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Abstract 20 

By age 2, children are developing foundational language processing skills, such as quickly 21 

recognizing words and predicting words before they occur. How do these skills relate to 22 

children’s structural knowledge of vocabulary? Multiple aspects of language processing were 23 

simultaneously measured in a sample of 2-to-5-year-olds (N=215): While older children were 24 

more fluent at recognizing words, at predicting words in a graded fashion, and at revising 25 

incorrect predictions, only revision was associated with concurrent vocabulary knowledge once 26 

age was accounted for. However, an exploratory longitudinal follow-up (N=55) then found that 27 

word recognition and prediction skills were associated with rate of subsequent vocabulary 28 

development, but revision skills were not. We argue that prediction skills may facilitate 29 

language learning through enhancing processing speed. 30 

Keywords: vocabulary development; linguistic prediction; word recognition; eye-tracking; 31 

longitudinal 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 



PREDICTION AND VOCABULARY DEVELOPMENT 

 

 3 

The relation between preschoolers’ vocabulary development and their ability to predict and 45 

recognize words. 46 

Children show considerable variation in how quickly they acquire knowledge about 47 

their native language(s), e.g., about the structure and composition of their vocabulary (Fenson 48 

et al., 1994). While there is strong evidence that this variation can be partially predicted by 49 

environmental factors, such as quantity and quality of early linguistic input (e.g., Hiareau, 50 

Yeung, & Nazzi, 2019; Hoff, 2003; Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991; Rowe, 51 

2012; Weisleder & Fernald, 2013; Weizman & Snow, 2001), recent work also suggests how 52 

certain child-internal factors may play an important explanatory role. Of particular interest 53 

here, children’s ability to efficiently process linguistic input, such as quickly recognizing words 54 

and grasping sentence meaning, has been robustly associated with their concurrent vocabulary 55 

knowledge, and also with later language outcomes (Fernald, Perfors, & Marchman, 2006; 56 

Fernald & Marchman, 2012; Marchman & Fernald, 2008; Peter, et al., 2019; Weisleder & 57 

Fernald, 2013; see also Duff, Reen, Plunkett, & Nation, 2015; Friend, Smolak, Liu, Poulin-58 

Dubois, & Zesiger, 2018 for evidence that current vocabulary also predicts later language 59 

outcomes). But what is the relation between children’s ability to predict upcoming linguistic 60 

input and their concurrent and later vocabulary knowledge? 61 

Links between language processing skills and language outcomes are expected under a 62 

variety of theories of language development, all incorporating the idea that the way in which 63 

children process and make sense of their linguistic input in-the-moment shapes what and how 64 

much they can learn from it (McCauley & Christiansen, 2019; Omaki & Lidz, 2015; Pozzan & 65 

Trueswell, 2015). Here, we focus in particular on the kind of relation that is expected under 66 

models of error-driven learning (Chang, Dell, & Bock, 2006; Ramscar, Dye, & McCauley, 67 

2013). In such models, children learn about meaning and grammar by continuously predicting 68 
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what they will hear next based on their current knowledge of how words are used, and revising 69 

that knowledge when their predictions are incorrect.  70 

As we describe below, there is considerable evidence that children predict upcoming 71 

words when processing sentences (Borovsky, Elman, & Fernald, 2012; Gambi, Pickering, & 72 

Rabagliati, 2016; Mani & Huettig, 2012), and these models therefore assume that there should 73 

be a particularly strong relation between children’s language outcomes and their skill at 74 

predicting linguistic input. In this context, prediction skill is a measure of children’s ability to 75 

generate expectations about the words they will encounter, before they encounter them, and it 76 

contrasts with recognition skill, a measure of how quickly children can access the meaning of 77 

a spoken word as they hear it (Pickering & Gambi, 2018). Here, we assess whether pre-78 

schoolers’ prediction skills relate to both their concurrent vocabulary size and longitudinal 79 

vocabulary development; furthermore, in the same children, we assess the relations between 80 

recognition skills and concurrent and later vocabulary knowledge (Fernald, et al., 2006). The 81 

aim is to investigate both whether and how prediction skill may be related to the development 82 

of linguistic knowledge. 83 

How might prediction relate to language learning? 84 

By their second birthday, children begin to develop an increasingly sophisticated ability 85 

to predict upcoming language. For example, two-year-olds can already use the meaning of a 86 

known verb to predict a likely object (e.g., eat predicts apple; Mani, Daum, & Huettig, 2016; 87 

Mani & Huettig, 2012). From the age of 3, children begin to combine semantic associations 88 

elicited by the subject and verb of a transitive sentence to predict the most appropriate 89 

continuation (e.g., pirate plus chase predicts ship, but dog plus chase predicts cat; Borovsky 90 

et al., 2012). Moreover, preschoolers are also able to combine meaning and grammar, so that 91 

they predict strong semantic associates only if they fulfill an available grammatical role (e.g., 92 
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Mary will arrest the... predicts robber, but not policeman, because the agent role is not 93 

available; Gambi et al., 2016). In sum, when children generate predictions about upcoming 94 

words, they make use of all of their developing linguistic knowledge, and are clearly able to 95 

anticipate the most likely continuation of transitive verb frames. 96 

These skills at prediction could be related to language development because prediction 97 

facilitates language learning, and this facilitation could come about in one of two ways 98 

(Rabagliati, Gambi, & Pickering, 2015). Under error-driven learning models of language 99 

development, prediction plays a key role in the process of learning: Children are assumed to 100 

continuously generate predictions about upcoming language, and they learn by comparing 101 

these predictions to the input, which generates informative error signals, and triggers updating 102 

of their internal language model (Chang et al., 2006; Ramscar et al., 2013). Thus, under these 103 

models, children’s prediction skills play a direct role in their linguistic development. In 104 

contrast, under other models of language learning, prediction may still play an important role, 105 

but it would do so indirectly, through the facilitative effect that prediction exerts on fluent 106 

language processing (Fernald, Marchman, & Hurtado, 2008; Omaki & Lidz, 2015; Pozzan & 107 

Trueswell, 2015). As Fernald and colleagues argue (Fernald, Marchman, et al., 2008), children 108 

who can quickly and fluently process the linguistic and non-linguistic context around a novel 109 

word are at an advantage in trying to guess what the speaker intends it to mean. Prediction can 110 

enhance fluent processing because it permits predictable words to be pre-processed, and thus 111 

speeds up recognition times (Lew-Williams & Fernald, 2007; Mahr, McMillan, Saffran, 112 

Weismer, & Edwards, 2015). Attentional resources can therefore be devoted elsewhere, such 113 

as to more accurately infer the meanings of novel words using linguistic and non-linguistic 114 

cues. 115 

Consistent with both of these ideas, recent evidence does suggest a relation between 116 

children’s skill at prediction and their language-learning outcomes. For example, 3-to-4-year-117 
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olds’ predictions about how people use ambiguous syntactic frames affect what word meanings 118 

they learn. When primed to interpret an ambiguous frame (e.g., French la petite) as a noun (i.e., 119 

“the small one” vs. an adjective: “the small”), children learned action meanings for novel words 120 

inserted after the frame (la petite dase), presumably because they predicted that a verb would 121 

follow the noun (Havron, de Carvalho, Fiévet, & Christophe, 2019). Further, 3-to-5 year olds’ 122 

ability to reorient after an incorrect prediction correlates with their skill at learning novel words 123 

(Reuter, Borovsky, & Lew-Wlliams, 2019). In an eye-tracking task, children heard sentences 124 

like Yummy, let’s eat soup! I’ll stir it with a cheem, where the context predicts spoon but cheem 125 

referred to a novel tool. Reuter and colleagues found that children who showed evidence of 126 

learning the novel words were more likely to engage in  a predict-and-redirect strategy, initially 127 

predicting (gazing towards) a depicted spoon while listening to the context, but then quickly 128 

re-orienting their gaze towards the novel tool when they heard cheem. Finally, there is evidence 129 

that children’s skill at predicting words while listening to sentences correlates with their current 130 

linguistic knowledge, particularly their vocabulary size, both for preschool and school-age 131 

children (Borovsky et al., 2012), and for children as young as 24 months (Mani & Huettig, 132 

2012). 133 

However, while these findings are suggestive of a relation between prediction and 134 

learning, they are not conclusive about the nature and strength of that relation. First, much of 135 

the evidence is consistent with both accounts of how prediction facilitates learning: For 136 

example, the fact that structural predictions shape children’s word learning (Havron et al., 137 

2019) can be explained both by models in which prediction affects learning directly, via the 138 

computation of error signals, and by models in which it affects learning indirectly, because it 139 

facilitates fluent language processing and ambiguity resolution. Similarly, the finding that 140 

children’s ability to reorient after an incorrect prediction is important for word learning (Reuter 141 

et al., 2019) could be explained in different ways: It could indicate a direct causal relation 142 



PREDICTION AND VOCABULARY DEVELOPMENT 

 

 7 

between error-revision and learning, or it could be that general cognitive ability means that 143 

children who are stronger learners are also better at revising incorrect predictions. 144 

In addition, it is unclear to what extent young children would be able to learn from 145 

generating expectations that turn out to be incorrect. Specifically, this idea seems at odds with 146 

a large literature showing that, in many linguistic contexts, children struggle to revise their 147 

initial interpretations of sentences even at the end of the preschool years (Choi & Trueswell, 148 

2010; Huang, Zheng, Meng, & Snedeker, 2013; Trueswell, Sekerina, Hill, & Logrip, 1999; 149 

Leech, Rowe, & Huang, 2017). If children’s revision skills develop slowly, and thus they have 150 

difficulty updating their linguistic knowledge in real-time, then the influence of error-driven 151 

learning mechanisms in early development may be limited. Indeed, there is evidence that 152 

children who initially generate an incorrect hypothesis during a word learning task fail to 153 

encode information that could help them revise their incorrect hypothesis and arrive at the 154 

correct knowledge (Woodard, Gleitman, & Trueswell, 2016; Aravind, de Villiers, Pace, 155 

Valentine, Golinkoff, Hirsh-Pasek, … , & Wilson, 2018; but see Roembke & McMurray, 156 

2016). Furthermore, revision difficulties also call into question the claim that prediction 157 

facilitates learning by enhancing fluent processing. In particular, processing delays due to 158 

incorrect predictions may well outweigh the speed up in recognition times that children 159 

experience when their predictions are correct (Omaki & Lidz, 2015), making the idea that 160 

prediction facilitates children’s fluent language processing also a potentially problematic one. 161 

Finally, while there is evidence of a relation between prediction skill and concurrent 162 

language knowledge, that evidence is surprisingly fragile. For example, while Mani and 163 

Huettig (2012) found that prediction skill did correlate with expressive vocabulary, it did not 164 

correlate with receptive vocabulary in the same sample, even though prediction skill did 165 

correlate with receptive vocabulary in older children (Borovsky et al., 2012). Further, in two 166 

studies, Gambi and colleagues found no evidence that prediction skill correlated with either 167 
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productive or receptive vocabulary size in pre-schoolers, once age was controlled for (Gambi, 168 

Gorrie, Pickering, & Rabagliati, 2018; Gambi et al., 2016). Finally, the evidence that would be 169 

most informative – a longitudinal relation between prediction skill and later language outcomes 170 

– is yet to be collected. In the absence of such evidence, it is possible that these associations 171 

between prediction skills and linguistic knowledge arise because more linguistically advanced 172 

children are also better equipped to generate predictions - i.e., because prediction is a result of 173 

linguistic development, rather than because prediction plays a role in linguistic development 174 

(Rabagliati et al., 2015). In contrast, there is strong evidence for a relation between linguistic 175 

processing speed, as measured by how quickly children recognize spoken words (i.e., 176 

recognition skill), and both concurrent and later language outcomes (Fernald, Marchman, et 177 

al., 2008; Fernald, et al., 2006; Marchman & Fernald, 2008). 178 

In sum, the evidence for a relation between prediction skills and vocabulary 179 

development is suggestive but not conclusive and, furthermore, we are yet to establish how and 180 

why prediction skill might be related to linguistic development: Does prediction facilitate 181 

language development in-and-of itself (e.g., via error-driven learning), or does it simply 182 

contribute to the broader facilitative effect of faster language processing? In order to address 183 

these questions, we not only need more robust evidence for a relation between prediction skill 184 

and both concurrent and later vocabulary knowledge, but also a better measurement of the 185 

degree of sophistication of young children’s ability to generate and revise linguistic 186 

expectations. Finally, we need to measure such prediction and revision skills alongside general 187 

word processing skills in order to understand how they jointly contribute to vocabulary 188 

development.  189 

The current study 190 
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In the present work we aimed to understand whether and how children’s linguistic 191 

prediction skills are associated with vocabulary knowledge and vocabulary development. To 192 

do this, we developed a visual world eye-tracking task that measured the sophistication of 193 

children’s ability to predict upcoming words by assessing gradedness, that is the extent to 194 

which children can predict several alternative continuations, each in proportion to its degree of 195 

predictability; for example, predicting the most likely word very strongly, but also predicting 196 

a less likely word more strongly than a completely implausible word.  197 

Capturing the gradedness of predictions is important both theoretically and 198 

methodologically. Graded predictions appear to be characteristic of adult language processing; 199 

for instance, on the basis of a timed sentence completion task, Staub and colleagues (Staub, 200 

Grant, Astheimer, & Cohen, 2015) showed that adults activate many possible continuations in 201 

parallel (see also Carter, Foster, Muncy, & Luke, 2019; Luke & Christianson, 2016; Smith & 202 

Levy, 2013)  Thus, since expert language users predict in a highly graded fashion, we would 203 

expect children whose predictions are more graded (and thus more adult-like), to be more 204 

linguistically advanced. Accordingly, Mani et al. (2016) found that two-year-olds with larger 205 

expressive vocabularies were more likely to predict both words strongly associated with a 206 

sentence context and words that were only weakly associated with it, compared to an 207 

unassociated word. But while this suggests a relation between graded predictions and linguistic 208 

ability, the same study also found no relation between children’s expressive vocabulary and 209 

the degree to which they predicted strong associates more than weak associates. Thus, more 210 

evidence is needed as to how the gradedness of children’s predictions relates to their 211 

vocabulary knowledge. 212 

In addition, we suggest that a measure of the gradedness of predictions is likely to have 213 

discriminative measurement properties that are useful for an individual differences design. One 214 

reason why evidence for a relation between prediction skills and linguistic knowledge has so 215 
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far been inconsistent may be that measures of prediction skill have typically been limited to 216 

the child’s ability to predict a single, highly predictable alternative (Borovsky et al., 2012; 217 

Gambi et al., 2016; Mani & Huettig, 2012). A more fine-grained assessment of gradedness, 218 

characterising the child’s ability to distinguish between multiple differentially predictable 219 

alternatives, may provide a more sensitive measure of individual differences in linguistic 220 

prediction skill.  221 

In our design, children heard sentences while viewing pictures that were differentially 222 

likely to be the final word (e.g., seeing a bone, slippers and pyjamas while hearing Alfie’s dog 223 

likes to chew on the…. bone, where bone is more likely than slippers, and slippers is in turn 224 

more likely than pyjamas prior to hearing the final word). An advantage of this design is that 225 

it could naturally be extended to measure and test other factors. First, by including neutral, 226 

non-predictive sentences (e.g., Now, Craig is looking for the bone) we could measure the 227 

efficacy of children’s language processing by capturing the speed with which they recognize 228 

spoken words without contextual facilitation (Fernald et al., 2006). Second, by varying the final 229 

word heard, we could measure children’s responses to errors of prediction, capturing the degree 230 

to which they can quickly update their comprehension when their predictions are incorrect 231 

(Reuter et al., 2019). In particular, we compared word recognition times following neutral 232 

sentence contexts, when the final word was no more or less predictable than other options, to 233 

word recognition times when the final word was less predictable than a competitor, e.g., 234 

comparing recognition of slippers in Now, Craig is looking for the slippers (a neutral context), 235 

to Alfie’s dog likes to chew on the slippers, where the competitor bone is more predictable than 236 

slippers. If children have difficulty revising following errors of prediction, then we would 237 

expect word recognition to proceed more slowly in the presence of a more predictable 238 

competitor. 239 
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We then assessed how these three measures – of prediction skill, processing speed, and 240 

revision skill – related to children’s vocabulary development. Initially, we did this 241 

synchronously, and assessed how the three processing skills related to concurrent receptive 242 

vocabulary size in a large sample (N=215) of children aged 2-5 years (Phase 1). Then, seven 243 

months later (on average), we re-assessed the vocabulary size of a smaller opportunity sample 244 

of these children (N=55), which allowed us to conduct additional, exploratory analyses of how 245 

these same processing skills predicted subsequent change in vocabulary size (Phase 2).  246 

Specifically, these exploratory analyses allowed us to assess whether our longitudinal 247 

data were more consistent with one of two competing hypotheses regarding the relation 248 

between prediction-related processing skills (including both prediction skill and revision skill) 249 

and vocabulary development. According to the first hypothesis, prediction facilitates language 250 

development in-and-of itself, and so we would expect to find that prediction-related processing 251 

skills explain variance in vocabulary development over and above measures of processing 252 

speed. In contrast, the second hypotheses maintains that prediction facilitates language 253 

development because it contributes to faster language processing, so we would expect 254 

prediction-related processing skills and measures of word processing speed to explain largely 255 

overlapping variance in vocabulary development.  256 

Methods 257 

For reasons of space and clarity, ancillary details of our methods, as well as additional 258 

analyses, can be found in the Supplementary Materials. Supplement sections are marked with 259 

a §. All data and analysis scripts are available at https://osf.io/9ckwe/. 260 

Participants 261 
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 Testing took place in two phases. For Phase 1 (April-June 2016), we did not conduct a 262 

formal power analysis, but rather based our data collection targets on previous eye-tracking 263 

studies of linguistic prediction in pre-schoolers (e.g., 40-47 children in each of 3 age groups 264 

in Gambi et al., 2018; 72 children in Gambi et al., 2016; 48 children in Borovsky et al., 2012; 265 

30 children in Mani and Huettig, 2012 and in Mani et al., 2016). Our final sample size was 266 

larger than any of these previous studies (total N = 215): We tested 60 English-speaking two-267 

year-olds (Mage: 30 months, range [24,35], 32 males), 77 three-year-olds (Mage: 41 months, 268 

range [36,47], 50 males), and 78 four-to-five-year-olds (Mage: 54 months, range [48,65], 32 269 

males) in our lab (24 children) or at nursery schools in and around Edinburgh. Nine more 270 

children’s data were discarded because of equipment malfunction (3), experimenter error (1), 271 

speech delay (2), or fussiness (3).  272 

 In Phase 2 (November 2016-February 2017), an opportunistic sub-sample of 55 273 

children was retested (32 males; Mage at first test: 42 months, range [25, 60]; Mage at retest: 50 274 

months, range [34, 68]) after a 5-to-10 months delay (M = 7.4 months, SD = 1.2). Phase 2 275 

was not planned until after the end of Phase 1, hence the variability in the duration of the test-276 

retest delay across children. One additional child’s data was discarded because they had been 277 

excluded from Phase 1. We did not collect socio-economic status (SES) information for the 278 

full sample; however, we did collect it for the sub-sample. Our SES measure was the Scottish 279 

Index of Multiple Deprivation (Scottish Index of Multiple Deprivation - SIMD16 Technical 280 

Notes, 2016), with each child being assigned to the vigintile corresponding to their home 281 

postcode; for correlations between SES and processing and linguistic knowledge measures, 282 

see Supplementary Materials, §3. Children came predominantly from white, mid-to-high SES 283 

families.  284 

INSERT FIGURE 1 HERE 285 

INSERT TABLE 1 HERE 286 
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Materials and Procedure 287 

In Phase 1, children completed a visual-world eye tracking task that assessed gradedness of 288 

predictions, revision skill, and processing speed. Then, they completed an assessment of 289 

receptive vocabulary (the British Picture Vocabulary Scale, BPVS; Second Edition, Dunn, 290 

Dunn, Whetton, & Burley, 1997). In Phase 2, children first completed the Test for Reception 291 

of Grammar (TROG; Second Edition, Bishop, 2003) and were then retested on the BPVS. 292 

Correlations between TROG scores and the other measures are available in the supplement 293 

(Figure S1, §3); here we focus on vocabulary as this was tested twice. Note that the raw 294 

BPVS and TROG scores could not be converted to standardized scores due to many children 295 

in our sample being below the minimum age in the norming samples (3 years and 4 years, 296 

respectively).  297 

Eye-tracking Task. In this visual-world task, children listened to sentences while 298 

viewing three pictures on a screen, each of which depicted a potential final word (Table 1 and 299 

Figure 1). We created 15 sets of items, i.e., sets of three pictures with three associated 300 

sentences. For each set, we created two different predictive sentences and a non-predictive 301 

sentence. We had two different predictive sentences to control for potential differences in 302 

salience between the pictures - one of the predictive sentences made one of the pictures 303 

highly predictable and a different one implausible, while the other predictive sentence made 304 

the latter picture highly predictable and the former implausible; the third picture was always 305 

mildly predictable. To illustrate, for the following set of pictures - A. bone, B. slippers, C. 306 

pyjamas -  the predictive sentence Alfie’s dog likes to chew on the… induced the graded 307 

ordering A>B>C, while the other predictive sentence When you go to bed, you wear… 308 

induced the opposite ordering, C>B>A; the non-predictive sentence was  Now, Craig is 309 

looking for the …, inducing the ordering A=B=C. We refer to these three sentence conditions 310 

as A-biasing, C-biasing, and Neutral. Importantly, we developed the items through pre-311 
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testing with adults, and then confirmed the graded predictability pattern through a pre-test 312 

with 24 preschoolers: Children listened to sentence contexts (i.e., sentences without the final 313 

word as in the examples above), and then the experimenter asked them for help “finishing off 314 

the story”; they chose the picture they thought was the best end for the story, and then the 315 

procedure was repeated with the remaining two pictures, so that they implicitly ranked the 316 

pictures from best to worst completion (see §2 in Supplementary Materials for further 317 

details). On average, after A-biasing sentence contexts, children chose the pictures in the 318 

order A>B>C 76% of the time, range [62.5%,87,5%]; after C-biasing contexts, the pictures 319 

were chosen in the order C>B>A 73% of the time, range [62.5%, 100%]; finally, after neutral 320 

contexts the average proportion of children who converged on the most preferred ordering 321 

(which differed across sentences) was much lower, at 45%, range [37.5%,75%]. 322 

We also varied which picture was eventually named. Following predictive A-biasing and 323 

C-biasing contexts, children heard either the predictable word (i.e., A or C, e.g., When you go 324 

to bed, you wear pyjamas) or the mildly predictable word (i.e., B … wear slippers; 325 

counterbalanced across lists); the unpredictable picture was never named. Neutral contexts 326 

could be followed by either A, B or C. 327 

Participants completed two blocks of 15 trials, such that they encountered each item set 328 

once per block, with items always assigned to different conditions in each block, counter-329 

balanced across six lists. Participants heard 5 A-biasing, 5 C-biasing, and 5 neutral trials in 330 

each block, so they heard twice as many predictive sentences as neutral sentences. Note that, 331 

because neutral sentence contexts followed by B were particularly critical for our analyses (as 332 

they were compared to predictive contexts followed by B), these trials were always placed in 333 

the first block, so that participants were more likely to complete them. Neutral contexts 334 

followed by A or C occurred in Block 2. 335 
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Each trial began with a 2-second silent preview of the objects, after which participants 336 

heard the sentence, followed, two seconds later, by an instruction to point to the object 337 

mentioned in the sentence. The experimenter then noted the child’s response, triggered a 338 

“reward” screen (a cartoon image plus a cheery sound), and began the next trial. Trial order 339 

within blocks was randomized by participant, and object positions were counterbalanced 340 

across trials. Audio stimuli were recorded by a male Scottish English speaker, and images 341 

were sourced online and scaled to 300x300px. 342 

A REDn Scientific eye-tracker (SensoMotoric Instruments GmbH, www.smivision.com) 343 

tracked both eyes at 30Hz. We performed calibration before each block using a 5-point grid. 344 

Only right-eye data (left for one child, who had impaired right-eye vision) were analyzed.  345 

Data Analysis and Results 346 

 Our first set of analyses focused on the cross-sectional data from all 215 children who 347 

took part in Phase 1 (Cross-sectional analyses). We first conducted group-level analyses 348 

using data from the eye-tracking task to assess whether children were able to generate graded 349 

predictions (The development of graded predictions) and took longer to process a word when 350 

it disconfirmed a prediction than when no prediction was disconfirmed (The development of 351 

revision skills). The power of these analyses, which used linear mixed-effects models, 352 

depends both on sample size and the number of trials per condition (Brysbaert & Stevens, 353 

2018); while our design was novel and not directly comparable to any published studies, our 354 

sample size was considerably larger than previous eye-tracking studies of linguistic 355 

prediction in children (see Participants above) and the number of trials per condition (10) 356 

was comparable (6 in Gambi et al., 2016; 10 in Gambi et al., 2018; 10 in Mani et al., 2016; 357 

12 in Mani and Huettig, 2012; 16 in Borovsky et al., 2012). These group-level analyses were 358 

followed up with individual difference analyses: We assessed how each child’s concurrent 359 

http://www.smivision.com/
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language skills (i.e., receptive vocabulary) was related to their ability to generate graded 360 

predictions (The development of graded predictions), their ability to revise after having a 361 

prediction disconfirmed (The development of revision skills), and their word processing speed 362 

following neutral contexts that do not elicit prediction (The development of processing 363 

speed). Post-hoc sensitivity analyses showed that, with a sample size of 215, we had 95% 364 

power to detect a relation with |rho| = 0.240 (correlation) or f2 = 0.061 (multiple regression); 365 

that is a small effect size.  366 

Our second set of analyses was conducted on the sub-sample of children (N=55) 367 

whose vocabulary was tested twice, to assess whether these same language processing 368 

abilities measured in Phase 1 using eye-tracking explain unique variance in vocabulary 369 

development between Phase 1 and Phase 2 (Longitudinal analyses). These analyses were 370 

exploratory. Post-hoc sensitivity analyses analogous to the ones conducted for Phase 1 371 

showed that, with a sample size of 55, we had 95% power to detect a relation with |rho| = 372 

0.444 (correlation) or f2 = 0.245 (multiple regression); that is a medium effect size, though it 373 

should be noted that the true power may be lower than suggested by these sensitivity analyses 374 

because of measurement error (Williams, Zimmerman, & Zumbi, 1995).  375 

All analyses were performed in R (Version 3.13) using functions lme4 (Bates, 376 

Maechler, Bolker, & Walker, 2015) and lm. Nominal alpha was set to .05 in all analyses. Key 377 

analyses used a regression approach to simultaneously test all core hypotheses and take into 378 

account relevant control variables, thus limiting alpha inflation due to multiple comparisons. 379 

Before analysis, the eye-tracking data was pre-processed to assign fixations to areas 380 

and time windows of interest. We drew 300x300px areas of interests (AOIs) around each 381 

picture, and analyzed fixations to these AOIs in 100ms-bins. Fixations outside the AOIs were 382 

excluded from analysis. Analyses focused on two time-windows: a prediction window lasting 383 
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from 1000ms before the final word onset to 100ms after (to account for the time it takes to 384 

launch a saccade; Trueswell, 2008); and a recognition window, from 100ms after final word 385 

onset to 1000ms after its offset. Thus, the prediction window had constant duration (1100ms) 386 

but its onset was variable relative to sentence onset, as the onset of the final word occurred at 387 

a variable position (M = 2179ms from sentence onset, range [1190ms, 4148ms]); in contrast, 388 

the duration of the recognition window was variable (M = 1541ms, range [1317ms, 389 

1856ms]), as final words varied in length. We discarded trials on which children’s pointing or 390 

speech overlapped with the sentence (4.6%), as well as trials on which no gaze data was 391 

recorded for more than 40% of the duration of the time window of interest (prediction: 392 

6.05%; recognition: 4.38%). The prediction window was used to assess whether children’s 393 

predictions are graded (The development of graded predictions), and the recognition window 394 

was used to assess children’s word processing skill (The development of processing speed). 395 

Both windows were used to assess children’s revision skill (The development of revision 396 

skills), as we describe below. 397 

Cross-sectional analyses. 398 

The development of graded predictions. If children’s predictions are graded then, as a 399 

predictive context unfolds, looks to the predictable picture should become more likely than 400 

looks to the mildly predictable picture, which in turn should become more likely than looks 401 

to the unpredictable picture. Figures 2A and 2B show how this behavior emerges, for both A-402 

biasing contexts (left panels) and C-biasing contexts (middle panels, neutral contexts are 403 

shown in right panels). Figure 2A splits the data by age, and Figure 2B by raw vocabulary 404 

size.  405 

To statistically analyze how the pattern of gaze evolves over time from the beginning 406 

to the end of the prediction window, we applied Growth Curve Modelling (Mirman, 2014; 407 
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note that these growth curves thus model change over the sentence, not longitudinal change 408 

over age). We began by calculating difference curves that compared gaze during predictive 409 

contexts to gaze during neutral contexts (see Figure 2C). This difference curve approach is 410 

necessary because comparing looks across pictures within a condition would violate 411 

independence assumptions (see Kukona, Fang, Aicher, Chen, & Magnuson, 2011), since the 412 

eyes can only fixate on one picture at a time; instead, we compare how the difference in 413 

proportion of looks between conditions (predictive vs. neutral contexts) varies across the 414 

three pictures. We applied an empirical logit (elog) transformation (Barr, 2008) to the 415 

proportion of looks to each picture before computing the difference curves, thus the y axis in 416 

Figure 2C represents the empirical log odds of gazing at each picture in the predictive 417 

contexts compared to the neutral contexts. For confirmation that age and vocabulary effects 418 

are also seen in the difference curves, see Figure S2, §4.1, Supplement).   419 

Recall from the Methods section that each set of pictures was paired with two 420 

predictive sentences, A-biasing and C-biasing, to control for baseline salience differences 421 

across pictures. At the analysis stage, we collapsed across these conditions to increase power, 422 

so we will describe the findings in terms of looks to Predictable pictures (i.e., A pictures 423 

following an A-biasing context and C pictures following a C-biasing context), Unpredictable 424 

pictures (i.e., C pictures following an A-biasing context and A pictures following a C-biasing 425 

context), and Mildly Predictable pictures (i.e., B pictures; see §4.2 in the Supplement for 426 

confirmation that the pattern held for each type of predictive sentence). Our growth curve 427 

regressions quantified the gradedness of children’s predictions across the three pictures using 428 

two dummy-coded contrasts, one capturing the preference for Predictable vs. Mildly 429 

predictable pictures, and the other the dis-preference for Unpredictable vs. Mildly predictable 430 

pictures.  431 
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We used orthogonal polynomials to model how these preferences for the pictures 432 

changed over the course of the prediction window; a linear time term (time) modelled overall 433 

increases or decreases in preference, while a quadratic term (time2) modelled differences in 434 

curvature, with larger absolute values indicating a steeper change in looks over time. To 435 

capture how children’s graded predictions emerged as the sentence unfolded, we included 436 

interactions between the two dummy contrasts and the two time terms. The model also 437 

included age and linguistic knowledge (raw vocabulary size) as (centered) covariates, and 438 

their interactions with all other terms, so that the lower-order predictors would reflect 439 

performance of a child of average age and linguistic knowledge in our sample. Thus, the final 440 

model had the form, in lmer syntax,  elog(Prop. Predictive) – elog(Prop. neutral) ~ 1 + 441 

(time+time2)*(Predictable-Mildly predictable + Unpredictable-Mildly 442 

predictable)*(Age+Vocabulary), plus maximal by-participant random effects. Note that we 443 

only report a by-participant analysis (i.e., collapsing over items to yield more robust 444 

estimates and aid convergence), but the by-items analysis was consistent (see §4.3 in the 445 

Supplement). 446 

Table 2 shows the results of the model, excluding the age/vocabulary effects and their 447 

interactions, which are reported in the supplement (Table S5, §4.4 ). The model confirmed 448 

the pattern of graded predictions in Figure 2C. Preschoolers showed an overall preference for 449 

predictable over mildly predictable pictures (intercept, t=8.82), and also a dis-preference for 450 

unpredictable pictures compared to mildly-predictable pictures (intercept, t=-2.05). Over the 451 

analyzed window, the preference for predictable pictures was quite stable (time, t = 1.70), 452 

showing only a slight but significant tendency to level off towards the end of the window 453 

(time2, t = -2.01). In contrast, the dis-preference for unpredictable compared to mildly-454 

predictable pictures became more pronounced with time (time, t=-2.99), particularly towards 455 
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the end of the window (time2, t=-3.24). In sum, we found clear evidence for graded 456 

predictions in our sample of 2-to-5-year-olds.  457 

INSERT TABLE 2 HERE 458 

 While Table 2 shows the estimated behavior of the average child in our sample, 459 

Figures 2A and 2B suggest that there are also interesting age and vocabulary-related 460 

differences in children’s ability to generate graded predictions. Thus, we next explored how 461 

graded predictions varied across age and raw receptive vocabulary size. While the growth-462 

curve model fitted above includes age and vocabulary effects and their interactions with the 463 

parameters reported in Table 2 (see §4.4 of the Supplement), it is not ideally suited to address 464 

this question because it models the preference for predictable pictures separately from the 465 

dispreference for unpredictable pictures (i.e., as two different parameters). In order to capture 466 

individual differences in the overall gradedness of children’s predictions, we instead 467 

computed a combined graded prediction measure, capturing both the preference for the most 468 

predictable continuation and the dispreference for the unpredictable continuation, and then 469 

we examined the relation between children’s linguistic knowledge and this combined 470 

measure.  471 

To compute this combined measure, we analyzed raw gaze proportions averaged over 472 

the last 400ms of the prediction window. We chose this shorter window because, based on 473 

visual inspection of Figure 2, the overall size of the prediction effect was largest here. For 474 

each participant, we first subtracted the mean gaze proportion for each type of picture during 475 

a neutral context from the mean gaze proportion for the same type of picture during a 476 

predictive context. We then used these difference scores to compute the mean preference for 477 

predictable over mildly predictable pictures (i.e., mean gaze proportion to predictable 478 

pictures minus mildly predictable pictures averaged over the last 400ms of the prediction 479 
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window) and the mean dis-preference for unpredictable pictures (mean gaze proportion to 480 

unpredictable minus mildly predictable pictures averaged over the same time window). The 481 

combined measure of graded prediction skill was then defined as the mean preference minus 482 

the mean dis-preference. This combined measure was correlated with both age (r(123) = .369, 483 

p <.001) and vocabulary (r(123) = .326, p <.001; see Figure 4A). Importantly, incorporating 484 

the gradedness of prediction appeared to increase the strength of this relation: When age and 485 

vocabulary were each separately correlated with the two individual components of the graded 486 

prediction measure (i.e., the preference for predictable picture and the dispreference for 487 

unpredictable pictures), then the relevant associations were weaker or indeed non-significant 488 

(r < .22; see §4.5 of the Supplement). Thus, this suggests that measuring the gradedness of 489 

predictions captured an important component of children’s developing language processing 490 

skills. 491 

Finally, we looked to see if there was a relation between children’s prediction ability 492 

(via the combined prediction measure above) and their linguistic knowledge, i.e., vocabulary 493 

size, over-and-above differences that are associated with getting older. We compared the 494 

relative fit of a linear model regressing graded prediction score against age, to the fit of a 495 

model that additionally incorporated children’s vocabulary score (using an F test to compare 496 

the residual sum of squares of the two models); the fit of the latter model should be 497 

significantly higher if vocabulary explains additional variance, above-and-beyond age. 498 

However, this was not the case (F(1, 212)=0.599, p>.250), suggesting that, while children’s 499 

graded prediction ability may be a better indicator of their linguistic knowledge compared to 500 

their ability to anticipate the most predictable continuation or to rule out implausible 501 

continuations, this relation may yet be fully explained by other skills that also improve with 502 

age. 503 

INSERT FIGURE 2 HERE 504 
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The development of revision skills. Our first set of analyses showed that children’s 505 

ability to differentiate between multiple predictable continuations grows with age and 506 

vocabulary knowledge. But while this suggests that children’s predictions become more 507 

sophisticated as they develop, it also raises the question of how the complementary ability to 508 

revise (inaccurate) predictions develops. To address this question, we first conducted group-509 

level analyses to test whether recognition is indeed slower, in children, following a 510 

disconfirmed prediction than when no prediction is disconfirmed. We then assessed how a 511 

measure of revision skill (“predict-and-redirect”, after Reuter et al., 2019) relates to age and 512 

vocabulary. 513 

To test the proposal that (inaccurate) predictions hinder processing, we analyzed the 514 

speed with which children recognized the mildly-predictable picture after predictive versus 515 

neutral contexts. The key idea here is that the neutral context provides a baseline measure of 516 

how quickly children can recognize the spoken name of the mildly-predictable picture when 517 

other pictures are equally expected (for confirmation that looks to mildly-predictable B 518 

pictures are roughly as likely as looks to the other two pictures after a neutral context, see 519 

Figures 2A and 2B, right panels). However, after a predictive context the predictable picture 520 

is significantly more expected than the mildly predictable picture (as shown in The 521 

development of graded predictions). Thus, if the mildly-predictable picture is named instead 522 

of the predictable picture, we may see a delay in recognizing its name following a predictive 523 

context compared to the neutral context. We thus analyzed the time (in milliseconds) that it 524 

took children to gaze at the mildly predictable (B) picture, across predictive and neutral 525 

contexts (Context, contrast-coded and centered) on trials on which participants were not 526 

already gazing at that picture at 100ms following name onset (cf. Barr, 2016; Fernald, Zangl, 527 

Portillo, & Marchman, 2008); the median number of trials contributed to this analysis by 528 

each child was 3 in both the neutral and the predictive condition (out of 5 possible trials in 529 
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each condition). Our model had the structure Latency  ~ 1 + Context *(Age + Vocabulary), 530 

plus maximal random effects by item, and random intercepts by participants (by-participant 531 

slopes for Context were estimated to be close to zero and dropped for convergence). 532 

We found strong evidence that inaccurate predictions hinder processing. Overall, 533 

children took longer to orient their attention towards the mildly predictable (B) picture after 534 

this picture was named following a predictive context compared to a neutral context (Figure 535 

3C), indicating that having predicted a different picture, and having that prediction 536 

disconfirmed, slowed down recognition (B= -95.51, SE= 25.28, t= -3.78, CI = [-145.06,-537 

45.96]); the full model is available in §5 of the Supplement, Table S6).  Thus, the average 538 

child in our sample experienced costs when having a prediction disconfirmed. Moreover, as 539 

Figures 3A and 3B suggest, the magnitude of this cost was positively associated with both 540 

age and vocabulary size (i.e., there were significant interactions between Context and Age, 541 

and Context and Vocabulary, both t’s > 2.6; see Tables S7 and S8 in §5 of the Supplement 542 

for full model summaries).  543 

Next we examined the development of revision skills: Given that children experience 544 

costs associated with making inaccurate predictions, the ability to efficiently revise following 545 

the encounter with an unexpected word should be critical. To characterize revision skill, we 546 

computed a “predict-and-redirect” measure (Reuter et al., 2019), which captured how 547 

children responded when a predictive context was followed by a mention of the mildly 548 

predictable picture. We subtracted mean proportion gaze to the mildly predictable picture 549 

during the last 400 ms of the prediction window from mean proportion during the recognition 550 

window (after Reuter et al., 2019; we could not compute this measure for two participants 551 

due to missing data). Thus, a higher score on the measure indicates that the child initially 552 

gazed to the most predictable image, but subsequently quickly redirected their attention when 553 

those predictions were disconfirmed. Importantly, we found that revision skill was strongly 554 
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correlated with both age (r(211)=.423, p<.001) and vocabulary (r(211) =.493, p<.001; see 555 

Figure 4B). Moreover, and unlike skill at prediction on its own, we found an association with 556 

vocabulary over-and-above the effect of age (F(1,210)=18.235, p<.001; when comparing a 557 

linear regression model including age and vocabulary to a model including age only). Thus, 558 

these data suggest a unique relation between children’s current linguistic competence and 559 

their ability to rapidly predict-and-revise, which cannot be explained away by other factors 560 

that improve with age. 561 

INSERT FIGURE 3 HERE 562 

The development of processing speed. Finally, to measure how quickly children 563 

recognize spoken words, we followed previous work (Fernald & Marchman, 2012; Fernald et 564 

al., 2006; Marchman & Fernald, 2008), and used the average time (in milliseconds) of the 565 

first fixation to the named picture during the recognition window. To compute this measure, 566 

we used only data from neutral sentences, so we could assess children’s general word 567 

processing ability in the absence of strong contextual support for prediction. Following 568 

standard practice, we included only trials on which participants were not already gazing at 569 

that picture at 100ms following name onset (cf. Barr, 2016; Fernald, Zangl, Portillo, & 570 

Marchman, 2008). Confirming previous reports (Fernald & Marchman, 2012; Fernald et al., 571 

2006; Marchman & Fernald, 2008), children’s word processing speed increased with age 572 

(r(213=-.297, p<.001) and vocabulary (r(213)=-.294, p<.001; see Figure 4C). Somewhat 573 

surprisingly, however, vocabulary did not significantly explain any unique variation in 574 

processing speed over-and-above the effect of age (F(1, 212) = 2.078, p =.151; when 575 

comparing a linear regression model including age and vocabulary to a model including age 576 

only). 577 
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Summary of cross-sectional analyses. In sum, in our large sample of 2- to 5-year-578 

olds, we found that three different measures of children’s language processing ability – of 579 

graded prediction skill, of revision skill, and of processing speed – increase with age and 580 

vocabulary knowledge. Of the three measures, only revision skill was associated with 581 

vocabulary over-and-above the effect of age, and appears therefore to have the strongest link 582 

to children’s concurrent structural knowledge of language. However, cross-sectional analyses 583 

cannot address the question of how prediction, revision, and processing speed are associated 584 

with later language development. To provide a preliminary answer to that question, we turned 585 

to the longitudinal data. 586 

INSERT FIGURE 4 HERE 587 

Longitudinal analyses. In these exploratory analyses, we assessed how prediction, 588 

revision and processing speed were associated with changes in vocabulary size from Phase 1 589 

to Phase 2 (see Supplement, §6, for plots showing that age and vocabulary distributions at 590 

Phase 1 were similar across the full sample and longitudinal sub-sample). The three skills 591 

were quantified using the same summary statistics as in the cross-sectional analyses. We 592 

captured prediction skill using the combined measure – i.e., through children’s preference for 593 

predictable pictures minus the dispreference for unpredictable pictures (see Supplement, §7, 594 

for evidence that neither the preference nor the dispreference measure alone were strongly 595 

predictive of changes in vocabulary size); we captured revision skill thought the “predict-596 

and-redirect” measure (Reuter et al., 2019), and finally we captured processing speed using 597 

the average timing of the first fixation to the named picture during the recognition window 598 

(e.g., Fernald et al., 2006). 599 

Note that, because recruitment in Phase 2 was opportunistic, our sample was highly 600 

variable: It contained children from a wide range of ages who, furthermore, were retested at 601 
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different intervals. Recognizing that the nature of our sample made a simple comparison 602 

between raw vocabulary scores at Phase 2 and raw vocabulary scores at Phase 1 603 

inappropriate, we endeavored to control for some of this variability post-hoc during analyses. 604 

Specifically, analyses that do not control for the child’s age at the time they were first tested 605 

(in Phase 1) and the duration of the test-retest interval could confound interesting individual 606 

differences in the rate of vocabulary development with group-level (i.e., average) differences 607 

in the rate of vocabulary development across age groups. Thus, we needed a measure of 608 

children’s vocabulary knowledge that would take into account the average vocabulary size of 609 

their age cohort, and would hence be informative about whether the child’s vocabulary grew 610 

faster or slower than would typically be expected between Phase 1 and Phase 2.  611 

We derived a measure with these properties as follows. Since we could not work with 612 

standardized scores (these were not available for children below 3) we instead converted raw 613 

BPVS scores into equivalent linguistic ages for all children in our longitudinal sub-sample. 614 

Linguistic age is defined as the age of the average child with the same raw BPVS score in the 615 

BPVS-II norms. Thus, comparing linguistic age to chronological age provides an indication 616 

of whether a child is more or less linguistically advanced than the average child in the BPVS-617 

II norms, and so we focused on this relative measure. Specifically, we expressed linguistic 618 

age as a percentage increment of chronological age; e.g., for a 36-month-old child with a 619 

linguistic age of 42 months during Phase 1, their linguistic age would be (42-36)*100/36 = 620 

16.7% higher than their chronological age, indicating that they are more advanced 621 

linguistically than the average child. If this child were retested 6 months later (chronological 622 

age: 42 months) and found to have a linguistic age of 49 months at Phase 2, this would mean 623 

their linguistic age would still be (49-42)*100/42 = 16.7% higher than their chronological 624 

age; that is, over the test-retest interval, the child’s vocabulary would have grown at the same 625 

speed as the that of the average child. But if the same child’s linguistic age at 42 months were 626 
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instead 54 months, the child’s linguistic age would have increased to be (54-42)*100/42 = 627 

28.6% higher than their chronological age by the end of the test-retest interval. In other 628 

words, this would suggest the child’s vocabulary grew faster than that of the average child 629 

between Phase 1 and Phase 2, and specifically that their rate of vocabulary development was 630 

28.6%-16.7% = 11.9% higher than that of the average child.  631 

Importantly, having defined the rate of vocabulary change as the difference between 632 

linguistic age expressed as a percentage increment of chronological age at Phase 2 and Phase 633 

1, we could directly compare children who were retested at different intervals, because this 634 

measure uses the performance of the average child in BPVS-II norms as a reference point. 635 

Using our measure of vocabulary change, one child’s score was exceptionally large (>200%), 636 

so it was discarded, leaving N = 54. After removing this child, the average rate of vocabulary 637 

change was -3.41% (i.e., not different from zero: t(53) = -1.03, p = 0.31). However, there was 638 

still considerable variation in the sample, range [-67.93%, +53.38%], suggesting it made 639 

sense to ask whether any of that variation was related to children’s processing skills at Phase 640 

1. A negative score here means that the child’s vocabulary grew less rapidly than expected 641 

based on BPVS-II norms, whereas a positive score means that the child’s vocabulary grew 642 

faster than the average child’s; a score of zero means the child’s vocabulary grew at the same 643 

rate as the average child’s (see Supplement, §9, Table S9, for a table reporting each child’s 644 

rate of vocabulary change). 645 

In sum, our measure captures more than just absolute increases in the size of 646 

children’s vocabulary – it captures the degree to which a child’s vocabulary is growing faster 647 

or slower than their peers. It thus makes it possible to ask whether children who learnt 648 

vocabulary at faster-than-average rates between Phase 1 and 2 are those whose processing 649 

skills (graded prediction, revision, processing speed) were more advanced in Phase 1. To 650 

answer this, we first used separate linear regressions to assess the contribution of each 651 
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processing skill, and then followed these up with a multiple regression analysis to establish 652 

whether any of the processing skills explained variance in children’s rate of vocabulary 653 

change over-and-above the others. The processing measures were all converted to z scores to 654 

facilitate comparison of their effect sizes. Even though raw vocabulary in Phase 1 did not 655 

correlate with rate of vocabulary change, r(52) = -.08, p >.250, we additionally controlled for 656 

this variable (centered) in all analyses, to capture any residual differences in the rate of 657 

vocabulary change across different stages of linguistic development. (The correlation 658 

between rate of vocabulary change and age at Phase 1 was somewhat higher, r(52) = .13, p 659 

>.250, but additional analyses controlling for age at Phase 1, instead of raw vocabulary at 660 

Phase 1, yielded consistent findings; see Supplement, §8).  661 

Previous work has found that vocabulary grows faster in children who recognize 662 

spoken words more quickly (Fernald et al., 2006), and we replicated that result here, showing 663 

that children with faster processing speed at Phase 1 were more likely to grow their 664 

vocabulary at faster-than-average rates between Phase 1 and Phase 2 (B = -7.16, SE=3.33, t= 665 

-2.15, p = .036, see Figure 5A). Next, we asked whether a similar relation was also found for 666 

our measures of prediction and revision skill. Interestingly, children with stronger skills at 667 

graded prediction also grew their vocabulary at faster-than-average rates (B = 6.69, SE= 3.28, 668 

t=2.04, p =.047; Figure 5B), although the relevant statistical comparison only just reached 669 

significance. However, children with stronger revision skill did not show significant evidence 670 

of faster-than-average improvement in vocabulary knowledge over time (B = 3.13, SE = 671 

3.69, t = 0.85, p>.250; Figure 5C). 672 

INSERT FIGURE 5 HERE 673 

These results confirm previous reports that inter-individual variation in the ability to 674 

rapidly recognize spoken words explains inter-individual variation in the speed of vocabulary 675 
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development (Fernald et al., 2006), and suggest that the ability to form graded expectations 676 

about upcoming words may also play a similar role. In contrast, the ability to efficiently 677 

revise inaccurate expectations did not appear to explain inter-individual variation in the speed 678 

of vocabulary development, despite being associated with concurrent linguistic knowledge 679 

(see The development of revision skills). Thus, we dropped revision skills from further 680 

analyses, and instead focused on assessing whether prediction skill and processing speed are 681 

independent contributors to the rate of vocabulary change.  682 

To do so, we entered both measures into a multiple regression (again, controlling for 683 

vocabulary in Phase 1, centered). Neither measure individually was now a reliable predictor: 684 

Graded prediction, B = 5.35, SE = 3.31, t = 1.62, p = .112; Processing speed, B = -5.90, SE = 685 

3.36, t = -1.75, p = .086, suggesting that some of the variation in the rate of vocabulary 686 

change explained by each of the two processing skills is also explained by the other – that is, 687 

the two processing skills explain overlapping variance in the rate of vocabulary development. 688 

Indeed, this was confirmed in a commonality analysis (Ray‐Mukherjee, Nimon, Mukherjee, 689 

Morris, Slotow, & Hamer, 2014), performed using the R package yhat (Nimon, Oswald, & 690 

Roberts. 2016): According to this, of the total variance explained by the multiple regression 691 

model (R2 = .135), processing speed accounts uniquely for 39.38%, graded prediction skill 692 

accounts uniquely for a comparable 33.53%, and together they account for a further 21.75%. 693 

A potential interpretation of this result is that these two abilities – prediction skill and 694 

processing speed – both influence linguistic development via a common mechanism; in 695 

particular, both could be considered as distinct measures of a single underlying ability to 696 

fluently process language. Consistent with this, we found that the rate of vocabulary change 697 

was predicted by a combined measure, corresponding to the sum of the two scores (with 698 

processing speed sign-reversed, so higher values correspond to faster recognition). 699 

Specifically, a linear regression model containing the combined measure (and again 700 
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controlling for raw vocabulary in Phase 1) explained a small but significant amount of 701 

variance in the rate of vocabulary change (R2 = .135, F (2,51) = 3.98, p = .025), and model 702 

comparison (using an F test to compare the models’ residual sum of squares) showed that 703 

including this combined measure significantly improved the fit of the model compared to a 704 

baseline model only including raw vocabulary at Phase 1 (B = 8.82, SE = 3.21, F(1,51) = 705 

7.53, p =.008).  706 

In sum, our longitudinal analyses provide preliminary evidence that prediction skills 707 

may play a facilitatory role in children’s language development, in a similar manner to how 708 

word recognition speed does. These analyses also highlight the intriguing possibility that both 709 

prediction and processing speed may contribute to vocabulary acquisition through enhancing 710 

children’s fluency at processing language. 711 

Discussion 712 

Using a sensitive eye-tracking task, we investigated the relation between vocabulary 713 

acquisition and language processing in a large sample of pre-schoolers. In particular, we 714 

examined how children’s vocabulary knowledge relates to three processing skills: the ability 715 

to generate graded predictions, the ability to recover from incorrect predictions, and the 716 

ability to recognize spoken words. We then followed up a subset of the children to further 717 

explore how processing skills relate to inter-individual variation in how rapidly vocabulary 718 

grows over time.  719 

Our study revealed important developments in children’s sentence processing skills, 720 

and how these skills relate to concurrent linguistic knowledge; it also provided some 721 

preliminary evidence regarding the relation between processing skills and the rate of 722 

subsequent language development. First, between the ages of 2 and 5, children’s predictions 723 

become increasingly sophisticated, as they become more sensitive to graded distinctions in 724 



PREDICTION AND VOCABULARY DEVELOPMENT 

 

 31 

predictability. However, we also found that as prediction skills emerge over the preschool 725 

years, so do the costs associated with recognizing a word when another, more likely word has 726 

(incorrectly) been predicted in its place. Second, all the language processing skills that we 727 

examined – the abilities to make graded predictions, to revise incorrect predictions, and to 728 

recognize words fluently – were associated with concurrent vocabulary size, but only the 729 

ability to revise incorrect predictions was related to concurrent vocabulary knowledge over-730 

and-above the effect of age. Third, we found preliminary evidence that the degree to which 731 

children show graded sensitivity when generating linguistic expectations may be associated 732 

with the rate at which their vocabulary will grow over following months. Similarly, we 733 

replicated previous reports that children’s ability to quickly recognize a spoken word is 734 

related to how rapidly their vocabulary knowledge will grow (Fernald et al., 2006). In 735 

contrast, children’s skill at revision was not related to inter-individual variation in the rate of 736 

vocabulary development in our longitudinal sample. Moreover, children’s graded prediction 737 

skills and their word recognition skills were not independently related to the rate of 738 

vocabulary change; rather, much of the inter-individual variation explained by each of these 739 

predictors was also explained by the other. Below, we begin by discussing how the first set of 740 

findings adds to our knowledge of children’s sentence processing skills; we then consider the 741 

second and third set of findings– on cross-sectional and longitudinal associations 742 

(respectively) between processing skills and vocabulary knowledge –and assess how they can 743 

constrain hypotheses about the relation between children’s in-the-moment processing of 744 

linguistic input and the development of linguistic knowledge. 745 

First, our data provide a clearer picture of how children’s language processing skills 746 

develop in the preschool years. The finding that preschoolers consider multiple alternatives in 747 

parallel, each proportionally to its predictability in context, adds to previous evidence for a 748 

high degree of sophistication in preschoolers’ linguistic predictions (Borovsky et al., 2012; 749 
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Gambi et al., 2016; Havron et al., 2019; Lindsay, Gambi, & Rabagliati, 2019; Mani & Huettig, 750 

2012; Mani et al., 2016). Previous findings had already shown that preschoolers use their 751 

knowledge of semantics (e.g., Borovsky et al., 2012) and linguistic structure (e.g., Gambi et 752 

al., 2016) when they generate predictions about the single most likely continuation for a 753 

transitive sentence, and that their predictions are sensitive to the strength of the semantic 754 

association between a word and the sentence context (Mani et al., 2016). However, to our 755 

knowledge the current study is the first to directly show that preschoolers are sensitive to 756 

graded distinctions in predictability - i.e., that they distinguish not only between more 757 

predictable and less predictable words, but also between less likely words and completely 758 

implausible words. This is important because gradedness is a key feature of adult linguistic 759 

predictions (e.g., Staub et al., 2015).  760 

We also showed that preschoolers experience a slow-down in word recognition when 761 

they encounter a word that is comparatively unexpected. This finding has important 762 

implications for our understanding of the relation between prediction, processing speed, and 763 

language development. Previous work has shown that recognition of a word is facilitated 764 

when it occurs in a predictive context (e.g., Lew-Williams & Fernald, 2007), but our finding 765 

shows that predictive contexts can be a double-edged sword, slowing the recognition of 766 

plausible but less-likely words. Importantly, this finding held under quite stringent 767 

conditions. In particular, recognition of a moderately predictable word was slowed down if an 768 

alternative word was much more predictable, as compared to a neutral baseline where the 769 

same word was moderately predictable, but no other word was strongly predictable. This 770 

shows that there are potential disadvantages for children who continuously generate 771 

predictions as they process sentences, particularly if their language model is likely to be 772 

inaccurate (and thus generates many incorrect predictions; Omaki & Lidz, 2015).  773 
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Our second and third set of findings concern the cross-sectional and longitudinal 774 

relation between children’s language processing skills and their vocabulary knowledge. Our 775 

eye-tracking task allowed us to derive three different measures of children’s skill at processing 776 

language - graded prediction, revision, and processing speed, and we will consider each in turn. 777 

Starting with prediction skill, while previous studies reported positive associations between 778 

children’s ability to predict and their concurrent vocabulary knowledge (Borovsky et al., 2012, 779 

Mani & Huettig, 2012, Mani et al., 2016) our study is the first to suggest that the degree to 780 

which children’s predictions are graded may capture important variation in the speed of their 781 

linguistic development. Interestingly, the concurrent association between graded prediction 782 

skill and vocabulary knowledge in the present study could be explained by age-related changes 783 

in the ability to generate graded predictions (see also Gambi et al., 2016; Gambi et al., 2018), 784 

suggesting that this relation may be explained by other underlying skills that improve with age, 785 

such as domain-general processing speed. However, our longitudinal analysis did suggest that 786 

graded prediction skill may contribute to inter-individual variation in the speed with which 787 

vocabulary grows over time, perhaps as one component of a broader processing-speed factor 788 

(see below). With the caveat that this preliminary finding requires replication, it does suggest 789 

that prediction skills can act to facilitate language development. In addition, our data clearly 790 

show that the strongest relation between concurrent vocabulary size and prediction skill was 791 

for the measure that incorporated gradedness, i.e., the measure that accounted for both the 792 

preference for predictable pictures and the dispreference for unpredictable pictures. Thus, our 793 

data suggest that taking into account the degree of gradedness of children’s linguistic 794 

predictions may be important for fully characterizing the relation between prediction during 795 

language processing and language knowledge. We suggest that it will be important for future 796 

longitudinal studies to incorporate a measure of graded prediction skill.   797 
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Our findings also shed light on the relation between revision skill and vocabulary 798 

development. Cross-sectionally, we found that those children who are more efficient at 799 

revising a strong but incorrect prediction are also more linguistically advanced than their 800 

peers, which is consistent with recent work by Reuter et al. (2019), who found that children 801 

with stronger revision skills were better at learning the meanings of new words that were 802 

encountered in contexts that required revision. However, the interpretation of that finding 803 

was unclear: do stronger revision skills make children better learners, or do more advanced 804 

linguistic and word-learning skills allow children to engage in more accurate processes of 805 

revision (cf. Rabagliati et al., 2015)? Our longitudinal data may help inform a preliminary 806 

answer to this question. If the process of linguistic revision is a key driver of learning, then 807 

we would also expect revision-related processing skills to explain unique variance in the rate 808 

of vocabulary change over time, and not just in concurrent linguistic skills. However, we 809 

found no evidence for this in our longitudinal sample, providing no clear indication that a 810 

predict-and-revise mechanism drives language development. Thus, we suggest that the strong 811 

cross-sectional relation between revision skill and vocabulary knowledge may result from 812 

changes in linguistic knowledge that drive changes in revision processing skills, rather than 813 

the other way around. Importantly, however, since our longitudinal analyses were 814 

exploratory, more research (using less heterogenous longitudinal samples) will be needed to 815 

confirm this suggestion. 816 

In contrast, we confirmed previous findings that processing speed is linked to the 817 

speed of language development, as children who were faster to recognize words also had a 818 

faster rate of vocabulary growth over the next few months (Fernald et al., 2006; see also Peter 819 

et al., 2019). Further, our analyses suggested that the positive relation between processing 820 

speed and the speed of linguistic development overlaps with that of prediction skill: To the 821 

extent that children’s skill at graded prediction explains variance in the rate of vocabulary 822 
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change, this explained variance is importantly shared with processing speed. We suggest that 823 

this finding is consistent with the hypothesis that both skills may benefit language 824 

development via the same mechanism: Prediction and processing speed may contribute 825 

overlapping variance to vocabulary change over time because they both enhance children’s 826 

fluent language comprehension. In particular, children who can extract meaning more quickly 827 

from sentence contexts, either via faster bottom-up processing of the input (processing speed) 828 

or via prediction of the input (prediction skill), are at an advantage when it comes to tasks 829 

such as making inferences about the meaning of unknown words (Fernald et al., 2008). We 830 

further speculate that this facilitatory effect of prediction on fluent language comprehension 831 

may on the whole outweigh the fluency costs associated with incorrect predictions. 832 

In sum, we suggest that our findings are overall most consistent with models of 833 

linguistic development in which both prediction and processing speed benefit language 834 

development thanks to the facilitative effect they have on fluent processing of linguistic 835 

input. By facilitating fluent language processing, both skills contribute to freeing up 836 

resources during online processing of sentences, which can be dedicated to other tasks, 837 

including encoding the form of unknown words into memory, and inferring the meaning of 838 

those words from their linguistic and non-linguistic context. 839 

Conclusion. Our study provides a first step towards better understanding the link between 840 

prediction and language development. We showed that graded predictions about upcoming 841 

words become more sophisticated between the ages of 2 and 5, and found suggestive 842 

evidence for a relation between children’s skill at generating graded predictions and their 843 

subsequent rate of linguistic development. At the same time, we also replicated the relation 844 

between processing speed and inter-individual variation in the speed of language 845 

development, and found that some indication that these two processing skills – prediction and 846 

fluent word recognition – may explain overlapping variance in the rate of linguistic 847 
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development. Thus, we suggest that graded prediction ability may support linguistic 848 

development by increasing the fluency with which children process language.   849 
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List of Figures 1003 

Figure 1. Sample picture set corresponding to the sentences in Table 1. Pictures were arranged 1004 

in a triangular grid as shown. 1005 

 1006 

Figure 2. Gaze patterns during the prediction window. Raw fixation proportions to the 1007 

three pictures as a function of context and (A) age group (two year olds, three year olds, and 1008 

four-to-five year olds) or (B) quartile of the raw vocabulary measure (1st quartile, 1009 

interquartile range, 3rd quartile). (C) Time course of the empirical log odds of looking at the 1010 

predictable (fine dashed line), unpredictable (coarser dashed line), and mildly predictable 1011 
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picture (solid line) while listening to predictive vs. neutral contexts. Error bars represent 95% 1012 

bootstrap CI’s. 1013 
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Figure 3 – Effect of neutral (triangles) vs. predictive (circles) contexts on the recognition of 1015 

mildly-predictable pictures. Proportion of looks (time-course) as a function of age group (A) 1016 

or quartiles of raw vocabulary size (B). (C) Average latency of first fixations across all 1017 

children. Error bars are 95% bootstrap CIs. 1018 

 1019 

Figure 4. The cross-sectional relation between vocabulary size and: (A) the combined 1020 

measure of prediction skill, (B) the predict-and-redirect measure of revision skill, (C) the 1021 

time to first fixation measure of processing speed.  1022 
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Figure 5. The longitudinal relation between the rate of vocabulary change and: (A) the 1027 

combined measure of prediction skill, (B) the predict-and-redirect measure of revision skill, 1028 

(C) the time to first fixation measure of processing speed. 1029 
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List of Tables 1046 

Table 1. Sample sentences from an item set. Children saw a pictured bone, pair of slippers, and 1047 

pair of pyjamas (as in Figure 1). See Supplementary materials, §1 for a full item list. 1048 

Context Final Word 

A B C 

Predictive A-biasing Alfie’s dog likes to chew on the bone slippers ----- a 

C-biasing When you go to bed, you wear ----a slippers pyjamas 

Non-predictive Neutral Now, Craig is looking for the bone slippers pyjamas 

a Context-Final Word combinations that were not tested. 1049 

 1050 

Table 2. Growth curve analysis of the prediction window. Estimate (B), standard error (SE), t 1051 

value and 95% Confidence Intervals (CI) associated with key contrasts: Predictable vs. 1052 

Mildly Predictable (left-hand side) and Unpredictable vs. Mildly Predictable (right-hand 1053 

side). For each contrast, the model included three parameters: intercept, time, time2. 1054 

Significant parameters, i.e., those with |t|>2 (Baayen, Davidson, & Bates, 2008) are in bold.  1055 

Term B (SE) t 95% CIa 

Pred – Mildly Pred .45(.05) 8.82 [.35,.56] 

 

*time .32(.19) 1.70 [-.05,.70] 

            *time2 -.21(.11) -2.01 [-.42,-.01] 

Unpred – Mildly Pred -.11(.05) -2.05 [-.21,-.004] 

*time -.58(.20) -2.99 [-.97,-.20] 

            *time2 -.34(.10) -3.24 [-.54,-.13] 

a computed with the confint function (method=”Wald”).  1056 
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The relation between preschoolers’ vocabulary development and their ability to predict and 1058 
recognize words  1059 

Supplementary Materials 1060 

 1061 

This document contains ancillary details about our methods as well as additional analyses. Data and 1062 
scripts can be found at https://osf.io/9ckwe/. 1063 
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1. Full list of materials and results of norming study. 1093 
 1094 

Table S1. For the A-biasing (A-b) and C-biasing (C-b) conditions, we report the proportion of 1095 
participants who chose the implied ordering (ABC or CBA, respectively). For the neutral condition (N), 1096 
we report the highest proportion of participants that converged on the same ordering; we specify what 1097 
that ordering was within brackets (e.g., BCA); in case of a tie, (---) appears instead. Proportions are 1098 
based on norming study B for adults and norming study C for children (See §2 for details). 1099 
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Item Sentence 

 

Object A Object B Object C Cond Prop. 

child 

Prop. 

adult 

 Alfie's dog likes to chew on the Bone Slippers Pyjamas A-b .875 1 

 When you go to bed, you wear Bone Slippers Pyjamas C-b .750 1 

 Now, Craig is looking for the Bone Slippers Pyjamas N-b .375 

(ACB) 

.333 

(BCA) 

 After a bath, Claire wraps herself in a 

warm 
Towel Blanket Pillow A-b .875 .833 

 When you go to bed, you put your head 

on the 
Towel Blanket Pillow C-b .875 .917 

 Colin's mum will put away the Towel Blanket Pillow N-b .500 

(BCA) 

.417 

(BAC) 

 When he wakes up, Jim opens his Eyes Window Tree A-b .875 .750 

 In the garden, grandpa likes to sit by the Eyes Window Tree C-b .625 .750 

 Tim will find the picture of the Eyes Window Tree N-b .375 

(ABC) 

.583 

(CBA) 

 Be careful with that knife or you will cut 

your 
Finger Apple Ice cream A-b .750 .917 

 It is a hot day so Ally will eat an Finger Apple Ice cream C-b .750 1 

 Now, Bob can see the Finger Apple Ice cream N-b .375 

(BCA) 

.250 

(---) 

 It is very cold and Lea wears her Scarf Glasses Leg A-b .625 .917 

 Sam's dad can't play football because he 

has broken his 
Scarf Glasses Leg C-b .625 1 

 Rosie is touching her Scarf Glasses Leg N-b .375 

(CBA) 

.833 

(CBA) 

 The king's castle has a very tall Tower Flag Hand A-b .625 .917 

 Brody is saying goodbye to Mark: he's 

waving his 
Tower Flag Hand C-b .625 .917 

 Jacob will touch the Tower Flag Hand N-b .500 

(BAC) 

.333 

(---) 

 Olivia will take a nap on the Bed Grass Hair A-b .875 .917 

 The hairdresser will cut the long Bed Grass Hair C-b 1 .917 
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 Freddie is touching the Bed Grass Hair N-b .750 

(BAC) 

.417 

(BAC) 

 The boy is eating cereal with some Milk Chocolate Letter A-b .750 1 

 James will send Santa Claus a  Milk Chocolate Letter C-b .625 .917 

 On the table, Sarah can see the Milk Chocolate Letter N-b .375 

(---) 

.333 

(ACB) 

 John loves racing to nursery on his Scooter Pony Bunny A-b .625 .75 

 Rebecca will give a carrot to the little Scooter Pony Bunny C-b .625 .917 

 Eva really likes the Scooter Pony Bunny N-b .375 

(ACB) 

.417 

(CBA) 

 At the zoo, they will see the Elephant Guinea Pig Christmas 

tree 

A-b .750 .833 

 For Christmas, Mark's dad will bring 

home a 
Elephant Guinea Pig Christmas 

tree 

C-b .750 .1 

 Rory is making a drawing of the Elephant Guinea Pig Christmas 

tree 

N-b .375 

(ACB) 

.417 

(CAB) 

 Amy will brush her long Hair Coat Umbrella A-b .625 1 

 It might rain today: let's bring your Hair Coat Umbrella C-b .750 1 

 Amy likes her mum's Hair Coat Umbrella N-b .750 

(ABC) 

.667 

(ABC) 

 The pirate will hide his treasure on the Island Boat Bike A-b .625 1 

 Ryan does not like walking, he prefers 

to go on a 
Island Boat Bike C-b .750 1 

 Rebecca does not like the Island Boat Bike N-b .500 

(CBA) 

.417 

(CBA) 

 Today Billie is sick, so her mum will 

call the 
Doctors School Beach A-b .750 .833 

 Today, Cameron will build a sand castle 

at the 
Doctors School Beach C-b .875 1 

 This morning, Charlie will go to the Doctors School Beach N-b .375 

(BAC) 

.333    

(---) 

 To make a sandwich you need two slices 

of bread and a slice of 
Cheese Tomato Ball A-b .875 1 

 On the beach, Sophie will throw her 

sister a round 
Cheese Tomato Ball C-b .625 1 
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 1100 

2. Norming study methods. 1101 
 1102 

We first normed the materials on adults (Norming Study A and B) and then on children (Norming Study 1103 
C). Norming study A was designed to coarsely pre-screen sentence contexts for predictability using 1104 
written completions, whereas Norming study B and C tested the predictability of sentence contexts in 1105 
combination with the pictures that would later be used in the main experiment.  1106 

Norming Study A (Adults). We recruited 139 self-reported native speakers of English using the online 1107 
platform Crowd Flower (only UK-based IP addresses were allowed). Each participant rated a minimum 1108 
of 5 and a maximum of 30 randomly selected sentences, drawn from an initial pool of 60 items X 3 = 1109 
180 sentences. Sentences were accompanied by three possible completions in written form. Participants 1110 
were instructed to read each sentence carefully, then order the completions from best to worst. They 1111 
were encouraged to follow their first intuitions, and to “say the sentences in their head” to decide which 1112 
completion sounded most natural. We discarded 18 items because either the A-biasing or the C-biasing 1113 
sentence elicited the intended ordering in less than 80% of participants. Among the remaining 42 items, 1114 
a large proportion of neutral sentences were in fact somewhat biasing towards a particular ordering. 1115 
These sentences were modified in an attempt to make them more neutral, before conducting Norming 1116 
study B. 1117 

Norming Study B (Adults). We recruited 36 adults using Amazon Mechanical Turk. All but 4 1118 
confirmed to be native speakers of English based in the USA (the other participants did not provide a 1119 
response to these screening questions). Sentences were accompanied by pictures of possible 1120 
completions. We created 3 lists, so that each participant only rated each item once, but every item was 1121 
rated by 12 participants in each condition (i.e., A-biasing, C-biasing or neutral sentence). We 1122 
counterbalanced the position of the objects on the screen (left-to-right ordering) between items. Six 1123 
“catch” items (with obvious ordering) were included to make sure participants were paying attention. 1124 
One participant gave the incorrect answer to more than 1 “catch” item (<83%) and was replaced. Six 1125 
items were discarded because either the A-biasing or the C-biasing sentence elicited the intended 1126 
ordering in less than 75% of participants, leaving 36 items. Again, 9 of these items did not meet the 1127 
additional condition that no particular ordering should be preferred (i.e., chosen by more than 75% of 1128 
participants) for the neutral sentence. These sentences were further modified, and then rated by 10 new 1129 
participants recruited via Amazon Mechanical Turk; two participants were replaced because they failed 1130 
to answer at least 83% of the “catch” items correctly. After modifications, only one of the neutral 1131 
sentences elicited a particular ordering more than 75% of the time (see Table S1, §1).  1132 

Norming Study C (children). Finally, we collected rank-Cloze data for modified 36 items from 24 3-1133 
to-5-year-olds (Mage = 53 months, range [37,69], 11 males). A further 10 children were discarded for 1134 
one or more of the following reasons: (1) they were bilingual with a dominant language other than 1135 
English; (2) they did not follow task instructions (e.g., they always selected the pictures in the order 1136 
they were presented, or deliberately selected pictures to create “silly” stories); (3) they did not complete 1137 
the session. 1138 

 Now, Isla will take the Cheese Tomato Ball N-b .375 

(CAB) 

.583 

(CAB) 

 It's getting dark and it's time to switch 

on the 
Lamp Oven Window A-b .875 .750 

 It's cold and Isabella will close the Lamp Oven Window C-b .625 .917 

 For the new house, Alice needs a new Lamp Oven Window N-b .375 

(CBA) 

.417 

(ABC) 
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We presented the rating task as a game. The experimenter placed three boxes of different shapes 1139 
and sizes in front of the child. The left-most box (labelled the “happy box”) was covered in stickers of 1140 
a happy face, while the right-most box (i.e., the “sad box”) had stickers of a sad face; there were no 1141 
stickers on the middle box. Children were told they would listen to stories, but these stories would all 1142 
be missing the last word. The experimenter then asked for the child’s help in finding the picture that 1143 
would be the best end for each story. The pictures were laid out on the table before each story, in a 1144 
random order. After playing the sentence, the experimenter encouraged the child to put the best picture 1145 
completion inside the “happy box”. Then she drew the child’s attention to the remaining two pictures, 1146 
and after playing the story once more, asked which of the two remaining pictures would be a better 1147 
completion than the other (this picture would then be put in the middle box). Given the complexity of 1148 
the task, the experimenter explained it first while working through a simplified practice trial (which had 1149 
an obvious implied ordering) with the child. Most children completed the practice trial correctly, but if 1150 
they did not, the experimenter provided corrective feedback and explained the reasoning behind her 1151 
choices using age-appropriate language. 1152 

We created 3 counterbalanced lists, so that each set of pictures was rated by 8 children in 1153 
combination with each sentence, and each child only rated one set of pictures once. For each list, we 1154 
used two random presentation orders (one the reverse of the other). Sentences had been pre-recorded 1155 
by a female native speaker of Scottish English using natural, child-directed prosody, and were played 1156 
over loudspeakers. Children were tested at the developmental lab of the Department of Psychology, 1157 
University of Edinburgh, or in a quiet area at their nursery. A session lasted approximately 20 to 30 1158 
minutes. Children were allowed to take breaks at any time and were rewarded with stickers.  1159 

We selected 15 items that met the following conditions: both the A-biasing and the C-biasing 1160 
sentence elicited the intended ordering at least 62.5% of the time, which is equivalent to at least 15 of 1161 
the 24 children tested selecting that ordering.  Two of the non-biasing sentences elicited a particular 1162 
order more than 62.5% of the time (see Table S1), but we opted to include these items in the main 1163 
experiment anyway to ensure an equal number of items per condition. In the final set of items, A-biasing 1164 
sentences elicited the intended ordering (ABC) from 76% of children who took part in the norming 1165 
study on average; C-biasing sentences elicited the intended ordering (CBA) from 73% of children on 1166 
average; when averaged across all six possible orderings, the percentage of children who selected a 1167 
given ordering for neutral sentences was 22%, while the percentage of children who converged on the 1168 
most preferred ordering(s) ranged from 37.5% to 75% (average = 45%, see Table S1) for these 1169 
sentences. 1170 

3. Relation between processing measures, age, vocabulary size, knowledge of 1171 
grammar, and socio-economic status in the longitudinal sample. 1172 
 1173 

Figure S1. Correlations between measures at Phase 2 (N = 55). Please refer to the main text for a 1174 
definition of the processing measures: Pred = combined measure of graded prediction skill; Speed = 1175 
measure of processing speed; Rev = measure of revision skill. The other measures are Age (months), 1176 
BPVS (raw receptive vocabulary score on the British Picture Vocabulary Scale), TROG (raw grammar 1177 
score on the Test for the Reception of Grammar), and SES (socio-economic status defined as the 1178 
vigintile of the Scottish Index of Multiple Deprivation (2016); higher numbers indicate less 1179 
deprivation). 1180 

 1181 



PREDICTION AND VOCABULARY DEVELOPMENT 

 

 55 

 1182 

 1183 

As can be seen in Figure S1, Children’s grammar knowledge was positively correlated with age 1184 
(r(52)=.531, p <.001) and concurrent vocabulary size (r(52)=.795, p <.001). Interestingly, the 1185 
correlations with graded prediction skill (r(52)=.215, p =.118) and processing speed (r(52)=-.206, p 1186 
=.136) were in the expected direction but weak and not statistically reliable; in contrast, the correlation 1187 
with revision skill was moderate and statistically significant (r(50)=.418, p<.005)1.  1188 

However, once we controlled for age and concurrent vocabulary size in a multiple regression 1189 
model, none of the processing measures explained a significant amount of variance in grammar 1190 
knowledge (see Table S2 for the full model). Importantly, note that this analysis differs from the one 1191 
we report in the main text for the rate of vocabulary development in the longitudinal sample (see the 1192 
section Longitudinal analysis): since we only measured children’ knowledge of grammar at Phase 2, 1193 
we can only run a cross-sectional analysis for this measure. In any case, we found little evidence that 1194 
variation in grammatical knowledge was explained by processing measures over and above the effects 1195 
of vocabulary knowledge and age. 1196 

Table S2. Model predicting raw TROG score, as a function of the child’s age in Phase 2, their 1197 
concurrent raw BPVS score (centered), and the measures of graded prediction skill, revision skill, and 1198 
processing speed taken at Phase 1 (transformed to z scores to be on a comparable scale). Significant 1199 
predictors (i.e., with |t| > 2) are in bold. 1200 

 1201 

Term B (SE) t 

Intercept 3.75 (0.29) 13.04 

Age 0.01 (0.05) 0.29 

Vocabulary (BPVS) 0.15 (0.02) 6.22 

Graded prediction skill 0.21 (0.35) 0.61 

 
1 We were unable to compute the revision skill measure for two participants due to missing data (see  

The development of revision skills in the main text). 
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Revision skill 0.39 (0.32) 1.23 

Processing Speed 0.12 (0.31) 0.40 

 1202 

4. Cross-sectional analyses: Graded pattern in the prediction window. 1203 
4.1.  Difference curves recapitulate age and vocabulary effects observed in the raw gaze 1204 

proportion data. 1205 
 1206 

As noted in the main text, it is not possible to compare looks to different pictures directly (i.e., within 1207 
the same condition) because this would violate the assumption of independence. Instead, we computed 1208 
difference curves: after applying the elog transformation, we subtracted, separately for each picture, the 1209 
proportion of looks to that picture after a neutral context from the proportion of looks to that picture 1210 
after an A-biasing or a C-biasing context. These curves correspond to log odds of looking at that picture 1211 
in one of the biasing contexts versus the neutral context. They are plotted in Figure S2 to show the same 1212 
age- and vocabulary-related differences that are evident in the graphs of raw fixation proportions 1213 
(Figures 2A and 2B in the main text) are also evident when we plot difference curves. 1214 

 1215 

Figure S2. Difference curves (as in Figure 2C in the main text), as a function of (A) Age and (B) raw 1216 
BPVS score. 1217 

 1218 

 1219 

4.2 By-participant growth-curve models, separately for A-biasing and C-biasing contexts. 1220 

In the main text, our growth-curve models collapsed across A-biasing and C-biasing contexts to increase 1221 
the reliability of the estimates. Here, we report separate models for A-biasing and C-biasing contexts to 1222 
show that (1) the results were replicated within each type of context and (2) by changing the sentential 1223 
context, we could reverse children’s looking preferences for the same set of pictures.  1224 

The A-biasing model compared the log odds of looking at each picture after an A-biasing 1225 
context vs. a neutral context, while the C-biasing model compared the log odds of looking at each 1226 
picture after a C-biasing context vs. a neutral context. Thus, we expected the A-biasing model to show 1227 
that the difference curve for A pictures is higher than the difference curve for B pictures (i.e., the A–B 1228 
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dummy contrast should be significant), and also that the difference curve for C pictures is lower than 1229 
then the difference curve for B pictures (i.e., the C–B dummy contrast should also be significant); full 1230 
model in lmer syntax: elog (Prop. A-biasing – Prop neutral) ~ 1 + (time + time2)*(A-B + C-B)*(Age+ 1231 
Vocabulary), plus full by-participant random effects. Conversely, we expected the C-biasing model to 1232 
show a higher difference curve for C pictures than B pictures, and also a lower difference curve for A 1233 
than B pictures; full model: elog (Prop. C-biasing – Prop neutral) ~ 1 + (time + time2)*(A-B + C-1234 
B)*(Age+Vocabulary), plus full by-participant random effects. Both models included age and 1235 
vocabulary as (centred) covariates, so the findings we report in Table S3 below are valid for a child of 1236 
average age and average vocabulary.  1237 

A-biasing model. Children were more likely to look at the highly predictable (A) than the mildly 1238 
predictable (B) picture following an A-biasing context (A-B in Table S3, left panel), and this preference 1239 
gradually increased over the prediction window ([A-B]*time). Although overall they were not less 1240 
likely to look at the unpredictable (C) picture than the mildly predictable (B) picture (C-B), they 1241 
nevertheless became less and less likely to look at the unpredictable picture ([C-B]*time), particularly 1242 
towards the end of the prediction window, resulting in a downward-shaped curve ([C-B]*time2). 1243 

C-biasing model. Children were more likely to look at the highly predictable (C) than the mildly 1244 
predictable (B) picture following a C-biasing context (C-B in Table S3, right panel), and they were also 1245 
less likely to look at the unpredictable (A) than the mildly predictable (B) picture (A-B). Moreover, 1246 
looks to the unpredictable picture decreased over time compared to looks to the mildly predictable 1247 
picture ([A-B]*time), particularly towards the end of the time window, resulting in a downward-shaped 1248 
curve ([A-B]*time2). In contrast, looks to the predictable picture seemed to peak earlier and the curve 1249 
had begun descending by noun onset ([C-B]*time2). 1250 

Table S3. Growth-curve analysis of the prediction window, separately for A-biasing and C-biasing 1251 
contexts. Estimates (B), standard errors (SE), t values and 95% Confidence Intervals (CI) associated 1252 
with key contrasts in the A-Biasing model (left) and the C-biasing model (right); the contrasts are: A 1253 
vs. B pictures (A-B) and C vs. B pictures (C-B). For each contrast, the model includes three parameters, 1254 
for the intercept, first order time term (*time) and second order time term (*time2). See main text for 1255 
the interpretation of the different parameters. Significant parameters (|t|>2) are highlighted in bold. 1256 

 1257 

 A-biasing model C-biasing model 

Term B (SE) t 95% CIa B (SE) t 95% CIa 

A – B .33(.07) 4.98 [.20,.45] -.18(.07) -2.65 [-.31,-.05] 

            *time .58(.25) 2.29 [.08,1.07] -.58(.26) -2.20 [-1.10,-0.06] 

            *time2 -01(.15) -0.08 [-.30,.28] -.33(.16) -2.04 [-.64,-.01] 

C - B -.03(.06) -0.50 [-.16,.10] .58(.07) 8.44  [.45,.72] 

*time -.59(.25) -2.30 [-1.08,-0.09] .07(.24) 0.30 [-.41,.55] 

            *time2 -.35(.15) -2.32 [-.65,-.06] -.41(.16) -2.56 [-.73,.09] 

a computed with the confint function (method=”Wald”).  1258 

4.3 By-item growth-curve models (collapsing across A-biasing and C-biasing contexts). 1259 
 1260 

The models reported in this section have the same form as the ones reported in the main text (i.e., they 1261 
collapse across A-biasing and C-biasing contexts), but the data were averaged over participants to 1262 
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obtain by-item estimates (rather than vice versa). Since age and vocabulary are participant-specific 1263 
measures, they were not entered into by-items models. Table S4 shows that by-item analyses largely 1264 
confirmed by-participant analyses, though the effects were generally weaker and only reliable on 1265 
selected terms (highlighted in bold in the table). Importantly, however, there was evidence for both an 1266 
overall preference for predictable over mildly predictable pictures (Pred - Mildly Pred) and a gradual 1267 
decrease in looks to the unpredictable (compared to the mildly predictable) picture over time ([Unpred 1268 
– Mildly Pred] * time). 1269 

Table S4. Growth-curve analysis of the prediction window, with items as the source of random 1270 
variation. This table corresponds to Table 2 in the main text, except that it shows analyses over items, 1271 
rather than over participants. 1272 

 1273 

Term B (SE) t 95% CIa 

Pred – Mildly Pred .53(.08) 6.59 [.37,.68] 

*time .38(.24) 1.55 [-.10,.85] 

            *time2 -.21(.17) -1.24 [-.54,.12] 

Unpred – Mildly Pred -.12(.07) -1.70 [-.25,.02] 

*time -.69(.29) -2.40 [-1.26,-.12] 

            *time2 -.35(.20) -1.70 [-.75,.05] 

a computed with the confint function (method=”Wald”).  1274 

4.4  Interactions with age/vocabulary in the by-participant growth-curve models, 1275 
collapsing across A-biasing and C-biasing contexts. 1276 

 1277 

In the main text, we did not discuss the interactions between the covariates age and vocabulary and the 1278 
other parameters of the growth-curve model modelling looks during the prediction window. These 1279 
interactions are reported in Table S5 and discussed below. 1280 

Table S5. This table complements Table 2 in the main text, reporting interactions between the 1281 
parameters shown in Table 2 and either concurrent Age (in months; left) or Vocabulary (raw BPVS 1282 
score; right), both centered. Significant interactions are highlighted in bold. 1283 

 1284 

 Interactions with Age Interactions with Vocabulary 

Term B (SE) t 95% CIa B (SE) t 95% CIa 

Pred – Mildly Pred .01(.01) 1.22 [-.01,.03] .01(.01) 1.43 [-.003,.02] 

            *time -.03(.03) -0.92 [-.09,.03] .03(.02) 1.62 [-.01,.07] 

            *time2 .03(.02) 1.56 [-.01,.06] -.02(.01) -1.94 [-.04,.003] 

Unpred – Mildly Pred -.01(.01) -1.41 [-.03,0.005] .01(.01) 1.04 [-.005,.02] 

*time -.05(.03) -1.64 [-.11,.01] .03(.02) 1.70 [-.01,.07] 
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            *time2 .04(.02) 2.46 [.01,.08] -.03(.01) -2.95 [-.05,-.01] 

a computed with the confint function (method=”Wald”).  1285 

Perhaps surprisingly, there was no indication that parameters’ estimates varied with either age or 1286 
vocabulary, with the exception of the parameter capturing the decrease in looks to unpredictable 1287 
pictures towards the end of the prediction window (in Table S5: [Unpred – Mildly Pred] *time2). The 1288 
model indicated that this decrease tended to be steeper (more negative) in children with larger 1289 
vocabulary, but shallower (more positive) in older children. In contrast, neither age nor vocabulary 1290 
affected the magnitude or time-course of the preference for highly predictable over mildly-predictable 1291 
pictures (see the top three rows of Table S5). Note that the models’ findings are not fully reflected in 1292 
Figure S2 because the model captures the effect of age while controlling for vocabulary, and vice versa, 1293 
whereas the figure shows the effect of age ignoring variability in vocabulary size, and vice versa.  1294 

These initial findings may suggest that the ability to differentiate mildly predictable from 1295 
unpredictable pictures is associated with more advanced linguistic skills (over-and-above age 1296 
differences) in our cross-sectional sample. Accordingly, when we compared the fit of the full model 1297 
(including interactions with both age and vocabulary) to the fit of the model including only interactions 1298 
with age (using a log-likelihood ratio test as implemented by the function anova() in R, package lme4), 1299 
we found that adding vocabulary to the model improved fit somewhat (χ2(9) = 17.46, p = .042). Further, 1300 
we found that the increase in fit was due to interactions between vocabulary and the dispreference for 1301 
unpredictable pictures (χ2(3) = 10.49, p = .02), whereas including interactions between vocabulary and 1302 
the preference for predictable pictures did not add to the fit of the model (χ2(3) = 5.14, p = .162). 1303 

However, these findings should be treated with caution, for three reasons. First, vocabulary was 1304 
(unsurprisingly2) strongly correlated with age (r(213) = .803, p<.001), but  the relation between age and 1305 
raw vocabulary size in our sample could be more complex than a simple linear relation, and this might 1306 
help explain why age and vocabulary seemed to be related to the dispreference for unpredictable 1307 
pictures in opposite ways. Second, when we re-fit the model to include either only interactions with age 1308 
or only interactions with vocabulary (i.e., elog(Prop. Predictive) – elog(Prop. neutral) ~ 1 + 1309 
(time+time2)*(Predictable-Mildly predictable + Unpredictable-Mildly predictable)*[Age or 1310 
Vocabulary], plus maximal by-participant random effects),  we confirmed what is evident in Figures 1311 
2A and S2A and 2B and S2B, i.e. that children’s prediction skills improve with both age and vocabulary, 1312 
respectively. More specifically, we found that children’s preference for predictable pictures grew 1313 
significantly stronger with age (intercept: t= 3.96, other interactions |t|< 1) and vocabulary size 1314 
(intercept: t = 4.04, other interactions |t|<1.50). In contrast, however, we did not find statistically 1315 
significant evidence for age or vocabulary-related differences in children’s ability to distinguish 1316 
between unpredictable and mildly predictable pictures (all |t|’s < 1.7). Third, when we correlated 1317 
vocabulary size with measures of prediction skill based on raw data from the last 400ms of the 1318 
prediction window (see §4.5 below), we found no evidence for a relation between the dispreference for 1319 
unpredictable pictures and vocabulary size. This suggests that the relation between vocabulary size and 1320 
the [Unpred – Mildly Pred] *time2 parameter in the model (see Table S5) may reflect individual 1321 
differences in the shape of the curve representing the decrease in looks to unpredictable pictures towards 1322 
the end of the prediction window, rather than differences in the ability to distinguish between mildly 1323 
predictable and unpredictable pictures per se. 1324 

In sum, while the major locus of measurable individual differences was in increased 1325 
differentiation of the two most predictable continuations, once age-related effects were accounted for, 1326 
more advanced linguistic abilities seemed to be most associated with the time-course with which 1327 

 
2 The strong correlation between age and vocabulary size is unsurprising given we used raw 

vocabulary scores, but recall standardized BPVS scores were not available for children below the age 

of three. 
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children directed their attention away from unpredictable pictures, but the functional significance of 1328 
this latter finding is unclear. 1329 

4.5 Relation between vocabulary size and the (raw) preference for predictable pictures / 1330 
(raw) dispreference for unpredictable pictures. 1331 

 1332 

Figure S3 below should be compared to Figure 4A in the main text, which shows the cross-sectional 1333 
relation between vocabulary size at Phase 1 and the combined measure of graded prediction skill. While 1334 
that relation was found to be positive and significant, the relation between vocabulary size and the 1335 
degree to which children preferred to look at pictures that were highly predictable given the context 1336 
over those that were only mildly predictable was significantly positive, but weaker (r(213) = .214, p 1337 
<.005; see Figure S3, panel A). Moreover, the relation between vocabulary size and the dispreference 1338 
for unpredictable pictures compared to mildly predictable pictures was not significant (r(213) = -.011, 1339 
p >.250). Similarly, the preference measure was related to age at Phase 1 (r(213) = .193, p <.005), 1340 
though not as strongly as the combined measure (see main text), while the disprefrence measure was 1341 
not (r(213) = -.064, p >.250). 1342 

Figure S3. The cross-sectional relation between vocabulary size in Phase 1 (raw BPVS score) and (A) 1343 
the raw preferences for predictable vs. mildly-predictable pictures and (B) the raw dispreference for 1344 
unpredictable vs. mildly predictable pictures. 1345 

 1346 

 1347 

5. Cross-sectional analyses: The cost associated with disconfirmed predictions - 1348 
interactions with age and vocabulary. 1349 

 1350 

We explored how the hindering effect of inaccurate predictions changed with age and vocabulary. The 1351 
full model including both age and vocabulary (see Table S6) revealed no significant age or vocabulary-1352 
related differences to the hindering effect of disconfirmed predictions. Moreover, vocabulary did not 1353 
explain any additional variance over-and-above the effect of age, as adding vocabulary to a model that 1354 
only included age did not significantly improve fit (χ2(2) = 3.25, p = .197).  However, when we fit 1355 
separate models including only age (Table S7) or only vocabulary (Table S8), we found that the effect 1356 
of disconfirmed predictions grew stronger with increasing age (t = -2.62) and vocabulary (t = -2.82), 1357 
confirming the visual trends in Figure 3 (3A and 3B, respectively) in the main text. So, although it is 1358 
unclear what drives these individual differences (i.e., vocabulary or other skills that change with age), 1359 
it is clear that the hindering effect of disconfirmed predictions increases during the preschool years. 1360 

Table S6. Model summary capturing the cost associated with a disconfirmed prediction. The effect of 1361 
Context compares the time to first fixation to a mildly predictable picture after a neutral context and 1362 
after a context predictive of a different picture; this model includes Age and Vocabulary as (centered) 1363 
covariates. Significant predictors are highlighted in bold. Model formula: Latency  ~ 1 + Context *(Age 1364 
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+ Vocabulary), plus maximal random effects by item, and random intercepts by participants (by-1365 
participant slopes for Context were estimated to be close to zero and dropped for convergence) 1366 

 1367 

Term B (SE) t 95% CIa 

Context -95.51 (25.28) -3.78 [-145.06,-45.96] 

Age -1.07(1.70) -0.63 [-4.40,2.25] 

Vocabulary -1.49(1.09) -1.36 [-3.63,0.65] 

Context * Age -2.61(3.29) -0.79 [-9.06,3.84] 

Context * Vocabulary -2.52(2.12) -1.19 [-6.67,1.63] 

a computed with the confint function (method=”Wald”).  1368 

Table S7. Model summary capturing the cost associated with a disconfirmed prediction. This model 1369 
includes only Age as a (centered) covariate. Model formula: Latency  ~ 1 + Context *Age, plus maximal 1370 
random effects by item, and random intercepts by participants. 1371 

 1372 

Term B (SE) t 95% CIa 

Context -95.38 (25.40) -3.76 [-145.16,-45.60] 

Age -2.81(1.08) -2.59 [-4.93,-0.68] 

Context * Age -5.53(2.11) -2.62 [-9.66,-1.40] 

a computed with the confint function (method=”Wald”).  1373 

Table S8. Model summary capturing the cost associated with a disconfirmed prediction. This model 1374 
includes only Vocabulary (BPVS score) as a (centered) covariate. Model formula: Latency  ~ 1 + 1375 
Context Vocabulary, plus maximal random effects by item, and random intercepts by participants. 1376 

 1377 

Term B (SE) t 95% CIa 

Context -95.55 (25.23) -3.79 [-144.99,-46.11] 

Vocabulary -2.02(0.70) -2.89 [-3.40,-0.65] 

Context *Vocabulary -3.82(1.36) -2.82 [-6.47,-1.16] 

a computed with the confint function (method=”Wald”).  1378 

6. Comparison between the distributions of vocabulary (Figure S4) and age 1379 
(Figure S5) in the cross-sectional sample and the longitudinal subsample 1380 

 1381 
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Figure S4. Distribution of vocabulary scores (raw BPVS score) at Phase 1 for children tested in 1382 
Phase 1 only (orange bars) and those that were later retested in Phase 2 (subsample, yellow bars). 1383 

 1384 

 1385 

 1386 

Figure S5. Distribution of age (in months) at Phase 1 for children tested in Phase 1 only (orange 1387 
bars) and those that were later retested in Phase 2 (subsample, yellow bars). 1388 

 1389 

 1390 

7. Longitudinal analyses: Relation between vocabulary development and 1391 
prediction skills. 1392 

 1393 
The combined measure of graded prediction skill was a significant predictor of inter-individual 1394 
variability in the rate of vocabulary development (see Longitudinal analysis in the main text). In 1395 
contrast, the component measures (i.e., the preference for predictable and the dispreference for 1396 
unpredictable pictures) were not. The preference for predictable over mildly-predictable pictures 1397 
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(computed over the last 400ms of the prediction window) did not predict the rate of vocabulary 1398 
development when entered in a linear regression model (as in the analyses reported in the main text, 1399 
we scaled the preference measure before entering it into the model, and we controlled for 1400 
vocabulary size at Phase 1, centered): B = .61, SE = 3.45, t =.18. Similarly, the dispreference for 1401 
unpredictable compared to mildly predictable pictures, computed over the same time window, also 1402 
did not explain any variance in the rate of vocabulary development (analysis as above): B = -4.16, 1403 
SE -3.39, t = -1.23. See Figure S6. 1404 

Figure S6. The relation between the rate of vocabulary change (%) and (A) the preference for 1405 
predictable over mildly-predictable pictures in the last 400ms of the prediction window, (B) the 1406 
dispreference for unpredictable relative to mildly-predictable pictures in the last 400ms of the prediction 1407 
window. 1408 

 1409 

 1410 
8. Longitudinal analyses: Relation between prediction skill, revision skill and 1411 

processing speed and the rate of vocabulary change (%), while controlling for 1412 
Age in Phase 1 1413 

 1414 

The longitudinal analyses reported in the main text controlled for vocabulary size (raw BPVS score) in 1415 
Phase 1. Below, we report similar analyses but using age at Phase 1 as the control variable.  1416 

When controlling for age instead of vocabulary at Phase 1, the measure of revision skill remained 1417 
unrelated to the rate of vocabulary change (p>.250). In contrast, both processing speed (B = -6.13, SE 1418 
= 3.42, t=-1.79, p = .079) and the combined measure of graded prediction skill (B = 6.32, SE = 3.32, t 1419 
= 1.905, p = .062) were marginally related to the rate of vocabulary change. Importantly, although in a 1420 
multiple regression model including both measures, neither prediction (B = 5.33, SE = 3.35, t = 1.59, p 1421 
= .118) nor processing speed (B = -5.03, SE = 3.44, t = -1.46, p =.151) were significant predictors of 1422 
the rate of vocabulary change, the combined measure of fluent language processing improved model fit 1423 
significantly compared to a baseline model including only age at Phase 1 (F(1, 51) = 5.95, p = .018), 1424 
and the model including it explained a significant amount of variation in vocabulary development (R2 1425 
= .119, F(2,51) = 3.43, p = .04). 1426 

9. Longitudinal analyses: Chronological age and linguistic age (expressed as a 1427 
percentage increment of chronological age) for each child. 1428 

 1429 

Table S9. Chronological age (Age) and Linguistic Age (expressed as a percentage increment of 1430 
chronological age) for each child in the longitudinal subsample (N = 54) at each testing point (Phase 1 1431 
and Phase 2); Vocabulary Change (Voc Change, %) is obtained by subtracting Linguistic Age Phase 1 1432 
from Linguistic Age Phase 2. 1433 

 1434 
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Age Phase 1 Age Phase 2 Linguistic Age Phase 1 

(as a % of Age Phase 1) 

Linguistic Age Phase 2 

(as a % of Age Phase 2) 

Voc Change (%) 

43 52 -13.95 -17.31 -3.36 

42 51 -11.90 21.57 33.47 

46 56 30.43 -37.50 -67.93 

39 48 5.13 25.00 19.87 

45 54 -28.80 -7.41 21.39 

43 53 4.65 -15.09 -19.74 

45 55 44.44 56.36 11.92 

44 53 4.35 -16.98 -21.33 

41 49 65.85 46.94 -18.91 

37 46 18.91 -6.52 -25.43 

37 44 18.92 25.00 6.08 

54 61 40.74 37.70 -3.04 

54 60 22.22 56.67 34.45 

51 58 45.10 34.48 -10.62 

38 45 68.42 46.67 -21.75 

36 43 2.77 4.65 1.88 

42 51 -7.14 9.80 16.94 

40 50 -5.00 -22.00 -17.00 

40 47 2.50 51.06 48.56 

56 63 28.57 -6.35 -34.92 

46 54 41.30 -5.56 -46.86 

44 51 34.09 0.00 -34.09 

44 51 15.90 19.61 3.71 

40 47 10.00 40.43 30.43 

44 52 25.00 23.08 -1.92 

48 56 41.67 26.79 -14.88 

44 53 54.54 52.83 -1.71 

37 46 10.81 47.83 37.02 

48 57 -4.16 -15.79 -11.63 
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47 56 -6.38 0.00 6.38 

34 43 20.59 4.65 -15.94 

34 43 8.82 30.23 21.41 

29 38 -3.45 7.89 11.34 

32 41 6.25 7.32 1.07 

28 37 25.00 18.92 -6.08 

49 55 38.78 47.27 8.49 

29 35 34.48 11.43 -23.05 

33 38 -15.15 2.63 17.78 

34 41 29.41 -12.20 -41.61 

33 41 3.03 -4.88 -7.91 

44 52 15.90 0.00 -15.90 

33 41 87.88 90.24 2.36 

47 53 42.55 28.30 -14.25 

44 51 65.90 56.86 -9.04 

45 51 57.78 84.31 26.53 

36 45 22.22 -15.55 -37.77 

49 57 34.69 35.09 0.40 

60 68 40.00 52.94 12.94 

31 39 9.68 -10.26 -19.94 

31 39 6.45 -28.21 -34.66 

25 34 48.00 20.59 -27.41 

58 65 -8.62 -6.15 2.47 

60 66 30.00 24.24 -5.76 

51 59 31.37 84.75 53.38 

 1435 

 1436 
 1437 


