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Summary 
Lepidopteran crop pests such as Tuta absoluta, Chilo suppressalis, Spodoptera 

frugiperda and Plutella xylostella are becoming increasingly problematic, as 

populations colonise new regions of the globe. The diamide insecticides are a 

relatively new class that is especially effective, and important, for controlling 

lepidopteran pests. However, over the past 10 years, resistance to diamides has 

emerged amongst various lepidopteran species, and is a major threat to crop 

protection in some cases. Resistance is thought to be caused by alterations to the 

Ryanodine Receptor, which is the target-site of Diamide insecticides, and previous 

studies have identified a variety of alterations, in field-populations of multiple 

lepidopteran species, which may be implicated in diamide resistance.  

This thesis aims to characterise RyR alterations in terms of their impact on the 

control-efficacy of diamide insecticides. A previously cloned RyR sequence from the 

moth, Plutella xylostella, was altered to reflect resistance-alterations present in the 

field. Alteration of positions 4946 and 4790 was found to reduce activation by 

diamides when expressed in cell lines. These same altered moth RyR sequences 

were inserted into Drosophila, by way of in-vivo confirmation. Flies expressing the 

resistant RyR genotypes survived diamide challenge more readily than those 

expressing the wild-type genotype of moth RyR. However, the resistant genotypes 

also climbed and crawled more slowly, suggesting a potential drawback of 

resistance.   

The alterations to residues 4946 and 4790 suggested a location of diamide 

interaction within the voltage-sensor-like domain of the RyR. In order to further 

define the interaction site, further alterations were made within the same region. 

Preliminary investigations indicated that these alterations strongly reduce diamide 

efficacy, when in combination, but exhibit somewhat minor reductions of efficacy 

as individual changes. It was concluded that the diamide interaction lies proximal 

to the Voltage-Sensor-like-Domain of the RyR.  
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Chapter I: Introduction 

1.1 Modern Agriculture: Feeding a growing population 

Between the tropical lines of Cancer and Capricorn, a very rapid population 

expansion and demographic alteration is occurring. Models predict that 6 billion 

people will occupy this narrow region of the globe by 2050 (FAO 2009, 2017). In 

order to feed this population, global cereal production will need to increase by at 

least 0.9% each year, even if other factors remain stable (Alexandratos and 

Bruinsma 2012). However, crop production is likely to become more difficult as 

global temperatures rise, with 20 - 40% declines in yield expected in tropical regions 

(Battisti and Naylor 2009; Lobell et al. 2008). Negative predictions made a decade 

ago, regarding food availability, are now beginning to play out in reality (Zhao et al. 

2017).  

Yield reductions and food shortages lead to global price increases which in turn 

prevents market access for populations within Low Income Economies, leading to 

food crises and famine (Fader et al. 2016; Steinbach et al. 2015). Food crisis is 

strongly associated with local malcontent and rioting, which in turn ferments 

geopolitical instability, such that food insecurity eventually traps entire countries 

and regions into unending cycles of conflict (Brinkman 2011; Tsakok 2011). Food 

security and agricultural redundancy are critical in rescuing economies from this 

trap. As a growing population and a changing environment threaten caloric 

availability, efforts to increase agricultural efficiency have never been more 

important.  

1.1.1 A strain on the planet 

It is now clear that global heating is to some degree attributable to the agri-food 

industry. Almost one third of anthropogenic greenhouse gas emissions are a result 

of agricultural production (Bajzelj et al. 2013), with a large proportion stemming 

from livestock production (Herrero et al. 2016). Contribution to global warming is 

far from the only measure by which agriculture has impacted the planet. Topsoil 

depletion due to over-farming is of major concern and is starting to impact 

productivity and yield. Biodiversity loss due to land-usage for agriculture is also to 

a certain extent responsible for global reductions in key beneficial species, including 
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pollinators (Alexander, 2017). It is now widely recognised that agricultural 

methods, developed during the green revolution, are unsustainable and have 

resulted in ecological damage and contributed to climate change.  

A key conclusion of the 2015 Paris United Nations Climate Change Conference was 

that Bio-Energy/Carbon-Capture-Storage (BECCS) should play an integral role in 

reversing anthropogenic climate change. 400-800 million additional hectares of 

trees should be planted in order to maintain a global temperature within 1.50C of 

pre-industrial levels (IEA, 2016). By comparison, 600 million hectares is the area of 

additional farm land required in order to feed 10 billion humans in 2050 

(Searchinger et al. 2018), based on current yields. Thus, the requirement to prevent 

human starvation currently directly contradicts the requirement to prevent global 

heating. 

Therein lies a fundamental conflict, to which there is no obvious solution. Humanity 

will require a ‘second green revolution’ (Pingali, 2012) in order to match resource 

demands. Simultaneously, restoration of natural resources will require a focus on 

‘reuse, recycling, and long term design’, or what has come to be known as 

‘circularity’ [Tim Benton pers. Comm] (EMF 2019).  In the current era of ‘sustainable 

intensification’, global agriculture is under pressure from all sides.  

1.2 Insect control in the era of ‘Sustainable Intensification’ 

Advances in pest control was a key element of the 20th century’s ‘green revolution’, 

helping to achieve a 300% increase in crop yield with only a concomitant 30% 

increase in farmed land. However, despite our best efforts to date, pest insects, 

pathogens and weeds still reduce crop yields by around one third (Oerke, 2006). If 

all crop protection practises were to cease, it is estimated that we would lose 

upwards of 70% of crops prior to harvest (Popp et al. 2013). Insects, in particular, 

contribute to a large proportion of this damage. An estimated 45 million tonnes 

(Mt) of wheat, 50Mt of maize and 75Mt of potential rice yield is consumed each 

year – amounting to up to 20% of global grain yields lost in total (Deutsch et al. 

2018). Furthermore, insect metabolic rates currently restrict insects in most areas 

of the globe but on average, crop destruction by insect pests will increase by 10-

25% per degree rise in global temperature, as higher metabolic rates allow higher 

reproductive rates (Deutch et al, 2018). Finally, rising temperatures, coupled with 

ever-increasing international trade, can be expected to increase invasiveness of 
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crop pests, especially in the Northern Hemisphere (Biondi et al. 2018). Therefore, 

the need for insect control is greater now than ever.   

1.2.1 Non-synthetic modes of insect control 

Modern pest control falls into four broad categories: cultural and mechanical 

control; biological control; genetic control; and synthetic chemical control.  

Cultural and mechanical control refers broadly to the steps that can be taken to 

create unfavourable conditions for pest insect infestations, such as manual removal 

of pests (All, 1999). These generally require some knowledge of insect biology and 

behaviour on the part of the farmer, compared to other approaches documented 

below. Biological control entails the use of natural insect enemies, be they an insect 

predator or a pathogen (Bale et al. 2008). For example, the cry toxins produced by 

Bacillus thuringiensis, which is a pathogen of insects, show  potent insecticidal 

activity and have become one of the more successful biocontrol agents to date 

(Schnepf et al. 1998; Phipps, 2002). Genetic control at its most fundamental 

includes the deliberate encouragement of host-plant resistance through genetic 

crossing. More recent developments include a host of emerging tools, the unifying 

concept of which is mass-modification of insect genetic material to bring about 

population reduction or replacement. Gene-Drive is one such tool, in which a 

homing endonuclease (e.g. Cas9) copies itself, and any linked ‘cargo’ genes, into the 

opposing homologous chromosome in order to drive the gene from heterozygosity 

to homozygosity (Haghighat-Khah et al. 2015). This is a major upgrade to the 

decades-old Sterile Insect Technique, in which release of chemically sterilized 

insects causes population disruption (Black et al. 2011). Recent employment of 

gene drive in Brazil has seen populations of Zika-carrying Aedes aegypti being 

replaced by Zika-refractive mosquitoes (Buchman et al. 2019), thereby reducing 

cases of the Zika disease in humans. The second major development in genetic 

control is RNA interference (RNAi) – the dsDNA-mediated knock-down of targeted 

genes via high-jacking of anti-viral pathways in the insect (Zhang et al. 2017). One 

goal is to create crops capable of defending themselves against insect herbivores 

by activation of such pathways to inhibit insect metabolism (Gordon and 

Waterhouse 2007). 

A combination of cultural control, biocontrol and genetic control have the potential 

to revolutionise the ecological sustainability of crop defence, by reducing 
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destruction of non-pest insect populations, reducing reliance upon petrochemical 

cracking, and reduced environmental run-off of synthetic chemistry. Ironically, a 

major impediment to the adoption of genetic technologies is the lobbying of Non-

Governmental Organisations claiming to oppose global environmental problems 

(France-Presse 2016).   
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Figure 1.1 Top five synthetic insecticides, ranked by Annual Gross Profit (Sparks and Nauen, 

2015) 

Figure 1.2 Challenges in insecticide development. Cost (a) and time (b) to bring a successful compound 
to market is increasing, whilst the number of individual organisations involved decreases (c). Analysis 
based on data reported in (Sparks and Lorsbach 2016).  
 

(a)  (b)  (c)  
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1.2.2 Insecticidal Spray: There’s no better way 

Synthetic insecticides remain by far the most widely used control measure for 

insect pests. It was estimated that in 2007 the global insecticide market was worth 

$8.2 Billion (Bn) USD and in 2017 that value had almost doubled to $14.51Bn USD. 

By 2022, at the current growth rate, it will reach $19.27Bn USD (AGI2527 2017). 

Thus, despite promising developments in alternative control methods, the 

insecticide market is growing faster than ever. Delayed uptake of insecticide 

alternatives by policy-makers, and the general public, is partially responsible for 

such ongoing growth, but their ability to act predictably, quickly, and effectively 

makes synthetic chemical pesticides a valuable asset, especially in developing 

countries (Sparks 2013). As GDP rises across the African and Asian sub-continents, 

agricultural intensification, with a heavy reliance on synthetic insecticides, is set to 

increase, to help fill the emerging food gap.  

Mainstream modern insecticides target one of five biochemical systems: chitin 

synthesis; mitochondrial respiration; the voltage-gated sodium channel (Nav); the 

nicotinic acetylcholine receptor (nAChR); and the γ-aminobutyric acid (GABA) 

receptor. Thus, the vast majority of insecticides are nerve and muscle agents (<80% 

by market value – calculations based on (Sparks and Nauen 2015)). Of these, the 

neonicotinoids, pyrethroids and organophosphates are the most widely used (Fig 

1.1).  

1.2.3 Strain on the Insecticide industry  

It is estimated that around 600 insect and mite species are resistant to at least one 

class of currently used commercial compound (Bass and Field 2011), constituting 

something of an epidemic of resistance across almost all insecticide classes (e.g. 

(Bass, 2015). Therefore, insect control in the current era will focus, by necessity, on 

chemicals with new Modes of Action (MoAs) which are not subject to cross-

resistance. There is compelling evidence that the insecticide industry is already 

struggling to keep up with the rise of resistance (Sparks and Lorsbach 2016). Decade 

on decade, the cost of bringing a compound to market increases, standing now 

above $250 million USD on average (Fig 1.2a). Profit-margins may fall, as such rises 

threaten to out-strip the aforementioned increase in sales. Furthermore, the ability 

of the industry to react quickly to insect control crises is limited, with development 

time now averaging 10 years (Fig 1.2b). One limiting factor may be the global 

consolidation of insecticide developers, such that currently a small number of agri-
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chemical industries are taking on the vast majority of the development work (Fig 

1.2c). Such a state of affairs does not encourage the ‘pivot’ attitude that is required, 

if a greater diversity of cost-effective MoAs is to be developed (Wu et al. 2019).  

Already fighting a losing battle against field-resistance, industrial agriculture today 

suffers from a second major issue - insecticides are in the midst of a public-relations 

crisis. Concern about the ecological impacts of large scale insecticide use is rising 

amongst the general public and policy-makers (e.g. (Pretty et al. 2018), largely due 

to potential damage to beneficial insects. As various global eco-systems show signs 

of instability, insecticides (and occasionally other chemical pesticides) are being 

blamed, often with minimal evidence (See Box 1.1). Pressure from non-

governmental organisations (NGOs) opposing insecticide usage has been brought 

to bear on the pesticide industry and governments, for example, such lobbying has 

already resulted in certain members of the neonicotinoid insecticide class 

(imidacloprid being the most prominent example) being banned across Europe (EU 

Official, 2019).  

Thus, there is an urgent need for the development of new and safer insecticidal 

chemistries, with improved specificity and toxicological profiles, in order to meet 

public expectations and reduce off-target mortality. MoA diversity ideally ensures 

that resistance build-up never occurs (Sparks and Nauen, 2015).  In the meantime, 

Integrated Pest Management (IPM) is accepted as the ideal model of insect control 

that should be promoted going forward. The spread of resistance can potentially 

be (locally) contained by the current trend for expansion in the deployment of 

advanced monitoring techniques, thereby supplying timely information to growers. 

To this end, resistance mechanisms must be understood, and insecticide modes of 

action classified. 

The insecticide industry has historically been a key driver, but also a key beneficiary 

of the green revolution in agriculture. Today, both the industry, and agriculture 

itself, stand at a crossroads. If they are to survive in this confrontational climate, all 

parties must embrace collaboration, novel approaches to crop defence, and most 

importantly a commitment to sustainability in all matters.  
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1.3 Diamide insecticides  
Box 1.1: Insect ‘Armageddon’ – Fact vs Fiction and what this means for 

modern agriculture 

A slew of recent papers report insect-decline on a ‘catastrophic’ scale (Janzen and Hallwachs 

2019). These include reported declines in insect biomass of 75% (Hallman and al 2017), 80% 

(Loboda et al. 2017), or over 95% (Sanchez-Bayo and Wyckhuys 2019), and a claim that total 

global insect eradication could occur within a century (Lister and Garcia 2018).  It must be 

acknowledged that massive insect-decline probably is occurring: taken together, studies 

consistently report a reduction in insect-biomass at least as significant as that seen across 

vertebrate taxa, if not orders of magnitude more severe. Such reductions in insect populations 

are a threat to modern agriculture, and humanity as a whole.  However, it must also be 

acknowledged that there are major and compromising flaws in some of the reports of insect 

decline. 

For example, the latest meta-analysis of published data, guarantees a negative view by using 

the search terms ‘[insect*] AND [decline*]’(Lister and Garcia 2018). For this, and many other 

reasons, estimations of population decline therein are simply unusable. Of other recent studies, 

three ((Janzen and Hallwachs 2019), (Hallman and al 2017), (Loboda et al. 2017) suffer from one 

or more sampling biases that hamper entomological studies in general: 

- Non replicable ‘opportunistic’ sampling is sometimes susceptible to such heavy 

sampling bias as to be almost unusable (e.g. (van Strien et al. 2019).  

- Infrequent and inconsistent sampling prevents interpretation of natural fluctuations in 

populations, this makes drawing conclusions from long-term studies of insects 

challenging (Fox et al. 2018).  

See (Thomas et al. 2019) and Shortall et al (in-press) for a more complete review. Scant few data 

sets have been collected in a controlled manner (e.g. purpose-built sampling traps ensuring 

consistent methodology) with reasonable sampling rates (at-least yearly, over a 10-year period). 

Those that have, tend to report reductions in community biomass, often partially balanced by 

increases in common-species biomass. For example, Shortall et al. 2009 reported declines in 

flying insect biomass at (just) one of four sample sites over a  30‐year period (Shortall and 

Harrington 2009). Fox et al. 2014 reported that, whilst 260 British moth species declined, 160 

increased significantly. However, many excellent studies continue to report heavy declines (e.g. 

(Loboda et al. 2017). 

It is clear that insect biomass is declining alarmingly in some regions, but it is not so clear what 

the underlying causes of such decline actually are. Logically, application of anti-insect chemistry 

is likely to play a role (Ewald et al. 2015), however all evidence points to reduction and 

simplification of habitat due to monocultural agriculture as being a far greater risk factor for 

decline (Lichtenberg et al. 2017).  

Insect decline is fundamentally a symptom of a system designed to promote the existence of 

humans. The impossible task at hand is to prevent insect decline without compromising human 

food and new high value (energy / nutraceutical) crop production, which may require 

expropriating additional natural habitat thus exacerbating insect decline.  
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Against the backdrop of escalating resistance episodes, as described above, a 

welcome addition to the insecticidal arsenal duly arrived. Diamides are a relatively 

new class of synthetic compounds, which act on the nerve-muscle boundary, 

causing contraction and paralysis of insect muscle cells. Control is highly potent and 

specific against lepidopteran and other insect pests. Members of the class vary in 

their spectrum of control, but the majority of these insecticides display extremely 

clean toxicological profiles.  

The following two sections will cover the commercial development of the first three 

diamide insecticides, currently on the market, as well as those due for future 

release. Mode of Action will be discussed in the context of the protein target of this 

insecticide, including its biology and regulation. The chapter will conclude with the 

challenges facing the diamide class, including field-evolved resistance and the drive 

toward toxicological perfection.  

1.3.1 A New Hope 

Diamides have been a stunning commercial success. Having an entirely novel MoA, 

they quickly became the preferred means of dealing with pests that had developed 

resistance to other modes of action (Cordova et al. 2006). The first product to be 

marketed was flubendiamide (FLB) (in 2007),  which was co-developed by Nihon 

Nohyaku Co., Ltd and Bayer CropScience (Ebbinghaus-Kintscher et al. 2007). This 

was followed a year later by chlorantraniliprole (CLR), and later cyantraniliprole 

(CYA), developed by DuPont (Lahm et al. 2007) (See Box 1.2). Annually, diamide 

sales are currently worth upwards of $1.4Bn USD, making them the fourth most 

valuable insecticide class (Fig 1.1). 

1.3.2 Flubendiamide: An exceptionally selective insecticide 

After its release in 2007, FLB achieved rapid commercial success, largely due to its 

high potency against generally hard-to-kill insects (Lahm et al. 2009). Lepidopteran 

species, which are primarily targeted by FLB, are known to develop resistance to 

insecticides at an alarming rate, discussed further in Section 1.4, below. For 

example, the diamondback moth (DBM, Plutella xylostella), a prominent pest  of 

Brassicaceae, has gained notoriety for its resistance against almost all available 

insecticidal treatments (IRAC 2019). However, initial bioassays  on P. xylostella 

larvae resistant to pyrethroids, organo-phosphates, carbamates and 

benzoylphenylurea showed that there was no cross resistance to FLB, giving a level 
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of control equal to the susceptible reference strain (Toshinishi 2005). The effective 

concentration for disabling half of this P. xylostella population (EC50) was 

stunningly low, at just 0.004ppm.  

The potency of this compound against damaging crop pests gives immense value 

(Hamaguchi et al. 2012), but it is the selectivity that makes it exceptional. Bioassays 

against common insects showed that at concentrations deadly to Lepidoptera, 

other insects were entirely unharmed: – EC50 values for various beetles and 

hemipterans were on average >5000-fold higher than those for lepidopterans (Hall 

2007). This is matched by very low mammalian toxicity, with an acute LD50 in rats 

of  >2000 mg/kg (Toshinishi 2005).  

The high specificity of FLB towards insects was also confirmed by assays on 

mammalian cell lines (Ebbinghaus-Kintscher et al. 2006; Ebbinghaus-Kintscher et al. 

2007). Ecotoxicological studies found no acute toxicity towards rats and birds 

(2,000 mg/kg) and no acute toxicity towards freshwater fish when tested at the 

limit of aqueous solubility (29.8 ppb) (Hall 2007). 

In an ideal world, insecticides should control their target pest without impacting 

the existence of others – they should be ‘deadly to the pest and harmless to the 

rest’. This compound is a gold standard in this context and would make an excellent 

model for development of novel chemistry. Only with an arsenal of insecticides as 

potent and as specific as FLB can humans hope to protect their food supply without 

harming their ecological environment.  

1.3.3 Chlorantraniliprole and Cyantraniliprole: A wider range of control 

CLR, the second diamide to be commercially released, is an anthranilamide. Thus, 

it differs from the phthalic FLB by reversal of the central amide bond. It also differs 

in the range of insecticidal activity offered, giving good control not only of 

Lepidoptera but also Coleoptera (beetles), Diptera (flies) and Isoptera (termites) 

species (Lahm et al. 2009). Despite the broader range of insect control, the 

excellent mammalian toxicological profile is maintained. In cell lines, human RyR2 

is activated with 2000-fold decreased potency in comparison to insect channels, 

with an LD50 value of acute oral toxicity of >5000mg/kg of body weight for 

vertebrates (Lahm et al. 2009). 
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Finally, CYA was the third diamide to be released. In comparison with CLR, a 

substitution of the chloride group for a cyanide group confers a further broadening 

of effectiveness. Solubility is also improved, allowing the compound to move 

through the plant xylem, such that it can be applied as a systemic insecticide (Selby 

et al. 2013). This allows it to target chewing and sucking  

pests such as Coleoptera and Hemiptera – achieving up to 10-fold improvement in 

activity against the latter (Foster et al. 2012). However, activity against most 

lepidopteran species is reduced in comparison to CLR, whilst coleopteran activity is 

generally equal (Selby et al. 2017).  

Box 1.2: Early development of diamides 

1993 – Nihon Nohyaku Co.,Ltd begin investigating the insecticidal properties of 

protoporphyrinogen-IX-oxidase inhibitors. Some members of this newly developed herbicide 

class showed insecticidal activity (Jeanguenat 2013).  

1998 – This investigation culminated in the discovery of pthalamides as highly active anti-

lepidopteran compounds (Toshinishi 2005). 

2006 – FLB, the most successful of the pthalamides, was brought to market after a joint 

development between Nihon Nohyaku and Bayer CropScience (Ebbinghaus-Kintscher et al. 

2007). 

2007 – Calcium release imaging on Sf9 cells expressing Drosophila melanogaster calcium ion 

channel, the Ryanodine Receptor, revealed this to be the diamide target (Ebbinghaus-

Kintscher et al. 2007).  

2008 – CLR is developed and brought to market by DuPont. Reversal of the central amide 

(NH2O) bond puts CLR into a new diamide class; the first of the anthranilamides. Simplification 

of the heptafluoro (C2F7) group on FLB into a lone chloride (Cl), as well as insertion of a 

chlorpyridine (C6Cl) in place of the large methyl o-substituent group (C5SO2), allows this 

compound to achieve strong activity against a range of insect pests (Selby 2016).  

2012 – Cyantraniliprole (DuPont) first commercial application (Birkett 2012). Replacing the 

chloride group with a nitrile (CN) group at C4 of the anthranilimide ring gives improved 

systemic properties, such as lower logP and higher water solubility which aid in plant uptake 

and translocation.  

2017 – Cyclaniliprole (ISK bioscience) is approved in US, Canada, Japan and Korea ‘for the 

control or suppression of various insect pests on a range of fruit, vegetable and tree nut crops’ 

(ISKBC 2017).  

 

2019 – Tetraniliprole (Bayer CropScience) is approved in Korea for use as a broad spectrum 

foliar, drip, drench or seed treatment (Ralf Nauen pers. Comm). 
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1.3.4 New diamide actives under development 

With the expressed aim of improving upon existing molecules, the search for 

environmentally benign diamides, with high activity and low toxicity, continues 

(Zhao et al. 2012). Iterative substitution of almost every available active site on the 

molecule has taken place, with attempted additions of sulfoxamines (Gnamm et al. 

2012), various ethers (Zhao et al. 2012), pyrazoles (Wang et al. 2013a), thiadiazoles, 

napthalenes and more. From this effort, some excellent molecules present 

themselves, with studies claiming to improve upon activity of first and second 

generation anthranilimides by more than 5-fold (Zhao et al. 2012). Of these, at least 

two have been taken forward for commercialisation, tetraniliprole (Bayer 

CropScience) and cyclaniliprole (ISK bioscience). It remains to be seen which of the 

other candidates are sufficiently effective to compete with those diamides already 

in the market.  

Much can be learnt from comparison of the commercialisation candidates 

presented here. Some studies have attempted to find patterns or periodicities in 

activity. For example, during CLR modification, increasing electronegativity 

(Br→Cl→Fl) was associated with increased biological activity on both the upper 

chloride and the lower bromide group (Liu et al. 2018). A similar pattern is seen in 

the development of tetraniliprole (Ralf Nauen 2019, unpublished), in which 

reductions in group size, as well as increases in electronegativity, tend to correlate 

with higher potency. Such a pattern has been supported by several studies 

regarding other insecticides (Jeschke 2010).  

Cyclaniliprole (ISK Biosciences) was the first of a new era of diamides to reach 

market, applied for the first time in South Korea in 2017. Based on the structure of 

CLR, this compound possesses a cyclopropane group attached to one of the amides, 

as well as an additional bromide group (Fig 1.3). These additions are both designed 

to increase the electronegativity of the structure, with bond-strain in the 

cyclopropane increasing electron density in that region. According to the 

developers, it is for ‘control of various insect pests on a range of fruit, vegetable 

and tree nut crops’ (ISKBC 2017). Aqueous solubility is lower than that of CLR, 

possibly due to its larger size, which limits this compound to foliar application. 

Baseline effective concentration against lepidopteran species is very similar to that 

of the other diamides – an LC50 of 0.03ppm was found in one independent study 
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(Cho and et al 2018). Finally, tetraniliprole (Bayer CropScience) is the latest addition 

to the diamide arsenal, due for release in 2019. This is designed as a broad-

spectrum, multi-use compound for foliar applications or in drench or drip 

applications and as a seed treatment. Derived from CYA, the molecule maintains its 

cyanide group, and with it, some of the characteristic systemicity of that 

compound. Uniquely, tetraniliprole possesses a trifluro-methyl azole ring not seen 

in any other commercial pesticide (Ralf Nauen 2019, unpublished). Both of these 

novel compounds have excellent safety ratings against vertebrates, for example  

>2000mg/kg toxicity on birds, as has become the hallmark of diamides in general 

(EPA 2019). On the other hand, studies on beneficial insect toxicity are yet to be 

undertaken.  

Figure 1.3. Diamides derive their name from the double amide groups, located on 
positions 1 and 2 (yellow) of the central benzenoid ring. Flubendiamide (FLB) is pthalic and 
its name is derived from the terminal hepta-floryl group (red). Chlorantraniliprole (CLR) is 
anthranilic, differing from FLB by a reversal of the central amide bond (pink). 
Cyantraniliprole (CYA) possesses an almost identical structure to CLR but differs in the 
replacement of a chlorine group with a cyanide group (blue). Cyclaniliprole (T-CLR) 
possesses an almost identical structure to CLR apart from the substitution of a methyl 
group for a bromide group (green) and the addition of a cyclopropane group (green). 
Tetraniliprole (TET), is the newest diamide release, and differs from CYA by the 
substitution of the bromide group with a large tifluromethyl-tetrazole group.  
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New entries to the diamide market must address at least one of the two major 

issues in IPM today: 1. toxicity to beneficial insects and 2. evolution of insecticide 

resistance. Thus, new releases should aim either for high specificity, following the 

example of FLB, or they should aim to break resistance. Increased lepidopteran 

activity is no longer a useful goal for novel diamides.   

1.4 The rise of resistance to diamide insecticides 

Despite the excellent characteristics of diamide insecticides, resistance to their 

action evolved just 18 months after their market debut (Troczka et al. 2012). The 

first control failures occurred in the Philippines in a population of DBM (P. 

xylostella) and was quickly followed by further episodes in nearby locations. A 

decade on from those first reports of diamide resistance in Plutella (Troczka et al. 

2012), resistance has evolved independently in at least nine lepidopteran species 

(see below). Subsequent expansion of some of these species out of their native 

range has been a major factor in the spread of diamide resistance, with several 

species making the transition from regional to global pest status. An overview of 

the current global state of diamide control efficacy is the focus of this section.  

1.4.1 Spodoptera frugiperda and other Noctuidae 

The fall armyworm, Spodoptera frugiperda, is a highly destructive pest of maize, 

frequently responsible for causing 40-70% yield loss (Wyckhuys and O'Neil 2006). 

The caterpillars can additionally feed on at-least 186 other plant species 

(Montezano et al. 2018), making this a broad-ranging and highly adaptable insect. 

Native to Central and South America, year-round populations extend southward to 

Brazil and Argentina, whilst migratory populations make their way annually from 

the Caribbean up the Eastern coast of the USA, as far north as Canada (Westbrook 

et al. 2016). However, the pest has recently spread outside of this range in a 

dramatic expansion that exemplifies the worrisome ease of movement of invasive 

species in the modern world (Fig 1.4).  

In Brazil, where insecticides are applied frequently to control lepidopteran pests, S. 

frugiperda is resistant to most synthetic chemistries. Diamide insecticides therefore 

have become an important element of integrated pest management (IPM) (Bolzan 

et al. 2019). Recently however, resistance to CLR was rapidly selected for in a field 

strain collected in Correntina, Bahia state, suggesting the presence of resistance 

alleles in the field (Boaventura et al. 2019). At the same time, 4000km North, 
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farmers in Puerto Rico were reporting reduced diamide control efficacy, with RRs 

of 160-fold against CLR and 500-fold against FLB being documented. Maize yields 

in these regions are comparably higher with respect to other South American 

nations (FAO 2019), which is most likely a reflection of the more intense insecticide 

application regimes in Brazil. Both S. frugiperda populations had previously 

developed Bt resistance, as reported in 2014, suggesting that the management 

practises and ecology of these populations is potentially conducive to resistance 

development (Boaventura et al. 2019). As of 2016, actual control failure likelihood 

remained low, with the LD80 still far below Recommended Dose (RD) for CLR, 

suggesting that resistance spread could be delayed if the correct IRM strategies 

were implemented.  

As diamide resistance was emerging over its native range, S. frugiperda populations 

were about to spread and have a major impact elsewhere. The moth was detected 

in Ghana and Togo (West Africa) in early 2016 (Nagoshi et al. 2017), heralding the 

start of an overseas invasion and expansion of unprecedented speed and scale, 

which would end with populations distributed across all  the major maize producing 

regions of the globe. Barcoding analysis shows that the invaders are derived from 

the Florida genepool, a migratory population whose range covers the USA, and 

extends south down to Puerto Rico (Nagoshi et al. 2017). Suspected to have been 

carried in the luggage-hold aboard a commercial aircraft, the moths quickly spread, 

sweeping across most of sub-Saharan Africa within just 16 months (Stokstad, 2017). 

Sub-Saharan Africa was an ideal environment for moth expansion, with an average 

temperature well within its development range of 25-330C and medium to low 

rainfall for much of the year (Early et al. 2018). The moth’s capacity to migrate 

thousands of kilometres on high-altitude winds allowed it to rapidly colonise the 

large tracts of open plains, which provided excellent rearing grounds (Westbrook 

et al. 2016). After 2 years, it would inhabit 44 countries in Africa with permanent 

year-round populations (CABI 2019). The spread across Africa had been accurately 

predicted by a computational model, based on biotic, abiotic and human factors 

(Early et al. 2018). The same model warned that India would be the next target of 

invasion, and prescribed monitoring procedures to prevent a repetition of the 

airline-assisted route.  

In May 2018, S. frugiperda was detected in Karnataka, India (Sharanabasappa and 

et al 2018). From there, it spreads east into Myanmar and Thailand and, in January 
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2019, finally reached China. By April 2019 it had reached the edge of China’s Corn-

Belt, which runs North-East from Hunan ((NATESC) 2019), with predictions of a very 

rapid North-Easterly expansion (Li and et al. 2019; Ma et al. 2019). As of July, the 

pest had already spread to 20 provinces, with high infestation levels in the sweet-

corn producing southern regions (Ralf Nauen pers. comm). It was also recorded, for 

the first time, in Kagoshima prefecture, Japan. Communications indicate that 

diamide, pyrethroid and emamectin benzanoate sprays all currently remain 

effective in China and are being recommended in the emergency control guidelines 

issued by the Ministry of Agriculture and Rural Affairs (MARA) (Ralf Nauen pers. 

comm). The National Agro-technical Extension and Service Centre (NATESC) has 

additionally established geographically specific control strategies including weekly 

forecasts and monitoring, biocontrol and potential chemical seed treatment.  

Pinpointing the global spread’s origin to the S. frugiperda Florida population raised 

the possibility that the African invaders may have been resistant to diamides 

(Nagoshi et al. 2017). Very few studies have reported on insecticide control efficacy 

since the spread. One study in Ethiopia reported close to base-line susceptibility 

toward diamides and several other insecticide classes (Sisay et al. 2019). If true, this 

is extremely fortunate, and is probably accounted for by an extreme genetic 

bottleneck in the founders of the Afro-Asian population, in which insufficient 

genetic diversity was present for resistance to emerge (Day et al. 2017). 

Organophosphates and pyrethroids are the primary method of lepidopteran 

control across the continent, which may help to slow the development of diamide 

resistance (Day et al. 2017). Two factors may increase the probability of resistance 

emergence now that the species has reached South-East Asia. First, diamide 

application in this area is traditionally high, whilst IPM practices have in the past 

been poor (Troczka et al. 2016). Second, this region harbours beet armyworm, 

Spodoptera exigua a relative of S. frugiperda, and the track record of resistance 

development for this other noctuid pest provides a worrying indication of what may 

be in store (Che et al. 2013).  

The beet armyworm is a generalist pest, capable of targeting cereals, legumes 

(beans, peas), solanacea (potatoes, tomatoes), cotton, tobacco and cannabis crops. 

Originating in East Asia, and reaching the Americas in the late 19th century, S. exigua 

is now a worldwide pest (Capinera 1999). As with other lepidopterans, this pest has 

evolved resistance to most approved products currently on the market (Che et al. 
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2013). It took just a few years for borderline control failures involving diamide 

insecticides to emerge in East Asia, with farmers in Jiangsu, China reporting a 44-

fold CLR resistance in 2010 (Lai et al. 2011; Che et al. 2013). By 2018 resistance had 

increased to 150-fold and spread to Shandong (Zuo and al. 2019). Now, S. 

frugiperda is predicted to be heading toward the same area. Further east, in South 

Korea, extremely potent, 2500-fold CLR resistance has arisen in beet armyworm.  In 

2014, S. exigua resistance  to diamides in South Korea had been noted as minimal, 

therefore this case represents a prime example of the rate at which Lepidoptera, 

and noctuids in particular, are capable of adapting to diamide exposure (Cho and 

et al 2018). Finally, it is notable that, of the Noctuidae, Spodoptera litura has yet to 

develop meaningful diamide resistance. Reports from Southern China of CLR 

resistance in 2012 did not develop into a lasting crisis, with resistance in some 

regions returning to near-baseline by 2015 (Su et al. 2012)(Sang et al. 2016).   

1.4.2 Tuta absoluta 

The tomato pinworm, Tuta absoluta, targets tomato crops through leaf mining and 

fruit infestation, although it can prosper on other solanaceous species such as 

potato and nightshade. Yield losses on tomatoes have reached 100% where control 

has been inadequate (Desneux et al. 2010). In tomato plants, colonisation occurs 

early, meaning damage prevention requires a fast-acting means of control (Silva et 

al. 2011). However, as against other moth species, a heavy reliance on diamide 

insecticides has accelerated resistance development, especially as other MOAs had 

already lost efficacy and therefore were not available for rotation (Guedes et al. 

2019); (Silva et al. 2011). In a survey carried out in 2011, diamides provided 

excellent levels of control against Brazilian populations, with FLB LD50 at less than 

0.1mg/L - 0.25mg/L (Campos et al. 2015). By 2014, high levels of resistance was 

present across the country, reaching >100,000-fold in Pesqueira and America 

Dourada (Silva et al. 2016). 

As with other South American-derived pests, the optimal developmental 

temperature in T. absoluta  is high; around 300C (Mohamadi et al. 2017). Capable 

of producing up to 10 generations per year in tropical climates and under 

greenhouse conditions, this pest is adapted to invade. Furthermore, unlike 

Spodoptera, Tuta is capable of surviving short periods of near-freezing 

temperatures, potentially opening its range to a more northerly expansion (Biondi 

et al. 2018).   
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Figure 1.6 Global distribution of Plutella xylostella with diamide resistance episodes labelled. Diamide resistance 
confirmed in Philippenes, Thailand, India, China, Brazil, USA, Japan, Korea, Indonesia, Vietnam. Layout from (Biondi et al. 
2018); Distribution data from references in text and CABI invasive pest monitoring; Resistance data from (Troczka et al. 
2012) and other references in text.  

Figure 1.5 Transnational spread of Tuta absoluta, with diamide resistance episodes labelled. Diamide resistance 
confirmed in Brazil, Italy, Greece and Israel. Layout from (Biondi et al. 2018); Distribution data from references in text 
and CABI invasive pest monitoring; Resistance data from (Roditakis and . 2018) and other references in text.  

Figure. 1.4 Transnational spread of Spodoptera frugiperda, with diamide resistance episodes of S.frugiperda and S. exigua 
labelled. Diamide resistance confirmed in Brazil and Costa Rica for S. frugiperda; in Shandong, Jiangsu (China) and South 
Korea for S. exigua. Layout from (Biondi et al. 2018); Data from references in text and CABI invasive pest monitoring.  

Figure 1.6 
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In 2006, T. absoluta was detected in Spain, having spread from a Chilean population 

(Biondi et al. 2018). Subsequent expansion down the coastal regions of Southern 

Europe was rapid. Collectively, Italy, Spain, Portugal and Greece produce some 

15MegaTonnes (mT) of tomatoes (2017 data), providing ample feed-stock for the 

new invader (FAO 2019). Migration further northward was aided by greenhouse 

occupation. The Netherlands produces 0.9mT of tomatoes almost entirely under 

controlled environments, occupation of which seems to have allowed T. absoluta 

populations to expand year-round in otherwise inhospitable northern latitudes 

(Van Damme et al. 2015). The rapid and immediate threat to European tomato 

production, and lack of alternative management strategies, prompted a heavy 

reliance on diamide applications (Desneux et al. 2010). The Chilean population that 

invaded Europe was already known to be resistant to pyrethroids and 

organophosphates (Silva et al. 2011). Unsurprisingly, diamide resistance 

development in Brazil was soon mirrored by resistance in Europe. As of 2013, highly 

resistant tomato leaf miner populations had been identified in greenhouses in 

southern Italy (Roditakis et al. 2015). A year later, CLR resistance was widespread 

across Italy, causing severe control failures in Sicily and the South (RR 1402-fold and 

706-fold, respectively). T. absoluta in Greece remained susceptible until 2015, 

when a Cretan population quickly developed >3200-fold resistance (Roditakis and . 

2018).  

By this point, other populations of T. absoluta had spread across Europe and on to 

Africa and Asia. In 2008, the coastal route had taken them to Morocco, and east to 

Turkey by 2009. From there, it was predicted that they would spread to Sub-

Saharan Africa and across the rest of Asia (Desneux et al. 2010). This forewarning 

did not prevent their onward expansion, however, and the pest reached South 

Africa (Sylla et al. 2017) and India (Han et al. 2018) in 2016. The resistance status of 

the African and East Asian populations is not clear, as they presumably disengaged 

from gene-flow with the European population before the latter developed 

resistance. Very severe control failures registered in Israel in 2015, with 22,573-fold 

resistance against CLR, may be an independent episode distinct from that of the 

somewhat milder European resistance (Roditakis and . 2018).  

In the space of 10 years, a little known tomato-pest, which was present in just 3% 

of global regions dedicated to tomato production, became a menace to 60% of 

worldwide tomato production (Fig 1.5) (Biondi et al. 2018). Forecasts now look 
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anxiously toward future invasions. Mexico produces 2mT of tomatoes per year, 

mostly under controlled environments, making it an ideal Tuta target (Nations 

2019). However, tomato is not extensively grown in south-central America, which 

currently provides a 4000km barrier between Mexico and California and moth 

populations in Columbia, Ecuador and Peru, meaning that any jump would have to 

happen via commercial transport or trade. The risk is that, if this does occur, 

invasion of the extensive Californian tomato vines from Mexico will be almost 

immediate, as 95% of Mexican tomatoes are exported directly to the USA. Lastly, 

T. absoluta will very likely invade China.  Producing almost a third of the world’s 

tomatoes in 2017, and with sub-tropical climates in southern regions, China would 

be an excellent habitat for this pest. India has already been invaded, and overland 

vegetable trade between India and China is extensive, suggesting that it is only a 

matter of time before T. absoluta arrives in China. However, the Chinese 

government have taken extensive measures to prevent such a circumstance, 

monitoring for the pest at 41,000 stations countrywide, as well as the strategic 

deployment of more targeted surveillance strategies by the Chinese Department of 

Biological invasions (DBI) (Xian et al. 2017).  

1.4.3 Diamide Resistance in other Lepidopteran Species 

Resistance in Spodoptera and Tuta species poses a phenomenal risk to the 

associated crops in global agricultural systems. However, far from being exclusive 

to those species, damaging levels of diamide resistance have also been detected in 

Adoxophyes honmai (tea tortrix), Chilo suppressalis (rice stem borer), Helicoverpa 

armigera (Old world bollworm) and Plutella xylostella as will be covered below 

(Uchiyama and Ozawa 2014; IRAC 2014). Indications of low levels of resistance have 

also been reported for Cnaphalocrocis medinalis (rice leafroller) (Zhang et al. 2014), 

Choristoneura rosaceana (oblique banded leaf roller) (Sial and Brunner 2012) and 

Chrysodeixis includens (soybean looper) (Owen et al. 2013), but will not be covered 

further here as they do not as yet compromise diamide field efficacy.  

A. honmai, the tea tortrix, is a leaf boring pest of high-value crops such as tea, 

coffee, tobacco, citrus and cacao (CABI 2019). Whilst control via the parasitic wasp 

Macrocentrus homonae is highly effective in Sri Lanka and India, insecticide 

application is required outside of this range. Diamide efficacy on A. honmai was 

tracked over a period of six years following this insecticides introduction in Japan, 

with enlightening results (Uchiyama and Ozawa 2014). Applying FLB at the RD of 
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48ppm gave 96% mortality in 2007, with mortality rates declining only gradually 

over the following year. Between 2009-2010 mortality dropped suddenly to just 

52%. Application of insecticide at sub-80% mortality dosage (LD80) is associated 

with a dramatically increased probability of resistance emergence, which probably 

explains this pattern of gradual, followed by sudden, resistance (Silva et al. 2011). 

In this case, resistance severity continued to increase in the following years, 

reaching ratios of 105-fold (CLR) and 77-fold (FLB).  

C. suppressalis is a devastating pest of rice, boring into the plant stem to cause 

‘dead heart’, whereby the stem borer larvae kill the growing points of young shoots 

and surrounding leaves. Yield losses have been known to reach 100% (BAYER 2019) 

as the upper parts of the plant die off, leaves fall and the head becomes shredded. 

Believed to have originated in East Asia, C. suppressalis spread across the Pacific 

islands, down to Australia, and also west across the Silk Road and into southern 

Europe. It has thus colonised 84% of the world’s rice (by yield, (Nations 2019)), with 

West Africa and South America the only major rice producing regions left 

untouched. In an attempt to halt the damage, insecticides have been frequently 

applied, which has selected for resistance against organophosphates, fiproles and 

cartap (Yao and et al; 2017). The first wave of diamides were registered in China in 

2008, with baseline susceptibilities of 0.1mg/l (FLB) and 1.5mg/L (CLR) (Wu et al. 

2014; Gao et al. 2013). Resistance in C. suppressalis was first detected in Hubei in 

2013 (Committee 2014). Gradual declines in field efficacy followed in eastern China 

(spanning Hunan, Zheijiang and Shandong) in 2014, when RR’s of 77.6 (CLR) and 

42.6 (FLB) were recorded. Resistance values remained largely constant through 

2015 (Lu et al. 2017), increasing to RR of 250 (CLR) by the end of 2016 in Jiangxi 

(Sun et al. 2018). Resistance in Chilo has remained moderate and constant over the 

past half-decade, with resistant moths remaining (at last check) at least partially 

susceptible (Sun et al. 2018). By comparison, most other episodes of resistance 

detailed in this section quickly escalated into complete control failure.  

H. armigera, the Old World bollworm, is a broad range pest that causes especially 

severe damage to tomato, soybean, corn and cotton crops (Cunningham and 

Zalucki 2014). A potent combination of physiological characteristics, including high 

fecundity (700 eggs/female), migrational range (1000km/generation), facultative 

diapause capability and drought tolerance, give this pest high invasive capacity 

across a wide latitude (thoroughly reviewed in (Tembrock et al. 2019)). Ranging 
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globally from Oceania, Asia, Europe and Africa, the Old-World bollworm recently 

expanded its range dramatically by colonising the New World (CABI 2019). Detected 

in Bahia, Brazil, in 2013 (Tay et al. 2013), H. armigera is now present in Paraguay, 

Uruaguay, Argentina, Bolivia and its presence suspected in Peru, Surinam and the 

Dominican Republic (Gilligan et al. 2015). The risk of spread into North America is 

high, having already reached Puerto Rico, and multiple border incursions already 

detected in Florida (Kriticos et al. 2015). H. armigera is known to be resistant to a 

wide range of synthetic insecticides (McCaffery 1998). Furthermore, hybridisation 

with Helicoverpa zea, a North American close-cousin of H.armigera, is expected to 

boost gene-pool size and thereby increase the adaptive capacity of both species to 

insecticide spray (Anderson et al. 2019). In response to this threat, multiple teams 

have established baseline susceptibility measurements against the 

anthranilamides, CLR (Liu et al. 2017) and CYA (Bird 2016), however bioassays are 

yet to report any indication of diamide resistance. The Ryanodine Receptor (RyR) 

gene has already been cloned for this species (Wang et al. 2013b) offering the 

potential for proactive resistance detection measures based on RyR sequencing. 

Frequent monitoring of diamide susceptibility, especially in Brazilian populations is 

recommended, both due to the history of lepidopteran diamide resistance 

development in this region, and due to the extensive tomato crop, which is a 

primary food source for H.armigera (Pratissoli et al. 2015).  

1.4.4 Plutella xylostella 

One pest so far omitted from this discussion is Plutella xylostella, and it is pest 

without which no bona fide discussion of insecticide resistance can take place. P. 

xylostella is a billion-dollar worldwide pest of cruciferous vegetables. Attempts to 

control the larvae, and to prevent their notoriously damaging tunnelling activity, 

equates to a gross annual expenditure of up to $2.3bn US. Despite these measures, 

Plutella succeeds in causing US $2.7bn of annual yield losses due to spoilage and 

crop damage (Zalucki et al. 2012). With historical resistance to almost all synthetic 

insecticides, this is arguably the most resistant insect species on the planet (Whalon 

M et al. 2016; Sparks and Nauen 2015). Assumed to have originated in the brassica 

homelands of Europe or Southern Africa, P. xylostella now makes its presence felt 

worldwide (Kfir 1998).  

It was towards this species in particular that diamide insecticides were initially 

targeted. Breaking the insecticide resistance epidemic was an urgent necessity in 
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China, where 46% of the world’s brassica crops are produced (FAO 2019). An added 

bonus was the extremely high activity of FLB against P. xylostella (Ebbinghaus-

Kintscher et al. 2007) (Troczka et al. 2016). FLB was first launched in the Philippines 

in 2006 and subsequently in Thailand in May 2007. However, by December 2008 

resistance would develop and control efficacy would be dramatically reduced in 

both countries. Whilst early cases of resistance merely bordered on control failure 

(e.g. FLB 66.3-fold), resistance ratios quickly rose from 407-fold in Sai Noi, to 4817-

fold in Tha Muang, up to 26,602-fold in Pathum Thani (Troczka et al. 2016).  

Episodes of resistance did not for long remain isolated to the Philippines and 

Thailand. In 2011, reports of resistance came from India and China (Troczka et al. 

2016), followed by a rapid spread west across Asia. By 2013, resistance had reached 

Japan, but it also emerged, possibly independently, across the Atlantic in Brazil and 

the USA (IRAC 33). By 2014, it had spread to Vietnam, Indonesia, Philippines and 

Korea (Fig 1.6) (Steinbach et al. 2015; Kang et al. 2017; Cho and et al 2018).  

1.4.5 The Root of Resistance: Alterations to the Diamide target 

The extent of modern global pest monitoring means that new pest invasions can be 

tracked with sufficient accuracy to detect, in some cases, the first entry into a 

country, as with T. absoluta in Sicilian greenhouses (Roditakis et al. 2015). More 

impressive still were the accurate and precise predictions made of future spread 

for both T. absoluta (Desneux et al. 2010) and S. frugiperda (Early et al. 2018). One 

goal of IRAC is to see such population tracking successes mirrored in the context of 

insecticide resistance (Sparks and Nauen 2015). Efforts to track and predict 

resistance spread are augmented by identifying and characterising the cause of the 

resistance episode. Possible mechanisms include cuticular changes affecting 

insecticide penetration; behavioural adaptations for avoidance; metabolic 

upregulation to speed up detoxification and removal; and target-site alterations to 

reduce insecticide efficacy (IRAC 2019).  

Metabolic resistance to diamide insecticides has been thoroughly reviewed in 

(Nauen and Steinbach 2016). In general, studies have shown that upregulation of 

metabolic pathways does not equate to meaningful diamide resistance ratios, on 

its own. However, some notable cases of metabolic resistance exist, including that 

of a 43-fold CLR resistant Chinese strain of C. suppressalis, in which diamide 
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susceptibility was restored almost entirely by P450 monooxygenase suppression 

(He et al. 2014). 

By far the most impactful cause of diamide control failure is molecular alteration of 

the insecticide target site by changes in the amino acid sequence coding for the 

protein, where those changes evolve to increase in frequency within the population 

concerned. This phenomenon is known as Target-Site Resistance (TSR) and it is the 

central recurring topic of this thesis.  The first incidences of diamide resistance were 

discovered to result from an alteration to the diamide target site (Troczka et al. 

2012), and the same alteration has latterly been found to have evolved in other 

populations around the globe (Steinbach et al. 2015). In the decade since the first 

evolution of resistance to diamides, a variety of further target-site alterations have 

arisen. Chapters 4, 5 and 6 of this thesis will focus on investigating these alterations, 

and each will be preceded by a thorough review of the particular alteration under 

discussion. Prior to such investigations, it is necessary to establish a detailed 

understanding of the protein target of these insecticides. The target of the diamides 

is a 2.2-megadalton ion channel, crucial to the function of animal muscle cells, and 

its name is the Ryanodine Receptor.  

1.5 Diamide Mode of Action 

The Ryanodine Receptor (RyR), a large calcium release channel, mediates the 

conversion of nerve impulses into muscular contraction (Ebbinghaus-Kintscher et 

al. 2006). Binding of diamides to this channel locks it into an open configuration, 

causing uncontrolled calcium release, leading rapidly to feeding cessation, muscle 

paralysis and death. All diamides target the RyR at a region located within the trans-

membrane domain, close to the channel pore. Although the precise site of 

interaction remains unclear, a series of residues between amino acids 4700 and 

4955 have been associated with altered binding properties (see Ch6 for more 

information). The importance of this site was confirmed by experiments on various 

chimeras made between Bombyx mori and rabbit RyR. These experiments also 

revealed an N-terminal region (amino acids 183-290) important for channel 

sensitivity to FLB, hinting that this region likely connects to the C-terminal region 

via the central core of the structure (Kato et al. 2009). Binding at this site occurs 

irreversibly (in contrast to most ligands which unbind in a concentration-dependent 

manner), fixing the structure into an open configuration. The diamide may form a 

physical obstruction, possibly preventing rotation of the channel core, prior to 
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closing. There is thought to be a slight difference in the manner in which the two 

groups of diamides occupy the site, as shown by radioligand studies (Isaacs et al. 

2012) (Ralf Nauen 2019, unpublished). This binding site difference can result in 

meaningful disparities in field efficacy between the compounds (e.g.(Cho et al 

2018)). The binding site is not connected to that of ryanodine, the pharmacological 

probe that gives the receptor its name (Williams and Tanna 2004). This plant 

alkaloid, whose insecticidal properties are well known, does not inhibit or prevent 

diamide binding in any way. Investigations into diamide binding have primarily 

been achieved by radioligand binding assays, in combination with mutagenesis of 

suspected key sites (Casida 2018). The latter type of study has been aided by the 

evolution and selection of RyR mutations which have been shown to inhibit binding 

to the insect RyR (Troczka et al. 2016). Chapters 3, 4, 5 and 6 will return to the 

theme of diamide action upon the RyR following a detailed account of the channel’s 

physiology, below.  

1.5.1 The Ryanodine Receptor 

Long before its significance as the target of a globally important class of insecticides 

was realised, the RyR has been the subject of thorough medical investigation for 

several decades. This large ion channel is a central player in calcium homeostasis in 

humans, which is not only critical to muscle function but also gene regulation and 

a variety of developmental processes (Mikoshiba 2011). Mutations in the RyR in 

humans can lead to an array of severe conditions including Malignant Hyperthermia 

(MH) (Zvaritch et al. 2009); Central Core Disease (CCD) (Loy et al. 2010); and 

Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) (George et al 2007), 

each of which is reviewed further in section 1.6.5.  

This section will summarize the properties of the RyR, and key information on the 

mammalian receptor that facilitated the study of the insect channel. A recent leap 

forward in the state of knowledge on insect RyRs, due to their role in diamide 

efficacy and resistance, has paved the way for their study in the same way as the 

mammalian protein. For example, high resolution cryo-imaging structures of 

mammalian RyRs can be used as scaffolds for homology models of insect RyRs. 

Broad similarities between insect and mammalian tertiary structures, at all but the 

most divergent regions or most detailed investigations, largely circumvent the 

requirement for an insect 3D structure, especially in the light of recent homology 

modelling efforts (see Ch6+Ch7). Cloning efforts for various insect RyRs allows 
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discussion of variability amongst the order, and discussion of genetic regulation, in 

a manner arguably more advanced than that seen in the mammalian literature 

(Troczka et al. 2018).  

Four decades of medical knowledge on mammalian RyR manifestly lays the 

foundations for any discussion of insect RyR, such that the two will be discussed 

side by side during this introduction. The terms RyR1, RyR2 and insect RyR will be 

used throughout, where RyR1 refers to the mammalian skeletal isoform; RyR2 

refers to the mammalian cardiac isoform; and insect RyR refers to that from any 

insect species.  

1.5.2 Calcium Homeostasis 

Normal cell function is maintained by the homeostatic balance of Ca2+ at low 

cytosolic concentrations (~100nM), via a variety of pumps and active transporters 

which counter the leak that occurs both from the extracellular space and from 

internal stores (Taylor et al. 2009; Berridge et al. 2003). The endo/sarcoplasmic 

reticulum (ER/SR) in muscle cells is the site of calcium storage from which calcium 

release is mediated by the RyR, along with the inositol triphosphate receptors 

(IP3Rs). Just half the size of their neighbour, IP3Rs follow a different regulatory 

pathway to the RyR and are important in cell development (Furuichi et al. 1989). In 

the context of muscle contraction, IP3Rs play a secondary role.   

Studies on Drosophila melanogaster have shown that the Ca2+ regulatory process 

described in this section is broadly conserved, albeit lacking some proteins of lower 

importance (Chorna and Hasan 2012). Functional differences between mammals 

and insects will be discussed.  

1.5.3 RyR2 

Mammals, on which much of this discussion focuses, have three RyR isoforms, with 

RyR1 expressed primarily in skeletal muscle, RyR2 in cardiac muscle and cerebral 

tissue, and RyR3 (not discussed here) at low levels in a variety of cells (McPherson 

and Campbell 1993; Fill and Copello 2002). All isoforms are also expressed in non-

muscle tissues such as liver and nerves, with variation in transcriptional splicing 

allowing tissue-specific expression patterns and function (Zalk et al. 2007).  

Non-mammalian vertebrates have only two isoforms, α-RyR and β–RyR, both of 

which are expressed in muscle cells, with functions broadly comparable to RyR1 
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and RyR3, respectively (Murayama and Kurebayashi 2011; Ottini et al. 1996). 

Insects have just one isoform, although variation in transcriptional splicing 

potentially allows moderation of protein function across time and space, in a 

manner similar to that seen in the mammalian isoforms. It is known, for example, 

that P. xylostella has 21 different splice forms, with expression of 7 of these being 

crucial during S1 development (Troczka et al. 2018).  

The insect RyR shares highest homology with the human RyR2 isoform, and as such 

the following discussion will focus on this isoform. 

1.5.4 Excitation Contraction Coupling 

Mammalian muscle contraction occurs through a highly regimented and repeatable 

process called Excitation-Contraction-Coupling (ECC), in which nervous stimulation 

of a muscle fibril results in calcium release into the cytosol of that fibril, mediating 

contraction of the cell via sliding myo-filaments (Bers 2002).  

As a nervous impulse arrives and permeates the sarcolemma (the muscle fibril 

sheath), this causes Na+ channel activation and acetylcholine release. Invaginations 

of the sheath, called T-tubules, then transmit the acetylcholine to the muscle cells, 

where it activates activating Cav1.1 channels (also called L-type Ca2+ channels or 

DiHydroPyridine Receptors) (Santulli et al. 2017). Cav1.1 opening allows a small 

amount of Ca2+ influx from the extracellular space, however this is insufficient to 

elicit coordinated contraction. Up to 90% of the required Ca2+ flows from the SR, 

primarily via the RyR, following a process known as Ca2+-Induced-Ca2+-Release 

(CICR) (Fabiato 1977). In this fashion, free-Ca2+ in the cytosol is increased by an 

order of magnitude in a fraction of a second (Bers 2002). In mammals, RyRs in 

muscle cells form regular arrays, in which the channels are allosterically coupled, 

such that near simultaneous opening can occur (Porta 2012) – it is not known 

whether insect RyR form similar arrays. Ca2+ binds to the troponin complex (a 

complex of three regulatory proteins that is integral to muscle contraction in 

skeletal and cardiac muscle, but not smooth muscle), causing a conformational 

change that exposes binding sites for myosin on the muscle actin filaments. Myosin 

binding leads to the formation of an actin-myosin bridge that allows muscle 

contraction to begin. Simultaneously, the evacuation of Ca2+ from the cytosol takes 

place. Depletion of SR calcium stores causes RyR closure (Zima et al. 2008), whilst 
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the NCX (Na+/Ca2+ exchanger) and SERCA (Sarco/Endoplasmic Reticulum Ca2+ 

ATPase) pump Ca2+ back to the extra-cellular space, and the SR, respectively.  

On a macro-physiological level, ECC in insects appears to be identical to the above 

(Takekura and Franzini-Armstrong 2002). By contrast, microscopic observations of  

the king scallop, Pecten maximus (Bivalvia) found no evidence of T-tubules, with 

the SR instead situated close enough to the cell periphery to make contact with the 

outer membrane, with archetypal ‘foot-like structures’ of the RyR observed 

bridging that gap (Abe et al. 1997). However, it appears that insects do possess T-

tubules and the neuronal-muscle boundary bears physiological similarity to that of 

insects (Takekura and Franzini-Armstrong 2002). Indeed, recent investigations 

suggest that insects possess all the main components of vertebrate striated muscle 

(Collet and Belzunces 2007) (Collet 2009). Like mammals, insects have striated and 

non-striated muscle, with the striated (or fibrillar) form required for flight (Domingo 

et al 1998; Royuela et al. 2000). The function of non-striated muscle has so far 

received minimal investigation.  

1.5.5 Modulation of RyRs 

The entire process of muscle contraction is mediated by changes in Ca2+ 

concentrations, where the RyR is the primary Ca2+ regulator. However, it does not 

act alone in this role, but is supported by a host of components that together make 

up the RyR-macromolecular complex, as described below. Studies on single 

channels have shown that Ca2+ concentration ([Ca2+]) also mediates changes to the 

RyR itself, with channel-gating probability (or channel-open probability, Po) 

dependent upon free-Ca2+ (Mukherjee et al. 2012). In discussion of Po and channel 

regulation, the term ‘gating’ refers to the structural transition between the closed 

(non-conducting) and open (conducting) state of the channel pore itself, a 

phenomenon that occurs stochastically, but is influenced by the propensity of the 

channel to open, governed by localised factors (e.g. Ca2+, ATP, Mg2+, redox, pH) 

(see Figure 1.7). Specifically, ‘activation’ refers to the increase in Po of a channel, 

which occurs as a result of the large-scale conformational change brought about by 

ligand binding.  

1.5.6.1 Free Ca2+ ions 

The RyR has the capacity to detect [free-Ca2+] on both sides of the SR membrane 

and Po reflects that balance (Fig. 1.7). When cytosolic [free-Ca2+] is below 100nM, 
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P0 is zero. Opening of the L-type calcium channel releases ions into the cytosol, as 

described previously, increasing [free-Ca2+] dramatically. At 10μM, the channel 

reaches its maximum Po. As cytosolic concentrations reach up to 100μM, and 

luminal concentrations reach a minimum, Po drops sharply, indicating the end of 

CICR and the resumption of normal calcium homeostasis. Po thus forms a bell-

shaped curve (Bezprozvanny et al. 1993), which indicates the presence of a 

moderate/high affinity activating site and a relatively low affinity (100μM) 

inhibition site on the cytosolic side (Santulli et al. 2017), and possibly an additional 

inhibition site on the luminal side (Song et al. 2011). The relationship between Po 

and [free-Ca2+] is known to differ between RyR isoforms and is certainly likely to 

differ between mammals and insects (Hwang et al. 2012). Electrophysiological 

measurements on D. melanogaster RyRs show a much larger conductance of Ca2+ 

ions, for example, despite similar overall kinetics (Sattelle et al. 2008).  

 1.5.6.2 The Macromolecular Complex 

RyRs have been referred to as ‘allosteric giants’ (Van Petagem 2014) in reference 

to their size, but also for the extensive regulatory web surrounding them, including 

the macromolecular complex. The list of regulatory components includes 

calmodulin (CAM), two FK506-binding proteins, (FKBP12 (Calstabin 1) and FKBP12.6 

(Calstabin 2)) and the soluble resistance-related Ca2+ binding protein (Sorcin), 

Protein Kinase A (PKA), protein phosphatases 1 (PP1) and 2A (PP2A), 

phosphodiesterase 4D3 and calmodulin-dependent protein kinase II (CaMKII). 

Combined, these components help prevent stochastic channel gating, or 

‘subconductance’, to give the receptor a binary output. The roles of each 

component will be described briefly below, and their combined action is illustrated 

in Fig 1.7 A major caveat to this discussion is that the composition of the RyR-

macromolecular complex in insect muscle cells is not known. Furthermore, insect 

Sf9 cells (Ch3, 4 and 6) are unlikely to have many of the accessory co-proteins 

discussed here and may have other co-proteins that are not included here.  

1.5.6.3 Calstabins and Calmodulin: Stabilising Ca2+ flow 

Calstabins and calmodulin are modulators located on the cytosolic side of the RyR 

complex, working together to accelerate the transition between high and low Po. 

CaM is a 16.7 kDa Ca2+ binding protein, and the best-studied ligand of RyR2. With 
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four Ca2+ binding domains (Babu YS 1985), CaM increases channel sensitivity to 

[free Ca2+], increasing Po at low cytosolic concentrations and decreasing Po at high 

concentrations (Xu and Meissner 2004). Its role in limiting Ca2+ release and initiating 

channel closure is crucial for mammalian cardiac function (Yamaguchi et al. 2007). 

The binding domain sits in the cytosolic region, spanning amino acids 3583–3603 

(hRyR2).  

Calstabins aid in stabilisation of the receptor by increasing the probability of open 

or closed configurations. In the absence of calstabin binding, random 

Figure 1.7. RyR2 channel opening is mediated by binding of regulatory ligands, which 
prevent ion ‘leak’ by stabilizing gating. P0 is a function of free [Ca2+] on both the lumenal 
and cytosolic sides of the channel. As lumenal [Ca2+] rises, calsequestrin (CSQ-2) Ca2+ sites, 
and those on the RyR itself, become occupied, leading to CSQ dissociation and channel 
opening. As cytosolic [Ca2+] increases, calmodulin (CaM) transitions from Apo- to Ca2+-
bound form, encouraging channel closure. At maximal cytosolic [Ca2+], sorcin binds to RyR 
to prevent channel re-opening. 
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thermodynamic movements of the cytosolic cap translate to frequent, 

uncoordinated gating, resulting in ‘Ca2+ leakage’ which is associated with 

arrhythmias and heart failure in humans. The binding site of FKBP is known (Guo T 

et al. 2008), and it has been suggested that its stabilising effects are mediated by 

clamping two RyR domains thereby increasing the energy required for 

conformational change (Efremov et al. 2015). 

1.5.6.4 Signal limit: Sorcin (closing after [Ca2+] overload) 

Sorcin, like calstabin, helps to terminate Ca2+ release, by binding to RyR at high 

cytosolic [free-Ca2+] to initiate channel closure (Bers 2004; Rueda et al. 2006). In its 

Ca-bound configuration, this 21.6 kDa protein also interacts with other Ca2+ 

homeostatic components, possibly increasing the activity of SERCA and NCX pumps 

(Zamparelli et al. 2010).  

1.5.6.5 Lumenal regulation: The Calsequestrin Complex 

Prior to muscular contraction, Ca2+ release must be delayed until SR storage is 

sufficient to allow a full CICR-mediated ECC response. Lumenal regulation by the 

Calsequestrin (CSQ) complex achieves this. When Ca2+ is less than 100μM, two 

anchor proteins, Triadin and Junctin, bind CSQ to the RyR, minimizing Po in the 

process (Zhang et al. 1997). As luminal Ca is restored, CSQ binding sites (up to 50 

on a single protein unit) become occupied (MacLennan and Wong 1971). As Ca2+ 

ions flow back into the SR lumen, they are initially chelated by CSQ, with up to 50 

Ca2+ sites on a single protein (MacLennan and Wong 1971). Once these binding sites 

are filled, the calsequestrin complex is disrupted, releasing triadin, junctin and CSQ 

from the RyR to facilitate channel opening.   

1.5.6.6 Phosphorylation of RyR2 and regulatory ligands 

Phosphorylation sites appear crucial for regulating RyR2 activity. In general, 

phosphorylation has been shown to sensitise Ca2+ release in cell lines, whilst in 

single channel studies Po is increased in the presence of PKA (Valdivia et al. 1995). 

Studies on rabbit RyR2 have shown that phosphorylation and de-phosphorylation 

both have the potential to upregulate channel activity, for example causing failures 

and arrhythmias (Camors and Valdivia 2014).  

The overall picture is complicated by the suspected presence of many, as yet, 

unstudied phosphorylation sites. Just three closely linked sites have been 

unambiguously defined, based on the impacts of knockout mutations at residues 
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S2031, S2808, and S2814, which have been shown to be phosphorylated by two 

kinases, PKA and CaMKII (Takasago et al. 1991). Of these, S2031 is an exclusive PKA 

site, phosphorylation of which is suspected to play a role in limiting cardiac cell 

proliferation. A non-phosphorylatable mutation at this position is associated with 

cardiac hypertrophy (Benkusky et al. 2007). A recent study found that an 

experimental reduction in RyR2 expression results in an increase in phosphorylation 

at this site, consistent with its function as a balancing mechanism (Guillén 2017). 

S2808 and S2814 are PKA- and CaMKII- dependent sites, respectively. These two 

sites are in close proximity and form a ‘phosphorylation loop’ on the protein 

structure and act to upregulate channel activity in the phosphorylated state 

(Wehrens et al. 2006). However, neither site is present in insects, which have a 

48bp insertion that elongates the phosphorylation loop whilst potentially adding 

one novel phosphorylation site in place of the two that are missing (Xu and Yuchi 

2019).  

1.6 RyR Sequence, Structure and Function 

The RyR, already critical to human medicine, is becoming an increasingly important 

model in agricultural entomology. Functional studies have traditionally relied on 

forward-genetic analysis of diseased states, complemented by reverse-genetic 

approaches. However, studies have long been hampered by a lack of information 

on the structure of this receptor. 

The RyR is too large and complex to be studied by X-ray diffraction methods and as 

such cryo-EM is now the method of choice. In 2012, something of a paradigm-shift 

occurred, dramatically improving resolution of RyR imaging. Old 20Å images, 

struggling to resolve even the cytosolic cap, have been superseded by sub-4Å 

structures that resolve even the details of the channel core. Box 1.3 covers the 

history of RyR imaging and the sudden acceleration in imaging capacity.  

Near-atomic resolution structures of the mammalian RyR1 (Yan et al. 2015) and 

RyR2 (Peng et al 2016) have now been captured. This was achieved initially with the 

channel in the closed state, bound by FKBP or ryanodine (Zalk et al. 2015), but since 

then structures in a variety of conformations have been published, all with sub-4Å  

resolution in the core regions (des Georges 2016). The capacity for functional study 

in mammals has consequently been revolutionised. Previous studies on RyR 

diseases have gained a new emphasis.  



34 
 

In contrast, insect structural studies remain limited. Just one partial cryo-EM has 

been achieved (Lin 2017), but this structure is of limited use without a map of the 

channel core. Until sufficient progress is made on imaging insect RyRs, mammalian 

structures may be used to predict those of insects. Protein alignments show that 

human and Drosophila channels are ~47% alike on average (Sattelle et al. 2008), 

with similarity increasing to >70% around the channel core (unpublished 

alignment). Recent attempts to extrapolate mammalian to (highly divergent) insect 

structures are not without risk or controversy (Lin et al. 2019).  

This section comprises an overview of the channel’s structural components, a 

description of the newly elucidated opening mechanism, and investigations into the 

function and location of small-molecule binding.  

Box 1.3: Highlights of imaging studies 

1987: First purification and visualisation of human cardiac RyR2 by staining, viewed from 

top down (Inui et al. 1987).  

1992: First images of unstained channel in its entirety, in 3D, revealing 4-fold symmetry 

and a characteristic mushroom shape, with a small cylindrical TM domain (Radermacher 

et al. 1992).  

1992-2005 hiatus: Orientation bias largely prevents improvements in structural imaging 

(because the protein predominantly lies either cap-side-up or cap-side-down). However, 

interaction sites for most, if not all, of the known RyR modulators were identified during 

this time e.g. sites for phosphorylation; redox modification; Calmodulin binding and 

FKBP12 (immunophilin) binding (see references in text). 

2005: the first internal structural view of the protein achieved, using a perforated imaging 

grid to allow the protein to exist equally in all orientations (Samso et al. 2005).  However, 

whilst this view allowed many of the cap structures to be elucidated – the structure of the 

channel core remained shrouded in mystery. The debate over the number of TM helices 

would not be solved for a further decade.  

2012: the first study to report successful implementation of direct electron detection in 

cryo-EM (Bammes and al 2012). This is an example of a major technological leap 

immediately fuelling a flood of studies and progress in the field. Previously, each electron 

released from the analyte would strike a charged plate in order to be converted into a 

photon – however, electron impact usually results in release of multiple photons, causing 
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1.6.1 General Structural overview 

This substantial, mushroom-shaped channel measures 270Å across the top of a cap 

that represents 80% of its mass and which rests upon the SR lumen. The remainder 

of the channel’s mass is buried within the SR membrane as a series of helices 

supporting the pore (Van Petagem 2014).  Ligands, such as cellular modulators and 

other small molecules, generally bind to the large surface area provided by the cap 

region and enact conformational changes upon the cap structure. These changes 

are transmitted to the pore of the channel through complex allosteric coupling 

between the four protomers, which move relative to one another. Column-like 

helices in the central domain conduct these movements down into the channel core 

(Peng and al 2016).  

The 2.2-megadalton RyR structure is organised hierarchically, with over ten distinct 

domains interlocking with one another. Functionally, the channel can be split into 

Core and Periphery. First, the central core, composed of the N-Terminal, Central 

and Pore-Forming Domains (NTD, CD and PFD), is approximately 100Å tall and 

projects out of the SR membrane. The Handle Domain (HD), which connects the 

Core regions, also leads outwards toward the second functional region, the 

Periphery. Two arms jut outward, at 90 degree angles from one another, together 

a loss of resolution as they pass through the CCD detector. Direct Detection Devices thus 

allowed a drastic improvement in resolution.  

2014: Imaging at 6Å resolution allows deconstruction of the large-scale cap and arm 

movements involved with channel opening (Efremov et al. 2015).  

2015: RyR1 imaging at sub-4Å resolution published by 3 separate labs in the same year. 

Images allow mapping of the channel core down to atomic scale, although more 

disordered regions of the structure still remain at poly-alanine-level resolution (Yan et al. 

2015; Zalk et al. 2015).  

2016: Full atomic structure of RyR2 published, along with description of gating mechanism 

on an amino-acid-level (Des Georges et al. 2016). highly detailed characterisation of RyR1 

interactions, based on single particle cryo-EM analysis and amino-acid substitution of key 

residues.  

2017: First partial crystal structure of an insect RyR, that of Plutella xylostella (Lin et al. 

2018) resolving just the N-terminal domain.  
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forming extensive structures composed of Helical Domains (HD) on one arm and 

SPRY domains on the other (des Georges 2016). At the base of the central Core, the 

PFD is formed by six membrane spanning domains, which lead sequentially inward, 

finally terminating in the Pore itself, and linking back to the rest of the Core through 

the C-Terminal Domain (CTD).  

The Pore, as an isolated unit, resembles channels of other families, such as the KcsA 

bacterial sodium channel (Balshaw et al. 1999), and the IP3R, a related Ca2+ channel 

on the SR membrane. The Pore can be expressed autonomously, and maintains its 

function as a Ca2+ sensitive channel (Xu et al. 2000). At the extreme end of the Pore 

sequence, the last 15 amino acids are alone responsible for bonding the four 

protomers together into a homo-tetrameric unit (Gao et al. 1997).   

Whilst the Pore can exist as an independent entity, the function of the Periphery, 

and the non-Pore remnants of the Pore, is regulatory – without it, pore function is 

heavily impaired, for example the channel does not close at high Ca2+ 

concentrations (Bhat et al. 1997).  Of the channel modulators described in the 

section above (‘Modulation of RyRs’), all bind within the cytosolic domain. The size 

of this domain, despite not being required for ion conduction, is testament to the 

sheer number of interactions taking place on this channel. Furthermore, the 

Periphery is responsible for organisation of the channel in space and time. 

Synchronisation between RyRs is crucial in order to raise cytosolic Ca2+ 

concentration by orders of magnitude in milliseconds. This synchrony is achieved 

by precise spatial organisation – where channels are allosterically linked to 

neighbouring channels to form an extensive array. Under such conditions it has 

been observed that two or more channels may open nearly simultaneously and 

spontaneously (Porta 2012).  

The SPRY (SP1a/RYanodine receptor) domains have long been known for their 

regulatory importance – and are linked to immune responses when present in other 

proteins (D'Cruz et al. 2013). In RyR1, the SPRY domain is responsible for direct 

Cav1.1 interaction after an action potential (Tae et al. 2009), however insect 

channels do not undergo direct Cav1.1 coupling, so their role here is not known.  

1.6.2 Opening Mechanism: An Overview 

In order to fulfil the various regulatory roles described previously, the RyR pore-

opening mechanism must be able to respond to a wide variety of ligand binding 
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conditions. It is now known that the Pore, far from being a binary switch, is capable 

of taking up a variety of intermediate configurations, dependent upon which 

combinations of ligands are bound (Des Georges et al. 2016). Prior to discussion of 

such intermediates, a basic description of the ‘channel opening’, is valuable 

(Efremov et al. 2015).  

Opening begins with the occupation of Ca2+ binding sites. Conformational changes 

follow, altering the positions of the transmembrane helices relative to the cytosolic 

cap and increasing the average gate diameter. This occurs in the following manner. 

Radial rotation of the Periphery occurs around an axis formed by the Handle 

Domain (Peng and al 2016), making a ‘swirling motion’ when viewed from above. 

This movement is transferred from the Central Domain (CD) through the O-ring 

(Peng and al 2016), a region in which CTD, S6, and the S2-S3 linker come together 

to form an O-like structure (see Fig. 1.8).  Thus, swirling of the cap leads to coupled 

outward shifts of the entire pore-forming region, as well the transmembrane region 

more generally. The Periphery then tilts outward and downward, whilst the pore 

contracts vertically and expands outward. The Gate, which is formed by 

convergence of the four copies of a single residue, swings open (Des Georges et al. 

2016).  

Gating itself has been found to be both transitory and stochastic, effected heavily 

by random thermodynamic movements which occur independently of protein 

conformation. However, the above conformational changes cause large-scale shifts 

in apparatus, greatly altering P0. The period of each ‘opening event’ is fixed (within 

a given cellular state), whilst it is the increased probability of such events occurring 

that leads to the rise in Ca2+ conductivity in response to action potential (Sitsapesan 

and Williams 1994). Po ranges from near-zero to near-certainty (Po=1), depending 

upon the combination of bound ligands and moderators which determine channel 

conformation.  

1.6.3 Opening Mechanism: Detailed investigations 

On the scale of the ion-conducting Pore region, some 100Å in height, the large-scale 

changes described above are focussed down to minimal, rotations and shifts. Only 

with the publication of near-atomic resolution structures has it become possible to 

speculate the opening mechanism, whilst extensive reverse-genetic studies have 

subsequently substantiated the available evidence. These studies have been 
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steadily taking place since the medical importance of the receptor became clear 

(see below ‘RyR amino acid alterations in disease states’). However, studies of the 

receptor under normal functionality have accelerated in recent times and are 

summarised here. Contributions to the field having occurred on a variety of 

receptors including human RyR1, rabbit RyR1, mouse RyR2, and pig RyR2 and RyR3 

however, for clarity, residue numbers are given based on human RyR2 (hRyR2) in 

this section and subsequently. All of the altered residues discussed in this section 

are conserved in insect RyRs, and indeed across invertebrate orders, providing 

further support of their functional importance (unpublished data).  

The translation of large-scale into small-scale movements, descending top-

downward through the channel, must logically occur at a fixed point – a Hinge – to 

mediate the see-saw motion. One such hinge is thought to reside at residue G4935 

(TGQ hRyR2) (Mei et al. 2015). Around this point, which lies sequentially 

downstream of the pore, the S6 solenoid can be seen to pivot, in response to 

bowing of the Periphery, in order to enact pore closure (Des Georges et al. 2016). 

A second Hinge appears to lie upstream of the Pore, at position F4853 (FFV hRyR2) 

(Peng and al 2016) but it is unclear whether these two hinges operate in tandem, 

or whether each operates individually depending upon the conformational change 

underway.  

Once structural changes have been transferred through the Hinge(s), they are 

conducted to the inner Pore through the S6 solenoid. Movements within the Ca2+ 

conducting channel occur on an atomic scale. Viewed from the inside, during open 

configuration, the walls of the Pore narrow gradually from top downward. This 

trend continues down through the transmembrane region until, at the base of the 

membrane-spanning region, the Pore reaches its narrowest point. This Filter 

determines which ions can pass through the channel. In hRyR2, the 2.5Å filter is 

formed by glycine residues converging from each protomer at position G4864 (QGL 

hRyR2). Macrostructural movements do not alter the G4864 position, but they do 

cause dramatic changes further upwards, to residue I4867 (IID hRyR2). This is the 

Gate, and the four identical residues at this position face outwards during channel 

conductance, to make a gap width of 4Å (far wider than the 2.5Å filter of its 

neighbouring residue). However, during channel closure, the four residues rotate 

and converge inward, dramatically reducing the gap to around 0.5Å, which is 

insufficient space for ion passage, thus closing the Gate.  
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It has been argued that a second site of selectivity exists higher up (more lumenal) 

in the pore than the G4864 filter. A GGGIG group is present, which is known in 

similar channels to act as a selectivity filter for cations. In this case, the region is 

followed by an aspartate and a glutamate (D4829 and E4830, GGGIGDE hRyR2) 

residue, whose inward facing carboxyl groups limit the width of the channel 

significantly (Gillespie 2014). Topographies of the inner surface of the pore confirm 

the presence of this region. Furthermore, in Rabbit RyR1, G4894 (G4824, hRyR2, 

GGGIGDE) has been identified as the narrowest region in the open channel (Des 

Georges et al. 2016). If the position of this selectivity filter is variable between 

species and isoforms, the role of the I4867 as the Gate appears to remain constant, 

at least in mammalian channels.  

1.6.4 Calcium and Caffeine: In search of a binding site 

The RyR gating mechanism is controlled by binding interactions with small 

molecules. Ca2+ is the primary regulator, possibly requiring ATP, but caffeine, the 

much-used experimental modulator, can mimic the action of Ca2+
 and is thus 

expected to partially share a binding site. Together, these molecules influence pore 

width. Site I4867 – the Filter – can be seen to open wider and wider as binding sites 

for these molecules fill up. In the presence of Ca2+ only, pore width increases 

minimally, suggesting a requirement for ATP binding in tandem. Caffeine binding is 

also known to have similar effects on pore opening: in the presence of caffeine but 

absence of Ca2+ pore width is similar to that in the Ca2+-only state. Maximum pore-

width is achieved by binding of Ca2+, ATP and caffeine together, suggesting that all 

three have independent and additive roles to play in opening of the channel (Des 

Georges et al. 2016). For each of these molecules, arrays of interacting residues 

have been identified through reverse-genetic study. Only very recently have these 

studies, in combination with high-resolution imaging, allowed confident 

investigation of these sites. As will be seen, for all three molecules, residues of 

interest are clustered tightly around an area known as Thumb-and-Fingers (TAF). 

They therefore sit at the interface between CD and CTD, right at the heart of the 

integral O-ring region.  

1.6.4.1 Calcium 

Myofibril excitation-contraction-coupling requires rapid and synchronised release 

of Ca2+ from internal stores, triggered by minute increases in cytosolic free-Ca2+, as 

brought about by channels on the cell outer membrane. Thus, cytosolic Ca2+ sensing 
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is of fundamental importance to channel function. Each protomer of the RyR 

contains an EF-hands (EF) group, situated close to the TAF, in the CD. This EF group 

is a well-known Ca2+ binding site on various proteins, including Calmodulin 

(Kuboniwa et al. 1995), and was thus unambiguously stated to be the Ca2+ sensor 

in RyR (Efremov et al. 2015). However, recent deletion of the entire EF motif (4026-

4062, hRyR2) had zero impact on cytosolic Ca2+ activation (Guo et al. 2015). Two 

earlier studies had implicated a glutamate residue just upstream of the EF hands. 

Alteration of E3987 (LEG hRyR2) reduced sensitivity to cytosolic Ca2+ activation by 

a factor of 1000 to 10,000 (Chen et al. 1998; Li 2001). Recent atomic-scale imaging 

has now allowed pinpointing of this site directly on RyR1 (Des Georges et al. 2016). 

As shown in Fig 1.8(d) The carboxyl groups of E3893 (TEG) and E3967 (TEY), of the 

CD, press up against that of T5001, of the CTD (3848, 3922 and 4931, hRyR2). 

Interestingly, the previously identified site is not involved, despite the dramatic 

phenotype. This indicates again the importance of the CD-CTD connection in the O-

ring domain, in that alteration of residues here annihilates channel function. Since 

then, the Ca2+ site has been clarified still further, with the investigation of W4645 

(YWD hRyR2). This residue appears to act as a moveable lock, which mediates 

changes in Ca2+ binding probability under channel ‘sensitization’ (e.g. by caffeine) 

(Murayama, 2018).  

Whilst cytosolic Ca2+ sensing is important for RyR opening, closing of the channel 

requires a lumenal sensor to interact with CSQ and detect store depletion. A second 

function of this site is to detect store overload, which also has the capacity to 

stimulate channel opening. Logically, this site should be located on the lumenal side 

of the channel and indeed recent studies focus on a region distinct from those 

above. E4872 (GEL, hRyR2) is now thought likely to play a role in lumenal Ca2+ 

sensing. Firstly, ablation of this site abolishes lumenal, but not cytosolic, Ca2+ 

activation of mouse RyR2. Further, swapping this residue for a histidine, which 

binds metal, converts RyR2 to a lumenal Ni2+-gated channel (Chen et al. 2014). 

Furthermore, mutation of a nearby residue, E4878 (QEQ, hRyR2), also reduces 

lumenal Ca2+ activation. Channel movement during opening appears to show E4878 

moving toward E4872 (hRyR2), suggesting that Ca2+ may initiate the structural 

transition by pulling this residue inward (Peng and al 2016).  

1.6.4.2 Caffeine 
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Caffeine is an important experimental probe of RyR function, appearing to 

stimulate the receptor in a Ca2+-like manner. This suggests it may occupy, at least 

partially, the Ca2+ binding site (Murayama 2018). In RyR2, D4868 and E4872 are 

known to interact with caffeine, based on mutation of these residues, which 

dramatically diminishes caffeine efficacy (Chen et al. 2014). Both of these residues 

are also implicated in cytosolic Ca2+ sensing. Mutations C4888H, C4891H, and 

H4908C also completely abolish the activation of RyR2 by caffeine, although it is 

thought that this has more to do with connectivity between the zinc-finger domain 

in the TaF region (Peng and al 2016). W4645 is a crucial site for Ca2+ binding, 

however alteration of this residue also affects potentiation by caffeine, which is 

thought to bind nearby. Binding of caffeine causes a change in orientation of 

W4645, such that the Ca2+ site becomes smaller, and more energetically 

favourable.High resolution images show, unambiguously, that this residue is 

included in the binding site, along with I4926 (LIN hRyR2) from the CTD. 

1.6.5 RyR amino acid alterations in disease states: clues to 
function 

Alterations to channel regions can provide clues to the function of that region. Such 

is the basis of reverse genetics (e.g Homem and Davies 2018), where alterations are 

generated deliberately. Sometimes, however, alterations arise naturally through 

amino acid substitutions, and these can be equally valuable. In the context of ion 

channels, and RyRs specifically, disease-causing alterations on the mammalian 

channel have long been the target of investigation. Lessons learnt from such studies 

are discussed briefly in this section, along with their implications for structure and 

function of the insect channel.  

In humans, RyRs are much studied models for muscular and cardiac disease states, 

due to the integral role played by these channels. Three pathologies have received 

considerable study: Malignant Hyperthermia (MH); Central Core Disease (CCD); and 

Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). All three are 

associated with amino acid substitutions in the RyR. As will be seen, profound 

phenotypic effects arise due, often, to just a single point mutation. These cases 

represent an opportunity to dissect the function of the surrounding protein regions.  
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MH is characterised by sustained and uncontrolled Ca2+ release from RyR1 within 

muscle cells, in response to volatile anaesthetics such as halothane. Locked into a 

semi-contractile state, muscle metabolism rises sharply, leading to build-up of heat 

and lactate (Larach et al. 2010). Homeostatic removal of lactic acid causes 

reductions in blood pH, or acidosis, which can be fatal. Mutations associated with 

MH are clustered in the NTD and have been shown to weaken the cohesion of the 

protein, with the resulting ‘unzipping’ of the structure, presumably allowing 

unregulated channel gating (Zvaritch et al. 2009). Such findings demonstrate the 

importance of NTD-CD connectivity in regulating channel gating. It has been 

suggested that the region forms a ‘Gating Ring’ around the crown of the RyR, with 

NTDs of the four protomers coming together to lock the channel into its closed state 

(Van Petagem 2014). 

CCD is a rare disorder resulting in various degrees of muscle weakness during 

infancy, which may persist through adolescence. It is recognised by an altered 

morphology of muscle fibres containing “core” lesions, which can vary in intensity 

and localization. Lesions and the resulting weakness are associated with severe 

reductions in Ca2+ permeability, such that the ECC process is slowed or prevented 

altogether. In one case, a single point mutation, causing a I4895T substitution, was 

found to completely abolish Ca2+ permeation (Loy et al. 2010). It was later learnt 

that this residue is a key component of the selectivity filter (Gillespie 2014), and this 

position is very similar to filters in some bacterial potassium channels. Over 160 

Figure 1.8. a) Amino acid sequence and key domains of rabbit RyR1, as recently resolved in 
Yan et al. (2015). NTD (N-Terminal Domain); SPRY1/2/3 (SP1a/RYanodine Receptor); H 
(Handle); (HD1/2 (Helical Domain); CD (Central Domain); EF (EF-hands);  

b) Close-up of the pore-forming region, with key positions labelled: LL (Lumenal Loop); PH 
(Pore Helix); S6 (Solenoid 6); CTD (C-Terminal Domain). Critical amino acids are labelled in 
pink (filter and gating); red (hinging); light green (Ca2+ sensing); dark green (caffeine sensing). 
See references in text.  

c)  Graphic representation of tertiary structure of two opposing RyR subunits, in dimeric 
formation. Structural components are labelled following notation in (A) and (B). Four subunits 
are required for RyR self-assembly, with portions of the CTD, S6, LL and PH regions converging 
along a central column to form the channel pore.  

d) Two RyR subunits, displaying functionally critical amino acids and regions. LHS: Binding 
sites for Ca2+ (light green star) and caffeine (dark green star) recently visualised (Des Georges), 
can be seen to converge around a region called the ‘O-ring’. Other critical residues labelled, 
following notation in (B). Lower RH panel: The four regions of medically important mutations 
are labelled (CPVT 1-4, Black). Mutations in these regions are associated with pore ‘leak’.  
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causative mutations have been identified for MH, and 100 for CCD 

(http://triad.fsm.it/cardmoc/ (accessed 02/07/19)).  

CPVT is characterised by a RyR-mediated Ca2+ leak from the SR during resting phase 

(Santulli et al. 2015). If the leak is severe, depolarisation of the muscle cell may 

occur arrhythmically and spread to neighbouring muscle tissue across the heart, 

causing potentially fatal cardiac arrest (Blayney and Lai 2009). The exact 

mechanisms behind this leak vary depending upon the mutation site. Advances in 

cryo-EM mapping allow the resolution of clusters of CPVT-causing mutations into 

four specific structural domains (see Fig 1.8d). In this case, and for all three 

diseases, mutations are clustered at interfaces between protomers (Tung et al. 

2010; Van Petagem 2014), where they disrupt channel quaternary structure and 

thereby prevent proper regulation. Secondarily, disease-related mutations are 

clustered at the activation domain, where they either disrupt Ca2+ sensitivity, or 

prevent necessarily modulation by accessory proteins. It has recently been shown, 

in RyR2, that the CPVT-disease mutations can almost all be explained in terms of 

disruption of intramolecular interactions. Those in CPVT1 tend to lie on connections 

between NTD and Handle, for example, whilst those in CPVT2 are between the CD 

and HD (Peng and al 2016). Domains with high inter-regional connection appear to 

contain the greatest share of disease-causing mutations across all RyR-related 

conditions. This is exemplified by the O-ring, which has more than 10% of recorded 

mutations, despite representing a tiny proportion of total channel mass (Fig 1.8).  

Analysis of RyR disease mutations can play a key role in dissecting channel structure 

and function and has been the starting point for the majority of studies discussed 

in this section. For example, a previously characterised CPVT mutation, W4645R, 

was recently used as the springboard for an investigation that eventually uncovered 

part of the Ca2+ binding site, as well as the mechanism of channel activation by 

caffeine (Murayama 2018). Whilst disease-causing mutations have informed RyR 

channel studies in humans, channel studies in insects have been informed by a 

different type of amino acid change. Resistance to diamides is now known to be 

primarily mediated by amino acid changes occurring in a C-terminal location close 

to those hotspots described in Fig. 1.8. The remainder of this thesis will concern 

such resistance-causing mutations, their impact upon channel function in the 

presence and absence of diamide insecticides.   

 

http://triad.fsm.it/cardmoc/
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Chapter 2: Methods 

2.1 General Methods 

2.1.1 Genomic DNA extraction  

The protocol for DNA extraction from D. melanogaster was modified from a 

Berkeley Drosophila Genome Project (BDGP) protocol. Centrifugation steps take 

place in an Eppendorf 5424 centrifuge at 12,000 rcf at RT for 15 minutes, unless 

otherwise stated.  

Groups of 1-20 flies were frozen at -20°C in a microcentrifuge tube, and ground 

using a plastic mortar in 200μl Buffer A (see Recipes) until homogenous. The 

samples were incubated at 65°C for 30 minutes to allow for cell lysis and release of 

nuclear DNA into solution. DNA precipitation was achieved by addition of 400μl 

Buffer B solution, mixing, and incubation on ice for 10 minutes. The samples were 

centrifuged, and the supernatant transferred to a new microcentrifuge tube. In 

order to clean the DNA samples, 420μl isopropanol was added, followed by 

centrifugation, and disposal of the supernatant. For final rinsing, 1ml cold 70% 

ethanol was added, the samples incubated for 3 minutes at RT and centrifuged for 

5 minutes, before disposal of the supernatant. This rinsing step was repeated. The 

final remnants of ethanol were removed with a 10μl pipette, and the samples 

incubated uncapped for 10 minutes to allow the pellets to air dry, before 

resuspension in 31μl ddH20.  

2.1.2 RNA extraction 

The protocol for RNA extraction from D. melanogaster was modified from a CGB 

protocol (Bogart and Andrews 2006). Centrifugation steps take place in an 

Eppendorf 5424 centrifuge, at 4°C and 12,000 rcf unless otherwise stated. 

Incubation steps are at RT, in a fume hood, for 5 minutes unless otherwise stated.  

Groups of 5-10 flies were flash-frozen in a microcentrifuge tube, and ground using 

a plastic mortar in 200μl trizol for 3 minutes until homogenized. Incubation was 

followed by centrifugation for 10 minutes to pellet out the insoluble matter. The 

supernatant (~170ul) was transferred to a new microcentrifuge tube with 60μl 

chloroform and shaken vigorously by hand. Incubation was followed by 

centrifugation for 15 minutes to separate out the solution into a lower fat phase 
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and an upper aqueous phase. Using full aseptic technique and RNAse free 

equipment, the aqueous phase was transferred to a new microcentrifuge tube, 

ensuring not to contact the fat phase. RNA precipitation was achieved by addition 

of 100μl isopropanol, followed by inversion, incubation and centrifugation for 10 

minutes. The supernatant was discarded, 500μl cold 75% ethanol was added, and 

the sample centrifuged at 7500rcf for 5 minutes. The supernatant was again 

discarded and a 10μl pipette used to remove any remaining solution from the 

sample. The sample was incubated uncapped for 10 minutes to air dry and 

resuspended in 51μl RNAse-free H20.  

2.1.3 cDNA synthesis 

Total RNA was used for cDNA synthesis using the Thermo Scientific SuperScript III 

First-strand cDNA synthesis kit. 0.5-5μg of template RNA (typically 3μg) was mixed 

with 1μl of oligo(dT)20, 1μl of 10 mM dNTP mix (10 mM each of dATP, dGTP, dCTP, 

dTTP at neutral pH) and nuclease-free water (to make up to 13μl final volume) in a 

1.5ml Eppendorf tube. The mixture was incubated at 65°C for 5 minutes and then 

placed on ice for 1 minute. 4μl of 5X First-Strand buffer, 1μl of 0.1 M DTT, 1μl of 

RNaseOUT Recombinant RNase Inhibitor (Thermo fisher Scientific) and 1μl of 

SuperScript III were added and mixed by gently pipetting up and down. The final 

20μl mixture was incubated at 50°C for 1 hour. The reaction was inactivated by 

heating to 70°C for 15 minutes. cDNA was stored at -20°C. 

2.2 Polymerase chain reaction (PCR) 

All reactions took place in standard 0.5ml thin-walled PCR tubes, in a Bio-Rad C1000 

Touch Thermal Cycler.  

2.2.1 Primer Design 

Primers were designed to have the correct melting temperature, molecular weight, 

% GC content and restriction sites. OligoCalc (in Genious) was used to ensure 

optimal parameters (Kibbe, 2007). The primers were usually 20-30 nucleotides in 

length with a GC content of 40-60% and a melting temperature (Tm) of 50-60 °C. 

All were synthesised by Sigma Aldrich. 

2.2.2 Standard PCR 

Standard PCR reactions utilised 12.5μl Thermo Scientific 2X DreamTaq with Taq 

polymerase, 1μl of dNTP mix, 1μl of 10 μM forward primer, 1μl of 10 μM reverse 
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primer, 1-2μl of DNA and sterile water up to 25μl. The cycling conditions varied 

depending on the primers and the length of the amplicon. Initial denaturation was 

carried out at 95°C for 1-2 minutes. This was followed by 25-35 cycles of 

denaturation (95°C for 30 seconds), annealing (55-65°C for 30 seconds) and 

extension (72°C for 1 minute/Kb). The final elongation was carried out at 72°C for 5 

minutes. 

2.2.3 High-fidelity PCR 

High-fidelity PCR with BioLabs Phusion DNA Polymerase was used for long 

amplicons or when very accurate amplification of the DNA sequence was needed. 

The reactions were done in 0.5ml thin-walled PCR tubes and contained 4μl of 5X 

Phusion Buffer, 0.4μl of dNTP mix, 1μl of 10 μM forward primer, 1μl of 10 μM 

reverse primer, up to 250 ng genomic template DNA or 10 ng plasmid DNA, 0.2μl 

Phusion DNA Polymerase and sterile water up to 20μl. Initial denaturation was at 

98°C for 30 seconds followed by 30 cycles of denaturation (98°C for 10 seconds), 

annealing (45-72°C for 30 seconds) and extension (72°C for 30 seconds/Kb) with a 

final elongation at 72°C for 10 minutes. 

2.2.4 Site-directed Mutagenesis by PCR 

Introduction of singular and multiple-nucleotide alterations upon DNA sequences, 

in-vitro, was achieved by PCR using the Agilent Site-Directed Mutagenesis 

QuikChange kit. Primers, containing the desired alteration, were designed manually 

according to the Agilent guidelines and were 25-45 bases in length. OligoCalc was 

used to avoid self-complementary sequences, to ensure GC content was at least 

40% and the Tm was as close to 80˚C as possible whilst staying within the above 

parameters. 

PCR reactions occurred in thin-walled PCR tubes with 5μl of 10X Buffer, 100 ng 

double-stranded DNA template, 1.25μl each of forward and reverse primer (10 

μM), 1μl of dNTP mix, made up to 50μl with sterile water. The mixture was then 

briefly vortexed and centrifuged before the addition of 1μl PfuUltra DNA 

polymerase (Agilent). The initial denaturation step was 95°C for 1 minute, followed 

by 18 cycles of denaturation (95°C for 50 seconds), annealing (60°C for 50 seconds) 

and extension (68°C for 1 minute/Kb) with for a final extension of 68°C for 7 

minutes. For each reaction, the average Tm of the two primers was typically 

between 65-75°C. Following the PCR reaction, the plasmids were digested with 
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DpnI using 1μl/reaction at 37°C for 1 hour. This removed any parental, non-

mutated, supercoiled dsDNA. 

2.2.5 PCR product purification 

PCR product purification was carried out using the Qiagen MiniElute kit by adding 

five volumes of Buffer PB to the PCR solution, mixing, applying to the QIAquick spin 

column and centrifuging for 1 minute at 10,000 x g. The DNA bound to the column 

was then washed with 750μl of Buffer PE and centrifuged. A further 1 minute in the 

centrifuge ensured the complete removal of wash buffer. 30μl ddH20 was then 

added to the column and the DNA eluted by centrifugation.  

2.2.6 Agarose gel electrophoresis 

The size and quality of the PCR products were assessed by agarose gel 

electrophoresis. The gels were made by diluting Thermo Scientific agarose in 1X 

TAE (Tris-Acetate-EDTA) buffer (Appendix, Recipes). The mixture was heated to 

>85°C and maintained at an elevated temperature for >1min/100ml to dissolve the 

agarose, before being allowed to cool slightly prior to the addition of ethidium 

bromide to a final concentration of 0.4 μg/mL. The gel was set, using plastic combs 

to introduce wells for the nucleic acid samples. Samples were mixed with 

bromophenol blue dye (2μl of 6X loading dye, 2μl PCR product and 8μl sterile water) 

and run alongside a Thermo Scientific GeneRuler 1 Kb, or 100bp, DNA ladder (1μl 

of ladder with 1μl of 6X loading dye and 4μl of sterile water). Standard settings for 

a 5cm x 7cm 1% agarose gel were: 70mV; 100 mA; 45-minute run time. To visualise 

large bands >7kb, the agarose concentration was increased to 1.5-2%, whilst to 

visualise small bands <500bp the agarose concentration was reduced to 0.5-0.75%. 

The resulting DNA bands were visualised on a Gene Genius Bio-Imaging System 

using the Syngene UV transilluminator. 

2.2.7 Extraction of PCR products from agarose gels 

Gel extraction and purification of PCR products was done using the Qiagen QIAquick 

Gel Extraction Kit. The gel was placed on a UV light box and the DNA fragments 

were excised from the gel using a clean, sharp scalpel. The gel fragment was then 

weighed in a 1.5ml Eppendorf tube, 3 volumes of preheated Buffer QG were added 

(where 1mg equates to 1ml) and the tube incubated at 50 °C for 10 minutes with 

vortexing every 2 minutes to help the gel slice to dissolve fully. 1 volume of 
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isopropanol (corresponding to the weight of the original gel slice) was then added. 

The sample was pipetted onto the QIAquick spin column and centrifuged at 16,000 

x g for 1 minute. The flow-through was discarded and a further 500μl of preheated 

buffer QG was added to remove any remaining gel. To wash the sample, 750μl of 

Buffer PE was applied to the column membrane and centrifuged for 1 minute. The 

sample was then centrifuged for a further 1 minute to remove any remaining wash 

buffer. 30-50μl nuclease-free water was added to the column and allowed to 

permeate the matrix for 5 minutes before centrifugation for 1 minute to elute the 

DNA. 

2.3 Molecular Cloning and Transformation 

2.3.1 Plasmid assembly by endonuclease digestion and ligation 

DNA fragments, amplified by PCR and gel purified, were ligated into the appropriate 

plasmids, selected according to the subsequent use of the plasmid, the size of the 

insert (Kb) and the availability of complementary restriction sites. The plasmid 

vectors were linearised by digestion with appropriate restriction enzyme(s) using 

the ThermoScientific FastDigest system. For plasmid DNA, up to 1 μg plasmid was 

combined with 1μl of FastDigest (FD) enzyme(s), 2μl of FastDigest Green Buffer, the 

solution made up to 20μl with sterile water and incubated at 37°C for 30 minutes. 

For entire RyR plasmids, or >10kb plasmids, 0.5μg DNA/μl FD enzyme was used. For 

restriction digest of PCR products, 0.2μg DNA/μl FD enzyme was used. If required, 

the FD enzymes were subsequently inactivated by heating for 5 minutes at 80°C.  

The digested samples were analysed by gel electrophoresis and DNA bands of 

correct size extracted.  

Digested vector and PCR fragments were ligated together as follows. 1μl T4 DNA 

ligase and 1μl T4 ligase Buffer were combined with the fragments to be ligated and 

the solution made up to 20μl with sterile water. Total DNA concentration in solution 

was maintained below 20ng/ul and a 1:1 molar ratio of vector: insert was ensured. 

Ligation occurred for 2h at RT and the new plasmid construct transformed 

immediately or refrigerated at 4°C overnight. Ligation of PxRyR-containing 

constructs fragments follows a modified protocol, as detailed in Section 2.5.  

2.3.2 Concentration by Ethanol Precipitation 

In some cases, concentration of the ligation reaction was required prior to 

transformation. 2μl sodium acetate (3M) was added to the 20μl ligation reaction 
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and mixed in gently. 60μl cold ethanol (99%) was added to the solution, the solution 

gently mixed and then incubated on ice for 15 minutes (or overnight, time 

permitting) to precipitate the DNA. The solution was then centrifuged for 30 

minutes at 4oC and the resulting DNA pellet rinsed with the addition of 70% ethanol. 

The sample was centrifuged briefly to ensure pellet stability, the ethanol rinse 

discarded, and remaining ethanol removed with a 10μl pipette (being careful not 

to contact the, potentially invisible, pellet). The sample was incubated uncapped 

for 10 minutes to air dry, before resuspension in H2O (volume dependent upon 

application).  

2.3.3 Bacterial transformation 

Ligated plasmids containing inserts were transformed into bacterial hosts using 

Agilent Technologies XL10-Gold Ultracompetent Cells (>10kb) or XL1 Blue 

Competent Cells (<10kb).  

Transformation using XL10-Gold Ultracompetent Cells was according to the 

following steps: 1 round-bottomed 14ml falcon tube per transformation was pre-

chilled on ice. The XL10-Gold cells were thawed on ice, and 25μl aliquoted into each 

falcon tube. 1μl of β-Mercaptoethanol was added to each tube and the tubes 

swirled gently. The cells were then incubated for 10 minutes, mixing gently every 2 

minutes. 2μl of ligated plasmid was added to the tube and the tube incubated on 

ice for a further 30 minutes. The tubes were then heat shocked in a 42°C water bath 

for 30 seconds and placed directly on ice for 2 minutes. 500μl of pre-warmed LB 

medium was added and the tubes incubated at 30°C for 90 minutes with shaking at 

225-250 rpm.  

XL1 Blue competent transformation follows an identical protocol except that the 

duration of heat shock was 45s. 

2.3.4 Transformation Validation and plasmid Propagation 

Two LB plates, containing the appropriate antibiotic selection (ampicillin for 

PcDNA3.1; zeocin for pIZ/H5), were spread with 80μl and 200μl of the 

transformation solution, respectively, and incubated at 30°C for 18-24h (RyR-

containing constructs) or 37°C for 12-16h, or until colonies were sufficiently 

established to visualise a range of colony sizes. Individual colonies were picked with 

a 2μl pipette tip. Colonies on 2μl tips were placed into tubes of 10μl ddH20 and 

mixed via rapidly pipetting up and down using a 10μl pipette. 3μl of the colony-H20 
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was aspirated for further propagation, and the tip (with solution) placed in a 14ml 

falcon tube containing 4ml LB broth and 2μl 50mg/mL antibiotic. The propagate 

was incubated at 30°C for 18-30h, in a shaking incubator at 225-250 rpm, until 

sufficiently turbid that the 2μl tip was no longer visible when viewed side-on.  

The remaining Colony-H20 solution was used for PCR-validation, following the steps 

outlined above (2.2.2 PCR). Two to three reactions were prepared for each colony 

to be validated, with each reaction assaying for a different part of the RyR 

sequence, corresponding to the N-terminus, middle, and C-terminus (primer pairs 

1, 7, 13 in appendix). For each reaction, 2μl of Colony-H20 was added in place of the 

DNA addition step.  

2.3.5 Plasmid purification 

To isolate plasmids of high-purity from propagates of colonies validated to contain 

the correctly ligated sequence, the QIAGEN QIAprep Spin Miniprep Kit was used. 

After incubation, the bacterial overnight culture was pelleted by centrifuging in the 

falcon tube at 4000 x g for 20 minutes at 10°C. The supernatant was discarded, the 

pellet resuspended in 250μl Resuspension Buffer P1, and the solution vortexed 

thoroughly until the pellet was fully dissolved before being transferred to a 1.5ml 

Eppendorf tube. Cell lysis was completed using 250μl Lysis Buffer P2 and inverting 

the tube 4-6 times until the solution became clear and homogenous. The lysis 

reaction was allowed to proceed for 5 minutes and was then terminated by the 

addition of 350μl of Neutralisation Buffer N3, inverting the tube 4-6 times. The 

solution was then centrifuged at 16,000 x g for 10 minutes and the supernatant 

decanted onto a QIAprep spin column and centrifuged for 1 minute to bind the 

DNA. The column was then washed with 500μl of Buffer PB and centrifuging for 1 

minute, and an additional wash with 750μl of Buffer PE / centrifugation for 1 

minute. The column was then centrifuged for a further 1 minute at 11,000 x g to 

remove any residual wash solution and dry the membrane. To elute the plasmid 

DNA, the column was placed in a 1.5ml Eppendorf tube and 50μl EB Buffer was 

applied to the membrane, the column incubated for 1 minute at room temperature 

and then centrifuged for 1 minute to elute DNA into the tube. The quantity of the 

plasmid DNA recovered was determined using a spectrophotometer and the 

plasmid was stored at -20°C. 
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2.4 Final Product Validation and Sequencing 

2.4.1 Restriction Fragment Length Validation 

For rapid cloning validation, purified constructs were digested using restriction 

enzymes known to create a highly specific and easily recognisable band pattern 

(listed in table 2.3) on agarose gels. Digestion by endonucleases followed protocols 

described in 2.3.1.  

2.4.2 Sequencing  

All DNA sequencing was outsourced to Eurofins Genomics TubeSeq sequencing 

service. Samples were submitted premixed with the appropriate primer in a 1.5ml 

safelock Eppendorf tube. For PCR products up to 1000bp, 15μl of 5 ng/μl DNA was 

premixed with 2μl of 10 μM primer. For PCR products over 1000 bp, 15μl of 10 ng/μl 

DNA was premixed with 2μl of 10 μM primer. Analyses of the sequences was done 

using Geneious, the bioinformatics software platform supplied by Biomatters 

Limited. 

2.5 Generating RyR mutant genotypes (with RFCLM as example) - 

specific cloning strategy for RyR mutagenesis and assembly 

During this thesis, a total of 17 RyR coding sequence (CDS) constructs were created, 

in addition to the WT-PxRyR and G4946E-PxRyR constructs already available (Table 

2.1). None of the modifications introduced into the WT-PxRyR cDNA were shown 

to affect the stability of the pIZ vector into which they were cloned, and in all cases, 

large quantities of pure plasmid DNA were obtained via these methods. This section 

contains a summary of the steps taken to create the modified RyR constructs, 

referring to RFCLM-PxRyR (Chapter 6) as an example. Throughout this section, 

references are made to the standard protocols (2.1 General Methods), however it 

was frequently necessary to modify the standard protocols when working with the 

full-length RyR, in order to improve the success rate, and such changes are detailed 

below.  

Various complications are inherent during molecular work on the Ryanodine 

Receptor, due in part to the sheer size of the receptor. Whilst the genomic region 

itself is over 200,000bp in length, the 15,386bp CDS, in combination with a >3000kb 

vector, is still sufficiently long that it requires dividing of the CDS into smaller 

manageable cDNA fragments prior to any molecular work (most reverse   
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Table 2.1 List of RyR constructs generated during this PhD, and their usage herein 

# RyR-genotype Vector Usage 

1 PxRyR-WT Piz/H5 Studied Previously (Troczka 2015) 

2 PxRyR-WT pUAST  Stable D.melanogaster lines created 

3 PxRyR-G4946E Piz/H5 Studied Previously (Troczka 2015) 

4 PxRyR-G4946E pUAST Stable D.melanogaster lines created 

5 PxRyR-I4790M Piz/H5 Diamide efficacy assessment by calcium imaging 

6 PxRyR-I4790M pUAST Stable D.melanogaster lines created 

7 PxRyR-I4790T Piz/H5 None 

8 PxRyR-G4946V Piz/H5 Diamide efficacy assessment by calcium imaging 

9 PxRyR-G4946V pUAST Stable D.melanogaster lines created 

10 PxRyR-E1338D Piz/H5 None 

11 PxRyR-Q4594L Piz/H5 None 

12 PxRyR-DLM  

(Multi-mutant) 

Piz/H5 None 

13 PxRyR-K4700R Piz/H5 Diamide efficacy assessment by calcium imaging 

14 PxRyR-Y4701F Piz/H5 Diamide efficacy assessment by calcium imaging 

15 PxRyR-I4790C Piz/H5 Diamide efficacy assessment by calcium imaging 

16 PxRyR-S4919L Piz/H5 Diamide efficacy assessment by calcium imaging 

17 PxRyR-V4945M Piz/H5 Diamide efficacy assessment by calcium imaging 

18 PxRyR-RFCLM 

(Multi-mutant) 

Piz/H5 Diamide efficacy assessment by calcium imaging 

19 hRyR2 pUASt None 
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transcriptases and polymerases have a reliable extension limit of <13kb). The 

separate DNA fragments must then be re-assembled after mutagenesis (section 

2.5.3).  

A second issue is cytotoxicity, which becomes problematic during propagation and 

sub-cloning of the RyR sequence in E.coli. Although E.coli theoretically lacks the 

transcription machinery to make use of the OPIE2 promoter in the Piz/H5 insect 

RyR expression plasmid, circumstantial evidence in this PhD suggests that some 

expression does occur within the bacteria. Notably, bacterial transformations with 

PxRyR containing plasmids yield colonies that vary dramatically in their growth-

rate. Screening colonies of varying size for the presence of the PxRyR plasmid 

revealed that those that grow quickest invariably do not contain the C-terminal, 

pore-forming region of the PxRyR sequence. RyR-containing colonies are invariably 

slow-growing, requiring longer incubation times. Plasmid yield is also reduced in 

Table 2.2 Mutagenesis oligos 

Mutation Oligonucleotide 1 Oligonucleotide 2 

G4946V 
GGACGTGGCTGTTGTGTTCAAGACGTTGAGGAC CTCAACGTCTTGAACACAACAGCCACGTCCAACAG 

I4970M GTATCGCTGGCTATGCTGATCGGGTACTACC TAGTACCCGATCAGCATAGCCAGCGATACTATAGAG 

Q4594L GATAATGGACAAGTGCTGATAAAGCCCCACGAGTCC CGTGGGGCTTTATCAGCACTTGTCCATTATCTTCC 

E1338D CTGATGAAGGAGGCAGCTGATGCCCAGATGCCG TGCGCCGGCATCTGGGCATCAGCTGCCTCCTTG 

I4970T GTATCGCTGGCTACACTGATCGGGTACTACC TAGTACCCGATCAGTGTAGCCAGCGATACTATAGAG 

K4700R GTTCTACACCTTGcgGTACGTGGCGCTGG CCAGCGCCACGTACcgCAAGGTGTAGAAC 

Y4701F GTTCTACACCTTGAAGTtCGTGGCGCTGG CCAGCGCCACGaACTTCAAGGTGTAGAAC 

I4790C GTATCGCTGGCTtgtCTGATCGGGTACTAGGATTTGAAGG CCTTCAAATGGTAGTACCCGATCAGacaAGCCAGCGATAC 

S4919L CTCTTTCCTGTACTtaCTGTGGTACTTCTCGTTCTCTGTGATGGGC 
GCCCATCACAGAGAACGAGAAGTACCACAGtaAGTACAGGAAA

GAG 

V4945M CGCTCATCTGTTGGACGTGGCTaTgGGGTTCAAGACGTTGAGG CCTCAACGTCTTGAACCCcAtAGCCACGTCCAACAGATGAGCG 

RFCLM 

(MULTI) 

CCTCGCCAGGAAGTTCTACACCTTGAAGTACGTGGCGCTGGTGCTGGCC 

No reverse primer required in Lightning Multi Reaction 
GCACTCTATAGTATCGCTGGCTATACTGATCGGGTACTACCATTTGAAGG

TCCCGC 

CGATCACAGACAACTCTTTCCTGTACTCTCTGTGGTACTTCTCGTTCTCTGT

GATGGGC 

 

CGCCGCTCATCTGTTGGACGTGGCTGTTGGGTTCAAGACGTTGAGGAC 
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these colonies, by 50-75% compared to vector-only colonies (data not shown), 

possibly suggesting selection for lower plasmid copy-number.  

As will be discussed later in this thesis, RyR-related toxicity problems are amplified 

within protein expression systems such as eukaryotic cells or entire organisms, 

where introduction of the RyR protein is expected to profoundly alter the Ca2+ 

homeostasis of the system, as well as introducing novel, bulky pores into internal 

lipid membranes. 

 2.5.1 Mutagenesis on individual PxRyR fragments 

The PxRyR modifications introduced during this thesis are listed in Table 2.2, along 

with the oligonucleotide sequences used to introduce the change.  

Prior to mutagenesis, the 18,177bp WT-PxRyR-pIZ/H5 construct was digested into 

five fragments (Fig 2.1) and each fragment was separately incorporated into a 

pcDNA3.1(-) vector. All but one of the listed changes in Table 2.2 are to the C-

fragment, with E1338D being the exception.  

During the latter stages of this PhD, prior to the creation of RFCLM-PxRyR, Agilent 

released their Lightning Multi kit, which allowed the introduction of up to five 

mutations simultaneously into an <8kb plasmid, thus vastly speeding up the 

mutagenesis process. The protocol for the Lightning Multi kit differs from the 

standard only in primer design, whereby two or more (up to five) primers are used, 

with each primer capable of introducing one or more changes. Uniquely, all five 

primers bind to one cDNA strand, with no complementary primer binding required; 

instead, the Pfu enzyme extends the sequence from each primer, in non-

overlapping fashion, before knitting together the fragments to generate a single-

stranded DNA plasmid for transformation.  

2.5.2 fragment assembly into the plasmid and plasmid propagation 
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Having divided up the WT-PxRyR sequence prior to mutagenesis, the four 

fragments to be re-incorporated into the linearised plasmid vector required 

digestion from their respective pcDNA3.1 vectors and re-assembly into a whole 

intact full-length cDNA (Fig 2.1). However, this five-component ligation, with a final 

product size of 18,177bp (in pIZ) or 23,876bp (in pUAST), had a low success rate 

under the standard ligation protocol. In 

particular, the EcoRV blunt end cut site (N - M1 

fragments) was associated with inefficient 

ligation due to self-ligation. This, combined 

with the necessarily small quantities of each 

fragment in solution, frequently led to the 

presence either of construct sequences 

lacking one or more fragments (especially N or 

C) or to constructs containing additional 

copies of the N fragment. A protocol was 

therefore established in order to maximise 

success, in which the total DNA concentration in the ligation reaction was 

maintained at ~10ng/ul. Equal fragment molar ratios were abandoned in favour of 

halving the vector concentration, thereby minimising the presence of vector-only 

colonies. C-fragment concentration was increased by an additional 50%, in order to 

account for the pore-toxicity mentioned previously (Table 2.3). The ligation solution 

was incubated at 50oC prior to addition of ligase, and the reaction was run overnight 

at 15oC and the solution maintained at this temperature until transformation, to 

Figure 2.1 PxRyR construct, fragment 
assembly and restriction sites used for 
cutting out and re-ligating.  
 
The WT-PxRyR sequence was digested into 
four fragments, as labelled in the diagram.  
 
N (‘N-terminus’, green) - 4061bp 
M1 (‘Middle 1’, yellow) - 2350bp 
M2 (‘Middle 2’, orange) - 2684bp 
C (‘C-terminus’, red) - 6326bp 
Vector (pIZ/H5) - 2900bp 

 

Table 2.3 Ligation ratios for RFCLM 
and other PxRyR assemblies 

Fragment Size Ratio 
(Moles) 

Ligation 
Ratio 

Vector 1 1 

N 1.5 3 

M1 1 2 

M2 1 2 

C 2 6 
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maximise stability of the construct. Each ligation product was analysed by gel 

electrophoresis in 0.5% agarose, running at 60V for 90 minutes, against a 1kb ladder 

and a linearised full length WT-PxRyR. 

 It was also observed that the number of successfully transformed bacterial 

colonies could be increased by up to 10-fold by purification and concentration of 

the ligation reaction prior to transformation of the new plasmid construct into 

E.coli. In this case, 2μl of the non-purified ligation mix was set aside for control 

transformation, with the remaining 18μl undergoing ethanol precipitation (2.3.2), 

re-dissolving the DNA the pellet in 4μl H2O. For transformation, 50μl of thawed 

XL10g cells were added directly to the 4μl purified ligation product.  

2.5.3 pcDNA3.1(-) / pIZ/V5-His modified plasmid creation, for fragment 

assembly 

In order to express PxRyR in Sf9 insect stem cells, a hybrid plasmid vector was 

created, composed of the multiple-cloning-site (MCS) from pcDNA3.1(-), plus the 

addition of two extra restriction enzyme cut sites, spliced into a pIZ/V5-His plasmid 

vector in place of the original MCS. To make this new hybrid vector, the pcDNA MCS 

sequence was first amplified by PCR, with the additional restriction sites added to 

the amplicon (primers in Table 2.4). The addition of HindIII and MluI cut sites at the 

5’ and 3’ ends, respectively, allowed the amplified sequence to be digested ready 

for ligation into pIZ/V5-His.  

2.5.4 Plasmid Assembly Validation 

Transformed, purified PxRyR assemblies were validated for completeness via three 

steps: diagnostic digestion; complete amplification; and complete sequencing.  

Diagnostic digests were carried out initially as a cheap and immediate method of 

validation. The PxRyR plasmid sample was incubated with the diagnostic 

Table 2.4 MUTAGENESIS OLIGOS FOR PC/PIZ HYBRID PLASMID SYNTHESIS 

Primer Sequence Tag Restriction site 

addition 

Pc/pIZ switch F AAACGGGCCCTCTAGACTCG TGA AAGCTT (HindIII) 

Pc/pIZ switch R CTTGGTACCGAGCTCGGATC TGA ACGCGT (MluI) 
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endonuclease of choice (Figure 2.2) for 1h, at a ratio of 0.5μg DNA to 1μl FD enzyme. 

Analysis was by gel electrophoresis in 0.5% agarose, running at 60V for 90 minutes, 

using a 1kb ladder and a co-digested sample of WT-PxRyR.  

Plasmid assemblies indicating a correct fragment pattern on restriction digest were 

then amplified in their entirety, as a further check of integrity, in 13 1-2kb 

fragments (see index for primers) (Fig 2.3a).  Finally, constructs positive for all 13 

bands were sequenced in their entirety to confirm the faithfulness of the 

Quikchange Pfu enzyme, and rule out the possibility of inadvertent insertions 

during digestion and assembly (Fig 2.3b).  

2.5.5 Transfer of Recombinant RyR constructs between vectors 

Plasmid vectors used during this PhD include PcDNA3.1(-), pIZ/H5 (for Sf9 

expression, Ch3,4,6) and pUAST (for Drosophila expression, Ch5), with recombinant 

mutagenized RyRs requiring to be transferred frequently between the three. The 

transfer strategy from PcDNA to pIZ/H5 has been covered above (2.5.3), whilst 

strategies for transfer of PxRyR and hRyR2 into pUAST will be covered here.   

A shortcut was employed for switching the PxRyR cassette between insect 

expression vectors, based on the observation that two KpnI sites flanked the C- 

terminal fragment, 1798bp upstream and 1bp downstream, respectively. 

Simultaneous digestion of RFCLM-PxRyR-pIZ/H5 and WT-PxRyR-pUAST with KpnI, 

and electrophoresis in 0.5% agarose (60V, 1h) gave bands 8151, for the C-terminal 

fragment containing the mutation and either 10,020bp for the pIZ/H5-RyR or 

15,729 for the pUAST-RyR. Purification and ligation of the mutation-containing 

fragment with the chosen backbone,, followed by E.coli transformation, yielded a 

much higher success rate than seen for the 5-fragment ligations detailed above.  

Given that all of the PxRyR constructs studied in this thesis contain alterations only 

to the C-terminal fragment (excepting E1338D which was created but not studied), 

this strategy was sufficient for all the required PxRyR transfers between the two 

plasmids.  
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 PxRyR-pIZ/H5 PxRyR-pUAST 

ApaI SalI MfeI KpnI + EcoRI 
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1200 2550 5331 7275 
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4000 8300 833 1864 
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ApaI 

i) ii) iii) 

1kb 
Ladder 

(a) 

(b) 
SalI 

i) ii) iii) 

Figure 2.2 Confirmation of correct assembly of the RyR plasmid construct by 

diagnostic digestion, using one of a selection of endonucleases. 

(a) List of diagnostic enzymes and the expected fragment sizes for RyR 

contained in either pIZ/H5 or pUAST vectors 

(b) Example electrophoresis gel, showing ApaI and SalI digests confirming the 

correct assembly of RFCLM-PxRyR in pIZ/H5, with i) Incomplete RFCLM-

PxRyR construct (negative); ii) Complete assembly RFCLM-PxRyR; iii) WT-

PxRyR (positive control) 
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Figure 2.3 Validation of assembled PxRyR plasmids by amplification and sequencing. (a) Electrophoresis bands, 

following amplification of RFCLM-PxRyR by primer pairs Px1-Px13 (see appendix). (b) Graphical representation of 

each PxRyR sequence, with base-pair numbering (i) green arrows representing primer bind positions, corresponding 

to primer pairs Px1-Px13, (ii) sequencing traces and (iii) coloured schematic of the four PxRyR fragments, as referred 

to in mutagenesis and assembly protocols of this thesis (2.5.3).  

(a)  

 

Ladder 
(1kb) 

 

(b) i)  

      ii)  

      iii)  
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Figure 2.4 Rapid transfer of PxRyR C-terminal fragments between constructs of different vectors via 
straightforward KpnI digestion.  

PxRyR - 
pUAST 

PxRyR - 
pIZ/H5 
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Chapter 3: Validation of the 
perfusion Calcium Imaging system 
for quantifying diamide response 
in Sf9 cells  

3.1 Chapter Summary 

The goal of this thesis is to establish differences in diamide insecticide susceptibility 

between sequence variants of the P  xylostella RyR (PxRyR). Accurate quantification 

of calcium responses in Sf9 cells for the same purpose has previously been achieved 

using FLIPR on cell lines stably expressing PxRyR constructs (Troczka 2015). This 

Chapter describes the development and validation of a high-throughput 

Ratiometric Imaging Perfusion system (RIPS) approach to enable a more rapid 

assessment of PxRyR responses in Sf9 cells transiently expressing PxRyR.  

First covered is a determination of the conditions required for optimal PxRyR 

channel expression, maximising the number of functionally responding cells. This is 

followed by an assessment of the caffeine response, selection and processing of 

adequate responses (as defined below), and a determination of the degree of 

variation in response between experiments and between sequence variants. The 

method employed for diamide response quantification is discussed and diamide 

responses of the wild-type PxRyR (WT-PxRyR) construct under this experimental 

setup are compared to those established in previous studies. Finally, a second 

experimental setup, the Absolute Calcium Imaging system (AIS), is considered and 

compared to the standard RIPS setup in terms of the diamide concentration-

responses generated.  

3.2 The need for a novel method for rapid in-vitro investigation 
of insecticide resistance mechanisms 

A primary objective of this thesis is to establish the contribution of RyR mutations, 

which have been found in various moth populations worldwide, to the diamide 

resistant phenotype. In order to do so, it is necessary to quantify the effect of each 

of the individual amino acid substitutions found in these diamide resistant moths 

on diamide-mediated activation of (moth RyR-containing) Sf9 cells. One method of 
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achieving such a goal is to study intracellular Ca2+ signalling mediated by 

recombinant RyR channels. Such a study should ideally be achievable over a time-

scale of months, rather than years, to address the continuing emergence of novel 

resistance-associated amino acid alterations in moth RyRs (See Ch4+Ch6).  

Previous published attempts to express insect RyR (from the model species 

Drosophila melanogaster and Bombyx mori) were carried out using HEK293 cells, 

using the pcDNA vector family (Kato et al. 2009; Xu et al. 2000). These examples 

built on protocols established by study of the human hRyR2 channel in 

heterologous mammalian cell lines (George and Lai 2002; George et al. 

2004).However, a previous student at Rothamsted (Troczka, 2013 - PhD thesis) 

found that the HEK293 cell line gave a level of P. xylostella RyR expression which 

was inadequate to be used for functional characterisation. Furthermore, it was 

found that higher transfection loads caused HEK293 cell death by lysis, possibly due 

to the absence of insect RyR accessory proteins in this mammalian cell line. By 

switching to using Sf9 cells, which derive from the fall armyworm, Spodoptera 

frugiperda, functional characterisation of the P. xylostella RyR channel was shown 

to be feasible (Troczka, 2013 - PhD thesis).  

Rabbit RyR1 protein expression had been achieved previously in Sf21, via 

baculoviral transfection. Sf21 is an older S. frugiperda cell line which generally gives 

slightly higher expression than its Sf9 counterpart  (Antaramian et al. 2001). 

However, for a more consistent and reliable intracellular functional 

characterisation, a non-lytic system was required. InsectSelect (Invitrogen) was 

developed to contain promoters OpIE2, OpIE1 of the baculoviral system, but 

circumvented use of the virus itself. Use of such a non-lytic system for insect RyR 

expression in Sf9 cells was first documented briefly in a DuPont patent (Casper et 

al. 2010), and more recently in a peer reviewed paper (Troczka et al. 2015). The 

latter reports the generation of WT-PxRyR and G4946E-PxRyR stable lines of Sf9 

cells expressing PxRyR. The cells, which are monoclonal and thus, in principle, near-

identical to one another, were able to be analysed en masse on the imaging 

platform FLIPR (Fluorometric Imaging Plate Reader) in order to precisely quantify 

response to diamide insecticides.  

Chapters 2 and 4 of this thesis aim, once again, to establish quantitative differences 

in the impact of diamide insecticides upon cellular-scale RyR-mediated response to 

caffeine in modified PxRyRs expressed in Sf9 cells compared to Sf9 cells expressing 
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the WT-PxRyR. Preliminary studies indicated that the magnitude of such 

differences, in terms of cellular fluorescence responding to diamide application, 

may vary from 1000-fold in some cases down to 2-fold in others. It was therefore 

necessary to design an experimental system capable of resolving such phenotypic 

variation. In this case, however, the methodology was also constrained by a second 

factor, that of time - specifically the time required to generate a relatively large 

number of PxRyR variants, all successfully expressed in an intracellular location, in 

order to characterise receptor functionality and diamide response. Whilst previous 

studies (Troczka et al. 2015; Casper et al. 2010) opted to generate Sf9 cells 

constitutively expressing a PxRyR protein-coding sequence in order to characterise 

in high detail singular sequence variants, attempts to repeat the same methodology 

here were not considered practical, since this thesis reports upon the generation of 

13 recombinant PxRyR constructs, reflecting either genetic variants identified in 

field-studies, or ‘artificial’ variants, the partial functional characterisation of which 

will be reported in the following Chapters.  As generation of a single monoclonal 

stable line takes between 3-9 months [Troczka, pers. comm.], assuming optimal 

success rate, generation of stable lines for all 13 PxRyR variants would alone 

consume the entire duration of this PhD.  

The primary reason that previous studies employed monoclonal stable lines for RyR 

intracellular studies is for the consistency in expression level that this methodology 

allows. As will be discussed in detail below, transient transfection of Sf9 cells is 

associated with variation in: 

 i) levels of protein expression 

 ii) cell viability 

 iii) Fura-2-AM dye loading 

 iv) RyR distribution within the Sf9 cell 

v) RyR functionality in response to caffeine, diamides and other applied agonists.  

This variation occurs above and beyond variations that derive from the 

fluorescence quantification system employed, examples of such systems being 

FLIPR; the Ratiometric Imaging Perfusion system (RIPS) employed here; or the 

Absolute imaging system (AIS) also employed here (Section 3.5). 
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The study of Biology is often a continuous exercise in minimising all variables but 

one: in this case, the Ca2+ signals of cells transiently expressing insect RyR. This 

Chapter details a series of experiments undertaken to characterise sources of 

variation inherent in attempts to quantify RyR functionality in transiently 

transfected Sf9 cell lines. Where possible, sources of variation are mitigated. In 

order to further reduce within-treatment variation, a novel protocol for 

classification and sorting of cells by response-mode is established. All experiments 

in this Chapter are undertaken on the P. xylostella Wild-Type RyR (WT-PxRyR), with 

baseline responses to caffeine and diamide being characterised for subsequent 

comparison to other PxRyR variants. 

3.3 Chapter Specific Methods 

3.3.1 Overview of the experimental system 

PxRyR cds are expressed transiently in Sf9 cells, the cells seeded on glass cover slips 

and imaged with an inverted fluorescence microscope. The cells are first 

impregnated with a fluorescent Ca2+ indicator and then exposed to RyR-activating 

concentration s of caffeine, as well as to the diamide insecticides CLR and FLB. 

Cellular fluorescence, upon the release of Ca2+ from its intracellular stores, is 

recorded and plotted as a function of time. Cells expressing sequence variants of 

Figure 3.1 (Provided by Troczka) Perfusion chamber setup with a metal U-tube applicator for 

recording of multiple agonist applications. Black arrows indicate flow of a Ringer solution. Agonist 

solutions flow directly through the metal U-tube under force of gravity, with peristaltic pumping 

ensuring negative pressure within the U-tube, relative to the bath solution. Electronic closure of 

the pump out-flow causes tube pressure to rise, releasing agonist into the bath solution.  
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the PxRyR are compared in their relative responses to caffeine, and in their relative 

responses to the diamides.  

The Ratiometric Imaging Perfusion System (‘RIPS’) utilises an inverted microscope 

to image cells at 20x magnification (n=200-300 per FOV). Cells are seeded upon a 

14mm diameter glass slip placed within a perfusion chamber. The RIPS’ allows 

confocal imaging of hundreds of cells simultaneously, with highly localised and 

temporally precise application and evacuation of agonist via the U-tube Reverse 

Flow technique (Ebbinghaus-Kintscher et al. 2007), whilst continuous perfusion of 

Ringer’s medium prevents local depletion of dissolved Ca2+
 ions (Fig 3.1). The 

intracellularly loaded Fura-2-AM fluorescent dye (ThermoFisher) is excited by an 

alternating 340/380nM LED beam, and is measured by a photodiode detector 

mounted on the inverted microscope with a fura filter set. Calculation of 

ratiometric fluorescence intensity across the two excitation wavelengths allows 

quantification of fura-bound vs unbound Ca2+.  

The Absolute Imaging System (‘AIS’) utilises an inverted microscope and a 

Hamamatsu OR CA detector enabling imaging at 10x magnification (n=3000-5000 

per FOV). Cells are seeded upon a 5mm diameter glass slip placed within a Compton 

perfusion chamber (Fig 3.2). Agonist application is via bolus drop and rapid removal 

from solution was not possible, although continuous perfusion of Ringer’s does take 

place. Intracellular Fluo4 (Thermo Fisher) is excited by a continuous 488nm LED 

beam and absolute cellular fluorescence calculated.  

3.3.2 Insect cell husbandry 

Frozen stocks of Sf9 cells (Life Technologies) were stored under liquid nitrogen, in 

1.5ml aliquots of approximately 1.5x107 cells re-suspended in Sf-900 II SFM media 

containing 10% FBS and 10% DMSO. To initiate new cultures, a frozen stock aliquot 

Figure 3.2 The Compton Perfusion Chamber used with the Absolute Imaging System.  

Ringer In 

Ringer Out 

Agonist Bolus 

Microscope Lens 
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was gently thawed at 37oC and transferred to T-25 culture flasks. Flasks were placed 

in a 27oC incubator and left for 1 hour for cells to attach to the bottom surface. The 

SFM medium containing DMSO was then removed and replaced with 5ml of fresh 

pre-warmed SFM media containing 10% FBS and 50µl of a penicillin-streptomycin 

cocktail (50U/100µg/ml). The cells were kept in the flask until they reached 

confluence. The cells were then passaged as described below, halving the FBS 

concentration until it reached 0.6% and the cells were ready to use for downstream 

applications.  Sf9 cells were maintained in a sterile dedicated incubator at a 

constant 27oC.  

The media in near confluent (90-95% cell coverage) T-25 flasks was removed and 

4ml of fresh Sf-900 II™ media added. Cells were detached from the bottom of the 

flask by sloughing and tapping the side of the flask.  1ml of the detached cells was 

transferred to a new T-25 flask containing 5ml of fresh media containing 0.6% FBS. 

Near confluent cell cultures were passaged every 2-3 days, with the typical number 

of passages not exceeding 30. To scale up the cell cultures 3ml of detached cells 

from the T-25 flask were seeded into a T-75 flask containing 12ml of fresh Sf-900 II 

SFM media and the desired concentration of FBS. 

New stocks of low passage cultures were made by collecting cells from near 

confluent T-75 flasks into fresh media and transferring the detached cells from each 

flask into a 50ml tube (Greiner Bio-One, Kremsmünster, Austria). The number of 

cells present was determined by transferring 10µl of the cell suspension to a 

hemocytometer for counting. The 50ml tube was then centrifuged at 500g for 5 

minutes, the supernatant removed, and the cell pellet gently re-suspended in Sf-

900 II media containing 10% FBS and 10% DMSO, at a density of 1x107cells/ml. 

These cells were split into 1.5ml aliquots and placed in a -80oC freezer for 24h 

before being transferred to liquid nitrogen in a storage container for long term 

storage. 

3.4 Characterising PxRyR-expressing Sf9 cells response to 
caffeine and diamides using the Ratiometric Imaging Perfusion 
Rig 

 

3.4.1 Identification of the caffeine ‘type-response’ and cellular 

selection 
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Throughout this thesis, caffeine was used to activate recombinant insect PxRyR 

channels, via increased sensitivity to cytosolic [Ca2+], as is common practise 

(Thomas et al. 2004). Although caffeine activation does not reflect physiological 

activation of RyR in native insect muscle, it nonetheless triggers [Ca2+]-mediated 

Ca2+ release that is both transient and (somewhat) repeatable, without apparent 

cytotoxic effects over an experiment’s duration. Specifically, caffeine is used to 

check and standardise the RyR functionality of each cell, in order to qualify that cell 

for further experimentation. It was thus first necessary to examine variation in the 

response of recombinant PxRyR-expressing Sf9 cells to caffeine, and to determine 

which response mode should be treated as a ‘type-response’.  

Exogenous RyR-expressing cells generally exhibit intercellular variation in RyR 

activation Ca2+ flow dynamics (George et al. 2003b). This may be because inherently 

RyR-null cells typically used in these types of studies do not possess the requisite 

Ca2+-handling machinery, that are endogenously expressed in native nerve and 

muscle cells, needed to regulate RyR Ca2+ release. Such receptor dysregulation is 

expected to increase between-cell variation, whilst also potentially mediating 

cytotoxicity (George et al. 2003b). One method of reducing cytotoxicity and 

variation is to form monoclonal stably expressing cell lines (as mentioned in Section 

3.2) which, by definition, are capable of consistent, long term protein expression 

without cytotoxic effects (George and Lai 2002). However, for the reasons 

described above, all experiments in this thesis were instead conducted on 

transiently-transfected cells, and therefore awareness and mitigation of between-

cell variation became a critical component of the thesis.  

One critical observation that was made at an early stage in this PhD Studentship 

was that application of caffeine (10mM) to a field of view (FOV) containing 

hundreds of Sf9 cells produces an array of transient responses (Fig 3.3). In order to 

make sense of such variation, responses were categorised based on the shape of 

their curve. It was observed that cells broadly divide into one of three response 

categories:  

Logistic rise, logistic fall (Cat A) 

Logistic rise, plateau (Cat B) 

other (Cat C)  
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Category A is identified as the ‘Type-response’ (Fig 3.3, blue response curves), 

meaning that cells exhibiting this response to caffeine will be selected for further 

downstream analysis. The majority of past studies also focus on this response mode 

when studying RyR-functionality, with the logistic rise portion of the response an 

robust index of Ca2+ release from the ER into the cytosol (Thomas et al. 2004). The 

duration of the the Ca2+ release is also determined by RyR intracellular regulation 

(section 1.5.5) as well as NCX/SERCA Ca2+ pump activity. Cardiac RyR2 transients, in 

ventricular myocytes, are tightly regulated, and have an approx. 1s duration, 

suggesting that, in an in-vitro context, shorter transients may be associated with 

healthier, more ‘in-vivo-like’ cells (Li et al. 2017). Cat A Ca2+ responses to caffeine 

typically reach a maximum within 1-5 seconds.  

Category B (Fig 3.3, red response curves) probably also reflects an appropriate CICR 

response, and thus viable expression of RyR. However, the lack of Ca2+ homeostasis 

is problematic in an experimental analysis that relies on sequential application of 

caffeine before diamide (see Fig 3.7).  

3.4.1.1 A leaky pipeline 

In fig 3.3, 371 cells are present in the FOV (brightfield, not shown), of which ~70% 

have been successfully loaded with Fura 3-AM and are emitting sufficient 340nM 

fluorescence to be visible in this image. At all points during this thesis, the term FOV 

refers to the total population of cells visible under the objective during calcium 

imaging analysis.  

- 8.85% (±6.7%, n=4) of these cells, when exposed to 10mM caffeine, exhibit a 

response that would be categorised as a caffeine response based on prior literature 

(e.g. for native cells expressing RyR or stable cell lines, (Ebbinghaus-Kintscher et al. 

2006). 0% of the untransfected cells responded to caffeine. 

- Of these responding cells, 5.9% (±3.2%) exhibited the Cat A response (red), 

allowing further downstream experiments on those cells. 2.8% exhibited a Cat B 

response (blue), indicated by failure to return to close to basal fluorescence level 

within the 30s allotted time.  
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Figure 3.3 Visualisation and processing of caffeine responses in transiently PxRyR-expressing Sf9 cells. The scale bar in this 

image indicates 100µm. PxRyR constructs are expressed in Sf9 cells under standard conditions established in this Chapter.  

a) Responding cells are selected as Regions of Interest, where ‘response’ to caffeine is defined as a shift in ratio of >0.1 over 

the 30s period (n=4 slips). b) Responders are then grouped by response-mode into Category A - logistic rise, logistic fall (blue 

traces); B - logistic rise, no fall (red traces); or C - other. Where ‘logistic fall’ is very broadly defined as any cell that experiences 

greater than 50% reduction in fluorescence within the 30s period. c) Null-transfected cells did not respond to caffeine stimulus 

(blue) but did respond to DMSO (yellow). 
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- On average, 86.5% (±14%, n=4) of the cells exhibited an increase in fluorescence 

when exposed to a high concentration of CLR (10μM). Null (mock) transfected Sf9s 

registered no visible response to CLR (Fig 3.3c) 

Thus, whilst a high proportion of cells exhibited diamide responsiveness, it is 

notable that just 1-9% of cells in this FOV exhibit the caffeine-response 

characteristics that point to PxRyR expression, and the majority of cells display no 

visible response to 10mM caffeine. Selection of cells with 10mM caffeine (Box 3.1) 

is thus acknowledged to reduce downstream sample size by a factor of 50- to 250-

fold, relative to the total number of CLR-responding cells. However, it was observed 

that caffeine response co-varies with diamide response within a given cell, such 

that variation in the former will amplify variation in the latter (Fig 4.5, Chpt 4). It 

was therefore considered worthwhile to only analyse a consistent sub-population 

(Cat A) in order to minimise downstream variation. 

3.4.1.2 Physiological underpinnings of the observed variations remain 

unknown 

 
In all the experiments detailed here, Sf9 cells vary dramatically in their response to 

caffeine (Fig 3.3). Whilst that variation has been successfully quantified and 

categorised, its meaning in terms of cell physiology and RyR regulation is not clear.  

An improvement to this study would be to determine which of the above response 

types definitively correspond to PxRyR expression, and whether expression location 

and magnitude varies between cells. GFP-tagging the PxRyR protein would allow 

visualisation of the proteins location in cells, and crude quantification of the 

amount of protein being expressed (e.g. see Troczka, 2013 – thesis). Alternatively, 

immunochemical localization of the PxRyR protein (Niu and Ashley 2000; Baumann 

2000) using lobster RyR antibody may be possible. In the absence of such 

expression characterisations, data on variation in response to 10mM caffeine is a 

‘functional surrogate’. Whenever ‘expression’ is mentioned during this Chapter, it 

is referring to ‘functional response’, with the assumption that response to caffeine 

indicates expression (because non-transfected cells have been shown not to 

respond).  

3.4.2 Protocol optimisation to maximize the cat A response in PxRyR 

transfected cells 
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A series of experiments were undertaken in an attempt to achieve a caffeine 

response which was reproducible on every level, including: 

- within the same cell across multiple caffeine applications 

- across multiple cells within the same caffeine application, and across multiple 

caffeine applications 

- across multiple cells within different experiments, and different transfection 

events. 

The variation in response to caffeine within a single FOV (Fig 3.3) can be partially 

mitigated by response categorisation and selection, as in the protocol described 

above. However, such variation can be further mitigated by first identifying the 

cause, and then controlling it. The experimental procedures were therefore 

examined with the goal of maximising the proportion of cells exhibiting ‘Cat A-

response’. In tandem with these optimisation experiments, the sources of variation 

in caffeine response were gradually identified. 

3.4.2.1 Optimising cell growth and seeding  

During the investigations in this thesis, the following parameters were observed to 

co-vary with variations in response to 10mM caffeine: Cell density (cells/mm2); 

Transfection load (μl/cell CF); Viability (%); Proliferation rate (cells/cell/day); and 

Basal Cellular Fluorescence (pixel intensity).  

Preliminary studies of Sf9 cell growth and transfection with PxRyR revealed that 

wells of cells seeded at an initially uniform density of 400cells/mm2, after growth 

(24h), followed by transfection with 0.02ul/ml of Cellfectin (4h) and further 

incubation (44h), varied in density at the 48hr time point from 0 to >800 cells/mm2
 

(counting only viable cells). During the initial 24h, migration and cellular 

proliferation result in non-uniform cell distribution at the point of transfection. 

During the transfection incubation, cells in patches of local low-density were prone 

to lysis. During the final 44h, cells in different parts of the plate proliferate at 

different rates, presumably due to local density and transfection conditions.  
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Figure 3.4 Cell culture optimisation – Growth conditions to maximise a Cat A caffeine response. Scale bar 100μM. The 20x 

and 40x images are taken of different FOVs upon the same coverslip. Trypan-blue stained cells are displayed as Transmission 

Microscopy images obtained with a 20x objective lens (LH panels). Further bright-field magnification of the FOV allows 

detailed assessment of cellular phenotype (centre panels). The Fura-2-AM stained cells are visualised down a 40x objective 

under a 380nM LED beam (RH panels). 
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In an attempt to optimize the seeding density, Fig 3.4 displays the growth of 

monolayer cell culture preparations seeded at densities of between 400 and 1200 

cells/mm2. Cell density was measured at the point of seeding, determined by the 

number of cells transferred into the culture well.  

Cell viability was measured after 48 hours of growth. Trypan blue permeates 

ruptured cell surface membranes as a consequences of necrotic cell death. Non-

permeable cells are therefore assumed to be viable (i.e. have an intact surface 

membrane).  Trypan blue assays indicate that cell viability increases dramatically 

with density. Reduced cell viability (Trypan test) corresponds with reduced cell 

density after 48h (Fig 3.4).   

 Higher magnification analysis of unstained, undamaged cells under bright-field 

illumination (Fig 3.4 centre panels) shows that cell diameter decreases with density, 

with cells at the highest density being 27% smaller on average than those at the 

lowest density. At the optimal seeding concentration of 800 cells/mm2, only 5-15% 

of cells are visibly damaged – i.e. display membrane blebbing; a rounded shape; 

poor adhesion; positive for trypan blue staining.  

Cells were also loaded with Fura-2-AM in order to determine effects of density on 

the fluorescence signal (Fig 3.4 RH panels). Average cellular fluorescence decreased 

slightly from 1238 at 400cells/mm2 to 989 at 1200cells/mm2, but variation 

(standard deviation) in fluorescence between cells decreased dramatically from 

702 down to just 288, suggesting that higher densities could reduce variation in 

background signal. However, density was limited on the upper end by the 

requirement to avoid cell overlap in order to define clearly the fluorescence 

response of a given cell during experimentation. Average cell confluency must 

therefore remain below 90%.  

The results presented in Fig 3.4 suggest that increasing the seeding density is 

beneficial for cell health, and gives more dense cultures at the 48h timepoint, but 

the overall rate of growth and proliferation of cells prescribes a maximum seeding 

density of 800 cells/mm2 in order not to exceed the approximate 90% confluency 

boundary. This is the equivalent of 150,000 cells in the 1.9cm2 well. This was 

adopted as the ideal density for all the remaining experiments in this thesis. 

3.4.2.2 Optimising Transfection 
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Cellfectin (CF) is a cationic lipid-mediated transfector which functions by wrapping 

individual DNA molecules in unilamellar micelles to faciliate their uptake into 

cultured cells. The reagent has a phosphatidyl head group which binds to the 

negatively charged DNA, whilst its fatty acid side chain facilitates uptake of the 

molecule into the cell, possibly via endocytosis. Because it functions by surrounding 

the DNA, the concentration of the reagent must be optimised in relation to the 

amount and size of the DNA molecule (see Fig 3.5), according to recommendations 

in the manufacturer protocol.  

PLUS is a surfactant which aids formation of CF:DNA complexes under some 

circumstances, although its precise mode of action has not been specified by the 

manufacturer (Thermo-Fisher Scientific). All transfections in this thesis use the 

manufacturer recommended concentration of PLUS reagent, of 0.0045ul per ul 

Sf900II medium. 

Fluorescence of (Fura-2-AM loaded) cells in response to caffeine agonist was used 

as a proxy indicator for PxRyR protein expression (as detailed in section 3.4.1.2). 

The total number of responding cells increases with CF concentration, but the 

number of Cat A cells plateaus at 0.02μl CF/ul medium, whilst cell viability 

decreases concurrently (Fig 3.5). Taken together, these results indicate that future 

transfections should occur at 0.02μl CF per μl medium, in order to maximise 

expression levels at minimal cost to cell health. Such optimisations are repeated for 

each PxRyR sequence variant studied in this thesis, with the ideal CF concentration 

varying between 0.015 – 0.025. An identical concentration of CF when applied in 

the absence of complexed DNA did not cause measurable reduction in cell viability. 

Furthermore, no Cat A responses were detected after transfection with PLUS and 

DNA in the absence of CF.  

In conclusion, cell seeding density and the concentration of transfection reagent 

cumulatively affect cell viability and hence the caffeine response.  
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Figure 3.5 Transfection optimisation – ideal transfection reagent composition for transient transfection. The 
effects of different concentrations of transfection reagent on cell viability and PxRyR protein expression is shown. 
Transfection occurs in 200μl medium, with Cellfectin (CF) concentration varied according the manufacturer’s 
recommendations. Amounts of DNA and PLUS reagent used were constant, such that the key variable is the ratio 
between CF:DNA. Viability was measured with the Trypan-blue cell viability test (see text) at 48 hours after 
searching for responding cells. Cells reared at 800cells/mm2 density (as per Fig 3.4). Images taken 48h after 
transfection. Experiments were undertaken to determine how to minimise death whilst maximising Cat A 
response frequency. N=1 coverslip, 50 cells, calcium imaging carried out following protocols in detailed in Fig 3.3.  
 

Cellfectin volume 
(per ul medium) 
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3.4.2.3 Optimising transfection incubation times  

Other transfection parameters were modified as per manufacturer suggestion, to 

maximise the frequency of Cat A responses. Initial incubation of CF solution and 

DNA solution individually was maintained at 5 minutes, sufficient time for solution 

homogenisation. Transfection reagent incubation with the DNA (30 minutes), 

before application to cells, is designed to allow the formation of CF micelles 

containing PxRyR DNA. Incubation of Sf9 cells with transfection reagent for <2h was 

insufficient to yield any Cat A caffeine response in the subsequent cell culture. 

Experiments in this thesis therefore follow a 4-hour incubation with CF, chosen as 

as the optimal period that yields sufficient numbers of Cat A responding cells 

needed for experimentation whilst minimising the amount of time spent in 

potentially toxic conditions. However, it was noted that when the cell transfection 

incubation time was increased up to a maximum of 24 hours there was no observed 

change in cell viability, on the other hand neither was there an increase in PxRyR 

expression. After the 4h transfection, cells are returned to ‘conditioned medium’ 

with addition of 0.6% BCS in order to promote cell health and proliferation.   

In terms of post-transfection incubation, the response of cultured cells to caffeine 

was quantified at 24h, 48h, 72h, 96h in WT-PxRyR.  The total number of responding 

cells increased over time and was highest at 96h, however Cat A responses were 

most frequent at 48h.  

3.4.2.4 Fura 3-AM intensity is problematically high in damaged cells 

Fura 3-AM was used as a ratiometric Ca2+ indicator due to its high dynamic range 

and long window of effect due to slow compartmentalisation, and slow decline in 

fluorescence. A Ca2+ binding affinity for this dye of Kd=335nM compares favourably 

to the free cytosolic [Ca2+] of healthy cells, which is typically around 50-100nM. 

However, basal cellular fluorescence varied from ~200 to ~2000, with the value 

shown to negatively correlate with cell density (cells/mm2) and viability (trypan blue 

test) (Fig 3.4). In the case of damaged cells, the increased fluorescence may be due 

to a failure of Ca2+ homeostatic mechanisms in the cell, allowing uptake of Ca2+ from 

the media, which has a comparatively high Ca2+ concentration of 2mM. In all cases, 

a 10-fold variation in basal fluorescence threatened to be problematic if it would 

push the brightest fluorescing cells close to the dye’s upper limit of fluorescence. 

Past authors have indicated the maximum saturable range of this dye is 1000nM 
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(Thomas and all 2000) which would put the brightest resting cells during these 

experiments far above the upper limit of fluorescence. In order to sidestep the 

problem of variable fluorescence, brightly fluorescing FOVs of cells (representing 

low viability or unhealthy cells) were avoided during all experiments, and 

individually brightly expressing cells were excluded from downstream analysis.  

3.4.2.5 The Final optimised Transfection Protocol 

Sf9 cells were grown at 27◦C in Sf900 II SFM supplemented with FBS. Transfection 

of cells with the Piz/H5 PxRyR expression plasmid and Cellfectin (‘CF’, transfection 

agent) was performed according to the manufacturer’s (Thermo Fisher Scientific) 

instructions. Glass coverslips (1cm2 diameter glass) coated with Poly-L-lysine 

(Sigma, MA, USA) were placed in a 4 well plate. Each well was then filled with 500µl 

of Sf-900 II medium and each coverslip was seeded with 150,000 cells, for a density 

of 800 cells/mm2, giving 90% average confluency. Cells were allowed to attach to 

the coverslips for 16h and then were transfected in 4 well plates. Transfection 

solution was composed of: 3.25ng PxRyR-pIZ/H5 plasmid DNA dissolved in water; 

0.0045μl PLUS detergent; 0.02μl CF; per 1ml of fresh Sf900II serum-free medium. 

CF and DNA:PLUS solutions were individually mixed and incubated for 5 minutes, 

before combination and incubation for 30 minutes. Cells were removed from their 

media and washed twice, prior to addition of transfection solution. Transfection 

incubations proceeded for 4 hours, before the cells were washed and returned to 

30% conditioned SF900 media, with 0.6% FBS. Post-transfection, cells were 

incubated at 27◦C for 40-52h. Cells were then loaded with Fura-2-AM prior to 

imaging, as outlined in the following section.  

3.4.3 Calcium Imaging  

In PxRyR-transfected Sf9 cells, caffeine- and diamide-mediated activation of the 

RyR is thought to result in a flow of Ca2+ from the endoplasmic reticulum (ER), 

leading to rapid increase of free cytosolic calcium concentration ([Ca2+]c) which is 

bound by the Ca2+- sensitive reporter dye and visualised as an increased 

fluorescence signal intensity (based on in-vivo studies (Ebbinghaus 2007)).   

The experimental calcium imaging methodology for this study is based upon 

previous work (Troczka 2015) but required adaptation for use on transiently 

transfected, rather than stably transfected, cell lines. One novelty is the approach 

of relativizing cellular response to diamide application against prior response to 
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caffeine application, which is detailed in Box 3.1. Standardised caffeine 

concentration was reduced from 30mM to 10mM in order to allow consistent 

response to repeated applications upon the same cell (Fig 3.7d). Other changes 

have been discussed throughout section 3.4.2. The resolved experimental method 

is as follows:    

3.4.3.1 The Final calcium imaging and data collection protocol 

Fura 3-AM dye was used for monitoring calcium release in Sf9 cells transfected with 

recombinant PxRyR. 48h post transfection cells were loaded with 1mM of Fura 3-

AM. Cells on coverslips in 4 well plates were first put into 500µl of fresh SF-900 II 

medium and then 2µl of the dye stock solution (5mM) was added. Cells were left to 

incubate at 27oC for 45-60 minutes, followed by 3 washes with 500µl of fresh un-

supplemented Sf-900 II medium. Prior to imaging, coverslips with Fura-2-AM 

loaded cells were placed in standard Ringer’s solution, with 2mM [Ca2+] (CaCl2). All 

experiments were carried out in an air-conditioned room maintained at 

approximately 25oC.  

Unless otherwise stated, data collection for all the calcium imaging studies reported 

in this thesis took place on the RIPS system. This system uses an Axio Vert.A1 

microscope with a LD Plan-Neofluar x10/0.4 lens (Zeiss, Oberkochen, Germany), 

measuring the ratio of excitation at 340/380nm (calcium free/calcium bound 

indicator) every 180ms and capturing emission at 510nm. Cells on the coverslip 

were placed into a perfusion chamber of approximately 0.5 ml volume (Fig 3.1) 

mounted on the microscope stage. A peristaltic pump drives continuous 

unidirectional flow of Ringer through the bath. Caffeine and diamide agonists were 

applied using 3 seconds bursts via a metal U-tube. Fluid dynamics were measured 

using a solution of red amaranth dye, diluted 1:20 in Ringer. Perfusion flow rate 

was 49µl/s. Agonist solution travel time from U-tube to bath was 21s. Agonist 

release formed a constant and repeatable teardrop shape in the bath, of radius 

1.3mm. From point of trigger to expansion into final radius took ~0.15s. No 

admixture of dyed-agonist solution with bath-solution was apparent, with the dye-

solution forming a clearly visible boundary at the edge of its radius, when viewed 

at 4x magnification. After trigger release, evacuation of agonist was mostly via the 

U-tube, and the majority of dye-solution was evacuated within ~0.25s, however a 

small proportion of the solution avoided U-tube evacuation and instead mixed with 

the bath solution.  
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Experiments upon fields-of-view (FOVs) of cells consisted of multiple agonist 

applications, with the order and timing of applications dependent on the 

experimental aims. Recording begins at T=0s, with application of 10mM caffeine at 

7-10s, followed by a 140s delay, during which period, the caffeine application 

recording is viewed in order to highlight respondent cells. During range finding 

experiments (Fig 3.8a), iteratively increasing diamide concentrations are applied, 

with a delay of 30s between applications. During concentration-response 

experiments (Fig 3.9), a single caffeine application is followed by a single diamide 

application at 150s. Experiments were recorded using VisiView® (Visitron Systems, 

Puchheim, Germany) software. Raw video capture on the software was used to 

identify responding cells and crudely assess response mode. Outputted numerical 

pixel intensity data were analysed using Microsoft Excel and SigmaPlot v.12 (Systat 

Software).  

3.4.4 Characterisation of the recombinant WT-PxRyR Caffeine-

response in Sf9 cells 

It was necessary to fully characterise the caffeine response of recombinant PxRyRs 

because caffeine response is used as a baseline against which to assess the diamide 

response. Relative shifts in caffeine response between cells are used to calibrate 

measurements of diamide response between those same cells. Characterisation of 

WT-PxRyR in terms of caffeine and diamide response will also be used as a baseline 

againsts which to compare other recombinant PxRyR sequence variants.  

The data in Fig 3.6 comprises caffeine applications (10mM) across 5 FOVs across 3 

experiments (Fig 3.6). Caffeine response was shown to be broadly comparable 

between cover slips and between experiments, utilising the RIPS system and the 

standardized methodologies described above. Each FOV of cells yielded between 5-

22 Cat A respondant cells. ‘R/R0’ refers to the absolute increase in fluorescence in 

response to agonist application (maximum amplitude of each cell), expressed as a 

ratio of cell baseline fluorescence. The highest recorded response of any single cell 

in this experiment was 1.45, indicating  a maximum fluorescence increase of 45% 

against the baseline fluorescence of that cell. For the majority of FOVs measured, 

an average R/R0 between 1.1-1.3 was recorded. Thus in general, caffeine signals 

observed here are small in comparison to those of other cell types studied in the 

literature (Thomas 2004), but in many cases the signal-to-noise ratio is extremely 

good. 
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Within a given FOV, interquartile variation in caffeine response can be as low as 

0.05, or as high as 0.18. Interestingly, between different cell FOVs, interquartile 

variation is no higher than that between cells on a single FOV. Similarly, 

interquartile variation between experiments is not higher than that between FOVs 

in a single experiment (Fig 3.6), all together suggesting that the majority of 

fluorescence variation occurring in these experiments is physiological (derived from 

within the cell) rather than due to abiotic variations occurring across the coverslip 

or across different experiments.  

The rest of this section will therefore discuss steps taken to ensure that variation in 

caffeine response between cells on the same FOV, and between those on different 

FOVs and different experiments, does not translate to variation in diamide 

response measurements.  

3.4.4.1 Cellular characterisation of Caffeine-release 

The amplitude, wavelength and minimum period of caffeine-evoked Ca2+ release 

transients were characterised in single WT-PxRyR expressing Sf9 cells (Fig 3.7). 

Within a single FOV of cells, amplitude of fluorescence signal caused by Ca2+-release 

transient is shown to increase with increasing concentrations of caffeine agonist 

 

Figure. 3.6 Boxplot of transient amplitude in response to 10mM caffeine, showing 

variation in caffeine response across i) multiple FOVs on the same coverslip ii) FOVs 

on coverslips over different experiments 

M
ax

im
u

m
 

   FOV 

1 

  FOV 2 FOV 3 FOV 1   FOV 1 

Exp. 1 Exp. 2 Exp. 3 



84 
 

(Fig 3.7c). The signal amplitude directly measures increase in Ca2+ in the cell – 

hypothetically caused by Ca2+ released during gating of the population of PxRyR 

channels in the cell (i.e. one CICR cycle). Normally, in-vivo Ca2+ release is tightly 

controlled by a series of RyR-modulating proteins (see Introduction Chapter). CICR 

only occurs once a series of conditions are met, including correct store-filling, ATP 

availability, and cytoplasmic Ca2+ evacuation, which ensures that the Ca2+
 efflux is 

approximately constant across multiple release events. In this thesis, the RyR-

modulating machinery is lacking from the cellular (Sf9 cell) environment, and RyR 

regulation is thus achieved primarily by varying caffeine concentration, whereby 

caffeine increases the sensitivity of the channel to lumenal Ca2+. The increase in 

signal amplitude with increased caffeine application (Fig 3.7c) appears to have an 

approximately linear relationship between caffeine concentrations in the range 

1mM to 30mM, indicating that an appropriate level of control over RyR opening is 

achieved through this methodology. 10mM caffeine appears to lie well within the 

linear portion of the concentration-response graph, eliciting an approximately half-

maximum (EC50) response, on average, in these cells. The results therefore support 

the adoption of application of 10mM caffeine as the standard sub-maximal 

activating concentration for recombinant PxRyR-expressing Sf9 cells during the 

experiments discussed in this thesis. Regarding the concentration-response curve 

itself (Fig 7c) it should be noted that this data represents only that from a single 

FOV of 17 responding cells, under a protocol of sequential addition of increasing 

concentrations of caffeine to the same cells. Whilst it is not valid for drawing 

detailed conclusions on the nature of caffeine activation outside of this lone FOV, 

the graph nevertheless permits comparison with previous studies. Casper et al 

(2010) previously reported a sigmoidal relationship for other insect RyR-expressing 

Sf9 cells in response to caffeine, broadly similar to that described here but with an 

approximate 10-fold reduction in the EC50 (i.e. increased sensitivity to caffeine). If 

the RIPS methodology employed herein reports lower- than-expected sensitivity, 

this should be attributed to the rigorous selection procedure (Fig 3.3) which by 

selecting for a given response mode may inadvertently select for a given response 

magnitude. In any case, the experimental format is designed for comparison of 

diamide-response between PxRyR sequence variants studied within this thesis, 

rather than with other publications which occur on unrelated experimental setups 

(see conclusion of this Chapter for further discussion). 
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Experiments were also conducted to determine the minimum resting period that 

would ensure complete calcium store renewal after caffeine exposure. Lumenal 

Ca2+ store volume is the primary driver of Ca2+ release amplitude, where higher 

store volumes create a higher concentration gradient, allowing more Ca2+ release 

within a fixed CICR period. Tight control of calcium store volume in experimental 

cells should therefore be a priority. Fig 3.7d shows that, at 10mM, 100s of resting 

period was required before a second transient, identical in amplitude to the first, 

could be elicited. A shorter resting period was associated with iterative reductions 

in transient amplitude, for example 30s resting period gives response of 1.08±0.03. 

At 30mM, a resting period of 500s was often not sufficient to allow elicitation of a 

second identical transient, suggesting that this concentration of caffeine perhaps 

alters the physiology of the cell. Such observations are critical to this thesis, where 

almost all in-vitro experiments on diamide activation require sequential application 

of caffeine before diamide (see Box 3.1).  

Transient calcium signal duration did not increase meaningfully with increased 

caffeine concentration within the same cell, or between cells of the same FOV. 

Differences in transient signal duration are largely mediated by other cellular 

factors outside of the RyR, such as the relative activity of the various pumps (NCX, 

SERCA, etc) as well as titres of lumenal and cytoplasmic Ca2+
 buffer and chelator 

proteins ((George et al. 2003a), and would therefore not be expected to respond 

to caffeine concentration. 

Figure 3.7. Characterisation of variation in caffeine response at increasing caffeine 

concentrations, and across time at constant dose 

(a) Example of raw fluoresce data from Sf9s expressing WT-PxRyR exhibiting calcium 

signal transients in response to increasing concentrations of caffeine. 10 cells were 

selected for raw data acquisition, one of which lacks a caffeine response (top, red) 

and is used for ‘non-responder baseline removal’, as per box 3.1. 

(b) Application of successively increasing doses of caffeine on Sf9 cells expressing WT-

PxRyR 

(c) Data from (b) represented as concentration-response for clarity.  

(d) Repeated application of 10mM doses of caffeine, with rest period of 30s. WT-PxRyR 

expressing cells show consistent caffeine response over time and return to near 

resting Ca2+ concentrations within 30s. By contrast, cells exposed to 30mM caffeine 

required at least 150s to return to a resting state and failed to exhibit consistent 

response (data not shown). 
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3.4.5 Characterisation of the recombinant WT-PxRyR diamide-

response in Sf9 cells 

The primary aim of this thesis is to determine the impacts of lepidopteran RyR 

amino acid variants upon diamide insecticide efficacy. In the remaining portion of 

this Chapter, the response of recombinant WT-PxRyR transfected Sf9 cells to the 

diamides FLB and CLR will be characterised.   

The recombinant PxRyR response to caffeine was characterised previously, in terms 

of its variation within a FOV (Fig 3.3), variation across experiments (Fig 3.6) and 

physiological properties over a range of caffeine concentrations (Fig 3.7). These 

characterisations served two purposes within the wider thesis, firstly acting as an 

experimental template upon which to conduct the diamide experiments and 

secondly by closely defining ‘physiological normality’, in order to pre-define which 

cells are suitable for inclusion in diamide experiments. Going forward, the standard 

protocol for diamide experimentation will involve pre-application with 10mM 

caffeine, a step which itself serves multiple purposes: 

1. Identifying appropriately responding cells (c.f. Fig 3.3) 

2. Quantifying the relative responsiveness of each individual cell 

The assumption of point 2. is that individual cellular caffeine response co-varies 

with individual cellular diamide response (within a given PxRyR variant of 

recombinantly expressed PxRyR). This was shown to be hold true in subsequent 

work (Ch4, Fig 4.6). The diamide response can thereby be relativized, based on first 

relativizing the caffeine response (See box 3.1 for how this Proportional Normalised 

Response (or PNR) is calculated).  

To calculate the Proportional Normalised Response (PNR), raw data was first 

normalized using the equation: F/F0, where F is a fluorescence ratio value recorded 

for an individual cell upon each individual time point and F0 is an average 

fluorescence ratio calculated over the first 5 seconds prior to addition of the 

agonist. The maximum response amplitude is taken as the maximum fluorescence 

signal outputted by the cell across all frames. 

Final amplitude data was presented as a mean value and the standard deviation of 

the mean. In all concentration-response plots in this thesis, response data was 

expressed as a percentage of the highest response registered within the graph. In 

the case of diamide studies, normalized diamide response data was relativized 
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against prior caffeine response data of that same cell (in the RIPS system, 10mM 

caffeine application always occurs 150s before diamide application). Data points 

are presented as the mean values for each individual experiment and standard 

errors compared to the mean.   

3.4.5.1 Agonist Diluents and Background Fluorescence 

Due to their low solubility in water, stock PxRyR agonists used in this study were 

dissolved initially in DMSO and then diluted into the Ringer’s medium at a dilution 

factor of 1:100. For example, stock solutions of 1, 10, 100uM FLB sulfoxide were 

made up in 100% DMSO, and immediately prior to application, diluted 1:100 in 

medium. 1% DMSO was found to elicit low amplitude linear responses in some Sf9 

cells (both transfected and non-transfected). In the context of prior 10mM caffeine 

activation, these DMSO-mediated responses were comparatively small, but 

however still large enough to impact response readings in the pre-linear (<EC50) 

portion of the concentration-response relationship. As such, the fluorescence 

amplitude of ‘non-responsive’ cells (those exhibiting no change in fluorescence in 

response to caffeine) was measured during each diamide measurement, and then 

subtracted from the fluorescence of each responding cell (see Box 3.1) in order to 

remove DMSO-mediated fluorescence from further analysis.  

Changes in background fluorescence due to application of agonist frequently occur 

in non-ratiometric calcium imaging, either due to changes in solution viscosity or 

due to poor dissolution of agonist in the media. In this present case, use of a 

ratiometric dye mostly removes the issue of background disturbance, and the 

effects occur equally at both ratiometric wavelengths, and therefore cancel each 

other out. Any remaining noise is ameliorated by the ‘non-responder’ subtraction 

mentioned above.  

Despite introduction of the above steps to remove agonist application background 

noise, as FLB has a notoriously very low water solubility (around 0.03 mg/l), 

particles are still visible when diluted from DMSO into Ringer’s medium at 

concentrations above 5μM. In all cases in this thesis therefore, the more soluble 

sulfoxide form of FLB was used for experiments. This compound differs only by the 

removal of one double-bonded oxygen from the terminal sulfur moiety, and was 

shown previously to illicit a very similar response in Heliothis neurons (EC50 0.61μM 

(FLB sulfoxide vs 0.91μM for FLB (Ebbinghaus-Kintscher et al. 2007)). Additionally, 
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pluronic F68 was added to the final solutions of all agonists (including caffeine) at 

0.003% concentration, in order to aid the solubility of diamide compounds 

(following Ebbinghaus-Kintscher et al. 2007).  

3.4.5.2 Absolute [Ca2+] was not measured 

In this thesis, no attempt is made to quantify the absolute concentration of Ca2+ 

present within a cell. Instead, relative changes in Ca2+-mediated fluorescence are 

quantified as a ratio of the maximum measured fluorescence (i.e. ‘normalised to 

the maximum’) and expressed on a relative scale. This methodological approach 

means that results are only comparable between experiments conducted on an 

identical experimental system.  

It should be noted that even if the absolute concentration of Ca2+ present had been 

quantified, this approach is also not ideal. The equation [Ca2+] = Kd((F - Fmin)/(Fmax-F)) has 
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been used by previous authors to measure absolute [Ca2+](Grynkiewicz et al. 1985). 

Application of ionomycin is used to induced saturating levels of Ca2+ by collapsing 

the integrity of the surface membrane (Kato et al. 2009), whilst calculation of Fmin 

requires EDTA calcium chelation to effectively determine the intensity of the dye in 

zero-free [Ca2+]. However, both Fmin and Fmax observations appear likely to cause 

damage or non-physiological alteration to the cell. Furthermore, the result is a 

standardised [Ca2+] figure that appears to encourage comparison between studies 

employing the same calculation, despite the fact that such comparisons are 

rendered foolhardy by the methodological chasms that generally exist between 

studies (e.g. different cell systems, different dyes, different agonist application 

systems, different imaging systems). 

Box 3.1. Calculating Proportional Normalised Response to diamide 

insecticides 

Data analysis pipeline: 

• Identify caffeine-responsive cells 

• For each cell, measure the caffeine response as follows: 

▪ Calculate ‘average fluorescence prior to application’: F0 

▪ Calculate ‘normalised fluorescence score at each timepoint’ for 
responding cells: F/F0

response 

▪ Calculate and subtract ‘cellular background’: F/F0
total = F/F0

response - F/F0
non-

response 

▪ Calculate ‘maximum fluorescence amplitude’: ∆F/F0 [Caffeine] = 
Max(F/F0

total) - 1 

• Similarly, measure response to diamide as follows: 

▪ Calculate F0 

▪ Calculate F/F0 

▪ Calculate ∆F/F0 [Diamide] 

• For each cell, divide ∆F/F0 [Diamide/Caffeine] to get the 'Proportion of Normal 

Response' (PNR) triggered by diamide 

o Repeat the above for all cells in the FOV, for the given dose 

o Take the mean average PNR across all cells in the FOV 

• Repeat the above for all doses in the dose-response 

• Plot the ‘PNR’ (Relativized Response) against diamide dose 
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3.4.5.3 A Method for Maximising the Speed and Accuracy of Diamide 

Concentration-Response Quantification 

This thesis aims to assess the diamide responsiveness of a large number of 

recombinant PxRyR wild-type and PxRyR sequence variants, and it aims to create a 

protocol by which the effects of future novel diamide resistance linked mutations 

can be characterised as quickly and accurately as possible.  

A two-step process was resolved in order to achieve this goal: 

1. Range-Finding (Fig 3.8a) upon a single FOV of cells 

2. Detailed characterisation upon multiple cover slips over multiple 

experiments 

3.4.5.3.1 Range-Finding 

Previous characterisation of lepidopteran diamide resistance associated mutations 

in Sf9 cell lines (Troczka et al. 2015) showed response amplitude variation across a 

nM to mM diamide concentration range. Here, in the present study, range-finding 

was used prior to detailed characterisation, in order to quickly establish an 

approximate minimum and maximum effective concentration of agonist (ECmin  / 

ECmax), within which range to conduct full concentration-response characterisation. 

Range-finding was conducted upon a single FOV of cells, following the normal 

protocols established above, beginning at [FLB]=1nM or [CLR]=0.1nM as the 

respective lowest effective concentrations noted in the literature for the two 

diamides (Troczka et al. 2015). Diamide concentration was raised iteratively by a 

factor of 10 (e.g. Fig 3.8a), until a response was elicited (ECmin). Diamide 

concentration was then raised by the same factor once more, in order to potentially 

elicit a higher response (ECmax) (Fig 3.8b). The diamide concentration used to elicit 

the two responses generated by this method inform the parameters of ‘Detailed 

Characterisation’, below.  

Data acquired under the range-finding protocol were not used for concentration-

response calculation. Diamide binding is known to be irreversible, such that 

repeated applications on the same cell may alter apparent response. Furthermore, 

the effects of diamide binding upon Sf9 cell physiology outside the 1200s 

experimental window are unknown. Irreversible diamide binding may mean that 

each sequential application affects the cell additively, as the agonist fills further RyR 

binding pockets within the cell, or alternatively it may mean that Ca2+ release occurs 

slowly and constantly from the point of first addition, such that  
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Figure 3.8 Characterisation of response variation with increasing concentrations of diamide insecticide 

(a) Raw traces show application of caffeine followed by application of iteratively increasing 

concentration of diamide (in this case FLB sulfoxide). Gradual increase in FLB-sulfoxide 

application on the same cell allows quick qualitative establishment of ECmin and approximate 

ECmax response (where in this instance, ECmax is taken as the point at which diamide response is 

equal to the prior applied caffeine response  

(b) Individual cellular responses after application of increasing concentrations of FLB-sulfoxide upon 

‘fresh’ FOVs. Such responses are collated to form a detailed quantitative assessment of the 

diamide dose-response relationship. 

 

(a) 

(b) 

Ca2+ (2mM) 
Caffeine (10mM) 
FLB (0.02, 0.1uM) 
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increased dosage is required for further activation due to depleted Ca2+ stores. 

Complete characterisation of such physiological responses to diamide in Sf9s was 

not within the scope of this thesis, although RyR-expressing CHO cells (Ebbinghaus-

Kintscher et al. 2006) were able to respond repeatedly to diamide application if 

given sufficient time to recover between applications. As noted previously, diamide 

application did not elicit response in non-PxRyR expressing cells (apart from DMSO 

creep-response), suggesting that the insecticides have minimal non-RyR mediated 

effects. Furthermore, maximum amplitude of diamide response was found to be 

similar to maximum amplitude of caffeine response (~25% increase in basal 

fluorescence, in all cases), which potentially indicates that the diamide induced Ca2+ 

release is remaining within the same physiological limits as the caffeine-induced 

Ca2+ release.  

3.4.5.3.2 Detailed Characterisation  

In order to characterise a concentration-response relationship for diamide 

activation of PxRyR, experiments were conducted following the protocols 

established in this Chapter. Cells were treated sequentially with 10mM caffeine (4 

seconds) followed by diamide (4 seconds). Cellular diamide response amplitude 

was normalised to the prior caffeine response to create a response ratio, which was 

then normalised against the maximal caffeine responses of the given receptor type 

(in this case, WT-PxRyR) to generate a PNR score.  

Such a method was employed here to generate concentration-response 

relationships for WT-PxRyR under exposure to CLR and FLB agonists (Fig 3.9). When 

PNR was plotted against agonist concentration, for both agonists a classic sigmoidal 

relationship is apparent in which low concentrations illicit minimal response up 

until an inflection point, after which increases in concentration result in a rise in 

PNR. In the case of CLR, concentrations below 0.01μM were not tested as previous 

studies showed a lack of response below this concentration. Response to FLB (Fig 

3.9, orange data points) appears to increase linearly between 0.1-1μM, as is typical 

in a sigmoidal relationship, whilst FLB concentrations above that fail to illicit 

considerable increases in response magnitude. CLR response was also plotted 

against a sigmoidal pattern (Fig 3.9 blue data points), although the fit is less 

convincing, with a lack of data coverage on the linear portion of the relationship, 

and considerable variation, especially at concentrations of 0.01 and 0.02μM. 
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In order to reduce variance generally, all concentration-response data for a given 

agonist (against a given RyR-expressing cell population) were collected on the same 

day. As a result, it was not possible to collect further data to fill gaps within the 

linear portion of the graph. An additional shortcoming of the experiment is the lack 

of technical replicates at each concentration. The undertaking of Range-Finding 

studies can be described as a poor man’s technical replicate; however, these 

studies give no indication as to what variation in measurements would be 

encountered upon a repeat of the experiment. A lack of duplication and paucity of 

concentration data-points can be attributed to the slowness or inefficiency of the 

experimental setup. This aspect will be discussed further below, in the context of 

weighing up the costs and benefits of the ‘RIPS’ system.  

Despite the shortcomings of this specific dataset, individual data-points acquired 

by this system appear reliable, with generally low variance (average response 

measurement error: 2.6%). An EC50 of 0.0148 for CLR and 0.27 for FLB are 

comparable to those generated by previous authors (Troczka WT EC50s = 0.016µM 

for CLR; 2.5µM for FLB).  

3.5 Absolute Ca2+ Imaging: An alternative method of diamide 
response quantification 

The RIP system described throughout this Chapter was found to be an effective 

method of diamide response quantification. However, its drawbacks include low 

sampling rate and poor control of abiotic factors. Parallel experiments were 

Figure  3.9 Concentration - response curves showing the normalised response of 

WT-PxRyR expressing cells to stimulation by CLR (blue) and FLB (orange), acquired 

via the RIPS system described in this Chapter. All calculations as in the Box 3.1 

pipeline.  
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undertaken via a separate methodology, referred to here as Absolute Ca2+ Imaging 

(named for the use of an absolute calcium indicator, Fluo4, in place of a ratiometric 

indicator, Fura-2-AM). In this method, cells were cultured and transfected following 

protocols identical to those described for RIPS but scaled down to take place in the 

individual wells of a 96-well plate. Coverslips of cells were removed from the 96-

well plate and placed in a Compton Perfusion Chamber, a purpose-built 3D-printed 

design (Fig 3.2) (Paul Compton – Rothamsted Research). Ringer’s solution flows 

continually over the cells, driven by a Scientifica Bath Perfusion Tool. Imaging of 

individual wells was captured by a Hamamatsu QE180 ORCA detector, mounted 

upon an axiovert 135M inverted microscopy and viewed down a 10x magnification 

eyepiece, utilizing an absolute Ca2+ indicator, Fluo4. Agonist was applied to the well 

as a whole, in bolus release from a pipette, and any change in fluorescence intensity 

recorded. Images containing 3000-5000 cells (Fig 3.10a) were analysed in terms of 

the baseline (before addition of agonist) and maximum fluorescence (after agonist 

addition) of each cell.  

An automated pipeline (see Box 3.2) was developed for this study in order to first 

identify individual cells and secondly record fluorescence data across each frame 

of the video.  

The system design was heavily influenced by a previous study concerning the role 

of hRyR2 mutants in cardiac death (Thomas et al. 2004), in which HEK cells 

transiently transfected with recombinant hRyR2 mutants were found to vary in 

their Ca2+ release physiology. Fluorescence of every cell (n~5000) in the FOV is 

measured before and after agonist application, resulting in millions of data-points 

per individual micro-well. Manual analysis of each well is then required to remove 

background noise, segregate cells by response type (responders vs non-

responders), and accrue final amplitude data from each individual cell. Regrettably, 

the system lacked one important functionality of the RIPS method: agonist 

evacuation was not possible, and therefore pre-application of caffeine agonist 

before diamide was not possible, with the result that individual cells could not be 

characterised in terms of their general physiological response to caffeine.  

Theoretically, the system might have allowed precise quantification of diamide 

response with high sampling rate and excellent control of abiotic conditions. The 

96-well format offers the possibility of high throughput data acquisition (if only a 

high throughput data analysis could be realised), whilst the confocal imaging 
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system possesses a bespoke climate control chamber, such that light, temperature 

and humidity are closely controlled. However, despite its promise ‘on paper’, the 

Absolute Imaging system utilised for Sf9 cells, against diamides, produced an 

unsatisfactory output in comparison to the RIPS system and previously published 

work. Application of iteratively increasing concentrations of CLR against WT-PxRyR 

expressing Sf9 cells produces a sigmoidal relationship (Fig 3.10b). However, 

Before addition      After addition 

CLR 0.001uM 

CLR 1uM 

P
N

R
 (

%
) 

(a) 

(b) 

Concentration (uM) 

Figure 3.10. Comparison of concentration response to CLR achieved via the alternative 
experimental setup, Static Ca2+ imaging, described briefly below. Data points correspond 
to peak amplitude (mean ± SEM) of 10-30 cells measured over 1200s, relativized to the 
individual response obtained for caffeine and normalised to the maximum response.  
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variation in response is as high as 40% of maximum value within a single application 

(e.g. at 0.01μM). Although this variation compares favourably to raw data from RIPs 

(e.g. >50% variation, Fig 3.8a), relativization of cellular diamide responses with 

caffeine responses, on the RIP system, is responsible for reducing such variation 

markedly (average 12.2% variation, Fig 3.9). A sigmoidal curve has been plotted to 

the data in Fig 3.10b for comparison to other concentration-response curves in this 

thesis. The reasons for the variation seen in this graph are discussed below.  

3.5.1 Drawbacks of the Absolute Imaging system 

3.5.1.1 Absolute vs. Ratiometric fluorescence measurement 

The benefits of ratiometric dye (e.g. Fura-2-AM, used throughout this Chapter) 

compared to absolute dye, are well documented. Most inherent sources of 

fluorescence (e.g. NADH, actin) are removed from further consideration by 

Box 3.2 Pipeline for cell identification and flurometric analysis, following 

Absolute Ca2+ imaging 

Initial Cell Identification and fluorescence quantification by CellProfiler 

• Video loaded and background identified based on corresponding trasmission 

microscopy image. 

• Cells are screened for change (or non-change) in fluorescence, relative to 

background, between initial and final frame. Non-changing cells are removed from 

further analysis.  

• Pixel intensity values are measured during each frame of the video for background 

and foreground (each cell a separate foreground object) 

• Results are converted into .CSV format via an R script 

Data selection and processing 

• Background values removed from cellular fluorescence (pixel intensity) value for 

each cell 

• Cellular fluorescence was compared just for the initial 100 and final 100 frames of 

each video 

• Change in fluorescence averaged across cells in FOV 

• Maximum change in fluorescence (amplitude) plotted vs concentration of applied 

agonist.  
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ratiometry. By comparison, absolute dye, such as the Fluo4 used here, captures 

every source of fluorescence within the 300-330nM range, including much abiotic 

noise, and much biological interference.  

3.5.1.2 Agonist application issues 

Diamides are poorly soluble in aqueous solution. This is partly what lends them an 

excellent eco-toxicological profile as insecticides, preventing them from readily 

contaminating water sources. During the RIPS experiments in this Chapter, diamide 

is pre-dissolved in a Ringer solution containing 1% DMSO and 0.003% Pluronic acid 

(final concentrations v/v), before addition to the Sf9 cells via a pressurised 

application system which ensures the complete replacement of the original ‘bath 

solution’ with applied ‘agonist solution’ in the local area of the cell (see Fig 3.2). By 

comparison, bolus agonist application into a microwell (on a 96 well plate) requires 

that the agonist solution disperses from the surface of the bath solution in the well 

down to the base of the well where the cells reside. Irreproducible bolus delivery 

by pipette results in variation in the location of bolus addition to well. Assuming a 

10m/s Brownian dispersal of agonist, time to reach base of well ought to be minimal 

(height of solution is 5mm). Solubility is a compounding issue under these 

conditions, because the requirement of agonist-solution to mix with bath-solution 

creates a situation where diamide often falls partially or completely out of solution.  

3.5.1.3 Atypical transient shape due to failed Ca2+ reuptake 

The RIPS system has been shown to illicit typical and reproducible Cat A type Ca2+ 

release transients in response to caffeine application (Fig 3.7). By comparison, in 

PxRyR-expressing Sf9 cells, no Cat A responses were recorded under the Absolute 

Imaging system. Instead, responding cells exhibited irreversible increases in 

fluorescence in response to 10mM caffeine, and failed to return to basal 

fluorescence within 1h of agonist application. This despite previous authors 

demonstrating the validity of a very similar system in HEK cells expressing hRyR2 

(Thomas et al. 2004). Without the ability for application of 10mM caffeine prior to 

diamide stimulus, the protocol of PNR relativization touted here was not applicable. 

Cells instead segregated into just two categories, ‘responders’ (which empty their 

stores entirely) or ‘non-responders’ (which exhibit zero or negative Ca2+ efflux). 

Consequently, non-typical responders bring a large amount of biological variation 

into the data. At the same time, measurable variation (in terms of the fluorescence 
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change triggered by agonist addition) is also reduced, because cells are unable to 

register sub-maximal responses to intermediate agonist dosage.  

3.6 Conclusions 

This Chapter has outlined the development and evaluation of a methodology aimed 

at rapidly quantifying the effects of PxRyR amino-acid substitutions on diamide 

efficacy. Such evaluations should ideally be done in the context of previous studies; 

however, such are the differences in methodology, and the variation in response to 

those differences, that contextualisation is difficult. Here it is shown that transiently 

expressing Sf9 cell lines produce differing responses under two separate 

experimental systems, where the principal difference is in agonist delivery and 

evacuation (EC50 for CLR by RIPS: 0.015μM vs AI: 0.033μM). Certainly, comparison 

of the data presented here with different experimental set-ups, often using 

different cell lines, would be unwise. Caffeine release dynamics of insect RyR 

expressed in Sf9 cells (Sattelle, 2009) vary considerably from those on CHO cells 

(Ebbinghaus-Kinscher et al. 2007) and HEK cells (Kato et al 2009), as expected due 

to differences in cell size, physiology and Ca2+ handling. More fruitful is an 

evaluation of this methodology in terms of its real-world utility, i.e. in its ability to 

rapidly characterise newly discovered diamide resistance related target-site 

mutations. Firstly, it is clear that the method is laborious for detailed phenotypic 

characterisation. FLIPR on stably expressing cell lines (Troczka, 2015), is capable of 

producing a diamide concentration-response curve similar to that reported here 

(Fig 3.9) in a single day of measurements (Peter Luemmen Pers. Comm). By 

comparison, to obtain a concentration-response curve using RIPS requires at least 

five days of measurements, with the whole experimental protocol requiring a 

period of a month to accommodate the prerequisite laboratory steps (culture, 

transfection, incubation). However, it is hoped that this disadvantage in speed of 

analysis is compensated for by time-saving due to the absence of the requirement 

for stable cell-line generation. Recent advances in plasmid mutagenesis, allowing 

up to five nucleotide/amino acid alterations to be introduced simultaneously 

(Agilent lightning), combined with highly efficient golden-gate cloning, ensures that 

even large, multi-substitution recombinant PxRyR constructs can be generated in a 

matter of weeks. Chapters 2 and 4 of this thesis will each analyse large numbers of 

recombinant constructs, in order to determine if this methodology is of practical 

value.  
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Chapter 4: Target-Site Resistance 
to Diamide Insecticides 

4.1 Chapter Summary 

Resistance to diamide insecticides in Lepidoptera is known to be caused primarily 

by amino acid changes on the Ryanodine Receptor (RyR), otherwise known as 

Target Site Resistance (TSR). Recently, two new target site mutations, I4790M and 

G4946V, have emerged, and both have been shown empirically to decrease 

diamide efficacy. A detailed understanding of the effects of these mutations on 

diamide efficacy in-vitro is as yet lacking.  

In the previous Chapter, an experimental system was established to quantitatively 

assess the impact of TSR mutations on diamide efficacy in-vitro using transiently 

transfected Sf9 cell lines. In this Chapter, this Sf9 system is employed to quantify 

the impact of these two novel mutations on diamide activation.  

The results help to further define the ‘diamide resistance region’ within the insect 

RyR transmembrane domain, and the location of a possible site of diamide 

interaction, as visualised on a 3D PxRyR model, and are additionally discussed in 

terms of future diamide resistance monitoring. 

4.2 Introduction 

4.2.1 Target Site Resistance 

Just 18 months after their market debut, resistance to diamide insecticides 

emerged in the Philippines in a population of DBM (P. xylostella) and was quickly 

followed by further episodes in nearby locations (Troczka et al. 2012). Partial 

sequencing of the resistant P. xylostella populations soon revealed a commonality; 

a polymorphism, G4946E (DVAVG/E), located close to the C-terminus of the RyR. 

An earlier study had shown the importance of this region of the receptor in diamide 

efficacy, with C-terminal-ablated channels failing to bind the insecticide (Kato et al. 

2009). The following five years would see numerous studies reporting the presence 

of the mutation in resistant DBM populations from divergent locations (see 

references in Table 4.1). As the G4946E mutation spreads worldwide its importance 

became clear, from functional evidence in insect cell lines, to binding studies on 

native membranes (Troczka et al. 2015; Steinbach et al. 2015).  The G4946E 
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mutation continues to emerge in new localities, with near-fixation of the mutation 

recently reported in South Korea (Kang et al. 2017).  

The differing coding triplets for the glutamic acid residue found in different 

populations (GAG for the Thai strain and GAA for the Sudlon (Philippines) strain) 

imply that this mode of resistance has evolved at least twice in Plutella (Troczka et 

al. 2012), whilst its incidence in at least 10 countries, spread across 3 continents, 

strongly suggests at least one more evolutionary event (Steinbach et al. 2015). An 

alternative substitution, G4946V, at this position has recently been characterised 

in P. xylostella populations from Guangzhou and Zhencheng in China, where the 

population make-up is split 70:30, G4946E to G4946V (Qin et al. 2018). Additionally, 

mutation at this G4946 residue (P. xylostella numbering) has been implicated in 

resistance in other insect pest species. A glutamic acid rather than glycine is 

reported as being present in resistant C. suppressalis populations in China (Yao and 

et al. 2017), whilst both G4946E and G4946V substitutions have been implicated in 

diamide resistance in European populations of T. absoluta (Roditakis et al. 2017). 

Taken together, resistance-conferring changes at this position have emerged on a 

total of 8 separate occasions in the past decade, in each case rising from an allele-

frequency of near zero and progressing to near-fixation.  

Whilst the S4-S5 linker as a whole has been shown to be critical to channel gating 

(Ramachandran et al. 2013), non-conserved changes at the 4946 position, which 

have been selected for as a response to diamide exposure, appear to confirm that 

standing variation at this interface position between helix and linker can be 

maintained in the insect pest population. In support of this theory, fitness costs 

associated with the G4946E mutation have been shown to be moderate, with some 

populations retaining the mutation without diamide selection (Troczka et al. 2016) 

(although see Ch5 for an investigation of this point). However, sequencing of 

Figure 4.1. Transmembrane protein 

topology of the C-terminal domain of 

the P. xylostella RyR based on the crystal 

structure of rabbit RyR1 (Yan et al. 2015). 

The region containing the G4946E 

substitution (position G4900 in published 

sequence (Troczka et al. 2012), accession 

number JX467684) links transmembrane 

domains TM4 and TM5. Image © 

Rothamsted Research Ltd and Troczka et 

al., 2015. 
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weakly resistant lepidopteran populations frequently fails to detect G4946E, 

suggesting that residual mutant allele frequencies are below the 2-5% detection 

thresholds (Roditakis et al. 2017; Guo et al. 2014b; Troczka et al. 2012). Thus, for 

the resistant allele to rise to fixation from such depths requires that it provide a 

sufficiently large selective advantage. An overview of the past decade of scientific 

literature does indeed suggest that, in the presence of diamide selection, 

survivorship (i.e. RR) of G4946E/V mutants over wildtype is frequently increased 

>3000-fold (References in Table 4.1).  

4.2.2 I4790M– A novel cause of resistance in diverse lepidopteran pests 

Diamide resistance is no longer exclusive to P. xylostella but is now also present in 

diverse populations of T. absoluta, S. frugiperda, S. exigua and C. suppressalis. 

Unsurprisingly, this diversification is coupled to the emergence of new genotypic 

mechanisms. One RyR amino acid residue in particular, I4790M (VSLAI/M), is 

implicated in resistance within all of the species listed. Detected in resistant 

lepidopteran pests from Brazil, Florida, Europe, Israel, China and Korea, this residue 

is developing a global importance to rival that of the G4946 locus.  

The I4790M change was first detected in a Chinese population of P. xylostella, one 

of a combination of four mutations identified in the RyR channel of this particular 

diamide-resistant strain, conferring potent (>2000-fold) CLR resistance (Guo et al 

2014). Despite a lack of experimental validation, correlative evidence of I4790M 

conferring resistance is plentiful, as the mutation hitch-hikes its way across the 

globe. Its impact was first clearly shown in a Sicilian population of T. absoluta, in 

2015, which exhibited 180-fold CLR resistance at a mutant-allelic frequency of close 

to 100% (Roditakis et al. 2017). It is now known to be fixed in various populations 

across Italy and Greece, where it appears to ‘compete’ with the G4946 mutations – 

the two changes almost never appearing in the same organism, with almost all local 

populations fixing for one or the other (Roditakis et al. 2017). I4790M has also been 

detected in South American populations of S. frugiperda: the Puerto Rican and 

Brazilian populations are described as distinct, although gene flow between the two 

is not unlikely (Nagoshi et al. 2017). The Brazilian population developed I4790M-

mediated resistance in early 2016, whilst the Puerto Rican population exhibited 

160-fold (CLR) and 500-fold (FLB) resistance but has not been genotyped for 

presence of the mutation. Interestingly, laboratory selection of the Brazilian 

population with CLR led to slight increases in CLR resistance (237-fold), but dramatic 
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increases in FLB resistance (>42,000-fold) (Bolzan et al. 2019). Another noctuid 

pest, S. exigua also carries the equivalent of I4790M, which is present in almost all 

surveyed Chinese populations and is associated with 150-fold CLR resistance. The 

mutation is also fixed in certain Chinese populations of C. suppressalis, associated 

with 250-fold CLR resistance (Sun et al. 2018). As all of these recorded episodes 

closely associate with CLR resistance, I4790M does certainly appear to be 

conferring resistance, although not to as high a degree as G4946E. However, as 

seen in Table 4.1, I4790M resistance is certainly sufficient to cause control failure 

once it spreads to fixation.  

 

Table 4.1 Summary of major global diamide resistance occurrences, detailing geography, 

severity and mechanism of resistance 

a:CLR = chlorantraniliprole; FLB = flubendiamide;  

b: Lethal Dose, in mg/L 

c: LD expressed as ‘% of Recommended Dose’, where RD is 48mg/L for FLB and 82.5mg/L for CLR 

d: converted from ug/cm2 (Cho and et al 2018) 

Studies on laboratory-selected resistant strains were left out of this table, as their relevance to control-
failure in the field is limited. Studies reporting low to medium resistance ratios (RR<50) were left out of 
this table as this range falls within the spectrum of population variation (Following (Nauen and Steinbach 
2016)).  
Further information on calculations made in this table is provided in Methods.   
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4.3 Methods 

4.3.1 Concentration-response assays 

Throughout this thesis, diamides are dissolved in a final solution comprising 1:100 

DMSO:H20. Diamide solubility in DMSO is not listed on the compound data sheets, 

however solubility in dimethylformamide, which is a very similar solvent*, is known 

to be ~1000x higher than the value for distilled water, so it is probable that the 

DMSO:H20 solution increases solubility. Preliminary solubility tests (eyeball-test) in 

this thesis indicate that precipitate starts to be visible at concentrations of CLR 

above 150µM, and concentrations of FLB above 75µM (indicating that the presence 

of DMSO may raise FLB solubility above the 58µM maximum).  

*(https://www.gaylordchemical.com/innovation-center-2/using-superior-
solvents/replace-dmf-with-dmso/) 

 

4.3.2 In-silico analysis methods 

4.3.2.1 Computational modelling  

Taking into account the publication of Yan et al. (Yan et al. 2015) who described the 

(closed-state) conformational model of the European rabbit RyR1 in complex with 

FKBP12 at 3.8 Å resolution determined by single particle cryo-electron microscopy 

(cryo-EM), a multiple amino acid alignment of the RyR wildtype sequence of P. 

xylostella (UniProt G8EME3; Guo et al., 2012) and the rabbit structure (PDB 3J8H) 

was used to map the known mutation sites linked to diamide resistance (Troczka et 

al. 2012; Guo et al. 2014b; Guo et al. 2014a). As PDB 3J8H does not cover the 

complete sequence of the rabbit RyR1 (due to structural disorder), another but 

complete sequence of Oryctolagus cuniculus RyR1 (UniProt P11716) was added to 

the pairwise alignment to map the gaps in the structure determined by cryo-EM. A 

homology model for the P. xylostella RyR was constructed using the Advanced 

Homology Modeling tool within the software suite Maestro (Maestro 2019). To 

correct for vdW clashes and distortions in the local structure, the raw model was 

subjected to an energy refinement procedure with the macromodel minimization 

(LBFGS method, 5000 iterations). The illustrations from the resulting 3D models 

shown in this thesis were generated from the Maestro modeling suite. 

4.3.2.2 Assessment of diamide resistance 
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Within this chapter, two scores are used to assess diamide resistance episodes: 

Resistance Ratio (RR) and %RD. Each provides unique information on the nature of 

the resistance episode.  

RR is a common assessment of resistance, an indication of the efficacy of the 

insecticide against a resistant strain in comparison to a baseline efficacy in an 

insecticide susceptible reference strain that pre-dates resistance (Lethal Ratio Test 

(Robertson 2007)). RR indicates the scale of insecticide resistance that is taking 

place within the organism, information that is particularly valuable in combination 

with a biochemical understanding of resistance mechanisms. However, reliance on 

baseline toxicity measurements makes RR a poor quantifier of absolute insecticide 

resistance. Baseline measurements are variable within populations of a species, 

and even more so between different species, and such variation becomes 

problematic when it is amplified 100- or 1000- fold during calculation of RR. This 

can result in dramatic misdiagnosis of resistance severity, as shown in table 4.2, in 

which the Brazilian P. xylostella population registers a lower CLR LD50 than the 

Chinese C. suppressalis, whilst comparison by RR alone would suggest that the P. 

xylostella is experiencing a considerably more severe resistance.  

When the goal of resistance monitoring is to predict control failure, this chapter 

utilises %RD. As outlined in previous studies (Silva et al. 2011; Guedes 2016), this 

score is based upon comparing the LD80 (lethal dose for 80%) of the population 

with the Recommended field Dose (RD) of the insecticide. %RD is therefore an 

expression of the “LD80 as a percentage of the RD”, and gives a direct estimation 

of the probability of control failure. If the estimated LD80 is higher than the label 

rate of the commercial formulation, control failure will probably take place.  Such 

a score has basis in European and Brazilian law, where new synthetic insecticides 

are required to kill >80% of their target population at their prescribed RD. On this 

scale, If a population registers a %RD <100% against a given insecticide, this is an 

indication that control is currently effective; it matches or exceeds the minimum 

expectations of European and Brazilian insecticide registration requirements (Silva 

et al. 2011). A score of >100% indicates a significant risk that control failure will 

occur, based on the assumption that non-controlled (resistant) phenotypes will 

proliferate and increase within the population.  
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Table 4.2. Comparison of CLR resistance across field strains from three lepidopteran 
species (from Table 1, above).  

Species Location Compound LD50 Slope LD80 
% of 
RDc 

RR 

T. absoluta Israel CLR 6998 2 17,438 21,137% 22,573 

P. xylostella Brazil CLR 204 3.06 321 669% 27,739 

C. suppressalis China CLR 214 1.94 437 530% 153 

 

4.3.2.3 Calculation of RR and %RD 

Calculation of %RD is via the following equation: 

Where LD80 is the Lethal Dose for 80% mortality of the insect population, and RD 

is the recommended field dose. Where LD80 is not listed in the literature, it is 

calculated via the following equation (GraphPad 2019): 

 

 

Calculations of LD80 were validated against studies of known LD80, e.g. (Roditakis 

et al, 2018). Calculated values are generally much lower, at just 60-80% of actual 

values, such that likelihood of control failure is expected to be far higher than 

reported here. Disparities between calculated and actual values are likely to be 

caused by early plateau of the logarithmic phase of the concentration-response 

curve.  

Resistance Ratios, described above, were extracted from the literature, and 

required no further calculation. 'RD', recommended dilutions were extracted from 

the insecticide labels for FLB (BELT©) and CLR (Coragen©) (table 4.3). For 

simplicity's sake, the RD is taken to be that of the 'Lepidopteran Dilution'. and is 

used as such throughout this chapter. BELT values calculated based on the given 

recommended spray values of 75-150ml/Ha of 480g/L BELT formulation. CORAGEN 

values calculated based on the given recommended spray values of 0.046 - 

0.098lb/acre. The lepidopteran pest dilution for CLR has been calculated based on 

the median spray, 82.5g/Ha. For comparability with the literature and with FLB, this 

%RD = (LD80 / RD) x 100 
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value was converted to 82.5mg/L following the arbitrary conversion listed in the 

BELT480 product label, i.e. 48g/Ha: 48mg/L. It should be recognised that spraying 

practices and guidelines vary between localities, crops and pests. Although they are 

unlikely to exceed the spray limits listed here, the (mal)practise of under-dosing is 

common in some regions (Troczka et al. 2016), such that control failures may be 

significantly more likely than reported here.  

Table 4.3. CLR and FLB spray dosage information. 

Compound 
FLB 

(BELT) 
CLR 

(Coragen) 

Minimum spray (g/Ha) 31 55 

Maximum spray (g/Ha) 72 110 

RD (mg/L) 48 82.5 
   

 

4.4 Results 

4.4.1 Generation of novel PxRyR constructs 

 
The three novel mutations E1338D, Q4594L and I4790M were originally discovered 

in Yunnan province, China, in P. xylostella individuals displaying a 2128-fold 

resistance to CLR (Guo et al. 2014a). Documentation of this resistance episode was 

a key prompt for the conception and initiation of this PhD. Therefore, PxRyR 

constructs incorporating E1338D, Q4594L and I4790M individually, and in various 

combinations matching those found in the original field study, were created (Fig. 

4.2). However, it soon became apparent that I4790M was of much greater 

relevance than the other two mutations, emerging autonomously in various 

lepidopteran species and isolated populations. Investigations into I4790M-

mediated resistance were therefore prioritised, whilst investigations into 

combinatorial constructs involving the other two residues were put on hold.  

The first year of this PhD also saw reports of a T. absoluta outbreak in Europe, 

accompanied by the sequencing of the novel diamide resistance-associated variant, 

G4946V (Roditakis 2016). Investigation of this novel amino acid variant at the 

G4946 position was therefore also prioritised.  
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In this Chapter, comparison of the novel PxRyR constructs is made against two 

previously created constructs, WT-PxRyR and G4946E-PxRyR (made available 

courtesy of Bartek Troczka). Characterisation of WT-PxRyR was completed in Ch3 

following a novel methodology developed for this thesis. Characterisation of 

G4946E is undertaken as part of this Chapter, in order to evaluate the methodology 

further.  

4.4.2 Functional Expression of modified PxRyR constructs 

4.4.2.1 Preliminary Diamide Dosing 

Modified PxRyR constructs were expressed in Sf9 cells following the protocols 

established in Ch1. Preliminary experiments with 10mM caffeine exposure indicate 

that the constructs form functional PxRyR channels (Fig 4.3).  Subsequent dosing of 

the same cells with 5µM CLR reveals that I4790M-PxRyR expressing cells are 

susceptible to this concentration, as is the WT-PxRyR, but that G4946V-PxRyR cell 

line registers no Ca2+ release. Repeated dosing with caffeine failed to provoke Ca2+  

 

Consensus 

 
Reference 

 
Raw 

Consensus 

 
Reference 

 
Raw 

Figure 4.2: Sequence comparison of mutated nucleic and amino acid positions for each 

PxRyR construct created. Mutations were generated by site-directed mutagenesis upon 

fragments of the PxRyR. ‘Consensus’ displays the successfully implemented alteration, 

whilst ‘Reference’ bears the original Wild-Type genotype. ‘Raw sequence’ data is also 

provided. Mutagenized fragments were reassembled into full-length PxRyR following the 

cloning strategies detailed in the Methods Chapter.  
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Figure 4.3 Recombinant PxRyR mutants expressed in Sf9 cells, dosed sequentially with 10mM 
caffeine (grey) and 5µM CLR (black).    

 



 

112 
 

release in those cells which had previously been activated by the diamide, but 

successfully provoked Ca2+ release in cells expressing G4946V-PxRyR. 

4.4.2.2 Differences in Ca2+ handling between WT and modified constructs 

Temporal and amplitude properties of caffeine-evoked Ca2+ transients were 

characterised in Sf9 cells expressing WT and G4946E-PxRyR. The amplitude of Ca2+ 

release evoked by caffeine is critically dependent on the filling status of the ER Ca2+ 

store. Importantly, average cellular resting fluorescence of PxRyR-transfected cells 

of each genotype do not differ significantly (G4946E, 1.80±0.32; I4790M, 1.51±0.74; 

G4946V, 1.15±0.21) when compared to the ER Ca2+ load determined in cells 

expressing WT-PxRyR (1.00±0.38), indicating that genotypes have approximately 

the same resting Ca2+ store capacity. Comparison of the peak response at each 

concentration (Fig. 4.4) suggests no significant functional heterogeneity exists 

between the two genotypes, under these conditions. 

Time constraints prevented a caffeine concentration-response relationship to be 

generated for each of the recombinant PxRyR constructs. Instead, the 

recombinants are compared in their response to a single (10mM) dosage of caffeine 

(Fig. 4.5a), as this falls well within the linear portion of the WT-PxRyR response 

curve. Measurements were taken for all three constructs in a single day, in order to 

minimise methodological variation, with between 6-25 cells responding for each 

construct. This preliminary investigation indicated that neither G4946E-PxRyR nor 

G4946V-PxRyR produce a caffeine-stimulated peak significantly different in 

amplitude to that of the WT-PxRyR construct (Fig 4.5b, P>0.05). However, the 

I4790M-PxRyR produced a significantly higher peak (Average: 1.31; P<0.05). Even 

accounting for variation in measurements between experiments (see Ch3, Fig 3.6) 

the difference recorded is robust. I4790M-expressing Sf9 cells were also observed 

to respond more readily to caffeine compared to WT (i.e. more Cat A and B 

responses - see Ch3, Fig 3.5). 
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Figure 4.4 Response of a) WT, b) G4946E to increasing concentrations of caffeine 

Data for WT PxRyR was previously displayed in Ch1 and is redisplayed here for comparison only.  

(b)  

(a)  
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(b)  

Fig 4.5 Caffeine response comparison between modified PxRyR constructs.  
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A hypothetical 3D structural model (Fig. 4.6) of the PxRyR protein suggests an ~ 30Å 

distance between I4790M and the caffeine binding site (as defined in (Murayama 

2018), implying that interaction between the two regions is unlikely. Again, lack of 

any substantial investigation into calcium handling differences between the 

constructs hinders further physiological discussion of this observation.  

In the context of this thesis, the more important point is that the I4790M construct 

may register reduced Proportional Response (PNR) to diamides due to a relatively 

increased caffeine response (median response 24% higher than WT response, fig 

4.4, b). Due to the calculations performed during concentration-response analysis 

(Box 3.1), this would result in an apparent 24% reduction in the recorded diamide 

response vs the theoretical expected response. Therefore, during the analysis for 

Fig 4.7, I4790M-caffeine responses were each reduced by a factor of 1.24 to 

compensate for this discrepancy.  

4.4.2.3 Variation in caffeine-response correlates with variation in diamide 

response, across all three PxRyR variants 

It was previously shown that cells vary in their general physiological ability to 

conduct calcium in response to caffeine application (Fig 3.6). An assumption of this 

thesis is that caffeine response and diamide response covary. That is, cells that 

exhibit a higher than average response to caffeine are expected to exhibit a higher 

than average response to diamide application. If the assumption is true, it justifies 

the technique employed throughout Ch 3+4+6, in which cellular response to 

diamide is first normalised against a baseline, and then relativized against the 

caffeine response of that same cell (see Ch3, Box 3.1).  

 

Scatter plots of caffeine response against diamide response (Fig 4.7) corroborate a 

potential association, but that the relationship begins to break down at high 

concentrations of diamide (i.e. R2 is reduced). The steepness of the plotted line in 

Fig 4.6 indicates the relative response of the construct to caffeine vs diamide, with 

an incline of ~1 indicating equal responsiveness to both compounds. R2 indicates 

the extent to which variation in caffeine response (x) predicts variation in diamide 

response (y) (the value is literally determined by the distance of outlier values from 

the trendline of the graph). Strong correlations are observed for WT (R2=0.89), 
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G4946V (R2=0.56) and I4790M (R2=0.60) when tested at concentrations close to 

their EC50 (see Figs 4.8-4.10). I4790M-RyR expressing cells exposed to a much 

higher concentration of diamide (25uM) exhibit a markedly increased variation in 

response amplitude, weakening the relationship (R2=0.23). By comparison, 

variation in caffeine response remains very similar between experiments, and 

across different genotypes (the caffeine concentration remains at 10mM in all 

cases). Whilst at diamide concentrations above the linear portion, it was found that 

caffeine and diamide response correlate poorly or not at all.  

 

Figure 4.6. PxRyR homology model, indicating position 

of caffeine binding site (large circle) relative to 

position of I4790M mutation (small circle).  
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Figure 4.7. Normalised response to 10mM caffeine (x) vs normalised response to varying concentrations of CLR (y). Each plot represents a patch of 

PxRyR-expressing Sf9 cells exposed to caffeine and then diamide stimulus.  
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4.4.3 Quantifying the impact of field-derived mutations on PxRyR 

stimulation by diamides 

 
By successive application of caffeine and diamide, following the protocol outlined 

in Ch3, Box3.1, the recombinant PxRyR constructs G4946V-PxRyR and I4790M-

PxRyR were characterised in terms of their responsiveness to increasing diamide 

concentrations. Concentration-response relationships are displayed, with 

comparison to WT-PxRyR, for CLR and FLB in each case. For each concentration 

point, n = 5-8 patches of cells, where a patch of cells contains between 5-32 Cat A 

responding cells.  

4.4.3.1 G4946E – the root of resistance 

Diamide resistance associated with G4946E in the field varies from ~2000-fold for 

FLB in China, to ~10,000-fold to CLR in the Philippines (references in Table 4.1). Over 

the past decade, the role of G4946E in diamide resistance has been extensively 

characterised in-vitro. Sf9 cells expressing a non-resistant WT-PxRyR channel 

exhibited non-transient gating and calcium store emptying in response to 100nM 

FLB application, whilst those expressing the G4946E channel were refractory to 

such effects up to (and most likely beyond) the limit of solubility of the compound 

(Troczka et al. 2015). For CLR, a more complete concentration-response profile was 

achieved for both the WT-PxRyR and G4946E-PxRyR constructs, with the EC50 

increasing from ~0.017µM to around ~3.7µM, implying a RR of 218-fold. Similarly, 

native membrane preparations containing PxRyR from a resistant moth strain 

exhibited 450-fold (FLB) and 159-fold (CLR) reduced binding when compared to 

membrane preparations from a susceptible strain (Steinbach et al. 2015).  

The results presented in Fig. 4.8 broadly agree with past studies, cited above, 

reiterating the reduction in diamide efficacy due to the G4946E change. The RRs 

recorded here of 100-fold for CLR contrasts to the 218-fold resistance reported in 

(Troczka et al. 2015). In this case (and in Figs. 4.8 and 4.9), quantification of a 

resistance ratio for FLB was not possible, due to the inability to reach a plateau in 

the FLB-response prior to the limit of solubility.  

4.4.3.2 G4946V – a new locus of resistance in Tuta absoluta 

Populations of T. absoluta with diamide resistance ratios of ~2700-fold or >3200-

fold were recorded in Italy and Greece (respectively), as of 2017. The associated 
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G4946V mutation characterised in the resistant T. absoluta populations has not yet 

been identified in other species (at the time of writing). It was necessary therefore 

to experimentally validate the role of this mutation in the observed resistance 

episodes. The mutation is also interesting in the context of achieving a better 

understanding of the nature of G4946E-mediated resistance. The valine (V) 

substitution in the T. absoluta populations has no charge, compared to the strong 

negative charge on the glutamic acid (E) substitution. If both cause an equal level 

of resistance, this might indicate that the associated decrease in diamide efficacy is 

due to binding site obstruction rather than changes in chemical interaction. 

The results presented in Fig. 4.9 indicate that the G4946V substitution does 

mediate substantial resistance to both FLB and CLR. A calculated RR of 144-fold to 

CLR indicates more potent resistance effects than those seen for G4946E in this 

study. However, caution should be exercised in comparing the resistance profiles 

of the two constructs given that, as discussed previously, detailed analysis of cell 

physiology was not made in this study.  

Since the collection of this data, other authors have made parallel attempts at 

characterisation. T. absoluta membranes harbouring G4946V-RyR have >300-fold 

reduced FLB binding (Roditakis et al 2017). G4946E, inserted by CRISPR/Cas9 

transgenesis into an otherwise susceptible genetic background, exhibits a 

resistance of 223-fold to CLR in beet armyworm (Zuo et al. 2017).   
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Figure 4.8. Dose-response relationship of G4946E -PxRyR (dark fill) to CLR (blue) and FLB (orange) with WT- 

PxRyR (light fill) response included for comparison 

 

Figure 4.9. Dose-response relationship of G4946V -PxRyR (dark fill) to CLR (blue) and FLB (orange) with WT 

PxRyR (light fill) response for comparison 
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4.4.3.3 I4790M – A novel cause of resistance in diverse lepidopteran 

pests 

The potential significance of the I4790M residue is immediately clear when one 

looks at an alignment of insect RyRs (Fig 4.10), as almost all insect orders are 

wildtype methionine (M) whilst Lepidoptera are distinguished from other orders by 

having an isoleucine (I). It seems highly plausible that the methionine at this 

position is therefore a selectivity switch, responsible for the relative ineffectiveness 

of diamides, particularly FLB, on non-lepidopteran pests (Steinbach et al. 2015). 

Such a theory is supported by reverse genetic studies in Drosophila, which naturally 

have methionine at this position and exhibit low diamide susceptibility. 

Substitution with isoleucine conferred a 7.5-fold increase in CLR efficacy and a 15-

fold increase in FLB efficacy (Douris 2017). Anthranilic acid diamides such as CLR 

are thought to bind at a separate, albeit coupled, location from the phthalic acid 

diamide FLB, potentially explaining this discrepancy in susceptibility in the 

engineered Drosophila strain (Isaacs et al. 2012; Qi and Casida 2013). A recent 

backcrossing experiment in S. exigua found that introgression of the I4790M 

mutation caused approximately 20-fold resistance to both diamides (Zuo and al. 

2019).  

Functional biochemical studies on I4790M are severely lacking and we still don’t 

fully understand why this mutation causes diamide resistance. Homology protein 

modelling of the P. xylostella RyR has shown that this residue lies just 13Å from 

G4946 in the 3D structure, with suggestions that the two residues may form part of 

the diamide binding pocket (Steinbach et al 2015). However, attempts to use a 

fluorescent CLR tracer to measure thoracic membrane binding failed to draw any 

meaningful conclusions (Guo et al. 2014b). A similar attempt using radiolabelled-

CLR suggests a 4790M-mediated reductions in binding, although the presence of 

4946E in the membrane preparations prevents a clear interpretation of the results 

(Roditakis et al. 2017).  

Fig. 4.11 indicates that I4790M does indeed confer a degree of resistance to 

diamide insecticides. For CLR, the calculated RR is moderate, at just 10-fold 

(comparing to RR of 100-fold for G4946E in this study). A slightly higher resistance 

is apparently conferred to FLB, with estimates between 20-fold and 35-fold, 

depending on the line steepness calculated. As previously, limitations of solubility 

prevent accurate quantification of FLB resistance.   
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Figure 4.10. Lepidoptera segregate from other invertebrate and vertebrate species at the 4790 position on the 

RyR 
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Figure 4.12. Boxplot comparison of all resistant PxRyR mutant responses to diamides CLR and FLB 

P
ro

p
o

rt
io

n
al

 N
o

rm
al

is
ed

 R
e

sp
o

n
se

 

Fig 4.11. Dose-response relationship of I4790M -PxRyR (dark fill) to CLR (blue) and FLB (orange) with WT- PxRyR 

(light fill) response shown for comparison 
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4.5 Discussion 

It has been noted previously (Thomas et al. 2004) that heterologous expression of 

RyR in cells that contain neither the native RyR nor its native regulatory 

environment may yield channels that behave entirely dissimilarly to those in-vivo, 

bringing into question the relevance of the results in the context of insecticide 

resistance in the field. Channels produced in null-cell systems may not exist in a 

macromolecular organisation, since many of the accessory proteins are absent 

(Macrill 1999). Three points offer evidence to the contrary, however. The first is 

that this study addresses just one characteristic of the RyR channel; the release of 

Ca2+ due to agonist binding. Such a mechanism has been shown not to require 

additional accessory proteins, and indeed not even to require the majority of the 

protein to be intact (Xu et al. 2000). Secondly, the mutations studied here might be 

expected not to illicit strong functional differences, because these exist and even 

spread throughout populations, as opposed to those pathological mutations cited 

in medical studies (e.g.(George and al 2007)). Indeed, the mutations are not 

expected to illicit functional difference at all because they lie in a region quite 

distinct from the Ca2+, caffeine, ATP-binding region (Fig 4.6). The third point is that 

numerous studies have now made use of such heterologous expression systems to 

study lepidopteran RyR in-vitro. This study draws on these previous studies, and its 

strength is in comparison to those previous studies, rather than requiring 

comparison to in-vivo results. Furthermore, the comparison is made between 

genetically very similar recombinants, varying by just a single amino acid alteration, 

as opposed to the work of others ((Kato et al. 2009; Tao et al. 2013)) which compare 

drastically different constructs. The benefit of in-vitro studies such as these are to 

allow a ‘reductionist’ environment to look at individual channel changes out of the 

context of the compensatory mechanisms that might exist in-vivo.  

4.6 Conclusion and future work 

The results in this Chapter (summarised in Fig 4.12) have shown that alterations of 

residues G4946 and I4790 on the PxRyR cause a severe reduction to the diamide 

effect in PxRyR-expressing cell lines. Comparison of the results presented here with 

those of other studies reveals that resistance ratios vary dramatically between in-

vitro and in-vivo studies, even when mediated by the same cause. For example, 

whilst the G4946E change produces a 10,000-fold reduction in CLR efficacy in the 

field, the same change produces a mere 100-fold change in this study. Similar 
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findings in other cell line and ligand binding studies support the point (Troczka et 

al. 2015). The simplest explanation is that in field populations, multiple sources 

combine to aggravate the phenotype. Possible mechanisms include cuticular 

changes affecting insecticide penetration; behavioural adaptations for avoidance; 

metabolic upregulation to speed up detoxification and removal; and target-site 

alterations to reduce insecticide efficacy (IRAC 2019). Alternatively, the disparity 

may be attributable to other aspects of the genetic background. In complex 

organisms, any phenotype is determined by the overlapping effects, or epistatic 

effects, of multiple independently acting genes. Previous studies document 

examples of a genetic alteration increasing fitness in the presence of an insecticide, 

in a genetic-background-dependent fashion (Smith 2011).  

The I4790M change was found here to mediate a 10-fold reduction in CLR efficacy, 

whilst in the field its presence is associated with ~150-fold change (Gutierrez-

Moreno et al. 2019). This result also supports the role of I4790M as a diamide 

‘selectivity switch’ between lepidopterans and other insect classes – partially 

explaining the major reduction in FLB-response outside of the Lepidoptera. 

I4790M-mediated FLB-resistance was comparable to the other two resistant 

constructs. Referring to Figs 4.8-4.10, 10µM FLB elicits a response magnitude of 

63% (I4790M); 20% (G4946E); 78% (G4946V), respectively, whilst resistance to CLR 

conferred by I4790M is much less potent than that of the G4946 alterations. 

Certainly, the FLB-resistance conferred by I4790M in this study is much less severe 

than the resistance ratios calculated between Lepidoptera and other insect orders, 

which can reach a magnitude of 10,000- or 100,000-fold difference (Hall 2007), 

even accounting for the observation that field-study resistance ratios tend to be 

much higher than lab-study ratios. If the I4790M is a selectivity switch, it is surely 

one of many which combine to make such a wide selectivity difference between 

the classes.  

Whilst the proliferation of target-site resistance is cause for alarm in terms of 

reduced defence against lepidopteran insect pests, it may also hold clues to 

reversing resistance. Analysis of the resistance-associated mutations described 

above, combined with empirical studies on the RyR channel, bring ever closer the 

goal of pinpointing the diamide binding site. A list of additional candidate mutations 

was compiled (Fig 4.13) based on the correlation of known diamide susceptibility 

with the occurrence of residue changes across an alignment of 44 insect and non-
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insect RyR sequences. Residues that segregate between lepidopterans and other 

insects represent candidate resistance-associated mutations. The presence of a 

residue in other insects is evidence of functional compatibility, hence the 

assumption is that residues present in other insects are more likely to reoccur in 

Lepidoptera in the field.  

Mapping of the P. xylostella TM region on to the available 3D structure of closed-

state rabbit RyR1 (Yan et al. 2015) shows a very close proximity of G4946E and 

I4970M. At approximately 13Å distance, they face each other from either side of a 

Voltage Sensor Domain-like cavity (pVSD), a highly polar region whose homologues 

in other channels are known sites of ligand interaction. The role of the pVSD in 

diamide binding is supported further by a series of reverse genetic studies, as will 

be discussed further in Ch6, where it will inform an effort to define the position and 

extent of the diamide binding site.  
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Figure 4.13 Additional candidate mutations that may alter RyR channel sensitivity to 

diamide insecticides. Alterations are listed by position, and the significance of the alteration 

in terms of local chemical interactions is described. Changes in size are expected to alter 

the size of cavities, which can impact ligand binding. Changes in charge may alter the local 

hydrophobicity, changing what type of ligands can bind. Sulphurous amino acids have the 

capacity to form di-sulphide bonds with other sulphurous amino acids, which can drastically 

alter the shape of the protein. Hypothetical residue changes based on: α, Wang et al 2012; 

β, Daniel Cordova pers. comm; γ, residues identified in this study based on alignment of 43 

insect RyR sequences.  

(a)  

(b)  
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Chapter 5: In-vivo investigations 
of Diamide Resistance 

5.1 Chapter Summary 

5.1.1 An in-vivo model of diamide resistance 

The previous Chapter investigated two novel RyR mutations and concluded their 

probable role in reductions of diamide control efficacy in lepidopteran field 

populations. However, resistance is a field-condition and should be studied in 

settings as close as possible to those of insects in the field (Ffrench-Constant and 

Bass 2017). The goal of isolating the RyR sequence variants within Sf9 cells (Ch4) 

was to show beyond reasonable doubt that the individual mutations linked to 

diamide resistance are responsible for alterations in diamide interaction with the 

receptor. Having done so, it is now important to corroborate these findings by 

showing that reductions in diamide efficacy in-vitro are mirrored by the same 

reductions in-vivo. To that end, this Chapter details the integration of the previously 

studied PxRyR and amino acid variants of PxRyR into Drosophila melanogaster, 

followed by a toxicological impact assessment of the diamides CLR and FLB upon 

those fly lines.  

5.2 Chapter Introduction 

5.2.1 Resistance, but at what cost 

It has been shown, over the past decade, that the spread of diamide insecticide 

resistance (see Ch1) represents (in most cases) the spread of allelic variants of the 

RyR gene, encoding proteins of altered structure that exhibit reduced diamide 

interactions. Armed with this knowledge, the spread of resistance is countered by 

a strategy of insect resistance management (IRM) mode of action (MoA) rotation, 

as advised by the Insecticide Resistance Action Committee (IRAC). The basal theory 

behind this MoA rotation is one of fitness costs: a phenotype is shaped by the 

selection pressures of its environment, bringing it ever closer to optimality in that 

environment, such that alterations to the environment, for example, by 

introduction of synthetic insecticides, predators, or competitors, necessarily 

reduces the fitness of this phenotype (Coustau et al. 2000). The upshot is that each 

resistance-causing allele can be described to suffer from a cost in the absence of 
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insecticidal pressure. Knowledge of such costs can potentially be employed to 

predict the probability of existing target-site mutations spreading through 

populations, in order to enact IRM protocols in advance of invasion. Population 

genetics defines the probability of a given resistance allele spreading through a 

population as a function of three variables (e.g. Wilson and Rannala 2003): 

- Benefit provided by the allele, in terms of increased survival and reproduction in 

the presence of insecticide pressure  

- Cost inflicted by the allele, in terms of reduced survival and reproduction in the 

absence of insecticide pressure 

- Heritability of the allele, or the effective dominance of its phenotype, in a 

heterozygous context  

(Where all three variables are calculated relative to the non-resistant wild-type 

(WT) allele). 

The cost outcome depends entirely on whether the resistance is metabolic (a 

quantitative trait) or TSR (a discrete trait). In the case of metabolic resistance, the 

cost may be a straightforward trade-off between resource allocation into 

xenobiotic/toxin detoxification or allocation into nutrient metabolism. 

Transcriptome profiling of CLR-exposed C. suppressalis shows that, whilst 

detoxification related genes are up-regulated, the flipside is a downregulation of 

general metabolism genes (Meng X et al. 2019), with the accompanying metabolic 

reductions expected to negatively impact development rate. Indeed, Culex pipiens 

mosquitoes which over-express esterases were shown to contain on average 30% 

less lipids, glycogen and glucose than their wildtype counterparts (Rivero et al. 

2011).  

In the case of target-site resistance, the cost is less predictable. Indeed, no studies 

have succeeded in measuring the fitness costs due to specific target site (amino 

acid) changes on the RyR (to the author’s knowledge). Theoretically, such costs may 

derive from potential alterations to the function of the protein itself, and the 

biochemistry surrounding that. If functional effects of the acquired mutation are 

significant, then the cost of resistance will be high. Plutella exhibiting 22,700-fold 

CLR resistance exhibited profound costs in absence of CLR exposure (Ribeiro et al. 

2014). Relative to a field-derived reference strain, they produced fewer, smaller 
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larvae, which took longer to develop and were less likely to successfully pupate. 

However, any accompanying metabolic differences between the resistant and 

susceptible strains were not established, so it is not known whether the costs are 

attributable to the target-site alteration, or to other causes. Indeed, another study 

indicates that the cost of diamide target-site resistance is low or non-existent. The 

Sudlon strain of Plutella, collected from the Philippines during an early resistance 

outbreak, carrying the G4946E mutation, shows only mild resistance-costs, in terms 

of a 7-14% delay in development across various larval and pupal stages (Steinbach 

et al. 2017). Indeed, the strain continues to display high levels of resistance without 

further diamide selection (Steinbach et al. 2015), suggesting that such costs are not 

sufficient to reduce the prevalence of the resistant allele in the population. 

However, this second study also suffers from an identical flaw – lack of genetic 

investigation beyond the RyR locus hinders understanding of the fitness cost of the 

G4946E mutation on its own. Much of the variation seen between these studies 

should be attributed to the lack of precise genetic investigation. This Chapter 

therefore reports upon in-vivo experiments to corroborate the in-vitro resistance 

effects reported in Cht 3+4 and briefly assesses the impacts of that resistance upon 

indicators of fitness.  

5.3 Methods 

5.3.1 D. melanogaster rearing 

D. melanogaster strains were maintained in standard 25x95mm polystyrene vials 

(Genesee) with 5ml of fly food (Nutri-Fly® Bloomington formulation). Fly stocks 

were kept at 19°C and transferred to fresh vials every 4 weeks. Virgin female D. 

melanogaster for crosses were collected within 8 hours of emergence. 

5.3.2 The germline transformation strategy, and generation of the 

injection line 

The φC31 integrase system uses P-element-mediated germ-line transformation to 

integrate exogenous DNA sequences into the D. melanogaster genome. φC31 

integrase is an enzyme that mediates recombination between attP docking sites in 

the genome and an attB-containing plasmid, pUAST, leading to the integration of 

the whole plasmid into that site in the genome. In this case, the system will be used 

to integrate the PxRyR CDS.  
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An attP integration strain carrying a truncated RyR allele (hence forward referred 

to as RyR16.attP strain) was generated by replacing chromosome 2 from strain y[1] 

M{vas-int.Dm}ZH-2A w[*]; M{3xP3-RFP.attP}ZH-86Fb by chromosome 2 from strain 

y[1] w[*]; RyR[16]/CyO, y[+]. Both strains were acquired from the Bloomington 

Drosophila Stock Centre (reference numbers #24749 and #6812, respectively). A 

crossing scheme detailing how this strain was generated is shown in Fig 5.1. The 

Figure 5.1 Iterative crossing with a double-marker line is used to combine two Bloomington 
stock lines, in order to create an injection line that expresses ϕC31 by the vasa germline 
promoter (Chromosome 1), the RyR16 knockout (Chromosome 2) as well as the attP 
sequence for UAS-mediated genomic integration (Chromosome 3). Red circles indicate the 
genotype that has been selected for further crosses. Red strikes indicate a non-viable 
genotype.  
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RyR16.attP strain expresses the φC31 integrase under the control of the vasa 

promoter, allowing for efficient transformation just within the germline cells. Upon 

the second chromosome, it carries a null-functional RyR mutated allele over a 

balancer. And upon the third chromosome, an attP integration site, position 86F8, 

where the inserted PxRyR sequence will land. 

5.3.3 Generation of UAS-PxRyR genome modified Drosophila lines 

~150 female and ~150 male flies of the RyR16.AttP strain were transferred to a cage 

with an egg-laying plate made using FlyStuff grape agar mix (FlyStuff laboratory 

equipment) streaked with a yeast paste (RedStar). The adult flies were added to the 

cage 2 days prior to embryo injection and left at 25°C to allow the flies to acclimate, 

and the food was changed 2-3 times a day. On the day of injection, the grape agar 

plate was changed at 2 hours, 1 hour and 30 minutes before egg collection to empty 

females of old embryos. The embryos were rinsed off the grape plate into a mesh 

basket and washed with water, with an egg collection every 30 minutes to ensure 

injection was carried out using embryos in which blastoderm cells had not formed. 

Embryos were transferred to a 2 x 2 cm square glass cover slip and aligned, using a 

fine sable paintbrush, with the dorsal side face up and the posterior end of the 

embryo ~2 mm from the edge of the coverslip in a line. Exact drying time mediated 

high injection survival: lines of embryos were dried until the aqueous meniscus 

between eggs was on the verge of disappearing (30s-5min). To halt the drying 

process, halocarbon oil 27 (Sigma-Aldrich) was applied sparingly to the embryos. 

Prior to injection, embryos were incubated for a further 5 minutes to allow the 

halocarbon oil to penetrate between the chorion and vitelline membrane. During 

which time, embryo developmental stage became apparent, and overaged 

embryos were sacrificed by deep insertion of the needle. The needle was then 

opened via anteroposterial abrasion along the embryo chorion, whilst applying 

>2000kPa solution pressure.  

For UAS-PxRyR integration, the PhiC31 recombination system was used, whereby 

integrase  catalyses recombination between an attB site (present in the UAS-PxRyR 

vector) and an attP site (present in the genome of the RyR16.attP strain) in a non-

reversible manner, integrating the entire vector into the fly genome (following 

(Bischof et al. 2007)). The UAS-PxRyR vector was created via traditional enzymatic 

cloning (Ch2, section 2.5). PxRyR CDS had previously been cloned from the in-house 

‘Roth’ strain of P. xylostella (Troczka 2013) and inserted into the backbone of the 
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pUAST-AttB plasmid, which contains a white-eye colour marker (w) for screening. 

The required PxRyR mutations were introduced into the UAS-PxRyR plasmid via site 

directed mutagenesis, as described in Cht 2. 

UAS-PxRyR altered constructs were microinjected into non-decorionated syncytial 

blastoderm embryos using an inverted microscope (Eclipse TieU, Nikon, Japan) 

equipped with a 10x/0.25 (magnification / aperture) lens, 10x/22 eyepiece and 

fluorescence illumination. The injection solution contained 150ng/µl UAS-PxRyR 

plasmid and 100ppm fluorescent dye (fluorescin isothiocyanate dextran, Sigma-

Aldrich) in injection buffer (Table 5.1). Solutions were delivered into the embryo by 

a FemtoJet express microinjector (Eppendorf, Hamburg, Germany) controlled by a 

Figure 5.2.  Specific needle and injection parameters, contributing to the high-quality injections 

achieved for Injection of G4946V-PxRyR-PuAST in to line vasa; RyR16/Sp; attb 

Needle Program 0 - Heat 700; Fil 4; Vel 60; Del 145; Pul 175 

Needle Program 5 - Heat 800; Fil 4; Vel 60; Del 145; Pul 175  

 

Program 0 
Program 5 

Program 5 
 

Table 5.1 Optimal Injection conditions. Excellent transformation efficiency was 
achieved for the G4946V-PxRyR construct, following these conditions 

Condition Notes 

Humidity 
60% - and eggs remained in contact with H20 at all points 
during alignment 

Temperature 210C 

Egg age 50 mins (30 min laying time, 20 min alignment) 

Egg oil Halocarbon 27 

 

Injection solution 
150ng/µl DNA; 0.5µl fluo buffer; 0.5µl injection buffer; 
spun at 22,800 RCF for 10 minutes, and supernatant taken 

DNA Preparation 
Excellent DNA purity, confirmed via Qubit, Nanodrop, 
sequencing and diagnostic digestion 

The Needle 
‘Program 5’ - Heat 800; Fil 4; Vel 60; Del 145; Pul 175 
(See image below – shorter needle tip length allows 
consistency of solution flow) 

Injection 
Pressure 

1500kpa//800kpa - Allowed constant flow from needle 

Injection Method 

- Probe to find easiest point of insertion 
- Needle on the lower half of the egg (find centre and then 
lower needle) 
- In cases of injection in between two egg-layers, simply 
waited for inner layer to expand out, and then inject again 

 

Program 0 
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motorised TransferMan NK2 micromanipulator (Eppendorf, Hamburg, Germany). 

Injection needles were prepared from quartz capillaries (WPI, D=1mm, L=100mm) 

using an P-2000 micropipette puller (Sutter Instrument Co, Novato, USA). Needle 

pulling conditions are listed in Fig 5.2. The injection needle was back-filled with 

0.5μl of injection solution and aligned to the embryo posterior.  

Table 5.1 and Fig 5.2 detail the conditions used to achieve the highest quality 

injections (based on adult survival and successful transformation). Injection 

solution was delivered into the embryonic posterior, with approximate injection 

volume identified by brightness of fluorescence, as viewed under unfiltered 

mercury fluorescence (Nikon IntensiLight Illuminator). Injection volume was 

maintained at an arbitrary level (determined by eye), found to maximise post-

injection survival under these conditions. Specifically, injection volume was 

minimised to the point that embryonic cytoplasmic leakage from the injection site 

did not occur, whilst maintaining sufficient volume to visualise fluorescence.  

Once the embryos were injected, the coverslip was prepared for incubation by 

draining the halocarbon oil, rinsing with 70% ethanol, rinsing with water and gently 

drying with tissue. The coverslip was then slotted into a food vial with 5ml of Nutri-

Flyfood (Genesee), in which the food had been scored by forceps to create a rough 

surface and supplemented with 5-10 grains of dry yeast (RedStar). One coverslip 

was placed per vial, ensuring the embryos remained close to but not immersed in 

the food, and the approximate number of intact embryos recorded on the vial. 

Embryo vials were incubated at 25°C at 90-100% humidity and transferred to 50-

70% humidity at 48h. Pupae were transferred to new vials and F0 virgin females 

and males were collected and isolated as they emerged. 

5.3.4 Screening of UAS-PxRyR flies 

Four strains were generated; one integrated with the wildtype PxRyR sequence; a 

second containing the G4946E mutation; a third containing the I4790M mutation 

detected in P. xylostella and T. absoluta, and the fourth containing the G4946V 

mutation found in T. absoluta.  Surviving embryos (F0) were reared at 25OC to 

adulthood and backcrossed with non-injected flies of RyR16.AttP. F1s were scored 

for the expression of the mini-white (w) marker in their eyes. Successful integration 

of pUAST constructs at the intended genomic locations produces F1 flies with red-

ish eyes. Homozygotes were generated by inter-crossing positive F1s and selecting 
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F2s (males and virgin females) with darker red eyes. These were inter-crossed to 

establish the homozygous stock (Fig 5.3) 

5.3.5 Driving Expression of UAS-PxRyR 

The UAS-Gal4 system was used to drive the expression of PxRyR in Drosophila 

(following Brand and Perrimon 1993). The inserted pUAST-PxRyR plasmid contains 

an Upstream Activation Sequence (UAS) prior to the start of the RyR CDS. The UAS 

sequence is under control of the GAL4 transcription factor, a protein not present in 

the wildtype Drosophila genome. Thus, the UAS-PxRyR containing line must be 

recombined with a Gal4-containing line, such that the GAL4 transcriptional 

activator is expressed and activates the UAS enhancer. This was achieved following 

a series of crosses as detailed in Fig 5.4. 

The driving line employed in that crossing pattern is Bloomington Stock 67480, 

genotype y[1] w[*]; Mi{Trojan-GAL4.0}RyR[MI08146-TG4.0]/SM6a, generated by 

Figure 5.3 The RyR16.attp line is injected with UAS-PxRyR plasmid DNA to achieve 
integration of the construct. Integrated F0 lines are back-crossed to the RyR16.attp line to 
form heterozygous PxRyR (F1). Chromosomal swapping via the double-marker strain is 
used to generate homozygous PxRyR lines. The inserted PxRyR sequence is not expressed 
in this line due to the absence of a Gal4 driver sequence. Instead, the endogenous DmRyR 
sequence (carried by the Cy (straight wing) allele marker) is expressed.   
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Lee et al (Lee et al 2018). This trojan-Gal4 was designed in a way that once it is 

integrated in the genome it “hijacks” the transcription profile of the upstream 

regulatory region, whilst a poly-adenylation sequence after the Gal4 halts 

transcription of the downstream region. Thus, knockout strains are generated that 

express GAL4 under the control of the regulatory elements of the knocked-out 

genes. In this case, the Gal4 has been inserted at base number 18,477 of the 

endogenous DmRyR genomic sequence, meaning that the Gal4 (and thus its UAS-

enhanced PxRyR sequence partner) is regulated by the same transcription factor 

machinery that regulates the endogenous DmRyR, whilst at the same time knocking 

out transcription of that endogenous DmRyR gene. Additionally, the RyR16 allele 

(recombined into the injection strain, Fig 5.1) is a deletion of the first intron of the 

DmRyR gene, thought to prevent functional channel formation (Sullivan et al. 

2000). Thus, two different null-RyR variants in combination are employed in order 

to knock out the endogenous protein.  

The rationale behind the rescue strategy is that a Trojan-GAL4-RyR/RyR16 

hemizygous strain is null, not viable and can only survive if a functional UAS-RyR 

transgene is provided.  Both Trojan-GAL4-RyR/Cy and RyR16/Cy are also 

homozygous lethal strains and only survive as heterozygotes because the balancer 

chromosome marked with Cy (straight wing phenotype) carries an intact DmRyR 

allele. Crossings between the RyR16.attP strain generated previously (y[1] M{vas-

int.Dm}ZH-2A w[*]; RyR[16]/CyO; M{3xP3-RFP.attP}ZH-86Fb) and the Trojan-GAL4 

mentioned above, as expected, only generated flies with Cy wings (Fig 5.5). These 

results indicated that non-Cy Trojan-GAL4-RyR/RyR16 hemizygotes flies were 

indeed RyR-null and not viable. 

Notably, a series of other Gal4 driver lines were tried, prior to the availability of this 

line in late 2018, but each was incapable of ‘rescuing’ the lethality caused by the 

lack of a functional DmRyR. The lines tested were:  

 

• Brain, muscle, Cardia-Gal4 (#8182, genotype P{GawB}DJ752) (to direct 

expression of PxRyR to muscles, cardia and nervous tissue, corresponding to 

the endogenous DmRyR expression pattern) 

• Tubulin-Gal4 (#5138, genotype P{tubP-GAL4}LL7) (to direct expression of 

PxRyR to muscles) 

http://flybase.org/reports/FBti0040377.html
http://flybase.org/reports/FBti0012687.html
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• HSP-Gal4 (#1799, genotype P{GAL4-Hsp70.PB}89-2-1) (body-wide expression, 

with the ability to regulate expression level based on temperature) 

By comparison, expression of UAS-PxRyR via the RyR-Gal4 driver was shown to 

successfully rescue the lethality caused by the lack of a functional DmRyR. This, 

Figure 5.4 A series of crosses the double marker line was used to recombine the inserted UAS-
PxRyR into a line that also expresses the Gal4 promoter. Further crossing leads to the removal 
of the Cy marker, and with-it removal of the endogenous DmRyR expression. The asterisk (*) 
in panel (6) indicates the ‘stable line’ genotype that is yielded only at development 
temperatures below 170C.  

http://flybase.org/reports/FBti0002141.html
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however, was only achieved when crosses were kept at 170C and moved to 250C in 

the 9th day of development. Crosses kept at 250C did not generate any rescued 

individuals. Maintaining the fly crosses at a lower temperature until the 9th day of 

development helped to overcome this lethality and allowed for the selection 

against the Cy (curly-winged) phenotype, which is not detectible at low 

temperatures. Non-Cy, DmRyR null flies rescued from lethality by the expression of 

PxRyR genes (Fig 5.6a i) were selected for bioassay (see Section 5.3.1 for details of 

adult bioassays) and also used to generate stable fly strains (Fig 5.6a ii). 

5.3.6 Confirming Knock-in and Driving of PxRyR 

Confirmation of successful knock-in of PxRyR variants was via cDNA sequencing (Fig 

5.6 b). Adult Drosophila RNA was extracted (Ch2, 2.1.2) and 750ng used for cDNA 

synthesis using Superscript III (Life Technologies) and random hexamers (Life 

Technologies, CA, USA), according to the manufacturer’s recommended protocol. 

The region of cDNA containing the mutation was amplified using primers PxRyR 11-

13 (listed in table S2, appendix). The sequenced region is divergent from that of 

Drosophila RyR and sequencing traces indicated that no amplification of Drosophila 

RyR cDNA took place.  

5.3.7 Experimental Methods on PxRyR-containing Fly Models 

5.3.7.1 Larval bioassays and fecundity assessment 

Larvae for bioassay and fecundity assessments were reared under the following 

conditions, carefully controlling for larval density. 30 adult virgins and 30 adult 

males of each strain were anaesthetised and placed into 8oz Drosophila Stock 

Bottles (Genesee) (one bottle per strain), 17 days prior to bioassay. Bottles were 

incubated at 25°C and adults allowed to lay for 48h, before being removed. After a 

further 9 days at 25°C, emerging adult males and virgins were selected from each 

Figure 5.5 Attempted recombination of RyR16 and RyR-Gal4 null alleles into the same 
line. Flies fail to develop past larval stage L1.  
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strain.100 virgin females and 75 males of each genotype were placed into separate 

embryo collection cages (Genesee 59-101) with molasses agar plates (see Recipes, 

Appendix) supplemented with yeast paste to encourage egg-laying. Flies were 

allowed to adapt in cages for a period of 48h before beginning experimentation. 

After this point, eggs were extracted every 12h by removal of the used egg-plate 

from the cage and replacing with a new plate. Cages were maintained at 25°C, and 

egg extraction continued for 3d. The used egg- plate was labelled and incubated at 

Figure 5.6 a) Drosophila lines generated for this Chapter. Stable lines (panel i) were 
used during all experiments detailed here, except for adult bioassays in which the RyR16 
lines (panel ii) were used. Experiments on G4946E and G4946V fly lines are planned but 
had not been completed at the time of writing.  

b) sequencing trace confirmation of successful integrations in the F2 generation.  

(a)   (i)   (ii)   

(b)   
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28°C for 22h to allow time for the fertilised eggs to hatch. Fecundity (#eggs) and 

fertility (#hatched/#unhatched) were quantified for each plate of eggs. After 

quantification, egg-plates were supplemented with additional yeast paste and 

returned to the incubator to develop into larvae. The incubation temperature was 

altered, in order to achieve developmental synchrony prior to bioassay, where 

necessary (development at 19°C is slowed by approximately half relative to 

development at 25°C). L2 larvae were used for larval bioassays, following the 

instructions below. Excess larvae, not required for bioassay, were reared at 25°C 

until larval stage 3 (L3) (72h) in order to conduct crawling speed assay.  

Stock solutions of CLR and FLB were made up at 2000mg/L in 100% acetone.  Stocks 

were diluted 1:50 to make up the first concentration (40mg/L) and diluted serially 

thereafter, at a ratio of 1:3, with all dilutions made in ddH20 containing 2% acetone. 

For the non-insecticide control, ddH20 containing 2% acetone was used. Narrow 

vials (Fly-Stuff laboratory equipment) were pre-prepared with 0.8g dry fly diet 

(Flystuff - Nutri-Fly Food, Instant Formulation) per vial, with 3ml of the relevant 

insecticide/control solution applied and incubated overnight for absorption of 

solution into the food and evaporation of acetone. The next day, the egg-plate (now 

containing L2 larvae of 48-60h age) was removed from the incubator and the larvae 

rinsed with tap water into a fine mesh sieve. Yeast paste on the plate was also 

removed and rinsed in the sieve in order to extract all burrowed larvae. The 

recovered larvae were transferred to an empty petri dish and 20 larvae were sorted 

using a fine sable paint brush and transferred to each bioassay vial. After transfer, 

500µl ddH20 was applied by pipette to rinse the larvae into contact with the 

insecticide impregnated food. In some cases, where development rate was variable 

between larvae, it was necessary to select larvae by size during this transfer stage. 

Each vial was scored for pupation (T+9d) and eclosion (T+13d).  

5.3.7.2 Adult insecticide bioassays 

3-5-day old adult non-virgin females were used in insecticide bioassays to assess 

the susceptibility of different fly strains to technical compounds. The flies were 

subjected to the insecticide in a contact/feeding bioassay. Standard Drosophila vials 

were filled with agar solution (4ml/vial) containing 2% w/v agar (Dutscher 

Scientific), 1.2% w/v food grade sucrose and 0.4% v/v glacial acetic acid. Insecticide 

solution was formulated in 100% acetone and diluted by 50% into ddH20 and 

diluted serially thereafter at a 1:5 ratio. Individual concentrations were pipetted in 
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100µl volume onto pre-made agar vials, which were manually tipped and rotated 

in order to allow the solution to cover the surface homogenously. For each 

concentration, vials were prepared in duplicate for each fly strain with flies 

anaesthetised with CO2 and 20 female flies added to each vial. The vials were kept 

upside down until all flies became active to avoid flies getting trapped in agar.  

‘Mortality’ and/or ‘efficacy’ was assessed after 24h, 48h and 72h, where compound 

‘efficacy’ indicates the number of flies lacking movement or ability to remain 

vertical, whilst ‘mortality’ indicates the number of flies that are deceased. Data was 

analysed using Genstat (2019) software package, with LC50 values calculated by 

dose-probit analysis.  

5.3.7.3 Crawling Speed Assay 

Larvae, collected as described above, were placed in the centre of a molasses agar 

dish and subjected to 11W halogen light, at a distance of 15cm from dish edge. 

Negative phototaxis was recorded for 1 minute, on a Sony HandyCam, 30fps, 

mounted 50cm above the dish. A virtual grid of 1mmx1mm squares was placed over 

the recorded video using DaVinci (DaVinci Resolve 15, 2019) video editor. The path 

of the larvae was manually tracked, and the number of squares passed through by 

each of the larvae was counted. Data was analysed by ANOVA and Least Significant 

Difference in Excel (Microsoft Excel, 2019).  

5.3.7.4 Climbing Assay 

Groups of 10 adult male flies (reared as in Section 5.2.4.1) were transferred into 

standard vials of fly food (as in Section 5.2.4.1) and incubated at 25°C for >24h. Flies 

were then transferred to empty fly vials, via tapping (without the use of CO2) in 

preparation for climbing assays.  

The climbing (negative geotaxis) assay was performed with the use of an 

automated fly climbing system adapted from a previously described Hillary climber 

set up (Willenbrink et al. 2016). The system employs a two-storey acrylic tube rack 

(measuring 550 x 400 x 50mm) capable of holding 20 standard Drosophila vials (Fig 

5.7). The rack rests upon a horizontal camshaft, bearing asymmetrical cams that 

cause the rack to rise and fall within a 4mm travel as the shaft rotates. The shaft 

itself is driven by a Marelli Motori MAA 63MB6 electric motor, at a rate of approx. 

200rpm, resulting in a violent and consistent shaking of the vials. The rack is marked 
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with a horizontal line, at a height of 6cm from the base of each vial, in order to 

assess fly climbing ability.  

Vials of flies were loaded into the climbing assay tube rack. The climbing assay itself 

involved: 5 seconds of vial shaking; 8 seconds for climbing; image capture; 45 

seconds resting, repeated 13 times during a single experiment. No data was 

collected during repeats 1-3 to allow for habituation before data collection. Images 

were captured with a Canon EFS digital camera with an 18-55mm lens, positioned 

on a tripod at a height level with the centre of the climbing system. Captured 

images were manually scored. The number of flies above the 6cm line in each vial 

was determined, and the score for each vial averaged over the 10 data-points. Data 

was analysed by ANOVA and Least Significant Difference in Excel (Microsoft Excel, 

2019). 

 

Figure  5.7 The fly climber apparatus (an adaptation of the Hillary climber). The proportion 
of flies successfully climbing to a height of at least 6cm within each vial within 8 seconds 
is recorded on camera and manually counted.  

 

Con WT 

GE IM 
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5.4 Results 

5.4.1 Insecticide Bioassays 

A list of fly lines generated in this thesis is provided in Fig 5.6. Susceptibility of the 

fly lines to diamide toxicity was assessed by contact bioassay on adult flies. Newly 

emergent females from the RyR16 lines (Fig 5.6ai) were selected based on the non-

Cy (straight wing) phenotype and segregated into agar vials surface-coated with the 

insecticides CLR or FLB.  

No significant difference in mortality to CLR was found between WT and I4790M 

adults (LD50 29±9mg/L vs 19±8mg/L). By comparison, mortality to FLB did differ 

between the strains, with I4790M being significantly less sensitive than WT. 

However, with an RR of just 3.6-fold (LD50 11.15±3mg/L vs 40±5mg/L), the 

magnitude of the difference is far smaller than that recorded by previous authors. 

The total lack of I4790M-mediated resistance to CLR, and minimal resistance to FLB, 

came as a surprise. Of further concern was the high dosage required to kill even the 

WT PxRyR-expressing fly line. A CLR concentration of 29mg/L, the LD50 value for 

the WT line in this study, is >100-fold higher than the CLR concentration required 

to kill populations of moths extracted from the field. A further drawback of the 

adult bioassays was the failure to generate lines carrying the  G4946E mutation. 

Under the conditions of rearing employed in this methodology, the RyR16/RyR-

Gal4; GE-PxRyR/+ represented just 0.1% of emerging flies (compared to an 

expected 33%). By comparison, WT and I4790M flies emerged at a proportion of 

24% and 29% respectively. The indication is that the G4946E substitution causes 

some impact on survivability during development.  

Following further crossing experiments, stable lines (Fig 5.6aii) became available, 

opening up the possibility of larval bioassays, which had previously been shown to 

be more applicable and more sensitive in terms of quantifying diamide efficacy 

(Douris 2017). Almost all bioassays against moths in the literature are performed 

on L3 larvae, the same stage chosen here in the ‘pestified’ Drosophila. Diamide 

usage in the field is designed to target moth larvae through coating of leaves with 

the insecticide, leading to ingestion of the compound during feeding. By 

comparison, the previously attempted adult bioassays relied primarily on contact 

and uptake through the integument. 
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In larval bioassays, the WT and I4790M lines displayed a large discrepancy in 

mortality when challenged with either FLB or CLR. Concentration-response 

calculations (Fig 5.8) indicate a concentration lethal to 50% of the WT population 

(LD50WT) at 0.047µg/L (0.0176-0.115) CLR. By comparison, CLR LD50IM is 9.3µg/L 

(3.5-24), equivalent to a resistance ratio (RR) of 198-fold for CLR. WT larvae respond 

Figure 5.8 Larvae of the drosophila lines WT-PxRyR (blue) and I4790M-PxRyR (orange), 
exposed to dietary diamide, and assessed for larval mortality, where mortality is taken as 
failure to enter the pupation phase. Larval mortality increases in a concentration-responsive 
manner when exposed to (a) CLR and (b) FLB. Error bars indicate standard deviation of 
mortality averaged over three repetitions.  

 

a) 
  

b) 
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similarly to FLB as to CLR, with LD50WT at 0.037µg/L (0.013-0.091) FLB. Whilst 

LD50IM is 3.6 (1.2-11) µg/L, equivalent to a RR of 97-fold for FLB.  

These results are notable for a number of reasons: 

First, that they differ substantially from bioassays conducted on adults, with lethal 

dosage reduced by up to five orders of magnitude. An LD50WT of 0.037µg/L FLB for 

Drosophila larvae expressing WT-PxRyR is >100-fold lower than that recorded for 

3rd instar P. xylostella larvae against this compound (4 µg/L (Hirooka et al. 2007)).  

Secondly, variation in response is large, especially in the I4790M line, where the 

number of dead larvae in a vial varies at a given insecticide concentration by up to 

50% of the maximum. And this variation exists even at the lowest concentrations 

of insecticide applied.  

Third, and as a result of the previous point, the response curve is poorly resolved. 

An ideal curve will see approximately zero larval mortality at low insecticide 

concentrations, followed by a rapid increase in concentration-related mortality. 

The poor resolution of the curve suggests a heterogeneity in the response of larvae 

within each assay vial. Such heterogeneity can be mitigated by a larger n (more 

larvae per tube).  

Survival of control (no insecticide) larvae was 65-72% (no significant difference 

between lines), compared to >90% survival for undisturbed larvae raised from eggs 

under the same conditions. This suggests the method of transferring larvae to the 

vial by brush should be substituted for a less invasive method, in future. Stochastic 

pre-adult mortality is very likely to have contributed to the variation observed in 

this bioassay (Fig 5.8).  

The results of the larval bioassay on G4946E-PxRyR larvae are displayed in Fig 5.9.  

This line has displayed a particularly strange phenotype, in which average mortality 

was very high, even at low insecticide concentrations which are non-lethal to the 

WT, but mortality did not increase in a concentration-responsive manner. Given the 

inability to plot a concentration-response curve on this graph, calculation of LD50 

for this strain is not meaningful (indeed, there is no recorded insecticide 

concentration at which fewer than 50% of insects die). The rest of this section will 

instead discuss why no concentration-response relationship is seen here, and how 

to remedy it in future work.  
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The G4946E RyR alteration has been shown previously to be lethal when applied to 

the Drosophila endogenous RyR (Douris et al 2017). This study employs the P. 

xylostella RyR protein in an attempt to sidestep that lethality. Indeed, G4946E 

PxRyR larvae in untreated vials do not experience higher mortality than those of 

Figure 5.9 Larvae of the drosophila lines WT-PxRyR (blue) and GE-PxRyR (orange), 
exposed to dietary diamide, and assessed for larval mortality, where mortality is taken as 
failure to enter the pupation phase. G4946E-PxRyR larval mortality does not increase in 
a concentration-responsive manner when exposed to either (a) CLR and (b) FLB. The 
plotted line is fitted to the WT-PxRyR data. Error bars indicate standard deviation of 
mortality averaged over three dosage repetitions.  

 

a) 
  

b) 
  



 

147 
 

I4790M or WT larvae. However, the G4946E alteration does affect fly physiology. 

As discussed above, pre-adult mortality in the G4946E RyR16 line was so high as to 

prevent adult bioassays on G4946E PxRyR flies entirely. 

5.4.2 Fitness costs of PxRyR alteration 

Having determined the impact of the I4790M and G4946E mutations on diamide 

efficacy in drosophila larvae and adults, an unanswered question was to 

understand whether the altered response to diamide was coupled to any other 

physiological alterations. In the context of field control, decreased mortality during 

insecticide exposure, as conferred by the I4790M or G4946E mutations, converts 

into a selective advantage for the individual, compared to WT individuals. However, 

as discussed in Section 5.2, fitness benefits in the presence of insecticide treatment 

are expected to be balanced against fitness costs in a null-insecticide environment.  

To investigate the possibility of fitness costs resulting from the PxRyR alterations 

generated here, we studied two aspects of fitness: 

1. Reproductive success, measured by adult fecundity and fertility and larval 

developmental success 

2. Vigour, measured by adult climbing speed and larval crawling speed 

Fecundity and fertility and developmental success are key components of lifetime 

reproductive success. These two parameters were studied for each genotype under 

non-competitive conditions (i.e. genotype alone in cage). However, because the 

fecundity/fertility was a non-competitive assay, it doesn’t consider the potential 

impact of the mutation upon competition for limited resources including a) adult 

nutrition b) competitive mating success c) competitive laying d) larval nutrition. In 

order to attempt to account for the impact of the mutations upon competition, we 

chose two indicators of vigour: larval movement speed and adult climbing ability. 

The hypothesis is that success (in most aspects of competition, listed above) is 

mediated by the ability to move, be that moving toward a food source, toward a 

potential mate, or toward an optimal laying location. 

5.4.2.1 Indicators of reproductive success: Fecundity and Fertility 

No differences were found in indicators of reproductive success between the fly 

lines (Fig 5.10). WT flies lay a median 60(±10) eggs per hour,  compared to I4790M 

(59±3 eggs/h) and G4946E (69±2 eggs/h) (ANOVA, F-crit=9.1, F=0.51). Fertility 

varied between 75%-85% successfully hatching eggs across all three lines. Hatched 
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eggs were followed through development, reared under conditions identical to 

those of the larval bioassay (Section 5.3.1). There was no significant difference in 

the proportion of larvae successfully pupating (WT, 72±13%; I4790M, 65±14%; 

G4946E, 65±14%) (ANOVA, F-crit=5.4, F=2.6) nor in the proportion of pupae 

successfully eclosing (WT, 69±19%; I4790M, 77±11%; G4946E, 72±14%) (ANOVA, F-

crit=5.4, F=1.9). All parameters were studied at 250C, following the methodologies 

listed in this Chapter.  

 

Figure 5.10 Diamide resistant drosophila lines do not differ in fecundity or fertility 
compared to their WT counterpart. Bar graphs of a) total fecundity and b) proportion of 
eggs hatching within 24h. n=3 plates, from cages of 175 flies. Error bars indicate 
standard deviation, or the range within which 95% of samples taken of the population 
at random, are expected to sit.  

b) 

a) 
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5.4.2.2 Indicators of vigour: Crawling speed and Climbing ability 

Indicators of vigour were found to differ very significantly between the fly lines, 

with the G4946E and I4790M lines showing signs of reduced movement relative to 

the WT flies. 

L3 larvae have well developed crawling musculature and naturally exhibit migratory 

behaviour as they search for a suitable location for pupation. Accordingly, larvae 

were placed in an environment of high light intensity, no food availability, and no 

shelter, encouraging migratory behaviour, which was measured for three minutes. 

The maximum speed achieved by each larvae during the time window (averaged 

over a 15-second period) is plotted (Fig 5.11a). WT larvae crawl at a velocity of 

0.21±0.05mm/s, more than double the maximum velocity of I4790M (0.10±0.06) or 

G4946E (0.09±0.06) larvae. The average speed is the total distance travelled during 

the 3 minute period (Fig 5.11b). In this measure, too, the difference between lines 

is marked, with WT larvae averaging 0.14±0.06mm/s, more than double the 

distance of I4790M (0.06±0.05) or G4946E (0.06±0.03) larvae.  

Adult cohorts from each genotype were raised in identical conditions (the same 

conditions used for the fertility/fecundity assays, Section 5.3). Adults were tapped 

into vials, shaken and knocked to the base of the vial, using the Hillary climber 

apparatus, before being allowed to climb the vial walls. The proportion successfully 

climbing above a 6cm threshold after 8s was recorded (Fig 5.12). WT adults 

successfully climbed above the threshold 40-70% of the time (Median 53%). Whilst 

I4790M and G4946E adults managed the same feat less than half as frequently 

(median 12% and 21%, respectively).  

In summary, the results indicate that whilst the PxRyR alterations appear to bear 

no fitness costs in terms of reproductive capacity in a non-competitive 

environment, they bear potentially major impacts on the individuals ability to 

move. The indication is that, if placed into a competitive ecosystem, diamide 

resistant individuals are likely to suffer a considerable fitness cost.  
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5.5 Discussion 

5.5.1 What is the value of ‘pestified’ drosophila  

At the start of this PhD, diamide resistance associated RyR target-site mutations 

were yet to be isolated and characterised in-vivo. To do so was an important goal, 

in order to confirm the participation of these amino acid alterations (on the RyR) in 

conferring the diamide resistance phenotype. Since the inauguration of this project, 

Figure 5.11 Diamide resistant Drosophila larvae crawl significantly more slowly than their 
WT counterpart. Boxplots indicating a) maximum and b) average crawling speed. *** 
indicates a statistically significant difference (P<0.001); * indicates difference (P<0.05); 
N.S. indicates a non-significant difference as determined by ANOVA and LSD. n=20 larvae 
per genotype; the experiment was replicated, and similar results were obtained. Within 
a box plot, the error bars indicate the minimum and maximum values in the dataset, 
whilst the three lines of the box itself indicate the lower, median and upper quartiles of 
the data. 

 

a) 

b) 
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other authors have succeeded in demonstrating resistance phenotypes conferred 

by these alterations in-vivo. Notably, Douris et al, using reverse genetic studies in 

Drosophila, substituted the naturally occurring methionine at position 4790  of the 

drosophila RyR with isoleucine (M4790I), which conferred a 7.5-fold increase in CLR 

efficacy and a 15-fold increase in FLB efficacy (Douris et al. 2017). Other studies 

have focussed on altering the pest of interest directly. A recent backcrossing 

experiment in S. exigua found that introgression of the I4790M mutation caused 

approximately a 20-fold resistance to both CLR and FLB (Zuo and al. 2019). A 

CRISPR/Cas9 study in beet armyworm, inserting the G4946E mutation into an 

otherwise susceptible genetic background, created an armyworm strain that 

exhibits a potent resistance of 223-fold to CLR (Zuo et al. 2017).  

Here, a novel approach has been taken, in which the entire lepidopteran coding 

sequence, of resistant and non-resistant isoforms from P. xylostella, is inserted into 

Figure 5.12 Boxplot of climbing success between three PxRyR-expressing Drosophila lines. 
Diamide resistant Drosophila genotypes climb significantly more slowly than their WT 
counterpart. *** indicates a statistically significant difference (P<0.001) as determined by 
ANOVA and LSD; N.S. indicates a non-significant difference. n=40 flies per genotype; the 
experiment was replicated and similar results were obtained.  
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Drosophila. This is the first report of an entire RyR sequence being cloned and 

inserted into a different species. Drosophila and Plutella have a coding nucleotide 

sequence identity of 71% and have been on separate evolutionary paths for 

>250millions years (Grimaldi and Engel 2005). The ‘pestified’ fly lines created here 

corroborate the impact of the I4790M mutation upon diamide efficacy. Notably, 

however, resistance ratios reported for I4790M in this study are generally much 

higher than those reported in past studies.  

5.5.2 Are these lines good models of fitness costs associated with TSR? 

Uniquely, the fly lines generated here were also used to investigate the fitness costs 

associated with the RyR mutations, and in doing so, revealed a tantalising picture 

that deserves further investigation. The RyR is an essential protein responsible for 

converting nervous stimulation into muscular contraction. Changes to the protein 

were found to significantly hinder larval crawling ability, and significantly slow adult 

climbing speed. However, it should be noted that these effects are recorded in a 

Drosophila model expressing the Plutella RyR – it is not clear whether P. xylostella 

expressing the G4946E alteration will also suffer from reduced movement ability. 

Future work could potentially involve assessing the fitness of genome-edited P. 

xylostella strains that had their RyR modified (e.g. Zuo et al) in order to quantify the 

effects of this mutation on the fitness of the moth.  

It would also be interesting to compare the phenotype of the fly lines generated 

here against those generated by Douris et al. It seems feasible that the lines 

generated here will exhibit a diamide-phenotype more similar to lepidoptera, and 

thus is more ‘realistic’, due to possession of the lepidopteran RyR. The effects of 

individual mutations on diamide interaction obviously depend heavily on the actual 

structure of the RyR and the way that structural folding is changed by the sequence 

alteration. However, it is also possible that these lines are made less ‘realistic’ due 

to the complexity of the alteration - primarily, the requirement of driving the 

expression with RyR-Gal4 introduces an unknown. RyR-Gal4 is activated by the 

endogenous RyR transcription machinery in this case, so the inserted PxRyR should 

be expressed in an identical pattern and magnitude to the endogenous DmRyR. 

However, Gal4 is likely not 100% efficient as a driver, resulting in probable 

reduction in RyR expression in the altered fly line relative to unaltered flies. It is also 

suspected to alter the expression of off-target sequences in the fly genome (Liu 
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2008). Future work should quantify RyR expression in altered vs unaltered flies in 

order to rule out this possibility.  

5.5.3 A future model of resistance spread? 

No study has yet succeeded in modelling the ability of diamide resistant genotypes 

to spread through a population. However, as discussed herein, all necessary pre-

conditions to such modelling have been met, with individual estimates of resistance 

cost, benefit and heritability having already been determined. One recent study in 

diamide resistant Tuta studies heritability in the context of insecticidal exposure 

cost and benefit to show that the ‘Effective Dominance’ of the diamide resistance 

phenotype increases with decreasing insecticidal concentration (Silva and al: 2018). 

Such findings show empirically the importance of maintaining spray concentrations 

at recommended levels, but the findings also indicate the benefit that could be 

derived from a future empirically supported modelling effort. Such a study might 

involve two laboratory populations, each initially composed of 50% wildtype and 

50% TSR individuals, with one population receiving periodic diamide dosage. 

Frequent genotyping would allow detailed understanding of the cost and benefit of 

TSR over many generations, which would then inform a population genetic model 

of resistance dynamics which could be applied to potentially predict resistance 

spread in the field.  

5.5.4 A Limitations and future work required 

A further step in this study would be to employ qPCR to quantify expression of the 

introduced genes across the three Drosophila lines created here. This would allow 

the author to be sure that differences in phenotype are not attributable to 

variations in channel expression between these lines. As it stands, the author has 

made attempts to ensure equality of channel expression by utilising a near-identical 

genetic background between the lines (Fig 5.3 and 5.4). However, genetic drift 

within laboratory populations may cause even identical lines to diverge over time 

in terms of channel expression, hence the requirement for a qPCR expression test.    

5.5 Conclusion 

Integration of a 24,982kb sequence into Drosophila is not elementary. Expressing 

the gene is harder still, given its essential role in development and normal bodily 

function. Survival and reproduction of transformed flies is surprising, in this case. 

Whilst recent reverse genetic in-vivo transgenic studies of other authors have 
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provided insight into the impact of RyR mutations on diamide resistance in-vivo, 

this study corroborates previous findings and is the first that studies in detail the 

impact of those mutations on aspects of the individual’s fitness.  

 

 

Chapter 6: Chimeric investigations 
into the diamide binding site on 
the lepidopteran RyR 

6.1 Chapter Summary 

 
Identification of the diamide binding site is a crucial step, both toward generation 

of novel diamide chemistries (where the shape of the binding pocket informs which 

chemical leads should be developed) and toward monitoring and tracking of 

diamide resistance (where the impact of novel arising substitutions on diamide 

control can be predicted). However, a lack of published insect RyR C-terminal 

structure greatly hinders identification of the binding site. In such circumstances, 

phenotypic studies of genetic mutants are the principal mechanism by which the 

binding site can be identified.  

Previous studies have demonstrated that a portion of the RyR close to the TM1 

region mediates loss of diamide interaction (discussed further below). At the same 

time, naturally occurring RyR C-terminal substitutions have been shown to cause 

potent reductions in diamide interaction (see Ch4). This present Chapter first 

summarises all available knowledge on binding of diamides to RyR, in order to 

identify a ‘diamide-resistance region’. A series of residues worthy of further 

investigation are subsequently identified (based on amino acid alignments between 

resistant and susceptible species, and amino acid chemistry), whose alteration may 

help to pinpoint a diamide binding site upon the RyR. Editing of five amino acid 

positions to match those found in the skeletal RyR1 of humans (hRyR1) results in a 

human-Plutella chimeric construct, which forms the basis of novel investigations 

into the diamide binding site.  
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6.2 Introduction 

6.2.1 Diamides are highly selective against mammalian RyR 

During their development, diamide insecticides were shown to activate 

lepidopteran RyR channels at very low concentrations, as well as Drosophila RyR 

channels expressed in CHO cells (Ebbinghaus-Kintscher et al. 2006). However, 

rabbit RyR (rRyR3), when expressed in the same system, was found to be refractory 

to FLB activation, even beyond the theoretical limit of solubility of the compound 

(30µM). Indeed, FLB was tested upon various mammalian primary cell cultures, 

including rat ganglia, skeletal muscle, heart muscle and neuron-like cells, 

registering a negligible response in all cases (al 2006; Ebbinghaus-Kintscher et al. 

2006). Similarly, characterisation of the concentration-response relationship on 

various mammalian cell lines expressing RyRs and recombinant cells expressing 

insect RyRs (Fig. 6.1) indicated CLR to be some 300-fold less potent against mouse 

skeletal muscle RyR (RyR1) and >1000-fold less potent in rat heart cells (RyR2) 

compared to lepidopteran and dipteran RyR-expressing cells (Lahm et al. 2007). 

Figure 6.1 Summary of data obtained by various authors showing a lack of CLR (diamide) efficacy on non-
lepidopteran RyR channels. Kindly provided by Daniel Cordova.  
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Meanwhile, tests in an ecological context indicated that FLB is effectively non-toxic 

in terms of its potential passage through the food-web. With FLB residue on insects 

peaking at 5.59mg/kg, a large (200g) adult rat would be required to eat >70kg of 

maximally dosed insects within a 14-day period in order to reach their acute EC50. 

Similar quantities of diamide residue were stipulated for the various bird and fish 

species tested (Hall 2007). Metabolic studies in rats indicated that CLR breakdown 

occurs primarily by a multi-step oxidation of the methyl groups, followed by 

glucuronidation (WHO 2007). After ingestion, 24-36% of the compound is taken up 

from the rat gut into the bloodstream, with the rest being excreted directly. After 

48-144h, 90% of the absorbed diamide was found to have been excreted.  

A recent set of publications have reported single-channel studies investigating the 

binding dynamics of CLR on mammalian (rabbit) RyR1, following the claim that 

there existed “severe concerns about the safety of this chemical” (Magyar et al. 

2019). Whilst such a claim is entirely unsupported by the evidence published within 

these studies, the findings are nonetheless enlightening in the investigation of RyR-

diamide interaction. Chen et al report that, in rabbit RyR1-expressing sarcoplasmic 

reticulum (SR) vesicles, concentrations of 30-150µM CLR resulted in a small 

transient Ca2+ release response similar in amplitude to the CICR response elicited 

by Ca2+, and the amplitude increases slightly in a concentration-dependent manner 

(Chen et al 2018). Similarly, Truong et al studied 5-minute single channel recordings 

to show that Po increases in the presence of 10µM CLR, resulting in a brief 65-fold 

increase in Ca2+ conductance compared to the baseline ‘closed’ state (Truong and 

Pessah 2019). The reported 65-fold increase almost exactly reiterates a previous 

finding by Cordova, who employed CYA instead of CLR (conf. proceedings). To 

summarize, these results indicate that CLR is capable of eliciting a small transient 

(i.e. non-disabling) response when applied at a very high concentration of 150µM, 

which is >1000-fold higher than the EC50 for lepidopteran RyR channels measured 

in cell lines, as reported here and elsewhere. In order to confirm that this reduction 

in CLR-activation is due to a reduction in binding, measurements of Kd were 

undertaken. A minimum CLR Kd of ~1.51µM (rising to 4.67µM in the closed state) 

was recorded on the rabbit RyR channel (Chen 2018), approximately 50 to 150 -fold 

higher than that previously recorded in cockroach, Periplanata americana, leg 

muscles (Cordova et al. 2006). Such differences in Kd indicate that binding is a major 
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factor in determining diamide non-efficacy against mammalian RyR. The rest of this 

Chapter will discuss the causes of that discrepancy in diamide binding.    

6.2.2 What is the cause of the discrepancy in binding and activation 

Differences in diamide efficacy between mammals and insects are suspected to be 

attributable to differences in the structure of the diamide binding site on the RyR. 

Over the past decade, binding site studies on the RyR have taken one of two 

approaches: either a comparison of the relationship between ryanodine (Ry), 

phthalic diamide and anthranilic diamide binding, or attempts to directly pinpoint 

the approximate location of the binding region.  

Isaacs (Isaacs et al. 2012) synthesized tritiated (radioactive) [3H]CLR, enabling the 

quantification of bound CLR to the house-fly (Musca domestica) RyR under various 

conditions, to determine its relationship to Ry and FLB binding. Ca2+ (which 

promotes the open-state of the channel (Mugherjee et al 2012)) was found to 

increase [3H]CLR binding, as is expected if CLR preferentially binds to the open 

channel. Other anthranilimides, such as CYA or CLR itself, inhibited [3H]CLR binding 

by competing for the same site. By contrast, FLB did not inhibit [3H]CLR binding, 

leading to a hypothesis that no competition exists between FLB and CLR due to 

there being two distinct, but allosterically coupled, binding sites for the two classes 

of diamides. The same result was reported by (Qi and Casida 2013), employing very 

similar methodology. However, it was also shown that FLB (applied at <1fmol 

[3H]FLB/mg protein) does not bind to the Apis Mellifera and M. domestica channels 

investigated, suggesting that an FLB binding site is not present, hence providing a 

more parsimonious explanation for the lack of competition. In contrast, CLR and 

FLB were found to compete, and in a concentration-dependent manner, in the 

lepidopteran species (Agrotis ipsilon and Heliothis virescens) studied, suggesting 

that the binding sites of the two diamides are likely not distinct in moth species. 

The study also uncovered major differences between lepidopteran and non-

lepidopteran channels. Whilst in the Hymenoptera and Diptera (A. mellifera and M. 

domestica) CLR is shown to bind preferentially to the open-state channel, the 

opposite may be true for lepidopteran species, since FLB binding was found to be 

unstimulated, or reduced, by Ca2+/ATP, and majorly reduced by Ry, strongly 

suggesting preferential binding to the closed channel state. Similar results, but to a 

lesser degree, were also reported for CLR. Thus, the FLB and CLR sites are thought 

to be closely coupled, but not identical. However, attempts to distinguish FLB and 
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CLR binding effects are confounded by the distinct differences between 

lepidopteran and non-lepidopteran RyR channels, as the non-lepidopteran 

channels studied to date are not a viable system for FLB experimentation. Such 

differences may partially be attributable to segregation at amino acid residue 4790 

(Isoleucine (I) in Lepidoptera, methionine (M) in all other insects) as studied in Chpt 

4. However, the contrast between the channels in the Casida studies suggest major 

structural differences at the protein level which would be unlikely to be caused by 

a single residue change.   

6.2.3 The diamide interaction site 

The actual position of the binding region (as opposed to the exact binding site(s)) 

was elucidated progressively following on from the above studies, primarily as a 

biproduct of investigations into incidences of field-resistance to diamides 

uncovering a selection of closely located, causatively linked, point-mutations on the 

RyR. Most of these investigations were reviewed in detail in a previous Chapter 

(Ch4) and discussions on this are not recapitulated here. However, one study in 

particular (Tao et al. 2013) bears further detailed discussion, as it has been 

instrumental in pinpointing the diamide binding region. By creating a chimeric RyR 

channel, composed of D. melanogaster and root knot nematode (Meloidogyne 

incognita) RyR sequence, a region within the C-terminus was found to be critically 

involved in formation of the diamide binding, in line with the findings of a previous 

study (Kato et al. 2009). A defining shorter chimeric segment within this C-terminal 

region, consisting of a 45aa region of the nematode sequence, located just prior to 

the start of TM1 (P. xylostella aa 4659 – 4703), produced a channel that was entirely 

refractive to CLR (up to 30µM). Of the 45 amino acids replaced, most are unlikely 

candidates to be involved in diamide interaction.  The first 30 aa lie in a zone of high 

divergence, even within insects, hence conservation of a diamide binding site here 

would seem improbable given the variation. The last 10 amino acids, by contrast, 

are highly conserved, likely due to being at the start of the TM1 membrane 

spanning domain. Six of these amino acids are identical between humans and 

insects, leaving just K4695N, K4700R, Y4701F and V4702L (P. xylostella numbering) 

as possible loci of this major difference in diamide binding efficacy. Intriguingly, the 

latest episodes of resistance in C. suppressalis add further support to the Tao et al 

study. Unpublished reports from 2013 suggested a host of mutations associated 

with diamide resistance in this pest in China (Cordova pers. comm.). These included 
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G4946E, as well as a novel find, Y4701D (PxRyR numbering). A recent publication 

confirms this as a resistance locus, with alleles 4701C and 4701D found (alone) in a 

resistant population of C. suppressalis in Jiangxi, China (Sun et al. 2018).  

For the purposes of the current study, probable diamide interacting residues 

identified in previous studies were cross-compared in an alignment of 44 

arthropod, nematode and vertebrate RyR amino acid sequences. Highly conserved 

residues, whose alteration correlates with diamide resistance, were considered 

candidates for further study (Fig. 6.2). Almost all the resistance-associated 

mutations discovered to date are concentrated within a 250aa region close to the 

C-terminus of the protein (Fig. 6.2c), which in the 3D structure is located within the 

TM domain, peripheral to the channel pore (Fig. 6.2a,b). This 250aa region, which 

is similar in structure to the voltage sensor domain of voltage-gated channels such 

as the bacterial KcsA potassium channel, is referred to here as the ‘diamide 

resistance region’. Candidate amino acid substitutions for binding site studies, 

when plotted onto the 3D structure, can be seen to form a ring-like pattern across 

the crown of the pVSD (Fig. 6.2d). Although it is tempting to pinpoint the diamide 

binding site to the ‘diamide resistance region’ identified here, such conclusions may 

not be entirely valid.  3D RyR models in insects are currently based on homology 

models of the lepidopteran RyR generated by overlaying its sequence onto the 

published mammalian RyR1 (closed-state) structure. Whilst recent imaging of the 

PxRyR N-terminus (Lin et al. 2018) and SPRY domain (Xu and Yuchi 2019) represents 

an enormous leap forward, sequence dissimilarities at the C-terminus still prevent 

confident predictions. Shortly prior to completing the investigations described in 

this Chapter, Lin et al  published a controversial attempt to computationally predict 

FLB docking upon the RyR homology model (Lin et al. 2019). It is widely 

acknowledged that the predictive power of a docking study is highly dependent 

upon the resolution of the available protein model, in this case the study was 

conducted in the absence of any such high-resolution model. Hence, the 

investigations reported in this Chapter may be an important experimental 

validation of predictions made by Lin et al (discussed further in Ch7).  

In summary, combining all the knowledge accumulated to date, some logical 

stipulations can be made regarding the nature and location of the 

phthalic/anthranilic diamide binding site(s). Firstly, that they are located 

somewhere within close proximity to the ‘diamide resistance region’ identified in 
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Fig. 6.2. Secondly, investigations on the G4946 residue indicate the binding sites are 

sufficiently close to each other that mutations at this position confer equal 

resistance to both CLR and FLB across a variety of tested pest species. Thirdly, that 

I4790 (investigated in Ch4) is located in close proximity to G4946 in the 3D structure 

and is most likely involved in diamide binding. 
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(a)  

(b)  

(c)  

(d)  

 
 
Figure 6.2 The ‘diamide resistance region’ in lepidopteran RyR.  
(a) Crystal structure of rabbit rRyR1 in the closed state (Yan et al 2015, PDB 3J8H), with the 
transmembrane region boxed and highlighted (b) PxRyR-rRyR1 homology model* showing two 
isomers in dimeric formation, with the  pore region shown in blue (PF, Pore Forming; CTD, C-
terminal Domain; pVSD, Voltage Sensor Domain) and TM regions, S1-4 shown in yellow (boxed 
and highlighted)  (c) Alignment of PxRyR (P.x) and  human hRyR1 (H.s) amino acid sequences, (TM 
regions S1-4 (shown in yellow); divergent region (grey); aa residues investigated in this Chapter 
(blue); aa residues earmarked for future investigation (pink)) (d) PxRyR-rRyR1 homology model of 
the pVSD (labeled as in (c)), displaying a ring of amino acids implicated in diamide binding. 
 
*All work is the author’s own. The PxRyR homology model was generated in collaboration with 
Oliver Gutbrood (Bayer CropScience), using Pymol and Schrodinger software. 
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6.3 Results 

6.3.1 RFCLM: A chimeric RyR channel combining moth with mammal 

The purpose of this Chapter (Ch6) is to further define the ‘diamide resistance 

region’, with the eventual aim being to define the diamide binding site. Since we 

are lacking a crystal structure of the PxRyR protein, this goal can only be achieved 

by a combination of homology modelling and reverse genetic experimentation to 

identify the amino acids critical for diamide interaction. The methodology for this 

Chapter closely follows that of Tao et al (cited and described above), in which Sf9 

cells are transiently transfected with human/moth RyR chimeras in order to 

iteratively refine the residues and locus most responsible for diamide insensitivity 

in the mammalian channel.  Following the protocol established in Ch3, and 

optimised further in Ch4, five PxRyR recombinant constructs were expressed in Sf9 

cells and evaluated in terms of diamide effect relative to WT. 

In the first instance, rapid mutagenesis (Agilent Lightning) and vector construction 

(Gibson) was used to create a chimeric construct composed of the WT-PxRyR with 

all five amino acid alterations, edited to match those residues present in human or 

rabbit (Orychtolagus cuniculus) RyR1. The chimeric construct is referred to as 

RFCLM-PxRyR, reflecting the five alterations: K4700R; Y4701F; I4790C; S4919L; 

V4945M (Fig. 6.3).  Whilst the overall amino acid sequence identity between 

rabbit/human RyR1 and DBM RyR is just 42%, the changes implemented here lie 

within the ‘diamide resistance region’ (Fig 6.2). which has a much higher sequence 

identity of 73%, most likely due to the need to maintain the integrity of the RyR 

transmembrane domains and the channel pore. The amino acids chosen for 

Residue  
Number 
 

Introduced  
Residue 

Figure 6.3 The five aa residue changes studied in this Chapter: K4700R; Y4701F; I4790C; S4919L; 
V4945M 

Sequencing  
Trace 

 

Original 
Residue K Y I S V 
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modification all lie within conserved aa hotspots, according to an alignment of 43 

RyR protein coding sequences. The exchanged residues, and the justification for 

their selection, are summarised in Table 6.1.  

6.3.1.1 Brief characterisation of RFCLM caffeine-response 

Following the protocols established in Ch3, the RFCLM-PxRyR construct was 

expressed in Sf9 cells and assessed in terms of its response to increasing dosage of 

caffeine. The response is found to increase with increasing caffeine concentration 

(Fig. 6.4). Comparison to the WT construct is important here, in light of the major 

difference in diamide-response recorded between the genotypes (Fig 6.5). Fig 6.4b 

indicates no substantial difference in signal amplitude between the two expressed 

constructs, in response to caffeine at any concentration. However, any firm 

conclusions are hindered by a substantial variation in response between cells. 

Furthermore, as explained in Ch3, sequential caffeine application on the same cell 

Table 6.1 PxRyR amino acid positions altered to resemble rRyR1. Residue at each position noted for susceptible (insect, 

arthropod) and non-susceptible (vertebrate, nematode) species.  

Position of 

modification* 

Residue in susceptible species Residue in resistant species Additional justification for 

selection of residue 

4945 Valine (V) in susceptible insects, 

arthropods; 

Methionine (M) in vertebrates;  

Leucine (L) in nematodes; 

Sequentially adjacent to 

G4946E (See Ch4) 

4919 Serine (S) or Asparagine (N) in 

susceptible insects, arthropods; 

Leucine (L) in vertebrates;  

Arginine (R) in nematodes;  

 

4790 Isoleucine (I) in susceptible 

insects, arthropods;   

Leucine (L) in vertebrates;  

Cysteine (C) in nematodes;  

Methionine (M) at this 

position shown to confer 

diamide resistance (See Ch4) 

4701 Tyrosine (Y) in susceptible 

insects, arthropods;  

Phenylalanine (F) or Methionine 

(M) in vertebrates;  

Lysine (K) in nematodes;  

Terminal residue of the Tao 

chimera (Tao et al 2013) 

4700 Lysine (K) in susceptible insects, 

arthropods 

Arginine (R) in vertebrates;  

Glutamate (E) in nematodes;  

Penultimate residue of the 

Tao chimera (Tao et al 2013) 

*Amino acid numbering from PxRyR 
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patch is a method susceptible to misinterpretation due to uncharacterised effects 

of caffeine on cell physiology. 

6.3.1.2 Characterisation of RFCLM diamide-response 

Following the protocols described in Ch3, concentration-response experiments 

were conducted for RFCLM-PxRyR against CLR and FLB. RFCLM-PxRyR 

demonstrated a decreased sensitivity to CLR compared to the WT-PxRyR construct, 

Figure. 6.4 Response of RFCLM-PxRyR to increasing dosage of caffeine a) a recording of a single FOV of cells over 
time b) normalised, relativized responses of those same RFCLM-expressing cells (orange) compared alongside WT-
expressing cells (grey) 
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and near elimination of FLB-responsiveness (Fig 6.5a). For reasons of solubility 

discussed previously, the maximum applied concentration for both diamides was 

50µM. In the case of CLR, this maximum concentration was apparently insufficient 

to enter the plateau phase of the concentration-response relationship. In the 

absence of such a plateau, ‘relativisation’ (Chpt 3, Box 3.2) of the response is 

problematic. Therefore, in this instance, the response magnitude elicited by 50µM 

CLR was treated as the maximum response amplitude for this sequence variant, to 

allow representation of the data for this variant in the same concentration-

response format used for the other variants discussed in this thesis. A maximum 

response amplitude of 1.139 at 50µM is comparable to the maxima of other 

constructs in this thesis (IM, 1.182; GV, 1.127), lending support to this decision.  

Furthermore, additional concentrations of CLR, applied beyond the solubility limit, 

gave similar responses, each falling within one standard deviation of the 50µM 

response (1.39±0.23). Nonetheless, calculation of an exact resistance ratio is 

problematic. A ‘minimum resistance-ratio’ can be ascertained by comparison of 

WT-PxRyR EC50 (0.015µM) with the ‘minimum EC50’ of RFCLM-PxRyR (20.4µM), 

giving a RR=1360-fold to CLR [where the assumption is that the actual EC100 dose 

for RFCLM-PxRyR is greater than, or equal to, the hypothetical EC100 (50µM) used 

here].  

In the case of FLB (sulfoxide form), responses were small and transient up to and 

beyond the limit of solubility of the compound (Fig 6.5a). RFLCM-PxRyR expressing 

cells did at no point display a typical, irreversible activation response to FLB (e.g. 

Ch4, Fig 4.2). The closest approximation to an RR calculation can be made by 

comparing the FLB concentrations required to illicit 10% responses of WT and 

RFLCLM constructs in Fig 6.5. The EC10 for WT reads as 50nM, whilst that for RFCLM 

is at 50µM, giving an approximate RR of 1000-fold.  

The impact of these five amino acid changes upon diamide efficacy is shown to be 

extreme, where diamide interaction is all but abolished, creating a channel similar 

in diamide-interaction properties to the human hRyR channel itself (RFCLM EC50: 

20.4 µM to CLR, which is comparable to studies in mice, Fig 6.1). The result appears 

to confirm the location of the diamide interaction site as being within the Voltage 

Sensor-like Domain (pVSD). Fig 6.5b indicates the positions of the five modified 

residues in the pVSD region, with an electro-static potential surface overlay 

indicating positive and negative amino acid moieties. The centre of this structure 
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contains a cavity of high electronegativity (red), which is flanked by the five altered 

residues.  

 6.3.2 Unpicking the RFCLM modification  

In pursuit of identifying which of the five amino acid residues in WT-PxRyR 

contributes most significantly to the lepidopteran RyR susceptibility to diamides, 

the five amino acid substitutions RFCLM were added individually, and in pairs, into 

novel PxRyR constructs. 

6.3.2.1 Brief characterisation of RF-PxRyR chimera caffeine-response 

Of the five altered aa residues, the K4700R-Y4701F (RF-PxRyR) combination was 

considered a strong candidate to be mediating the observed effects, based on the 

previous work by Tao et al. This combination was expressed, as before, against an 

otherwise WT-PxRyR background, in Sf9 cells. Comparison was then made between 

the RF-PxRyR and the RFLCM-PxRyR expressing cells in terms of caffeine and 

diamide responses, in order to validate that the constructs gave functional RyRs. 

Both constructs display an ability to respond to caffeine, and the amplitude of this 

caffeine response correlates with their response to CLR in both cases. A 

concentration of 20µM CLR was used, known to activate both RFCLM-PxRyR and 

RF-PxRyR to around 20-50% maximum amplitude. For RFCLM-PxRyR, the 

correlation coefficient between caffeine and CLR is strong (Fig 6.6a), indicating that 

the established method of relativizing diamide response with caffeine response is 

likely to resolve around 80% of the variation in Ca2+
 responsiveness for this 

genotype. The correlation for RF-PxRyR is less strong (Fig 6.6b) but remains within 

the range of that seen for the other sequence variants studied in this thesis. The 

implication, therefore, is that the RF construct will display a considerable amount 

of variation to diamide dosage.  

Figure 6.5 RFCLM-PxRyR is only activated by CLR at very high concentrations but is not 
activated by FLB at its limit of solubility.  
(a) Dose-response relationship of RFCLM-PxRyR (red fill) to CLR and FLB (with WT PxRyR (grey 
fill) response for comparison) 
(b) Homology model* of the RFCLM-PxRyR pVSD, displayed in i) longitudinal and ii) transverse 
orientation. Positions of the five amino acid substitutions are marked; dotted lines indicate 
that the residue is hidden within the structure.   
 
*All work is the author’s own. The homology model was generated in collaboration with Oliver 
Gutbrood (Bayer CropScience), using Pymol and Schrodinger software. 
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Figure 6.6  Correlation between caffeine and diamide responsiveness for 
(a) RFCLM -PxRyR and (b) RF-PxRyR  

(a)  

(b)  
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6.3.2.2 Characterisation of RF-PxRyR response to diamide 

 
With insufficient time remaining for comprehensive concentration-response 

characterisation of each individual construct, a series of method changes were 

introduced: 

 

• In a pairwise setup, referred to as a ‘descriminating dose’ experiment, 

sequence variants were exposed to identical concentrations of agonist, to 

compare the magnitude of response to that concentration. 

• Characterisation of CLR susceptibility was prioritised over FLB susceptibility. 

Non-responsiveness of RFLCM-PxRyR to FLB, at any concentration, prevents 

meaningful comparison between this variant and others. 

• The sequence variants were assessed in their order of hypothesised 

resistance, studying first those variants most likely to confer resistance. 

 

RF-PxRyR when expressed in Sf9 cells shows an extreme reduction in CLR response 

relative to WT-PxRyR (Fig 6.7, Table 6.2). The magnitude of the difference is similar 

to that between RFCLM-PxRyR and WT-PxRyR. LSD consists of a pairwise 

comparison of mean average response amplitude between the constructs, 

compared to the standard deviation of all groups combined. An insignificant 

difference between RFCLM-PxRyR vs RF-PxRyR in relation to CLR efficacy suggests 

that the two amino acid alterations, K4700R and Y4701F, are responsible for 

mediating the majority of the RFCLM-PxRyR phenotype. The phenotype of this RF 

chimera was found to be as equally profound as that of the original RFCLM chimera, 

indicating that one or both of these residue positions is critically important for RyR 

interaction / non-interaction with diamide insecticides. 

 

6.3.2.3 Characterising the effects of individual residue-changes on diamide 

response 

 
In order to further break-down our understanding of the binding pocket, the 

K4700R, Y4701F and I4790C substitutions were added individually to the WT-

PxRyR background construct. A preliminary assessment was then made of the 

caffeine responses for each of the novel variants. Due to severe time constraints, 

an assumption was made that given the previously recorded lack of difference 
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Figure 6.7 RF-PxRyR and RFCLM-PxRyR share a similar phenotypic response to CLR exposure. Sf9 cells (n=8-17) 
expressing either Wild-Type (Grey), RF (Blue-Purple), or RFCLM (Yellow/Orange) PxRyR were exposed to 2µM and 
20µM concentrations of CLR. All diamide responses were normalised against a prior caffeine response and 
relativized against the maximum WT-PxRyR response.  

 

[CLR] (µM) 
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between WT-PxRyR and RFCLM-PxRyR constructs in terms of caffeine response, 

constructs containing the same mutations expressed singularly would also be 

unlikely to vary significantly from the WT in caffeine response amplitude. 

Therefore, detailed characterisation of caffeine concentration-response, and 

caffeine-diamide response correlations, were not carried out. Instead, all the 

constructs were simply expressed on the same day, and each dosed once with 

10mM caffeine. In defense of this approach, the study design is based upon a 

previous study, Tao et al, 2013, published in a major (and reputable) journal. Tao 

did not characterise caffeine response, nor response to any ligand but diamide. The 

current results (below) indicate the potential cost of their methodological omission. 

 
Fig 6.8 indicates that all three RyR variants, K4700R, Y4701F and I4790C, were 

capable of responding to 10mM caffeine. However, there was considerable 

variation in caffeine response both between cells of the same variant, and across 

variants. If this caffeine response variation translates to diamide response 

variation, it may impact apparent responses by up to 3-fold. Although this 

represents a considerable variance, it can be considered as being acceptable in the 

context of the 1000-fold differences seen between the WT-PxRyR and RFLCM-

PxRyR diamide response. If recombinant constructs are found to differ in diamide 

response by less than 10-fold, the veracity of this difference must be called into 

question.  

All three novel variants, K4700R, Y4701F and I4790C, were found to confer a 

significant reduction in diamide response amplitude at the four ‘discriminating 

doses’ of CLR tested (Fig 6.9). However, the effect magnitude of each individual 

change was 50-100 times less severe than the synergistic effect of all five changes 

combined (in the RFCLM-PxRyR construct).  

 
[Note: Analysis of the differences between variants in this thesis is based on the 

assumption that there is no significant difference in the maximum diamide 

response amplitude between the variants under comparison. This assumption has 

been tested variously in Chapter 4 (Figs 4.8 - 4.10) and in other publications 

(Troczka 2015), and it has been repeatedly shown that there is no significant 

difference in maximum amplitude between the variants so far studied. Analysis of 

differences between the K4700R, Y4701F and I4790C constructs here is thus made 
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under the assumption that these variant receptors also do not vary in their 

maximum response amplitude. With hindsight, this is an assumption that should 

have been validated experimentally.]  

Figure 6.8 Comparative response to 10mM caffeine of all the recombinant constructs. Transfected Sf9 
cells were imaged on the same day, one FOV per construct (n = 4-37 Cat A responding cells).  
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Figure 6.9 PxRyR variants exhibit differing response to increasing concentrations of CLR. Sf9 cells (n=5-26) expressing either Wild-Type (Grey), 
K4700R (Purple), Y4701F (blue), I4790C (green) or RFCLM (Orange) -PxRyR were exposed to increasing concentrations of CLR. All the diamide 
responses were normalised against prior caffeine response and relativized against the maximum WT-PxRyR response.  

 

[CLR] (µM) 
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Result Highlights (Table 6.3): 
 

• The minimum CLR concentration tested here is 0.04µM, as this was the 

minimum concentration at which any of the modified PxRyR’s registered a 

response. Despite that, the dose is far above the EC50 of the WT-PxRyR 

(0.015µM CLR).  

• K4700R responds to the lowest (0.04µM) CLR concentration. Y4701F and 

I4790C do not respond at this concentration (their response is no different from 

that of the RFCLM-PxRyR variant). The magnitude of the K4700R response is 10-

20% compared to the WT response.  

• K4700R responds to a concentration of 0.1µM CLR with an average of 51±6% 

amplitude. This is comparable to an EC50 response and when compared to that 

of the WT (0.015µM), yields a resistance ratio of 6.67-fold. 

• Y4701F (43±5%) and I4790C (55±16%) both reach an approximate EC50 

response at 0.4µM CLR, translating to a calculated resistance ratio of 26-fold. 

• The introduction of K4700R is associated with a minor reduction in CLR-

mediated activation; the introduction of either Y4701F or I4790C is associated 

with a more significant reduction in CLR efficacy. It is significant that despite its 

constituent parts (K4700R and Y4701F) giving just 6.67-fold and 26-fold 

reduction in efficacy respectively, when the two substitutions are combined, 

the resulting RF-PxRyR bears the same diamide-resistant phenotype as RFCLM-

PxRyR (RR>1000-fold). 

[Note, the variance in these measurements is large. This was predictable due to the 

lack of preparatory work, as has been discussed above. However, the effect-

a) 0.04µM CLR 

 WT K4700R Y4701F I4790C RFCLM  

WT 1 *** *** *** *** 

K4700R  0.20 *** *** *** 

Y4701F   0.039 N.S. N.S. 

I4790C    0.021 N.S. 

RFCLM      0.0061 

 

b) 0.1µM CLR 

 WT K4700R Y4701F I4790C RFCLM  

WT 1 *** *** *** *** 

K4700R  0.51 * *** *** 

Y4701F   0.33 * *** 

I4790C    0.18 * 

RFCLM          0.0038 

 
c) 0.4µM CLR 

 WT K4700R Y4701F I4790C RFCLM  

WT 1 * *** *** *** 

K4700R  0.69 * N.S. *** 

Y4701F   0.43 N.S. *** 

I4790C    0.55 *** 

RFCLM      0.025 

 

d) 1µM CLR 

 WT K4700R Y4701F I4790C RFCLM  

WT 0.99 N.S. N.S. N.S. *** 

K4700R  0.96 N.S. N.S. *** 

Y4701F   1.039 N.S. *** 

I4790C    0.89 *** 

RFCLM      0.042 

Table 6.2 Comparison of the responses of PxRyR sequence variants to discriminating CLR 
concentrations (Sub Tables a-d). Grey boxes list average response of that construct (relativized 
to WT). White boxes display indications of significance, based on LSD comparisons of 
amplitude between the variants. N.S = Not Significant; * = P<0.05; ***= P<0.001.  
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magnitudes at play are also sufficiently large that patterns are clearly demonstrable 

in this data.] 

6.3.2.4 Assessing the contribution of Y4701F on flubendiamide (FLB) efficacy 

The remaining efforts in this Chapter were directed towards resolving the 

contribution of Y4701F to the observed diamide resistance phenotype. Y4701 

alterations have been found in resistant populations of Chilo suppressalis and are 

apparently increasing in frequency (Sun et al 2018). Bioassays of these populations 

indicate that this residue is involved in 250-fold resistance to CLR. This amino acid 

change was therefore hypothesised to play a central role in the RF phenotype (Fig 

Figure 6.10 WT-PxRyR and Y4701F-PxRyR exhibit comparable responses to a low 
dosage of FLB. All responses were normalised against a prior caffeine-response and 
relativized against the maximum Y4701F response.  

 

[FLB] (µM) 
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6.7). Indeed, it has been shown that the residue plays a far greater individual role 

in CLR resistance than its neighbour, K4700R (Fig 6.9, Table 6.3). Field studies also 

indicated that Y4701F might have differential effects vs CLR and FLB (Huang 2019, 

Unpublished). Given that the purpose of this study is to inform efforts to locate the 

binding site(s) of anthranilic and phthalic diamides, any recorded differences in 

response is potentially valuable information. Accordingly, the impact of the residue 

upon FLB efficacy was tested. As displayed in Fig 6.10, the Y4701F residue 

surprisingly does not confer resistance to FLB. Indeed, the alteration may confer an 

increase in FLB susceptibility, by up to 5-fold.  

6.4 Discussion 

Experiments in this Chapter have identified five amino acid substitutions, referred 

to as RFCLM, singled out for their dramatic impact upon diamide efficacy when 

added in concert to an otherwise WT-PxRyR construct and transiently expressed in 

Sf9 cells. These five alterations were mapped on to a homology model of the RyR 

protein and found to be located in close proximity to one another, as well as to the 

resistance-associated mutations studied in Ch4, and all lie within the previously 

defined ‘diamide resistance region’.  

6.4.1 Why is there a disparity between the effects of residue changes 

in isolation, and their effect in combination? 

Further investigations indicated that two of the initial five residues, K4700R and 

Y4701F, were together responsible for a reduction in diamide resistance of 

approximately equal magnitude to that generated by the five residues (RFCLM) in 

concert.  

However, investigation of the two substitutions in isolation, each expressed 

separately against an otherwise WT-PxRyR background, found that neither 

conferred a resistance ratio of greater than 26-fold to CLR, in comparison to >1000-

fold resistance conferred by the RFCLM-PxRyR.  

It seems clear, from these results, that the resistant phenotypes associated with 

each individual change combine synergistically (perhaps factorially) when placed 

together. That is, if we assume that K4700R and Y4701F cause reductions in CLR 

efficacy due to their individual effects on CLR binding or on CLR activation of the 
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protein, perhaps these two mechanisms multiply the effects of one another (6.7-

fold resistance multiplied by 26-fold might create 175-fold resistance, for example).  

Previous authors have shown that resistance-associated point mutations can create 

non-additive phenotypes when expressed in the same background. Such an 

epistatic interaction was found by Zimmer et al whilst studying P450s in the brown 

planthopper (Zimmer 2018).  

Polypeptide folding during RyR formation is not well characterised, even in 

mammals, and changes to the sequence may impose dramatic alterations to this 

process. More investigations are perhaps required into this topic of interest.  

6.4.2 What is the mechanism of the observed resistance effects 

conferred by Y4701F? 

This investigation has found that Y4701F simultaneously confers resistance to CLR 

(26-fold) but, uniquely, also confers slight susceptibility to FLB.  

Firstly, in terms of CLR-resistance, it is not clear why Y4701F would change the CLR 

binding site sufficiently to cause such a potent phenotype. The residue faces 

outward (abaxial) from the pVSD pocket (Fig 6.11), away from the hypothesised 

centre of the binding site (Fig 6.5). The change represents the loss of a polar 

interaction, raising the possibility that interaction with other nearby polar charges 

could be responsible for some kind of electrostatic alteration of the surrounding 

topography to affect a change in the binding pocket. However, the homology model 

indicates a total absence of other charged groups within 5Å proximity of the 

residue.  

One possible explanation of this finding is that the CLR binding site extends over 

the ‘anterior’ (Fig. 6.11) lip of the pVSD, to contact the Y4701 residue.  

In terms of the conferred FLB-susceptibility, it is notable that Y4701F-PxRyR is the 

only construct investigated in this thesis that has shown greater susceptibility to 

FLB than to CLR. By comparison, the WT, I4790M and G4946V are all activated by a 

concentration of CLR >20-fold lower than their FLB activating concentration. The 

RFCLM-PxRyR completely avoids activation by FLB.  

6.4.3 Limitations 
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This Chapter represents a preliminary investigation into a series of amino acid 

changes potentially critical to the integrity of the diamide binding site in PxRyR. The 

Chapter builds upon the methodology of Tao et al, albeit focusing on substitution 

of individual amino acid residues rather than larger protein fragments, providing a 

greater level of fine detail than is available within that publication. Large 

phenotypic differences between the WT and modified PxRyR constructs ensures 

that this piece of work, although preliminary, nonetheless makes a meaningful and 

valuable contribution to resolving the position and extent of the diamide binding 

pocket. This study focusses on CLR because FLB was found to be completely 

ineffective against RFCLM-PxRyR and therefore rendered futile any quantitative 

comparisons between constructs’ response to both drugs. CLR was also what Tao 

et al used for their assays. These results can legitimately therefore be considered 

as the logical continuation of the Tao study, further resolving the resistance region 

identified there. 

Due to time constraints, the experiments performed were not sufficiently detailed 

to draw conclusions relating to the exact nature of the diamide binding site. It was 

particularly regrettable to run out of time before characterising S4919L and 

V4945M, as the K4700R and Y4701F substitutions were prioritised for obvious 

reasons, and there was a concomitant lack of previous knowledge being available 

on S4919L and V4945M. Further work in this area should focus on characterising 

the PxRyR alterations generated here in greater detail, especially in terms of their 

individual impact upon general physiology and response to caffeine, which in the 

present study varied considerably between constructs. Only thereafter will it be 

possible to effectively characterise the impact of these amino acid substitutions 

upon CLR and FLB efficacy.  

A major flaw of this Chapter is an inability to express human RyR in Sf9 cell lines, 

since hRyRs are notoriously difficult to work with (Chris George, pers comm). 

Attempts were made to do so during this current investigation, but time limitations 

prevented its completion. Therefore, an assumption is made that mammalian RyR, 

when expressed in Sf9 lines, would yield a diamide insensitive phenotype 

comparable in magnitude to that seen in the studies detailed in Fig 6.1. This 

assumption is supported by experiments on the RFCLM-PxRyR chimeric construct 

(Fig 6.5) which itself displays a diamide insensitive phenotype comparable to those 
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studies, despite containing just five amino acid alterations derived from the 

mammalian receptor.   

Despite its shortcomings, the results presented in this Chapter hint at the 

toxicological relevance of a selection of amino acid residues around the putative 

diamide binding site, further defining the ‘diamide resistance region’ and 

delineating a series of amino acids highly likely to be involved in diamide 

interaction. 

 

 

 

 

 

 

Figure 6.7.11 Positional summary of all of the amino acid residues studied in this thesis. 

Electrostatic potential: positive (blue) neutral (white) and negative (red). The putative FLB 

interaction site (Blue dotted ring) is that described by Lin et al 2019. 
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6.4.4 A hypothetical channel structure 

Chapters 4 and 6, in combination, have defined a series of amino acid residues in 

terms of their alteration of diamide efficacy. Clearly visible in the centre of the pVSD 

(Fig 7.1) is a region of high electronegativity (red), surrounded by an opening of 

neutral and electropositive residues. This is a common feature of voltage-gated ion 

channels, frequently representing the site of ligand interaction (Gutbrod, pers. 

comm). The amino acid residues 4946, 4790, 4700 and 4701 partially encircle this 

region. In this thesis, the impact of changes to these four residues upon diamide 

interaction has been characterised, in an attempt to define the position and extent 

of the diamide binding site. 

The four amino acid residues studied in detail appear to form a crescent across the 

anterior side of the pVSD (Fig. 7.1), with alterations of each (alone or in 

combination) producing substantial phenotypic effects upon interaction with at 

least one of the two diamides. Moving along the crescent, from the medial to the 

lateral side, an appreciation of the effects of each residue in isolation can facilitate 

the drawing of substantial conclusions regarding the binding site as a whole. The 

implications of each alteration will be discussed in detail over the following 

sections, taking into consideration the findings of the recently published, and highly 

controversial, homology model of the FLB-binding region upon the RyR (Lin et al 

2019) (marked upon Fig 7.1). 

The following assertions can be made based on the information from this thesis: 

- • The G4946 position is almost certainly part of both FLB and CLR binding 

sites. It may represent a narrow point within the site, hence why longer 

sidechains cause obstruction here. 

- • The Y4701 position is almost certainly a part of the CLR binding site but 

may potentially not be involved in FLB binding. 

- • In combination, K4700R and Y4701F create a dramatic change in CLR 

efficacy, difficult to explain given their individually minor impacts. 

- • The I4790 position likely plays a part in both CLR and FLB binding sites but 

may occupy a more dominant position in the latter. 

- • That the 4790 and 4701 sites both exhibit differential effects between the 

diamides may indicate that the binding sites are non-identical (in support 

of Casida 2013) 

- • However, since both compounds are equally affected by G4946E/V 

alterations strongly suggests at least partial overlap of binding. 
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6.5 Conclusion 

Definition of the binding pocket has been a partial success, but further work 

remains. The 4700R-4701F combination must be characterised in much greater 

detail. In particular, computational analysis should be applied to understand the 

topological and electrostatic differences between the WT PxRyR residues (K, Y) and 

their mammalian counterparts (R, F) individually, as well as in combination. The 

profound phenotype of these two substitutions in combination, against the 

relatively insignificant phenotype of the two individually, demands explanation. 

Unfortunately, it was not possible to study residues V4945M and S4919L 

individually, for lack of time. The positions of these residues on either side of the 

pVSD should provide valuable information as to the anterior extent of the binding 

site. 

Efforts to define the internal organisation of the diamide binding site in greater 

detail requires a change of approach away from individual residue analysis, instead 

targeting collections of residues as part of ‘functional units’ within the binding 

pocket. Field-derived, resistance-causing mutations such as G4946E, I4790M, 

Y4701C/D/F (Sun et al. 2018) seem likely to mediate their dramatic effects through 

topographical alterations to the pVSD environment – that is they change the 

interaction surface of the local area. Such changes provided useful information, in 

terms of identifying the extent/perimeters of the binding area. However, within 

that binding area, it is important to identify the residues responsible for forming 

inter-molecular forces (IMFs) with the diamide ligand. 

Taking the previous two points into account, future studies might employ ‘alanine 

scanning’, or a similar approach, to rigorously characterise the binding pocket, 

targeting units of 5 contiguous amino acids and knocking out their binding potential 

by converting all five residues to alanine. Such combinatorial changes are expected 

to generate more substantial phenotypes compared to single alterations. Albeit, 

they do so at the cost of creating ‘artificial’ changes, rather than biologically 

relevant changes. As this study has shown, large phenotypic effects can be 

characterised quickly and crudely even in the presence of considerable sampling 

variation. Having established a phenotype for the combinatorial construct, alanine 

scanning on an individual-residue basis should follow, in order to determine the 

‘function’ of each residue in diamide binding. 
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Two strings of residues stand out as candidates for alanine-scanning binding site 

analysis: 4918-4922; and 4942-4945. The former represents a high concentration 

of polar hydrogen-bond acceptors and represents a series of probable diamide-

interacting residues. The latter contains the positively charged D4942 in a position 

close to the hypothetical ‘entrance’ of the FLB site (Fig. 7.1), as well as V4945, 

whose candidature has already been discussed at the heading of this Chapter. 

Future students of RyR physiology should take heart from the present study, 

especially the results reported in Ch6, showing that dramatic changes to the pVSD 

can be achieved without fear of removing channel function. In this case, total 

ablation of FLB binding in the RFCLM and K-F constructs is paired with a mere 1.7-

fold difference in caffeine response relative to the WT (Fig 6.8). 
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Ch7: General Thesis conclusion 
The problem of insecticide resistance is at least a century old (Guedes 2016), but a 

perfect storm of recent factors has exacerbated the rise of resistance to diamides 

in Lepidoptera. South-East Asian P.xylostella populations provide a worst-case-

scenario of how failed IRM can rapidly produce resistance, via lack of crop rotation, 

and overreliance on a single MoA (Troczka et al. 2016). A slowing down of new MoA 

discovery (Sparks and Lorsbach 2016), combined with increased regulatory 

pressure, further inhibits insecticide MoA rotation, whilst globalisation increases 

the likelihood of novel pest invasions, and climate change expands their invasive 

range (Chapman et al. 2017).  

In this context, there is value in lengthening the ‘shelf life’ of an insecticide class, 

by combatting the development of resistance. Such was the aim of this thesis, in 

relation to the diamide class of insecticides. Herein, the problem of diamide 

insecticide resistance is approached from multiple sides:  

1. Confirmation of target-site resistance observed in the field, as caused by 

point mutations to the RyR. Wherein, these mutations are now trackable, 

by population-scale PCR methods. Frequency of these mutations should 

inform the insect control strategy used, including the removal of diamides 

from rotation when frequencies are high.  

2. Binding site studies presented here go some way to defining the 

interaction site of diamides on the RyR, which may inform efforts to 

design improved diamide chemistries. 

 

7.1 A Rapid TSR diagnostic method facilitates improved IRM 

7.1.1 The theory 

Resistance, or the reduction in control efficacy of a synthetic compound, is caused 

by repeat application of the compound over multiple generations of an insect 

population (Guedes et al 2019). Genes for resistance mechanisms, already present 

within the population, increase in frequency due to the relative prosperity of their 

bearers. Target-site resistance (TSR) is a major form of insecticide resistance, and 

has been the focus of this thesis. The frequency of target-site mutations, which 

cause resistance, can be tracked in a population in order to predict the probability 

of control failure (Guedes et al 2019).  
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By avoiding application against populations registering a high frequency of 

resistance mutations, further resistance build-up is avoided. Moreover, switching 

to an alternative form of control, such as an insecticide of a separate mode of action 

can theoretically cause resistance to decrease over time (Guedes et al 2019).   

It follows that, in theory, monitoring of resistance mutations in pest populations 

should create an early-warning, or ‘resistance surveillance’ system preventing 

insecticide resistance from developing.  

7.1.2 In practise 

The author has been able to find no evidence of such a complete resistance 

surveillance system in operation. Genotyping is becoming cheaper each year, so the 

possibility of large-scale tracking is there. However, the identification of TSR 

mutations is currently occurring far too slowly to be of any value. Additional 

resistance mutations are continually emerging (e.g. Sun et al 2018, Y4701C/D). In 

the past, characterisation of diamide resistance-associated mutations has taken 3-

5 years (as with G4946E, I4790M, G4946V) (Troczka et al 2017). Such lengthy 

characterisation-times can allow the resistance mutation to spread widely before 

tracking even begins. For example, 5 years was sufficient to see the G4946E 

mutation spread to populations in every continent on the globe (Steinbach et al 

2015).  

7.1.3 Work in this thesis heralds a more rapid mode of characterisation 

The insecticide industry is not releasing new modes of action as quickly as 

resistance is developing to those modes of action. In the context of rising insecticide 

development costs (averaging $250million USD (Sparks and Lorsbach 2016)), falling 

profit margins and increasingly long development times (Ch1, Fig 1.2a), the 

agricultural community urgently needs to turn the tides on resistance.  

This thesis has advanced the ability to diagnose TSR mutations, making for a quick 

and cheap method that fits into the fast pace of IRM. Following the ‘semi-

quantitative’ protocol detailed in Ch6, a host of potential resistance-causing 

mutations can be evaluated by one worker within a six-month period.  

Resistance validation is only one part of the IRM process. Here’s how the new 

method fits in. An idealised Target-site Resistance Management strategy involves a 

number of steps, and not necessarily in this order: 



 

186 
 

1. Track resistance-associated mutations 

a. Population genotyping. If a region of interest (less than 1kb) is 

known, population-scale sequencing of this region can reveal 

SNPs. If one particular SNP appears to be rising in frequency 

across multiple sequencing events, this is an indication of 

selective pressure (Wilson and Rannala 2003, Kimura 1968), which 

in turn indicates a likelihood that this SNP will impact insecticide 

efficacy.  

i. A method of population genotyping without sequencing 

was recently developed by Boaventura et al. Called allele-

specific PCR, it is a cost-effective manner of identifying 

the frequency of sequence variants in a population 

(Boaventura et al. 2019). 

b. Resistance-associated point-mutations identified during 

population sequencing require validation. The rapid, semi-

quantitative mode of validation employed in Ch6 of this thesis is 

sufficient to determine whether a point-mutation causes high or 

low levels of resistance. More detailed studies, (e.g. Troczka 

2015), have fundamental value but are not necessary in order to 

draw practical conclusions regarding the impact of a given 

mutation.  

c. Once validated, population genotyping continues, monitoring the 

spread of those identified mutations.  

2. Adjust spray rotations accordingly 

a. Where mutation validation has shown a potent resistance-causing 

effect, and where population sequencing has shown that the 

mutation is present locally at a frequency capable of causing a 

>10% drop in insecticide efficacy, spraying of that insecticide class 

must be suspended 

b. Once resistance-associated mutations have disappeared from the 

population, as confirmed by further sequencing, application of 

the given insecticide class should continue 

This monitoring protocol should be mandatory and enforced by insecticide 

producers with the backing of national governments, due to its benefit to the 

producer and for the world alike, in order to combat resistance.  

7.1.4 Caveats to such a resistance surveillance strategy 

Target-Site Resistance is only one cause of insecticide control failure – others 

include metabolic resistance, behavioural resistance and cuticular resistance 

(reduced penetration). The above protocol is primarily effective against TSR, 

although could be adapted for Metabolic Resistance. To monitor all forms of 

resistance requires toxicological assessment (bioassay) of a representative sample 

of the population on at least a yearly basis. This is an expensive process, as insects 

must be collected and reared for at least one generation, and because 
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representative sampling of a population of billions of insects (for example across 

pests of maize in China) requires sampling of huge numbers of insects in order to 

actually detect any low-level resistance. The method of resistance tracking based 

on population sequencing is thus preferable where-ever possible.  

7.1.5 Future Steps toward a better surveillance strategy 

7.1.5.1 Does Resistance have a cost?  

A major tenet of the above IRM strategy is that insecticide resistance will subside 

in the absence of insecticide application. The basal theory behind this assumption 

is that of fitness costs: a phenotype is shaped by the selection pressures of its 

environment, bringing it ever closer to optimality in that environment, such that 

alterations to the environment, for example, by exchange of one insecticide for 

another, reduces the fitness of this phenotype (Coustau et al. 2000). On a genetic 

level, this is the reason that each resistance-causing allele can be described to suffer 

from a Cost in the absence of insecticidal pressure.  

In this this thesis I show that resistance to diamide insecticides does have a cost, 

when studied in ‘pestified’ Drosophila, modified to express the P.xylostella RyR in 

place of their own. Pestified Drosophila carrying resistance mutations, G4946E or 

I4790M, experienced dramatic reductions in flying and crawling speeds in 

comparison to pestified Drosophila wild-type at both positions. If such costs are 

found to exist in populations of insects ‘in the field’, it will be further evidence to 

support the implementation of the resistance surveillance strategy as discussed.  

7.2 Diamide binding and the search for novelty 

7.2.1 Running to stay still 

The ongoing battle against insecticide resistance necessitates continuous 

development of novel compounds in order to maintain capacity for MOA rotation 

(CropLife, 2012). But demands on the industry are going through a major shift 

toward increased regulatory oversight focussed on minimising human and 

environmental health risk. For example, in Japan, as of 2014, just 10% of marketed 

agrochemicals were categorised as Poisonous Substances, in comparison to around 

half in the 1960s (Hirooka, 2018). In the EU, safety and environmental impact 

assessments are now (since 2011) ‘hazard-based’ rather than ‘risk-based’ 

(Nishimoto 2011) contributing to the decline in new registered products. 
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Environmental safety concerns now govern an insecticide’s shelf life, as occurred in 

the case of the three neonicotinoid insecticides banned in 2019 (EU Official 2019), 

where concerns centred around effects on wild bee colonies.  

Against such a backdrop, development of novel insecticides, of which diamides are 

a major example, must attempt to combat insecticide resistance whilst maintaining 

a low toxicity to beneficial insects. New diamide development is ongoing process, 

as exemplified by the recent market release of Tetraniliprole by Bayer CropScience.  

7.2.2 What this thesis has done, and how this contributes to better 

insecticidal design 

This thesis aimed to increase the rate at which novel diamide insecticides could be 

developed.  taking into account the following four-step overview of the lead 

development process (Whitford, Pesticide Marketplace):  

1. Identification and initial screening of potential leads.  

2. Assessment of biological activity. High Throughput Screening identifies biological 

activity on a cellular or organismal level.  

3. Lead Optimisation and Analogue creation. Promising molecules are edited 

through synthetic chemical processes to create analogues that achieve greater 

target-activity or reduce off-target activity and environmental impact. 

4. Advanced testing, registration and commercialisation. 

This thesis has contributed to improving the above pipe-line in a number of ways 

as described in sections below.  

7.2.3 Advancements in understanding of the diamide binding pocket 

Investigations of the diamide binding site in this thesis have pinpointed its location, 

supporting the creation of a 3D homology-model that may aid in Step 1 of the 

insecticide development pipeline. On average 140,000 initial leads feed into a 

successful end product (CropLife 2012) and computational screening of identified 

leads against a 3D model of the target protein can save time and effort.  

Binding site investigations have also identified amino acid residues associated with 

insecticide resistance and also those associated with insecticide selectivity, both of 

which are crucial aspects of modern insecticidal design (Sparks 2013). The position 

of these amino acids upon the 3D model can inform the lead optimisation process, 

to reduce a lead’s susceptibility to existing resistance (Step 3).  

Residues associated with diamide resistance in this thesis include G4946E, G4946V 

and I4790M. All three changes are known to exist, individually, in field populations 
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and were each shown here to elicit a resistance profile of between 10-fold and 144-

fold to Chlorantraniliprole and >20-fold vs Flubendiamide.  

In terms of improved VSR, a set of five residues were altered upon the P.xylostella 

channel to reflect the H.sapiens channel, resulting in a x000-fold reduction in 

Chlorantraniliprole efficacy in cell lines expressing the altered receptor.  

7.2.4 Development of a pestified fly model to facilitate lead 

development 

The creation of ‘pestified fly’ strains in this thesis provides an insect model for use 

in biological screening (step 2). Biological screening requires an ‘indicator’ organism 

against which to test compounds which have been shown to exceed a cut-off of in-

vitro activityi. The ‘pestified’ Drosophila lines created in this thesis express 

variations of the P.xylostella RyR in place of the endogenous Drosophila RyR. 

Drosophila are cheap to rear in comparison to ‘non-model’ insect species, such their 

use as an in-vivo screen could reduce associated overhead costs, whilst providing 

the benefits associated with working with a model species, including a wider array 

of applicable tools and background knowledge.  

This is the first report of an entire RyR sequence being cloned and inserted into a 

different species. D.melanogaster and P.xylostella have a coding nucleotide 

sequence identity of 71% and have been on separate evolutionary paths for 

>250million years (Grimaldi and Engel 2005). A ‘pestified’ fly line created here with 

the I4790M-PxRyR genotype was found to exhibit 198-fold CLR resistance and 97-

fold fold FLB resistance with respect to its WT-PxRyR comparator. In particular, the 

use of pestified Drosophila in insecticide screening will facilitate the search for new 

compounds with high activity against resistant genotypes.  

This thesis has thus strengthened the toolset against diamide resistance. It has 

done so in part by providing tools to speed up the design process for novel 

diamides, by providing a virtual receptor homology model and by providing an in-

vivo experimental Drosophila model. Finally, it has done so by providing a rapid TSR-

validation method which, if included into existing resistance-monitoring 

approaches, could improve the shelf-life of existing diamide insecticides.  
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Appendix 
  

S1 Recipes 

S1.1 Molecular Biology recipes 

S1.1.1 DNA extraction buffers 

1. Buffer A: 
a. 50μl 10% SDS 
b. 530μl water 
c. 200μl TRIS HCL 
d. 200μl EDTA 
e. 20μl NaCl 

2. Buffer B: 
a. 2ml CH3CO2K (K Ac) 
b. 1ml LiCl 

 

S1.1.2 LB and cloning reagent recipes 

Lysogeny Broth (LB) was prepared from 5 g tryptone, 2.5 g yeast extract and 2.5 g 

NaCl made up to 500ml in the equivalent volume Duran bottle and autoclaved. 

For plates, agar was added (7.5 g Bacto-agar per 500ml) and the solution was re-

autoclaved before pouring into the plates. For Ampicillin and Kanamycin plates, 

250μl of 50 mg/mL stock antibiotic was added to the LB agar when it was at a 

temperature of 60°C.μl 

S1.1.3 TAE x 50 agarose gel electrophoresis buffer (per 500ml) 

Tris base    121g 

Acetic acid    28.5ml 

EDTA 0.5M    50ml 

Adjust pH  to 7.4 with acetic acid.  Make up to 500ml with ddH20. 

S1.1.4 Standard Ringer’s solution (per 1l) 

150mM NaCl     8.76g 

4mM KCl     0.29g 

2mM MgCl2    0.19g 
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2mM CaCl2    0.22g 

10mM HEPES    2.38g 

ddH20     900ml 

pH  to .3 with NaOH) and adjust volume to 1 litre with double distilled H2O. Pass 

through 0.22µm filter to sterilize. 

S1.2 Fly Transformation recipes 

S1.2.1 Molasses agar plates for flies 

400ml boiling water 

160ml molasses 

10g agar 

10ml ethanol (absolute) 

5ml acetic acid (glacial) 

1.2.2 Fly food rearing vials 

1L boiling water 

188g Nutrifly Food (FlyStuff) 

5ml Propionic acid 

5ml Nipagin (15% in ethanol) 

1.2.3 Agar Bioassay vials 

1L boiling water 

20g Agar 

12g sugar 

3.9ml Acetic acid 

1.2.4 Injection plates 

1L boiling water 

2 sachets grape juice agar premix (Genesee Scientific) 
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10g agar 

4ml Acetic acid 

1.2.5 Drosophila transgenic injection solution 

Total injection solution:  

0.5ul fluorescent injection buffer 

200-800ng/ul donor plasmid 

100-250ng/ul (fv) accessory plasmid (UAS insertion) 

50-100ng/ul pCFD4-U6:1_U6:3 tandem gRNAs plasmid (CRISPR/Cas9 insertion) 

Up to 10ul volume with micropore filtered ddH2O 

1.2.6 Fluorescent Injection Buffer:  

0.05 mM sodium phosphate 

2.5 mM KCl 

200mg/l Fluorescin sodium salt (Sigma Aldrich) 

pH 6.8 

(Store in 1.5ml microcentrifuge tubes, -20C, dark) 

S2 Supplentary Materials 
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a)  Pjet1.2 b) pcDNA3.1(-) 

b) pcDNA3.1(-) 

Fig. S1 Vector Maps  
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Table S1 PxRyR sequencing primers 

PxRyR F1 TACAGGACAAGAACATACCGCCC 

PxRyR R1 TGTGGTTGCCCTTTATGATTGCC 

PxRyR F2 ATCTGATCCTGGAGGCGATTGAC 

PxRyR R2 GTGTGATCGTAAGCGTGTCAACC 

PxRyR F3 GCTAGTCGAGTGTCTACTGCCTC 

PxRyR R3 ATATGGGCTGGTCCTTCGTGTAC 

PxRyR F4 ACGAGCCATTCTGTGTCAACATG 

PxRyR R4 TGGAAACTGCATCTTCACACAGC 

PxRyR F5 TGCCAAACCAATCTCTGCAAGTC 

PxRyR R5 CGATGGTCTGGATCAGCACTTTG 

PxRyR F6 AGAAGAGCCAGTGAAGAAGACCC 

PxRyR R6 CTACTAGGAAGTCTGACACCGCC 

PxRyR F7 GAGACTCAGGAGCTGTTCTACCG 

PxRyR R7 TCCTTTAAACTAGCCGCCCCTAC 

PxRyR F8 ACAAAGCGAAACAGAACAGACCG 

PxRyR R8 TGGTTGTATAGCTCTTCCGCCTC 

PxRyR F9 TCTACCCGCTGCTCATCAAGTAC 

PxRyR R9 GTAGGTAGTCCACGGTGCAGATC 

PxRyR F10 CCGGTTCATACAGCTCACTTGTG 

PxRyR R10 TGTTCGCTGGAGATAAGGACGAG 

PxRyR F11 GACTCACGCTTCCGGTTTAATGG 

PxRyR R11 CTGCGCCTCTATCCTCTCTTGAG 

PxRyR F12 TGGTGAACAAGCCAAGAAGCAAG 

PxRyR R12 AAGAACCCTCTGCCCTCATCTTC 

PxRyR F13 TCAAGCGTGAGAAGGAGATAGCC 

PxRyR R13 CCTAAGTCTACTCTCCCATGGCG 
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Table S2 HRyR2 sequencing primers 

HRyR seq 1F CCTGCGAACTGATGATGAAGTGG 

HRyR seq 1R GAGGGAGCCAGAAAATTGAGCAC 

HRyR seq 2F GTGCTCAATTTTCTGGCTCCCTC 

HRyR seq 2R GTGCTTCCAAGTTGTAGCCGTAC 

HRyR seq 3F GTACGGCTACAACTTGGAAGCAC 

HRyR seq 3R TTGAATAATCCCGCCGAGAGAGG 

HRyR seq 4F ATTTCCTGCGGTTTTTGCACAAG 

HRyR seq 4R TTTCTACCAGGGATAGCAGACGC 

HRyR seq 5F AGCTGGATGAAGATGGGTCTCTG 

HRyR seq 5R GCTGTGCAAAGGTACCGATTGAG 

HRyR seq 6F GATACGGCAGCTTTGAGTGCTAC 

HRyR seq 6R TGCCTGACAAGAACTCCAAGTTTG 

HRyR seq 7F CTCTGCTCTGGAGGACATGCTTC 

HRyR seq 7R AGAGAGGTCTGCATGGAATACCG 

HRyR seq 8F AAATGAAGCGCAAAGGAGATCGG 

HRyR seq 8R ACCATCTGTTTGCCAATCGTTCC 

HRyR seq 9F GCCCATATGCAGATGAAGCTGTC 

HRyR seq 9R TGACTCTGGCACTTCTGGTTCTC 

HRyR seq 10F AAAGTTGAGGCAGCTTCACACAC 

HRyR seq 10R ACTCCGGGAGTCTCAGAAGAAAATC 
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