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A B S T R A C T   

Although being a popular approach for the modeling of laminated composites, mesoscale constitutive models 
often struggle to represent material response for arbitrary load cases. A better alternative in terms of accuracy is 
to use the FE2 technique to upscale microscopic material behavior without loss of generality, but the associated 
computational effort can be extreme. It is therefore interesting to explore alternative surrogate modeling stra-
tegies that maintain as much of the fidelity of FE2 as possible while still being computationally efficient. In this 
work, three surrogate modeling approaches are compared in terms of accuracy, efficiency and calibration effort: 
the state-of-the-art mesoscopic plasticity model by Vogler et al. (Vogler et al., 2013), regularized feed-forward 
neural networks and hyper-reduced-order models obtained by combining the Proper Orthogonal Decomposi-
tion (POD) and Empirical Cubature Method (ECM) techniques. Training datasets are obtained from a Repre-
sentative Volume Element (RVE) model of the composite microstructure with a number of randomly-distributed 
linear-elastic fibers surrounded by a matrix with pressure-dependent plasticity. The approaches are evaluated 
with a comprehensive set of numerical tests comprising pure stress cases and three different stress combinations 
relevant in the design of laminated composites. The models are assessed on their ability to accurately reproduce 
the training cases as well as on how well they are able to predict unseen stress combinations. Gains in execution 
time are compared by using the trained surrogates in the FE2 model of an interlaminar shear test.   

1. Introduction 

Numerical analysis of fiber-reinforced composite materials is, by 
nature, a multiscale endeavor. Although most of the design effort in 
composites is concentrated at the structural level (macroscale), most of 
the material characterization effort is spent at the mesoscale (thin 
coupon-sized specimens) (Ciutacu et al., 1991; Grammatikos et al., 
2016). At the same time, many of the current knowledge gaps in com-
posite behavior stem from physical and chemical processes taking place 
at the much smaller microscale (individual fibers and surrounding ma-
trix), where performing discerning experiments becomes a complex and 
delicate task (Qian et al., 2013; Naya et al., 2016). Bridging these scale 
gaps through high-fidelity numerical analysis (Melro et al., 2013; van 
der Meer, 2016; Gagani et al., 2017) and increasingly substituting real 
experiments by virtual testing campaigns (Cox and Yang, 2006) is seen as 

the way forward in the design of composite structures. 
A popular modeling approach consists in using micromechanical 

models to calibrate mesoscale constitutive models (van der Meer and 
Sluys, 2009; Vogler et al., 2013). The appeal of this approach lies in 
allowing the use of realistic constitutive models for each microscopic 
constituent — fibers (Qian et al., 2013; Pimenta et al., 2009), matrix 
(Krairi and Doghri, 2014; Poulain et al., 2014) and fiber/matrx interface 
(Alfano and Sacco, 2006; Turon et al., 2006) — and using homogeni-
zation techniques to derive the mesoscopic behavior from a number of 
numerical microscopic experiments. However, the ability of mesoscopic 
models to correctly represent the composite material under general 
stress states is limited by assumptions made in order to minimize the 
number of parameters to be calibrated. This can be seen, for instance, in 
(van der Meer, 2016), where the state-of-the-art mesoscopic plasticity 
model by Vogler et al. (2013) is put to the test by comparing its 
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predictions with micromechanical results and found to be lacking in its 
ability to represent the influence of matrix plasticity in the fiber direc-
tion on the longitudinal shear behavior of the composite material, a 
loading scenario commonly encountered in practice. 

An alternative to homogenized mesomodels is the concurrent mul-
tiscale (FE2) approach (Geers et al., 2010; Miehe et al., 1999; Kouznet-
sova et al., 2001). FE2 allows material behavior to be directly derived 
from embedded microscopic models without introductions any meso-
scopic constitutive assumptions. However, even though the method 
effectively carries microscopic fidelity over to the mesoscale without 
loss of generality, the computational effort required by having an 
embedded micromodel at each and every mesoscopic integration point 
can be extreme (Rocha et al., 2019a). It is therefore interesting to seek 
alternative strategies that improve computational efficiency without 
sacrificing the generality of FE2. 

One such strategy consists in reducing the computational complexity 
of the microscopic boundary-value problem through Model Order 
Reduction (MOR) techniques: through a series of analysis snapshots 
obtained before model deployment (offline training), reduced-order so-
lution manifolds are computed both for displacements (Kerfriden et al., 
2011; Chevreuil and Nouy, 2012) and internal forces (Hern�andez et al., 
2017; Chaturantabut and Sorensen, 2010; van Tuijl et al., 2017). During 
the many-query multiscale analysis, projection constraints ensure that 
only solutions belonging to these reduced manifolds are sought, result-
ing in dramatic reductions in the number of degrees of freedom and 
constitutive model computations. The advantage of using such dimen-
sionality reduction techniques is that, although the amount of freedom 
the micromodel has to represent general stress states is reduced, it is still 
driven by the original high-fidelity microscopic material models and 
therefore still obeys basic physical assumptions made at the microscale 
(e.g. thermodynamic consistency, loading-unloading conditions). 
Furthermore, recent innovations allow the training process (Goury et al., 
2016) and basis construction (Ghavamian et al., 2017) to be optimized, 
leading to hyper-reduced models with increased accuracy and 
efficiency. 

Alternatively, physics-based constitutive models may be altogether 
abandoned by employing artificial neural networks as surrogate models 
(Lefik et al., 2009). This approach is based on the fact that neural net-
works are universal approximators — i.e. capable of approximating any 
continuous function to an arbitrary level of precision provided that 
enough parametric freedom is given to the model (Cybenko, 1989). A 
network can be trained with macroscopic stress-strain snapshots from a 
full-order micromodel and subsequently employed online to give pre-
dictions of stress and tangent stiffness. Since the early work of Ghaboussi 
et al. (1991), a number of efforts have been made to improve predictions 
by restricting the parameter space by focusing on a fixed macroscopic 
strain distribution (Ghaboussi et al., 1998), using gated neural layers 
with memory in order to capture path dependency and unloading 
(Ghavamian and Simone, 2019), including additional microscopic pa-
rameters such as material volume fractions in the network input (Le 
et al., 2015) and attempting to infuse the network with physics-based 
constraints (Lu et al., 2018). Nevertheless, the use of artificial neural 
networks as surrogate constitutive models is still far from widespread, 
and its applicability to model general stress states of complex micro-
models is still an open issue. 

In summary, three different alternatives to a fully-resolved micro-
model have been discussed: physics-based mesoscale models, hyper- 
reduced micromodels and artificial neural networks. Conceptually, 
these three approaches can be seen as entities of the same nature: sur-
rogate models that require an offline calibration phase and sacrifice part 
of the generality and accuracy of a micromodel in favor of computa-
tional efficiency. In this work, the three strategies are compared in terms 
of calibration effort, efficiency and generality of representation. In order 
to keep the focus on the surrogate modeling techniques, matrix plasticity 
is the only source of nonlinear microscopic behavior considered in the 
study. Firstly, the multiscale equilibrium problem to be solved is briefly 

described. Secondly, each of the three acceleration approaches is pre-
sented, starting with a brief description of a state-of-the-art mesoscale 
plasticity model for composites (Vogler et al., 2013) followed by for-
mulations of the hyper-reduced and neural surrogate models. Finally, 
the three strategies are put to the test in a number of numerical examples 
involving both pure stress cases and combined loading conditions. 

2. Multiscale analysis of laminated composites 

In order to introduce the context of the present discussion, the full- 
order concurrent multiscale equilibrium problem for which surrogate 
models are sought is presented. Two distinct spatial scales are identified. 
In the mesoscale, individual composite plies are modeled as homoge-
neous orthotropic media. Descending to the microscale, a Representative 
Volume Element (RVE) of the composite microstructure is modeled, 
consisting of a number of unidirectional fibers and surrounding matrix. 

When coupling these two scales, the goal is to exploit the high- 
fidelity information obtained at the microscale to derive the constitu-
tive behavior of a material point at the mesoscale. Before comparing the 
different approaches to perform this coupling through an offline 
training/calibration phase, this section outlines how an online scale 
coupling can be achieved without mesoscopic constitutive assumptions 
or loss of generality through the FE2 technique. In the context of the 
present study, FE2 is regarded as the reference solution that represents 
both the upper bound of model fidelity and the lower bound of 
computational efficiency. Formulating alternative strategies based on 
surrogate models entails significantly improving efficiency while 
retaining as much fidelity as possible. 

2.1. Mesoscopic problem 

Let Ω be the continuous and homogeneous mesoscopic domain being 
modeled and let it be bounded by the surfaces Γu and Γf on which 
Dirichlet and Neumann boundary conditions are applied, respectively 
(Γu \ Γf ¼ ∅). Stress equilibrium and strain-displacement relationships 
in Ω are given by: 

divðσΩÞ¼ 0 εΩ ¼
1
2
�
ruΩþðruΩÞ

T� (1)  

where divð ⋅Þ is the divergence operator, rð ⋅Þ is the gradient operator, 
body forces are neglected and a small strain formulation is adopted. In 
order to solve for the displacements uΩ, a constitutive relation between 
stresses and strains must be introduced: 

σΩ¼D
�
εΩ; εΩ

h

�
(2)  

where the dependency on the strain history εΩ
h accounts for the possi-

bility of path dependency. For the moment, no assumptions on the 
behavior of the constitutive operator D are made. In a general sense, D 

should account for the information on material behavior coming from 
smaller scales that is lost when assuming that Ω is a continuous and 
homogeneous medium. 

In a FE environment, the domain is discretized by a finite element 
mesh with N degrees of freedom and the equilibrium problem is solved 
by minimizing the force residual rΩ 2 RN: 

rΩ¼ fΩ � fΓ ¼ 0 with fΩ ¼

Z

Ω

BTσΩdΩ fΓ ¼

Z

Γf

NTtΓdΓ (3)  

where N and B contain the shape functions and their spatial derivatives, 
respectively, tΓ are the tractions at surface Γf and the Dirichlet boundary 
conditions uj are implicitly applied. The formulation is completed with 
the definition of the tangent stiffness matrix KΩ 2 RN�N, used to 
compute the displacement update Δun ¼ � ðKΩÞ

� 1rΩ: 
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KΩ¼

Z

Ω

BTDΩBdΩ DΩ ¼
∂σΩ

∂εΩ (4)  

with DΩ being the tangent material stiffness matrix. Although not 
explicit in the preceding equations, it is important to note that since 
composite laminates are anisotropic materials, constitutive computa-
tions are performed in a local material coordinate system and rotation 
operators are used to bring σΩ and DΩ back to global coordinates. 

2.2. Microscopic problem 

Let ω define the microscopic domain of a Representative Volume 
Element (RVE) of the material where individual fibers and surrounding 
matrix are modeled. The domain is assumed to be continuous and 
bounded by the Dirichlet and Neumann surfaces γu and γf (γu \ γf ¼ ∅ ). 
Maintaining the small strain assumption and neglecting body forces, 
stress equilibrium and strains are given by: 

divðσωÞ¼ 0 εω¼
1
2
�
ruωþðruωÞ

T� (5) 

At the microscale, constitutive operators for fibers and matrix are 
assumed a priori. Fibers are modeled as isotropic and linear-elastic and 
the matrix is modeled with the plasticity model proposed by Melro et al. 
(2013). The matrix response starts as linear-elastic and transitions to 
plasticity with pressure-dependent hardening until the response reaches 
a perfectly-plastic regime. The model is briefly described in the 
following, with most formulation details being omitted for compactness. 
For further details, the interested reader is referred to (Melro et al., 
2013; van der Meer, 2016). 

The stress-strain relationship in tensor notation is given by: 

σ¼De
�
ε � εp

�
(6)  

where De is the fourth-order elastic stiffness matrix and an additive 
decomposition between elastic and plastic strains (εp) is assumed. The 
onset of plasticity is defined by a pressure-dependent paraboloidal yield 
surface: 

f ðσ; σc; σtÞ¼ 6J2þ 2I1ðσc � σtÞ � 2σcσt (7)  

with I1 and J2 being stress invariants and the yield stresses in 
compression (σc) and tension (σt) being functions of the equivalent 
plastic strain εeq

p in order to allow for the occurrence of hardening: 

σc¼ σc

�
εeq

p

�
σt¼ σt

�
εeq

p

�
_εeq

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 � 2νp
_εp : _εp

s

(8)  

where νp is the plastic Poisson’s ratio. The development of plastic strains 
is dictated by the non-associative flow rule: 

Δεp¼Δγ
�

3Sþ
1 � 2νp

1þ νp
I1I
�

(9)  

where Δγ is the plastic multiplier increment computed through a return 
mapping procedure (van der Meer, 2016) and S is the deviatoric stress 
tensor. The formulation is completed by the definition of the consistent 
tangent operator, obtained by differentiating Eq. (6) with respect to the 
strains (van der Meer, 2016). 

With constitutive models in place, the equilibrium residual rω to be 
minimized is computed as: 

rω¼ fω � fγ ¼ 0 with fω ¼

Z

ω

BTσωdω fγ ¼

Z

γf

NTtγdγ (10)  

2.3. Scale coupling 

The basic idea behind the FE2 approach consists in defining the 

mesoscopic constitutive operator D of Eq. (2) as the homogenized 
response of a finite element micromodel embedded at each integration 
point of the domain Ω (Fig. 1). Assuming the principle of separation of 
scales holds (ω≪Ω) (Geers et al., 2010), a link between the two scales is 
enforced by satisfying: 

uω¼ εΩxω þ ~u (11)  

where ~u is a fluctuation displacement field subjected to ~uγþ ¼ ~uγ� , where 
γ� and γþ represent pairs of opposing microdomain boundaries. In 
practice, enforcing Eq. (11) entails converting the macroscopic strain εΩ 

into prescribed displacements at the corners of the micromodel, tying 
nodes at γ� and γþ through periodic boundary conditions and solving the 
resultant boundary-value problem (Kouznetsova et al., 2001). 

After convergence of the microscopic nonlinear analysis, the Hill- 
Mandel principle is used to recover the mesoscopic stresses: 

σΩ ¼
1
ω

Z

ω

σωdω (12)  

while the tangent stiffness is obtained through a probing operator P 

based on the microscopic stiffness matrix Kω according to the procedure 
in (Nguyen et al., 2012): 

DΩ¼P ðKωÞ (13)  

which completes the formulation. The FE2 approach effectively defines 
the operator D through an implicit procedure that involves no meso-
scopic constitutive assumptions. However, the associated computational 
effort can be prohibitive even for simple applications. In the next sec-
tions, three alternative strategies for defining D are presented. 

3. Mesoscale constitutive model 

The mesoscopic constitutive model proposed by Vogler et al. (2013) 
and later revisited by Van der Meer (van der Meer, 2016) is briefly 
presented here as a way of defining the D operator of Eq. (2) through a 
physics-based model that effectively condenses the microscale material 
behavior into a small number of mesoscale constitutive parameters 
calibrated with micromechanical simulations. 

A unidirectional composite lamina is modeled as an orthotropic 
material with pressure-dependent plasticity and assuming an additive 
decomposition of strains. The stress-strain relationship is similar to the 
one of Eq. (6) but the stiffness tensor De is now orthotropic. The onset of 
plasticity is defined by the following yield surface, written in Voigt 
notation: 

f ¼
1
2
σTAσ þ aTσ � 1 (14)  

where A is given by: 

A¼

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0 0 0 0 0 0

0
1
2
α1 þ 2α32 �

1
2
α1 þ 2α32 0 0 0

0 �
1
2
α1 þ 2α32

1
2
α1 þ 2α32 0 0 0

0 0 0 2α1 0 0

0 0 0 0 2α2 0

0 0 0 0 0 2α2

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(15)  

and a ¼ ½0α3α3000�T. The α coefficients are piecewise-linear functions of 
the equivalent plastic strain εeq

p and pressure-dependency is introduced 
by allowing for distinct values of α32 and α3 to be defined depending on 
the sign of σ2 þ σ3. 

Plastic strain evolution is dictated by the flow rule: 
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Δεp¼ΔγGσ (16)  

where Δγ is the plastic multiplier computed by a return mapping pro-
cedure (van der Meer, 2016) and G is given by: 

G¼

2

6
6
6
6
6
6
4

0 0 0 0 0 0
0 1 � νp 0 0 0
0 � νp 1 0 0 0
0 0 0 2

�
1þ νp

�
0 0

0 0 0 0 2
�
1þ νp

�
0

0 0 0 0 0 2
�
1þ νp

�

3

7
7
7
7
7
7
5

(17)  

with νp being the plastic Poisson’s ratio. 
Calibration of the mesomodel consists in determining νp and the α 

coefficients through a set of micromechanical numerical experiments. 
The procedure used here follows the one described in (van der Meer, 
2016). From the homogenized stress-strain curves obtained from the 
micromodels, the components of De are obtained and with those the 
equivalent plastic strain histories. With values for σ and εeq

p , the model 
parameters are computed as: 

α1

�
εeq

p

�
¼

1
σ2

ts
α2

�
εeq

p

�
¼

1
σ2

ls
(18)  

αt
32

�
εeq

p

�
¼

1 � σut
2σbt
� α1

σ2
ut
4

σ2
ut � 2σbtσut

αc
32

�
εeq

p

�
¼

1 � σuc
2σbc
� α1

σ2
uc
4

σ2
uc � 2σbcσuc

(19)  

αt
3

�
εeq

p

�
¼

1
2σbt
� 2αt

32σbt αc
3

�
εeq

p

�
¼

1
2σbc
� 2αc

32σbc (20)  

where ts stands for transverse shear, ls for longitudinal shear, ut and uc 
for uniaxial tension and compression, respectively, and bt and bc for 
biaxial tension and compression, respectively. With this relatively 
limited amount of calibration data, the model can be used to predict the 
behavior under general stress states. 

4. Neural networks 

An alternative to a physically-motivated mesoscopic model is the use 
of a purely data-driven approach, the idea consisting in the introduction 
of a parametric regression model S used to compute an approximation 
σ_ of the stresses: 

σ_¼S ðεΩ;WÞ (21)  

where W are model parameters. In contrast to the parameters in Eqs. 
(18)-(20), parameters in W have no direct physical meaning, being 
instead calibrated through a fitting procedure based on observations of 
the actual micromechanical model: 

W¼ argminW
X

i2X

�
�σ_i
�
εΩ

i ;W
�
� σΩ

i

�
εΩ

i

��
�2

(22)  

where X 2 R2nε�P is a snapshot matrix with P εΩ - σΩ pairs obtained from 
micromodel executions. Given enough parametric freedom, the surro-
gate should be able to encapsulate the observed constitutive information 
(X) and provide accurate stress predictions when presented with pre-
viously unseen values of εΩ. 

Here, S is chosen to be the feed-forward artificial neural network 
shown in Fig. 2, being composed of a number of fully-connected neural 
layers (dense layers) followed by a dropout layer that regularizes the 
model. When used to make predictions, strains are fed to the first neural 
layer (input layer) and values are propagated until the final layer is 
reached (output layer), at which point the output neurons contain the 
predicted stress σ_. In the next sections, each component of the network 
is briefly described and further details are given on how training is 
performed. 

4.1. Dense layer 

A dense neural layer i propagates neuron states (a) from the previous 
layer i � 1 and subsequently applies an activation function ϕ to the 
resulting values in order to introduce nonlinearity in the network 
response: 

vi ¼Wiai� 1þ bi ⇒ ai¼ϕðviÞ (23)  

where Wi 2 Rni�ni� 1 is a weight matrix and bi 2 Rni is a bias term, with ni 
being the number of neurons of layer i. The activation function ϕ here 
represents the element-wise application of the sigmoid function: 

ϕðvÞ¼
ev

ev þ 1
(24)  

on the neuron values, with the exception of the output layer which is left 
unactivated (al ¼ vl). Different activation functions are used depending 
on the intended application (Bengio et al., 2013), with the sigmoid 
function being a popular choice for building regression models. In 
general, increasing ni leads to a higher representational capability, 
following from the intuitive fact that the amount of fitting freedom of 
the model increases with the number of trainable parameters. In prac-
tice, however, models that are too large tend to exactly represent 
training data but fail to generalize to unseen inputs (overfitting) (Bishop, 
2006). 

4.2. Dropout layer 

Dropout is an increasingly popular regularization strategy used avoid 
the phenomenon of overfitting (Srivastava et al., 2014). Here, a dropout 
layer is positioned immediately before the output layer and 

Fig. 1. The FE2 approach: A concurrent link is established between meso and microscales.  
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stochastically deactivates some of the neurons coming from the previous 
layer: 

al� 1¼
1

1 � rd
ðr � al� 2Þ (25)  

where � indicates element-wise multiplication, rd 2 ð0; 1� is the proba-
bility that a given neuron is set to zero and r 2 f0;1gnl� 2 is a boolean 
vector determined by drawing from a uniform unit distribution and 
comparing the value to rd. If the drawn value is lower than the dropout 
rate, the correspondent element of r is set to zero. In order to keep the 
average of the neuron values unchanged after dropout, neurons that are 
not deactivated are scaled by 1 � rd. 

During training, r is redrawn each time the network is used to make a 
prediction. This means that, on average, neurons of layer l� 2 will have 
been deactivated at least once. This introduces a regularizing effect 
because the network cannot rely on the availability of any given neuron 
in order to make accurate predictions. When using the network model 
online, the dropout layer is removed — which is equivalent to setting rd 
to zero — and all neurons contribute to the response. 

4.3. Training 

The objective of the training process is to minimize a loss function 
that represents how well predictions match actual model observations: 

L¼
1
P

XP

j¼1

1
2
�
�σ
�
εj
�
� σ_

�
εj
��
�2 (26)  

where P is the number of snapshots and the 1=2 factor is added for 
convenience when computing the gradients of L. In order to keep track 
of how well the model generalizes to unseen data, it is common to 
remove part of the snapshots from the training process to act as a vali-
dation set and use them to compute a separate error measure to be used 
as stopping criterion for the optimization. 

Based on this objective function, a Stochastic Gradient Descent 
(SGD) optimization algorithm is used to update the trainable parameters 
W and b: 

Wn¼Wo � A

 
1
B

XB

j

∂Lj

∂W

!

bn¼ bo � A

 
1
B

XB

j

∂Lj

∂b

!

(27)  

where Lj is the loss term of the j-th sample, o indicates current values, n 

indicates updated values and B is the size of the sample mini-batch used 
in the update. The idea behind using a mini-batch instead of updating 
the parameters using either one sample at a time or all samples at once is 
that it provides a balance between speed of convergence and gradient 
variance. In any case, a complete solver iteration (epoch) is only com-
plete after the model has seen every sample in the training set — i.e. after 
approximately P=B mini-batches. Finally, the operator A depends on the 
choice of solver. Here, the Adam solver proposed by Kingma and Ba 
Kingma and Ba (2014) is adopted. 

In order to compute the gradients appearing in Eq. (27), a back-
propagation procedure is adopted: based on the network state (v, a and r) 
after computing each1 training sample, the chain rule is used to propa-
gate the derivative of the loss function starting from the output layer and 
progressively moving back through the network. For this, an auxiliary 
quantity di 2 Rni is defined for each layer. At the output layer l, it is 
simply defined as: 

dl ¼
∂L
∂al
¼ σ_ � σ (28) 

Next, the effect of the activation function is taken into account: 

di ¼di �
∂ϕ
∂v
ðviÞ (29)  

after which it is possible to compute the gradients of the trainable pa-
rameters: 

∂L
∂Wi
¼diaT

i
∂L
∂bi
¼ di (30) 

Finally, the values of d of the previous layer (the next layer to be 
backpropagated) can be computed as: 

di� 1¼WT
i di (31)  

and the algorithm moves to Eq. (29) for layer i � 1. For the dropout 
layer, since it does not have any trainable parameters, the effect of the 
stochastic dropout is simply backpropagated to the previous layer: 

di� 1¼di ¼
1

1 � rd
r� di (32)  

4.4. Use as constitutive model 

To make new stress predictions, the input layer is set to the applied 
mesoscopic strain, a complete forward pass is performed and the final 
activated neuron values of the output layer give the predicted stress: 

a0¼ εΩ σ_ ¼ al (33) 

For the consistent tangent stiffness, it is necessary to compute the 
jacobian J of the network: 

DΩ¼
∂σ_

∂ε ¼
∂al

∂v0
¼ J (34)  

which is obtained with a backward pass through the network (from 
output to input): 

Ji ¼ Jiþ1Iϕ’
i Wi with Jlþ1 ¼ I (35)  

where Iϕ’
i is a matrix whose diagonal contains the derivatives of the 

activation function with respect to the neuron values v: 

Fig. 2. A neural network acting as a surrogate constitutive model. An arbitrary 
number of dense neural layers is combined with a single dropout layer that 
regularizes model response. 

1 In practice, since the model is only updated between mini-batches, the feed- 
forward and backpropagations of all samples in a mini-batch are performed at 
the same time, with v, a, r and d taking a matrix form. This reduces compu-
tational overhead and allows for fast GPU computations to be performed. 
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Iϕ’
i ¼ diag

�
∂ϕ
∂v
ðviÞ

�

(36)  

5. Hyper-reduced-order modeling 

Instead of resorting to surrogate mesoscopic models, FE2 can be 
made efficient by accelerating the associated microscopic boundary- 
value problems. In this section, two complexity reduction operations 
are applied to the equilibrium problem of Section 2.2. First, the number 
of degrees of freedom of the problem is drastically reduced, followed by 
a hyper-reduction phase on which a reduced global integration scheme 
for internal forces is defined. The techniques are only described briefly 
in order to keep the focus on their application to the problem at hand. 
More details on the underlying formulations can be found in (Rocha 
et al., 2019b). 

5.1. Proper Orthogonal Decomposition (POD) 

The first strategy consists in projecting the original equilibrium 
problem of size N onto a reduced solution manifold spanned by a basis 
matrix Φ 2 RN�n: 

Φ¼ ½φ1φ2⋯φn� (37)  

where φi are a set of orthonormal basis vectors that represent global 
displacement modes. By constraining the possible displacement con-
figurations to the ones lying in the latent space defined by Φ, the number 
of degrees of freedom of the problem is reduced from N to n≪ N. The 
full-order displacement field is recovered as a linear combination of the 
latent variables α 2 Rn: 

uω¼Φα (38) 

In order to solve for α, the full-order residual of Eq. (10) is con-
strained to lie on the reduced space through the Galerkin projection 
ΦTrω ¼ 0, yielding reduced versions of the internal force vector and 
stiffness matrix: 

fω
r ¼ΦTfω Kω

r ¼ ΦTKωΦ (39)  

5.2. Empirical Cubature Method (ECM) 

Even though the POD-reduced problem has only a small number of 
degrees of freedom, solving for α still involves computing stresses at 
every integration point in order to obtain fω and Kω for use in Eq. (39). 
However, given the fact that fω

r is of small dimensionality, it is intuitive 
to surmise that the amount of constitutive information needed to define 
it is also significantly reduced. 

This hypothesis may be posited more formally as follows: From the 
complete set of M integration points with original integration weights 
wi, it is possible to define a reduced set of m≪M integration points with 
modified integration weights ϖj such that the approximation: 

fω
r ¼ΦT

 
XM

i¼1
BTðxiÞσωðxiÞwi

!

� ΦT

 
Xm

j¼1
BT� xj

�
σω� xj

�
ϖj

!

(40)  

leads to a negligible loss of accuracy. This idea is the basis for the 
Empirical Cubature Method (ECM) proposed by Hern�andez et al. (2017). 
The reduced set Z of m integration points is chosen from among the 
original M points by using a Greedy least-squares procedure that solves: 

ðβ;ZÞ¼ arg minβ� 0 ; ZkJZ β � bk2 (41)  

where J and b are given by: 

J¼
�
Λ
ffiffiffiffi
w
p �T b¼ ½0ω�T (42)  

where Λ is a basis matrix for the contribution of each integration point to 

the global reduced force vector fω
r . With β, the modified integration 

weights of points in Z are computed as ϖi ¼
ffiffiffiffiffiwi
p

βi. For details on the 
Greedy selection procedure, the reader is referred to (Hern�andez et al., 
2017). 

During the online FE2 analysis, the responses of integration points not 
included in Z are never computed, leading to a full-order internal force 
vector composed almost solely by zeros. On the other hand, the ho-
mogenization procedure of Section 2.3 requires a complete assembly of 
fω and K. In order to bypass this issue, a tangent mode contribution 
matrix H 2 Rn�nε is computed for each micromodel such as to satisfy: 

α¼HεΩ (43)  

where α are the latent variable values resulting from solving the equi-
librium problem with applied macroscopic strains εΩ. With this oper-
ator, the homogenized stress and stiffness are computed as: 

σΩ ¼HTfω
r DΩ ¼ HTKω

r H (44)  

5.3. Training 

Both reduction stages are constructed with mechanical behavior in-
formation that must be computed before model deployment, similar to 
the calibration procedure of Section 4.3. For POD, the basis matrix Φ is 
computed from a series of P displacement snapshots Xu 2 RN�P 

decomposed into elastic and inelastic parts: 

Xu¼ ½XeXi� (45)  

where a snapshot is considered inelastic if at least one integration point 
in ω has non-zero equivalent plastic strain. Following the elastic/in-
elastic training strategy presented in (Hern�andez et al., 2017), the basis 
Φ 2 RN�ðneþniÞ is given by: 

Φ¼ ½UeUi� (46)  

where each portion of the basis (ne elastic and ni inelastic modes) is 
obtained through a truncated Singular Value Decomposition (SVD) 
operation: 

Xe�UeSeT
T
e Xi � UiSiT

T
i (47)  

with the modified snapshot matrices 

Xe¼Y
�
YTX

�
Xi ¼X � Xe (48)  

and Y being a basis matrix computed from the SVD of Xe. In order to 
guarantee that every possible stress state in the elastic regime is exactly 
reproduced by the reduced model, the decomposition that generates Ue 
is truncated at nε components (nε ¼ 6 for three-dimensional micro-
models). For Ui, the basis includes all basis vectors whose associated 
singular values satisfy the condition: 

Sj
i

S1
i > εsv

(49)  

with S1
i being the first (and highest) singular value and εsv a truncation 

tolerance. 
For ECM, training consists in running the POD-reduced model for the 

same original training cases2 and collecting snapshots of stresses at 
every integration point. Following again the elastic/inelastic strategy, a 
basis matrix for stresses Ψ 2 RMnε�q is computed, with q ¼ ne þ ni in 
order to keep the truncations consistent with the ones from the first 
reduction phase. 

2 Since ECM is built as an approximation of the POD-reduced model response, 
this second training phase is performed for consistency. 
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With Φ, the basis matrix for internal forces used in Eq. (42) can be 
obtained: 

Λ¼
�
Λ1Λ2⋯Λq

�
(50)  

with each of the q submatrices Λj 2 RM�n being given by: 

Λj¼

2

6
6
6
6
6
6
6
6
6
4

ffiffiffiffiffiffi
w1
p

�

f1
rjðx1Þ �

1
ωfω

rj

�

ffiffiffiffiffiffi
w2
p

�

f2
rjðx2Þ �

1
ωfω

rj

�

⋮

ffiffiffiffiffiffiffi
wM
p

�

fM
rj ðxMÞ �

1
ωfω

rj

�

3

7
7
7
7
7
7
7
7
7
5

(51)  

and the contribution of each integration point being: 

f i
rj¼ΦT

i BT
i sjψ j (52)  

where Φi is the submatrix of Φ that contains the degrees of freedom of 
the finite element that contains point i, Bi is the matrix of shape function 
derivatives evaluated at point i and sj and φj are respectively the singular 
value and left-singular vector associated with the j-th mode of Ψ. 

6. Comparing the strategies 

The surrogate modeling strategies have been implemented in an in- 
house Finite Element code based on the Jem/Jive Cþþ numerical 
analysis library (Dynaflow, 2019). All models were executed on a single 
core of a Xeon E5-2630V4 processor on a cluster node with 128 GB RAM 
running CentOS 7. 

The micromodel used as a basis for training the reduced-order 
models is the one shown in Fig. 1. This is the same RVE adopted by 
Van der Meer in (van der Meer, 2016) and is assumed to be sufficiently 
representative of the mechanical response of a mesoscopic material 
point. Material properties for both the micromodel and the calibrated 
mesomodel of Section 3 are also adopted from (van der Meer, 2016). In 
order to guarantee constant stress ratios in biaxial scenarios while 
avoiding large strain steps during the perfect plasticity regime, a special 
arc-length constraint a is adopted: 

a¼

 
X

i
sign

�
f Γ
i

�
ui

!

� u¼ 0 with
∂a
∂λ
¼ 0

∂a
∂ui
¼ sign

�
f Γ
i

�
(53)  

with which the load factor λ that scales unit forces applied at the corner 
nodes of the RVE is controlled so as to guarantee that the unsigned sum 
of displacements at the same locations is equal to a prescribed value u. 
All snapshots used for training come from models loaded monotonically 
with a constant stress ratio (proportional loading) until the norm of the 
strain at controlled nodes reaches a value of 0.1. To test the trained 
surrogates, a homogeneous mesoscopic 1-element model3 with a single 
integration point and the same dimensions as the original micromodel is 
used, with the fiber direction (1-axis) aligned with the mesoscopic x- 
axis. 

Neural networks with a single hidden dense layer are considered. 
Deeper networks with up to 5 hidden layers have also been investigated, 
but were found to provide lower accuracy than shallow networks with a 
similar number of parameters. Results from these deeper networks are 
therefore not included in the discussion. Unless otherwise specified, 
training sets are formed by randomly drawing 80% of the samples of the 
original dataset without replacement, with the remaining 20% serving 
as a validation set. At the beginning of training, network biases are 

initialized as zero and weights are initialized with draws from an 
uniform distribution in the interval ½ � 1; 1� and scaled with the factor 
ffiffiffiffiffiffiffiffiffiffiffiffi

6
niþni� 1

q
(Glorot and Bengio, 2010). The dropout rate is fixed at rd ¼ 0:05 

for all models. Although this is a much lower rate than the one adopted 
for instance in (Ghavamian et al., 2017), it is found to provide sufficient 
regularization for the network and dataset sizes treated in this study. For 
the SGD solver, the default values recommended in (Kingma and Ba, 
2014) are used for all hyperparameters. All models are trained for a total 
of 200,000 epochs and the final model parameters are the ones associ-
ated with the lowest historical validation error. The only 
hyper-parameter to be studied is therefore the width n1 of the hidden 
dense layer. 

6.1. Pure stress states 

First, reduced models are trained to reproduce the material behavior 
of a single unidirectional composite layer under isolated stress compo-
nents, i.e. uniaxial cases in the parameter space. Here the training 
dataset consists of twelve stress-strain curves, two for each of the nε ¼ 6 
mesoscopic strain components (positive and negative directions). From 
this point on, strain and stress components are expressed in the local 
mesoscale coordinate system — i.e. fε11;ε22;ε33;γ12;γ13;γ23g, where the 
1-axis is the fiber direction and the superscript Ω is dropped for 
compactness. 

Hyper-reduced models are trained with different values of the 
inelastic SVD tolerance εsv (Eq. (49)). The resultant model predictions 
for the transverse stress σ22 are shown in Fig. 3. For high values of 
εsv — i.e. with a small number of inelastic modes — the plasticity 
response is not correctly captured, with predictions improving as the 
tolerance is lowered and more modes are added. Note that the snapshot 
decomposition of Section 5.3 effectively guarantees an exact response 
during the elastic regime. A similar response is observed for the 
remaining five strain components. 

Using the surrogate models to reproduce stresses at the same strain 
values used for training, an average error over the complete dataset 
comparing the training targets σ with the surrogate responses bσ can be 
defined: 

ε¼ 1
nε

Xnε

i

 
1
nt

i

Xnt

j

�
�σi
�
tj
�
� σ_i

�
tj
��
�

!

(54)  

with nt
i being the number of load steps comprising the stress-strain curve 

associated with each strain component i. Errors are computed for 
different values of εsv, with results being shown in Fig. 4. As with Fig. 3, 
the error starts at a high value when only elastic modes are used and 
decreases to values as low as 0.4 MPa for εsv ¼ 0:01. Fig. 4 also includes 
the average error of predictions made with the mesoscopic model of 
Section 3. Since that model explicitly ensures no plasticity occurs in the 
fiber direction while the actual microscopic response in that direction is 
slightly nonlinear, the average absolute error over the dataset appears to 
be high4 even though all the other directions are very well captured. For 
this reason, Fig. 4 shows two accuracy levels for the mesomodel, with 
and without including σ11. 

Since controlling the tolerance only influences the number of modes 
n indirectly, the error tends to decrease in discrete steps. This can also be 
observed in Fig. 5, which shows how the number of modes n and inte-
gration points m increases as εsv is reduced. Since the reduction in the 
number of integration points is made possible by the POD reduction, 
maintaining a low ECM integration error for higher values of n requires a 
larger set of cubature points. In any case, the reduction remains 

3 For hyper-reduction, this is actually a 1-element FE2 problem with a hyper- 
reduced micromodel. 

4 Due to the stiffness gradient between fiber and matrix, gma11 is the stress 
component with the highest order of magnitude. Even small relative differences 
in this direction lead to high absolute errors. 
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relatively efficient even for the lowest εsv considered here — with 
compression factors N=n � 1284 and M=m � 65. 

The same dataset is used to train neural networks with a number of 
hidden units n1 ranging from 10 to 1000. In order to track the training 
process, the evolution of the average absolute error over the validation 
set (20% of the complete dataset) is plotted in Fig. 6. The monotonic 
error decrease observed for all curves suggests that no overfitting to the 
data is occurring. Increasing the size of the hidden layer improves the 
obtained predictions but with diminishing returns for n1 larger than 100. 
Indeed, doubling the size of the hidden layer from 500 to 1000 leads to a 
negligible decrease in the error. 

The same trend can be observed in Fig. 7, where online predictions 
are computed from a one-element model loaded in the 2-direction 
(transverse direction). Although accurate predictions of the perfect 
plasticity plateau can be obtained by using sufficiently large networks, 
both the initial stiffness and the response leading up to the plasticity 
plateau are still slightly inaccurate even for n1 ¼ 1000. The important 
observation to be made here is that even though neural networks are 
regarded as universal function approximators, the regularization 
brought by the dropout layer has the adverse effect of making an exact 
fit with the training data very difficult to achieve. 

The average absolute error for the complete dataset obtained with 

networks of different sizes is plotted in Fig. 8. Although showing a 
similar trend as Fig. 6, two important differences between the errors in 
these two cases should be noted. Firstly, errors in Fig. 8 take into account 
the whole dataset, while Fig. 6 only shows errors computed for samples 
in the validation set. Secondly, while errors in Fig. 6 are computed by 
feeding the network with the exact strain vectors coming from micro-
models, Fig. 8 is obtained by using the trained network online in a one- 
element model that includes numerical noise intrinsic to the Newton- 
Raphson procedure used to solve it. 

The presence of numerical noise combined with the fact that data- 
driven models lack any sort of physical constraint to their behavior 
can lead to substantial error accumulation as the analysis progresses: 
wrong stress predictions lead to wrong solutions for the displacements 
which in turn become wrong strains to be fed to the network. After a few 
time steps, the network will be operating well outside of its training 
space and making nonsensical predictions. 

In order to demonstrate how the inclusion of a dropout layer 
increases model robustness against noise, two networks — one of size 

Fig. 3. Hyper-reduced model trained with pure stress states. Predictions 
improve as the truncation tolerance εsv is reduced. 

Fig. 4. Average absolute errors of the hyper-reduced model for the pure 
stress dataset. 

Fig. 5. Number of modes and integration points of the hyper-reduced model for 
different tolerances εsv (N ¼ 21828, M ¼ 14176). 

Fig. 6. Evolution of the average validation error during training of networks 
with different hidden layer widths (n1). 
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n1 ¼ 500 with dropout and the other of size n1 ¼ 100 without dropout5 

— are used to predict the response of a model loaded in transverse 
tension (2-direction) with and without the inclusion of small perturba-
tions to all three shear components, ε12 ¼ � ε13 ¼ ε23 ¼ 0:01ε22. 
Results are shown in Fig. 9. While the regularized response remains 
unchanged after the introduction of noise, the unregularized model 
branches off into an unphysical softening regime. Note how the 
unregularized model actually gives better predictions than the regular-
ized one before it starts to lose precision: training a robust and accurate 
model entails finding a balance between the bias introduced by regu-
larization and the variance introduced by allowing the model to become 
overly complex (this is also known as the bias-variance tradeoff). 

Before moving on to more complex stress states, an interesting 
conclusion can be drawn by letting the reduced models make predictions 
on a strain range beyond the one used during training. Fig. 10 shows the 
straightforward case of tension in the fiber direction (σ11). The training 

snapshots teach the models how the stress response should behave for 
strains in the range ½0; 0:1�, but in the range ð0:1;0:2� the models must 
rely on their extrapolation capabilities. Owing to its stronger physical 
foundation, the hyper-reduced model correctly predicts a nearly linear 
stress response, while the network deviates from linearity after only a 
few time steps and transitions to an unphysical perfectly-plastic 
response. For hyper-reduced models, it is enough to stop training after 
the material response stabilizes. For neural networks the requirement is 
slightly stronger, as the complete strain range to be encountered online 
should be seen by the model during training. 

Finally, the impact on computational efficiency of increasing the size 
of the reduced models is investigated. Execution times are related to 
model size (number of POD modes n or size of the hidden neural layer 
n1) in Fig. 11, where the smallest model of each type (εsv ¼ 1:0 or n1 ¼

10) is used to normalize the curves. For the neural model, increasing the 
size of the model 100 times only leads to an execution time approxi-
mately twice as long (0.09s), indicating that other operations related to 
the 1-element FE model (e.g. solving the 24-DoF equilibrium system) are 
more expensive than the very efficient neural network computations. 
For the hyper-reduced model, an increase of only 2.5 times on the 
number of POD modes leads to a 5 times longer computation (20.70s). In 
any case, both models are still significantly faster than the full-order one 
(3167s). 

For linear materials, a simple linear combination of the pure stress 
states considered in this section would be enough to describe any 
combined stress state. Unfortunately, the material behavior being 
learned here is highly nonlinear and path dependent. In the next sec-
tions, the accuracy impact incurred by using pure stress combinations to 
approximate combined stress scenarios is investigated. Furthermore, the 
ability of surrogate models to incorporate new information coming from 
additional micromechanical simulations (retraining) is assessed. 

6.2. Biaxial transverse tension 

For the next set of examples, the trained models of Section 6.1 are 
used to predict material response under biaxial transverse tension 
loading (a combination of σ22 and σ33). A common design practice when 
dealing with plasticity is to compute a yield stress envelope by plotting 
the final stress levels for different stress ratios. Fig. 12 shows an illus-

tration of such an envelope, where the angle θ ¼ arctan
�

σ22
σ33

�

defines the 

stress ratio. 
Recalling that models in Section 6.1 are trained on pure stress states 

Fig. 7. Predictions of transverse stress made by neural network models with 
different hidden layer sizes (n1). 

Fig. 8. Average absolute errors over the entire pure stress dataset for network 
models with different hidden layer sizes (n1). 

Fig. 9. Erroneous predictions by an unregularized neural network when mak-
ing predictions on noisy strain values. The robustness introduced by the 
dropout layer alleviates the issue. 

5 Unregularized networks need less parameters to fit the training data to any 
given level of precision when compared to regularized ones. The size of the 
unregularized network is chosen by gradually increasing n1 until a validation 
error lower than 1 MPa is obtained. 
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for all stress components, they are already capable of predicting both the 
lower (θ ¼ 0∘) and upper (θ ¼ 90∘) bounds of the tension-tension en-
velope of Fig. 12. In order to investigate the accuracy of the models upon 
extrapolation from the training set, they are used to predict the response 
for θ ¼ 45∘. The models are also retrained by including extra training 
cases that gradually approach the center of the envelope from both sides 
— with the limit of the new training sets being represented by the angle 
θlim (Fig. 12) — and used to predict θ ¼ 45∘. For these new trainings, 
εsv ¼ 0:01 is adopted and the size of the hidden neural layer is fixed at 
n1 ¼ 500. Error levels over the training set similar to the ones in Figs. 4 
and 8 are obtained for the retrained models. 

Fig. 13 shows ε33 - σ33 curves obtained with hyper-reduced models. 
The obtained responses are very accurate even with no additional 
retraining (θlim ¼ 0∘). This is an interesting feature of the projection- 
based reduction: an accurate response at θ ¼ 45∘ hinges on correctly 
accounting for pressure-dependent yielding, which the POD model does 
in an approximate way by using information obtained from pure 
compression snapshots. A similar level of accuracy is obtained for σ22. 

The network model does not perform as well. With no additional 
retraining, the stress stabilizes at a value approximately 50% lower than 
the reference one. Adding training cases closer to the one being 

predicted brings the response closer to the target, but even with training 
points at θ ¼ 40∘ and θ ¼ 50∘ the maximum stress is still approximately 
10 MPa off. On the other hand, the regularization applied to the network 
does ensure a stable response with physically-sound shape (linear, 
plastic hardening and perfect plasticity) even upon significant extrapo-
lation from the training set. 

Although the robustness of the network model is an advantageous 
feature when working with nonlinear solvers at the mesoscale, the 
model outputs the expected curve shape even when the actual stress 
values are far from being correct and therefore does not provide any clue 
that it is operating outside of its training space. Ideally, the analyst 
should be provided not only with a prediction but also with a measure of 
how much confidence the model has in giving it. 

The next example explores the bootstrap strategy, a popular approach 

Fig. 10. Surrogate models used to predict material behavior outside of the 
strain range seen during training. The hyper-reduced model predicts the correct 
response, while the network shows an unphysical perfectly-plastic behavior. 

Fig. 11. Increases in execution time when model size (n for hyper-reduced 
models and n1 for network models) is increased. 

Fig. 12. Illustration of a biaxial yield envelope. The angle θ defines the ratio 
between the two stress components. When training surrogates, θlim is used to 
define the bounds of the training space. 

Fig. 13. Hyper-reduced model predictions of the biaxial transverse tension 
response when θ ¼ 45∘. Curves from models trained only on pure stress states 
(θlim ¼ 0) as well as models retrained with additional biaxial cases (θlim > 0) 
are shown. 
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for estimating uncertainty in neural networks (Khosravi et al., 2011). 
Instead of relying on the prediction of a single6 network, 50 different 
networks are trained with all pure stress cases and one extra case with 
θ ¼ 45∘ and used to predict the complete envelope. Each network has 
different initial weights and different training sets obtained through a 
bagging process (Breiman, 1996): from the complete bag of 3500 
stress-strain pairs, samples are randomly drawn, included in the training 
set and placed back in the bag until the training set has 3500 pairs. This 
process leads to sets that see approximately 63.2% of the original sample 
pool, with some pairs appearing more than once. The samples that 
remain unseen are used as a validation set. 

Fig. 15 shows the envelopes predicted by each of the 50 networks as 
well as the average prediction. Following (van der Meer, 2016), the 
stresses that define the envelope are computed at a strain level of 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2
22 þ ε2

33

q

¼ 0:04. Close to trained points ð0∘, 45∘ and 90∘Þ, predictions 
from all networks are close to the average one, indicating a high level of 
confidence in the prediction. Moving away from the trained points, the 
level of disagreement between networks gradually increases, indicating 
that predictions in those ranges of θ should be used with care. Naturally, 
this additional piece of information comes at the cost of computing 50 
network responses instead of one, but more efficient techniques such as 
Bayesian neural networks can also be used to derive network responses 
with uncertainty intervals (Khosravi et al., 2011). 

Plotting the ensemble response together with predictions obtained 
with the mesomodel of Section 3 in Fig. 16, it can be seen that both give 
predictions with roughly the same level of accuracy, with errors of up to 
10 MPa. The advantage of the network model over the mesomodel lies in 
the possibility of retraining. Fig. 16 also shows the prediction of a single 
network trained with all values of θ used to construct the envelope. Even 
though this network is now trained on two complete datasets (pure 
stress states and biaxial transverse tension), the size n1 ¼ 500 of the 
network is kept unchanged. Nevertheless, the same level of accuracy 
shown in Fig. 8 is achieved. 

Finally, an analogous study is performed with the hyper-reduced 

model. The response of models trained with pure stress cases plus a 
single biaxial case (θ ¼ 45∘) and with all envelope points are shown in 
Fig. 17. With only a single biaxial training point, the hyper-reduced 
model already outperforms the mesomodel. Expanding the training set 
leads to an almost perfect agreement with the full-order model, but a 
price is paid in terms of efficiency: the model including all stress ratios 
has a reduced space of size n ¼ 30 and m ¼ 714 cubature points 
(compare with n ¼ 18 and m ¼ 241 for the model trained with only 0∘, 
45∘ and 90∘Þ. In practice and depending on the application, it might be 
more advantageous to accept a relatively small loss of accuracy in order 
to keep the surrogate model efficient. 

6.3. Longitudinal shear and transverse tension 

The next set of examples considers the combination of longitudinal 
shear (σ12) and transverse tension (σ22 or σ33). This is a loading scenario 
commonly encountered by laminated composites in service. It is there-
fore an important stress combination to consider when training surro-

gate models. Here, the relevant stress ratio is θ ¼ arctan
�

σ12
σtt

�

, where σtt 

can be either σ22 of σ33. Changing the direction of this transverse stress 
leads to different micromodel responses, a distinction that is lost in the 

Fig. 14. Network model predictions of the biaxial transverse tension response 
when θ ¼ 45∘. Curves from models trained only on pure stress states (θlim ¼ 0) 
as well as models retrained with additional biaxial cases (θlim > 0) are shown. 

Fig. 15. Biaxial yield envelopes obtained by 50 different bootstrapped net-
works trained with pure stress states plus the biaxial case θ ¼ 45∘. 

Fig. 16. Biaxial yield envelopes obtained with the bootstrapped network 
ensemble trained on pure stress cases plus θ ¼ 45∘ and with a single network 
trained with all values of θ. The mesomodel envelope is shown for comparison. 

6 Technically, a network with dropout can be seen as a combination of 2n1 

slightly different networks sharing the same parameters, this being the total 
number of possible dropout combinations (Srivastava et al., 2014). However, 
since dropout is only applied during training, the average behavior of this 
network ensemble is accessible online but its variance is not. 
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invariant-based mesomodel. 
First, models are trained with a combination of pure stress states and 

a number of extra cases defined by the limit stress ratio θlim 2 ½0∘;90∘�

(analogous to Fig. 12) and used to predict the response of θ ¼ 45∘. For 
this first part, σtt ¼ σ22. Fig. 18 shows results for hyper-reduced models. 
For this load combination, information gathered from only pure stress 
cases (θlim ¼ 0) is not enough to properly reproduce the response at θ ¼
45∘, with a relative error of 13% for the maximum stress level. Adding 
extra training cases quickly reduces the error, as expected. Although not 
shown in Fig. 18, a similar accuracy level is obtained for σ22. Interest-
ingly, predictions by the network model for this load combination are 
significantly better than the ones obtained for biaxial transverse tension. 
With the addition of relatively few extra training cases (from θlim ¼

30∘), the network converges to the micromodel solution, as can be seen 
in Fig. 19. 

For the next test, the network and hyper-reduced model of Figs. 18 
and 19 trained with θlim ¼ 40∘ and σtt ¼ σ22 are used to predict the curve 
with θ ¼ 45∘ but this time with σtt ¼ σ33. The obtained results can be 
seen in Fig. 20. None of the surrogates is able to correctly predict the 
shear response when the direction of the transverse stress is shifted. The 
hyper-reduced model is the one with the lowest error, being able to 

correctly predict the response up to the perfect plasticity regime and 
overshooting the maximum stress by about 5%. Interestingly, the mes-
omodel is the one with the largest discrepancy. Since the model is 
invariant-based, no distinction is made between σ22 and σ33 when 
combining them with τ12, leading to excellent agreement for the σ22 - τ12 
combination but not for σ33 - τ12. 

Fig. 20 illustrates the high level of complexity of the parameter space 
being treated here and raises the issue of how to best sample this 
parameter space in order to ensure accuracy under general stress states. 
For the mesomodel, sampling is a simple task that consists of a small pre- 
defined amount of micromechanical experiments (Section 3). But the 
underlying assumptions that allow for such a simple calibration process 
lead to highly inaccurate predictions for this specific loading scenario 
which is still a relatively simple one. The biggest drawback of the 
mesomodel is that there is no straightforward way to substitute these 
prior assumptions by posterior knowledge coming from additional 
micromodel simulations. 

For hyper-reduction and neural networks, the problem is the oppo-
site: these models can readily incorporate new epistemic information 
but must contend with sampling a potentially infinite parameter space. 
Although the question of sampling is much simplified here by focusing 
on monotonic loading along a number of load paths defined a priori, it is 
an open issue that should be addressed in tandem with the development 
of new surrogate modeling techniques (Goury et al., 2016; Ghavamian 
and Simone, 2019). 

Models trained with pure stress cases plus two combined stress cases 
— θ ¼ 45∘ for σtt ¼ σ22 and σtt ¼ σ33 — are used to predict the complete 
stress envelopes for σ22 - τ12 and σ33 - τ12. The bootstrap strategy is once 
again employed in order to obtain the average and variance of a com-
bination of 50 different network models. Results are shown in Fig. 21, 
with each envelope point corresponding to predictions at a strain level 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2
tt þ γ2

12

q

¼ 0:04. 
It is interesting to note that the network ensemble gives more ac-

curate and more confident predictions for the region of the envelope 
dominated by shear than for the one dominated by transverse stresses. 
The average response is compared with the one obtained from a single 
network trained on the complete dataset as well as with mesomodel 
predictions in Fig. 22. As in Section 6.2, adding extra training cases 
improves predictions. Once again the same model size n1 used for pure 
stress cases is enough to learn the larger dataset considered here without 
loss of accuracy. 

For the hyper-reduced model, envelopes obtained with θ ¼ 0∘=45∘=

Fig. 17. Biaxial yield envelopes obtained with a hyper-reduced model trained 
on pure stress cases plus θ ¼ 45∘ and with another one trained with all values of 
θ. The mesomodel envelope is shown for comparison. 

Fig. 18. Hyper-reduced model predictions of the biaxial σ22 - τ12 response 
when θ ¼ 45∘. Curves from models trained only on pure stress cases (θlim ¼ 0) 
as well as models retrained with additional biaxial cases (θlim > 0) are shown. 

Fig. 19. Network model predictions of the biaxial σ22 - τ12 response when θ ¼
45∘. Curves from models trained only on pure stress cases (θlim ¼ 0) as well as 
models retrained with additional biaxial cases (θlim > 0) are shown. 

I.B.C.M. Rocha et al.                                                                                                                                                                                                                           



European Journal of Mechanics / A Solids 82 (2020) 103995

13

90∘ and with all angles are shown in Fig. 23. The partially-trained model 
already gives excellent predictions for σ22 - τ12 but fail to reproduce part 
of the σ33 - τ12 envelope. Regarding model size, the one trained with only 
pure stress cases has n ¼ 17 and m ¼ 217. Adding the biaxial case for 
θ ¼ 45∘ leads to a model with n ¼ 19 and m ¼ 317. Finally, adding the 
remaining angles results in n ¼ 23 and m ¼ 509. In both Figs. 22 and 23, 
note that the mesomodel is only capable of capturing the σ22 - τ12 
envelope. 

6.4. Axial stress and longitudinal shear 

One last stress combination is briefly examined, namely longitudinal 
shear (τ12) with tension in the fiber direction (σ11). For high σ11= τ12 
ratios, the longitudinal shear response is heavily affected by the pres-
ence of plastic strains in the fiber direction. Since the mesomodel of 
Section 3 explicitly eliminates the possibility of plasticity developing 
under axial loading, its effect on the shear behavior is not captured. Van 
der Meer (van der Meer, 2016) points to this as being a major weakness 
of Vogler’s mesomodel, so it is interesting to investigate how well the 
other surrogate strategies can handle this scenario. 

The hyper-reduced model trained only on pure stress cases is used to 

predict shear response for a set of ratios σ11=τ12 2 ½57; 29;11; 6;0�. Re-
sults are shown in Fig. 24. Without any additional training, the hyper- 
reduced model reproduces the curves for all ratios remarkably well. 
On the other hand, a network without additional retraining gives poor 
predictions (Fig. 25). This example illustrates the advantage of reduction 
methods that, although constrained to a reduced solution manifold, are 
still driven by the original constitutive laws of the full-order micromodel 
(see (Liu et al., 2019) for an interesting alternative involving neural 
networks infused with actual constitutive laws). 

The neural network is retrained by including every curve in Fig. 25 in 
addition to the pure stress curves. The resultant curves are shown in 
Fig. 26. Although providing better predictions, the retrained network is 
still not able to accurately capture the response leading up to the perfect 
plasticity plateau. This is consistent with the observed, for instance, in 
Fig. 7 and seems to be a side effect introduced when regularizing the 
network. 

Fig. 20. Surrogate model predictions for σtt ¼ σ33 after being trained with σtt ¼

σ22 (θlim ¼ 40∘). The curves show the predicted responses for θ ¼ 45∘. 

Fig. 21. Biaxial yield envelopes for the σ22ð33Þ - τ12 combination obtained by 50 
bootstrapped networks trained with pure stress cases plus the biaxial case θ ¼
45∘. 

Fig. 22. Biaxial yield envelopes (σ22ð33Þ � τ12) obtained with the bootstrapped 
network ensemble trained on pure stress states plus θ ¼ 45∘ and with a single 
network trained with all values of θ. The mesomodel envelope is shown 
for comparison. 

Fig. 23. Biaxial yield envelopes (σ22ð33Þ � τ12) obtained with a hyper-reduced 
model trained on pure stress cases plus θ ¼ 45∘ and with one trained with all 
values of θ. The mesomodel envelope is shown for comparison. 

I.B.C.M. Rocha et al.                                                                                                                                                                                                                           



European Journal of Mechanics / A Solids 82 (2020) 103995

14

6.5. FE2 example 

As one final illustrative example, the surrogate models are used to 
simulate the interlaminar shear test shown in Fig. 27. The model consists 
of a short beam composed of unidirectional composite layers with fibers 
aligned in the 0∘ direction shown in Fig. 27. Symmetry is exploited by 
modeling only half of the span of the beam and the problem is simplified 
by modeling the beam in 2D with a plane strain assumption. The model 
is discretized with 484 constant-strain triangles each with a single 
integration point. For models requiring an embedded RVE (full-order 
FE2 and hyper-reduced), the same 3D micromodel used for training the 
surrogate models is adopted and only in-plane stress and stiffness 
components are upscaled. Due to the short span between supports, strain 
localizes at mid-thickness (Fig. 27) in a region dominated by longitu-
dinal shear (τ12). 

The models of Section 6.1, trained only with pure stress cases, are 
used as surrogates (εsv ¼ 0:01, n1 ¼ 500). The full-order FE2 problem is 
also solved as reference. This is a challenging scenario for the surrogates 
since the model experiences a complex combination of longitudinal 
shear, fiber stress and transverse tension and compression close to the 

load and support. Furthermore, the plane strain assumption at the 
macroscale leads to stress combinations not covered during training 
under pure stress states. The analysis is executed for 118 time steps, after 
which global convergence cannot be obtained for the full-order FE2 

model. None of the surrogates show this lack of robustness, but for the 
sake of comparison with the full model they are also stopped after 118 
time steps. 

The resultant load-displacement curves are shown in Fig. 28. Despite 
operating under a complex scenario not covered during training, all 
surrogates predict the response well. The network model is the one 
showing the highest discrepancy, with predictions for the load factor 
approximately 5% lower than the reference ones. This lack of precision 
during the hardening regime is consistent with previous observations (c. 
f. Figs. 7 and 26). 

Execution times and speedups are shown in Table 1. Even with a 
coarse mesoscopic mesh with only 484 embedded micromodels, the full- 
order model takes more than one week to run. Without additional 
techniques such as parallelization or the construction of surrogates, FE2 

is effectively unsuitable for any practical application. Among the sur-
rogate models, the mesomodel is the most efficient, followed by the 
neural network and the more expensive hyper-reduced model. 

There is, however, no clear-cut recommendation to be made as to 
which strategy should be chosen. The mesomodel is fast and robust but 
fails in predicting relevant loading combinations. The neural network is 
fast, can be retrained to incorporate new information and its efficiency 
scales well with model size, but it has poor extrapolation capabilities 
and grapples with the bias-variance tradeoff. The hyper-reduced model 
retains relevant physical information, extrapolates well to unseen data 
and readily handles unloading and path-dependency, but is inherently 
slower than the other options and scales poorly with the size of its latent 
space. 

7. Conclusions 

Three different approaches for constructing surrogate models for 
multiscale analysis of laminated composites have been compared 
through an extensive series of numerical tests. Comparisons involved a 
state-of-the-art orthotropic mesoscale model with pressure-dependent 
plasticity, feed-forward neural networks with dropout regularization 
and hyper-reduced models combining the POD and ECM techniques. 
Even though substantial computational efficiency gains could be ob-
tained with all of the approaches, each comes with a particular set of 
advantages and drawbacks: 

Fig. 24. Hyper-reduced model predictions for the biaxial σ11 - τ12 response 
under various stress ratios. The model trained with only pure stress cases pre-
dicts these unseen scenarios remarkably well. 

Fig. 25. Network model predictions for the biaxial σ11 - τ12 response under 
various stress ratios. The curves are not reproduced well without additional 
network retraining. 

Fig. 26. Biaxial σ11 - τ12 predictions for the retrained network model. The 
predictions improve but are still not as accurate as the ones obtained with the 
untrained hyper-reduced model. 
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� Vogler’s plasticity mesomodel is the fastest among the strategies and 
enjoys a robust physical foundation. Simplifying assumptions adop-
ted in its formulation allow for a simple calibration procedure and a 
reduced number of model parameters. But these same assumptions 
lead to poor predictions for a number of realistic loading scenarios 
(Figs. 23 and 24). Once formulated, it is not possible to easily include 
in the model new epistemic information gained from running addi-
tional micromechanical models.  
� Neural networks are fast, can be trained to reproduce general stress 

states and can be retrained to incorporate additional data (c.f. 
Figs. 25 and 26). However, their extrapolation capabilities are 
limited, which makes using them away from their training sets risky 
(Fig. 14). Furthermore, unregularized networks can lead to high er-
rors and nonsensical predictions by feeding on their own inaccuracy 
(Figs. 9 and 10). Finally, conventional feed-forward networks as-
sume a unique relationship between stresses and strains and there-
fore cannot handle unloading or strain path dependency.  

� Hyper-reduction tends to give better predictions with a lower training 
effort by retaining physical information from the original full-order 
model. Hyper-reduced models tend to generalize well to unseen 
data, albeit with varying degrees of success (c.f. Figs. 13, 18 and 24), 
and can be retrained on new observations (Fig. 23). On the other 
hand, they are significantly slower than the other surrogates and 
their efficiency does not scale well as more precision is sought or as 
more training cases are added (Fig. 11). 

Although none of the techniques were found to be optimally efficient 
and accurate in every situation, they could be employed in combination 
in order to leverage their strengths and minimize their weaknesses. For 
instance, for a given mesoscopic structure to be modeled, one could first 
use the mesomodel to quickly solve the problem, gather a number of 
representative strain histories from multiple integration points and 
inject those in a single micromodel in order to generate highly-tailored 
training data for hyper-reduced models or neural networks. This can be 
used to efficiently solve the issue of sampling over an extremely large 
space of possible strain combinations without having to run full-order 
FE2 models. Alternatively, an adaptive approach could be used to 
switch between surrogates: an ensemble of neural networks could be 
used to compute the response at all points but predictions with low 
confidence would be substituted by those coming from a hyper-reduced 
micromodel. In any case, the present in-depth investigation on the ad-
vantages and limitations of each technique may serve as a valuable 
starting point for building smarter multiscale analysis frameworks for 
laminated composites. 
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