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Abstract
Purpose To investigate whether using a Bayesian penalised
likelihood reconstruction (BPL) improves signal-to-
background (SBR), signal-to-noise (SNR) and SUVmax when
evaluating mediastinal nodal disease in non-small cell lung
cancer (NSCLC) compared to ordered subset expectation
maximum (OSEM) reconstruction.
Materials and methods 18F-FDG PET/CT scans for NSCLC
staging in 47 patients (112 nodal stations with histopatholog-
ical confirmation) were reconstructed using BPL and com-
pared to OSEM. Node and multiple background SUV param-
eters were analysed semi-quantitatively and visually.
Results Comparing BPL to OSEM, there were significant in-
creases in SUVmax (mean 3.2–4.0, p<0.0001), SBR (mean
2.2–2.6, p<0.0001) and SNR (mean 27.7–40.9, p<0.0001).
Mean background SNR on OSEM was 10.4 (range 7.6–
14.0), increasing to 12.4 (range 8.2–16.7, p<0.0001).
Changes in background SUVs were minimal (largest mean
difference 0.17 for liver SUVmean, p<0.001). There was no

significant difference between either algorithm on receiver
operating characteristic analysis (p=0.26), although on visual
analysis, there was an increase in sensitivity and small de-
crease in specificity and accuracy on BPL.
Conclusion BPL increases SBR, SNR and SUVmax of medi-
astinal nodes in NSCLC compared to OSEM, but did not
improve the accuracy for determining nodal involvement.
Key Points
• Penalised likelihood PET reconstruction was applied for
assessing mediastinal nodes in NSCLC.

• The new reconstruction generated significant increases in
signal-to-background, signal-to-noise and SUVmax.

• This led to an improvement in visual sensitivity using the new
algorithm.

• Higher SUVmax thresholds may be appropriate for semi-
quantitative analyses with penalised likelihood.

Keywords Mediastinal nodes . Lung cancer staging . PET
reconstruction . Signal-to-noise . Bayesian . PET-CT

Introduction

18F-FDG PET/CT is used in the staging of patients with non-
small cell lung cancer (NSCLC) due to its superior accuracy in
the detection of nodal involvement and metastatic disease
compared to CT [1].

Meta-analyses of nodal involvement per patient and per
node in NSCLC demonstrated pooled sensitivities of 0.76
and 0.65, and pooled specificities of 0.88 and 0.95 [2], sug-
gesting that there is scope for improvement in both sensitivity
and specificity. There is also a lack of evidence for the use of
semi-quantitative analysis, with variable maximum
standardised uptake value (SUVmax) thresholds used for dif-
ferentiating benign from malignant involvement [2], in part
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due to the limitations of different image reconstruction param-
eters, which are known to affect the accuracy of standardised
uptake value (SUV) measurements [3, 4].

Iterative methods are commonly used for the reconstruc-
tion of PET data because of improved signal-to-noise (SNR)
ratios [3–5]. The most widely used iterative algorithm is or-
dered subset expectation maximisation (OSEM) [6]. OSEM
aims to find the most likely image through repeated iterations
with each iteration giving an image with a greater likelihood
of describing the measured data. However, it is not possible to
run this algorithm to full convergence as the image noise in-
creases with each iteration, becoming visually unacceptable
well before full convergence is reached [3, 5]. Due to this
OSEM is stopped after a stipulated number of iterations
resulting in an under-converged image and underestimation
of SUVs.

Bayesian penalised likelihood (BPL) is an iterative PET
reconstruction which includes point spread function (PSF)
modelling, recently developed by GE Healthcare (Q.Clear,
GE Healthcare, Milwaukee, WI, USA) [7]. As described else-
where [7–10], BPL includes a relative difference penalty [11]
which is a function of the difference between neighbouring
voxels as well as a function of their sum [12]. This penalty
function acts as a noise suppression term, which allows an
increased number of iterations without the noise usually seen
in OSEM [7]. It is controlled by the penalisation factor (beta),
which is the only user-input variable. Modified block sequen-
tial regularised expectation maximization is used as an
optimiser for this BPL algorithm, which, due to the penalty
function, allows effective convergence to be achieved in im-
ages, potentially providing a more accurate SUV [12, 13]. We
have previously shown the improvement this algorithm pro-
vides over OSEM in phantom studies [8], lung nodules [9]
and colorectal cancer liver metastases [10].

Aim

The aim of this study was to test whether using BPL increases
signal-to-background (SBR), SNR and SUVmax when evalu-
ating nodal disease in patients with lung cancer compared to
OSEM.

Materials and methods

Patient selection

All patients who underwent 18F-FDG PET/CT at our institu-
tion between October 2011 and April 2013 for the staging of
NSCLC, with subsequent nodal station histopathological di-
agnosis, were retrospectively identified. Institutional review
board approval is not required for retrospective analyses of
this nature in our hospital.

18F-FDG PET/CT imaging protocol

PET/CT scans were performed on a 3D mode GE Discovery
690 PET/CT system (GE Healthcare). The patients were
fasted for at least 6 h prior to their scan. Their blood glucose
was measured and recorded on the radiology information sys-
tem prior to intravenous injection, with 4 MBq/kg of 18F-
FDG. Imaging commenced approximately 90 min post-
injection (mean ± one standard deviation for this patient group
92 ± 6 min) and covered the skull base to upper thighs. The
PET/CT images were acquired under normal tidal respiration
for 4 min per bed position. The CT was performed using a
pitch of 0.984, 120 kV, automAwith a noise index of 25.

PET reconstructions

PET images were reconstructed using two different algorithms
with the same normalisation correction factors and both using
the CT scan for attenuation correction. The standard of care
PET reconstruction algorithm used is time of flight (ToF)
OSEM (VPFX, GE Healthcare). This was used with two iter-
ations, 24 subsets and 6.4-mm Gaussian filter. The sinograms
generated at the time of scanning were retrospectively proc-
essed using the ToF BPL reconstruction algorithm with a
penalisation factor (beta) of 400, the only user-input variable
for this algorithm, as this has been shown to optimise signal
detection [8].

Imaging analysis

Semi-quantitative analysis

Analysis of the pre-existing PET images (reconstructed using
OSEM) and new PET images reconstructed using BPL, was
performed with the PET images fused with the CTcomponent
of the original study (on mediastinal windows) for analysis.

If there was more than one node in a single station, the
analysed node was chosen based on the highest FDG-avidity
on OSEM reconstruction, being the standard of care recon-
struction used at time of analysis. If all the nodes within the
station demonstrated background FDG uptake, the largest
node was chosen.

The SUVmax of each node was recorded using a standard
volume of interest (VOI) tool. Background SUVs were mea-
sured in the right lobe of the liver and descending aorta at the
level of the carina, with 3.0-cm and 1.0 diameter spherical
VOIs respectively. SUVmax, SUVmean and standard deviation
(SUVsd) within the VOI were recorded for both reference
organs. In addition, liver SUVpeak was also recorded. Signal-
to-background ratio (SBR) for each node was calculated as
node SUVmax divided by the descending aorta SUVmean.
SNRs for both node and background were calculated using
the SUVsd on a reference VOI as a measure of noise. The node
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SNR was defined as node SUVmax divided by descending
aorta SUVsd and the liver background SNR as liver
SUVmean divided by liver SUVsd.

To assess the effect of BPL on nodes with background
FDG uptake (on OSEM), nodes were classified as FDG-
positive (above-background) or FDG-negative (at-back-
ground). Background uptake was patient-specific and set as
the descending aorta SUVmean on the OSEM images.

Visual analysis

Visual analysis of the OSEM and BPL PET images, fused
with the CT component of the original study (viewed on
mediastinal windows), was performed by a senior radiol-
ogy resident with four years of radiology (including one
year of PET/CT) experience, on the same workstation.
Nodes were scored according to the degree of FDG up-
take (above-background or at-background). The reference
organ for background uptake was the descending aorta.
The scorer reviewed the cases in a randomised order,
blinded to the clinical outcome and outcome of prior scor-
ing for each case. The scorer was not blinded to the nature
of the reconstruction algorithm used.

Statistical analysis

Statistical analyses were performed using R [14] and IBM
SPSS Statistics 22.0 (IBM Corporation, New York, NY,
USA) with p values less than 0.05 considered as statistically
significant. Differences in background SUVmean, SUVmax and
SNR across the entire cohort were analysed using paired t-
tests. Differences in node SUVmax, SBR and SNR were
analysed using Wilcoxon rank-sum tests. The percentage dif-
ference in node SUVmax (%ΔSUVmax) was also calculated.
Percentage difference in node SUVmax between histopatho-
logically positive and negative nodes were analysed using
the Mann-Whitney U test.

Diagnostic performance

The performance of both algorithms to detect malignant
nodes was assessed using both semi-quantitative and vi-
sual criteria. For semi-quantitative criteria, receiver oper-
ating characteristic (ROC) curves were plotted, and area
under the curve (AUC) values calculated. The areas under
both ROC curves were compared using the method de-
scribed by DeLong et al. [15]. The optimal SUV threshold
for the diagnosis of malignancy was defined as the point
on the curve closest to the upper left corner of the ROC
space. Sensitivity, specificity and accuracy for malignancy
detection were calculated for these thresholds, and an
SUVmax threshold of 2.5. For visual criteria, nodes scored
as above-background were designated malignant and

nodes at-background were designated benign. Sensitivity,
specificity and accuracy for malignancy detection were
then calculated.

Results

Clinical characteristics

Forty-seven patients (29 male, 18 female, mean age 69 years,
range 36–82 years) met the inclusion criteria. Within the co-
hort, 27 had squamous cell carcinoma, 18 had adenocarcino-
ma and two had adenosquamous carcinoma. A total of 112
nodal stations were included for analysis, of which 25 stations
in 18 patients were histopathologically posit ive.
Histopathological diagnosis was obtained by surgical or
mediastinoscopic sampling in the majority of the stations
(n=97), the remainder by transbronchial needle aspiration
(n=15). The mean nodal short-axis diameter was 9 mm (range
3–27 mm). When stratified according to histopathological sta-
tus, the mean short-axis diameter was 11 mm (range 5–27
mm) in positive stations and 8 mm (range 3–15 mm) in neg-
ative stations.

Background analysis

The average background SNR onOSEMwas 10.4 (range 7.6–
14.0), increasing to 12.4 on BPL (range 8.2–16.7, p<0.0001).
There was no statistically significant difference in liver
SUVmax and descending aorta SUVmax between OSEM and
BPL (p=0.35 and 0.07, respectively), and very small albeit
statistically significant differences in liver SUVmean, liver
SUVpeak, liver SUVsd descending aorta SUVmean and de-
scending aorta SUVsd (Table 1). The largest difference was
in liver SUVmean with a mean difference of 0.17 (95 % confi-
dence interval (CI) 0.11–0.22).

Semi-quantitative analysis

SUVmax, SNR and SBR

On comparison of BPL with OSEM, there was a statisti-
cally significant difference in node SUVmax (mean differ-
ence 0.8, p<0.0001), SNR (mean difference 13.2,
p<0.0001) and SBR (mean difference 0.4, p<0.0001).
The %ΔSUVmax was 16 %. The results of the node anal-
ysis are summarised in Table 2.

Analysis by histopathology

In the 25 histopathologically positive nodes, there was a sta-
tistically significant difference in node SUVmax (mean differ-
ence 1.8, p<0.0001) and SBR (mean difference 0.9, p<0.001).
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The mean %ΔSUVmax was 23.7 %. There was a relatively
lower increment in SUVmax (mean difference 0.5, mean per-
centage difference 14.3 %) and SBR (mean difference 0.2) in
histopathologically negative nodes although the differences
were also statistically significant. The results are summarised
in Table 2 and Fig. 1. The differences in %ΔSUVmax between
positive and negative nodes were also statistically significant
(p=0.032).

Visual analysis of FDG uptake

On visual analysis of FDG uptake on OSEM compared to
BPL (Table 3), scores were concordant in 100 nodes (89 %).
All of the nodes with discordant scores had a higher score on
BPL (two histopathology positive, ten negative).

With regard to semi-quantitative analysis, there was con-
cordance in classification of FDG uptake in 110 nodes (98 %).

Table 2 Summary of maximum
standardised uptake value
(SUVmax), signal-to-noise (SNR),
signal-to-background (SBR) and
percentage difference in SUVmax

across the entire cohort and
classified according to
histopathology

All (n=112) Positive (n=25) Negative (n=87)

OSEM BPL OSEM BPL OSEM BPL

SUVmax

Mean 3.2 4.0 5.2 7.0 2.6 3.1

Median 2.4 2.9 3.4 4.4 2.3 2.8

Range 1.0 – 17.0 1.0 – 25.3 1.3 – 17.0 1.3 – 25.3 1.0 – 6.9 1.0 – 8.3

Wilcoxon p value <0.0001 <0.0001 <0.0001

SNR

Mean 27.7 40.9 43.4 73.7 23.2 31.5

Median 21.2 27.4 36.0 38.4 20.7 25.8

Range 6.0 – 131.0 5.2 – 281.4 9.1 – 131.0 16.1 – 281.4 6.0 – 67.5 5.2 – 106.5

Wilcoxon p value <0.0001 <0.0001 <0.0001

SBR

Mean 2.2 2.6 3.6 4.5 1.8 2.0

Median 1.8 1.9 2.9 3.0 1.7 1.9

Range 0.6 – 10.2 0.6 – 18.1 0.8 – 10.2 0.8 – 18.1 0.6 – 4.1 0.6 – 5.4

Wilcoxon p value <0.0001 <0.001 <0.0001

%ΔSUVmax

Mean 16.4 % 23.7 % 14.3%

Median 14.6 % 24.2 % 13.4%

Range -11.8 – 87.0 % -3.0 – 87.0 % -11.8 – 48.4%

Spearman p value
(correlation vs size)

0.0001 <0.0001 0.125

Mann-WhitneyU p value - 0.032

BPL Bayesian penalised likelihood reconstruction, OSEM ordered subset expectation maximum

Table 1 Background
standardised uptake value (SUV)
analysis

SUV parameter OSEM mean (range) BPL mean (range) Paired t-test

(BPL vs. OSEM)

Mean difference (95 % CI) p-value

Liver SUVmean 2.2 (1.3–3.2) 2.4 (1.3–3.4) 0.17 (0.11–0.22) <0.001

Liver SUVmax 2.9 (1.7–4.4) 3.0 (1.7–4.2) 0.04 (–0.05–0.13) 0.349

Liver SUVpeak 2.4 (1.4–3.5) 2.6 (1.4–3.7) 0.17 (0.11–0.23) <0.001

Liver SUVsd 0.22 (0.13–0.34) 0.19 (0.12–0.27) –0.022 (–0.013–0.032) <0.001

D. aorta SUVmean 1.5 (1.0–2.2) 1.6 (0.9–2.7) 0.07 (0.02–0.13) 0.006

D. aorta SUVmax 1.7 (1.2–2.7) 1.8 (1.2–3.1) 0.04 (–0.003–0.09) 0.066

D. aorta SUVsd 0.13 (0.06–0.24) 0.11 (0.05–0.23) –0.018 (–0.007–0.028) 0.001

SNR 10.4 (7.6–14.0) 12.4 (8.2–16.7) 2.0 (1.5–2.4) <0.001

BPL Bayesian penalised likelihood reconstruction, OSEM ordered subset expectation maximum, CI confidence
interval
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The remaining two nodes had negative histopathology and
were FDG-positive (above-background) on OSEM, but clas-
sified as FDG-negative (at-background) on BPL (Table 3,
footnote).

Diagnostic performance

ROC curves were plotted to evaluate the usefulness of OSEM
and BPL to detect histopathologically positive nodes. The
AUC values were and 0.711 (p=0.001) and 0.697 (p=0.003),
respectively (Fig. 2), with no statistically significant differ-
ence between the two algorithms (p=0.256).

The optimum SUVmax threshold for detection of malignan-
cy was 3.0 and 4.0 for OSEM and BPL, respectively (Fig. 2).
The sensitivities, specificities and accuracies at these thresh-
olds as an entire cohort are summarised in Table 4. Across
these groups, a minor decrease in sensitivity (by 4.0 %) and
increase in specificity (by 2.3 %) between OSEM and BPL

Fig. 1 Error bar chart plotting the mean maximum standardised uptake
value (SUVmax) ± 1 SD on both reconstructions in the entire cohort and
according to histopathology

Table 3 Results of visual
analysis of FDG uptake compared
to semi-quantitative criteria

Visual Semi-quantitative
Above (FDG +ve) / at background (FDG –ve)

OSEM 52 / 60 104 / 8

BPL 64 / 48 102 / 10

Concordant overall 100 (89 %) 110 (98 %)

Concordant with
OSEM

52 (100 %)/48 (80 %) 102 (98 %)/8 (80 %)

Increased score /
became
FDG-positive

12 (11 %) (2 histopathology positive, 10
negative)

0

Decreased score /
became
FDG-negative

0 2 (2 %) (2 histopathology
negative)

*Node 1: OSEM SUVmax 1.5, Background SUVmean 1.4

BPL SUVmax 1.4 Background SUVmean 1.4

*Node 2: OSEM SUVmax 1.5 Background SUVmean 1.4

BPL SUVmax 1.6 Background SUVmean 1.6

BPL Bayesian penalised likelihood reconstruction, OSEM ordered subset expectation maximum, SUV
standardised uptake value

Fig. 2 Receiver operating characteristic (ROC) curves for detection of
histopathologically positive lymph nodes with Bayesian penalised
likelihood reconstruction (BPL) compared to ordered subset expectation
maximum (OSEM). Optimum maximum standardised uptake value
(SUVmax) thresholds for malignancy detection are indicated as SUVmax

(sensitivity, specificity)
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was observed, with little change in accuracy (increase by 0.9
%). Conversely, using either an SUVmax threshold of 2.5 or
visual criteria, a divergence in sensitivity and specificity be-
tween OSEM and BPL was observed, with sensitivity increas-
ing and specificity decreasing with BPL (Table 4).

To investigate if nodal size had an influence over diagnos-
tic performance, the sensitivities, specificities and accuracies
at the optimum SUVmax thresholds of 3.0 and 4.0 for OSEM
and BPL, respectively, were repeated with the dataset
dichotomised into two groups: >10 mm and ≤10 mm
(Table 5). The results in nodes >10 mm (n=24) were identical
between these two groups. In nodes ≤10 mm (n=88), there
was a drop in sensitivity by 7.2 %, increase in specificity by
2.7 % and accuracy by 1.2 %. These marginal changes reflect
the prior results when analysed as a cohort.

Discussion

This study demonstrated a significant increase in SBR and
SUVmax of mediastinal nodes using BPL compared to
OSEM in patients with NSCLC, examples are illustrated in
Figs. 3 and 4. While SBR and SUVmax increased in both
histopathologically positive and negative nodes, the
%ΔSUVmax in histopathologically positive nodes was signif-
icantly higher (p=0.033, SUVmax mean difference 1.8 vs. 0.4,
respectively).

There were also significant increases in node SNR using
BPL, which is of relevance as OSEM algorithms can

underestimate lesion activity when located in a relatively
FDG-avid background [7]. In the context of mediastinal
nodes, the surrounding blood pool may render faintly
FDG-avid abnormalities less visually conspicuous. The re-
sultant effect of BPL is demonstrated by the increase in
sensitivity based on visual analysis (76 % from 68 %,
Table 4). Some of the increase in SUVmax can be attributed
to PSF modelling being included within the BPL and not
within OSEM. PSF modelling incorporates information
about the PET detector response into the reconstruction
algorithm which leads to an improved image, especially

Table 4 Diagnostic performance
of ordered subset expectation
maximum (OSEM) and Bayesian
penalised likelihood
reconstruction (BPL) in detecting
malignant nodes based on (A)
semi-quantitative analysis using a
maximum standardised uptake
value (SUVmax) threshold of 2.5,
(B) optimum SUVmax threshold
(3.0 and 4.0, respectively) and (C)
visual analysis

(A) SUVmax 2.5 (B) Optimum SUVmax (C) Visual

OSEM BPL OSEM (3.0) BPL (4.0) OSEM BPL

All (n=112)

Sensitivity 68.0 % 72.0 % 60.0 % 56.0 % 68.0 % 76.0 %

Specificity 56.3 % 40.2 % 75.9 % 78.2 % 59.8 % 48.3 %

Accuracy 58.9 % 47.3 % 72.3 % 73.2 % 61.6 % 54.5 %

Table 5 Diagnostic performance of ordered subset expectation
maximum (OSEM) and Bayesian penalised likelihood reconstruction
(BPL) in detecting malignant nodes based on size, using optimum
maximum standardised uptake value (SUVmax) threshold (3.0 and 4.0,
respectively)

Nodes > 10mm (n=24) Nodes ≤ 10mm (n=88)

OSEM BPL OSEM BPL

Sensitivity 100.0 % 100.0 % 28.6 % 21.4 %

Specificity 23.1 % 23.1 % 85.1 % 87.8 %

Accuracy 58.3 % 58.3 % 76.1 % 77.3 %

Fig. 3 A histopathologically proven involved 8-mm node in station 5 in
adenocarcinoma of the left upper lobe. Ordered subset expectation
maximum (OSEM) maximum standardised uptake value (SUVmax) 3.8,
increasing to 5.0 on Bayesian penalised likelihood reconstruction (BPL).
The blood pool SUVmean difference was 0.1. All positron emission
tomography (PET) images are displayed on SUV scale 0–6
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for small lesions. While comparison between OSEM with
PSF modelling (SharpIR on GE systems) and BPL might
seem more appropriate as BPL includes PSF modelling,
OSEM with PSF has not been adopted as standard of care
in our centre. This is due to the increased intervoxel co-
variance seen with the PSF modelling [9, 16] which causes
images to appear very heterogeneous. We have seen here
that background metrics (Table 1, Figs. 3 and 4) remain
very similar when moving from OSEM to BPL despite
the addition of PSF modelling.

Despite improved definition of nodal FDG uptake and
a relatively higher SUVmax increment in histopathologi-
cally positive nodes using BPL, ROC analysis of the use-
fulness of SUVmax as a single semi-quantitative parameter
between both algorithms showed that BPL did not signif-
icantly improve the performance for diagnosing nodal dis-
ease (for example, accuracy 72.3 % (OSEM) to 73.2 %
(BPL) at optimum SUVmax thresholds, Table 4). The ob-
servation of two OSEM FDG-negative histopathologically
positive nodes remaining FDG-negative on BPL lends
weight to this although the numbers are small (these two
nodes were also sub-centimetre).

Interestingly, performing the same analysis dichotomising
the dataset according to nodal size (>10 mm, ≤10 mm),
demonstrated the same pattern of (small) change in diag-
nostic performance from OSEM to BPL only in nodes
≤10 mm (Table 5). This may suggest that the difference
in performance is size dependent, although the effect
may be due to the considerably larger number of nodes
≤10 mm (n=88) compared to nodes >10 mm (n=24). It is
important to stress that the difference is clinically negli-
gible so conclusions as to whether BPL confers any ad-
vantage or vice versa to evaluation of subcentimetre

nodes using semi-quantitative analysis cannot be drawn
from this observation.

On applying the widely used SUVmax threshold of 2.5 [17]
to both reconstructions, there was an expected increase in
sensitivity and decrease in specificity using BPL compared
to OSEM. On visual analysis, there was increased detection
where a small, but relatively greater, proportion of nodes were
‘upgraded’ on BPL, which also resulted in a divergence of
sensitivity and specificity. There was also a small decrease
in accuracy from 62 % to 55 %.

Importantly the diagnostic performance was not signifi-
cantly improved with BPL, even though the increments in
SBR, SNR, and SUVmax contributed to increased visual de-
tection. This is likely to be due to the increase in visualisation
and semi-quantitative measurements occurring independent of
their aetiology; glucose utilisation is better detected in both
malignant and granulomatous nodes. Furthermore, when a
semi-quantitative method of analysis is applied, a higher
SUVmax threshold than is commonly used may be appropriate
when using BPL, although there is no universally agreed level
at present for OSEM [18–20]. Similarly, a different threshold
will have to be adopted when using a visual analysis. As PET
technology (hardware and software) evolves, for example
with BPL reconstruction, radiologists and physicians will
need to adapt and re-learn to account for the improving quality
in images. The need to potentially amend current parameters
for disease detection and reporting is occurring in other areas
of imaging due to improved imaging technology. Improved
nodule detection using low dose CT, as seen in the National
Lung Screening Trial, where low-dose CT demonstrated high
sensitivity but low positive predictive values in lung cancer
detection, has resulted in the definition of a positive screening
result being refined [21].

Fig. 4 A histopathologically
proven involved 13-mm node in
station 10L in a patient with
squamous cell carcinoma.
Ordered subset expectation
maximum (OSEM) maximum
standardised uptake value
(SUVmax) 5.4, increasing to 7.7
on Bayesian penalised likelihood
reconstruction (BPL), with a
visually appreciable decrease in
noise of the mediastinal blood
pool. All positron emission
tomography (PET) images are
displayed on SUV scale 0–6
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There are a number of limitations of this study. Firstly, there
is inherent sampling error as direct radiological-pathological
correlation was not possible for individual nodes and the unit
of analysis had to be based on each nodal station. Where there
were multiple nodes in a single station on CT, a single node
was chosen for analysis based on the degree of FDG-
avidity followed by size, and both of these criteria may
contribute to false-positive results. This was thought not
to be of overall significance as primary evaluation of the
data was centred on the difference due to the methods of
PET reconstruction.

Finally, the cohort was skewed with a majority proportion
of histopathologically negative nodes and small absolute num-
ber of positive nodes. This may explain the relatively small
differences in semi-quantitative diagnostic performance be-
tween BPL and OSEM. The small number of positive nodes
may also in part explain the relatively poor AUC values de-
rived from semi-quantitative analysis. This was based on
SUVmax as a standalone predictor of nodal positivity but was
to some extent an expected finding. It is also concordant with
the wider observations of 20–25 % false-negative and false-
positive rates in PET for mediastinal nodal involvement [22,
23], confirming the importance of tissue sampling in medias-
tinal staging to determine nodal involvement [24].

Conclusion

BPL, an iterative reconstruction technique using a Bayesian
penalised likelihood reconstruction algorithm, increases SBR,
SNR and SUVmax of mediastinal nodes in NSCLC, compared
to OSEM, the current standard of care. This led to an improve-
ment in visual sensitivity using BPL. However, this did not
improve the accuracy for determining nodal involvement, and
suggests that the limitations of 18F-FDG PET/CT in nodal
analysis in NSCLC are due to the inherent non-specificity in
the reasons for FDG-avidity, and are likely to be unchanged
by improvements in techniques in its detection.
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vide a link to the Creative Commons license, and indicate if changes were
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