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 2 

Abstract 24 

Machine learning methods have been employed to make predictions in psychiatry from 25 

genotypes, with the potential to bring improved prediction of outcomes in psychiatric 26 

genetics; however, their current performance is unclear. We aim to systematically review 27 

machine learning methods for predicting psychiatric disorders from genetics alone and 28 

evaluate their discrimination, bias and implementation. Medline, PsychInfo, Web of Science 29 

and Scopus were searched for terms relating to genetics, psychiatric disorders and machine 30 

learning, including neural networks, random forests, support vector machines and boosting, 31 

on 10 September 2019. Following PRISMA guidelines, articles were screened for inclusion 32 

independently by two authors, extracted, and assessed for risk of bias. 63 full texts were 33 

assessed from a pool of 652 abstracts. Data were extracted for 77 models of schizophrenia, 34 

bipolar, autism or anorexia across 13 studies. Performance of machine learning methods 35 

was highly varied (0.48-0.95 AUC) and differed between schizophrenia (0.54-0.95 AUC), 36 

bipolar (0.48-0.65 AUC), autism (0.52-0.81 AUC) and anorexia (0.62-0.69 AUC). This is likely 37 

due to the high risk of bias identified in the study designs and analysis for reported results. 38 

Choices for predictor selection, hyperparameter search and validation methodology, and 39 

viewing of the test set during training were common causes of high risk of bias in analysis. 40 

Key steps in model development and validation were frequently not performed or 41 

unreported. Comparison of discrimination across studies was constrained by heterogeneity 42 

of predictors, outcome and measurement, in addition to sample overlap within and across 43 

studies. Given widespread high risk of bias and the small number of studies identified, it is 44 

important to ensure established analysis methods are adopted. We emphasise best 45 

practices in methodology and reporting for improving future studies. 46 

  47 
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Introduction 48 

Machine learning represents a contrasting approach to traditional methods for genetic 49 

prediction. It has increased in popularity in recent years following breakthroughs in deep 50 

learning [1–4], and the scaling-up of datasets and computing power. The ability to function 51 

in high dimensions and detect interactions between loci [5] without assuming additivity 52 

makes such methods an attractive option in statistical genetics, where the effects of myriad 53 

factors on an outcome is difficult to pre-specify. Calls to address the complexity of disorders 54 

like schizophrenia with machine learning have also become more frequent [6–8]. However, 55 

the predictive performance of machine learning methods in psychiatric genetics is unclear, 56 

and a recent review of clinical prediction models across various outcomes and predictors 57 

found them to be no more accurate than logistic regression [9]; it is therefore timely to 58 

review their predictive performance in psychiatry. 59 

 60 

Genome-wide association studies, genetic prediction and psychiatry have each been 61 

reviewed with respect to machine learning [10–16]. Recently, single nucleotide 62 

polymorphism (SNP)-based prediction has been reviewed across diseases [17]. However, 63 

psychiatry presents a distinct problem from somatic and neurological diseases as a result of 64 

genetic correlation between disorders [18] and the risk of class mislabelling due to biological 65 

heterogeneity that may underlie symptom-based diagnoses [19]. 66 

 67 

We systematically reviewed literature related to the question: what is the ability of machine 68 

learning (ML) methods to predict psychiatric disorders using only genetic data? We report 69 

discrimination, methodology and potential bias for diagnostic or prognostic models and 70 

compare to logistic regression (LR) and polygenic risk scores (PRS) where available. 71 
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 72 

Materials and methods 73 

Search Strategy 74 

Medline via Ovid, PsychInfo, Web of Science and Scopus were searched for journal articles 75 

matching terms for machine learning, psychiatric disorders and genetics on 10th September 76 

2019. Searches were broad, with terms for psychiatric disorders including schizophrenia, 77 

bipolar, depression, anxiety, anorexia and bulimia, attention-deficit hyperactivity disorder, 78 

obsessive compulsive disorder, Tourette’s syndrome or autism. Terms for machine learning 79 

were also wide-ranging, including naïve Bayes, k-nearest neighbours (k-NN), penalised 80 

regression, decision trees, random forests, boosting, Bayesian networks, Gaussian 81 

processes, support vector machines and neural networks, but excluding regression methods 82 

without penalty terms, such as logistic regression. Searches were developed and conducted 83 

by MBS and were restricted to English language journal articles on humans, with no limits 84 

on search dates. Two authors (MBS, KC) independently reviewed all abstracts for inclusion. 85 

Full texts were assessed if either author had chosen to access them and independently 86 

screened against inclusion criteria. Where conflicts occurred a third author (VEP) was 87 

consulted as an arbiter. An example search for Medline (Ovid) is given in the supplementary 88 

(Table S1). 89 

 90 

Inclusion and Exclusion Criteria 91 

Studies were restricted to cohort, cross-sectional or case-control designs of individuals for 92 

binary classification of a single DSM or ICD-recognised psychiatric disorder compared to 93 

unaffected individuals, where only genotyping array, exome or whole-genome sequencing 94 

data were used as predictors. Studies based solely on gene expression were excluded, but 95 
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designs which made use of gene expression or functional annotations to inform models of 96 

genetic data were accepted. No further restriction was made on participants. Studies were 97 

excluded if they only predicted medication response, sub-groups within a psychiatric 98 

disorder or a psychiatric phenotype secondary to another disease. Studies were also 99 

considered ineligible if they had a clear primary aim of drawing inference at the expense of 100 

prediction, if they developed a novel statistical method or only made use of unsupervised or 101 

semi-supervised methods. The review was registered to PROSPERO in advance (registration 102 

number CRD42019128820). 103 

 104 

Extraction and Analysis 105 

A data extraction form was developed through discussion between all authors; items from 106 

the critical appraisal and data extraction for systematic reviews of prediction modelling 107 

studies (CHARMS) checklist [20] were included as-is or modified, and additional items were 108 

included based on expert knowledge and relevance to the review topic, with reference to 109 

the genetic risk prediction studies (GRIPS) statement [21] for items pertaining to genetic 110 

prediction studies (Table S2). The form was piloted with five publications, containing 40 111 

extracted ML models between them, and updated before being applied to all texts. 112 

 113 

The discrimination of machine learning methods was extracted independently by two 114 

authors (MBS, KC) as area under the receiver operating characteristic curve (AUC), or c-115 

statistic. Model performance measures for classification by accuracy, sensitivity and 116 

specificity were also extracted. 95% confidence intervals for validation were estimated for 117 

AUC using Newcombe's method [22]. Results were not meta-analysed due to sample 118 

overlap, present in at least half of studies (see Table S3), which cannot easily be accounted 119 
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for in the meta-analysis. Information on participants, predictors and model development 120 

and validation were also obtained. LR or PRS models were also extracted when present. 121 

Though LR can be considered a machine learning approach, for the purpose of this review 122 

we regard it as a contrasting method due to its widespread use in classic statistical analysis. 123 

The presence of LR and PRS as comparators was not made a requirement due to their 124 

sparsity in the literature.  125 

 126 

Risk of bias (ROB) and applicability were assessed using the prediction model risk of bias 127 

assessment tool (PROBAST) [23]. PROBAST consists of 20 questions designed to signal where 128 

ROB may be present in either the development or validation of a model across 4 categories: 129 

participants, predictors, outcome and analysis. These include, for instance, questions on 130 

how missingness or complexities in study design were handled. Information on handling of 131 

population structure, a common confound in genetic association studies, was also extracted 132 

to aid ROB assessment. Reporting of the systematic review follows the preferred reporting 133 

items for systematic reviews and meta-analyses (PRISMA) guidelines [24]. Extraction and 134 

ROB are detailed further in the supplementary. 135 

 136 

Results 137 

Selection 138 

1,241 publications were identified through searches in Ovid Medline, PsychInfo, Scopus and 139 

Web of Science which included restrictions to English language journal articles (Figure S1). 140 

After merging and removing duplicates, 652 studies were assessed for inclusion. Of these, 141 

63 full texts were assessed to determine eligibility. 14 publications were selected, with two 142 



 7 

merged as publications included the same models on the same dataset. A final total of 13 143 

studies were selected for inclusion, containing 77 distinct machine learning models. 144 

 145 

Studies 146 

A wide range of machine learning methods were applied to schizophrenia (7 studies, 47% of 147 

models), bipolar disorder (5 studies, 39% of models), autism (3 studies, 10% of models) and 148 

anorexia (1 study, 4% of models) (Table 1), with no studies identified for the 6 remaining 149 

disorders. Single nucleotide polymorphisms (SNPs) were the most common source of 150 

genetic data. Copy number variants (CNVs) and PRSs were each incorporated in models 151 

from a single study, and exome-sequencing data formed the basis of two studies. Datasets 152 

typically consisted of publicly-available genome-wide association studies (GWAS); potential 153 

sample overlap was established for at least 7 studies (Table S3). Briefly, 3 studies [25–27] 154 

included controls for the 1958 Birth Cohort [28] or the UK Blood Service [29], 4 studies 155 

included controls from Knowledge Networks [25, 30–32], 2 studies used a Swedish 156 

population-based sample [32, 33], and 3 studies used the same dataset, or provided a 157 

common reference for part of the dataset [25, 30, 31]. The remaining 6 studies [34–40] 158 

either gave unclear information, reported no previous reference for the dataset, or used 159 

datasets which appear to be separate from other studies. Where samples overlap, all 160 

models included in the review are distinct, using different predictors or modelling 161 

approaches. Additional overlap or cryptic relatedness may be present between studies.  162 

 163 

Missingness was reported clearly in about half of all studies and models. When reported, it 164 

was most commonly handled by imputation after excluding genotypes with high 165 
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missingness. Studies also reported complete-case analysis and inclusion of missing values in 166 

coding of predictors (Table S4). 167 

 168 

Machine Learning Methods 169 

Support vector machines (SVMs) and neural networks were the most popular, followed by 170 

random forests and boosting. SVMs were split roughly equally between using a linear kernel 171 

(3 studies, 7 models), a radial basis function (RBF) kernel (3 studies, 6 models), or an 172 

unreported kernel (3 studies, 6 models). Authors applying neural networks most commonly 173 

used multilayer perceptrons (3 studies, 6 models), an RBF network (2 studies, 5 models) or 174 

restricted Boltzmann machines (RBMs; 1 study, 9 models), with linear networks, 175 

convolutional neural networks (CNNs) and embedding layers each used once. Weak learners 176 

in boosted models were mainly decision trees, with the exception of a method which 177 

combined feature selection with the boosting of RBF-SVMs in AdaBoost [35]. Penalised 178 

regression was employed alongside linear and non-linear methods as least absolute 179 

shrinkage and selection operator (LASSO; 3 studies, 4 models) or ridge regression (1 study, 2 180 

models). 51% of all models were implemented in R or WEKA; Matlab and Python were 181 

preferred for neural networks (Table S5). 182 

 183 

Risk of Bias 184 

Risk of bias was assessed for each model within each study (Figure S2). All models displayed 185 

risk of bias, mostly in relation to participants (study design and inclusion/exclusion criteria), 186 

outcome (standardised definition and assessment of outcomes) and analysis. Within-study 187 

ROB for participants was due to the use of case-control studies. Predictors were mostly 188 

rated to have unclear or low ROB; instances of high ROB were limited to predictors which 189 
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are unavailable at the point of model use. Outcome definitions or measurements often 190 

differed between cases and controls. 191 

 192 

Models displayed high ROB during analysis. This was often traced to inappropriate or 193 

unjustified handling of missingness and removal of enrolled participants prior to analysis, 194 

predictor selection using univariable methods and failure to account for overfitting. No 195 

studies reported calibration measures. In addition to PROBAST, information on population 196 

structure within studies was extracted (Table S6). Most studies did not illustrate genetic 197 

ancestry across all observations in the current publication using dimensionality reduction, 198 

and none reported any evaluation of the final trained model for bias due to population 199 

structure. However, 2 studies (18% of models) visualised principal components for a 200 

subsample or showed a table of reported ancestry for participants [31, 39]. Where ancestry 201 

was not addressed in a study, it was most often visualised in a referenced publication (55% 202 

of all models). 2 studies (13% of models) had no details or references which addressed 203 

genetic ancestry. 204 

 205 

Across-study ROB was not formally assessed. For schizophrenia, bipolar and autism, studies 206 

with smaller numbers of cases in the development set report AUC less often, instead 207 

preferring classification metrics such as accuracy, sensitivity and specificity. 208 

 209 

PROBAST encourages assessment of studies for applicability to the review question as this is 210 

often narrower than inclusion criteria [23]. Concern was identified for models in three 211 

studies [30, 39, 41]. All others demonstrated either low concern or unclear applicability. 212 

Reasons for concern were attributable to outcomes which combined closely-related 213 
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disorders, or the use of post-mortem gene expression data, whereas the review question 214 

focussed on models of single disorders with potential use in diagnosis or prognosis. 215 

 216 

Model Performance 217 

Over half of all models assessed discrimination using AUC (58% models). A wide range of 218 

classification metrics and measures of model fit were also reported (Table S7), with less 219 

than a quarter of models clearly reporting choosing a decision threshold a priori (Table S8). 220 

 221 

Around 79% of models, from 12 studies, reported some form of internal validation (Table 222 

S9). The majority of these were k-fold cross-validation (57% of all models; 8 studies), a 223 

resampling approach which involves testing a model on each of k independent partitions of 224 

a dataset, every time training on the remaining k-1 folds. 10-fold cross-validation (CV) was 225 

most commonly used, with just below half of all cross-validated models invoking repeats 226 

with different random splits. The remainder of studies using internal validation created a 227 

random split between training and testing sets (21% of all models; 5 studies), or applied 228 

apparent validation, where training and testing are both done on the whole sample [31]. A 229 

minority reported external validation (26% of models; 2 studies). Use of internal validation 230 

was not reported for 16 models from a single study [25], but for which geographic and 231 

temporal external validation was given. External validation was reported for one other 232 

study, but with partly overlapping participants between development and validation sets 233 

[32]. 234 

 235 

Model performance varied by choice of statistical method, sample size and number of 236 

predictors within studies (Table S10). Discrimination for models of schizophrenia (Figure 1) 237 
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was extremely varied (0.541-0.95 AUC), with the highest AUC from exome data using 238 

XGBoost (0.95 AUC) [33]. In this study, Trakadis et al. (2019) used counts of variants in each 239 

gene, after annotation and predictor selection, on participants with part-Finnish or Swedish 240 

ancestry [42]. Similarly high AUC (0.905 AUC) made use of multiple schizophrenia-associated 241 

PRS [32]. However, the authors identify the presence of both the development and 242 

validation samples in the psychiatric genomics consortium (PGC) GWAS used to generate 243 

the schizophrenia PRS [43], in addition to having overlapping controls between internal 244 

validation (model development) and external validation (replication) samples. All other 245 

schizophrenia models involved learning from SNPs [27, 30, 34–36], with the exception of 246 

Wang et al. (2018) [39] where gene expression data from post-mortem samples informed 247 

the weights in a conditional RBM trained on genotypes. 248 

 249 

Predictive ability for bipolar disorder (Figure 1) was consistently lower than for 250 

schizophrenia, frequently overlapping with chance (0.482-0.65 AUC). Models were trained 251 

on genotypes, excepting a study [38] using exome data to train a CNN as part of the Critical 252 

Assessment of Genome Interpretation (CAGI) competition [44], for which moderate 253 

discrimination was achieved (0.65 AUC). 254 

 255 

Significantly fewer models were reported for autism (8 models, 3 studies) and anorexia (3 256 

models, 1 study) (Figure 1). Varying predictive performance was illustrated in autism (0.516-257 

0.806 AUC). High AUC (0.806 AUC) was shown for a single prediction model [40], while 258 

models developed with a greater sample size by Engchuan et al. (2015) using CNVs were 259 

closer to or overlapping with chance (0.516-0.533 AUC) [37]. The only models predicting 260 
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anorexia nervosa had moderate discriminative ability between cases and controls (0.623-261 

0.693 AUC) [26]. 262 

 263 

Logistic regression and polygenic risk scores 264 

Three studies reported AUC for either logistic regression (5 models) or polygenic risk scores 265 

(12 models) alongside machine learning methods. PRS were weighted by summary statistics 266 

from a GWAS on the same disorder as the outcome and used as the sole predictor in a 267 

logistic regression model. Though discrimination shows some difference between model 268 

types, the number of studies for comparison is low and results are clustered by study and 269 

type of validation (Figure S3). 270 

 271 

Predictors 272 

Coding of predictors was mostly unclear or unreported (7 studies, 55% of models). Coding 273 

was unclear if it was implied through the description of the type of classifier or software but 274 

not clearly articulated for the reported study. PRS were continuous [32] while counts of 275 

variants-per-gene or genes-per-gene-set were used for exomes and CNVs respectively [33, 276 

37]. SNPs were coded under an additive model, a z-transformation of additive coding, or 277 

one-hot encoded (one predictor per genotype at a locus) (Table S11). GWAS summary 278 

statistics from external datasets were also used in the selection, weighting or combining of 279 

predictors (9 studies, 64% models; Table S12). 280 

 281 

Predictor selection was adopted by most (12, 73% of models) and limited to filter-based 282 

selection, used prior to modelling, and embedded selection, an integral part of the 283 

prediction model (Table S13). The latter involved LASSO regression, or ensembles and 284 
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hybrids of decision trees and decision tables, in addition to a modified AdaBoost [35]. Filters 285 

were based on internal or external univariable association tests (GWAS). Embedded and 286 

wrapper-based methods, which typically 'wrap' a model in forward or backward-selection, 287 

were both also used prior to any predictive modelling. Modification of predictors using 288 

information from the test set was the most common cause of information ‘leaking’ from the 289 

test set to the training set, a source of inflation in performance measures (Table S14). 290 

 291 

Sample size 292 

Total sample size was generally low where a single sample had been used, but higher if 293 

genotypes from publicly-available amalgamated datasets used in a GWAS had been 294 

downloaded (median 3486, range 40-11853) (Table S10). Number of events in development 295 

followed a similar pattern (median 1341, range 20-5554) as class imbalance was minimal 296 

(median 1, range 0.65-2.93, calculated as non-events over events). Around half of studies 297 

gave sufficient information to calculate events per variable (EPV) (median 0.69, range 298 

0.00063-74.6). It could not be calculated where the number of candidate predictors where 299 

not reported for models in 2 studies [25, 39]; approximations are given in the 300 

supplementary where reporting was unclear in a further 5 studies [26, 32–34, 36, 38] (Table 301 

S10). 302 

 303 

Hyperparameter Search 304 

Hyperparameter search was mostly unreported or unclear (41 models, 9 studies), with some 305 

models reported as having been used with default settings. Ambiguous reporting resulted 306 

from description of search and tuning for a specific model, with no clarity as to whether 307 

these conditions applied to other models in the study. Only 19% of models clearly reported 308 
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attempting different hyperparameters for the extracted models (Table S15). Studies also 309 

report non-standard final hyperparameters, such as uneven batch size in neural networks, 310 

or showed good accuracy for a model which is highly sensitive to tuning of crucial 311 

hyperparameters, yet few reported tuning (Table S16). It is therefore likely that most 312 

studies evaluated several hyperparameter choices but did not report this. 313 

 314 

Discussion 315 

All studies displayed high risk of bias in model development and validation with infrequent 316 

reporting of standard modelling steps. Performance measures consequently demonstrated 317 

a wide range of abilities to discriminate between cases and controls (0.482-0.95 AUC). These 318 

are likely optimistic owing to the high risk of bias identified through PROBAST and 319 

unaddressed sample overlap and population structure, as two studies showing the highest 320 

AUCs left these issues unresolved [32, 33]. Though potential bias and effective sample size 321 

limit overall interpretation of discrimination, low standards of model development, 322 

validation and reporting are a clear and consistent theme throughout all studies. Broad 323 

discrimination has also been observed for machine learning studies in cancer genomics [45]; 324 

more established fields with clearer predictor-response relationships, such as medical 325 

imaging, are much more consistent [46]. 326 

 327 

Issues relating to ROB often rest on distinctions in methodology between clinical prediction 328 

modelling, machine learning and genetic association studies. For instance, genetic studies 329 

most commonly employ a case-control design. Such studies are extremely useful for 330 

identifying genetic risk factors for rare outcomes, but are considered inadequate for 331 

prediction modelling as absolute risks cannot be estimated; instead, case-cohort, nested 332 
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case-control, or prospective cohort designs are preferred [47]. Case-cohort and nested case-333 

control designs involve sampling from an existing cohort and can be used for prediction 334 

models if the sampling fraction in controls is accounted for in analysis [48]. To project the 335 

prediction to the whole population in case-control studies, positive and negative predictive 336 

values should be corrected in accordance with the disease prevalence in the population and 337 

ratio of cases and controls in the sample [49]. Similarly, univariable tests of association are 338 

applied routinely in GWAS, and are often used in selection of predictors for genetic 339 

prediction models. Their application in prediction modelling though is usually discouraged, 340 

as predictors may differ in their importance when evaluated in isolation as compared to 341 

when considered concurrently with other variables [50]. 342 

 343 

Lack of adherence to appropriate procedures for machine learning are also a common cause 344 

of a model being assessed as at high risk of bias. Standard model validation procedures 345 

were followed by some researchers; however, many 'leaked' information between training 346 

and testing sets through not applying predictor manipulations or selection in only the 347 

training set/fold, or using the testing set/fold to adjust model hyperparameters, which can 348 

impose significant bias on estimates of prediction performance [51].  349 

 350 

Most studies provided a measure of classification or discrimination for each model; none 351 

reported a measure of calibration. Model calibration compares observed and predicted 352 

probabilities of the outcome occurring, and is a crucial part of model development [52] 353 

which has been noted for its absence in genetic prediction literature [53]. Authors reporting 354 

only classification measures, such as accuracy, sensitivity or specificity, should also note that 355 

measures of discrimination are preferred as they use all the information over predicted 356 
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probabilities and delay any thresholding of risks to a more appropriate time. Of 357 

discrimination measures, the AUC is the most widely used in both machine learning and 358 

genetics [54, 55].  359 

 360 

Hyperparameter optimisation is an essential part of developing machine learning models as 361 

it determines how they navigate the bias-variance trade-off and learn from data [56]. It is 362 

therefore surprising that it was so often unreported or subject to a small number of manual 363 

experiments. Hyperparameters should be systematically searched to ensure a model is not 364 

over or under-fit. Randomised search has been shown to be more effective than grid search 365 

where two or more such parameters require tuning [57], though grid search is also 366 

recommended by practitioners for SVMs, often with an initial 'coarse' search followed by a 367 

more thorough exploration of a finer grid of values [58]. The importance of search is 368 

particularly relevant in domains where there are a small number of events per candidate 369 

predictor [59], such as genomics, as appropriate hyperparameter choices can reduce 370 

overfitting.  371 

 372 

Split-sample approaches were used by several studies, but should be avoided in favour of 373 

resampling methods such as bootstrapping or k-fold cross-validation [60]. The latter is an 374 

appropriate form of internal validation for traditional statistical methods; however, 375 

estimated prediction accuracies become overly-optimistic if done repeatedly, as when used 376 

for hyperparameter tuning through repeated rounds of CV. Nested cross-validation, where 377 

hyperparameters are optimised in an inner-fold and evaluated in the outer-fold, has been 378 

shown to give more realistic estimates [51, 61] but was not used in any studies. A single 379 

study presented both internal and external validation of models [32], for which a large drop 380 
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in performance is seen upon replication. Though partly due to sample overlap between the 381 

development set and the summary statistics used for generating a PRS, difficulty with 382 

replication is a wider issue in polygenic risk prediction. Risk scores for psychiatric disorders 383 

typically explain a small proportion of variance in a trait [62], with generalisation issues 384 

compounded by variants with small effect sizes and different allele frequencies between 385 

populations. Risk scores generated through machine learning methods have the potential to 386 

be more affected by these issues if appropriate modelling procedures are not followed. 387 

 388 

A source of bias not explicitly covered in PROBAST is population structure. Genetic ancestry 389 

has the potential to bias both associations [63, 64] and predictions [65, 66] from genetic 390 

data. Supervised machine learning methods have proved particularly sensitive in detecting 391 

ancestry [67–69]. Few researchers discussed visualising ancestry or reported exclusions, and 392 

none reported modelling adjustments, even when previous association studies on the same 393 

datasets had demonstrated stratification and included principal components as covariates. 394 

The extent of the bias introduced in these studies is not clear: evidence mostly relates to 395 

deliberately predicting populations in humans using ML or looking at bias in complex trait 396 

prediction from PRS. While the potential for population stratification to impact predictions 397 

is apparent, the method for dealing with it when using machine learning methods is not. 398 

Several techniques have been proposed, including modifications to random forests [70]; 399 

exclusions by, or inclusion of, principal components; and regressing-off the linear effects of 400 

principal components on SNPs before modelling (for example [71, 72]). Whether any 401 

combination of these is sufficient to reduce the effects of population stratification in non-402 

linear machine learning predictions has not been demonstrated. 403 

 404 
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General reporting guidelines for machine learning prediction models are yet to be 405 

developed [73], though recommendations for undertaking [74, 75] evaluating [76] or 406 

reporting [77] exist for machine learning in omics data, psychiatry and medicine 407 

respectively, in addition to reporting guidelines outside of machine learning [21, 78]. We 408 

encourage authors to report on implementation, samples, predictors, missingness, 409 

hyperparameters and handling of potential information leakage, and consult guidelines 410 

where needed. Finally, we advocate for machine learning methods to be reported alongside 411 

polygenic risk scores as a standard baseline model for comparison. The potential for 412 

machine learning methods to provide improved prediction has received heightened 413 

attention in recent years. Any such outcome cannot occur without adherence to standards 414 

for the development, validation and reporting of models. 415 

 416 

  417 
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Figure Legends 631 

Figure 1: discrimination for all models. n: number of cases in training set. Studies: a [35], b 632 

[40], c [34, 36], d [39], e [25], f [38], g [31], h [30], i [26], j [33], k [37], l [32], m [27]. 633 

*Accuracy calculated from confusion matrix. **SVM kernel not reported. †Modified 634 

architecture with intermediate phenotypes in training set only. ‡Modified architecture with 635 

intermediate phenotypes for training and test sets. ††Two-way MDR. ‡‡Three-way MDR. 636 

§Neural network embedding layer. 1,2,3,4Internal and external validation are shown for study 637 

l, where validations for the same model are denoted with the same number. AB: AdaBoost, 638 

BN: Bayesian networks, BFTree: best-first tree, CIF: conditional inference forest, cRBM: 639 

conditional restricted Boltzmann machine, CI: confidence interval, CNN: convolutional 640 

neural network, CNV: copy number variation, DTb: decision tables, DTNB: decision table 641 

naïve Bayes, DT: decision tree, EC: evolutionary computation, GE: gene expression, GBM: 642 

gradient boosting machine, k-NN: k-nearest neighbours, LASSO: least absolute shrinkage 643 

and selection operator, LNN: linear neural network, MDR: multifactor dimensionality 644 

reduction, MLP: multi-layer perceptron, NB: naïve Bayes, NN: neural network, PRS: 645 

polygenic risk scores, RBF: radial basis function, RF: random forests, SNP: single nucleotide 646 

polymorphisms, SVM: support vector machine, XGB: extreme gradient boosting. 647 
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Tables and Table Legends 650 

 651 

First Author (Year) Disorder Machine Learning Methods Data Models Comparators 

Aguiar-Pulido et al. 

(2010; 2013)1 

Schizophrenia AdaBoost, BFTree, DNTB, decision tables, SVM 

(kernel not reported), naïve Bayes, Bayesian 

networks, MDR, neural network (RBF, linear, 

perceptron), evolutionary computation 

SNPs 12  

Yang et al. (2010) Schizophrenia AdaBoost (of SVM (RBF)), SVM (RBF) SNPs 2  

Pirooznia et al. 

(2012) 

Bipolar Disorder Bayesian networks, random forest, neural 

network (RBF), SVM (kernel not reported) 

SNPs 16 PRS, LR 

Li et al. (2014) Bipolar 

Disorder, 

Schizophrenia 

LASSO, Ridge, SVM (linear) SNPs 6  

Engchuan et al. 

(2015) 

Autism Neural network (perceptron), SVM (Linear), 

random forest, CIF 

CNVs 4  

Acikel et al. (2016) Bipolar Disorder MDR, random forest, k-NN, naïve Bayes SNPs 5  

Guo et al. (2016) Anorexia 

nervosa 

LASSO, SVM (RBF), GBM SNPs 3  

Laksshman et al. 

(2017) 

Bipolar Disorder Decision tree, random forest, neural network 

(CNN) 

Exomes 3  

Chen et al. (2018) Schizophrenia Neural network (perceptron) PRS 4 PRS, LR 

Wang et al. (2018) Schizophrenia, 

Bipolar 

Disorder, 

Autism 

Neural networks (cRBM) SNPs, 

gene 

expression 

9 LR 

Ghafouri-Fard et al. 

(2019) 

Autism Neural network (with embedding layer) SNPs 1  

Trakadis et al. 

(2019) 

Schizophrenia LASSO, random forest, SVM (kernel not 

reported), GBM (XGBoost) 

Exomes 4  

Vivian-Griffiths et al. 

(2019) 

Schizophrenia SVM (linear, RBF) SNPs 8 PRS 

 652 

Table 1: overview of studies. 1Merged in extraction [34, 36]. BFTree: best-first decision tree, 653 

CIF: conditional inference forest, cRBM: conditional restricted Boltzmann machine, CNN: 654 
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convolutional neural network, DNTB: Decision table naïve Bayes, GBM: gradient boosting 655 

machine, k-NN: k-nearest neighbours, LASSO: least absolute shrinkage and selection 656 

operator, LR: logistic regression, MDR: multifactor dimensionality reduction, PRS: polygenic 657 

risk score, RBF: radial basis function, SVM: support vector machine. 658 
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