
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

DQ impedance stability analysis for the
power-controlled grid-connected inverter
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Abstract—For a grid-connected inverter requiring the ac volt-
age magnitude and the active power control, both vector control
and power synchronization control can be applied. The stability
comparison based on the dq impedance stability analysis between
both control are carried out via three factors including the grid
impedance, the inner current loop and the virtual impedance.
The dq impedances of the inverter based on both control are
derived. The determinant of the impedance ratio matrix is used
for the stability analysis. The bode plot of the grid impedance and
the inverter impedance are present to assist the stability analysis
and explain their interactions. It is found that increasing the grid
impedance and the cut-off frequency of the current loop stabilize
the inverter with the power synchronization control, which is
converse to the vector control. Furthermore, the inverter with the
power synchronization control may suffer the instabilities when
connecting to a strong grid. The virtual inductor and resistor
are proposed to enhance the stability for the vector control and
the power synchronization control respectively. The simulation
validation using Matlab/Simulink is performed.

Index Terms—Impedance stability analysis, VSC, small-signal
stability analysis, small-signal modeling

I. INTRODUCTION

THREE-phase voltage source converters (VSCs) are
widely used as grid-connected inverters to assist the

integration of renewable energies. Inverters with the common-
used vector control may suffer instabilities with a weak
grid [1]. Because the point-of-common-coupling voltage that
tracked by phase-locked loop (PLL) is not stiff. The power
synchronization control [2], that emulates the operation of
synchronization machines, is proposed as an alternative power
control of the grid-connected inverter for a stable connection
to the weak grid . The inner current loops are normally applied
for both power control in order to protect the semiconductor
switches from the overcurrent.

The stability analysis are essential for both control to
improve the stability and further avoid the instability. Two

Manuscript created August 1, 2019; revised November 17, 2019 and
February 24, 2020; accepted April 13, 2020. This work was supported by
UK National Grid Electricity Transmission under Grand NIA NGTO001.
(Corresponding author: Jun Liang)

C. Li, J. Liang, L. Cipcigan, W. Ming are with the School of Engineering,
Cardiff University, Cardiff, CF24 3AA (email: chuanyue.li@outlook.com;
LiangJ1; CipciganLM; MingW{@cardiff.ac.uk}).

X. Guillaud are with Univ. Lille, Arts et Metiers Institute of
Technology, Centrale Lille, HEI, ULR 2697- L2EP - Laboratoire
d’Electrotechnique et d’Electronique de Puissance, F-59000 Lille, France
(email: xavier.guillaud@centralelille.fr).

F. Colas is with Arts et Metiers Institute of Technology, Univ. Lille,
Centrale Lille, HEI, HESAM Universite, EA 2697 - L2EP - Laboratoire
d’Electrotechnique et d’Electronique de Puissance, F-59000 Lille, France
(email: Frederic.colas@ensam.eu).

stability analysis methods, which are the state-space stability
analysis [3] and impedance stability analysis [4], can be used
based on the small-signal linearization. For the state-space
stability analysis, a high order and specified matrix is required
in order to find all system poles. The impedance stability
analysis can do the same pole analysis simply based on the
impedance ratio via pole maps or Nyquist plot. Additionally,
the impedance of the inverter can be figured as the bode
plot to assist the analysis. The impedance stability analysis
is achieved via the impedance ratio [4] that is determined by
the admittance of the inverter and the impedance of the grid.

For a dq controlled three-phase inverter, the admittance in
the dq domain [5] or in the sequence domain [6] can be
applied for the stability analysis. Their frequency analysis
are therefore referred to the dq frame and stationary frame
respectively. An additional complex space vector derivation [7]
[8] is required to derive the sequence admittance. It found that
the dq admittance can be equivalently transferred to a modified
sequence admittance [9]. Both admittances are coupled 2×2
matrices due to the synchronisation of dq frame control and
asymmetrical outer loop. The couplings was ignored [10] [6]
for the stability analysis due to its small magnitude. The
following studies show that the couplings must be considered
for an accurate stability analysis [11] [12].

The impedance ratio is a 2× 2 matrix due to the dq frame
control. Generalized Nyquist Criterion [10] is therefore applied
for both impedance-ratio matrix’s eigenvalues for the stability
analysis. It is commonly used in the grid-connected inverter
system [13] [5] [14] [15] [16]. However, both eigenvalues have
to be analysed, and the coupled matrix brings difficulties to
derive the transfer functions of its eigenvalues.

The determinant of the impedance-ratio matrix, which is
derived simply, is used for three-phase rectifier’s stability
analysis [17] [18] in 1990s. Recently it is applied for the
inverter system as an alternative impedance stability analysis
method [19] [20]. Only the determinant is figured as the
pole map or Nyquist plot for the stability analysis, which
simplifies the analysis process. Another to the multi-input and
multi-output dq impedance can be converted into its sequence
domain single-input and single-output equivalents [21]. Then
the Nyquist Criterion other than Generalized Nyquist Criterion
can be applied.

The grid-connected inverter using the vector control are
widely studied via the dq impedance stability analysis. The
factors with a negative impact on the stability are unveiled,
such as large cut-off frequency of the phase-locked loop
(PLL) [13] and current control loop [22], high power injection
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Fig. 1: Impedance model of a grid-connect inverter

from the inverter and large grid impedance [5]. The stability
of a multiple inverter system can also be validated via the
impedance method [15] [16]. The synchronization stability
issues between inverters can be avoided via the design of the
PLL [14].

The grid-connected inverter using the power synchroniza-
tion control for a stable connection to a weak grid [2] is
extensively studied via the stability analysis recently years.
The stability limitation [23], the robust control design [24],
and the transient stability analysis [25] are carried out for
the power synchronization control. It is revealed based on the
impedance stability analysis that the subsynchronous damping
can be benefited from the inverter with power synchronization
control [26], and the stability of the power synchronization
control can be improved via the high-pass filter [27]. The
comparison studies of the power synchronization control based
on the impedance method between the current control and the
voltage control are carried out in [28].

However, a comprehensive stability comparison study be-
tween the conventional vector control and the power synchro-
nization control for regulating the ac voltage magnitude and
the active power is not carried out yet. In this paper, the
stability influence of the connected grid ranging from a strong
grid to a weak grid is studied. The frame synchronization and
outer loops of both control are different, except the inner
current control as shown in Figs. 3 and 4. Therefore, the
stability comparison on the inner current loop is carried out
based on the various cut-off frequency. The different type of
virtual impedance control for enhancing the stability of both
control are also proposed and compared. The dq impedance
stability analysis based on the determinant is used in the paper.

II. DQ IMPEDANCE STABILITY ANALYSIS

A. dq impedance stability analysis

Grid-connected inverters normally work as a current source
in the d-q frame and its small-signal model is built according
to the Norton law, as shown in Fig. 1. r̃ef is the reference
deviation of the control system and Gref (s) is its gain factor
from the control.

From the inverter side, the relation between the voltage
behind the filter ṽf and the feeding current ĩg is derived as:

ĩg = Gref r̃ef + Yoṽf (1)

Where the bold parameter stands for its d-q matrix parameters

such as ĩg =

[
ĩgd
ĩgq

]
.

Fig. 2: Comparison between the state-space method and the
determinant-based impedance method

From the grid side, the relation between feeding current ĩg
and the grid voltage ṽg is derived as:

ṽf − ṽg = Zg̃ig (2)

Substituting ṽf in (1) with (2) yields:

ĩg = Gref r̃ef + YoZg̃ig + Yoṽg (3)

Rearranging (3) for ĩg yields:

ĩg = (I − ZgYo)
−1(Gref r̃ef + Yoṽg) (4)

Where the impedance ratio matrix is (I − ZgYo)
−1.

For the impedance stability analysis [4] [29] [5], the
impedance ratio matrix is considered for the system stability
analysis due to no right-plane poles from Gref&Yo.

B. Impedance stability analysis via the determinant

It is found that the determinant derived from the impedance
ratio matrix is the key factor that determines the system
stability. All elements of the impedance ratio matrix are
contained in the determinant including couplings, thus their
influence on the stability are all accounted. The Nyquist plot
or the pole map as the stability analysis tool can be drawn via
the determinant to check the right-plane poles. The mechanism
of the determinant as the key factor for the stability analysis
is shown below.

The impedance ratio matrix can be reconstructed as two
parts: a determinant and an adjacent matrix as shown below:

(I − ZgYo)
−1 = adj(I − ZgYo)det((I − ZgYo)

−1) (5)

The equivalent admittance Yo of the inverter has no right-plane
poles as mentioned before, neither to the grid impedance Zg .
Therefore, no right-plane poles exist in adj(I − YoZg). It can
be concluded via the (5) that the system stability is determined
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Fig. 3: Vector control Fig. 4: Power synchronization control

only by det((I − ZgYo)
−1), which is the determinant of the

impedance ratio matrix.
For the stability analysis, one pole map can be used based

on the determinant det((I−ZgYo)
−1) for checking the right-

plane poles. The determinant can also be figured as a bode
plot for the frequency analysis based on the dq frame.

For validating the determinant-based impedance stability
analysis, the state-space method [22] is used for the com-
parison. The studied system is shown in Fig. 3. The inverter
control is simplified as the current control with the PLL. The
state-space matrix is derived based on [30]. Pole locus are
drawn in Fig. 2 at various grid impedance. As shown in Fig.
2, the determinant-based method identifies the same poles of
the inverter as that of the state-space method.

C. Impedance analysis via the bode plot

The determinant method simplifies the dq impedance stabil-
ity analysis for the grid-connected inverter system. However,
det((I − ZgYo)

−1) involves the matrix multiplication such as
ZgYo, as shown below:

YoZg =

[
Y dd
o Zdd

g + Y dq
o Zqd

g Y dd
o Zdq

g + Y dq
o Zqq

g

Y qd
o Zdd

g + Y qq
o Zqd

g Y qd
o Zdq

g + Y qq
o Zqq

g

]
(6)

Comparing to (6), (7) is simpler and clearer to explain the
interaction, as shown below:

Zo − Zg =

[
Zdd
o − Zdd

g Zdq
o − Zdq

g

Zqd
o − Zqd

g Zqq
o − Zqq

g

]
(7)

Therefore, the further reconstruction of det((I − ZgYo)
−1)

is required and shown below:

det((I − ZgYo)
−1) =

det(Y−1
o )

det(Zo − Zg)
(8)

det((I − ZgYo)
−1) =

det(Z−1
g )

det(Yg − Yo)
(9)

where Zo is the equivalent impedance of the inverter.
With a constant inverter admittance Yo, the stability influ-

ence of various Zg is analysed based on (8) via 1
det(Zo−Zg)

. All
elements of (Zo − Zg) are calculated straightly compared to
ZgYo. The stability influence of each element of (Zo−Zg) on

1
det(Zo−Zg)

can be found via their bode plots simply and clearly.
The ultra-small magnitude appears in (Zo − Zg), which will
result in a large magnitude in 1

det(Zo−Zg)
, should be avoided

for a stable operation.
With a constant grid impedance Zg , the stability influence

of various Yo is analysed based on (9) via 1
det(Yg−Yo)

. Each
element of (Yg−Yo) is drawn as the bode plot for the stability
analysis.

The inverter impedance Zo based on the bode plot are
widely used for the stability analysis including the vector
control [5] or power synchronization control [26]. Therefore,
in this paper, the theory based on (8) are applied. The bode
plot of (Zo − Zg) will be drawn for the stability analysis.

It should be noticed that the accurate stability analysis
still requires the determinant of the impedance ratio matrix.
Bode plots of (Zo − Zg) are used to show the stability
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interaction between the inverter and the grid, and the stability
improvement (avoid the ultra-small magnitude from (Zo−Zg))
can be find out via the bode plot.

D. Virtual impedance control

Zo can be modified by adding additional impedance in
order to avoid the ultra-small magnitude of (Zo − Zg). The
stability of the inverter system will be improved. The control
parameter can be tuned to apply the required impedance.
However, the inverter control is too complicated to find the
proper parameters. The virtual impedance is the simple way
to provide the required impedance for the Zo. Therefore, the
virtual impedance control will be applied in this paper and
what kind of virtual impedance for the vector control or power
synchronization control is carried out based on (Zo − Zg).

III. THE DQ IMPEDANCE OF THE GRID-CONNECTED
INVERTER

The detailed structures of the power synchronization control
and the vector control for the grid-connected inverter are
shown in Fig. 3 and Fig. 4. The active power and the
magnitude of the point of common coupling voltage vf are
regulated via both control. The virtual impedance control are
added in order to enhance the system stability.

The dq admittance (and impedance) of the grid-connected
inverter with the vector control is well derived and validated
in [5]. Therefore only the impedance derivation for the power
synchronization control is shown in this section.

A. Linearization of the power synchronization

For the dq impedance derivation, the three-phase abc system
is presented as the dq form. The power is therefore calculated
as below:

P =
3

2
(VfdIgd + VfqIgq) (10)

If small disturbances are applied based on small-signal
method, (10) is rewritten as:

P + P̃ =
3

2
[(Vfd + ṽfd)(Igd + ĩgd) + (Vfq + ṽfq)(Igq + ĩgq)]

(11)

The linearized power is yielded by rearranging (11):

P̃ ≈ 1.5(Igdṽfd + Vfdĩgd + Igq ṽfq + Vfq ĩgq) (12)

The power synchronization is shown based on the Fig. 3:

θ =

∫
ω0 + dp(P

∗ − P )dt− π

2
(13)

Its equivalent small-signal function is:

θ̃ =
dp(P̃

∗ − P̃ )

s
(14)

The linearization of the power synchronization is achieved
via substituting P̃ in (14) with (11):

θ̃ =
dpP̃

∗

s
− 1.5dp

s
(Igdṽfd + Vfdĩgd + Igq ṽfq + Vfq ĩgq)

(15)

B. Linearization of abc-dq transformation

For the dq impedance derivation, the three-phase abc system
is presented as the dq form, such as vc vf ic ig . The dq control
is based on the synchronized dq frame, their parameter are
therefore noted as vso vsf isc isg . The dq-formed abc parameters
are equal to their dq-synchronized parameters after the abc-
dq transformation at steady state, but are different when a
synchronized phase error θ̃ appears at the transformation. The
linearization of the abc-dq transformation is shown blow:

T =

[
cos(0 + θ̃) sin(0 + θ̃)

− sin(0 + θ̃) cos(0 + θ̃)

]
≈

[
1 θ̃

−θ̃ 1

]
(16)

Transformation from dq to abc yields:

T−1 ≈

[
1 −θ̃
θ̃ 1

]
(17)

The abc-dq transformation via T between ic and isc based
on the small-signal method is summarized below:[

Iscd + ĩscd
Iscq + ĩscq

]
=

[
1 θ̃

−θ̃ 1

] [
Icd + ĩcd
Icq + ĩcq

]
=[

Icd + ĩcd + Icq θ̃ + θ̃̃icq
Icq + ĩcq − Icdθ̃ − θ̃̃icd

]
(18)

(18) is simplified below based on Isc = Ic and θ̃̃ic ≈ 0:[
ĩscd
ĩscq

]
=

[
ĩcd + Icq θ̃

ĩcq − Icdθ̃

]
(19)

Substituting θ in (19) with (15) yields:

ĩ
s

c = ĩc + Hcf ṽf + Hcg̃ig + HcP P̃
∗

(20)

Where Hcf =

 −1.5dpIcqIgd
s

−1.5dpIcqIgq
s

1.5dpIcdIgd
s

1.5dpIcdIgq
s

,

Hcg =

 −1.5dpIcqVfd
s

−1.5dpIcqVfq
s

1.5dpIcdVfd
s

1.5dpIcdVfq
s

,

HcP =

 Icqdp
s

0

−Icddp
s

0

, P̃
∗
=

[
P̃ ∗

0

]
The abc-dq transformations for ig&isg and vf&vsf by fol-

lowing the same derivation yield:

ĩ
s

g = Hgf ṽf + Hgg̃ig + HgP P̃
∗

(21)

Where Hgf =

 −1.5dpIgqIgd
s

−
1.5dpI

2
gq

s
1.5dpI

2
gd

s

1.5dpIgdIgq
s

,

Hgg =

 1− 1.5dpIgqVfd
s

−1.5dpIgqVfq
s

1.5dpIgdVfd
s

1 +
1.5dpIgdVfq

s

,

HgP =

 dpIgq
s

0

−dpIgd
s

0


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Fig. 5: Impedance measurement of the power synchronization control

ṽsf = Gff ṽf + Gfg̃ig + GfP P̃
∗

(22)

WhereGfP =

 dpVfq
s

0

−dpVfd
s

0

, Gff =

 1− 1.5dpVfqIgd
s

−1.5dpVfqIgq
s

1.5dpVfdIgd
s

1 +
1.5dpVfdIgq

s

,

Gfg =

 −1.5dpVfqVfd
s

−
1.5dpV

2
fq

s
1.5dpV

2
fd

s

1.5dpVfdVfq
s


The dq-abc transformation via T−1 between vsc and vc based

on the similar derivation yields:

ṽc = ṽs
c + Gcf ṽf + Gcg̃ig + GcP P̃

∗
(23)

Where Gcf =

 1.5dpVcqIgd
s

1.5dpVcqIgq
s

−1.5dpVcdIgd
s

−1.5dpVcdIgq
s

,

Gcg =

 1.5dpVcqVfd
s

1.5dpVcqVfq
s

−1.5dpVcdVfd
s

−1.5dpVcdVfq
s

,

GcP =

 −dpVcq
s

0

dpVcd
s

0


C. Admittance and impedance of the grid-connected inverter

The admittance of the inverter is built up from the control
and LC filter of the inverter. The function of the inverter based
on its admittance is shown in (1). The admittance is derived
in this section and the impedance is the inverse admittance.

The dq control as shown in Fig. 3 is summarized below:

ṽsc = tfi[tfv(ṽ
∗
f − ṽsf ) + ĩ

s

g + Gdev ṽsf − ĩ
s

c] + ṽs
f + Gdeĩi

s

c + Zṽi
s

c

(24)

Where tfi =

[
kip +

ki
i

s 0

0 kip +
ki
i

s

]
, tfv =[

kvp +
kv
i

s 0

0 kvp +
kv
i

s

]
, Gdei =

[
0 −ω0Lf

ω0Lf 0

]
,

Gdei =

[
0 −ω0Cf

ω0Cf 0

]
, Zv =

[
Zv 0
0 Zv

]
,

ṽ∗f =

[
ṽ∗fd
ṽ∗mag

]
Substituting ṽsc ṽsf ĩ

s

c ĩ
s

g in (24) with (20) (21) (22) (23) and
taking the time Tdel including control delay and the dead time
of PWM into account yields:

ṽc = Gdeltfitfv ṽ∗
f + Gv ṽf + Gĩig + GdelGpP̃

∗
(25)

Where Gv = Gdel[(I−tfitfv+tfiGdev)Gff+tfiHgf+(Gdei−
tfi + Zv)Hcf + Gcf + (Gdei − tfi + Zv)Yc] , Gi = Gdel[(I −
tfitfv+ tfiGdev)Gfg+ tfiHgg+(Gdei− tfi+Zv)Hcg+Gcg+

(Gdei− tfi+Zv)], Gdel =

 1− 0.5Tdels

1 + 0.5Tdels
0

0
1− 0.5Tdels

1 + 0.5Tdels


The voltage and current relation on the LC filter can be

found below:

ṽc = ṽf + Zf ĩc (26)

Where Zf (s) =

[
Lfs+Rf −ω0Lf

ω0Lf Lfs+Rf

]

ĩc = Ycṽf + ĩg (27)

Where Yc =

[
Cfs −ω0Cf

ω0Cf Cfs

]
Substituting ĩc in (26) with (27) yields:

ṽc = ṽf + ZfYcṽf + Zf ĩg (28)

Substituting ṽc in (25) with (28) yields:

ṽf + ZfYcṽf + Zf ĩg = Gdeltfitfv ṽ∗f + Gv ṽf + Gĩig + GdelGpP̃
∗

(29)

Rearranging (29) according to the structure of (1) yields:

ĩg = (Zf − Gi)
−1(Gv − ZfYc − I)︸ ︷︷ ︸

Yo

ṽf+

(Zf − Gi)
−1(Gdeltfitfv ṽ∗f + GdelGpP̃

∗
)︸ ︷︷ ︸

Gref r̃ef

(30)

The admittance Yo of the inverter is therefore derived based
on (30), and the impedance Zo is derived as (Yo)

−1.
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Fig. 6: Impedance analysis via the bode plots

D. Impedance validation of the power synchronization control
The derived impedance of the power synchronization con-

trol is validated via the measurement method [31]. The param-
eters of the inverter are shown in Table I. Two sets of 0.01 p.u.
ac current are injected to the inverter because of 4 unknowns
impedance elements(Zo dd, Zo dq , Zo qd, Zo qq). The injection
point is shown in Fig. 4. The measured dq impedance matrix
is calculated based on the measurements ṽf ĩ

−1

g . The measured
and derived impedance matrixes are drawn in Fig. 5. It shows
good accuracy of the derived impedance matrix.

TABLE I: Parameters of the grid-connected inverter

Symbol Parameter Value

Grid-connected inverter

S Power rating 1000 MVA
Vg rms l-l AC grid voltage 320 kV
Lf LC filter inductor 48.9 mH
Rf LC filter resistor 0.512 Ω

Cf LC filter capacitor 2.05 µF
Zg (Rg + jXLg ) grid impedance 0.02 + 0.2j p.u.

v∗fd d-axis voltage reference 1 p.u.
v∗fq q-axis voltage reference 0 p.u.

P ∗ active power reference 1 p.u.
Tdel control delay and dead time of PWM 5 µs

ω∗ base frequency 2 π× 50
Vector control

ωi
c cut-off frequency of closed-loop current control 800 rad/s

kip&kii PI for current control 0.382&4
kPp &kPi PI for power control 0.1kip&0.1kii
kvp&kvi PI for voltage control 0.1kip&0.1kii
ωPLL
c phase-locked loop cut-off frequency 210 rad/s

kPLL
p &kPLL

i PI for PLL 420&44100
Power synchronization control

ωi
c cut-off frequency of close-loop current control 4000 rad/s

kip&kii PI for current control 1.91&20
kvp&kvi PI for voltage control 0.1kip&0.1kii
dp power synchronization gain 0.005 ∗ ω∗

ωi
c & ωPLL

c are calculated via their PI parameters based on [32] [33]

IV. STABILITY ANALYSIS AND COMPARISON

The stability of the vector control and the power synchro-
nization control are analysed and compared in this section
including:

• influence of the various grid impedance
• influence of the inner current control loop
• the stability enhancement of the virtual impedance

The grid-connected inverter systems shown Figs. 3 and 4 are
simulated in Matlab/Simulink to validate the dq impedance
stability analysis. The used parameters are given into Table I.

Fig. 7: Determinant of the impedance ratio matrix with the
grid impedance ranging from 0.05 to 0.95 p.u. (XLg)

A. Stability with the various grid impedance

For a transmission network, the grid impedance is mainly
inductive. The stability influence of the grid inductance XLg

ranging from 0.05 to 0.95 p.u. on the grid-connected inverter
is studied. The grid resistance Rg maintains 0.1 XLg

. The de-
terminant of the impedance ratio matrix of the grid-connected
inverters with the vector control and the power synchronization
control are drawn in Fig. 7. The pole locus close to x = 0 are
shown. It is found that:

1) for an inverter with the vector control, increasing grid
impedance makes the poles moving towards to the right
half plane. The stability is therefore reduced. When
XLg > 0.75 p.u., the system becomes unstable as shown
in Fig. 7 (a).

Fig. 8: Bode plot of 1
det(Zo−Zg)

with the grid impedance
ranging from 0.05 to 0.95 p.u.
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Fig. 9: Impedance of an inverter with the vector control

2) for an inverter with the power synchronization control,
the inverter is more stable with the large grid impedance
(weak grid), as shown in Fig. 7 (b).

3) for an inverter with the power synchronization control,
decreasing the grid impedance makes the poles moving
towards to the right half plane.The stability is therefore
reduced. when XLg

< 0.15 p.u., the system becomes
unstable as shown in Fig. 7 (b).

The findings 1) and 2) have been well analysed in [5] [23],
which will not be explained in this paper. For explanation
of 3), the impedance analysis based on (8) is applied for an
inverter with the power synchronization control, as shown in
Fig. 6. The dq and qd elements of Zo are much smaller than
the dd and qq element of grid impedance Zg . The dd and
qq elements of Zo are inductive and their phases are negative.
Therefore, the magnitude of Zo−Zg is the sum of both Zo and
Zg magnitude. If the grid impedance is small, the magnitude
of Zo − Zg is small at low frequency range due to their
inductive characteristic, which results in a large magnitude
for 1

det(Zo−Zg)
. As shown in Fig. 8, the peak magnitude is

increased with decreasing the value of the grid impedance. In a
summary, the inverter with the power-synchronization control
may suffer instabilities with a strong grid.

B. Stability with various cut-off frequency of the inner current
control loop

The closed-loop cut-off frequency (ωi
c) is normally used

to design the PI for the current loop. Both control contain
the inner current loop to avoid the overload. Therefore, the
stability influences of ωi

c ranging from 800 to 8000 rad/s on
both control are analysed. The outer loop PI is ten times
slower. The determinant of the impedance ratio matrix based
on the grid-connected inverters with the vector control and the
power synchronization control are drawn in Fig. 10. The pole
locus close to x = 0 are shown. It is found that:

1) for an inverter with the vector control, increasing ωi
c

makes the poles towards to the right half plane. The
instability happens with a high ωi

c such as ωi
c >5714

rad/s, as shown in Fig. 10 (a).
2) for an inverter with the power synchronization control,

increasing ωi
c makes the poles away from the right half

plane. The instability happens with a low ωi
c such as

ωi
c <2667 rad/s as shown in Fig. 10 (b).

It is shown from Figs. 10 (a) and 10 (b) that the design of the
inner current loop for the vector control is different from the

Fig. 10: Determinant of the impedance ratio matrix with
various close-loop cut-off frequency (ωi

c) of the inner current
loop

inner current loop of power synchronization control. Reducing
ωi
c helps to stabilize the inverter with the vector control.

Conversely, increasing ωi
c helps to stabilize the inverter with

the power synchronization control. The determinants of the
impedance ratio matrix for both control are also drawn as bode
plots to find out their resonant frequency when ωi

c = 6154 and
ωi
c = 2667 respectively, as shown in Figs. 10 (c) and 10 (d).

It is found that ultra-high magnitudes appear at 390 Hz and
8.9 Hz respectively under the vector control and the power
synchronization control.

The stability analysis and resonant frequency analysis based
on pole maps and bode plots are validated via the simulation.
Two poles that close to x = 0 are selected and pointed out
in Fig. 10 (a) and 10 (b). Values of ωi

c of the two poles are
also shown. The simulation results for the selected poles are
shown in Fig. 11. For the inverter with the vector control, the
system is stable at ωi

c = 5714rad/s and unstable at ωi
c =

6154rad/s as shown in Fig. 11 (a). Similar stability result is
found at the inverter with the power synchronization control,
as shown in Fig. 11 (b). The simulation results matches the
stability analysis based on the pole map. The Fourier analysis
results are shown in Figs. 11 (c) and 11 (d). The main resonant
frequency after 1s of igd for both control are 388 Hz and 9 Hz
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respectively, which also matches to the analysis results from
bode plots.

C. Stability with the virtual impedance

The virtual impedance are added in the control as shown
in Figs. 3 and 4 for modifying the impedance Zo of the
inverter based on the bode plots of Zo and Zg . The ultra-
small magnitude appearing in det(Zo−Zg) should be avoided
in order to enhance the stability. The bode plots of Zo for
both control are drawn in Figs. 6 and 9 based on the inductive
impedance Zg . It is found that:

1) for the vector control, as shown in Fig. 9, Zo behaves like
a capacitive impedance. There are crossing points of Zo

and Zg in the magnitude of both dd and qq elements. If
their phases are close at the crossing points which results
in a large magnitude of 1

det(Zo−Zg)
, the risk of instability

increases. Especially for the qq element, a larger grid
impedance will make the magnitude crossing point more
close to the phase crossing point. It can be avoided by
adding the virtual inductor.

2) for the power synchronization control, as shown in Fig.
6, Zo behaves like an inductive impedance. There are no
crossing points at the mid frequency range. However, Zo

has a small magnitude at the low frequency, which results
in a large magnitude in 1

det(Zo−Zg)
. If the grid impedance

is reduced, the risk of the instability increases. The virtual
resistance can be inserted to change the magnitude of Zo

at low frequency range to avoid the risk of the instability.
The unstable cases of both control on wi

c = 6154 and
2667rad/s respectively (as shown in Fig. 11 ) are used to val-
idate the effectiveness of virtual impedance. The bode blots of

Fig. 11: Simulation validation of the inner current loop based
on its cut-off frequency

Fig. 12: Stability improvement using virtual impedance

Fig. 13: Stability improvement validation for the virtual
impedance

1
det(Zo−Zg)

for both control are drawn in Figs. 12 (a) and 12 (b).
It is found that both peak magnitude are reduced significantly
with the increasing virtual inductance and resistance. The
determinants of the impedance ratio matrix for both control are
also drawn. The pole locus close to x = 0 are shown in Figs.
12 (c) and 12 (d). Increasing virtual inductance and resistance
make the poles moving to the left half plane for the vector
control and the power synchronization control respectively,
which validate the effectiveness of the virtual impedance for
enhancing the stability of a grid-connected inverter.

The effectiveness of the virtual impedance for both control
is also validated via the simulation. The maximum values of
the virtual impedance from Figs. 12 (a) and 12 (b) are selected,
where are Lv = 3.18× 10−4 p.u. and Rv = 0.02 p.u.. When
a step change of wi

c happens at 1s, the inverter is still stable
with the inserted virtual impedance for both control, as shown
in Fig. 13. On the contrary, the inverters with both control lose
stability without the virtual impedances as shown in Figs. 11
(a) and 11 (b).
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V. CONCLUSION

For a grid-connected inverter requiring for the AC voltage
magnitude and active power control, the stability comparison
between the power synchronization control and the vector
control is achieved based on the dq impedance stability
analysis. Stability influence of three factors including the grid
impedance, the inner current loop and the virtual impedance
on both control are analysed and compared. It is concluded
that:

1) The power synchronization control could suffer insta-
bilities when a strong grid is connected. Because its
impedance model behaves capacitively, which is small
at low frequency range. On the contrary, the stability of
the inverter with the vector control is weakened when the
grid impedance increases.

2) Increasing the cut-off frequency of the inner current loop
helps to stabilize the inverter with the power synchro-
nization control, which is converse to the inverter with
the vector control.

3) It is found that the impedances of the vector control
and the power synchronization control are capacitive and
inductive respectively. Therefore, the virtual resistance
helps to stabilize the inverter with the power synchro-
nization control. The virtual inductance helps to stabilize
the inverter with the vector control. Value of the virtual
impedance can be determined via the derived impedance
models.
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