〉 =∫

Π
V · ∇ϕ.
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Further, each of the functions vjN in the above family is a linear combination of the

‘Bloch eigenfunctions’ Vk = Vk(θ, x), θ ∈ (0, 1]:

v
j
N(x) =

∞∑
k=1

α
jk
NV

k(j/N, x),

with some αjkN ∈ �. The functions Vk are normalised (‖Vk(θ, ·)‖L2(I1×I2) = 1) solutions

of (2.4) that correspond to some eigenvalues λ(θ) = λk(θ). Note that by the Plancherel

theorem ‖vjN‖2
L2(I1×I2) =

∑∞
k=1 |αjkN |2 for each j = 1, 2, . . . N, and so 1 = ‖vN‖2

L2(ΩN )
=

N
∑N

j=1

∑∞
k=1 |αjkN |2.

For each N ∈ � and a set of continuous, 1-periodic in θ and uniformly bounded

functions hk = hk(θ), k ∈ �, consider the ‘modulation’ of vN (cf. Allaire & Conca, 1998b)

defined by

M[vN](x) =

N∑
j=1

∞∑
k=1

hk(j/N)αkjNV
k(j/N, x) exp(2πix1N

−1j).

The definition of the remainder term RN implies

〈RN,M[vN]〉 =

∫
ΩN

µ∇vN · ∇M[vN] + (1 − λN)

∫
ΩN

vNM[vN]. (2.13)

Notice that in view of (2.8) and the definition of ψN, the sequence vN is bounded in

H1(Π) :

‖∇vN‖L2(ΩN ) � ‖uNψN‖−1
L2(ΩN )

(
‖∇uN‖L2(ΩN ) + 4a−1

N ‖uN‖L2(ΩN )

)
� ‖uN‖−1

L2(ωN )

(
c4 + 4a−1

N

)
� c−1

3

(
c4 + 4a−1

N

)
. (2.14)

Hence the sequence M[vN] is bounded in H1(Π) as well, and the left-hand side of (2.13)

converges to zero as N → ∞, as follows from (2.7). Using this fact and (2.4) for the Bloch

eigenfunctions Vk, we infer that

N

N∑
j=1

∞∑
k=1

hk(j/N)|αkjN |2
(
λk(j/N) − λN

)
→ 0 (2.15)

as N → ∞.
For a sequence {νkN}∞

k=1 of measures on (0, 1] defined by

νkN(θ) = N

N∑
j=1

|αkjN |2δθ=j/N,

where δθ=θ0
is the point mass at θ0, we have

∑∞
k=1

∫ 1

0 dν
k
N(θ) = 1. For each k ∈ �, up to

selecting a subsequence, the sequence {νkN}∞
N=1 converges to some non-negative measure

νk as N → ∞. We claim that
∞∑
k=1

∫ 1

0

dνk(θ) = 1. (2.16)
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Indeed, otherwise there exist δ > 0 and kN ∈ � such that
∑∞

k=kN

∫ 1

0
dνkN(θ) � δ, or

equivalently N
∑∞

k=kN

∑N
j=1 |αkjN |2 � δ for each N ∈ �. Then using (2.14), (2.12), the

Plancherel theorem for (∇ + 2πiN−1je1)v
j
N in terms of (∇ + 2πiN−1je1)V

k(j/N, ·), k ∈ �,
and equation (2.4), yields for some c5 > 0:

c3
(
c4 + 4a−1

N

)
� ‖∇vN‖2

L2(ΩN )

= N

N∑
j=1

∞∑
k=1

|αkjN |2‖(∇ + 2πiN−1je1)V
k(j/N, ·)‖2

L2(I1×I2)

� c5N

∞∑
k=1

N∑
j=1

|αkjN |2
(
λk(j/N) − 1

)
� c5 min

θ∈(0,1]

(
λkN (θ) − 1

)
N

∞∑
k=kN

N∑
j=1

|αkjN |2

� c5δ min
θ∈(0,1]

(
λkN (θ) − 1

) N→∞−→ ∞,

which is impossible, hence (2.16) holds.

Finally, (2.15) implies

0 = lim
N→∞

∞∑
k=1

∫ 1

0

hk(θ)
(
λk(θ) − λN

)
dνkN(θ) =

∞∑
k=1

∫ 1

0

hk(θ)
(
λk(θ) − λ

)
dνk(θ),

from which, in view of (2.16) and the fact that the sequence {hk}∞
k=1 is arbitrary, we

immediately infer the existence of k ∈ � and θ ∈ (0, 1] such that λ = λk(θ), as required.

�

2.3 The lack of spectral pollution

Here we prove that no ‘boundary’ sequences of eigenvalues λN, as in Definition 1, converge

to a limit outside the spectrum of the operator S defined via (2.6).

Theorem 2 The boundary spectrum σboundary is contained in the set {µ−1 : µ ∈ σΠ}, where

σΠ is the spectrum of the operator S.

Proof Let λ ∈ σboundary and consider a sequence of eigenvalues λN in the problem

(2.1)–(2.2) that converges to λ and the sequence of associated eigenfunctions uN, as in

Definition 1.

We fix 0 < γ < 1 and notice that there exists a sequence {Nj}∞
j=1 such that

either ‖uNj
‖L2((0,N/2−Nγ/2)×I2) � 1/4 for any j ∈ � or ‖uNj

‖L2((N/2+Nγ/2 ,1)×I2) � 1/4 for

any j ∈ �. Indeed, suppose the contrary, then there exists N0 ∈ � such that for

any N � N0 one has ‖uN‖L2((0,N/2−Nγ/2)×I2) < 1/4, ‖uN‖L2((N/2+Nγ/2 ,1)×I2) < 1/4 and

‖uN‖L2((N/2−Nγ/2 ,N/2+Nγ/2)×I2) � ‖uN‖L2((N/2−Nγ/2,N/2+Nγ/2)×I2) < 1/4, which is a contradic-

tion with the fact that ‖uN‖L2(ΩN ) = 1. Here we used the observation that we can take

aN = Nγ in the definition of the boundary spectrum, hence

‖uN‖L2((N/2−Nγ/2,N/2+Nγ/2)×I2) → 0
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as N → ∞. In what follows we denote ωN := (0, N/2 −Nγ/2) × I2, assume without loss of

generality that

‖uNj
‖L2(ω̃N ) � 1/4 (2.17)

for any j ∈ �, and use the notation uN for the subsequence uNj
.

Next, consider a sequence of smooth cut-off functions ψ̃N on �+ such that ψ̃N(x) = 1

for x ∈ (0, N/2 − Nγ/2), ψ̃N(x) = 0 for x ∈ (N/2 − Nγ/4,∞), and |ψ̃′
N(x1)| < 2N−γ/2 for

any x1 ∈ �+. In a similar fashion to the proof of Theorem 1, the functions

ṽN(x) := ‖uN(x)ψ̃N(x1)‖−1
L2(ΩN )uN(x)ψ̃N(x1)

extended by zero outside ΩN, are well defined in Π, and ‖ṽN‖L2(Π) = 1. Moreover, for

R̃N := −ρ−1
(
µ∇ṽN

)
+ ṽN − λNṽN,

one has

‖wN‖−1
H1(Π)〈R̃N, wN〉 → 0 (2.18)

as N → ∞, for any sequence wN ∈ H1(Π). Indeed, in the same way as in the proof of

Theorem 1, ‖uN‖H1(ΩN ) � c4 for some c4 > 0. Hence (2.17), the Cauchy–Schwarz inequality

and the above bound for |ψ̃′
N | yield

|〈R̃N, wN〉| = ‖uNψN‖−1
L2(ΩN )

∣∣∣∣
∫
Π

µψ̃′
N

(
uN(wN),x1

− wN(uN),x1

)∣∣∣∣
= ‖uN‖−1

L2(ω̃N )c2 max
x1∈�+

|ψ̃N(x1)|‖uN‖H1(ΩN )‖wN‖H1(Π) � 4c22N
−γ/2c4‖wN‖H1(Π),

which implies (2.18).

Further, since the sequence ṽN is bounded in H1(Π), up to a subsequence it converges

weakly in H1(Π) to some function ṽ, which is found to satisfy the equation

−ρ−1∇ ·
(
µ∇ṽ

)
+ ṽ = λṽ

in the weak sense. This follows immediately from the property (2.18) if one sets wN = w

with a fixed but arbitrary function w ∈ H1(Π) and passes to the limit as N → ∞.
Now, if ṽ � 0 then λ−1 belongs to the point spectrum5 of S. If, on the contrary,

ṽ = 0, then ṽN is a bounded and non-compact Weyl sequence for S, λ−1, i.e. such that

‖SṽN − λ−1ṽN‖ → 0 as N → ∞. Indeed, consider the sequence of functions w̃N ∈ H1(Ω)

satisfying

−ρ−1∇ ·
(
µ∇w̃N

)
+ w̃N = ṽN

in the weak sense. Clearly,

−ρ−1∇ ·
(
µ∇(λ−1ṽN − w̃N)

)
+ (λ−1ṽN − w̃N) = (1 − λ−1λN)ṽN + R̃N,

in particular, using the above property of R̃N, one has ‖λ−1ṽN − w̃N‖L2(Π) → 0 as N → ∞.
Hence λ−1 is an element of the continuous spectrum of S. �

5 The point spectrum of S is defined as the set of values µ for which there is a non-zero

u ∈ H1(Π) such that Su = µu.
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2.4 Boundary two-scale convergence

In order to complete the proof of the fact that σboundary ∪ σBloch = σΠ, it remains to

obtain a lower semi-continuity-type inclusion σΠ ⊂ limN→∞ σN (see Section 2.5). It is

known that the resolvent operator convergence leads to this kind of property (see e.g.

Allaire & Conca, 1998b). In the setting we study here, the concept of resolvent two-scale

operator convergence (see Zhikov, 2000) is especially useful, in view of the two-scale

structure of the problem (2.1)–(2.2) as N → ∞. We therefore introduce the notion of

boundary two-scale convergence ( cf. Allaire & Conca, 1998b), appropriate for our specific

setting.

Henceforth we use the notation Q := I1 × I2 for a ‘periodic unit cell’. Note that we will

still write I1 × I2 instead of Q whenever we treat I1 × I2 as a macroscopic domain rather

than a unit cell.

Definition 2 A sequence of functions uN ∈ L2(I1 × I2) is said to weakly boundary-two-scale

(B2S) converge to a function u ∈ L2(Π) if for any ϕ ∈ L2(Π) one has

N

∫
I1×I2

uN(x1, x2)ϕ(Nx1, x2)dx →
∫
I2

∫
�+

u(x1, x2)ϕ(x1, x2)dx1dx2 (2.19)

as N → ∞.

Remark 2 An analogous definition of weak B2S convergence of a sequence uN ∈ L2(I1)

to u ∈ L2(�+) in one dimension would be

N

∫
I1

uN(x1)ϕ(Nx1)dx1 →
∫

�+

u(x1)ϕ(x1)dx1

as N → ∞, for any function ϕ ∈ L2(�+). Our case is, loosely speaking, ‘1.5-dimensional’.

Boundary-two-scale convergence, like the usual two-scale convergence (see Allaire, 1992;

Nguetseng, 1989), has a version of the compactness property, which allows one to pass to

the limit in boundary-value problems for multi-scale partial differential equations.

Theorem 3 Let uN be a sequence of functions in L2(I1 × I2) such that for some c6 > 0 one

has N‖uN‖2
L2(I1×I2) � c6. Then there exists a subsequence uNj

that weakly B2S converges to

some function u ∈ L2(Π).

Proof For each N ∈ � consider the linear functional

LN(ϕ) := N

∫
I1×I2

uN(x1, x2)ϕ(Nx1, x2)dx,

for all ϕ ∈ L2(Π). Using the Cauchy–Schwarz inequality we deduce that

|LN(ϕ)| � N‖uN‖L2(Π)

(∫
I1×I2

|ϕ(Nx1, x2)|2dx

)1/2

� c7‖ϕ‖L2(Π)
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for some c7 > 0. Hence, LN is a bounded sequence of linear continuous functionals on the

separable Banach space L2(Π) and thus there exists a sequence {Nj}∞
j=1 and a continuous

functional L on L2(Π) such that

lim
j→∞

LNj
(ϕ) = L(ϕ) (2.20)

for any ϕ ∈ L2(Π). Since by the Riesz theorem there exists u ∈ L2(Π) such that

L(ϕ) =
∫
Π
uϕ, the definition of LN and (2.20) imply (2.19). �

In what follows we establish further useful properties of B2S convergence. These are

analogous to the well-known results about the standard two-scale convergence (see Zhikov,

2000; Allaire, 1992).

Proposition 1 If a sequence un ∈ L2(I1 × I2) weakly B2S converges to a function

u ∈ L2(Π) then a variant of the lower semi-continuity property holds:
∫
Π

|u|2 �

lim infN→∞ N
∫
I1×I2 |uN |2.

Proof Clearly, for any N ∈ �, one has

0 � N

∫
I1×I2

(
uN(x1, x2) − u(Nx1, x2)

)2
dx = N

∫
I1×I2

|uN(x1, x2)|2dx

−2N

∫
I1×I2

uN(x1, x2)u(Nx1, x2)dx +N

∫
I1×I2

|u(Nx1, x2)|2dx.

Taking the lim infN→∞ of both sides of this inequality yields

0 � lim inf
N→∞

N

∫
I1×I2

|uN(x1, x2)|2dx − 2 lim
N→∞

N

∫
I1×I2

uN(x1, x2)u(Nx1, x2)dx

+ lim
N→∞

N

∫
I1×I2

|u(Nx1, x2)|2dx = lim inf
N→∞

N

∫
I1×I2

|uN(x1, x2)|2dx −
∫
I1×I2

|u(x1, x2)|2dx,

which implies the claim of the proposition. �

Proposition 2 If a sequence uN ∈ L2(I1 ×I2) weakly B2S converges to a function u ∈ L2(Π)

then for any bounded measurable function b defined on Π, the sequence b(Nx1, x2)uN(x1, x2)

weakly B2S converges to bu.

Proof The proposition is a direct consequence of the fact that if ϕ ∈ L2(Π) then

ϕ̃ := bϕ ∈ L2(Π), which implies, for any ϕ ∈ L2(Π),∫
I1×I2

b(Nx1, x2)uN(x1, x2)ϕ(Nx1, x2)dx =

∫
I1×I2

uN(x1, x2)ϕ̃(Nx1, x2)dx

N→∞−→
∫
Π

u(x)ϕ̃(x)dx =

∫
Π

b(x)u(x)ϕ(x)dx,

as required. �
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Definition 3 A sequence of functions uN ∈ L2(I1 × I2) is said to strongly B2S converge to a

function u ∈ L2(Π) if uN weakly B2S converge to u and for any sequence vN ∈ L2(I1 × I2)

that weakly B2S converges to a function v ∈ L2(Π), one has N
∫
I1×I2 uNvN →

∫
Π
uv as

N → ∞.

Proposition 3 If a sequence uN ∈ L2(I1×I2) strongly B2S converges to a function u ∈ L2(Π)

and b is a bounded measurable function defined on Π, then the convergence of the sequence

b(Nx1, x2)uN(x1, x2) established in Proposition 2 is in fact strong.

Proof By Proposition 2, for any sequence vN ∈ L2(I1 × I2) that weakly B2S converges to

v ∈ L2(Π) the sequence ṽN(x1, x2) = b(Nx1, x2)vN(x1, x2) weakly B2S converges to ṽ := bv.

Hence,

∫
I1×I2

b(Nx1, x2)uN(x1, x2)vN(x1, x2)dx =

∫
I1×I2

uNṽN
N→∞−→

∫
Π

uṽ =

∫
buv,

as required. �

Proposition 4 Suppose that a sequence uN ∈ L2(I1 ×I2) weakly B2S converges to a function

u ∈ L2(Π). Then for this convergence to be strong in the sense of the above definition it is

necessary and sufficient that

∫
Π

|u|2 � lim sup
N→∞

N

∫
I1×I2

|uN |2. (2.21)

Proof If uN ∈ L2(I1 × I2) strongly B2S converges to u ∈ L2(Π) then setting vN = uN in

the definition of the strong B2S convergence yields
∫
I1×I2 uNuN →

∫
Π
uu, hence (2.21).

Conversely, suppose uN ∈ L2(I1 × I2) and vN ∈ L2(I1 × I2) weakly B2S converge

to u ∈ L2(Π), and v ∈ L2(Π), respectively. Since
√
NuN and

√
NvN are bounded in

L2(I1 × I2), we can assume, after selecting a subsequence, that there exist finite limits

limN→∞ N
∫
I1×I2 uNvN and limN→∞ N

∫
I1×I2 v

2
N. Further, for any t ∈ �, the sequence vN+tuN

weakly B2S converges to v + tu. Using Proposition 1,

lim
N→∞

N

∫
I1×I2

v2N + 2t lim
N→∞

N

∫
I1×I2

uNvN + t2 lim
N→∞

N

∫
I1×I2

u2
N

= lim
N→∞

N

∫
I1×I2

(vN + tuN)2 �

∫
Π

(v + tu)2 =

∫
Π

v2 + 2t

∫
Π

uv + t2
∫
Π

u2.

Cancelling the terms t2 limN→∞ N
∫
I1×I2 u

2
N and t2

∫
Π
u2 in view of (2.21), we get

lim
N→∞

N

∫
I1×I2

v2N + 2t lim
N→∞

N

∫
I1×I2

uNvN �

∫
Π

v2 + 2t

∫
Π

uv,

which is only possible if limN→∞ N
∫
I1×I2 uNvN =

∫
Π
uv, given that t ∈ � is arbitrary. �
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2.5 ‘Lower semi-continuity’ property for spectra

Here we focus on developing the ideas in relation to the resolvent operator convergence

in our specific setting, as discussed at the beginning of Section 2.4.

Definition 4 We shall say that a sequence of operators SN in L2
(
ΩN

)
strongly B2S con-

verges to an operator S in L2(Π) if for any sequence fN of functions defined on ΩN, such

that the sequence f̃N(x1, x2) := fN(Nx1, x2) strongly B2S converges to a function f̃ ∈ L2(Π),

the sequence (SNfN)(Nx1, x2) strongly B2S converges to the function Sf̃.

For any operator S on L2(Π) we denote by σ(S) its spectrum.

Theorem 4 If a sequence SN strongly B2S converges to S then for any µ ∈ σ(S) there exists

a sequence µN ∈ σ(SN) such that µN → µ as N → ∞.

Proof Suppose that the above claim does not hold. Then there exist µ ∈ σ(S) and κ > 0

such that dist
(
σ(SN), µ

)
> κ. Take f ∈ L2(Π) and denote by fN the restriction of f to

the domain ΩN. Then, clearly, the sequence fN(Nx1, x2) strongly B2S converges to the

function f. Hence,

κ

(
N

∫
I1×I2

|fN(Nx1, x2)|2dx

)1/2

= κ

(∫
ΩN

|fN(x)|2dx

)1/2

= κ‖fN‖L2(ΩN ) � ‖SNfN − µfN‖L2(ΩN )

= sup
ϕ∈L2(ΩN )

(∫
ΩN

|ϕ|2
)−1/2(∫

ΩN

(SNfN − µfN)ϕ

)

= sup
ϕ∈L2(I1×I2)

(∫
I1×I2

|ϕ(Nx1, x2)|2dx

)−1/2

×
(
N

∫
I1×I2

(SNfN(Nx1, x2) − µfN(Nx1, x2))ϕ(Nx1, x2)dx

)
.

Passing to the limit as N → ∞ yields

κ‖f‖L2(Π) � sup
ϕ∈L2(Π)

(∫
I2

∫
�+

ϕ(x1, x2)dx1dx2

)−1/2

×
(∫

I2

∫
�+

(
Sf(x1, x2) − µf(x1, x2)

)
ϕ(x1, x2)dx1dx2

)
= ‖Sf − µf‖L2(Π),

which, due to the fact that f ∈ L2(Π) is arbitrary, contradicts the assumption that

µ ∈ σ(S). �

Theorem 5 For each N ∈ � define an operator SN on L2(ΩN) by the formula SNf = u,

where for each f ∈ L2(ΩN) the function u ∈ H1(ΩN) is the solution to the problem (cf.

(2.1)–(2.2)) ∫
ΩN

(µ∇u · ∇ϕ+ ρuϕ) =

∫
ΩN

ρfϕ

for any ϕ ∈ H1(ΩN). Then the operators SN strongly B2S converge to the operator S.
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Proof Consider a sequence of functions fN ∈ L2(ΩN) such that f̃N(x1, x2) := fN(Nx1, x2)

strongly B2S converge to a function f̃ ∈ L2(Π). Notice first that since

‖fN‖2
L2(ΩN ) = N‖f̃N‖2

L2(I1×I2) → ‖f̃‖2
L2(Π)

as N → ∞, there exists c8 > 0 such that ‖fN‖2
L2(ΩN )

< c8 for any N ∈ �. Further, for

uN = SNfN one has ∫
ΩN

(µ|∇uN |2 + ρ|uN |2) =

∫
ΩN

ρfNuN. (2.22)

By the Cauchy–Schwarz inequality, there exists c9 > 0 such that ‖uN‖2
L2(ΩN )

=

N
∫
I1×I2 |uN(Nx1, x2)|2dx < c9 for any N ∈ �. Therefore, by the compactness principle,

one can extract a subsequence uNj
, for which we will keep the same notation uN, such

that the sequence uN(Nx1, x2) weakly B2S converges to a function u ∈ L2(Π).

Furthermore, (2.22) implies the existence of c10 > 0 such that ‖∇uN‖2
L2(ΩN )

< c10 for all

N ∈ �, hence the sequence UN(Nx1, x2), where UN := ∇uN, weakly B2S converges to a

vector function U ∈
[
L2(Π)

]2
.

Notice next that for a smooth function ϕ = ϕ(x), x ∈ Π, with compact support and

N ∈ � one has ∫
ΩN

(µUN · Φ + ρuNϕ− ρfNϕ) = 0, (2.23)

where Φ := ∇ϕ. Rescaling (2.23) yields

N

∫
I1×I2

{µ(Nx1, x2)UN(Nx1, x2) · Φ(Nx1, x2) + ρ(Nx1)uN(Nx1, x2)ϕ(Nx1, x2)

−ρ(Nx1, x2)fN(Nx1, x2)ϕ(Nx1, x2)}dx = 0,

from which, after passing to the limit as N → ∞ and using the fact that fN(Nx1, x2)

strongly B2S converge to the function f̃, we get

∫
Π

(
µU · Φ + ρuϕ− ρf̃ϕ) = 0. (2.24)

In view of the fact that Φ = ∇ϕ, the identity (2.24) is the weak formulation of the problem

−ρ−1∇ ·
(
µU

)
+ u = f̃, u ∈ H1(Π).

Next we show that ∇u = U , where the gradient of u is understood in the weak sense.

Indeed, for i = 1, 2 and any smooth function ϕ on Π one has
∫
ΩN
uN,iϕ = −

∫
ΩN
uNϕ,i.

Rescaling to I1 × I2 and passing to the two-scale limit yield
∫
Π
Uiϕ = −

∫
Π
uϕ,i, which

implies u,i = Ui.

Finally, we show that the sequence uN strongly B2S converges to u. According to

Propositions 2 and 4, it is sufficient to check that

lim sup
N→∞

N

∫
I1×I2

ρ(Nx1, x2)|uN(Nx1, x2)|2dx �

∫
Π

ρ(x)|u(x)|2dx
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as N → ∞. To this end recall (2.22) and the identity∫
Π

(
µ|∇u|2 + ρ|u|2

)
=

∫
Π

ρf̃u, (2.25)

which is obtained above in the limit as N → ∞. Since fN(Nx1, x2) and uN(Nx1, x2) strongly

and weakly, respectively, B2S converge to f̃ and u, the right-hand side of (2.22) converges

to the right-hand side of (2.25) as N → ∞. Hence, the left-hand side of (2.22) converges

to the left-hand side of (2.25). Therefore,

lim sup
N→∞

∫
ΩN

ρ|uN |2 =

∫
Π

(
µ|∇u|2 + ρ|u|2

)
− lim inf

N→∞

∫
ΩN

µ|∇uN |2.

Since by the weak B2S convergence of UN to ∇u the inequality∫
Π

µ|∇u|2 � lim inf
N→∞

∫
ΩN

µ|∇uN |2

holds, we conclude that

lim sup
N→∞

∫
ΩN

ρ|uN |2 �

∫
Π

ρ|u|2.

�

Note that for each N ∈ � the set σN defined at the beginning of Section 2 is the

spectrum of the operator SN.

Corollary 1

σΠ ⊂ lim
N→∞

σN,

where the limit is understood in the Hausdorff sense (see footnote 2).

2.6 Summary

Putting together the results of Sections 2.2, 2.3 and 2.5, we have

lim
N→∞

σN ⊂ σboundary ∪ σBloch ⊂ σΠ ⊂ lim
N→∞

σN. (2.26)

We obtain (2.26) by invoking Theorem 1 to give the first inclusion, Theorem 2 to give

the second inclusion, and Corollary 1 to give the final inclusion. Since the leftmost and

rightmost terms in (2.26) coincide, all terms in (2.26) are equal. This, in particular, implies

the following statement.

Theorem 6 As N → ∞, the spectra σN converge in the Hausdorff sense to σΠ . In other

words, there is no ‘spectral pollution’ as N → ∞ : the limit of any convergent sequence

of eigenvalues λ = λN of the operators SN is an element of the spectrum of S, and in this

fashion all elements of the spectrum of S are obtained.
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Our analysis applies mutatis mutandis to the case where the governing equation (1.1) is

supplied with boundary conditions (1.2) on top and bottom walls, but with a clamped

boundary at the left end (Dirichlet data at x1 = 0) and a freely vibration boundary

at the right end (Neumann data at x1 = 1). In that case, we obviously end up with a

Bloch spectrum which is still given by (2.4)–(2.5). However, when handling the boundary

spectrum via an analogue of Theorem 2 one has to invoke the union of two spectra for

the operators defined by (2.6) where the semi-infinite strip Π is traction free at x1 = 0 and

then clamped at x1 = 0. Accordingly, in this case σΠ in (2.26) is replaced by the union of

the two spectra.

3 A numerical study of the limiting problems: semi-infinite and finite strips

In the previous section we considered a thinning waveguide Ση = (0, 1) × (−η/2, η/2),

η > 0, of fixed (unit) length, and were concerned with how its rescaled spectrum η2ση
behaves in the limit as η → 0. In (2.26) the limit spectrum was related to the spectrum

σΠ of a problem posed on Π = �+ × I2.

In this section we investigate numerically the mentioned problem on Π , and use the

relationships developed in the above analysis to find part of σboundary. Our method is

based on the idea of looking at only those elements of the point spectrum of the operator

S defined in (2.6) that conform to a further restriction on the behaviour of solutions that

decay as x1 → ∞, as follows.

Proposition 5 The spectrum σΠ contains all values λ for which there exists γ ∈ � with

�(γ) > 0 such that the equation

−ρ−1(∇ − γe1)
(
µ(∇ − γe1)v

)
= λv

has a non-zero solution v ∈ H1
per(I1 × I2) that satisfies v,1 + γv|x1=0 = 0 x2 ∈ I2. The related

boundary-value problems are understood in the weak sense and by H1
per(I1 × I2) we denote

the closure of the set of infinitely smooth functions ϕ on Π that are 1-periodic in x1, which

respect to the norm
√∫

I1×I2

(
|ϕ|2 + |∇ϕ|2

)
.

Proof It follows immediately from the observation that given a function v with the

above properties, the function u(x) = v(x) exp(−γx1), x ∈ Π, is an eigenfunction of the

operator S. �

We further restrict our study to considering piecewise constant material parameters ρ

and µ, which corresponds to a striped guide, such as that considered in Adams et al.

(2008). In particular, we will be evaluating solutions of the equation

−ρ−1(x1)∇ ·
(
µ(x1)∇u(x)

)
= λu(x), (3.1)

where x ∈ Π in the infinite-length case, x ∈ (0, Nd) × I2 in the finite-length case and

x ∈ �+ × � in the infinite-height problem, and ρ and µ are d-periodic and piecewise

constant. For generality, and to allow flexibility within the numerics, we introduce a
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distance d for the cell length: this was set to unity within the previous sections. As noted

in Adams et al. (2008), one could easily rewrite all this in the language of electromagnetism

or acoustics.

3.1 Retrieving the governing equations in a dimensional setting

The analysis in the previous sections uses problem statements such as those for (1.1)–(1.3)

that are already non-dimensional. To show how one arrives at these non-dimensional

forms, and to connect with applications, we briefly consider a dimensional setting. The

notation will, for definiteness, be taken to be that of elasticity, in particular that associated

with shear horizontal (or ‘anti-plane shear’) polarisation. All variables and parameters

with a tilde are dimensional. In the finite height case, we consider a striped guide

occupying −1/2 < x̃2/h̃ < 1/2, 0 < x̃1/h̃ < L, where L → ∞ (a semi-infinite guide) is

permitted.

Associated with the displacement ũ (perpendicular to the (x̃1, x̃2)-plane) are the dimen-

sional stresses τ̃ij that in this polarisation, for τ̃i3, are simply

τ̃i3 = µ̃
∂ũ

∂x̃i
, i = 1, 2,

in each of the regions of constant material parameters, with µ̃ denoting the dimensional

shear modulus.

We consider a guide consisting of two materials, labelled 1 and 2, each characterised

by a density ρ̃ and sound speed c̃T that oscillate piecewise between ρ̃(1), c̃
(1)
T and ρ̃(2), c̃

(2)
T ,

so that µ̃(1) = ρ̃(1)(c̃(1)
T )2 and µ̃(2) = ρ̃(2)(c̃(2)

T )2 are the shear moduli of the materials 1 and 2,

respectively. Henceforth ‘(j)’ in the superscript denotes a material parameter, or variable,

corresponding to, or only defined in, material j, for j = 1, 2.

We assume that material 1 occupies the regions nd < x̃1/h̃ < nd + d(1), and material 2

occupies the regions nd + d(1) < x̃1/h̃ < (n + 1)d ≡ nd + d(1) + d(2), for all non-negative

integers n such that (n + 1)d � L. Further, for finite-length guides, L/d is constrained to

be an integer, so that the guide contains an equal number of complete layers of each

material. This constraint and Proposition 5 enable us to restrict the problem to the region

0 < x̃1/h̃ < d subject to the Bloch-type conditions enforcing decay as x̃1 → ∞.
Conditions on the guide walls, x̃2/h̃ = ±1/2, are set to be both either traction-free

or clamped. The edges x̃1/h̃ = 0, and x̃1/h̃ = L for finite guides, are subject to either

traction-free or clamped conditions, but these need not be the same as those at x̃2/h̃ =

±1/2.

We non-dimensionalise throughout using parameters of material 1 by introducing the

following non-dimensional variables and parameters:

x1 = x̃1/h̃, x2 = x̃2/h̃, t = c̃
(1)
T t̃/h̃, u = ũ/h̃, τik = τ̃ik/

(
ρ̃(1)

(
c̃
(1)
T

)2)
,

ω = h̃ω̃/c̃
(1)
T , α(j) = c̃

(j)
T /c̃

(1)
T , β(j) = ρ̃(j)/ρ̃(1),

for j = 1, 2, and everything hereafter is non-dimensional.
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3.2 Application of the modal method

We have non-dimensionalised the problem in the previous section so as to retrieve the

governing equations posed in the analysis, and imposed the restriction that the material

parameters vary in a piecewise constant fashion to coincide with the striped guide

considered in Adams et al. (2008). Figure 1(d) shows the set-up of the non-dimensional

problem on Π.

The governing Helmholtz equation can now be cast as

(α(j))2
(

∂2u(j)

∂x2
1

+
∂2u(j)

∂x2
2

)
+ ω2u(j) = 0,

valid within the domains occupied by materials j = 1, 2, and connected by continuity

conditions at the interface, which are developed below. Note that λ in (3.1) is identified

with ω2. Expressions for the stresses in terms of the displacement are

τ
(j)
13 = β(j)(α(j))2

∂u(j)

∂x1
, τ

(j)
23 = β(j)(α(j))2

∂u(j)

∂x2
.

Traction-free boundary conditions, τ23 = 0, or clamped boundary conditions, u = 0, are

applied along the guide walls x2 = ±1/2. Conditions on the edge, x1 = 0, are also either

traction-free, τ13 = 0, or clamped, u = 0. Interface conditions ensuring the continuity of

normal-stress and displacement at material junctions are imposed:

u(1)|x1=x
−
1∗

= u(2)|x1=x
+
1∗
, τ

(1)
13 |x1=x

−
1∗

= τ
(2)
13 |x1=x

+
1∗
, (3.2)

for x1∗ = md,md+ d(1), m ∈ � ∪ {0}. Henceforth a superscript ‘+’ (‘−’) is used with field

variables on the right (left) side of interface. Notice that the conditions (3.2) follow from

the weak formulation, (1.4).

Using Proposition 5, or its appropriate analogue in the case of clamped edges and/or

guide walls, we look for values λ for which there exist non-zero u satisfying

−ρ−1(x1)∇ ·
(
µ(x1)∇u(x)

)
= λu(x), x ∈ �+ × I2,

subject to the conditions:

(1) There exists γ ∈ �, �(γ) > 0, such that for any m ∈ � ∪ {0} :

u((m+ 1)d, x2) = u(md, x2) exp(−γd), x2 ∈ I2, (3.3)

τ13((m+ 1)d, x2) = τ13(md, x2) exp(−γd) x2 ∈ I2. (3.4)

(2) The condition u(0, x2) = 0, x2 ∈ I2, in the case when the edge x1 = 0 is clamped and

τ13(0, x2) = 0, x2 ∈ I2, when it is traction-free.

(3) The appropriate (Dirichlet or Neumann) conditions at the horizontal parts of the

boundary, x2 = −1/2 and x2 = 1/2.

Due to (2.26), the accessible elements of σboundary are thus associated with eigensolutions

that decay exponentially as x1 → ∞, are defined by their behaviour on the cell, (0, d) × I2,

via the relations (3.3)–(3.4), and do not belong to σBloch.
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Consider a single-mode solution in each of the materials, of the form:

u(j)(x1, x2) =
[
A(j)
n exp

(
ik(j)
n x1

)
+ B(j)

n exp
(

− ik(j)
n x1

)]
û(j)
n ,

valid for k(j)
n � 0, in which A(j), B(j), j = 1, 2, are constants, and û(j)

n is the nth modal

solution to the homogeneous problem:

û(j)
n (x2) =

⎧⎨
⎩

cos
[
nπ(x2 + 1/2)

]
,

sin
[
nπ(x2 + 1/2)

]
,

τ̂
(j)
13n(x2) = iβ(j)(α(j))2k(j)

n

⎧⎨
⎩

cos
[
nπ(x2 + 1/2)

]
,

sin
[
nπ(x2 + 1/2)

]
,

(3.5)

where

k(j)
n =

√
(α(j))−2ω2 − n2π2, j = 1, 2, n =

⎧⎨
⎩

0, 1, 2, . . . ,

1, 2, 3, . . . .

In the above formulae, the upper (lower) terms in curly brackets refer to the Neumann/

traction-free (Dirichlet/clamped) cases. The main difference between the clamped and

traction-free cases is the exclusion of n = 0 in the clamped case. In the traction-free case,

n = 0 leads to a constant solution for û(j)
n , whereas in the clamped case this corresponds

to the trivial solution and is hence omitted.

Remark 3 Provided that the conditions on the boundaries of the guide are homogeneous,

a no mode-conversion property (monomode property as referred to in the physics com-

munity) at the interfaces can readily be shown, as in Adams et al. (2008): an incoming

mode is only transmitted and reflected into the same mode. Since modes do not interact,

we can consider only a single mode rather than a (non-finite) sum of modes. We drop

the notation n in subscript and assume henceforth that all variables and parameters

correspond to the nth modal solution only, but return to this point in our discussion of

stop-bands.

We call on the matrix-based techniques as in Pagneux & Maurel (2002). Within a

homogeneous section of guide the wave field corresponding to a single mode is written as

(
τ
(j)
13 (x1, x2)

u(j)(x1, x2)

)
=

(
a(j)(x1)τ̂

(j)
13 (x2)

b(j)(x1)û
(j)(x2)

)
.

Here we denote a(j)(x1) = ik(j)
(
A(j) exp(ik(j)x1) − B(j) exp(−ik(j)x1)

)
and b(j)(x1) =

A(j) exp(ik(j)x1)+B
(j) exp(−ik(j)x1). The amplitudes in front of exp(ik(j)x1) and exp(−ik(j)x1)

represent the contribution by the nth modal solution in the right- and left-going directions

respectively. The angle θ made in the complex plane by k(j) and the positive real-axis

satisfies 0 � θ � π/2.

Invoking continuity of normal stress and displacement across a material interface at

x1 = x1∗, one can equate these to yield:

(
a−(x1∗)τ̂

−
13(x2)

b−(x1∗)û
−(x2)

)
=

(
a+(x1∗)τ̂

+
13(x2)

b+(x1∗)û
+(x2)

)
.
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Examining (3.5), and recalling that the dependence of û(j) and τ̂(j)13 on material parameters j

is only through a scalar factor, we obtain β(2)(α(2))2k(2)a(2) = β(1)(α(1))2k(1)a(1) and b(2) = b(1).

The Floquet–Bloch-type conditions (3.3)–(3.4) are equivalent to a(1)(d) = a(1)(0) exp(−γd),
b(1)(d) = b(1)(0) exp(−γd). We combine this with results for a homogeneous material, found

in Pagneux & Maurel (2002), to arrive at

exp(−γd)
(
a(1)(0)

b(1)(0)

)
=

(
a(1)(d)

b(1)(d)

)
= M

(
a(1)(0)

b(1)(0)

)
, (3.6)

M =

(
C(2) iS(2)

iS(2) C(2)

) (
r−1 0

0 1

) (
C(1) iS(1)

iS(1) C(1)

) (
r 0

0 1

)
, (3.7)

where C(j) := cos(k(j)d(1)), S(j) := sin(k(j)d(2)) and r := k(2)β(2)(α(2))2/k(1)β(1)(α(1))2.

Examining (3.6), we require a(1)(0) = 0 when the edge x1 = 0 is subject to traction-free

conditions, and b(1)(0) = 0 when it is clamped. Clearly, imposing these conditions will also

satisfy the problem for a strip of finite length. Requiring non-trivial solutions, results in

the following two simultaneous equations for ω and γ:

0 =

⎧⎨
⎩
r−1C(2)S(1) + S(2)C(1),

rC(2)S(1) + S(2)C(1),
(3.8)

exp(−γd) =

⎧⎨
⎩

C(2)C(1) − r−1S(2)S(1),

C(2)C(1) − rS(2)S(1),
(3.9)

where the upper (lower) terms in curly brackets refer to the case of traction-free (clamped)

conditions on x2 = ±1/2. Clearly, the pair of equations in (3.9) are identical up to the

replacement of r by r−1. Hence, the only difference between the two cases is the exclusion

of n = 0 from the clamped problem, which leads to a zero-frequency band gap (Poulton

et al., 2001); the monomode property ensures that conditions imposed have no other

influence on the solution, which is otherwise determined by the condition(s) imposed on

the left (and right for a finite-length guide) edge(s). Standard root-finding techniques are

employed on (3.8) and solutions form a list of candidate frequencies. The corresponding

‘Bloch parameters’ −iγ are then immediate from (3.9), and only those solutions with

�(γ) > 0 are physically meaningful.

Remark 4 In the case of an infinite guide, considered in Adams et al. (2008), (3.9) is posed

as an eigenvalue problem. Propagating solutions are sought, and the notation k0 = −iγ

is used to describe the phase change over each cell: all frequencies, with the exception

of those in a stop-band, correspond to real Bloch parameters k0, and so support energy

propagation through the guide. These Bloch solutions also hold for the semi-infinite strip

as the eigenfunctions are arbitrary to within a multiplicative constant/phase shift and this

can be chosen to satisfy the edge conditions as the guide is monomode, see (3.9). Thus

numerically one finds that the spectrum consists of this continuous spectrum coupled with

the discrete spectrum.
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Figure 2. (Colour online) (a) Dispersion curves for surface modes corresponding to a single value

of γ = −ik0 and which form part of the point spectrum of S are shown as dashed curves, and

the Bloch spectrum, σBloch, for the analogous infinite case as the solid lines. (b) Surface waves and

modes of the infinite structure can coincide away from the edges of the Brillouin zone; investigation

shows this is only possible when the wavenumbers across the guide differ. These wavenumbers are

indexed by n, which counts the number of half-oscillations across the guide, and are shown in (b)

and (c). We draw attention to the fact that the surface modes exist within the gaps created by the

infinite problem at the edges of the Brillouin zone, by zooming in on a band in (c), which shows

that the surface wave lies extremely close to the upper mode, but still within the gap. Panels (d)

and (e) show the corresponding mode shapes for the crossing, in (b) and the near crossing, in (c).

When n differs, crossing can be observed, but for n the same, crossing cannot be observed.

We now examine three problems; first we deal with guides of finite height and use

the aforementioned method to find elements in σboundary. We compare these results to the

spectrum σBloch for the problem dealt with in Adams et al. (2008), and note how these

spectra interact. To extend the results and to gain insight into the finite height problem,

we consider a guide of infinite height. In this instance, we no longer have an integer n

by which we can index the solutions, and instead we have a continuous wavenumber kx2
.

We then use these results to develop a link between the elements the method obtains in

σboundary and the spectrum σBloch.

3.3 Results: Finite-height guides

Figure 2 shows the solutions for the infinite case, in which k0 measures the phase change

across the cell, as solid curves. Also shown on the figure are the surface mode frequencies,
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Table 1. The first 10 surface mode frequencies and corresponding Bloch values for an

Aluminium(1)–Tin(2) guide, subject to traction-free conditions on the edge x1 = 0. The

number of half-oscillations across the guide is given by n, and so gives the parity of the sur-

face modes. (a) The first 10 values in the case when the guide is traction-free on x2 = ±1/2;

when it is clamped on x2 = ±1/2, n = 0 must be excluded, and the first 10 values are shown

in (b)

ω γ n

(a) The traction-free case

0.7624 0.0470–0.5236i 0

1.4168 0.0392 0

2.1968 0.0010–0.5236i 0

2.9424 0.0536 0

3.3038 0.2300–0.5236i 1

3.6012 0.0308–0.5236i 0

3.7556 0.0002 1

4.3618 0.1023–0.5236i 1

4.3930 0.0040 0

4.9052 0.0226 1

(b) The clamped case

3.3038 0.2300–0.5236i 1

3.7556 0.0002 1

4.3618 0.1023–0.5236i 1

4.9052 0.0226 1

5.6538 0.0305–0.5236i 1

6.2428 0.0721 1

6.3500 0.2499–0.5236i 2

6.5446 0.0126 2

6.9418 0.0010–0.5236i 1

7.0188 0.1739–0.5236i 2

shown as dashed horizontal lines; and these occur at discrete, complex, values of k0 = iγ,

and thus the k0d axis is irrelevant here. The guide layers are Aluminium (cT = 3130 ms−1),

material 1; and Tin (cT = 1670 ms−1), material 2; henceforth referred to as Aluminium(1)–

Tin(2). Conditions on the guide walls and on the edge x1 = 0 are Neumann, and the

layer widths are d(1) = d(2) = 3. The first 10 frequency-Bloch parameter pairs are given in

Table 1.

Whenever there is a non-trivial imaginary component of γ it is equal to −π/d, equivalent

to a phase change of π over one layer. In these cases, the cell is effectively of length 2d, and

the phase changes across the first two layers and the second two cancel. By considering

instead a unit cell of length 2d, we would obtain a real Bloch parameter equal to 2�(γ).

We note further that decay occurs over a scale of (�(γ)d)−1 layers, whose value can be

large, for example, the seventh surface mode decays over (�(γ)d)−1 ∼ 800d length units.

Results for the clamped case with a traction-free condition on edge x1 = 0 are the same

but exclude n = 0 values. Figures 2(b) and 2(c) show a zoom of Figure 2(a), indicated by

arrows. We observe that on the edge of the Brillouin zone, at k0d = 0, π, surface waves
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Figure 3. Stress τ13, shown as solid curves, and displacement, shown as dotted curves, mode

shapes for surface modes, normalised to have unit displacement at x1 = 0 of the Aluminium(1)–

Tin(2) guide, with traction-free edge conditions. Panel (a) corresponds to ω = 0.7642, with n = 0.

This mode, unlike (b) and (c), only exists in the traction-free problem. Panel (b) corresponds to

ω = 4.9052, n = 1. Panel (c) corresponds to ω = 6.35, n = 2. Also plotted are the decay envelopes,

shown as dashed curves, which bound the mode shapes and dictate its decay.

(dashed lines) lie within gaps created by nearby modes, and further investigation shows

that those modes nearby have the same shape across the guide as the surface wave. We

later demonstrate in a special case of weak material contrast between layers that this

always holds: for a given value of n (which counts the number of half-oscillations across

the guide): surface waves with n half-oscillations across the guide do not intersect modes

with the same n, as in (3.5). However, when these n values differ between the guide, the

surface wave, and mode of the infinite structure, as they do in Figure 2(b), a crossing

within the Brillouin zone is possible, as shown. Nonetheless for the full spectrum, as

illustrated by Figure 2(a), we emphasise that there are eigenvalues present that are not

contained within σBloch.

Figure 3 shows a selection of stress and displacement mode shapes in the Aluminium(1)–

Tin(2) guide with a traction-free edge condition, as considered in Figure 2. Frequencies,

ω, and mode numbers, n, are given in the caption; and corresponding Bloch values are

found in Table 1. We draw particular attention to Figure 3(c), which demonstrates that in

cases when γ has imaginary part equal to −π/d (in this case, γ = 0.25 − 0.52i), the phase

shifts by π over a cell. We also sketch the decay envelopes, proportional to exp(−�(γ)x),

to illustrate how the mode shapes decay as x → ∞. One can see from Table 1 that there is
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Figure 4. (Colour online) Dispersion curves for a problem in which the layers are of infinite height,

and travel in x2 is governed by wavenumber kx2
, when the edge x1 = 0 is traction-free. Panel (a)

is for the Aluminium(1)–Tin(2) guide, and (b) is for a Tin(1)–Aluminium(2) guide. Circled in the

figure are the instances when this coincides with the finite height guide, those kx2
= nπ/2 for n

integer. The dashed curves sketched show the bulk wave solutions, kx2
= ω/c

(j)
T . In each case, the

surface modes are confined to have phase speed greater than the bulk speed of material 1. In (b),

the bulk speed of material 2 also bounds the surface modes.

large variation in decay length scales; the first 10 surface modes decay over length scales

ranging from 1d to 800d. Drawing attention to the fact that the modal solutions satisfy

the traction-free edge conditions for all x1 = nd for integer n, as shown in the figure, we

note that mode shapes would be unchanged for any truncation of the semi-infinite guide

whose length is an integer multiple of d.

3.4 Results: Infinite-height guides

We consider a related problem in which the guide is of infinite height, as in Camley

et al. (1983), to provide insight into the finite thickness guide considered herein. Assuming

a wavenumber kx2
in the x2 direction, it is clear that solutions for the infinite-height

problem and finite-height problem coincide whenever kx2
= mπ/2 for integer m. Figures 4

and 5 show dispersion curves for guides in which the edge x1 = 0 is traction-free

and clamped respectively. An Aluminium(1)–Tin(2) guide is treated in Figure 4(a), a

Tin(1)–Aluminium(2) guide in Figure 4(b), a Steel(1)–Lead(2) guide in Figure 5(a) and
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Figure 5. (Colour online) Dispersion curves a problem with infinite height layers in which travel in

x2 is governed by wavenumber kx2
and edge x1 = 0 is clamped. Panel (a) is for the Steel(1)–Lead(2)

guide, and panel (b) is for a Lead(1)–Steel(2) guide. Circled in the figure are the instances when

this coincides with the finite height guide. Dashed curves sketched show the bulk wave solutions,

kx2
= ω/c(j). As in the free-edge case, the surface modes are confined to have phase speed greater

than the bulk speed of material 1. In (b), the bulk speed of material 2 also bounds the surface

modes.

a Lead(1)–Steel(2) guide in Figure 5(b). Those kx2
corresponding to solutions for the

guide problem are circled in each panel. The dashed curves correspond to the bulk modes

in each material, with wavenumber kx2
= ω/cT . In both cases, the surface modes have

phase speed bounded below by the bulk wave speed of the material in contact with

the edge, material 1. Further, in Figures 4(b) and 5(b), in which the wave speed of

material 2 is greater than that of material 1, the bulk speeds of material 2 bounds the

solutions, and as a result, far fewer solutions are available. In particular, n = 0 yields no

solutions and so the frequency spectrum in the clamped and traction-free cases are the

same in this instance. If the wave speed of material 1 is greater than that of material

2, α(2) < 1, as in Figures 4(a) and 5(a), surface modes solutions are always available

at n = 0.

It is worth noting also that cases arise in which the bulk speed of the outer material

(1) is lower than that of inner material (2), as treated in Figures 4(b) and 5(b), but in

which modal solutions exist with phase speed above the bulk speed in both layers. In

this instance, a repulsion phenomena is observed, and modes asymptote to the faster bulk
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Figure 6. (Colour online) Dispersion curves for a problem with infinite height and edge x1 = 0 is

traction-free, for the Lead(1)–Steel(2) guide. Circled in the figure are those instances which coincide

with the finite height guide. Dashed curves sketched show the bulk wave solutions, kx2
= ω/c(j).

We draw attention to those modes which exist above the bulk speed of the faster materials, below

the lower dashed curve, and observe the repulsion phenomena between modes at the bulk band

interface.

speed (of material 2), before continuing into the region bounded by both bulk speeds;

such curves are ultimately still bounded below by the bulk speed of the slower material

(1). Figure 6 shows an example of this when the x1 = 0 edge is traction-free, for a Lead–

Steel guide of the same dimensions as considered in Figures 4 and 5. We now examine

changes as the layer thickness varies, and in doing so provide a method by which one

could tune the guide to achieve the desired response. Figure 7 shows the surface modes

of an Aluminium(1)–Tin(2) guide for n = 1 in Figure 7(a) and n = 2 in Figure 7(b), in

which the edge x1 = 0 is traction-free. The cell width is d = 6, as in previous examples,

and is held constant while layer thicknesses, d(1), d(2), are varied. There are a number of

discrete values of d(1), as modes in material 1 become cut-on, with k(1) = 0. Those cut-on

ω and d(1) values can be obtained when c
(1)
T > c

(2)
T , as is the case here, by noting that

k(1) = 0 and the surface wave relation implies that k(2)d(2) = mπ for integer m; and this

yields d(1) = d− d(2) = d− 2m/n
√

(α(2))−2 − 1. This occurs at ω = nπ and is indicated by

a dashed horizontal line, and cut-on values of d(1) are circled. The cut-off frequency in

the faster material bounds frequencies from below, which are unbounded above for all n.

For n = 0, modes are bounded below by ω = 2α(2)π/d, which is achieved only at d(1) = 0,

equivalent to the homogeneous guide case.

Figure 8 shows the analogous results for a guide of the same total length, composed of

Tin(1)–Aluminium(2), for which c(1)
T < c

(2)
T . Cut-off ω and d(1) can be similarly obtained by

noting that k2 = 0 and thus d(1) = 2m/n
√

(α(2))−2 − 1. The cut-off frequency in the slower

(outer) material is the lower bound, which is never achieved, and is shown by a dashed

line in the figure. In this particular case, the material 2 cut-off frequency forms an upper

bound, and (d(1), ω) values are circled in the figure. This is not universally the case, as

some choices of materials permit the existence of surfaces modes of unbounded frequency

for each n. In such cases, for example, a Lead–Steel guide of the same dimensions, surface

modes go through the cut-off frequencies at (d(1), ω) given above, and are unbounded for

each n.
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Figure 7. (Colour online) Surface modes for an Aluminium(1)–Tin(2) guide of constant total

length d= 6, and varying length d(1), for which edge x1 = 0 is traction-free. The cut-off frequencies

of material 1 are shown as dashed lines at ω = nπ, and cut-on values of (d(1), ω) are circled. (a) The

n = 1 case, and (b) the n = 2 case.

3.5 Asymptotic analysis

Our initial idea was to find conditions on the nature of the material parameters such

that one could ensure that surface waves lie solely within total stop bands of the

analogous infinite structure. However, it cannot be guaranteed that such conditions exist

or correspond to a material that is physically viable, and we could not obtain such

conditions. Having observed the numerical results in the previous section, in particular

that surface waves lie within gaps created at the edges of the Brillouin zone, it was found

that one can demonstrate a partial result using asymptotic methods: that surface waves

and modes of the same wavenumber across the guide (same number of half-oscillations

across the guide) do not intersect. If one is able to restrict the cross sectional variation of

waves in the guide to a specific mode number, n, this result coincides with our initial idea.

Definition 5 The n-spectrum is defined to be the spectrum occupied by modes with wavenum-

ber nπ/2 across the guide. Likewise, an n-surface wave is defined to be a wave which decays

in amplitude into the guide, as in (3.9), with wavenumber nπ/2 across the guide. We remind

the reader that n counts the number of half-oscillations of the mode, across the guide, as in

(3.5).
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Figure 8. (Colour online) Surface modes for a Tin(1)–Aluminium(2) guide of constant total length

d = 6, and varying length d(1), for which edge x1 = 0 is traction-free. The cut-off frequencies of

material 1 and 2 are shown as dashed line at ω = α(1)nπ (lower) and ω = α(2)nπ (upper) respectively,

and cut-on values of (d(1), ω) are circled. (a) The n = 1 case, and (b) the n = 2 case.

Definition 6 An n-band gap is defined to be an interval of frequency values not occupied

by the n-spectrum. For clarity, we contrast this definition against that of a total stop band,

or band gap: an interval of frequency values not occupied by the Bloch spectrum. It follows

that a stop band is contained within n-band gaps for all positive integer values of n, and

hence no propagation is permitted.

Band gaps form even when the contrast between materials in the striped guide is weak,

and we wish to exploit that fact and dissect the problem using asymptotic methods, when

the edge is traction-free. In particular, we wish to demonstrate that every n-surface wave

in the semi-infinite/finite problem occurs at a frequency lying within an n-band gap of the

analogous infinite problem. Further such gaps of the infinite problem contain at most one

such surface wave. In the straight-walled infinite case, it is readily found that frequencies

bounding each band gap appear on the edge of the Brillouin zone, at k0d = 0, π, when

wall conditions are homogeneous Harrison et al. (2007). When the guide is homogeneous

(material 1 = material 2), the case about which we will perturb, the wavenumbers along

the guide at k0d = 0, π can be identified as k = mπ/d for m = 0, 1, 2, . . . as in Adams et al.

(2008). This result can also be demonstrated by applying (3.9) to the homogeneous case,

in which r = 1.
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A contrast between the materials is introduced by perturbing the density of material 2,

setting ρ2 = ρ1(1 + ε); wave speeds are unchanged as c(1)
T = c

(2)
T . We assume the ansatz

k ∼ k0 + εk1 + ε2k2 + · · · , and after noting that

cos(kd(j)) ∼ c
(j)
0 − εk0d

(j)s
(j)
0 − ε2

(
k2d

(j)s
(j)
0 + k2

1(d
(j))2c(j)0 /2

)
,

sin(kd(j)) ∼ s
(j)
0 + εk1d

(j)c
(j)
0 + ε2

(
k2d

(j)c
(j)
0 − k2

1(d
(j))2s(j)0 /2

)
,

1/r ∼ 1 − ε+ ε2,

where c(j)i = cos(kid
(j)), s(j)i = sin(kid

(j)), it emerges that the surface wave for the traction-

free edge problem is solved by

k0 = 0, π/d, 2π/d, . . . , k1 =
sin(k0d

(1)) cos(k0d
(2))

d cos(k0d)
. (3.10)

We now inspect the infinite case at the same frequency for which it can readily be shown

that exp(ik0d) = [tr(M) ±
√

tr(M)2 − 4]/2, where tr(.) denotes the matrix trace and M is

given in (3.7). Hence |tr(M)| > 2 whenever a band gap is present, Adams et al. (2008).

This result also holds for fixed n: |tr(Mn)| > 2 whenever an n-band gap is present; we

append the subscript n to M to emphasise that this is M for the nth mode. We wish now

to exploit that fact to demonstrate that the value of k given in (3.10) always lies within a

band gap of the infinite problem.

The trace of Mn given by (3.7), simplifies to

tr(Mn) = 2C(1)C(2) − (r + r−1)S(1)S(2),

which, by applying the aforementioned expansions, takes the form

tr(Mn) ∼ 2 cos(k(0)d) − ε2
[
k2

1d
2 cos(k0d) + sin(k0d

(1)) sin(k0d
(2))

]
.

Noting that |2 cos(k(0)d)| = 2, the sign of the first non-zero correction term will determine

whether or not the surface mode lies in a band gap. The omission of an O(ε) term

physically corresponds to the fact that the sign of the density perturbation does not affect

this.

Evaluating this at the wavenumber of the surface wave, found in (3.10), we arrive at:

tr(Mn) ∼ 2 cos(k0d)

(
1 − ε2T

cos2(k0d)

)
,

where

T = cos2(k0d
(2)) sin2(k0d

(1)) + sin(k0d
(1)) sin(k0d

(2)) cos(k0d).

By noting that sin(k0d
(2)) = − cos(k0d) sin(k0d

(1)), it is quickly shown that

T = sin2(k0d
(1))

(
cos2(k0d

(2)) − 1
)

� 0,

and equality is only achieved if k0d
(1) = mπ. It thus follows that away from these values,

which we return to later, tr(Mn) > 2, and thus the n-surface wave lies outside of the

n-spectrum. For given parameters, (3.10) has a unique solution k1, and this also holds

true for higher-order terms. As each surface wave is perturbed off a different frequency,
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Figure 9. (Colour online) Dashed curves show the surface wave solutions from the asymptotic

scheme, found using (3.10). Solid curves show the computational solution, found by root finding on

equation (3.9). (a), (b) The first two modes respectively.

each n-band gap in the spectrum can have at most one surface wave in it. In fact we find

numerically exactly one surface wave in each gap. It is worth noting that in the clamped

case (not shown), for which the n = 0 mode is excluded, that the lowest gaps for n = 1

had no surface wave within them.

Having developed an asymptotic scheme, we now compare it to the numerical solution

of (3.9), as ε increases. Figure 9 shows the lowest two modes, perturbed off ω = π/d, 2π/d,

and we consider a case with d(1) = 4, d(2) = 2. The agreement is good up to ε = 1, with

a relative error of 5.5% for the first mode and 2.4% in the second. We attribute the

exceptional accuracy of this scheme at high ε to the increasingly many sin, cos terms

multiplying higher-order corrections. Having established that the asymptotic scheme

developed produces results close to those found from the full computation, we can be

confident in the findings that scheme led to; namely the demonstration that at a fixed

wavenumber, nπ/2, the infinite spectrum and surface waves do not intersect.

4 Concluding remarks

Here we have considered a ‘1.5-dimensional’ waveguide problem which is intermediate

between that of a simple line and of a fully two-dimensional composite structure. We are

interested in how the spectrum of the guide, with unit length, is affected as the guide

height, η, tends to 0. In particular, we address the problem when the wavelength across
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the guide remains of the order of magnitude of the guide height as η → 0. The limit

spectrum, σBloch ∪ σboundary, consists of two parts: the Bloch spectrum, which is readily

found as in Adams et al. (2008), and the unknown boundary spectrum, about which one

cannot say a priori whether it is non-empty, and, in particular, whether σboundary \ σBloch is

non-empty. The limit spectrum was shown to coincide with the spectrum σΠ of a problem

on Π = �+ × (−1/2, 1/2). Hence, if we know that the spectrum σΠ has a point part (i.e.

eigenvalues) away from σBloch, then these eigenvalues must be elements of the boundary

spectrum σboundary.

This analysis was complemented by numerical work, in which we considered the

problem on Π . Material parameters were set to vary in a piecewise periodic fashion

so the analogous guide of infinite length coincides with the striped guide considered in

Adams et al. (2008), allowing the Bloch spectrum to be readily obtained. The aim was to

demonstrate numerically that σboundary is non-empty by invoking (2.26) and by comparing

this spectrum σΠ to σBloch. To this end, we restricted ourselves to those solutions that

exponentially decay into the guide and satisfy an additional restriction that allows us to

study an equivalent problem on a single period cell. Using this observation we can capture

some, but not necessarily all, of the elements in σboundary; this spectrum may indeed be

far richer than a collection of discrete points found using the methodology contained

herein. One could for instance use the alternative approach of Movchan & Slepyan (2007)

whereby localised modes are sought in the form of (anisotropic) Greens functions in the

gaps, and this may pick up other types of boundary modes.

We have provided a methodology to find such surface waves in finite and semi-infinite

straight walled striped guides with homogeneous conditions on the walls using a modal

matrix approach. Surface mode shapes and frequencies were given and a discussion of

the length scale over which the mode decays was presented. Investigation into a problem

with layers of infinite height, in which no restrictions are placed on wavenumber across

the guide, offered further insight into the guide problem. Results of surface waves and

analogous infinite guides were presented, and observations made about the frequency of

the surface modes relative to band gaps of the analogous infinite structure. In particular,

we observed that all surface modes exist within gaps of the infinite spectrum with the

same wavenumber, even when those band gaps are narrow. We later used this observation

as the basis for an asymptotic scheme, developed with a view to demonstrating this

relationship in the special case of weak material contrast. In this situation, it was found

surface modes lie within gaps in the spectrum when the wavenumber across the guide

is held constant: to use the terminology developed herein, n-surface waves always lie in

n-band gaps. Notably this implies that at sufficiently low frequencies, below the cut-on for

n = 1 modes, surface modes lie in total stop bands of the infinite problem. This asymptotic

scheme was compared against numerical results, and its accuracy demonstrated.
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