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Abstract 

The global food insecurity, malnourishment and rising world hunger are the major hindrances 

in accomplishing the zero hunger sustainable development goal by 2030. Due to the continuous 

increment of wheat production in the past few decades, India received the second rank in the 

global wheat production after China. However, storage capacity has not been expanded with 

similar extent. The administrative bodies in India are constructing several capacitated silos in 

major geographically widespread producing and consuming states to curtail this gap. This 

paper presents a multi-period single objective mathematical model to support their decision-

making process. The model minimizes the silo establishment, transportation, food grain loss, 

inventory holding, carbon emission, and risk penalty costs. The proposed model is solved using 

the variant of the particle swarm optimization combined with global, local and near 

neighbor social structures (GLNPSO) along with traditional PSO. The solutions obtained 

through two metaheuristic algorithms are compared with the optimal solutions. The impact of 

supply, demand and capacity of silos on the model solution is investigated through sensitivity 

analysis. Finally, some actionable theoretical and managerial implications are discussed after 

analysing the obtained results.     

Keywords: Food grain supply chain, Food security, Transportation, Inventory, Particle swarm 

optimization. 

1. Introduction and motivation  
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The global food security is a major policy concern due to the rising worldwide population, 

climate change and increasing food demand (Ge et al. 2018, Kaur 2019, Maiyar and Thakkar 

2019, Nicholson et al. 2011). The third of total arable land on this planet has lost in the past 40 

years (Milman, 2015) and only 12 percent land across the globe is cultivated (Sheane et al. 

2018). Additionally, the post-harvest loss is one of the vital factors which greatly impacts 

global food security (An and Ouyang 2016, Kiil et al. 2018, Krishnan et al. 2020, Raut et al. 

2018). The annual loss of around 1.3 billion tons closely one-third of the total food produced 

in the world raises the pressure on global food security (Gustavsson et al. 2011). The monetary 

value of the food loss and waste in the developed and developing nations are nearly USD 680 

billion and 310 billion respectively (FAO, 2011). Close to 40% of the food gets wasted in the 

developing countries during postharvest stage whereas the same amount lost at retail and 

consumer levels in industrialised nations (FAO, 2011). These losses also contribute 

significantly to squandering of resources like land, water, labour, energy and money and 

unnecessarily produces the greenhouse gas emissions which causes the global warming and 

climate change (FAO, 2011, Göbel et al. 2015). Today, more than 820 million individuals 

corresponding to one in every nine people on the globe still suffering from the hunger which 

creates the challenge for achieving the zero hunger sustainable goal by 2030 (FAO, 2019).      

The post-harvest losses are not curbed in India despite the increment of production of food 

grains in the past few decades and still, these are approximately 10% (Sharon et al. 2014). The 

storage loss of nearly 6% contributes a significant proportion of post-harvest losses because of 

inadequate and outdated storage facilities (Sharon et al. 2014). In India, annually about 12 to 

16 million tons of food grain is wasted with an approximate worth of USD 4 billion. This food 

grain amount is enough to feed approximately 10% of India’s population and means that 

appropriate storage and reduction of storage losses can help to meet the 10% of India’s food 

demand (Alagusundaram 2016). The improper handling and traditional storage practices, poor 

collaboration among supply chain members, inadequate storage facilities and lack of 

transportation infrastructure, as well as extremely ineffective supply chain, are the paramount 

reasons of colossal food grain losses (Sachan et al. 2005; Parwez, 2014, Maiyar and Thakkar 

2017, Mogale et al. 2017, Chauhan et al. 2019). Transportation activities come under one of 

the main sources of air pollution which creates detrimental impacts on public health and the 

environment (Wang et al. 2011, Song et al. 2014). India placed at third position after China 

and the USA in the worldwide GHG emission ranking (Timperley 2019). In this country, 

roughly 5 million tons of crops get spoiled because of toxic gases (Ramanathan et al. 2014). 
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Thus, the environmental aspect needs to be considered while tackling food supply chain issues 

(Mohammed and Wang 2017, Banasik et al. 2017, Yakavenka et al. 2019, Mogale et al. 2019a).   

The current research work is allied with food grain supply chain activities in India. The major 

activities such as procurement, storage, movement, and distribution are depicted in Fig. 1. 

Initially, procurement of food grains mainly wheat and rice is carried out and then the procured 

food grain is stored into various central warehouses and base silos located in producing 

(surplus) states. Next, food grain is transferred to the various deficit (consuming) states because 

of the discrepancy between the supply and demand (Mogale et al. 2019b, Maiyar and Thakkar 

2017). Finally, the deficit states distribute the food grains at the subsidized rates to the 

beneficiaries (CAG 2013). According to CAG 2013 report, central pool stock of food grain has 

steadily increased to 67 Million Metric Ton (MMT) in 2012 from 21 MMT in 2007, while the 

capacity has increased by a merely 0.4 MMT during the same span of time (Mogale et al. 

2018a, 2019a). A significant discrepancy between the central pool stock and total storage 

capacity can be witnessed from the aforementioned statistics, hence, storage capacity must be 

increased to cope with growing procurement. To fill the gap of storage capacity, policymakers 

in India commenced the establishment of capacitated silos in the major food grain surplus and 

deficit states. The silos constructed in producing and consuming states are called as base silo 

and field silo, respectively (Mogale et al. 2018a).    

 

 

Fig. 1. Schematic representation of food grain supply chain in India (Mogale et al. 2018a)  
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The rest of the article is structured as follows. Section 2 provides a literature review of related 

topics. Section 3 delineates the problem and mathematical model. Section 4 explicates details 

about the implemented algorithms. Section 5 analyses and discusses the several real-life 

problem instances and their computational results. Finally, Section 6 concludes the article with 

some future scope of the work.  

2. Literature search  

The problem addressed in this paper comes under the category of the supply chain 

network design (SCND). A large body of literature in the domain of SCND problems is 

available. Thus, a review of existing relevant literature focusing on integrated SCND models, 

post-harvest loss minimization, sustainability, risk management, computational tools, and 

review articles in the context of the food supply chain are discussed in this section.  

2.1 Models for SCND problems   

Hosseini-Motlagh et al. (2019), Naderi et al. (2019) and Gholamian and Taghanzadeh 

(2017) proposed mathematical models for wheat SCND problem in Iran. Further, the realistic 

case of wheat logistics planning problem concentrating on inventory transportation issues in 

Iran was solved by Asgari et al. (2013). The bimodal transportation ((Etemadnia et al. 2015) 

and intermodal transportation (Maiyar and Thakkar 2019) from surplus to deficit regions were 

integrated while dealing with the hub location problem of the food supply chain. Gey, Gray, 

and Nolan (2015) developed the optimization and simulation models for the Canadian grain 

industry to minimize the operational cost of the wheat supply chain. However, food grain 

losses, risk penalty cost and fleet management are absent in the aforementioned studies. 

Moreover, mathematical models for the SCND of edible vegetable oils producer (Paksoy et al. 

2012), food bank (Orgut et al. 2016), food aid distribution (Rancourt et al. 2015) and fresh 

produce facilities (Ge et al. 2018) were proposed. Interested readers are recommended to refer 

the review articles of Soto-Silva et al. (2016), Arabani and Farahani (2012), Farahani et al. 

(2010), Melo et al. (2009), ReVelle and Eiselt (2005), Akkerman et al. (2010), Zhu et al. (2018) 

and Eskandarpour et al. (2015) for more information on SCND problems.  

2.2 Post-harvest losses and risk management in food supply chains 

Nourbakhsh et al. (2016) and An and Ouyang (2016) considered the post-harvest losses while 

formulating the optimization model for grain supply chain problem. Mishra and Singh (2018) 

presented the framework for waste minimization in the beef supply chain using twitter data. A 
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location model was introduced for perishable food facilities considering losses from variations 

in temperature and relative humidity (Orjuela-Castro et al. 2017). A multi-objective 

mathematical model considering the economic and environmental aspect was formulated by 

Banasik et al. (2017) to evaluate alternate production options for waste management in the food 

supply chain. Dora et al. (2019) identified the food loss hotspots in Belgian food processing 

industry. Sustainability aspect was integrated into the different models of food supply chain 

using single or multi-objective approaches by several authors in their studies (Allaoui et al. 

2018, Validi et al. 2014, Soysal et al. 2014, Govindan et al. 2014, Maiyar and Thakkar 2019, 

Mogale et al. 2019a, and Validi et al. 2018). 

 Few researchers investigated the various risks involved in the food supply chains. A 

mathematical model for routing-location of hazardous materials was developed to optimize the 

cost and risk involved in supply chain (Ardjmand et al. 2016). Further, Diabat et al. (2012) 

identified the product/service, demand, supply, information management and macro-level risk 

and proposed relevant risk mitigation strategies. The individual level and supply chain risks in 

agri-food supply chains were discussed by Leat and Revoredo-Giha (2013). Additionally, 

Wang et al. (2012) and Vlajic et al. (2012) proposed an aggregative food safety risk assessment 

model and framework for robust food supply chains respectively.  

2.3 Research gaps and contributions  

The comparison of the key relevant papers from the literature with the current study is depicted 

in Table 1. It can be noticed from this table that fewer scholars simultaneously considered 

several members, periods and modes in their studies (Gholamian and Taghanzadeh 2017, 

Allaoui et al. 2018, Mogale et al. 2018a, 2019a). Facility location cost and transport cost were 

commonly considered in the objective function of the formulated models (Etemadnia et al. 

2015, Mogale et al. 2018a, Maiyar and Thakkar 2018). However, inventory cost, transit and 

storage loss cost, emission and risk penalty cost appeared in meagre papers. Furthermore, 

location-allocation and product flow decisions are frequently observed in numerous papers, but 

the capacity level, fleet management and food loss quantity are hardly found in the existing 

studies (Orjuela-Castro et al. 2017, Boonmee and Sethanan 2016, Mogale et al. 2019a). To 

bridge the aforementioned research gap, firstly a multi-period single objective mathematical 

model is developed for a green food grain SCND problem. The model seeks to minimize the 

overall food grain supply chain network cost comprising of fixed cost of silo establishment, 

transportation, emission, inventory holding and risk penalty cost, cost of transit and storage 
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loss of food grain. Secondly, various aspects like transit and storage loss of food grain, carbon 

emission and risk penalty are concurrently included in the model. Many real-life constraints 

pertaining to food grain supply chain are taken into consideration while formulating the model. 

Thirdly, a mathematical model is solved using a variant of the Particle Swarm Optimization 

(PSO) algorithm and original PSO due to the complex and highly constrained nature of the 

underline problem. The results obtained using the proposed algorithms are compared with the 

optimal solutions of the Cplex solver through different real-world instances. Finally, sensitivity 

analysis is performed to visualize the responsiveness of the formulated model and solution 

approach. 
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Table 1 Comparison of current study with the literature 

 
Model characteristics   Objective function components Decisions 

Optimization 

tool 
Study MP MM/IM ME Modelling 

Country of 

application 
FLC TC IC TLC SLC EC RPC L A CL FM I PF FLQ 

Gholamian and 

Taghanzadeh (2017) 
            MILP     Iran                             

 
      CPLEX 

Jonkman et al. 

(2019) 
   MILP Netherlands                  CPLEX 

Mogale et al. 

(2018a) 
          MINLP India                

NCRO and 

NSGA-II 

Etemadnia et al. 

(2015) 
   MILP US               CPLEX 

Asgari et al. (2013)    LIP Iran               
LINGO and 

GA 

Rohmer et al. 

(2019) 
   LP Netherlands               

Epsilon 

constraint  

Boonmee and  
Sethanan (2016) 

 
 

 
  MIP 

 

Thailand               
CPLEX, 

GLNPSO and 

PSO 

Mogale et al. 

(2019a) 
         MINLP India               

MOPSO and 

NSGA-II 

Ge et al. (2018)    MILP US               CPLEX 

Khamjan et al. 

(2013) 
   MILP Thailand               

LINGO and 

Heuristic 

Orjuela-Castro et al. 

(2017) 
   MLP Colombia               GAMS 

Liotta et al. (2015)    MILP Europe               CPLEX 

Ardjmand et al. 

(2016) 
   MILP US               

CPLEX and 

GA 

Maiyar and Thakkar 

(2019) 
   MINLP India               PSODE 

Rancourt et al. 

(2015) 
   MILP Kenya               CPLEX 

Present study    MILP India               

CPLEX, 

GLNPSO and 

PSO 
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Model characteristics MP: Multiple period, MM/IM: Multimodal/Intermodal, ME: Multiple echelon, Modelling: 

MILP= Mixed integer linear programming; MIP= Mixed integer programming; LIP = Linear Integer 

Programming; MINLP = Mixed integer non-linear programming 

Objective function components: FLC= Facility location cost; TC= Transportation cost; IC= Inventory cost; 

TLC=Transit loss cost; SLC= Storage loss cost; EC = Emission cost; RPC= Risk penalty cost 

 

Decisions: L: Location, A: Allocation, CL: Capacity Level, FM: Fleet Management, I: Inventory, PF: Product 

Flows, FLQ: Food Loss Quantity   

 

3. Problem overview and model formulation  

It is observed from the statistics mentioned in the introduction section that there is a 

colossal shortage of storage capacity against the central food grain stock. To fulfil this gap, 

management authorities in India commenced establishing modern capacitated silos in major 

producing and consuming states across the country. This problem is an SCND problem 

comprising of five echelons, i.e. procurement centres, base and field silos, regional warehouses 

and destination warehouses. The strategic decision of silo location requires a large amount of 

capital investment for establishment (Mogale et al. 2018a). The formulated model helps in 

strategic and tactical decisions of food grain supply chain. The model simultaneously 

determines the number of silos established, shipment and storage quantity, transit and storage 

loss quantity and number of mixed capacitated vehicles utilized. Further, various constraints 

like food grain availability, demand satisfaction, inventory flow balance, multi-sourcing and 

distribution strategy, storage capacity constraint, vehicle capacity constraint and food grain loss 

calculation constraint are incorporated in the developed model.  

The assumptions considered while formulating the mathematical model are described here. The 

notations of the model comprising of indices, parameters and decision variables are defined in 

“Appendix 1” due to space constraint. 

Assumptions  

1) Potential locations for the establishment of silos are known and fixed. 

2) The procurement quantity of food grain, demand of destination warehouses and capacity 

of regional warehouses are specific and deterministic. 

3) Three mixed capacitated vehicles with restricted accessibility are considered for food grain 

movement. 

4) Initial inventory at the silos and regional warehouses is considered zero. 

5) Full truckload scenario is considered.  
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Objective function  

The objective function of the model is to minimize the overall food grain supply chain cost 

which comprises the following terms. 

Base and field silo establishment and establishment risk penalty cost =  

   
, ,

h h h j j j

b b b f f f

b h f j

F rc X F rc Y                 (1.1)             

Transportation, food grain transit loss and transportation risk penalty costs from procurement 

centre to base silo. 

=      
, ,

t t t

pb pb pb pb pb pb

p b t

tc dis U lcTl g rcY  
                         (1.2) 

Transportation, food grain transit loss and transportation risk penalty costs from base to field 

silo.  

=      
, ,

t t t

bf bf bf bf bf bf

b f t

tc dis U lcTl g rcY  
                        (1.3) 

Transportation, food grain transit loss and transportation risk penalty costs from field silo to 

regional warehouse. 

 =      
, ,

t t t

fr fr fr fr fr fr

f r t

tc dis U lcTl g rcY  
                        (1.4) 

Transportation, food grain transit loss and transportation risk penalty costs from regional 

warehouse to destination warehouse.  

=      
, ,

t t t

rd rd rd rd rd rd

r d t

tc dis U lcTl g rcY  
                        (1.5) 

Inventory and food grain storage loss cost at base silo, field silo and regional warehouse.  

=            
, , ,

t t t t t t

b b b f f f r r r

b t f t r t

ih IN lcSl ih IN lcSl ih IN lcSl         
               (1.6) 

Cost of CO2 emission = 

3 31 1 2 2 4 4

1 2 3 4, , , , , , , , , , , ,

n n tn n t n n t n n t

pb pb pb bf bf bf fr fr fr rd rd rd

p b n t b f n t f r n t r d n t

e dis V e dis V e dis V e dis V ce
 

   
 
           (1.7) 

Subject to constraints  

t t

pb p

b

U A      ,p t           (2) 

Constraint (2) depicts the supply restriction of procurement centre. 

 t t

pb pbU Z Y      , ,p b t           (3) 
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Constraint (3) illustrates that food grain quantity should be transferred to assigned base silos 

from procurement centres.  

t h

pb b

h

Y X      , ,p b t           (4) 

Procurement centre can transfer the shipment quantity to only established base silos and this is 

indicated by Constraint (4).  

t t

bf b

f

U IN      ,b t                (5) 

Supply limit of base silo is depicted by Constraint (5).   

 t t

bf bfU Z Y      , ,b f t           (6) 

Constraint (6) makes sure that base silos should transfer the food grain quantity to the assigned 

field silos.   

,

t hj

bf bf

h j

Y M      , ,b f t                      (7) 

,

2h j hj

b f bf

h j h j

X X M       ,b f                     (8) 

,

1h j hj

b f bf

h j h j

X X M        ,b f                     (9) 

Base silo can transfer the food grain to the field silo only if both silos are established. A new 

binary variable 
hj

bfM  is inserted which becomes 1 if both 
h

bX  and j

fX  become 1 else remains 

0. Hence, constraint set (7)-(9) fulfil the aforementioned condition.    

t t

fr f

r

U IN      ,f t                      (10) 

Constraint (10) limits the flow of food grain from field silo to regional warehouses.   

 t t

fr frU Z Y      , ,f r t           (11) 

Constraint (11) ensures that field silo should transfer the shipment quantity to the assigned 

regional warehouses. 

t j

fr f

j

Y X      , ,f r t                      (12) 

Field silo is assigned to the regional warehouses if it is established and this is described by 

constraint (12).  

t t

rd r

d

U IN      ,r t           (13) 

Constraint (13) restricts the food grain quantity transferred from regional to destination 

warehouses. 
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 t t

rd rdU Z Y      , ,r d t           (14) 

Constraint (14) guarantee that regional warehouses transferred the food grain quantity to 

assigned destination warehouses.    

t t

rd d

r

U L      ,d t         (15) 

Demand satisfaction constraint is represented by constraint (15).  

1t t t t t

b pb bf b b

p f

IN U U Sl IN                  ,b t                         (16) 

1t t t t t

f bf fr f f

b r

IN U U Sl IN                    ,f t                        (17) 

1t t t t t

r fr rd r r

f d

IN U U Sl IN                     ,r t           (18) 

The inventory balance equation for base silo, field silo and regional warehouse are represented 

by Constraints (16) – (18).  

t h

b h b

h

IN cb X     ,b t                    (19) 

t j

f j f

j

IN cf X     ,f t                               (20) 

t

r rIN cr      ,r t                    (21) 

Constraint set (19) - (21) enforces the capacity constraints for base silo, field silo and regional 

warehouses. 

1h

b

h

X       b                      (22) 

1j

f

j

X       f                      (23) 

Furthermore, constraint set (22), (23) makes sure that at each potential locations of base and 

field silo at most one type of base and field silos are to be established. 

1

1

1

n tt

pb n pb

n

U cv V     , ,p b t                       (24) 

2

2

2

n tt

bf n bf

n

U cv V     , ,b f t                       (25) 

3

3

3

n tt

fr n fr

n

U cv V     , ,f r t                       (26) 

4

4

4

n tt

rd n rd

n

U cv V     , ,r d t         (27) 
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The vehicle capacity restrictions for each stage are defined by Constraint (24) – (27).   

1

1
       

n t t

pb n p

b

V nv                                         1, ,p n t                                             (28) 

2

2
       

n t t

bf n b

f

V nv                                         2, ,b n t                                            (29) 

3

3
       

n t t

fr n f

r

V nv                                        3, ,f n t                                            (30) 

4

4
       

n t t

rd n r

d

V nv                                        4, ,r n t                                            (31) 

The four constraints (28)-(31) indicate that the number of utilized vehicles between given two 

echelons should be less than or equal to their availability. 

t t

pb pbTl lbU                    , ,p b t                   (32) 

t t

bf bfTl lbU      , ,b f t                   (33) 

t t

fr frTl lbU      , ,f r t                   (34) 

t t

rd rdTl ljU      , ,r d t                   (35) 

The four constraints illustrated by Eqs. (32) - (35) are used to compute the fraction of the 

shipment quantity that lost during transit from procurement centre to base silo, base silo to field 

silo, field silo to regional warehouse and regional to destination warehouse. 

t t

b bSl lsIN      ,b t                    (36) 

t t

f fSl lsIN      ,f t                                 (37) 

t t

r rSl lwIN      ,r t                    (38) 

Moreover, the fraction of inventory stock that lost at base silo, field silo and regional 

warehouses are calculated using the Constraints set (36) - (38). 

 , , , , , 0,1h j t t t t

b f pb bf fr rdX X Y Y Y Y   , , , , , , ,p b f r d h j t                                      (39)    

, U , U , U , , , , ,

, , , , , 0     , , , , ,

t t t t t t t t

pb bf fr rd pb bf fr rd

t t t t t t

b f r b f r

U Tl Tl Tl Tl

IN IN IN Sl Sl Sl p b f r d t      
                                                       (40) 

31 2 4

1 2 3 V ,V ,V ,V     , , , , , , , ,
n tn t n t n t

pb bf fr rd p b f r d n n n t                           (41) 

Finally, Constraints set (39) - (41) represent the binary, non-negativity and integer restrictions, 

respectively.     
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 The supply chain network configuration of the current problem depends on a number 

of echelons involved and time period. The formulated model has more variables, parameters 

and real-life constraints compared with the normal SCND problem. All these variables, 

parameters and constraints increase exponentially as the supply chain network configuration 

grows. Due to the inherent complexity and a large number of variables as well as constraints 

of the underline problem, many authors addressed these types of complex problems by means 

of heuristics and metaheuristics algorithms in extant literature (Khalifehzadeh et al. 2015; 

Hamadani et al. 2013; Eskandarpour et al. 2017; De et al. 2019, Zhu et al. 2009, Zhao and Dou 

2011, Mogale et al. 2018a, 2018b; Naderi et al. 2019).  

4. Solution methods  

In the domain of evolutionary and swarm intelligence algorithms, many researchers 

developed the various variant of existing algorithms to solve the complicated real-life 

problems. Metaheuristics are receiving more attention to solve complex agricultural supply 

chain problems (Aliano Filho et al. 2019, Florentino et al. 2020, Chan et al. 2020). Recently, 

several new variants of PSO algorithm were employed to deal with the SCND problem (Maiyar 

and Thakkar 2018; Soleimani and Kannan 2015; Yamada and Febri 2015). However, in most 

cases, premature convergence or the trapping in local optimal solution found as a major 

challenge of PSO and its variants. An extended version of PSO with combined global 

best, local best and neighbour best social structures called GLNPSO was developed by 

Pongchairerks and Kachitvichyanukul (2009) to improve the performance of traditional PSO. 

Several authors proved its dominance over the other evolutionary algorithms and PSO variants 

(Boonmee and Sethanan 2016; Chan et al. 2020; Wisittipanich and Hengmeechai 2017; Xu et 

al. 2011) However, food grain supply chain problems were not addressed through the 

GLNPSO. Thus, we have tackled the integrated multi-echelon and multi-period SCND 

problem using GLNPSO and compared the results with original PSO and Cplex. The 

exhaustive explanation of the proposed two algorithms is given in the next two subsections.  

4.1 Particle swarm optimization  

Particle swarm optimization is a population-based random search method based on social and 

cognitive principles (Eberhart and Kennedy 1995). It was stimulated by the behaviour of birds 

flocking or behaviour of fish schooling. In PSO, a particle is used to denote the solution of the 

specific problem and it has two main features: position and velocity. The swarm comprises of 

a population of particles which are intelligently initialized. These particles fly over the solution 
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search space for finding out the global optima of an underline problem by updating generations. 

While attaining the better position, every particle tries to utilize the cognitive information of 

its experiences and the social information of the swarm. Initially, the fitness function value of 

each particle is determined by evaluating every particle in the population. Then, the personal 

best position (pbest) of the specific particle is updated if the objective function of the new 

position is better than the previous position. Similarly, the global best position (gbest) is 

updated if any new position with better objective function than the previous best objective 

function of the whole swarm is revealed by any particle in the group. Each particle reaches the 

new position from its current position with the help of updated velocity. The procedure will be 

stopped once the predefined termination criteria are satisfied. Then, the near-optimal solution 

of the best particle obtained until now is selected as the solution to the problem. The following 

equations (42) and (43) are utilized to update the velocity and position of every particle 

respectively. 

             1 21 best best

ih ih p ih ih g gh ihw c r c r                           (42) 

     1 1ih ih ih                 (43) 

Here,  ih   and  ih  denote the velocity and position of the ith particle at the hth dimension 

in the th iteration. Next, ,  and p gw c c are used to depict the inertia, cognitive and social 

coefficients respectively. The personal best positon and global best position of ith particle at 

the hth dimension in the th iteration are represented by  best

ih   and  best

gh  respectively. The 

random numbers 1 2 and r r  are uniformly distributed in the range of [0, 1]. 

4.2 GLNPSO 

The GLNPSO algorithm is an extended variant of PSO proposed by Pongchairerks and 

Kachitvichyanukul (2009) to enhance the performance of traditional PSO. The multiple social 

learning terms are used in the velocity updating formula instead of single global knowledge 

and every particle communicate with several particular subsets of the swarm for performance 

improvement. To update the velocity, this algorithm uses the local best and near neighbour best 

social structure in addition to the personal best and global best position. This leads to diminish 

the issue of premature convergence, enhance the diversification of particles in the solution 

space and govern the particles through various features of swarm information. The best position 

found by any particle among the numerous adjacent particles is known as local best position 
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(lbest). Therein, initially, the several sub-swarms with the population size of N are generated 

by dividing the whole swarm and the local best particle is chosen among these 

K neighbouring particles. Similarly, particles near neighbour best (nbest) position introduced 

by Veeramachaneni et al. (2003) is a social learning behaviour concept which is calculated 

using the fitness-distance-ratio (FDR). The near neighbour best position describes the 

interaction among the particles to obtain a better quality solution. The GLNPSO uses five terms 

including current velocity, personal best position, global best position, local best position and 

near neighbour best position while updating the particle velocity for the next iteration. The 

modified formula for updating the velocity and position is given as follows.  

             

       

1 2

3 4

1

                   

best best

ih ih p ih ih g gh ih

lbest nbest

l ih ih n ih ih

w c r c r

c r c r

            

       

            

        

  (44) 

     1 1ih ih ih                 (45) 

Where,     and lbest nbest

ih ih    illustrate the local and near neighbour best position of the ith 

particle at the hth dimension in the th iteration. The acceleration constants of local and near 

neighbour best position are represented by  and l nc c . The 3 4 and r r  are uniformly distributed 

random numbers in the range of [0, 1]. The meaning of other parameters is similar to the Eqs. 

(42) and (43).  Readers are requested to refer Pongchairerks and Kachitvichyanukul (2009) for 

exhaustive information and performance of GLNPSO over the existing variants of PSO. The 

proposed algorithm is correspondingly transformed to match the present scenario of food grain 

supply chain problem. The initialisation, iteration and termination stages are implemented step 

by step as shown in Fig. 2. In the initialization stage, initially, the various inputs like model 

parameters values, the objective function, constraints and tuned algorithmic control parameters 

are provided to the algorithm. During the iteration stage, each particle moves to another 

position using its velocity and determines the various potential solutions of the problem. 

Particles cognitive and social information encompassing of personal best, global best, local 

best and near neighbour best positions are updated. Next, the velocity and position of all the 

particles are updated using the Eqs. (44) and (45). Finally, the algorithm will be stopped when 

it reaches the predefined termination criterion. 
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Fig. 2. Flow diagram for GLNPSO implementation  

5. Computational experiments 

5.1 Problem instances and data collection   

The geographically widespread main wheat surplus and deficit states in India are considered 

for this research study. The essential data is gleaned from field survey and many reliable 

sources like CAG report 2013, PDS Portal of India, High-level committee report 2015 and FCI 

portal. Following the gleaned data, fifteen real-life problem instances are solved to validate the 

formulated model. The number of decision variables present in the problem instance decides 

the problem complexity and in this paper, the time period is the decisive factor which controls 

the total decision variables. Therefore, all the considered problem instances are categorized 

into the small scale, medium scale and large scale problems based on time period. As per this 

classification, the categorized problem sets are mentioned in Table 2. Also, the characteristics 

of each type of problem instance comprising of a total number of variables and constraints are 

described in the same table.  

Begin

Define the input model parameters 

and algorithmic parameters 

Initialize the population of particles 

with random position and velocity 

Ensure the feasibility of the particles 

using boundary constraint handling  

Evaluate particle objective value

Determine gbest, pbest, lbest and 

nbest

Meet termination 

condition? 

Global best 

fitness

End

Evaluate the present fitness 

value 

Present fitness 

value better than 

lbest?

New local best fitness 

= present fitness

Store previous local best fitness

Present better than 

gbest fitness?

Global best fitness = 

present fitness

Update velocity using gbest,  

pbest,  lbest and  nbest position 

Update the particle position

Yes

No

Yes

No

Yes

No
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Table 2. Problem instances and associated variables and constraint 

 

5.2 Parameter setting 

The parameter tuning of the metaheuristic algorithm is one of the vital element in obtaining the 

better near-optimal solution of the problem (Mogale et al. 2018a, 2019a). The important 

parameters of GLNPSO include inertia weight (w), number of adjacent neighbours (k), 

acceleration constants for pbest, gbest, lbest and nbest positions, population size and 

maximum iterations. To verify all the promising combinations of all algorithmic control 

parameters is practically quite difficult. Hence, the suitable algorithmic parameters which 

provide the better results are carefully chosen based on the several preliminary computational 

experiments and analysis of the proposed algorithm. Following are the values of tuned control 

parameter utilized in proposed algorithms.  Population size: 100, Maximum iteration = 200, 

Inertia weight: 0.9, Number of adjacent neighbours = 5, pbest, gbest, lbest and nbest = 1. 

5.3 Solving the problem instances and analysing the results    

Initially, we have attempted to solve all the problem instances using Cplex optimization solver 

and obtain the optimal solutions to the problems. However, Cplex solver optimally solved only 

small size problem instances and goes out of memory after taking the large computational time 

while resolving medium and large size problem instances. If Cplex exhibits the out of memory 

Problem 

category 

Problem 

number 

Instance code  

(P-B-F-R-D-T) 
P B F R D T 

 

Decision        

variables 

 

 

Constraints 

 

Small 

scale 

1 3-2-3-4-6-3 3 2 3 4 6 3 927 1711 

2 7-3-4-8-10-3 7 3 4 8 10 3 3143 5501 

3 10-5-6-12-13-3 10 5 6 12 13 3 5703 9734 

4 12-6-7-14-15-3 12 6 7 14 15 3 8134 13832 

5 14-8-10-17-20-3 14 8 10 17 20 3 13321 22469 

Medium 

scale 

6 17-10-13-20-24-6 17 10 13 20 24 6 40189 67370 

7 21-13-16-22-27-6 21 13 16 22 27 6 52039 87168 

8 23-14-17-23-28-6 23 14 17 23 28 6 58127 97408 

9 25-15-18-24-30-6 25 15 18 24 30 6 65439 109554 

10 27-16-19-26-31-6 27 16 19 26 31 6 74095 123920 

Large 

scale 

11 30-18-21-27-33-9 30 18 21 27 33 9 129567 216669 

12 35-20-25-32-40-9 35 20 25 32 40 9 185113 308513 

13 38-21-26-33-45-9 38 21 26 33 45 9 200627 332681 

14 40-22-28-35-50-9 40 22 28 35 50 9 247425 411155 

15 50-25-30-45-60-9 50 25 30 45 60 9 328605 538795 
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problem for particular instance then the best known objective function value (total cost) is taken 

into account. Hence, two competitive metaheuristic algorithms involving GLNPSO and PSO 

are utilized to solve these problem instances. The MATLAB R2018a is used for coding of 

GLNPSO and PSO algorithm and codes are executed on the platform of Intel Core i5 2.90 GHz 

processor with 8 GB RAM under Windows 8 environment. To obtain the values of decision 

variables, initially, all problem instances are solved employing GLNPSO with calibrated 

parameter values. Further, the PSO algorithm with the identical population size and iterations 

is implemented to validate the results obtained through GLNPSO. Due to the random search 

nature of the proposed algorithms, twenty runs of each instance are carried out and its results 

are shown in Table 3. This table depicts the computational results which include the minimum, 

average and maximum objective function value obtained after the twenty runs of each 

algorithm for each instance. The standard deviation and computational time required for each 

algorithm are also presented in this table. Convergence graphs of both algorithms for problem 

instance four is illustrated in Fig 3.  

It is observed from Table 3 that the GLNPSO provides better results than traditional PSO for 

all considered problem instances with slightly higher computational time. The steady 

functioning of the suggested two algorithms in twenty runs is noticed through the standard 

deviation and is also given in Table 3. The marginally lower standard deviation of GLNPSO 

for all fifteen problem instances is easily perceived from this table. Thus, we can say that the 

solution obtained in each replication is a near-optimal solution to the underline problem. The 

better convergence behaviour of GLNPSO compared to traditional PSO is observed from Fig. 

3. It means that GLNPSO requires less number of iterations for finding out the near-optimal 

solution. The computational results presented in this section demonstrate the better 

performance of GLNPSO over traditional PSO. 
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Problem 

number 
GLNPSO (Mn Rs) PSO (Mn Rs) CPLEX (Mn Rs) 

 
Min. 

solution 

Average 

solution 

Max. 

solution 

Standard 

deviation 
CPU time  

(s) 

Min. 

solution 

Average 

solution 

Max. 

solution 

Standard 

deviation 

CPU time  

(s) 
Solution 

CPU time 

(s) 

1 603.72 615.85 642.71 10.48 359.73 615.39 626.63 656.02 12.82 352.6 588.35 8.0 

2 846.73 859.03 879.08 11.01 736.15 860.89 885.49 916.51 15.39 725.21 811.35 10.89 

3 1407.31 1450.82 1510.76 26.97 820.52 1438.07 1480.40 1540.59 29.60 818.52 1386.59 15.62 

4 1710.19 1742.17 1766.94 17.78 1095.07 1743.82 1785.67 1823.56 22.72 1077.5 1682.18 40.64 

5 3152.70 3173.03 3206.20 17.21 1581.94 3234.66 3263.56 3285.09 19.64 1542.03 3103.30 480.12 

6 3806.00 3968.63 4420.00 182.24 2857.73 3553.33 4052.50 4660.33 274.59 2813.75 3704.64 22035.05* 

7 4809.46 4913.41 5171.08 96.62 3735.18 4941.89 5104.84 5275.95 106.59 3688.12 4650.00 50385.34* 

8 5568.65 5680.86 5823.78 81.86 4270.45 5686.41 5783.99 6120.27 156.51 4254.85 5262.30 115173.00* 

9 6284.72 6401.65 6616.67 111.10 5162.08 6479.17 6632.03 6844.72 115.94 5103.37 6115.80 39610.56* 

10 5889.69 6190.57 6391.36 189.28 5683.95 6171.56 6302.40 6871.56 193.48 5540.48 5782.40 86377.90* 

11 7865.49 8077.82 8341.92 167.66 5990.16 7967.89 8235.96 8543.83 185.18 5891.93 7570.90 64752.32* 

12 9818.59 10050.27 10162.79 103.56 7813.84 10010.60 10170.92 10357.82 131.59 7684.35 9606.00 72165.20* 

13 11326.27 11846.56 12031.69 210.82 9305.49 11368.28 11888.44 12128.58 216.23 8919.73 11067.00 37856.48* 

14 13022.91 13832.56 14091.78 428.92 10654.71 13225.35 13905.74 14439.35 443.95 10185.2 12783.00 75426.95* 

15 16000.75 16493.98 16954.50 309.60 12129.82 16054.50 16665.88 17215.00 362.13 11554.3 15921.00 133262.71* 

Table 3 Computational results obtained through GLNPSO, PSO and CPLEX for all problem instances   

 

*Total running time of CPLEX before it is aborted due to out of memory condition 
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Fig. 3 Convergence graph of two algorithms  

5.4 Sensitivity analysis  

The officials working in the government agencies need to understand or envisage the trends or 

patterns in the solutions after the parameter variations. Hence, the effect of paramount model 

parameters encompassing a total number of destination warehouses, procurement centres and 

storage capacities of silos are evaluated on instance four by changing their values. This analysis 

will be helpful to many administrators of government agencies and other private bodies 

engaged in food grain supply chain activities whenever parameters obtain values with more or 

less than the current values.   

5.4.1 The influence of number of destination warehouses, procurement centres and silo’s 

capacity 

The number of destination warehouses (DW), procurement centres (PC) and silo’s capacity 

(SCAP) are varied in the range of [-50%, +50%] of their current values and its effect on the 

total supply chain cost is portrayed in Fig. 4. It can be realized from this figure that the total 

cost upsurges and diminishes after the escalation and reduction of destination warehouses and 

procurement centres, respectively. The total cost is reduced and augmented by 29.20% and 
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66.51% when the destination warehouses diminished and increased by 50% from its current 

value. Correspondingly, we obtained the graph with similar characteristics but with different 

numerical values after the variation of -50% to +50% from its current value of the number of 

procurement centres and it is depicted in the same figure. Due to the augmentation of silo’s 

capacity, the establishment cost increased and transportation along with emission cost 

decreased. However, the proportion increase in establishment costs is lower than the proportion 

decrease in transportation and emission costs. Thus, the total supply chain cost is decreased 

after the establishment of new silos which is shown in Fig. 4. 

 

Fig. 4 The sensitivity analysis results  

 

6. Conclusion and scope of future research work 

This paper has dealt with the green food grain SCND problem in India. The multi-period 

single objective mathematical model is formulated to minimize the total cost and optimizes 

supply chain design decisions. The mathematical model is solved using two population-based 

random search algorithms (GLNPSO and PSO) because of the high complexity of the model. 

The numerous realistic problem instances considering the key Indian wheat producing and 

consuming states are solved by means of proposed two algorithms. The obtained results are 

validated by comparing with exact solutions. The computational results obtained through the 

GLNPSO is better than the traditional PSO with slightly higher CPU time for all problem 

instances. The sensitivity analysis is carried out by considering three paramount parameters to 
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observe the influence of them on the model solution. The managerial insights acquired through 

this research work would be valuable to several management authorities, state government 

agencies, railways and other administrative bodies connected with food grain supply chain for 

their management activities.   

6.1 Contributions to theory and practice   

This research study provides multiple insights to the theory and practice. Lack of integration 

and quantification of post-harvest losses and risks in the food supply chains is evident from 

extant literature (Hosseini-Motlagh et al. 2019, Maiyar and Thakkar 2018, Ge et al. 2018, 

Mogale et al. 2019a, Ketzenberg et al. 2015). Majority of the existing studies on food supply 

chains are carried out in the developed countries and the developing nations mainly focused on 

satisfying the need of rising population and ignored the environmental aspect (Shukla and 

Jharkharia 2013, Soto-Silva et al. 2016). The decision support models considering the finite 

planning horizon and SCND issues in emerging economies need to be formulated to improve 

the food supply chain performance (Esteso et al. 2018, Zhu et al. 2018). The finite number of 

mixed capacitated vehicles are included which overlooked in the work of Asgari et al. (2013). 

The limited number of studies conducted the comparative analysis of metaheuristic algorithms 

for food supply chain problems (Allaoui et al. 2018, Mohammed and Wang 2017, Esteso et al. 

2018).  

The various members in food grain supply chain such as government agencies, railways, and 

other private service providers can obtain beneficial and essential managerial insights from this 

research work. Policymakers can conduct the feasibility analysis of multiple possible candidate 

locations of silos through the formulated model to evade the significant loss of initial capital 

investment. A solution of the model provides the number of mixed capacitated vehicles utilized 

for shipment which can be helpful for transportation planning. The time-dependent movement 

plan of food grain stock can be used for scheduling of various mixed capacitated vehicles which 

reduces the demurrage charges associated with vehicles. The capacity of current warehouses 

can be suitably utilized through the well-organized inventory storage plan. This will be helpful 

to curb the post-harvest losses and speedy movement of food grain from production to 

consumption regions. To curb the excess inventory cost, management authorities can fix the 

operational and buffer stock norms following the proposed model. The parentage of food grain 

loss during bulk transportation and storage is less than the conventional method of gunny bags. 

Due to this little food grain losses, policymakers should transform all the conventional 
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activities into the bulk grain operations. Moreover, rail mode of transportation can be used 

instead of road mode for reduction of transportation cost.  

6.2 Limitations and future scope  

Similar to other studies, the current research work has a few limitations which suggest the 

prospective areas for future examination. The stochastic procurement and demand can be 

incorporated into the current mathematical model to deal with uncertain scenarios. In the same 

way, the focus on backlog and shortages are the additional two possible ways of development 

of a future model. This study can be extended towards the triple bottom line with the inclusion 

of social costs, farmer’s growth, public health and employment creation. Additionally, the 

relaxation of capacity levels of silos will be another future path for the research. In this study, 

we assumed that the set of potential sites for the establishment of silos are well-known. 

Although, it may be possible that policymakers take support for finding out these set of 

potential sites. Multi-food grain commodities, perishability aspects and economics of scale in 

transportation are the further avenues to continue this research study. The maximization of food 

quality level and minimization of delivery time can be added in the present model to develop 

the multi-objective formulation.  
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Appendix 1 

Indices 

 p         Index for procurement centres, p =1,2,…., P 

 b           Index for a potential location of base silos, b =1,2,…., B 

 f          Index for a potential location of field silos, f =1,2,…., F 

 r          Index for regional warehouse, r =1,2,…., R 

 d          Index for destination warehouse, d =1,2,…., D 
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 t           Index for time period t =1,2,…., T 

 h           Index for capacity of base silo, h =1,2,…., H 

 j            Index for capacity of field silo, j =1,2,…., J 

 1n          Index for truck type present at procurement centre, 1n =1,2,…., 1N   

 2n          Index for rake type present at base silo, 2n  =1,2,…., 2N   

 3n          Index for truck type present at field silo, 3n  =1,2,…., 3N   

 4n          Index for truck type present at regional warehouse, 4n  =1,2,…., 4N   

Model parameters  

 Cost parameters 

 
h

bF       Fixed cost of establishing the base silo with capacity h at location b  

 j

fF       Fixed cost of establishing the field silo with capacity j at location f 

 pbtc      Transportation cost from procurement centre p to base silo b (per MT per km)  

 bftc      Transportation cost from base silo b to field silo f (per MT per km) 

 frtc      Transportation cost from field silo f to regional warehouse r (per MT per km)              

 rdtc      Transportation cost from regional warehouse r to destination warehouse d (per MT km)             

 bih       Inventory holding cost at base silo b (per MT per period) 

 fih       Inventory holding cost at field silo f (per MT per period) 

 rih        Inventory holding cost at regional warehouse r (per MT per period) 

  lc           Food grain lost cost (per MT) 

  ce        Cost of ton of carbon dioxide emission 

  rc         Risk penalty cost 

Distance parameters  

 pbdis     Distance between procurement centre p to base silo b 

bfdis       Distance between base silo b to field silo f  

frdis       Distance between field silo f to regional warehouse r  

rddis      Distance between regional warehouse r to destination warehouse d  

Vehicle related parameters  
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1ncv        Capacity of truck type 1n   

2ncv        Capacity of rake type 2n  

3ncv        Capacity of truck type 3n  

4ncv        Capacity of truck type 4n  

1

t

n pnv      Total number of 1n type trucks available at procurement centre p in period t   

2

t

n bnv      Total number of 2n type rakes available at base silo b in period t   

3

t

n fnv      Total number of 3n type trucks available at field silo f in period t   

4

t

n rnv      Total number of 4n  type trucks available at regional warehouse r in period t  

Procurement, demand, capacity and percentage of loss parameters  

t

pA        Amount of food grain quantity available at procurement centre p in period t  

t

dL         Demand of food grain of destination warehouse d in period t  

hcb       Capacity of base silo type h  

jcf        Capacity of field silo type j 

rcr        Capacity of regional warehouse r 

lb         Transit loss of food grain if transported in bulk form  

lj         Transit loss of food grain if transported using conventional way of jute bags 

ls         Storage loss of food grain if stored in silos 

lw         Storage loss of food grain if stored in conventional warehouses  

Emission parameters  

1n

pbe  Amount of CO2 released per unit distance for each 1n  type of truck travelling from 

procurement centre p to base silo b   

2n

bfe  Amount of CO2 released per unit distance for each 2n  type of rake travelling from 

base silo b to field silo f   

3n

fre  Amount of CO2 released per unit distance for each 3n type of truck travelling from 

field silo f to regional warehouse r   

4n

rde  Amount of CO2 released per unit distance for each 4n type of truck travelling from 

regional warehouse r to destination warehouse d 
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Risk related parameters  

h

b          Establishment risk of locating base silo with size h at potential location b  

j

f          Establishment risk of locating field silo with size j at potential location f  

 pbg       Risk of transportation between procurement centre p to base silo b  

 
bfg         Risk of transportation between base silo b to field silo f  

 frg          Risk of transportation between field silo f to regional warehouse r  

 rdg         Risk of transportation between regional warehouse r to destination warehouse d  

Decision variables  

Binary variables  

h

bX         1, if base silo type h is selected to be established at location b,  

              0 Otherwise   

j

fX           1, if field silo type j is selected to be established at location f,  

                 0 Otherwise 

t

pbY    1, if procurement centre p is assigned to base silo b in time period t  

   0, Otherwise  

t

bfY          1, if base silo b is assigned to field silo f in time period t  

   0, Otherwise 

t

frY    1, if field silo f is assigned to regional warehouse r in time period t  

   0, Otherwise 

t

rdY    1, if regional warehouse r is assigned to destination warehouse d in time period t  

   0, Otherwise 

Continuous Variables  

t

pbU    Shipment quantity from procurement p to base silo b in period t  

t

bfU    Shipment quantity from base silo b to field silo f in period t 

t

frU    Shipment quantity from field silo f to regional warehouse r in period t 

t

rdU          Shipment quantity from regional warehouse r to destination warehouse d in period t 

t

pbTl    Fraction of shipment quantity that loss from procurement p to base silo b in period t  

t

bfTl    Fraction of shipment quantity that loss from base silo b to field silo f in period t 
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t

frTl  Fraction of shipment quantity that loss from field silo f to regional warehouse r in   

period t 

t

rdTl  Fraction of shipment quantity that loss from regional warehouse r to destination   

warehouse d in period t 

t

bIN    Inventory in base silo b at the end of period t  

t

fIN    Inventory in field silo f at the end of period t 

t

rIN    Inventory in regional warehouse r at the end of period t 

t

bSl    Fraction of inventory stock that loss in period t at base silo b 

t

fSl    Fraction of inventory stock that loss in period t at field silo f 

t

rSl    Fraction of inventory stock that loss in period t at regional warehouse r 

Integer variables  

1n t

pbV  Number of 1n  type of vehicles used from procurement centre p to base silo b in time   

period t 

2n t

bfV    Number of 2n  type of rakes used from base silo b to field silo f in time period t 

3n t

frV  Number of 3n  type of vehicles used from field silo f to regional warehouse r in time 

period t 

4n t

rdV  Number of 4n  type of vehicles used from regional warehouse r to destination 

warehouse d in time period t 

 

 


