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Abstract: Avalanche photodetectors (APDs) on Si operating at optical communication wavelength band 

are crucial for Si-based transceiver application. In this paper, we report the first O-band InAs quantum dot 

(QD) waveguide avalanche photodetectors monolithically grown on Si with a low dark current of 0.1 nA 

at unit gain and a responsivity of 0.234 A/W at 1.310 μm at unit gain (-5V). In the linear gain mode, the 

APDs have a maximum gain of 198 and show a clear eye diagram up to 8 Gbit/s. These QD-based APDs 

enjoy the benefit of sharing the same epitaxial layers and processing flow as QD lasers, which could 

potentially facilitate the integration with laser sources on Si platform. 

Keyword: quantum dots, silicon, avalanche photodetectors, gain, bandwidth

Self-assembled quantum-dot (QD) semiconductor nanostructures have attracted intense interest for 

optoelectronics devices applications due to their unique three-dimensional carrier confinement 

characteristic. Recently, O-band InAs QD lasers monolithically grown on Si substrate have been 

demonstrated with low threshold current, high temperature stability, and record-long device lifetime, which 

could potentially overcome the lack of laser source in Si photonics 1-4. Meanwhile, high performance optical 

amplifiers 5, near infrared PIN waveguide PDs 6, 7, mid-wavelength infrared QD photodetectors8-10 with 

similar QD structures on Si have been recently reported. The three-dimensional carrier confinement in the 
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2

QDs leads to ultra-low dark current density of 3.5 ×10-7A/cm2 in QD PDs directly grown on (001) Si, 

together with a decent responsivity around 0.2 A/W in the O-band 6. 

Avalanche photodiodes (APDs) can achieve a high internal current gain by applying a high reverse bias 

voltage due to the avalanche effect, which can significantly improve the signal to noise ratio 11. Driven by 

the increasing applications in optical communications, monolithic Si-Ge APDs have been demonstrated 

with large gain-bandwidth products 12. Recently, InAs QD APDs heterogeneously integrated on Si have 

been reported with a low dark current of 0.01 nA and a high gain bandwidth product of 240 GHz 13. In this 

work, we use an alternative approach through direct epitaxy for better economy of scale, better integration 

with QD lasers, and demonstrate the first InAs QD APDs monolithically grown on (001) Si with a low dark 

current of 0.1 nA  in a 3 × 50 μm2 device biased at -5V. The corresponding dark current density is as low 

as 6.7×10-5  A/cm2, which is among the best reported values for any III-V PDs grown on a Si substrate at 

the same reverse bias14-17. In addition, the PDs achieve a decent responsivity of 0.234 A/W at 1310 at unit 

gain, limited by coupling into the photodetector waveguide. The dark current at 99% of breakdown voltage 

is 1.3 nA, and an avalanche gain of up to 198 has been demonstrated. Due to RC and carrier trapping limits, 

the APDs show 3-dB bandwidth of 2.26 GHz at -6 V. Temperature studies have been carried out to 

understand the physics of the avalanche process in the devices. The limiting factors of the current device 

have been analyzed and future improvements are discussed. Considering the high gain and low dark current 

performance up to 323K (50 oC), these APDs hold great potential for applications in energy-efficient 

interconnects within supercomputers and data centers.

Device structure and Fabrication:
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3

 

Figure 1.  Schematic diagram of the InAs QDS APD grown on GoVS substrate.

The structure of the photodiode is shown in Fig. 1. The QD APD structure was grown on a GaAs-on-V-

grooved-Si (GoVS) substrate, prepared by aspect ratio trapping (ART) in a metal-organic chemical vapor 

deposition (MOCVD) system 18, 19. The APD epitaxial structure was grown in a molecular beam epitaxy 

(MBE) system. The active region of the PD consists of five-stacked InAs dot-in-a-well (DWELL) structures, 

with a dot density of 6 × 1010 cm−2. 
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Figure 2. (a)Schematic diagram of the fabricated waveguide photodetector. (b) Top-view and (c) cross-sectional view of the 
fabricated device.

After the material growth, the epitaxial structure was processed into waveguide-shape APD devices with 

mesa widths ranging from 3 to 50 µm and mesa lengths of 50 µm by inductive coupled plasma (ICP) etching. 

After ICP etching, the sidewall was passivated with a 12-nm atomic-layer deposited (ALD) Al2O3 together 

with a 1-µm-thick SiO2 layer to help suppress the surface leakage current. Pd/Ti/Pd/Au and Pd/Ge/Pd/Au 

were evaporated as metal contact stacks with a 150-µm pitch-size standard ground-signal-ground (GSG) 

pads. Finally, facets were cleaved with no additional anti-reflection coatings. The full device structure is 

schematically shown in Fig. 2(a). Top-view and cross-sectional view scanning electron microscope (SEM) 

images of a fabricated device are shown in Fig. 2(b) and Fig.2(c), respectively.
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Figure 3. (a) Temperature dependent measurement of the Current-voltage characteristics of a 3 × 50 μm2 device. (b) Capacitance 
voltage characteristics of devices with different size at room temperature. Inset: measured capacitance of a series of devices under 
-5V bias.

Measurement and analysis:
The dark current voltage (I-V) curves of a 3 × 50 μm2 APD devices were measured from 260–340 K in a 

low temperature probe station and recorded by a semiconductor device analyzer (Keysight 1500), as shown 

in Fig. 3(a). The device shows a very low dark current of 0.1 nA at 300 K under a bias voltage of -5 V, 

which corresponds to a low dark current density of 6.6×10-5A/cm2. This can be attributed to the high crystal 

quality and surface passivation of the PD mesa. Moreover, the dark current at 300 K was measured to be 

1.3 nA around -15.9 V, which is round 99% of the breakdown voltage (-16 V). It is also noted that the 

breakdown voltage of the APD increases as the temperature increases, which indicates the dominance of 

avalanche breakdown over tunneling in the APD structure. The capacitance voltage (C-V) characteristics 

of several different sizes of APD devices were also measured at room temperature as shown in Fig. 3(b), a 

parasitic capacitance of 517 fF was extracted based on the device area-capacitance curve in the inset of Fig. 

3(b). 

The gain versus bias voltage of the device at various temperatures were measured as shown in Fig. 4(a) 

with input wavelength of 1300nm. Here we take the unity gain bias of -5 V, to make sure the device is fully 
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depleted. The maximum gain value of 198 was obtained at 293K (20 oC), and drops to around 73 at 323K 

(50 oC). It’s also noted that the dark current of the APD is only 33 nA while a maximum gain value of 198 

is achieved at a reverse bias of -15.97 V at 293K (20 oC). This dark current value is more than two orders 

of magnitude lower than that of Si/Ge APDs 20, InGaAs/InAlAs APDs on Si 15 and the recent InAs QD 

APDs heterogeneously integrated on Si 13. The excess noise the APD is also measured by a noise figure 

meter as shown in the Fig. 4(b). The excess noise is high due to the mixed injection in the APD device and 

further optimization for minimizing the noise performance is necessary for future work. 
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Figure 4. (a) APD gain versus the reverse bias at various temperatures  (b) Excess noise of the APD versus the gain
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Figure 5. Wavelength dependence of APD responsivity at various biases.

Optical response of the APD was measured by coupling light with a lensed fiber from an O band tunable 

laser source to the cleaved facet of the PDs and adjusting the input polarization by a polarization controller. 

Fig. 5(a) shows wavelength dependence of responsivity for a 3 × 50 μm2 device at different bias. The input 

power was fixed at -20 dbm so that the APD is not saturated during measurement at high gain condition. 

The coupling loss between the spherical-lensed fiber and the cleaved facet was estimated to be roughly 3 

dB, which is estimated by comparing the measured power from an integrated sphere power meter and a 

fiber coupled power meter of a forward biased laser diode with the same epilayer structure and the same 

mesa width of the PD in this work. The oscillatory features shown in the responsivity plot is due to the 

Fabry-Perot resonance between the rear and the front facets, which has also shown up in other waveguide 

PD structures 7. The responsivity of the device at -5 V is 0.234 A/W at 1310 nm and cuts off around 1360 

nm, which corresponds to the bandgap of the InAs QD materials. The corresponding absorption coefficient 

at 1310nm is estimated to be 770 cm-1, assuming a confinement factor of 6.5%. As the reverse bias increases, 

the cutoff wavelength red-shifts due to the quantum-confined Stark effect (QCSE), which shifts the electron 

states to lower energies and the hole states to higher energies, respectively, in the QD layers. At a reverse 
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8

bias of 15.9 V, the responsivity of the APD around 1310 nm increased to 4.8 A/W, due to the avalanche 

gain of around 20 in the APD structure. 
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Figure 6 (a) Small-signal frequency responses of 3.0 × 50 μm2 device for various bias voltages. (b) Equivalent circuit model 
used for the fitting of the Impedance measurement. (c) Measured (red ) and fitted (blue ) curves of reflection S11 characteristics 
from 10MHz to 20 GHz at -6V.

TABLE I. Fitting parameters in the circuit model Fig. 6(b). 

Rs (Ω) Rj (MΩ) Cj (fF) Ls (fH) fRC3dB (GHz)

9.38 800 520 1.08e-9 5.16
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The small-signal frequency response S21 was measured using a lightwave-component analyzer (LCA) 

with a 1310 nm internal light source. The modulated light from LCA was input to the PD facet through a 

lensed fiber. S21 characteristics of a 3 × 50 μm2 device biased at various voltages is presented in Fig. 6(a). 

As shown in Fig. 6(a), the 3dB bandwidth increases slightly as the reverse bias increases from -2V to -6V, 

which is due to the reduction of both carrier transport time and carrier emission time out of quantum dots 

as the electrical field in the absorption region increases.  The 3-dB bandwidth of the device is 2.26 GHz 

and 2.06 GHz at the bias of -6 V and -15.9V, respectively. The bandwidth reduction at -15.9V is due to the 

avalanche built-up time. To assess the bandwidth limiting factors, S11 characteristics were measured and 

the parameters were fitted with an equivalent circuit model (Fig. 6(b).), as shown in Fig. 6(c) 21, 22. The 

circuit parameters were de-embedded from the S11 characteristics, giving rise to a calculated RC-limited 

bandwidth of 5.16 GHz with the corresponding fitting parameters shown in Table I. This RC limited 

bandwidth is slightly larger to the measured bandwidth value, it is expected that the device performance 

may be limited by both RC and transit time. As one of the future works, semi-insulator Si substrate or thick 

benzocyclobutene (BCB) layer or SU8 layer can be used for material growth and device fabrication to 

minimize the parasitic capacitance in the device, which could potentially improve the RC limited 

performance23, 24.

Fig. 7 shows the eye diagram of a 3.0 × 50 μm2 avalanche photodiode biased at −15.9 V and operating 

at a 2.5 Gbit/s, 5 Gbit/s, and 8 Gbit/s data rate. 231–1 pseudo-random binary sequence (PRBS) sequences 

were generated as the data source to drive an O band lithium-niobate (LN) modulator, which modulates the 

1.31 μm optical signal coming from an external tunable laser. The modulated light signal was controlled to 

be TE light by a polarization controller and was used as an input to the device through a spherical lensed 

fiber with an output input power of ~-3 dBm. Clear eye opening up to a data-rate of 8 Gbit/s is demonstrated, 

which indicates that these APDs can be used in an O-band optical communications system. The bit error 

rate (BER) test at different bias points was conducted using an Anritsu Bit Error Rate Tester at 2.5 Gb/s at 
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room temperature, as shown Fig. 8. Photodiodes operated at high gain bias point of -15.9 V exhibit a 

significantly improved bit error rate as compared to the lower bias point with the same input optical power. 
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Figure 7. Measured eye diagrams at a bias voltage of −15.9 V for data-rate of 2.5 Gbit/s, 5 Gbit/s and 8 Gbit/s.
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Figure 8. BER versus input optical power of a 3 μm × 50 μm PD with different reverse bias points at 1310 nm

It’s also noted that the APD structure demonstrated in this work is based on the PIN QD structures 

operated under high reverse bias. The QDs layer here acts as both absorption region and multiplication 

region, which could cause high excess noise in the APD considering the mixed carrier injection 11. The 

expected high excess noise of the APD also limited the signal to noise ratio when operated at high gain bias 
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point. One way to overcome this drawback is to incorporate the separated absorption, charge and 

multiplication avalanche photodiode (SACM-APD) for low noise and high speed applications 25, 26. 

Conclusions:

In summary, we reported the first InAs QD APDs grown on (001) Si using the same epitaxial layers and 

fabrication process for a QD laser. A low dark current density of  6.7×10-5A/cm2 has been achieved, which 

is more than 2 orders of magnitude lower than Ge/Si APDs. A high avalanche gain up to 198 was 

demonstrated and the limiting factors of the 3-dB bandwidth of these QD APDs have been investigated. 

Open eye diagrams were measured up to 8 Gbit/s, which show potential for the O-band optical 

communications system.
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